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Abstract 

 

 
Master thesis project, entitled “Visual Odometry Technique for challenging environment with focus on low-

texture”, has been carried out at PIC4SeR (Politecnico di Torino Interdepartmental Centre for Service 

Robotics). 

Service robotics is based on creating autonomously or semi-autonomously systems useful for the human 

wellbeing. It can have several applications ranging from precision agriculture to space and to services for 

people with disabilities. The latter is the field of this research project: visual sensor is mounted on a wheelchair 

that is moved in indoor environment. Different cameras and Visual Odometry algorithms are evaluated in 

order to obtain a precise real-time position variation, focusing on low-texture challenge. Generally, indoor 

environments, such as hospital, do not have many features, so placing a front-facing camera may not solve 

low-texture problems. The idea of placing the visual sensor facing downwards as well as frontally is proposed, 

in order to focus exclusively on the floor texture and obtain the desired Odometry with higher accuracy. 

The purpose of this research is to localize a robot within limited indoor environment through Visual Odometry. 

The algorithm discussed in this Master thesis project consists of two parts. In the first one, consecutive images 

captured by the camera are considered. Thus, landmarks in the surrounding environment are examined and 

feature detection and matching algorithms are applied, evaluating the change in position of that feature 

between one frame and the following. In the second part, the Essential Matrix and the Fundamental Matrix 

are calculated, obtaining an estimate of the robot's position point by point. At the end of the algorithm, the 

trajectory of the wheelchair is obtained. After having created a simulation environment on Gazebo and once 

transcribed the above-mentioned algorithms in Python language, ROS 2 Foxy is used to simulate the behaviour 

of the system. The correctness of the robot's trajectory is verified by comparing the Odometry obtained from 

Gazebo and the Odometry obtained through the algorithm, by means of a Jackal 3D model. Afterwards, once 

evaluated the efficiency of the algorithms, system is simulated in real world using a Turtlebot robot. 

Through this experimental approach, it can be demonstrated that a low-texture environment compromises the 

accuracy of the trajectory; however, with the camera facing downwards, when features are greater, the 

odometry is more accurate. 
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Chapter 1 

 
Introduction 
 
 
In recent years, according to Istat data, the average age has increased significantly. The high number of elderly 

people, combined with the increasing presence of disability cases, such as multiple sclerosis or amyotrophic 

lateral sclerosis, has led to the need for constant assistance. 

For this reason, there is an increasing focus on creating autonomous wheelchairs based on the model of self-

driving cars in the automotive field, with the aim of making disabled people more independent. 

The idea is to create a system that can move autonomously within spaces such as hospitals, apartments, 

airports, etc. providing a specific destination, with the help of sensors. For this purpose, there are already 

several techniques that may involve prior knowledge of the surrounding environment or techniques that do 

not involve knowledge of the environment. 

The idea for this work was born after meeting the start-up Alba Robot [1] an innovative company that aims to 

use the most advanced technologies to create a platform for electric vehicles equipped with autonomous 

driving systems.  

The purpose of this thesis is to localize a system, the wheelchair in question, in indoor environments through 

visual odometry techniques using visual sensors.  

For proper localization, sensors need features in the space around them. There could be problems in hospitals 

or airports where walls are generally white and there are not enough landmarks around. Hence, the choice is 

to consider placing the sensor facing downwards. Analysing floor features is a good approach to overcoming 

the aforementioned challenge. 

The first phase of the work has been to create a simulation environment on Gazebo in ROS 2 that could 

represent a hospital environment, equipped with rooms, corridor and different obstacles. Then, a floor 

equipped with tiles with different features has been reproduced with the use of some blocks.  The system 

chosen for the simulations has been Jackal Robot characterized by four wheels, a chassis and a visual sensor 

Intel RealSense d435i. The idea has been to compare the odometry of the robot with the camera facing the 

front and those with the camera facing downwards. 

In the second phase, an algorithm has been developed in Python language in order to evaluate the Odometry 

of the robot tracing its trajectory. It consists of two main parts, in the first one the video is captured by the 

camera mounted on the robot and the features of two consecutive frames are detected and matched; in the 

second one the position of the camera is found in real time through the calculation of the Fundamental matrix 

and the Essential matrix. 

At the end of this approach, the trajectory of the robot is obtained by summing its various positions. After 

verifying the correctness of the algorithm and after plotting the trajectory of the robot, we have moved on to 
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the practical phase by testing it in the real world, precisely in the corridors of PIC4SeR, using Turtlebot3 

Burger robot, evaluating whether the behaviour of the algorithm varied with the switch from Gazebo to the 

real world. 

 

 

 

1.1 Thesis Structure 
The dissertation begins by introducing the need to create an autonomous wheelchair and the purpose of the 

work with the challenge to be overcome. The first chapter briefly discusses how to approach the project with 

the Visual Odometry algorithm developed. Then, simulation environment is described indicating the robots 

used on Gazebo in ROS 2 and in the real world (Chapter 1). 

The Second chapter (Chapter 2) discusses the wheelchair, with its brief history and description of the 

environments in which it moves in this work. 

The Third chapter (Chapter 3) focuses on Visual Odometry (VO), its state of the art and the various problems 

related to low texture. A solution is proposed to overcome the challenge followed by a detailed description of 

the algorithm developed 

The following chapter (Chapter 4) deals with visual sensors giving an overview of the types of sensors with 

their various characteristics and focusing on their best performing environments. 

The next chapter (Chapter 5) deals with the simulation environment with the description of the robot used on 

Gazebo and in the real world. In this part is also described the hospital environment and the floor with its 

features on which the algorithm of Visual Odometry will be tested. 

The sixth chapter (Chapter 6) shows the experiments on ROS 2 and in the real world with the aim of evaluating 

the performance of the algorithm. 

Finally, in the last chapter (Chapter 7), results obtained during the experiments are analysed with the 

conclusion of this work and with potential future work related to Visual Odometry in indoor environments. 
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Chapter 2 

 
Intelligent Wheelchair 

 
 

More and more people suffer from temporal or permanent disabilities due to illness, accidents, and motor 

problems related to old age. In most cases, these conditions lead to the need for constant support from other 

people. The inability to move independently can alter psychological well-being. In fact, this condition can 

limit social relationships, creating conditions of depression and anxiety. 

For cases of difficult or impossible walking the use of a wheelchair is becoming essential. In recent years, 

research has been focusing on making smart wheelchairs capable of satisfying patients with various levels of 

disability, Intelligent Wheelchairs. Their purpose is to meet the different types of situations and disabilities, 

making the user independent and safe [2].  

Intelligent Wheelchairs are in fact equipped with advanced functionalities that allow the user to move 

independently. It consists of Powered Wheelchair with advanced capabilities such as voice control, fingertip 

control, head movements control or different inputs that do not involve use of commands [3]. 

According to [4], System navigation in Service Robotics is characterized by four main blocks: Perception, 

Localization, Cognition, Motion. The first block consists of understanding the surroundings, evaluating 

possible static and dynamic obstacles and different environment features; Localization represents the 

continuous awareness of the robot's position within the environment in which it moves; Cognition block 

allows the robot to evaluate possible ways to achieve various goals, such as how to reach a specific destination; 

finally, the last block is the motion control that allows the robot to manage its movement in acceptable way. 

Most Intelligent Wheelchairs move within an environment whose map is provided, others are unaware of their 

surroundings and update a map keeping track of their location in real time. The latter is Simultaneous 

Localization And Mapping (SLAM) and it is a key problem in the field of Artificial Intelligence because a 

priori map is not accessible and the system needs to locate itself [5]. To overcome this challenge, researchers 

are continuously conducting studies evaluating various criteria for Robot localization in both outdoor and 

indoor environments. 

The main element of Autonomous Wheelchair are sensors. They are crucial for avoiding obstacles especially 

in dynamic environments guaranteeing greater user safety [6]. Sensors can be of different types according to 

the environment in which they are to operate and according to the performance they are to execute. In service 

robotics, the most used sensors are visual sensors, navigation ones or those capable of measuring the velocity, 

orientation, and gravitational forces [7].  
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All these elements, combined with navigation algorithms, allow wheelchairs to be intelligent by meeting the 

needs of patients with disabilities. In this way, the latter will no longer require assistance, improving their 

psychological condition; they will also feel more independent in terms of social contacts. 

For example, a Turin-based start-up named ALBA Robot (Advanced Light Body Assistant) has focused on 

passengers with reduced mobility, equipping hospitals, airports and museums with services based on 

autonomous driving. It is a smart wheelchair that is guided with voice commands and allows disabled users 

to leave assistance from airport staff or museum staff [1]. 

 

 

2.1   Related Work 
Several smart wheelchair models have been introduced in recent years. Below, according to the [8], are the 

most significant smart wheelchairs that have contributed to improving the living conditions of people with 

disabilities. 

One of the very first smart wheelchairs dates to the last decade of the 1990s. Its name was Mr. Ed and it was 

implemented by Connell and Viola, it could be controlled through a joystick and was equipped with infrared 

proximity and sonar sensors that allowed the system to avoid obstacles or follow moving objects. 

In 1991, Simon Levin at the University of Michigan developed NavChair. It had control system that allowed 

it to travel safety avoiding obstacles and following walls, adapting to every situation and possible changes in 

the surrounding environment. All this was possible thanks to twelve ultrasonic sensors and a computer (Figure 

2.1). Users could set the route to be taken, indicating directions and speed.  

 

 

Figure 2.1 NavChair Wheelchair [8] 
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A few years later, Miller and Slack at the KISS Institute in Virginia developed TinMan I and II. The first 

prototype could move using a joystick; the second one (Figure 2.2), a controller and sensors were added. They 

allowed the wheelchair to avoid obstacles and follow walls. 

 

 

Figure 2.2 TinMan II Wheelchair [8] 

 

At the same time, CALL Centre at the University of Edinburgh was developing the CALL Centre smart 

wheelchair to meet children's disabilities. It was computer-controlled and equipped with switch, joystick, and 

other elements capable of driving it. 

Instead, at Nagasaki University, the first wheelchair capable of locating itself within indoor environment by 

exploiting landmarks was developed (Figure 2.3). For this purpose, it exploited ceiling lights captured through 

visual sensors. If the lights were missing, azimuth sensors, placed on the wheels, allowed the wheelchair to 

continue navigating safely. With the help of these sensors, the captured image was processed by a circuit with 

FPGA that informed the user of the presence or absence of obstacles. 

 

 

Figure 2.3 Nagasaki University Wheelchair [8] 
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Obstacle avoidance, passage in narrow spaces, and navigation based on landmarks are the features of the TAO 

1 (Figure 2.4) and TAO 2 (Figure 2.5) wheelchairs developed around 1995. With the help of a microcontroller 

that managed visual, bump and infrared sensors, it was possible to move independently and safely. 

 

 

 

 

 

 

 

 

 

 

 

 
In the first decade of the 2000s, the first Lidar SLAM-based wheelchair model with 3D map reconstruction 

was developed [9]. The goal in this wheelchair was to create a safe, intelligent, and low-cost system. The 

user could move with either a joystick or GUI (Graphical User Interface) interfaces via computer. Lidar 

sensors were the stars of this model, there was a horizontal one and a vertical one, and then there was also a 

stereo camera (Figure 2.6).  

 

 

       Figure 2.6 Intelligent Wheelchair platform [9] 

 

 

Figure 2.4 TAO 1 Wheelchair [8] Figure 2.5 TAO 2 Wheelchair [8] 
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2.2   Indoor Environment 
Intelligent Wheelchairs are designed to be used in a variety of settings, as long as they assist people with 

disabilities, but there are some differences involving indoor or outdoor scenario. 

The main difference is size. In fact, wheelchairs designed for indoor environments should not be bulky in 

order to be able to manoeuvre them comfortably. Speed is also a parameter that depends on the space in which 

it moves; in indoor environments where there are other people, or obstacles and narrow spaces, the wheelchair 

does not need to reach high speeds [10]. 

If we consider possible interior spaces within which a wheelchair can move, house and hospitals come to 

mind. Narrow spaces within rooms, bathrooms, or elevators prevail in these types of environments and for a 

wheelchair to move comfortably, in addition to its size, it is necessary to use sensors that detect obstacles even 

very close to it. 

Another problem that frequently happens is the low texture of the indoor environment. This means the 

presence of few features detectable by sensors, due for example to white walls and redundant spaces.  

One of the positive aspects of dealing with indoor wheelchairs is related to the wide choice of sensors (covered 

in Chapter 4); in fact, in these cases there is no problem of possible weather that may interfere, or high 

distances to be detected. 
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Chapter 3 

 

Visual Odometry 

 
 

The term “odometry” originated from the two Greek words hodos (meaning “journey” or “travel”) and metron 

(meaning “measure”) [11]. Visual Odometry (VO) consists of estimating the position of a system by 

evaluating the variation in motion from images captured by visual sensors. The trajectory is obtained from the 

sequence of images or the video stream from one or more cameras mounted on moving robot [12]. 

 

                 

                   Figure 3.1 VO Input - Corridor [13]  

 

Visual Odometry is a special case of SFM (Structure From Motion). SFM refers to the problem of 

reconstructing the three-dimensional structure and position of the camera from a set of images received as 

input [12]. As early as the 1980s, Moravec was studying on planetary rovers to overcome the challenge related 

to estimating the ego motion of the system from a single visual input coming from a slider stereo camera [15]. 

Until about 2000, Visual Odometry was used only for space research purposes by NASA. From 2004 with 

Nister [16], visual odometry began to be used for other purposes as well, moving into academic environment. 

He proposed a VO framework for terrestrial application using monocular and stereo camera sensor in order 

to obtain navigated path [17]. 

Until the emergence of VO, there was a similar technique considered the simplest for position estimation, 

called Wheel Odometry (WO). It works from data from the encoders coupled to the rear wheels. Each 

individual encoder generates 100 sets of pulses per revolution of the wheel. The Figure 3.3 shows the wheel 

with the encoder (in green) which sends output signals to processor every 5 milliseconds [18]. 

Figure 3.2 VO Output - Camera Trajectory [14] 
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Figure 3.3 Wheel Odometry with Encoder [11] 

 

Unfortunately, it suffered from position drift due to wheel slippage mainly due to abrupt accelerations or 

uneven grounds [11]. With the introduction of VO, it was discovered that it was not affected by wheel slip 

and that relative positioning errors of VO was much lower than WO errors [19]. VO provides more accurate 

trajectory estimates, with relative position error ranging from 0.1 to 2% [12].  

According to [20], Visual Odometry has various fields of application, in fact it can be applied in gaming, 

virtual reality, manufacturing industries, aviation and underwater environment, automobiles, agriculture, 

etc…  For this reason, there are several techniques and classifications published in literature in recent years. 

In 1988, Aggarwal and Nandhakumar were the first to classy image sequences captured by visual sensors into 

feature-based and optical flow based [21]. The first approach is to find features, keeping track of them as you 

move from frame to frame, but this method will be explored in more detail in Section 3.2.1.; Optical flow 

based approach is based on points within the image from which a speed is calculated by predicting the position 

of the next point. 

Later, Sedouza and Kak classified the two techniques just mentioned into map-based, map-building-based and 

map-less navigation schemes [22]. In the latter, the map is not provided and therefore the movement of the 

system takes place considering the surrounding objects. Alternatively, the map of the environment may 

already be known to the robot from the beginning, or it may be created during its movement. 

At the same time, other systems for position estimation already existed. One example is GPS (Global Position 

System), the first navigation method born in 1970 and mainly used to detect the position of systems in outdoor 

environments. GPS technique consists of constellation of 24 satellites orbiting the Earth that transmit radio 

frequency signals accurately calculating the position at any point on the Earth's surface. To increase accuracy, 

an INS (Inertial Navigation System) equipped with motion and acceleration sensors was often used in addition 

to the GPS [11]. But these methods just mentioned had their weaknesses, e.g. loss of information or poor 

accuracy, which is why a more robust and precise method is chosen when locating a system within an 

environment: Visual Odometry. 

After capturing the different frames from the camera, they are analysed two by two taken consecutively by 

evaluating the features from feature detection technique (Figure 3.4).  
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Figure 3.4 Frames at two consecutive time instants [23] 

Depending on whether the features correspondences fk and fk-1 (k and k-1 are time instants) are 2D or 3D, there 

are three different cases [11]:  

• 2D – to – 2D: both fk and fk-1 are expressed in 2D image coordinates. 

• 3D – to – 3D: both fk and fk-1 are specified in 3D image coordinates. In this correspondence, 

triangulation of points in 3D is required at each instant of time. 

• 3D – to – 2D: fk-1 is expressed in 3D and fk is expressed in 2D.  

 The benefit of using directly raw 2D points instead of triangulated 3D points lays in a more accurate motion 

computation [24]. 

For each method indicated above, there are three different motion estimation algorithms, which are briefly 

shown in the Table 3.1 below according to [11]. 

2D – to – 2D        3D – to – 3D 3D – to – 2D 
   
Capture new frame Ik Capture two image 

pairs Il,k-1 and Ir,k-1 and  
Il,k and Ir,k 

  Capture new frame Ik-2 and Ik-1 

           Extract and match features 
Extract and match features 
of Ik-1 and Ik 
 
Compute Essential Matrix 
Ek 
 
Compute Transformation 
Matrix Tk 
 
 
Compute Ck = Ck-1 Tk 
 
Repeat 

Extract and match 
features of Il,k-1 and Il,k 
 
Triangulate matched 
features  
 
Compute 
Transformation Matrix 
Tk from 3D features 
 
Compute Ck = Ck-1 Tk 
 
Repeat 

          
  Triangulate matched features  
 
  *Capture new frame Ik 
 
  Extract and match features 
  of Ik-1 and Ik 
 
  Compute camera pose PnP 
 
  Triangulate all new feature 
  matches  
 
  Repeat from * 

   
Table 3.1  Motion Estimation Algorithms 
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3.1   Low Texture Challenge 
Most very large interior spaces, such as hospitals or airports, have a redundant layout. The different 

compartments are in fact repeated in the same way within the structure. Even the walls are often monochrome, 

lacking in features. It can be a problem when dealing with visual sensors and even more so when a self-driving 

robot is involved, which could lead to dangerous scenarios. 

In recent years, several researchers have addressed this issue by trying to overcome the low-texture challenge. 

According to [25] [26], this condition occurs when there is no change between two consecutive frames and 

tracking can lost. Localization algorithms are not robust in low-texture environments, they do not perform 

well especially concerning SLAM algorithms (Simultaneous Localization And Mapping) that should create a 

map during robot movement [27]. It can produce a large drift error both in position and orientation or even a 

fail to work, by increasing the runtime efficiency [28]. 

 

3.1.1   Solution 
In order to overcome low-texture challenge, over the past few years, different solutions have been proposed. 

The most common ones concern the choice of sensors and feature detection algorithms. Some of them consist 

of taking as features the lines identified within the structure in which the robot moves (i.e. columns, doorposts, 

skirting boards, ceiling lines, etc.) [28] or variations in color and objects in the surrounding. They are known 

as texture-based algorithms and, according to [29], they can be classified into: 

• SIFT (Scale Invariant Feature Transform) Algorithm: it calculates a set of feature vectors for a 

greyscale image.  It consists of identifying key points and then, for each of them, vectors describing 

the local region of the key point, called descriptors, are calculated. Given two images, if at least 3 

key points coincide with a Nearest-Neighbour approach, then there is a high probability that the 

object described by the key points is the same [30]. 

• SURF (Speed Up Robust Features) Algorithm: it calculates the feature vectors of a greyscale image 

faster than the SIFT method. The procedure for obtaining descriptors is the same of the previous 

algorithm [30]. 

• FAST (Features from Accelerated Segment Test) Algorithm: it deals with searching for angles 

within greyscale images. The search is carried out by nominating a pivot point as a corner and 

evaluating a 16-pixel surround. The values of the surrounding pixels are checked and if there are at 

least 12 consecutive pixels that have a value that differs by a threshold t from the value of the pivot 

pixel, then a corner is detected [30]. 

• ORB (Oriented FAST and Rotated BRIEF) Algorithm: it builds on the FAST key point detector 

and the BRIEF descriptor. FAST applies Harris corner measure and uses pyramid to produce 

multiscale features. A negative aspect of FAST concerns orientation, which is not calculated by this 

algorithm, so ORB can steer BRIEF according to the orientation of key points [31]. 

Although these VO techniques show promising results for several applications, they are sensitive to 

environmental variations, such as lighting conditions and surrounding texture. Some of the other conditions 

that lead to poor tracking data are blurring, the presence of shadows, and visual similarity. In addition, some 
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artificial errors find their way into the data during the image acquisition and processing phases, such as 

distortion and lens calibration, feature matching or triangulation. Therefore, VO schemes must be robust and 

able to manage these problems efficiently [20]. However, it may also be useful to focus on the position of the 

sensor and consider modifying the shot. 

In other words, turning the sensor downwards could solve few features problem. Floor tiles could hide relevant 

landmarks for the sensor. At the very heart of the principle of the computer mouse. 

In particular, the use of mouse sensors offers robust solutions for applications requiring accurate relative 

positioning measurements. Firstly, they provide displacement measurements along ground surfaces with high 

frequency and accuracy. Secondly, their working distance is commonly limited to small measurements.  In 

fact, their operating principle requires that a very small portion of the target surface be observed in order to 

report information over several frames. Generally, VO techniques allow the robot pose to be estimated in 

terms of six degrees of freedom. When sensors are oriented towards the ground plane, the problem of pose 

estimation can be simplified to a planar rotation and translation of three degrees of freedom (3-DoF) when 

considering ground robots [19]. 

Based on these considerations, the camera turns downwards, measuring how the accuracy changes. 

 

3.2   Approaches 
For each new image acquired by the sensor, feature detection and matching algorithms are applied between 

the first frame and the following one. Thus, image correspondences are considered:  two-dimensional features 

that are the re-presentation of the same three-dimensional features in different frames [14]. 

The following step consists of calculating the relative motion between the instants of time between one image 

acquisition and the next one. Then, the camera pose is calculated by concatenating the relative motion with 

the previous pose. 

These steps are shown in the diagram below (Figure 3.5): 

 

         Figure 3.5 Block diagram VO Approach 
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3.2.1   Feature Detection Approach 
According to [14], the relative motion can be obtained by two methods: appearance-based approaches and 

feature-based approaches. The first ones get information from the input image pixels; instead, the second ones 

use repeatable features from captured images. Most of the methods used for Visual Odometry are feature-

based because it is considered a faster and more robust approach.  

Image registration consists of detecting areas of local features, describing them, matching them, estimating 

the transformation pattern and aligning two images.  Local features normally include points, lines, curves, 

edges and contours. However, common points between images, also known as key points, are used for image 

registration due to their simplicity in being detected and described. In addition, these detectors keep finding 

or identifying local regions, which have been subject to transformations in terms of illumination, scale, 

blurring, etc. [32]. 

The method chosen in the Visual Odometry algorithm is a feature-based method of the ORB (Oriented FAST 

and Rotated BRIEF) type. It is the combination of FAST detector and BRIEF descriptor. ORB uses the 

centroid of intensity to measure the orientation of angles [32]. ORB feature descriptors encode interesting 

information in a series of numbers and operate as a kind of numerical fingerprint. They can be categorized 

into two classes: local descriptor and global descriptors. The first one corresponds to a compact representation 

of the neighborhood, generally around an image point. The second one represents the whole image. Based on 

the key points identified in the image, feature vectors are created as in the image below [33].  

 

 

          Figure 3.6 ORB Feature Detection Algorithm [33] 
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3.2.2   Feature Matching Approach 
In computer vision, after finding descriptors and detecting interest points, they are matched. Feature matching 

consists in establishing feature correspondences between two consecutive images. 

Matching features in this work is performed by Brute Force Matcher. The choice is not casual, even though 

the computation time is longer than in other methods, it is very precise. It takes the descriptor of a feature in 

the first image and compares it with the descriptors of all features in the second image using the distance 

calculation. Finally, the closest descriptor in a resulting pair is returned [34]. 

At the end of the matching algorithm, two consecutive frames with their matched descriptors are considered 

(Figure 3.7). 

 

                 Figure 3.7 Feature Matching Algorithm result 

 

The image above shows the result of the Brute Force Matching algorithm in Gazebo world. After setting the 

number of matches to be represented, the two consecutive frames representing a portion of the hospital 

environment are shown side by side. 

 

 

3.2.3   Pose Estimation 
In order to obtain the estimated camera position, there are a series of calculation steps to be performed. Both 

the Essential and Fundamental matrices completely describe the geometric relationship between 

corresponding points of pair of images coming from camera. There are several ways to derive these Matrices 

[35]: 

1. the Fundamental matrix F is calculated using the eight-point algorithm with RANSAC (RANdom 

Sample Consensus). The accuracy of the F matrix is guaranteed by dividing the image into an 8x8 

grid in which 8 random points are selected and once the Fundamental matrix is found, the error is 



15 
 

calculated, and it should be below a certain threshold value. Thus, only the F matrix with the lowest 

possible error is taken into account. 

 

Given x and x’ matches in two distinct frames and F Fundamental Matrix: 

 

𝑥′𝑇  𝐹 𝑥 = 0 

 

𝐹 =  [

𝑓11 𝑓12 𝑓13
𝑓21 𝑓22 𝑓23

𝑓31 𝑓32 𝑓33
] 

 

Let x = (u, v, 1)T and x’ = (u’,v’,1’)T , each match gives the linear equation below: 

 

𝑢𝑢′𝑓11 + 𝑣𝑢′𝑓12 + 𝑢′𝑓13 + 𝑢𝑣′𝑓21 + 𝑣𝑣′𝑓22 + 𝑣′𝑓23 + 𝑢 𝑓31 + 𝑣 𝑓32 + 𝑓33 = 0 

 

After selecting 8 points, Normalization of Fundamental Matrix is performed: 

 

�̃�  = 𝑇 𝑥               �̃�′ = 𝑇′𝑥′  

 

RANSAC (RANdom Sample Consensus) with 8 points consists in randomly sampling 8 points, 

computing F via least squares and enforcing  det(�̃�) = 0   by SVD (Singular Value Decomposition).  

Then, we repeat the procedure and take into account only the F matrix with the most inliers. 

 

F normalized is de-normalized, obtaining: 

𝐹 = 𝑇′𝑇
�̃� 𝑇 

 

 

2. Essential Matrix E is used to obtain camera poses between two consecutive frames. Before 

computing E matrix, Calibration Matrix K is calculated: 

 

𝐾 = [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 0

] 

 

with fx, fy that corresponds to camera focal length, instead cx, cy are principal points coordinate of 

the skew parameter.  

 

𝐸 = 𝐾′𝑇
 F  K 
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E Matrix is then decomposed again using SVD (Singular Value Decomposition) matrices.  

 

𝐸 = 𝑈 𝑑𝑖𝑎𝑔(1,1,0) 𝑉𝑇 

 

Rotation Matrices R1 and R2 are obtained: 

 

𝑅1 = 𝑈 𝑊𝑇  𝑉𝑇               𝑅2 = 𝑈 𝑊 𝑉𝑇  

where: 

 

𝑊 = [
0 −1 0
1 0 0
0 0 1

] 

 

 

At this point, the correct position is verified using the Linear Triangulation method: the two feature 

points in the first and in the second frames are taken as reference and a new point in 3D space is 

determined by their projection. 

 

 

 

                            Figure 3.8 Linear Triangulation [36] 

 

 

�̅�𝐿 = 𝑅 �̅�𝑅  + 𝑇 

Rotation R and Translation T Matrices are obtained from camera calibration in order to estimate the position 

of the system. Components that are calculated are x and y ones, z component is neglected because it is assumed 

that the distance with respect to the ground is kept constant during the displacement of the robot. 
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Chapter 4 

 
Sensors 

 

 
In recent years, service robotics is increasingly focusing on creating systems that can move autonomously. 

Sensors are used for this purpose; they can collect external stimuli and send them to the microprocessor 

recognizing the surrounding environment or detecting obstacles and variation in light intensity. 

The robot's sensors can be mechanical, chemical, or electrical, and each of the sensor operations is based on 

the principle of transduction, which converts energy from one type to another. 

The performance of a sensor, according to [37], is defined based on parameter such as resolution, repeatability, 

precision, and accuracy. The resolution is usually specified by the constructor in the technical specifications 

of the sensor, it conditions repeatability and accuracy; repeatability defines and quantifies the ability of a 

sensor to measure the same value with measurements made in different times; then, a measure is said to be 

precise if, made a series of measurements under repeatable conditions, they are concentrated around the 

average; and accuracy, on the other hand, expresses the absence of systematic errors in the measurement. 

Many sensors are designed for outdoor or/and indoor environments, but it is very common to classify them 

according to the type of measured quantity. For example, there are position, speed, acceleration, distance, 

temperature, force, and visual sensors. 

Using sensors means collecting a large amount of data that can be processed to optimise processes, resources, 

services. Using a sensor means increasing safety, monitoring environments and processes in real time and 

increasing production [38]. 

 

4.1   Visual Sensors 
The term visual sensor refers to all sensors which, like the human eye, detect at least a two-dimensional image 

of the object to be measured [39]. 

Visual sensors are essential for finding visual odometry. Information from the surroundings is obtained from 

them and the most used visual sensors are cameras.  

In [40], the types of cameras used for these purposes are classified: 

 

• Monocular Camera:  monocular camera-based visual odometry can have problems related to the 

perception of actual size, known as "Scale Ambiguity". Monocular cameras are used when size and 

weight are crucial; they are light in weight and compact [41] (Figure 4.1). 
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Figure 4.1 Monocular Camera [41] 

 

• Stereo Camera: The stereo camera is equipped with two monocular cameras (two views) spaced by 

a known distance called the “Baseline” (Figure 4.2). 

 

 

    Figure 4.2  Stereo Camera [41] 

 

• RGB-D Camera: it is also called a Depth camera because it is possible to obtain depth in pixels. This 

camera consists of emitting infrared beams useful for calculating distance based on TOF time-of-

flight. Their limited range makes them more efficient in indoor environments [41] (Figure 4.3). 

 

 

      Figure 4.3 RGB-D Camera [41] 

 

• Event Camera: it measures changes in brightness per pixel responding to changes. The event camera 

has high temporal resolution, low power consumption and does not suffer from motion blur. 

Therefore, event cameras are able to provide better performance than traditional cameras (Figure 

4.4). 
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         Figure 4.4 Event Camera  

 

Visual sensors are cheap and passive, and a great deal of information can be obtained from them. They can, 

however, be difficult in poorly textured environments. 

 

4.1.1 Intel RealSense D435i 
Intel is a manufacturer of visual sensor, and the Intel RealSense D435i depth camera is a stereo solution used 

for multiple applications, which is part of the RGB-D visual sensors group. 

The wide field of view is perfect in robotics or virtual and augmented reality, where it is essential to see as 

much of the scene as possible. This small camera can be easily integrated, having a range of 10 m. It is 

equipped with an Intel module, a vision processor and personalised software that allows it to interact with the 

environment. It is compact, lightweight, powerful and performs well in low-light scenarios [42]. 

Intel RealSense D435i specifications are enclosed in the Table 4.1 below. 

Parameter Value 

Resolution 1920 x 1080 px 

Frame Rate 30 fps 

Sensor FOV (H x V x D) 69.4° x 42.5° x 77° (± 3°) 

Dimensions 90 x 25 x 25 mm 

Connection USB-C 3.1 Gen 1 

Table 4.1 Intel RealSense D435i specifications 

 

The high performance given by the above specifications make this sensor the most suitable for the purpose of 

this project (Figure 4.5).  

 

       Figure 4.5 Intel RealSense d435i 
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Inertial Measurement Unit (IMU) is also integrated in the sensor. It consists of a device that “reports 

acceleration, orientation, angular velocities and other gravitational forces. It consists of 3 accelerometers, 3 

gyroscopes and 3 magnetometers” [43] (Figure 4.6). 

 

 

               Figure 4.6 Inertial Measurement Unit (IMU) [44] 
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Chapter 5 

 
Simulation Environment 

 

 

The simulation environment used for this thesis aims to represent an indoor environment where a wheelchair 

could move. It is generally in hospitals that low texture problems might occur, which is why the simulated 

environment is a portion of a hospital. The idea is to reproduce a space with obstacles and featureless walls. 

The operating system used is Linux Ubuntu, using ROS 2 Foxy 1 and Gazebo 112 simulator. ROS is a Robot 

Operating System used in service robotics that use several programming languages including Python. 

ROS is a Robot Operating System used in service robotics that uses several programming languages including 

Python. It is equipped with libraries, datasets and various processes that are located within Packages. Through 

the use of libraries, Nodes are created to process data. Several nodes communicate with each other by 

exchanging messages via buses called Topics [45].  

Gazebo, on the other hand, is a virtual simulator that allows robot models to be simulated within an 

environment (World) created through the tools provided by it. With the simulator it is possible find robot and 

sensor models to perform a system and its behaviour. 

 

 

5.1   Simulation World 
The world created on Gazebo aims to represent a hospital with rooms and a corridor within which a robot can 

move. In order to make the performance as realistic as possible, all elements that can be found in a hospital 

are included. From beds, to stretchers, wardrobes, chairs, nurses, people, cupboards. These are the elements 

found in Gazebo's libraries. Finally, walls, doors and other furnishings were added to add value to the 

simulated world. After creating the simulation environment, it is saved as a .world file. 

In the test phase the robot will travel within the hospital environment, passing through corridors and entering 

rooms, evaluating its behaviour in a space similar to the real one (this part will be addressed in the next 

chapter). 

Figure 5.1 shows the hospital environment on Gazebo before the simulations are carried out. 

 

 
1 ROS 2 Foxy: https://docs.ros.org/en/foxy/Installation.html  
2 Gazebo 11: https://classic.gazebosim.org/download 

https://docs.ros.org/en/foxy/Installation.html
https://classic.gazebosim.org/download
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Figure 5.1 Simulation environment on Gazebo 

 

 

5.2   System Modelling  
Regarding the system used for simulations, Jackal Robot is considered. Jackal is a platform equipped with a 

chassis, four wheels, an on-board computer and an IMU, capable of simulating a robot [46]. 

Robot model is inside Jackal_Simulation package and it is represented by Unified Robot Description Format 

file (URDF), an XML format in which all robot specifications are indicated [47].  

To understand the space occupied by the robot within an environment, it is necessary to be aware of its 

dimensions. According to [48], the Jackal design with its dimensions is shown (Figure 5.2). 

 

 

Figure 5.2 Jackal design with dimensions [48] 
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Jackal robot is equipped with a sensor Intel RealSense d435i, which can be used to take information from the 

surrounding space. The following photo shows the Jackal inside the World created on Gazebo with the sensor 

at the front (Figure 5.3). 

 

 

Figure 5.3 Jackal Robot with sensor 

 
The aim of the research is to analyse odometry results by comparing the images captured by the front-facing 

camera and the images from the downward-facing camera. For this reason, the system will be modified during 

the simulation regarding the sensor mounted above. 

In the second case, the system, in addition to having the camera facing the floor, is placed on blocks (Figure 

5.4) that reproduce the characteristics of the floor and it is moved over them. 

 

 

Figure 5.4 Jackal Robot above the blocks 
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Chapter 6 

 
Experiments 

 

 
This chapter focuses on the experimentation of the algorithm developed on Python in ROS 2. The aim of this 

phase is to evaluate first on Gazebo and then in the real world the behaviour of the Visual Odometry algorithm 

focusing on the low texture challenge. This is done by comparing the results obtained with the camera facing 

frontwards and then turning it downwards; this makes it possible to evaluate which is the best situation to 

overcome the challenge of low texture indoors. 

Once the sensor position has been set, the system is moved within the environment and the developed 

algorithm is launched. Then, the odometry of the moving robot is evaluated using the computer keyboard and, 

finally, a trajectory is obtained. Through the latter it is possible to establish which sensor configuration 

provides better results. 

In the following sections, we will first deal with the simulation on Gazebo and then the simulation of the 

algorithm in the real world, with the results obtained.  

 

6.1   Experiments on Gazebo and ROS2  
Before simulating the Jackal Robot within the hospital environment designed on Gazebo, for simplicity it is 

placedin the origin of the coordinate system (xyz), as in Figure 6.1. 

 

 

Figure 6.1 Jackal in the origin of the coordinate system on Gazebo 
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As described in Chapter 3 where the approach used is explained, the algorithm begins with the capture of the 

various frames from the camera mounted on the Jackal, followed by the features detection and matching of 

two consecutive images. 

This last step results in images like the one shown below (Figure 6.2). It is the result of the first step of the 

algorithm. 

 

Figure 6.2 Features Detection and Matching output  

 

The second step of the algorithm is to obtain the estimated position of the camera. The result of this step is a 

two-dimensional graph representing where the robot is located (as shown in Figure 6.3). From this step, it is 

also possible to obtain a text file with a list of the coordinates of the points in question. 

 

 

Figure 6.3 Jackal Pose Estimation (point) 

Once the algorithm has been launched, moving the Jackal Robot in the Gazebo world allows you to obtain a 

series of coordinates of points that will be shown on a graph at the end of the path, thus obtaining a trajectory. 
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The first path of the Jackal Robot is shown in yellow in the image below. The system with the front-looking 

sensor is moved along part of the corridor and then into the hospital rooms of Gazebo (Figure 6.4). 

 

Figure 6.4 Jackal Robot first path on Gazebo 

 

From this path, a series of points indicated in the table (Table 6.1) are obtained. The points obtained by the 

Algorithm (blue coloured – Figure 6.5) and those obtained from the /odom topic of ROS 2 (red coloured – 

Figure 6.6), which accurately calculates the position of the robot in Gazebo, are taken into account and they 

are represented on a plot obtaining a linear trajectory. 

 

 

Figure 6.5 Linear Trajectory by the Algorithm Figure 6.6 Linear Trajectory by the /odom topic on ROS2 
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FRONT ODOMETRY DATA FROM 

/ODOM TOPIC 

FRONT ODOMETRY DATA FROM 

ALGORITHM 

x y x y 

0.03801664 0.01671115 0.95542770 0.29279739 

1.03973587 0.00828904 0.99999999 0.54716256 

2.50600921 -0.02942213 1.40211101 0.77049041 

5.11435583 0.01017592 1.96713958 0.36511288 

5.55456867 1.56689595 2.99935415 0.35875982 

5.38821801 2.83377264 3.41711658 0.28860963 

4.53422826 5.23658345 5.49661403 0.60208521 

5.34227619 3.45906340 5.89906987 0.92802218 

5.11705299 1.95598344 5.98431972 1.83152171 

2.90579795 1.64752953 6.27134112 2.02628223 

0.17009634 0.91461640 5.60822483 2.98649994 

-0.24212538 3.04684091 5.31805137 3.84716610 

0.55419263 0.01399195 3.99637281 5.71144656 

1.78249209 -0.04054680 4.81743071 4.98296010 

3.34943328 -0.01662266 5.46493490 3.67342199 

5.33823024 0.60618695 5.57299987 2.58177152 

5.64830591 1.98062956 5.37177152 1.96862162 

5.07062691 3.72813670 4.02391132 1.86632565 

4.74093228 4.87598356 2.89449020 1.76482826 

5.46549208 2.45575941 2.56862162 0.89181554 

3,85053497 1.75848588 0.23812424 1.12715393 

2.22807532 0.93564048 -0.11903691 1.93178806 

-0.35334629 1.82021107 -0.06285610 3.27515792 

-0.87448221 4.06314262 -0.72181554 4.71771521 

Table 6.1 Coordinates points from the algorithm and from /odom topic with front-facing camera 
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To better understand the difference between the two graphs obtained, they are represented in the same plot 

resulting in the figure below (Figure 6.7). 

 

 

Figure 6.7 Linear Trajectories graph with front-facing camera 

 
This procedure is, then, repeated by taking another route and placing the camera facing downward, specifically 

facing the blocks that reproduce the floor. The route on the Gazebo blocks is shown in the Figure 6.8 in 

yellow. 

 

 

Figure 6.8 Jackal Robot path on Gazebo blocks 
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The downward-facing sensor captures frames by analysing the features of the tiles. In the first step of the 

developed algorithm, matching between the two consecutive images will be performed in the following way 

(Figure 6.9). 

 

 

Figure 6.9 Features Detection and Matching output (Floor) 

 

The points obtained by the Algorithm (blue coloured – Figure 6.10) and those obtained from the /odom topic 

of ROS 2 (red coloured – Figure 6.11) with camera facing downward are represented in the following figures, 

obtaining a linear trajectory. 

 

 

 

 

 

 

 

 

Figure 6.10 Linear Trajectory by the Algorithm (Floor) Figure 6.11 Linear Trajectory by the /odom topic (Floor) 
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Below is the data for the points obtained after running the Visual Odometry algorithm and after selecting 
/odom topic in ROS 2 (Table 6.2). 

 

 

FLOOR ODOMETRY DATA FROM 
ALGORITHM 

FLOOR ODOMETRY DATA FROM 
/ODOM TOPIC 

  x y x y 

-10.48925167 4.99827402 -10.97788150 5.00007822 

-11.99364638 4.97218907 -12.15748783 4.97743919 

-12.77245275 4.94762538 -12.83160075 4.96449315 

-13.67482659 3.99836248 -13.75057520 4.01730617 

-13.58972574 3.18374682 -13.89492489 3.29697784 

-13.49826490 2.52375937 -13.86921101 2.61683855 

-13.47264984 1.61664844 -13.83359165 1.67217949 

-13.38497154 0.89965275 -13.45740472 0.93036312 

-12.91243586 -0.04458258 -12.92141545 -0.07031138 

-12.49743468 -0.74553886 -12.52467753 -0.81470175 

-12.99873257 -1.50435861 -13.03830747 -1.54930358 

-13.53237599 -2.37435769 -13.70777229 -2.48643931 

-13.41746583 -3.41836484 -13.48402258 -3.45369840 

-13.91746474 -4.39946146 -13.96126606 -4.47782195 

Table 6.2 Coordinates points from the algorithm and from /odom topic with facing downward camera 

 
As in the previous case, the two graphs are represented in a single plot in order to note the difference between 

the two trajectories (Figure 6.12). 

 

               Figure 6.12 Linear Trajectory path with camera facing downward 
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Once it has been demonstrated that the linear path is consistent with that of the Jackal, the Jackal's trajectory 

is represented graphically by adding the rotation components.  

The above procedure is repeated, taking into account the rotation obtained by the algorithm in the form of a 

matrix. Both sensor position conditions are considered again. 

The robot is moved by making it curve within the Gazebo environment, with the aim of evaluating the curved 

trajectory. 

The Figure 6.13 below shows the path executed indicated in yellow. 

 

Figure 6.13 Jackal Robot second path on Gazebo 

 

TRAJECTORY CAMERA FRONT 
(ALGORITHM) 

TRAJECTORY CAMERA FRONT 
(/ODOM TOPIC) 

  x y x y 

0.09554277 0.02927974 0.03801664 0.01671115 

0.60000000 0.05471626 0.65419263 0.01399195 

1.10211101 0.00770490 1.03973588 0.00828904 

1.81713958 -0.03351129 1.78249209 -0.04054680 

2.59935415 -0.03887598 2.50600921 -0.02942213 

3.41711658 -0.03186096 3.31943328 -0.01662266 

5.19661403 0.02020852 5.09435583 0.01017592 

5.41906987 0.68802218 5.33823024 0.60618695 

5.58431972 1.63152171 5.49456867 1.56689595 

Table 6.3 Coordinates points from the algorithm and from /odom topic for trajectory 
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The points shown above combined with the rotation component give rise to the graph shown in Figure 6.14. 

 

 

               Figure 6.14 Jackal Robot trajectory with rotational component with front-facing camera 

 

 

After placing the blocks that reproduce the floor with the features inside the hospital and turning the camera 

downwards towards the tiles, the Jackal is moved along the path drawn in yellow (Figure 6.15). 

 

 

        Figure 6.15 Jackal Robot path on Gazebo blocks with rotation component 

The points in the Table 6.4, which are the result of both the algorithm and the ROS 2 topic, are given below. 
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TRAJECTORY CAMERA DOWNWARD 
(ALGORITHM) 

TRAJECTORY CAMERA DOWNWARD 
(/ODOM TOPIC) 

    x y x y 

0.13957827 -0.34127593 0.14439722 -0.28769902 

1.07342659 -0.02345376 1.06760986 -0.03011315 

2.10365839 0.17947256 2.07902104 0.18965106 

3.11358037 0.44264963 3.08209456 0.40581956 

4.17038563 0.31975910 4.15937858 0.33147782 

Table 6.4 Coordinates points from the algorithm and from /odom topic for trajectory (Floor) 

 

The result is the graph shown in the Figure 6.16 that compares the two trajectories obtained with the sensor 

facing a feature-rich floor. 

 

      Figure 6.16 Jackal Robot trajectory with rotational component with camera facing downward 
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6.2   Experiments in Real World 
After evaluating the correctness of the algorithm developed on Python, I test it in the real world by making 

the Intel RealSense d435 camera move through the PIC4SeR environments  

In order to achieve better camera performance, an Intel Next Unit Computing (NUC) is used, and the algorithm 

is launched from there. 

Firstly, I connect the algorithm with the sensor topic, then I evaluate the consistency of the points obtained 

from the algorithm. It is then simulated in a real indoor environment. 

Experiments are conducted at the PIC4SeR spaces (Figure 6.17) evaluating front-facing sensor and facing 
downward one.  

 

 

         Figure 6.17 PIC4SeR environment 

 

It consists in moving sensors around the room comparing results from the Visual Odometry algorithm and 

from odometry from the topic /d435/color. 

Results are consistent, especially those regarding front-facing camera d435. It proved difficult to demonstrate 

this, as it was necessary to use the Turtlebot robot. In doing so, the odometry was compared and then the 

trajectory of the system could be obtained. 
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X coordinate from Algorithm 

testing in PIC4SeR 

Y coordinate from Algorithm 

testing in PIC4SeR 

0.000343 -0.00248 

0.924537 -0.00765 

1.083741 -0.13013 

1.361033 -0.11375 

1.536414 -0.202841 

1.937569 0.131284 

1.645216 -0.183341 

1.606682 -0.188375 

1.236431 -2.148362 

1.194768 -2.165418 

Table 6.5 Odometry coordinates in real world simulation with front-facing camera 

 

 

                   Figure 6.18 Trajectory with rotation component - Real World with front-facing sensor 
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Figure 6.19 Space-Time graph with Turtlebot trajectory 

 

Moving sensor facing downward, due to the presence of floors with few features, there is a risk of not 

achieving the minimum number of matches to obtain an odometry point from the algorithm. 
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Chapter 7 

 

Conclusion 

 

 
From the graphs shown in the previous chapter, it is possible to observe how the presence of features in the 

surrounding space affects the performance of the algorithm. 

In fact, from the Gazebo simulation, odometry is more accurate when the sensor is facing downwards than 

when the sensor is facing frontwards. 

It demonstrates how a low texture makes it difficult and less accurate to locate a system. 

The idea of positioning the camera towards the floor certainly improves performance and it consists in a 

progressive step with the aim of overcoming this challenge. 

The following section shows the graphs with the error determined by the deviation between the point obtained 

by the Visual Odometry algorithm and the Odometry point of the /odom topic in the Gazebo simulation, 

considering the two cases of the camera facing frontwards and then towards the floor; as regards the real-

world test, the consistency of the points obtained and the trajectory with respect to the displacement within 

the indoor environment is demonstrated. 

 

 

 

7.1   Results Analysis 
Analysing the graphs in the previous chapter, it is evident how the higher number of features affects the 

accuracy of odometry. 

Another property of the algorithm that emerges when looking at the graphs concerns the low precision of the 

odometry points of the linear path rather than a trajectory with a rotation component.  

During simulation in the real world, the trajectory travelled by the camera is consistent with the trajectory 

represented in the algorithm graph. Some problems may occur in the absence of features on the floor, in fact 

when the camera is facing the floor, the algorithm often crashes. The reason for this is that the sensor used 

does not detect contrast variations or stains on the floor tiles because it is too high. 

The above conclusions are also demonstrated through the study of absolute error. In fact, by analysing the 

absolute errors from the tables of odometry values, the following emerges: difference between visual 

odometry value obtained by the /odom topic on Gazebo and visual odometry value obtained by the algorithm 

result is shown below. 
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X 
ABSOLUTE 

ERROR 
(cm) 

Y 
ABSOLUTE 

ERROR 
(cm) 

-0,917411 -0,27609 

0,039736 -0,53887 

1,103898 -0,79991 

3,147216 -0,35494 

2,555215 1,208136 

1,971101 2,545163 

-0,962386 4,634498 

-0,556794 2,531041 

-0,867267 0,124462 

-3,365543 -0,37875 

-5,438128 -2,07188 

-5,560177 -0,80033 

-3,44218 -5,69745 

-3,034939 -5,02351 

-1,6144 -3,69004 

-0,23477 -1,97558 

0,276534 0,012008 

1,046716 1,861811 

1,846442 3,111155 

2,89687 1,563944 

3,612411 0,631332 

2,347112 -0,99615 

-0,29049 -1,45495 

-0,152667 -0,65457 

Table 7.1 Absolute Errors (first case) 
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Absolute Errors - Linear Trajectory with 
front-looking camera
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Figure 7.1 Absolute Errors plot in first case 
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X 
ABSOLUTE 

ERROR 
(cm) 

Y 
ABSOLUTE 

ERROR 
(cm) 

-0,48862983 0,0018042 

-0,16384145 0,00525012 

-0,059148 0,01686777 

-0,07574861 0,01894369 

-0,30519915 0,11323102 

-0,37094611 0,09307918 

-0,36094181 0,05553105 

-0,07243318 0,03071037 

-0,00897959 -0,0257288 

-0,02724285 -0,06916289 

-0,0395749 -0,04494497 

-0,1753963 -0,11208162 

-0,06655675 -0,03533356 

-0,04380132 -0,07836049 

X 
ABSOLUTE 

ERROR 
(cm) 

Y 
ABSOLUTE 

ERROR 
(cm) 

-0,05752613 -0,01257 

0,05419263 -0,04072 

-0,06237513 0,000584 

-0,03464749 -0,00704 

-0,09334494 0,009454 

-0,0976833 0,023238 

-0,1022582 -0,01003 

-0,08083963 -0,08184 

-0,08975105 -0,06463 

Table 7.2 Absolute Error (second case) 

Table 7.3 Absolute Errors (third case) 
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Absolute Errors - Linear Trajectory with 
camera facing downward 

Series1 Series2
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Absolute Errors - Trajectory with rotation 
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Figure 7.2 Absolute Errors graph in second case 

Figure 7.3 Absolute Errors graph in third case 
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7.2   Future Works 
In real-world simulation, from the results obtained, the Intel RealSense d435 camera has difficulty detecting 

floor features, particularly those that are very small or have little contrast. 

The ideal would be to use a sensor placed as close as possible to the floor in order to be sure that the features 

are detected, and the accuracy and robustness of the algorithm is increased. 

In future work, the same algorithm will be run using a sensor suitable for working a few centimetres from the 

floor and facing towards it. The same experimental procedures described in the previous chapters will then be 

reproduced and the Visual Odometry will be verified from the inputs captured by this sensor. 

By doing so, the system in question with the algorithm and appropriate sensor will be able to localise a 

wheelchair, providing greater safety for the user with disabilities. 

 

 

X 
ABSOLUTE 

ERROR 
(cm) 

Y 
ABSOLUTE 

ERROR 
(cm) 

0,00481895 0,05357691 

-0,00581673 -0,00665939 

-0,02463735 0,0101785 

-0,03148581 -0,03683007 

-0,01100705 0,01171872 

Table 7.4 Absolute Errors (Fourth case) 
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Figure 7.4 Absolute Errors graph in fourth case 
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