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Summary

Quantum computing paradigm interest has grown very fast in recent years. The
contemporary Noisy Intermediate-Scale Quantum (NISQ) devices have permitted
to demonstrate that quantum computation is very promising not only from a the-
oretical point of view, but also from a practical one, showing the potential of this
fascinating model of computation and providing the proof of concept of its feasibil-
ity.
Quantum algorithms are designed using an ideal high-level quantum circuit de-
scription without considering the main quantum hardware restrictions such as the
limited set of applicable gates and limited connectivity. Quantum compilation
toolchains aim to refine the original quantum circuit description, making it exe-
cutable on the target hardware while optimising some desired figure of merits. This
process is composed of two steps: the logic synthesis, decomposing the original cir-
cuit using the target technology native gates, and the layout synthesis, solving the
coupling-constraint of the target NISQ device, due to the hardware limitations.

The target of this thesis is twofold: developing a flexible multi-technology library
to perform the layout synthesis phase, and integrating it inside the template-based
compilation toolchain available at the VLSI Lab of Politecnico di Torino. The
library is written entirely in Python, targeting quantum circuits described using
the OpenQASM 2.0 language. The supported technologies are: superconducting
qubits, quantum dots (partially connected), Nuclear Magnetic Resonance (NMR)
and trapped ions (fully connected).

The first chapter provides an overview of the current state of quantum com-
puting, as well as its key concepts. The focus of this introduction is on the NISQ
devices limitations, underlining the need for quantum circuits compilation. All the
constraints that must be considered for the correct quantum circuit execution are
highlighted for each state-of-the-art quantum technology.

In the second chapter, the focus is on quantum circuits compilation, with a
detailed explanation on the tasks accomplished during the logic and layout synthesis
steps. At the end of the chapter, the original VLSI compilation toolchain developed
by M. Avitabile for his Master thesis dissertation is presented, highlighting its main
missing component, that is, a complete layout synthesis procedure.

The third chapter provides a high-level overview of the layout synthesis library’s
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implementation. All the classes and their relationships are explained, demonstrat-
ing how they can be used to perform the layout synthesis task. Following that,
the layout synthesis tool is introduced, which was designed to allow the general
user to use all of the incorporated heuristics without any programming experience.
At the end of the chapter, the final and complete VLSI compilation toolchain is
presented, capable of performing the logic and layout synthesis for all the quantum
technologies supported by the library.

In the fourth chapter, an in-depth explanation of the placement sub-step of
the layout synthesis task is presented. It aims to map the logical qubits used for
describing the quantum algorithm to the physical qubits of the NISQ device. For the
placement, the three implemented strategies are introduced: a trivial technology-
agnostic one, and two strategies using simulated annealing to find a potentially
optimal solution. The first aims to find the sub-graph of most connected physical
qubits in the target hardware, the latter exploits the quantum gates features to
find an optimal hardware-aware placement.

In the fifth chapter, an in-depth explanation of the routing sub-step of the lay-
out synthesis task is presented. It aims to ensure that each two-qubit interaction is
allowed in hardware, adding swap gates to make the final circuit compliant with the
target coupling-graph. After presenting how the routing step is internally imple-
mented, the simplest hardware-unaware heuristic, the Basic Routing, is explained.

The sixth chapter focuses on the hardware-aware routing algorithms which have
been implemented. These algorithms exploit the execution time and error rate
of the native gates of a quantum device during the swap insertion phase. The
implementation of the original hardware-aware algorithm (adapted to target all
the supported technologies) is presented, and an extended version of the latter, to
target fully-connected topologies, is also underlined. This adaption was required
for NMR and trapped ions devices. Specifically, a modified version of the original
method was devised, allowing it to shift the two-qubit interactions towards the
stronger interacting nodes, to optimise the output circuit.

In the seventh chapter, the focus is on the verification of the implemented heuris-
tics and an evaluation of the obtained results. The divergence between the discrete
probability distributions of the measured eigenstates, before and after applying each
implemented algorithm is computed to prove the functional equivalence between
the input and output circuit of the layout synthesis procedure, and thus validate
the methodology. The integrated procedures are compared with IBM’s Qiskit and
Cambridge Quantum Computing’s t|ket〉 compilation toolchains, exploiting the fig-
ure of merits routinely used for the comparison in the associated literature: the
number of swap gates added and the execution time and fidelity of the final quan-
tum circuit.

In the eighth and last chapter, a final overview of the implemented library, with
a focus on the obtained results and future perspectives, is presented.
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Introductory concepts
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Chapter 1

The current state of
Quantum Computing

Quantum computing is a fascinating emerging computational model that could
solve problems considered hard for other classical (non-quantum) models, exploit-
ing the peculiarities of the quantum mechanical framework.

A problem is considered hard if there exists no algorithm capable of solving it
in an efficient way. Computer Science has developed the idea of computational
complexity in order to measure how much an algorithm is efficient or inefficient
(both in terms of execution time and memory occupation). In a nutshell and
focusing on time complexity, if an algorithm requires an amount of time that is
polynomial on the size of its input it is considered efficient, instead if the time
required is exponential (or worst) it is considered inefficient.

Quantum computers can provide a significant speed-up which could even
be exponential for solving specific computational hard problems [1]. In quantum
literature, the term “Quantum Advantage” is used for expressing the potential
of the quantum computational model over a classical one in this context. The
time complexity for solving the problem using a quantum computer could even be
exponentially lower, if a quantum efficient algorithm can be found, which is
a non-trivial burden.

David Deutsch was one of the pioneers in this field, demonstrating in 1985 the
feasibility of a universal quantum computer. Peter Shor and Lov Grover are
other remarkable names whose publications demonstrated the potential of such a
computational model for solving computationally hard problems with no efficient
solution in the classical computation. The first for finding the prime factors of an
integer [2], the latter for the development of an algorithm for searching an item in
an unstructured data set [3].

This new model revealed to be perfectly suited not only for solving classes of
problems with no efficient solutions in the classical domain, but also for improving
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1 – The current state of Quantum Computing

the current state-of-the-art in cryptographic algorithms [4, A.5] and in quantum
systems simulation [4, A.2], exploiting the exponential speed-up to perform sim-
ulations beyond the current classical limits.

The main motivations behind the study of this powerful research field were only
briefly synthesised here, following [5, Ch. 1], which is a suggested reading for
the history and development of quantum computation and quantum information.
Moreover, a general understanding of the fundamental ideas of quantum compu-
tation and of the quantum circuit model of computation are required before
proceeding to the following sections and chapters. Indeed, [4] is a good introduction
to this previously cited concepts.

1.1 Logical vs physical qubit
Before proceeding, it is essential to formalise the qubit definition in order to avoid
any future ambiguity.

Definition 1.1.1. A quantum bit, or qubit, is the unit of quantum information.
It is the quantum counterpart of the classical bit. [4, Sec. 5.1]

A qubit is the mathematical representation of a two-dimensional quantum
system. The state of a qubit is described following the quantum mechanics super-
position principle as the linear combination of the eigenstates that it can assume
after measurement (basis states), which corresponds to the possible states of clas-
sical bits. Following the Dirac notation [5, Sec. 2.1], the qubit basis state can be
written as a column vector of two elements:

|0⟩ =
C
1
0

D
, |1⟩ =

C
0
1

D
. (1.1)

Consequently, the qubit state can be written as:

|ψ⟩ = α |0⟩ + β |1⟩ , (1.2)

where:

• |ψ⟩ is the state of the qubit, that is, the state of the quantum system.

• α and β are complex numbers such that: |α|2 + |β|2 = 1.

Measuring a qubit makes it collapse in the basis state |0⟩ with probability |α|2 or
in the basis state |1⟩ with probability |β|2.

Quantum algorithms are mainly described using the circuit model of quantum
computation, composed of unitary transformations called quantum gates.
These gates can act on a single qubit (single-qubit gates), on two qubits (two-
qubit gates) or more (multi-qubit gates). All the gates described in a quantum
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1.2 – The NISQ era of quantum computation

circuit cause the evolution of qubits from an initial state to a final one (most likely
to be measured). These qubits and gates used in a quantum circuit are
abstract entities. They are required only for specifying the logic, that is, the
functionality of a quantum algorithm.
Being relieved from the burden of the physical details when writing an algorithm is
essential in the quantum computing world in the same way as it is in the classical
realm. Indeed, a programmer that is writing software for a classical computer does
not care how, physically, a bit is implemented. These entities are logical (ab-
stract).
Algorithms are abstract, but computers, both classical and quantum, are real en-
tities and exactly as classical bits have their physical implementation, qubits have
also their physical counterpart (the physical qubits).

Formalizing these concepts:

Definition 1.1.2. Logical qubits are the abstract qubits that evolve in time
following a quantum algorithm [6, Sec. 2.3], [7].

Definition 1.1.3. Physical qubits or nodes are physical two-state quantum
systems that can encode a logical qubit [6, Sec. 2.4], [7].

In the following of this thesis, if the term “qubit” alone appears in the presented
work, then it must be intended as “logical qubit”. For the physical qubits it is
always used the explicit terminology or the “node” term.

1.2 The NISQ era of quantum computation
Different research activities are focused on the physical implementation of quantum
computation using different technologies for building a quantum computing device.
The feasibility of a quantum information processing hardware, regardless of the
selected technology, depends on the notorious DiVincenzo’s criteria [8]: which
is, a set of requirements that all the quantum computers must respect to work
correctly.

The current era of quantum computing technology is known as NISQ: Noisy
Intermediate-Scale Quantum [9]. This term perfectly describes the achieve-
ments accomplished and the current challenges for contemporary quantum com-
puters. The intermediate scale term refers to the number of qubits available
on current devices (a few hundred at most). This number is too low for employ-
ing any error correction code, but still, NISQ devices have the great responsibility
of demonstrating the computational potential of quantum information and
computation [10, Sec. 1].
The noisy term is linked to the non-ideal phenomena, which affects qubit itself, the
effect of quantum gates and measurement operations and limits the computa-
tional capabilities of these devices. Indeed, due to these noise effects, for today’s
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1 – The current state of Quantum Computing

quantum computers it is not possible to execute long quantum circuits, and
thus implement complex quantum algorithms effectively exploiting the exponential
speed-up. Specifically, due to the impossibility of isolating a quantum system from
the external environment, the limitation in qubit control and manipulation, and
intrinsic device limits, there is an inevitable loss of information. One of the most
important effects is known as decoherence [4, Ch. 11] and it reduces the fidelity
[5, Ch. 9] of the quantum circuit, which is a fiducial scalar quantity for the esti-
mation of the distance between the qubit noisy state and the corresponding ideal
one. The best approach to limit this problem is to employ quantum gates with a
low execution time, to make the decoherence effects negligible.

Several technologies have been proposed to implement a NISQ device satis-
fying all DiVincenzo’s criteria, each with its advantages and disadvantages. The
most used quantum technologies, at the time of writing, are superconducting,
quantum dots, nuclear magnetic resonance (NMR) and trapped ions. The
following Sections 1.4 to 1.7 intend to give to the reader a general overview of the
main features of these technologies. These sections focus on the limitations of the
NISQ devices more than on the physical theory behind logical qubits representation,
implementation of unitary transformations and measurement operations.

1.3 NISQ devices main limitations
In the previous section, the characteristics of the current quantum computers (the
NISQ devices) were presented, underlining their limitations in terms of compu-
tational capabilities. Besides this, there are further main constraints that must
be considered when a quantum circuit is executed on a real device. Understanding
these requirements is necessary to justify the need for quantum circuits compilation,
on which this thesis is focused.

First, not all quantum gates can be executed on any NISQ device. Each technol-
ogy has its own set of native gates that forms a universal quantum gates set.
This is labelled as universal, to specify that every unitary transformation can be
implemented with a combination of the gates forming the set [4, Sec. 5.4]. More-
over, this native gates set usually consists of only single-qubit and two-qubit gates,
thus the multi-qubit gates cannot be directly executed in hardware.

Another important limitation to understand, fundamental for the presented
work, is the coupling-constraint (also called connectivity-constraint). Indeed, the
whole purpose of this thesis is the development of a library for obtaining the layout
of a quantum circuit for the execution on a real device by solving these connectivity
requirements (presented in details in Chapters 3 to 5).

Definition 1.3.1. For the contemporary NISQ devices, not all the interactions are
allowed in hardware. The set of allowed two-qubit interactions form the coupling-
constraint (also called connectivity-constraint) [11, Sec. 2] [12, Ch. 15].

6



1.4 – Superconducting devices

These coupling-constraint are usually mathematically represented by using the
so called coupling-graph.

Definition 1.3.2. The coupling-graph is a graph (G = (V,E)) used for repre-
senting the coupling-constraint [12, Sec. 2.2]. The vertices V of this graph are
the physical qubits of the quantum computing device. The edges E represent the
allowed two-qubit interactions. Indeed, a two-qubit gate can be applied to two
generic nodes ni and nj if and only if (ni, nj) ∈ E.

n0 n1 n2

n3

n4

Figure 1.1. Graph representing the coupling-constraint of a NISQ device. The
black circles and lines show the coupling-graph of the backend (modelling the
ibmq_lima [13] superconducting device topology).

1.4 Superconducting devices
Superconducting is one of the most used quantum technology for the implemen-
tation of a quantum computing device. Indeed, it is adopted by the notorious
IBM Quantum systems [14], allowing researchers from all around the globe to
run quantum circuits on their machines through a cloud-based connection. Because
of this, all the superconducting devices described in this thesis are related to the
IBM’s devices, which are the most used in the quantum literature. In this technol-
ogy, a logical qubit is encoded as the state of an anharmonic oscillator, built using
an LC circuit, where the non-linear inductor L is realised by using a Josephon
Junction. All the information reported in this section is based on [15, Sec. 1.3.4]
and [1], which are a suggested reading for further details on the superconducting
implementation of quantum computation.

1.4.1 Native gates set
Since the target devices analysed in this work are the IBM’s ones, the native single-
qubit gates set is composed by IBM’s U1, U2 and U3 gates.
Specifically:
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1 – The current state of Quantum Computing

• the U1(λ) gate implements a Rz gate;

• the U2(ϕ, λ) gate implements a Rx or Ry gate;

• the U3(θ, ϕ, λ), also called the U gate, can implement any single-qubit rota-
tions.

In this technology, the native two-qubit gate, in the compilation procedure, is
the CX gate.

1.4.2 Connectivity
Superconducting devices are typically non-fully-connected. Moreover, this con-
nectivity is nearest-neighbour, meaning that only adjacent physical qubits are
allowed to interact. Therefore, the complete layout synthesis procedure, composed
of placement and routing, is mandatory for this technology.

1.5 NMR devices
Nuclear magnetic resonance (NMR) quantum computers are a type of spin 1

2
qubit quantum device. The logical qubits are encoded by using the nuclei’s energy
levels of a liquid-state molecule, which depend on the nuclei spin (due to the Zeeman
effect, after the application of a static magnetic field). It is also possible to perform
quantum computation by employing a solid-state molecule, but this implementation
was not considered in this thesis. Therefore, for the proposed work, when referring
to the NMR technology the first family of quantum hardware is implicitly intended.
All the information reported in this section is based on [15, Sec. 1.3.2] and [16],
which are a suggested reading for further details on the NMR technology.

1.5.1 Native gates set
The single-qubit unitary transformations can be implemented by using the notori-
ous: Rx, Ry and Rz gates.

The native two-qubit gate is the Rzz gate, constructed exploiting the J-coupling
interaction of the nuclei composing the molecule. In particular, this spin-spin cou-
pling is providing information on the interaction strength: the higher absolute value
the J-coupling, the lower are the gate error rate and execution time.
Having the Rzz gate as the native two-qubit interaction, the CZ gate can be easily
constructed following the decomposition shown in Figure 6.6.
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1.6 – Quantum dots devices

1.5.2 Connectivity

NMR devices are typically fully-connected. This is because every couple of
molecule’s nuclei have a J-coupling constant which can be exploited for imple-
menting a two-qubit interaction. However, for some pairs of physical qubits, the
coupling strength might be so low in absolute value that it becomes impractical to
consider such interaction as allowed. Therefore, only the placement operation
is mandatory for this technology. However, the routing task might still be useful
for optimising the final quantum circuit’s main figure of merits.

1.6 Quantum dots devices

In the quantum literature, a lot of attention is given to quantum dots, which is a
good candidate technology for the implementation of quantum computers. Quan-
tum dots are a semiconductor technology based on confinement of electrons. Logical
qubits can then be encoded in different ways: into the spin of the single trapped
electron or using two communicating quantum dots, and, in this case, the state of
the qubit depends on where the electron is confined. All the information reported
in this section is based on [17], which is a suggested reading for further details on
the quantum dots technology.

1.6.1 Native gates set

The native single-qubit gates used for quantum dot technology are the same used
in NMR devices: Rx, Ry and Rz gates.

The native two-qubit gate is the Rzz gate, constructed exploiting the Exchange-
Interaction J. In particular, this spin-spin coupling provides information on the
interaction strength: the higher absolute value the J, the lower are the gate error
rate and execution time.
Having the Rzz gate as the native two-qubit interaction, the CZ gate can be easily
constructed following the decomposition shown in Figure 6.6.

1.6.2 Connectivity

Quantum dots devices are typically non-fully-connected. Moreover, currently
they present a linear-topology, which means that the coupling-graph is a linear
chain. Therefore, the complete layout synthesis procedure, composed of placement
and routing, is mandatory for this technology.
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1 – The current state of Quantum Computing

1.7 Trapped ions devices
Trapped ions or ion trap, like superconducting, is one of the most used quantum
technology for the implementation of a quantum computing device. The key idea
is to encode a logical qubit by using the energy state of an ion (usually Ca+ or
Yb+) confined in an electromagnetic trap forming a linear chain: the Paul trap.
Scalability is the main limitation of these devices. Increasing the number of ions
inside the trap makes it more difficult to physically apply quantum gates, and thus
increases the error rate. To scale this technology, the most promising implemen-
tation, at the time of writing, is using a Quantum Charge Coupled Device
(QCCD) [18]. This is a distributed and interconnected multi-trap system. In this
way, the number of ions in each trap is kept limited, and whenever two separated
ions must be coupled, an operation called ion shuttling is performed, moving the
ion from one trap to another one. In this thesis work, only single linear trap ar-
chitecture are considered. All the information reported in this section is based on
[15, Sec. 1.3.3] and [19], which are a suggested reading for further details on the
trapped ions implementation of quantum computation.

1.7.1 Native gates set
All the single-qubit unitary transformations are performed using the generic rota-
tion gate R(θ, ϕ). However, due to compatibility reasons, for the proposed work,
also the more typical Rx, Ry and Rz are considered native gates for this technology.

The native two-qubit gate is the Mølmer–Sørensen gate (MS gate) which
implements the Rxx(χ) [20], where the parameter χ depends on the interacting
pair of ions. Using the MS gate, it is possible to easily implement the CX gate,
according to the decomposition presented in Figure 6.14. To correctly implement
the CX gate, the parameter χ must be fixed to ±π

4 , where the sign of the rotation
depends on the pair of ions that interact.

1.7.2 Connectivity
Trapped ions devices are typically fully-connected. Indeed, all the ions in the
linear trap can interact. However, there are some implementations in which the
two-qubit gate error rate and execution time are proportional to the distance of the
involved ions [18]. Therefore, only the placement operation is mandatory for
this technology, however the routing task might still be useful for optimising the
final quantum circuit’s main figure of merits.
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Chapter 2

Quantum circuits
compilation

In the quantum computing circuit model, quantum algorithms are designed
as a combination, in series and in parallel, of unitary transformations called
quantum gates [4, Ch. 5]. Typically, such circuits are designed having only the
quantum algorithm functionality as the main concern [21, Sec. 1]. This model
is extremely useful, allowing the design of a quantum program without having to
consider the actual implementation of each desired transformation in hard-
ware, with their limitations. Therefore, not only does it simplify and speed up the
development process, but it is also independent of the quantum technology
adopted.

However, this description assumes an ideal quantum computing device that
does not exist in reality. As already stated, the contemporary NISQ devices have
many limitations (see Section 1.3), all of which must be taken in consideration
for the correct quantum algorithm execution. A quantum circuits compilation
toolchain (or simply quantum compiler) aims to translate this quantum circuit
description in an equivalent circuit compatible with the chosen quantum device by
adding all the necessary low-level details for its correct execution.
It is essential to underline that not only a quantum compiler must make executable
an ideal quantum circuit, but it must also maximize its fidelity and minimize
its execution time, remembering that NISQ devices are indeed “noisy” [21, Sec.
1].

2.1 Quantum circuits compilation process
As introduced, quantum circuits are usually designed in an abstract way, de-
scribing only the logic (that is, the functionality) of the quantum algorithm. Just
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2 – Quantum circuits compilation

as high-level software must be refined before it can be executed on a specific clas-
sical computer, the same must be done also for quantum programs (modelled as
quantum circuits).
In the quantum literature there are different names used for referring to this
refinement task (transpilation [22], compilation [21], qubit mapping problem [23],
etc.). Indeed, it is essential to clarify what is the terminology used for the presented
work, to avoid ambiguity.

The complete refinement task, taking an abstract quantum circuit descrip-
tion (all gates and interactions allowed) as input and producing a transformed
circuit (executable on a specific quantum computing device) as output, is called
quantum circuits compilation. This process is composed of two essential steps:
the logic synthesis and the layout synthesis.

Quantum circuits
compilation

Logic Synthesis Layout Synthesis

Placement Routing

Figure 2.1. Quantum circuits compilation structure.

2.1.1 Logic synthesis
The first step of quantum circuits compilation is the logic synthesis. It is called
logic because it works with and produces a logic (abstract) quantum circuit descrip-
tion. The NISQ devices limitations solved in this step are related to the limited
native gates set [7, Sec. 1].
First, all the multi-qubit quantum gates are decomposed by using only
single-qubit and two-qubit gates. Subsequently, all the quantum gates are
translated to obtain a quantum circuit composed of only the limited native gates
of a specific quantum technology. Moreover, not only must this be accomplished,
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but the logic synthesis usually employs heavy transformations in order to op-
timise the final quantum circuits in terms of some desired figure of merits (circuit
depth, execution time, fidelity).

Usually, the two-qubit interactions are not decomposed in the native coupling
gates. It is common to leave the CX or/and CZ gates untouched after the logic
synthesis process to ease the following task performed during the layout synthesis
[15, Sec. 1.4].

2.1.2 Layout synthesis
The second fundamental step performed during the compilation of a quantum cir-
cuit is the layout synthesis, and it is the main focus of the presented thesis work.
During this process, the logic quantum circuit description is converted into a phys-
ical one, executable on a real device. This task is divided into two sub-steps: the
placement and the routing.

The placement task has the important job of mapping every logical qubit to
a specific physical qubit. An in-depth explanation of this procedure is given in
Chapter 4. The input of the placement is the output of the logic synthesis, which
is, a logical (or abstract) quantum circuit description. Indeed, all the qubits used
in this description are logical (see Section 1.1). These qubits are not the physical
qubits of a NISQ device, but are only used for describing the functionality of the
quantum circuit.
Even if the logical synthesis is completed and the quantum circuit is placed, this
cannot yet be performed on the real hardware, as the connectivity limits of the
device have not yet be considered. Indeed, as already stated in Section 1.3, NISQ
devices have a set of coupling-constraint, specifying the allowed two-qubit inter-
actions. The routing task has the important role of solving these connectivity-
constraint, modifying the input quantum circuit. For a more in-depth explanation
of the routing procedure, see Chapter 5.

Summarising, the target of the layout synthesis procedure is the production of
the spacetime coordinates (tj, xj) for each gate j composing the quantum circuit
[7, Sec. 2]. They indicate when and where to apply each specific transformations,
meaning in which order and to which nodes apply each gate, to correctly implement
the desired quantum algorithm (thus, having all the transformations allowed in
hardware).

2.2 The VLSI compilation toolchain
At the VLSI Lab of Politecnico di Torino, a quantum circuits compilation toolchain
was developed by Manfredi Avitabile in 2021, as a work for his Master thesis dis-
sertation [15]. The Avitabile’s toolchain is completely written using the Python
language, and can target quantum circuits designed using IBM’s OpenQASM
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2.0 language [24], which is the standard description language used for modelling
quantum circuits. This compiler can perform the logic and layout synthesis target-
ting the most used NISQ devices quantum technologies: superconducting, NMR
and trapped ions.

Instead of using exact algorithms or heuristics/metaheuristics to perform
the compilation task (remembering that optimising the final circuit is essential
in quantum circuits compilation), the VLSI toolchain uses a novel approach: the
template-based approach. The idea is to find circuit patterns inside the input
quantum circuit description and substitute this patterns using some predefined
templates (that is, circuital identities), aiming to optimise the output quantum
circuit.

2.2.1 VLSI toolchain - structure

Step 1 Step 2 Step 3

input_circuit.qasm

thresholds.cfg

output_circuit.qasm

Logic
Synthesis

Layout
Synthesis

iterations.cfg ion_translation.cfg layout_nmr.cfg layout_ion.cfg

Figure 2.2. Original VLSI toolchain structure.

The VLSI toolchain is structured in three different steps, as shown in Fig-
ure 2.2. Step 1 and Step 2 compose the logic synthesis block of quantum circuits
compilation, while the Step 3 implements the layout synthesis. Step 1 takes the
original abstract quantum circuit description as input, while the Step 2 and Step 3
takes the circuit produced by the preceding step as input. Moreover, to correctly
perform its task, the toolchain exploits some configuration files (.cfg). They
contain some mandatory but configurable settings used by the compiler during the
compilation process.

14



2.2 – The VLSI compilation toolchain

2.2.2 Step 1
Step 1 is the first step which composes the logic synthesis block of the VLSI
toolchain. The main aim of this step is to apply some technology-agnostic tem-
plates in order to increase as much as possible the number of circuital null opera-
tions, which can then be discarded. Moreover, it also tries to increase the number
of Rz gates, in order to optimise the final quantum circuit when these gates are
implemented virtually (with zero execution time and error rate) [15, Sec. 1.2.5].
This step supports only the quantum gates composing the extended Clifford +
T gate set [25] and all the IBM’s native gates: U1, U2 and U3 (no optimisation
is performed on these latter gates at this step). The output of Step 1 is a quan-
tum circuit still described using the OpenQASM 2.0 language, but compacted and
composed of only Rx, Ry, Rz, U1, U2, U3, CX,CZ gates.

An in-depth explanation of the Step 1 of the VLSI toolchain can be found in
[15, Ch. 2]

2.2.3 Step 2
The Step 2 is the final step of to the logic synthesis of the VLSI quantum circuits
compilation toolchain. At this step, all the goals of the logic synthesis (presented
in Section 2.1.1) must be fulfilled. Indeed, this step applies some technology-
specific translation and optimisation templates, producing a technology-compliant
final quantum circuit description. Specifically, the CZ gates are translated to CX
gates for the superconducting and trapped ions technology. Moreover, the input
quantum circuit is optimized using a powerful compaction section called the Eu-
lercombo, to compact as much as possible the number of single-qubit gates.

In order to work correctly, this step requires that the input quantum circuit is
composed only of Rx, Ry, Rz, U1, U2, U3, CX,CZ gates. Moreover, each single-qubit
gate must not be adjacent to a single-qubit gate of the same type. This requirement
is always fulfilled if the input of Step 2 is the output of Step 1.
The output basis gates for each supported technology are:

• NMR: {Rx, Ry, Rz, CX,CZ}. Even if the CZ gates can be easily constructed
using the native coupling gate, the CX gates are not decomposed in CZ yet,
since for the first ones stronger templates are available in the following Step
3.

• Trapped ions: {Rx, Ry, Rz, CX} or {R(θ, ϕ), Rz, CX}, depending on the
Iontran boolean parameter inside the ion_translation.cfg configuration file.
R(θ, ϕ) is the native rotation gate for this technology, but the classic Rx, Ry, Rz

gates are selectable for compatibility reasons.

• Superconducting: {U1, U2, U3, CX}.
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It is essential to remark that the CX gates for trapped ions and the CZ gates
for NMR are not natively supported by these technologies. However, their
decomposition into native gates is postponed in order to apply powerful templates
during the Step 3 and also simplify the layout synthesis procedure (as anticipated
in Section 2.1.2).

An in-depth explanation of the Step 2 of the VLSI toolchain can be found in
[15, Ch. 3]

2.2.4 Step 3
Step 3 is the last step of the VLSI quantum circuits compilation toolchain and
is related to the layout synthesis task. It must be underlined, that actually the
main problems related to the layout synthesis, namely placement and routing (see
Section 2.1.2), are not solved during this step, as a strong assumption is made:
all the target technologies are fully-connected. Indeed, all the tasks per-
formed in this step are related to the final quantum circuit optimisation, and to
the translation of all the two-qubit gates by using the supported native gates set.
The operations performed during this final step are:

1. Apply strong CX optimisations templates, to decrease as much as possible
these gates inside the final quantum circuit.

2. Translate all the two-qubit gates by using the native coupling gate of each tar-
get technology. For the decomposition, some parameters and a simplified lay-
out (fully-connected) is required for each technology. Indeed, this information
is contained inside the layout_nmr.cfg and the layout_ion.cfg configuration
files.

3. Apply for the last time the Eulercombo section, aiming at performing further
single-qubit gates compaction.

In order to work correctly, this step requires that the input quantum circuit is
composed only of:

• NMR: {Rx, Ry, Rz, CX,CZ}.

• Trapped ions: {Rx, Ry, Rz, CX} or {R(θ, ϕ), Rz, CX}, depending on the
Iontran boolean paramter inside the ion_translation.cfg configuration file.

• Superconducting: {U1, U2, U3, CX}.

Moreover, each single-qubit gate must not be adjacent to a single-qubit gate of the
same kind. This requirement is always fulfilled if the input of Step 3 is the output
of Step 2.

The output basis gates for each supported technology are the same of Step 2,
with the possibility of decomposing the CX and CZ gates using the technology
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native two-qubit interaction gate. Specifically, this translation is configurable with
the ioncxtrans and cztranslat parameters inside respectively the layout_ion and
layout_nmr configuration files.

An in-depth explanation of the Step 3 of the VLSI toolchain can be found in
[15, Ch. 4]
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Implementation of the
layout synthesis library and

tool
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Chapter 3

The layout synthesis library
and tool

The target of this thesis is the development of a flexible layout synthesis library
that can be easily integrated into any quantum circuits compilation toolchain. The
entire library was written by using the Python language, which was selected for
its simplicity and suitability for projects with a concern for an easy expansion. In-
deed, the majority of the quantum compilation frameworks employ this language
and by adopting it, the interfacing with these famous tools is simplified. For ex-
ample, Python is also the selected language for the IBM’s consolidated Qiskit [26]
compiler. The proposed library has a quantum circuits described by using IBM’s
OpenQASM 2.0 language [24], which is one of the most used circuit description
languages in the quantum literature, as input. The proposed library can perform
the refinement of the circuit for running it on a target NISQ devices, described
by a configuration file, belonging the most used quantum technology in the state-
of-the-art: superconducting, quantum dots, NMR and trapped ions. The
variety of the supported technologies demonstrates the versatility and completeness
of the presented library, which can manage different kinds of topologies (non-fully-
connected, fully-connected).
A general overview of the Python classes which compose the library is provided
in Section 3.1. More details on the implementation of the placement and routing
procedures are given in respectively Chapter 4 and Chapter 5. The proposed work
was integrated into the current VLSI toolchain (presented in Section 2.2),
substituting the incomplete layout synthesis phase of it. The modularity of the
developed library makes comfortable this task, and would make easy also the inte-
gration in other compilers. The result of this integration was a complete quantum
circuits compiler, presented in Section 3.2.

Additionally, a tool was developed, allowing the common user (without any
programming knowledge) to exploit the implemented layout synthesis heuristics
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3 – The layout synthesis library and tool

for solving the connectivity limitations of today’s NISQ devices. Specifically, two
command-line applications were developed in Python, giving a textual user interface
for interacting with the library Application Programming Interface (API). The tools
are presented in Section 4.4.1 and Section 5.3.1.

3.1 The layout synthesis library

node.py vertex.py circuit.py backend.py placer.py router.py

Layout Synthesis Library

simulatedAnnealing.py

Figure 3.1. Representation of the python scripts composing the imple-
mented layout synthesis library.

Provides the information on 
the gate's dependencies to

Circuit
Provides the information  

on the allowed  
nodes interactions to

Contains

Backend

DAGVertex

Each gate of the DAG is  
represented as

DAG List

Router

Placer Composed of

Coupling-graph

Node

Figure 3.2. Layout synthesis library, classes relations.

The developed library is composed of a set of Python classes that form a com-
plete framework for solving the placement and routing problems of quantum cir-
cuits compilation. This structure is inspired by the Qiskit quantum compiler [26],
offering different classes that can be used to model a NISQ device, to describe a
quantum circuit and to solve the connectivity-constraint. The relationships among
these classes, which underline how everything joins to perform the layout synthesis,
are shown in Figure 3.2.
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Specifically, the following classes are implemented:

Circuit: represents a quantum circuit. The main attributes of this class are a
directed acyclic graph (DAG), used for storing the quantum gates de-
pendencies, and a list, for storing the measures operations. More details are
presented in Section 3.1.1.

DAGVertex: represents a generic vertex in the directed acyclic graph (DAG)
representation of the quantum circuit. There are two kinds of DAGVertex :
GateDAGVertex and MeasureDAGVertex. The first is used to represent
a quantum gate, the latter to represent a measure operation. In particular, the
MeasureDAGVertex is added for completeness, but it is not currently employed
since the measure operations are stored in a separate data structure (a list).
Currently, it is possible to model only single-qubit and two-qubit gates, as
explained in Section 3.1.1.

Backend: represents a generic NISQ device, target of the layout synthesis process.
More details are presented in Section 6.1

Node: represents a physical qubit of a NISQ device. At the time of writing, only
the node’s identifier (ID) is necessary to completely describe a physical qubit,
but, having this class available, future improvements can be easily incorpo-
rated.

Placer: takes care of performing the placement step for a quantum circuit, having
a specific NISQ device as the target of the placement process. More details
are presented in Section 4.2.

Router: takes care of performing the routing step for a quantum circuit, having
a specific NISQ device as the target of the routing process. More details are
presented in Section 5.2.1.

3.1.1 The Circuit class
The Circuit class, written inside the circuit.py Python script of the library, models
the quantum circuit under compilation.
In order to represent a quantum circuit, this class employs two essential data struc-
tures:

• A directed acyclic graph (DAG), where each vertex of it represents a
quantum gate (single-qubit or two-qubit), while each edge represents a de-
pendency among two gates. In particular, each vertex is dependent on all the
other vertices that are pointing to it.
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• A list, which is used to store all the measure operations in a separate data
structure. In this way, the layout synthesis library can focus only on the
quantum gates during the placement and routing phases, and this ensures
that during the reconstruction of the final quantum circuit OpenQASM 2.0
description, the measure operations are placed at the end.

node.py vertex.py circuit.py backend.py placer.py router.py

Layout Synthesis Library

simulatedAnnealing.py

Figure 3.3. Representation of the python scripts composing the implemented
layout synthesis library. The ones containing the Circuit and DAGVertex
classes are highlighted in red.

It is possible to construct a quantum circuit manually, exploiting the methods
offered by the Circuit class to append quantum gates, like in Qiskit and t|ket〉. On
the other hand, it is also possible to instantiate a circuit automatically parsing an
IBM’s OpenQASM 2.0 description file. However, there are some constraints that
this quantum circuit description must respect to be compatible with the library.
Specifically, every description must begin with the following lines:

1 OPENQASM 2.0;
2 include "qelib1.inc";
3 qreg q[n];
4 creg c[m];

This implies that the circuit can have one and only one quantum register of size
n and one and only one classical register of size m. It is mandatory that these
registers are named respectively “q” and “c”.
Only single-qubit and two-qubit gates are currently supported. This is common for
layout synthesis tools since the multi-qubit gates are decomposed during the logic
synthesis step (see Section 2.1.1).
Theoretically, every single-qubit and two-qubit quantum gate can be used in this
circuit description. In practice however, the presented library was tested only
with the Rx, Ry, Rz, U1, U2, U3, CZ,CX gates, thus the stability of the library in
other scenarios is unpredictable. Even if the tested gates set might seem limited,
it actually incorporates all the expected scenarios, remembering that usually the
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layout synthesis procedure is performed after the logic synthesis and before the
two-qubit interactions are decomposed in the native two-qubit gates. The measures
operations must be placed at the end of the quantum circuit. This implies that no
transformations can be performed on a qubit after it is measured.

Example 3.1.1. Example showing the DAG representation of a quantum circuit.
Figures 3.4 and 3.5 depict respectively the OpenQASM 2.0 and the graphical

representation of the same quantum circuit. The proposed library internally stores
the quantum gates dependencies using a DAG. Figure 3.6 shows the DAG repre-
sentation for modelling the same circuit.
In this figure, it is noticeable that each vertex composing the DAG is grouped in
numbered sets, called layers. Each layer is a set of quantum gates that can be
executed in parallel since they have no dependencies on one another. The first
layer (Layer 1 ) contains all the quantum gates having no dependencies at all. The
second layer (Layer 2 ) contains all the gates having dependencies to at least one
gate of layer 1, and so on for the further layers. Slicing a quantum circuit into
layers is extremely useful to simplify the placement and routing tasks, in order to
reconstruct a quantum circuit respecting the original gates dependencies.

1 OPENQASM 2.0;
2 include "qelib1.inc";
3

4 qreg q[4];
5 creg c[4];
6

7 h q[0];
8 x q[1];
9 cz q[0], q[1];

10 cx q[1], q[2];
11 y q[2];
12 x q[3];
13

14 measure q->c;

Figure 3.4. Example of a
quantum circuit represented in
the OpenQASM 2.0 language.

q0 : H •
q1 : X • •
q2 : Y
q3 : X
c : /4 3 0 1 2

Figure 3.5. Graphical representation for the quan-
tum circuit depicted in Figure 3.4.
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h q[0] x q[1] x q[3]

cz q[0], q[1]

cx q[1], q[2]

y q[2]

Layer 1

Layer 2

Layer 3

Layer 4

Figure 3.6. DAG representing the dependencies among the gates of the quantum
circuit depicted in Figures 3.4 and 3.5.
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3.2 The complete VLSI compilation toolchain

Step 1 Step 2 Step 3

input_circuit.qasm

thresholds.cfg

output_circuit.qasm

Logic
Synthesis

Layout
Synthesis

iterations.cfg ion_translation.cfg layout_synthesis.cfg

backend.cfg

Figure 3.7. Complete VLSI toolchain structure.

The original VLSI quantum circuits compilation toolchain (presented in Sec-
tion 2.2) was incomplete. Specifically, only the logic synthesis was implemented,
and thus the placement and routing steps were not performed during the compila-
tion. Step 3 of the toolchain performs strong two-qubit gates compactions, but a
full layout synthesis is still mandatory for building a complete quantum compiler.
After the development of the proposed layout synthesis library was completed, it
was integrated into the VLSI toolchain. In particular, two main improvements
are performed:

1. The VLSI toolchain is expanded to support also the quantum dots NISQ tech-
nology. This expansion was performed thanks to the similarities between the
NMR and quantum dots native gates set [17, 16], as explained in Section 3.2.1.

2. The VLSI toolchain Step 3 is completed, to perform the layout synthesis phase.
It now implements both the placement and the routing having a specific back-
end as target NISQ device. This integration is presented in Section 3.2.2.
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3.2.1 Quantum dots technology integration
The original toolchain is intended to support only superconducting, NMR and
trapped ions NISQ devices. Focusing on the quantum technologies limitations
(see Section 1.3), NMR is very similar to another technology used for encoding a
qubit: quantum dots (Section 1.6). Specifically, these technologies have the same
native gates set and thus the same native coupling gate.

Thanks to these similarities, and because the proposed library can also target
quantum dots devices, this family of quantum computing hardware was incorpo-
rated inside the VLSI compilation toolchain. In particular, the following improve-
ments to the original compiler are performed:

• For Step 1, no actions are required. Indeed, this step is technology-agnostic.

• For Step 2, the same procedures employed for the NMR technology are now
also used for quantum dots. This step is technology-dependent, thus the origi-
nal toolchain asked for a user-input specifying the target technology. After the
update, the current possible parameters are: “S” for superconducting tech-
nology, “I” for trapped ions technology, “M” for NMR technology and “Q”
for quantum dots technology.

• For Step 3 the same procedures employed for the NMR technology are now
also employed for the quantum dots technology.

3.2.2 Layout synthesis library integration
As already explained, the original VLSI toolchain Step 3, performing the layout
synthesis, was actually missing the whole placement and routing proce-
dures. To finalise the work started by M. Avitabile, the Step 3 was completed,
integrating the developed layout synthesis library for producing a quantum circuit
description that is actually executable in hardware. To achieve this, the workflow
for each supported technology is expanded.

The new Step 3 structure, after the integration, is shown in Figure 3.8. For all
the available technology’s workflows, the first task performed is the employment of
the powerful CX reduction templates. After that, the developed library heuristics
can be used to place the quantum circuit and solve the coupling-constraint. Indeed,
the CX and CZ gates are not decomposed with the native two-qubit interactions,
in order to simplify the routing task. The decomposition of these gates with a last
optimisation effort is postponed to the last blocks of Step 3.

The added initial mapping and routing phase is completely configurable by the
end-user through the layout_synthesis.cfg configuration file. In this file, it is
possible to indicate which placement and which routing algorithm to employ, as
well as their optional parameters. Moreover, inside the same file, the path to the
backend.cfg configuration file must be specified. This description file contains the
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information on the allowed interactions and on the quantum gate features (more
details are presented in Section 6.1). Therefore, these configuration files completely
replace the old layout_nmr.cfg and layout_ion.cfg, required by the original
toolchain to obtain respectively the sign of the J-coupling constant (Section 1.5)
and the interaction sign (Section 1.7), used for the correct CX/CZ gates decompo-
sition.
For all the NISQ technologies, when the placement and routing is complete, the
two-qubit interactions are decomposed by using the native coupling-gate (if re-
quested). Afterwards, a last compaction attempt is made, trying to achieve a last
optimisation, after all the constraints have been satisfied. In particular:

• For NMR, quantum dots and trapped ions technology, the original Special
Templates are applied, to optimise the newly added Rzz and Rxx gates.
Successively, the strong Eulercombo section is employed to compact the single-
qubit gates included after the layout synthesis procedure. Indeed, remember-
ing that this template requires that each single-qubit gate must not be adjacent
to a single-qubit gate of the same type, for these technologies’ workflow, the
Finalcombo procedure [15, Sec. 2.2.6] is priorly executed, assessing that this
requirement is satisfied.

• For superconducting technology instead, since there is no new two-qubit gate
inserted (the CX gates are the native two-qubit interaction), the last applied
block simply tries to compact the IBM’s U1, U2, U3 gates.

CX-based  
Templates

Placement  
& 

 Routing

Special  
Templates +
EulerCombo

CX Translation

xIT3NMR and quantum dots

CX-based  
Templates

Placement  
& 

 Routing

Special  
Templates +
EulerCombo

CX Translation

xIT3Trapped ions

CX-based  
Templates

Placement  
& 

 Routing

U gates  
mergerCX Translation

xIT3Superconducting

FinalCombo

FinalCombo

Figure 3.8. Final Step 3 structure of the complete VLSI quantum circuits com-
pilation toolchain. The original blocks are depicted in orange, while the added
blocks are highlighted in green.
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Chapter 4

Placement

Placement is the first crucial operation performed by the layout synthesis block of
a quantum circuit compilation toolchain.
Definition 4.0.1. The placement or initial mapping is a static one-to-one map-
ping between the logical qubits of a quantum circuit with the physical qubits of a
quantum computing device [11, Sec. 3.2], [23, Sec. 3], [21, Sec. 7].

Following the definition 4.0.1 and remembering the task performed by a generic
layout synthesis tool, the initial mapping produces the initial spacetime coor-
dinates (tj, xj) for each gate j of the quantum circuit [6, Sec. 2].
These coordinates (and thus logical to physical qubits mapping) may or may not be
the final ones. If the mapping is such that all the coupling-constraint of the target
quantum computing device are respected, the layout synthesis would be complete.
If instead some constraints are violated by the current mapping, the routing phase
will perform some circuit transformations (adding additional gates) to allow a
dynamic change of the current logical to physical qubits mapping, conforming to
the target architecture. The details on how this is done are explained in Chapter 5.
Example 4.0.1. The following example will clarify the placement procedure and
prepare the reader for the conventions used to show the input and output of the
initial mapping step during the whole chapter.

The simple quantum circuit shown in Figure 4.1 is the selected case of study to
explain the job performed during the placement step. Figure 4.2 shows both the
coupling-graph of the quantum computing device target of the placement and the
selected mapping of logical to physical qubits.
The result of the step can be analysed by looking at Figure 4.3. The space dimension
is explicit in the circuit diagram, the information displayed is to which nodes the
gates composing the quantum circuit are applied. The time dimension is instead
implicit, the topological order of the circuit (from left to right) shows the order of
execution of the gates.
The selected initial mapping for the example was: π = {q0 −→ n0, q1 −→ n1, q2 −→ n2}.
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q0 : X • H
q1 : H • •
q2 : •

Figure 4.1. Original quantum circuit input of the placement step. All the quan-
tum gates are applied to logical qubits, used only for describing the algorithm
implemented by the circuit.

n0 n1 n2

n3

n4

q0

q1

q2

Figure 4.2. Graph representation of the NISQ device target of the place-
ment plus the initial mapping to apply. The black circles and lines show the
coupling-graph of the backend (modelling the ibmq_lima [13] superconducting
device topology). The red circles and arrows represent the initial mapping,
each logical qubit (red circle) is connected to a physical qubit (black circle).
The nodes n3 and n4 are not mapped because the quantum circuit of Figure 4.1
is composed of only 3 logical qubits.

n0 : X • H

n1 : H • •

n2 :
g2

•

n3 :
g1 g3 g4

n4 :

Figure 4.3. Output quantum circuit obtained after the placement is complete.
All the gates are applied to physical qubits of the target backend. The two-qubit
gates are labeled as g1, g2, g3 and g4.
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Focusing the attention on the two-qubit gates of the circuit, g1, g2 and g3 satisfy
the constraints imposed by the architecture, while g4 does not. This implies that
the quantum circuit is still not executable on the target NISQ device. Hence, the
routing step needs to perform further modifications to ensure that all the two-qubit
gates are applied to nodes connected in the coupling-graph.

The placement is thus the first attempt to go from the abstract quantum algo-
rithm described as a quantum circuit, to a physical set of transformations applied
to nodes of a quantum computing device.
In the implemented layout synthesis library a class named Placer provides all
the required data structures and methods to correctly perform this task.

4.1 State-of-the-art
In general, the existence of an initial mapping for a specific quantum circuit capable
of solving all the connectivity constraints of a quantum computing device is not
guaranteed [6, Sec. 3.1], [23, Example 2.3], [12, Sec. 15.2]. To be possible, there
must exist a subgraph monomorphism between the interaction-graph GI and
the coupling-graph GD [21, Sec. 7]. The first graph is one such that its nodes are
the logical qubits of a quantum circuit, and there is an edge between two of its
nodes if there is at least one two-qubit gate in the circuit acting on that pair of
qubits. An example of such a graph is illustrated in Figure 4.4. The latter is the
classical way of representing a quantum computer, an example is the one composed
of the black circles and lines of Figure 4.2.

q0 q1

q2

Figure 4.4. Interaction-graph GI for the quantum circuit of Figure 4.1.
The nodes of the graph are logical qubits and the edges show which qubits
are interacting in the circuit.

For this reason, the need for a subsequent routing phase is considered compul-
sory. Hence, the placement searches for an initial mapping capable of reducing the
cost of the following circuit transformations [23, Sec. 3]. This cost depends on
some metrics that change based on the requirements (number of additional gates,
circuit depth, fidelity, . . . ).

The placement problem is a real and difficult combinatorial optimization
problem [27, Sec. 1]. The computer science literature is full of models and meth-
ods for solving this family of optimisation problems. Generally, the solutions are

33



4 – Placement

divided into two main branches [28, Sec. 1]: the exact algorithms aiming at find-
ing the global optimal solution and the heuristic (or approximate) algorithms
that produce a locally optimal solution that may or may not be the global optimal
one. The former produce the best solution, but they are most likely to be com-
putationally heavy, while the latter may not produce the best solution, but the
computational complexity is reduced.
Examples of exact algorithms are Integer Linear Programming [29], Branch and
Bound [30] or Dynamic Programming [31].

Enumerating all the possible placements for a quantum circuit, comparing the
metrics to optimise and select the best one, which would lead to the optimal solution
in the search space, is computationally unfeasible.
For this reason, heuristic solutions were preferred for the development of this layout
synthesis library. This decision is shared also by the majority of the associated
literature [32], [23], [33], [34], [35] and by two of the main used quantum circuit
compilation toolchains, namely Qiskit [26] and t|ket〉 [21].
Since these two famous quantum frameworks will be used for comparison during
the benchmarking phase, Section 4.1.1 and Section 4.1.2 intend to introduce the
main placement algorithms that they incorporate.

4.1.1 Qiskit placement algorithms
At the time of writing, Qiskit allows selecting different initial mapping strate-
gies to perform the placement of a quantum circuit. The simplest initial mapping
strategy which is available is the TrivialLayout [36]. Each logical qubit qi is
mapped to the corresponding physical qubit with the same id: ni. Clearly, this
policy does not optimise any metric, but it has the advantage of being computa-
tionally simple, and it can work on any quantum technology without modifications
(technology-agnostic). For these reasons, this strategy was included as an available
initial mapping strategy for the presented layout synthesis library.

A second placement policy is the DenseLayout [37]. The main idea here is to
find the sub-graph of the coupling-graph of the size equal to the number of logical
qubits of the quantum circuit with the maximum connectivity (where connectivity is
intended to be the number of allowed interactions). If calibration data are provided
to this algorithm, it can select a sub-graph also comparing the average CX error
rates and the average readout error rates.

Another placement strategy available in Qiskit, exploiting the gates features of
the target NISQ device during the mapping process, is the NoiseAdaptiveLayout
[38]. It is the implementation of the initial mapping strategy presented in [18].

An initial mapping algorithm implemented in Qiskit that is relevant for the
presented work is the SABRE Layout [39]. This is related to the SABRE [32]
routing algorithm that performs a heuristic search for finding the best possible swap
gate to insert whenever an interaction is not allowed in the target device.
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Besides the routing strategy, in the article, a placement strategy is suggested, the
Reverse Traversal SABRE Initial Mapping [32, Sec. 4.3.2]. The main idea
here is to exploit the reversibility of a quantum circuit for generating a better
initial mapping. The starting point is a random initial mapping, which is fed to the
SABRE routing heuristic. The obtained final mapping is then used as an initial
mapping for a new run of the heuristic, but for the reversed quantum circuit. The
last mapping obtained in output is used as the selected initial mapping.

4.1.2 t|ket〉 placement algorithms
t|ket〉, at the time of writing, has available three main placement strategies to
perform the initial mapping of a quantum circuit. All the algorithms implemented
in the Cambridge quantum compilation toolchain focus on a simple, yet effective
strategy aimed at maximising the number of two-qubit gates in the first layers of
the quantum circuit that can be executed without any swap gate addition.

The simplest algorithm of the toolchain is the LinePlacement [11, Sec. 3.2].
Starting from the interaction graph, generates lines of interacting logical qubits
that are mapped to lines of interacting nodes in the coupling-graph.
GraphPlacement [21, Sec. 7.1] is another strategy available. The algorithm finds
a subgraph monomorphism between the interaction graph and the coupling-graph.
If a monomorphism cannot be found, the algorithm removes one edge in the latest
(higher) circuit layer and attempts the graph matching again. If there are multiple
placements, the algorithm just selects the first one.
An improvement to this algorithm that takes into consideration also the fidelity
of the nodes is the NoiseAwarePlacement [21, Sec. 9.2]. Placements are found
using the GraphPlacement strategy, but then the output placement is selected by
assigning an overall fidelity score to all the placements and picking the highest-
scoring one.

All the strategies depicted before are not guaranteed to generate a complete
initial mapping, but they might also produce a partial one. The routing algorithm
implemented in t|ket〉 then fills these gaps with an on-the-fly mapping.

4.2 Layout Synthesis Library - Placement
This section and the following Section 4.3 are devoted to explaining how the place-
ment step was implemented in the proposed layout synthesis library.
The task of generating and applying an initial mapping to a quantum circuit is held
by the Placer class inside the placer.py python script composing the library. It
provides the necessary functionalities required to relabel the input quantum circuit
to start from a set of gates that are applied to the abstract logical qubits and end
with one that contains gates applied to the nodes of a specific target NISQ device.
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node.py vertex.py circuit.py backend.py placer.py router.py

Layout Synthesis Library

simulatedAnnealing.py

Figure 4.5. Representation of the python scripts composing the implemented
layout synthesis library. The one containing the Placer class is highlighted in red.

4.2.1 Applying the initial mapping to a quantum circuit
The Placer class provides a simple method, place, which allows applying a user-
defined initial mapping to a specific quantum circuit.
There are two tasks performed by the aforementioned method, required to correctly
perform the placement:

• Expand the quantum register size of the circuit to match the number of
physical qubits of the target quantum computer.

• Relabel all the gates and measures in the circuit following the provided initial
mapping.

The input of this first step is a quantum circuit described using the OpenQASM
2.0 language, in which all the gates are considered to be applied to logical qubits.
This input description is thus the representation of the abstract quantum algorithm.
The output is still a quantum circuit described using the OpenQASM 2.0. In
this description, all the gates and measures must be considered to be applied to
the nodes in the target NISQ device with the corresponding id. For example, if
the output circuit OpenQASM 2.0 file contains the line: cx q[0], q[1], that CX gate
has the node 0 as the control qubit and the node 1 as the target qubit. Before the
placement, all the qubits in a quantum circuit description are always considered
to be logical ones, but after, all the spatial coordinates are well-defined, and this
information must be taken into consideration for later execution or simulation.

Example 4.2.1. Example of the produced output of the placement step applying
the user-provided initial mapping: πinit = {q0 −→ n2, q1 −→ n0, q2 −→ n1} using the
5-nodes backend of Figure 4.2 as target quantum computing device.

Figure 4.7 shows the result of applying the provided initial mapping to the input
quantum circuit description shown in Figure 4.6. The quantum register size before
applying the mapping was 3, the number of logical qubits of the circuit (even if the
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1 OPENQASM 2.0;
2 include "qelib1.inc";
3 qreg q[3];
4 creg c[3];
5

6 x q[0];
7 y q[1];
8 cx q[0], q[1];
9 measure q -> c;

Figure 4.6. Input OpenQASM 2.0
description of the circuit. All the
gates are considered to be applied to
logical qubits.

1 OPENQASM 2.0;
2 include "qelib1.inc";
3 qreg q[5];
4 creg c[3];
5

6 x q[2];
7 y q[0];
8 cx q[2], q[0];
9

10 measure q[2] -> c[0];
11 measure q[0] -> c[1];
12 measure q[1] -> c[2];

Figure 4.7. Output OpenQASM 2.0
generated by the placement step apply-
ing the initial mapping πinit. All the
quantum gates in this description are
applied to physical qubits. The measure
operations are expanded.

third logical qubit was not used in the algorithm). After the placement, the size
became 5 matching the number of nodes of the target NISQ device.

Each quantum gate is also relabelled:

• X q[0]; −→ X q[2]; because the target logical qubit is q0 and πinit(q0) = n2.

• Y q[1]; −→ Y q[0]; because the target logical qubit is q1 and πinit(q1) = n0.

• CX q[0], q[1]; −→ CX q[2], q[0]; because the control logical qubit is q0, the
target logical qubit is q1 and πinit(q0) = 2, πinit(q1) = 0.

All the measures operations that were in the compact form in the input quantum
circuit are expanded. This is required to correctly describe to which classical bit
each node must be measured.
One important thing to understand is that the measure location of each logical
qubit does not change after the placement step. If the logical qubit i was measured
in the classical bit j, then after the placement the i-th logical qubit of the circuit
will still be measured in the same j-th classical bit:

• measure q[2] −→ c[0]; because the logical qubit q0 is measured into the classical
bit c0 in the original circuit, and πinit(q0) = n2.

• measure q[0] −→ c[1]; because the logical qubit q1 is measured into the classical
bit c1 in the original circuit, and πinit(q1) = n0.
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• measure q[1] −→ c[2]; because the logical qubit q2 is measured into the classical
bit c2 in the original circuit, and πinit(q2) = n1.

4.2.2 Internal implementation

x q[0] y q[1]

cx q[0], q[1]

Layer 1

Layer 2

Figure 4.8. DAG representing the dependencies among the gates of the quantum
circuit target of the placement step. All the gates are applied to logical qubits.

x q[2] y q[0]

cx q[2], q[0]

Layer 1

Layer 2

Figure 4.9. DAG representing the dependencies among the gates of the
quantum circuit after the placement step was completed. All the gates are
applied to physical qubits.

This section is devoted to showing the details of how the transformations, de-
scribed in Section 4.2.1, are applied to the input quantum circuit during the place-
ment step.
The Placer.place method modifies the input quantum circuit, accomplishing
two main tasks:

• Relabel all the vertices of the circuit DAG following the provided mapping.
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• Relabel all the measure operations following the provided mapping.

These two operations are easily understandable, remembering that the quantum
circuit is internally represented using two data structures: a DAG for the quantum
gates dependencies and a list for the measures.

Example 4.2.2. Internal modifications for applying the placement that is de-
scribed in Example 4.2.1.

Figure 4.8 shows the DAG representation of the input quantum circuit. During
the initial mapping, these gates are relabelled without modifying the dependencies
among them, only the qubits ids change. Figure 4.9 shows the internal representa-
tion of the circuit after the step is complete.

The measure operations are kept in a separated data structure (a list) to ease
the task performed by the router. The last modification required is to update the
measure lines matching the provided initial mapping:

• measure q[0]−→c[0] −→ measure q[2]−→c[0].

• measure q[1]−→c[1] −→ measure q[0]−→c[1].

• measure q[2]−→c[2] −→ measure q[1]−→c[2].

4.2.3 Generating an initial mapping
Besides allowing the user to specify a desired initial mapping and applying it to
the quantum circuit, the Placer class offers heuristics for automatically generating
a possible placement. The available placement strategies for each targetable quan-
tum technology, implemented inside the layout synthesis library, are depicted in
Figure 4.10.

The three implemented heuristics are:

TrivialMapping: it is the simplest implemented strategy, inspired by the Qiskit
TrivialLayout explained in Section 4.1.1. It is technology-agnostic, since
it can be applied to all the supported quantum technologies without modi-
fications, and hardware-unaware, since it is not requiring the calibration
data of the target device. In this mapping methodology, the logical qubits are
mapped to the nodes in the NISQ device with the same id: πtrivial = {q0 −→
n0, q1 −→ n1, q2 −→ n2, q3 −→ n3, . . . }, like shown in Figure 4.11.

SimulatedAnnealingDenseMapping: this is the first of two implemented map-
ping methodologies using the Simulated Annealing metaheuristic for perform-
ing the task. It is technology-agnostic, since it can be applied to all
the supported quantum technologies without modifications, and hardware-
unaware, since it is not requiring the calibration data of the target device.
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Placement algorithms 

TrivialMapping

NMR:Superconducting: Ion Trap: Quantum Dot:

SaDenseMapping

SaHaMapping

TrivialMapping

SaDenseMapping

SaHaMapping

TrivialMapping

SaDenseMapping

SaHaMapping

TrivialMapping

SaDenseMapping

SaHaMapping

Figure 4.10. Available placement algorithms, developed and incorporated into
the layout synthesis library, for each targetable quantum technology.

n0 n1 n2

n3

n4

q0

q1

q2

q3

Figure 4.11. Graph representation of a trivial initial mapping applied to a
quantum computing device. The black circles and lines show the coupling-
graph of the backend (modelling the ibmq_lima [13] superconducting device
topology). The red circles and arrows represent the initial mapping, each
logical qubit (red circle) is connected to a physical qubit (black circle) with
the same id. The node n4 is not mapped because the target quantum circuit
is supposed to have only 4 logical qubits.
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The aim of this initial mapping strategy is to find a sub-graph of the coupling-
graph with the maximum connectivity. This algorithm is explained in detail
in Section 4.3.3.

SimulatedAnnealingHardwareAwareMapping: this is the second and last im-
plemented mapping methodology using the Simulated Annealing metaheuris-
tic for performing the task. It is technology-agnostic, since it can be ap-
plied to all the supported quantum technologies without modifications, and
hardware-aware, since it is requiring the calibration data of the target de-
vice. The aim of this initial mapping strategy is to find a possible placement
minimising the overall distance between each interacting qubits (the distance
takes in consideration: physical distance between the nodes, error rate of a
nodes’ interaction, execution time of a nodes’ interaction). This algorithm is
explained in detail in Section 4.3.4

All of the aforementioned placement algorithms generate a logical to physical
qubits mapping that can be applied to the target quantum circuit, using the place
method described in Section 4.2.1.

4.3 Initial mapping generation using the Simu-
lated Annealing metaheuristic

Besides the simple method illustrated in Section 4.2.3, two clever initial mapping
strategies were implemented using the Simulated Annealing metaheuristic [40].
A metaheuristic [41] is a high-level algorithm used to guide the search for a solution
to a generic optimisation problem (non-problem-specific). It tries to explore in a
smarter way the search space in the prospect of finding a near-optimal solution [27,
Sec. 1]. Metaheuristics usually adopt some mechanisms to perform an exploration
of the search space avoiding being trapped in local optimal solutions, allowing a
temporary non-optimal move.

The main reason why Simulated Annealing was considered a valid option is
because it is a suggested placement approach used in [42, Sec. 3.B], the article that
introduced the core routing algorithm implemented in the presented work. All the
details and adaptations of this routing strategy are underlined in Chapter 6.
Their idea was to combine a hardware-aware search space exploration to a classical
Simulated Annealing algorithm to improve the obtained initial mapping.

The computational complexity required to explore the solution space of the
placement problem, combined with the interest in the proposed Hardware-Aware
Simulated Annealing exploration strategy, led to the development and integration
of two initial mapping algorithms:

1. Simulated Annealing Dense Mapping.
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2. Simulated Annealing Hardware-Aware Mapping.

The former was implemented to have another placement that is hardware-unaware,
the latter to have a cleverer way of generating the initial mapping, analysing also
the calibration data of the target NISQ device.

4.3.1 Simulated Annealing
Simulated Annealing (SA) is among the oldest metaheuristic algorithms, inspired
by the metallurgy annealing: the material is repeatedly heated and cooled down,
in order to obtain the desired chemical and physical properties [27, Sec. 3.2].
The strategy that SA adopts to escape local minimum solutions is explicit. It uses a
temperature parameter (T ) which is linked to the probability of accepting non-
optimal local solutions (uphill moves). This can be analysed looking at Figure 4.12:
if the algorithm only considered local optimal moves, it would be trapped in a
suboptimal solution. The SA procedure can accept temporary bad moves to “climb”
the local optimal hill, reaching a better placement.

0

Cost function(π)

initial mapping π

•
local optimal mapping

•
current mapping

•
global optimal mapping

Figure 4.12. In green, it is plotted a generic cost function (that has an initial
mapping as independent variable) that should be minimised. The black dot repre-
sents the current solution (an initial mapping) in the iterative search exploration
process of the metaheuristic algorithm. The red dot shows the local optimal so-
lution, reachable from the current one by iteratively adopting the locally optimal
move. The blue dot is the global optimal solution that minimises the cost function.

SA, like any other metaheuristic algorithm, is problem independent. It is a
generic high-level iterative algorithm to find the solution of an optimisation prob-
lem. In Figure 4.13 it is presented the flow chart of the implemented algorithm,
already adapted for the placement problem. This implies that:
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• The cost function has a possible placement π as independent variable.

• The neighbours’ solution exploration method (getNeighbour) has a placement
πcurrent as the independent variable, and returns a new placement πneighbour.

• The algorithm returns the optimal placement πoptimal found.
The Simulated Annealing algorithm, presented in Figure 4.13, has the goal of min-
imising a generic cost function. The changes required in order to maximise a cost
function are minimal.

The steps performed by the SA procedure are the following:
1. The starting point of the algorithm is the initialisation of the first possible

placement πinitial as the beginning of the solution space exploration. Another
parameter initialised is the current temperature Tcurrent. This is linked to the
probability of accepting non locally optimal solution (the higher the temper-
ature, the higher the probability).

2. The SA procedure then iterates for a fixed amount of times. At each iter-
ation, a new mapping neighbour of the current one is sampled πneighbour =
getNeighbour(πcurrent). If the cost function computed for the new solution is
lower than the previous one, this new placement is the new current mapping
for keeping exploring the solution space.

3. If the new cost is higher instead, the neighbour solution is accepted with
a probability that is proportional to Tcurrent and costFunction(πneighbour) −
costFunction(πcurrent). This probability usually follows the Boltzmann distri-
bution reported in Equation (4.1). When the current temperature is higher,
more locally worse neighbour solutions are accepted to perform the hill climb-
ing.

exp
I

−costFunction(πneighbour) − costFunction(πcurrent)
Tcurrent

J
(4.1)

4. At each iteration, Tcurrent is reduced. The task of deciding the temperature
for the new iteration is handled by the cooling strategy. Complex non-
monotonic strategies that incorporate period of heating (increasing Tcurrent)
and period of cooling (decreasing Tcurrent) can be followed [27, Sec. 3.2]. The
strategy adopted here, which is the most used one, is to cool down the tem-
perature of a fixed amount ∆ at every step, following Equation (4.2).
The algorithm proceeds for a fixed amount of steps. When a final temperature
Tfinal is reached, the optimal initial mapping found is returned.
Other strategies might be adopted for implementing an SA procedure, like hav-
ing a threshold on the maximum number of cycles or the maximum number
of cycles without finding a better solution.

Tcurrent = ∆ · Tcurrent,∆ ∈ [0, 1] (4.2)
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Figure 4.13. Flow chart of the Simulated Annealing algorithm adapted
to solve the initial mapping problem. The presented algorithm aims at
minimising the given cost function.
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4.3.2 Simulated Annealing Implementation

node.py vertex.py circuit.py backend.py placer.py router.py

Layout Synthesis Library

simulatedAnnealing.py

Figure 4.14. Representation of the python scripts composing the implemented
layout synthesis library. The one containing the methods related to the Simulated
Annealing is highlighted in red.

All the methods required for the development of initial mapping strategies utilising
the SA methodology, were implemented in the simulatedAnnealing.py python script.

The core procedure of the SA iterative search was implemented as presented in
Section 4.3.1, following the information available in [42, Algorithm 2] and [27, Sec.
3.2]. The implemented algorithm is mainly generic:

• It requires a generic cost function to optimise.

• It can both minimise and maximise the cost function, returning the optimal
solution found.

• It requires a generic method to get a new neighbour mapping, in order to
continue the solution space exploration.

The key idea presented in [42, Sec. 3.B] is to adopt a hardware-aware solutions’
space exploration, to improve the quality of the selected initial mapping. Follow-
ing this idea, the implemented cost functions and neighbour exploration methods
were developed in two kinds: the random (hardware-unaware) ones and the
hardware-aware ones. For the latter, in the following discussion, the concept of
distance is used: it is a metric that takes into consideration the physical distance
(edges), the error rate and the execution time of a nodes’ interaction. For a com-
plete explanation on how this distance is computed, Section 6.2.1 explains this in
detail.

Two cost functions were written to be optimised by the SA main procedure:
costFunctionConnectivity and costFunctionHardwareAwareTotalDistance.
The first returns the total number of allowed interactions for the nodes used in the
provided initial mapping, the second, the total distance between the interacting
nodes (given a quantum circuit).
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For the solutions’ space exploration, two branches of policies were implemented:
the high-level ones and the low-level ones. The first randomly choose which low-
level policy to call, while the latter actually search for a new possible placement.
The low-level getNeighbour policies have two counterparts: the random (hardware-
unaware) ones and the hardware-aware ones.

The following is a presentation and description of the implemented low-level
policies:

• getNeighbourRandomReset

– Random (hardware-unaware) policy.
– It completely resets the provided initial mapping, substituting it with a

new random one.

• getNeighbourHaReset

– Hardware-aware policy.
– Returns a new initial mapping starting from a random logical qubit mapped

to a random node and expanding the mapping until a complete one is gen-
erated. For the expansion, it is added the optimal node with the minimum
distance from the last inserted one.

• getNeighbourRandomShuffle

– Random (hardware-unaware) policy.
– Returns a new initial mapping obtained by randomly shuffling the nodes

of the input one. No new node is added to the mapping.

• getNeighbourRandomExpand

– Random (hardware-unaware) policy.
– Returns a new initial mapping obtained by replacing one random node of

the mapping with a new random node of the backend that is not part of
the mapping.

• getNeighbourHaExpand

– Hardware-aware policy.
– Returns a new initial mapping obtained by replacing one node of the map-

ping with a new node of the backend that is not part of the mapping. The
node removed from the mapping is the one with the worst connectivity
(number of edges) that maximises the total distance between the interact-
ing nodes in the quantum circuit target of the placement. The replacement
node is the one that minimises this total distance.
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The two high-level policies implemented are:

• getNeighbourRandom

– Random (hardware-unaware) policy.
– Randomly selects which low-level policy to execute among getNeighbour-

RandomShuffle, getNeighbourRandomReset and getNeighbourRandomEx-
pand. Each can be picked with a probability of respectively 90%, 2% and
8% (the same probability values used in the original paper [42, Sec. 4.A]).

• getNeighbourHardwareAware

– Hardware-aware policy.
– Randomly selects which low-level policy to execute among getNeighbour-

RandomShuffle, getNeighbourHaReset and getNeighbourHaExpand. Each
can be picked with a probability of respectively 90%, 2% and 8% (the
same probability values used in the original paper [42, Sec. 4.A]).

4.3.3 Simulated Annealing Dense Mapping
The first utilisation of the Simulated Annealing metaheuristic was to implement
a placement strategy inspired by the Qiskit DenseLayout [37], presented in Sec-
tion 4.1.1, that is, the Simulated Annealing Dense Mapping. This new initial
mapping generation strategy uses a hardware-unaware solution space exploration
for the SA procedure, with the intent of finding the combination of nodes that
maximises the connectivity, that is, the total number of allowed interactions con-
sidering the selected nodes.

The followings are the details used for implementing this methodology:

• The core SA method underlined in Figure 4.13 and presented in Section 4.3.1
is called.

• As cost function to optimise, it is passed the costFunctionConnectivity
explained in Section 4.3.2. For this cost function, the optimal solution is the
maximal one.

• As neighbour solution exploration method, the high-level policy getNeigh-
bourRandom is used, in order to obtain a random neighbour exploration.

This new placement algorithm was implemented to provide the layout synthesis
library with a new methodology, besides the TrivialMapping presented in Sec-
tion 4.2.3, capable of finding a possible placement, without requiring the calibration
data of the target NISQ device.
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4.3.4 Simulated Annealing Hardware-Aware Mapping
Another initial mapping strategy, that uses Simulated Annealing in order to re-
trieve the solution, is the Simulated Annealing Hardware-Aware Mapping.
The idea here is to explore the possible placements in a smarter hardware-aware
way, excluding some possible mappings in advance, using the calibration data of
the target quantum computing device.
The mapping that this algorithm tries to obtain is one such that the total distance,
among the interacting nodes in the quantum circuit target of the placement, is
minimised, while the connectivity (number of edges) of the selected nodes is max-
imised. This distance between nodes is computed using the D matrix explained in
Section 6.2.1.

The followings are the details used for implementing this methodology:

• The core SA method underlined in Figure 4.13 and presented in Section 4.3.1
is called.

• As cost function to optimise, it is passed the costFunctionHardwareAware-
TotalDistance explained in Section 4.3.2. For this cost function, the optimal
solution is the minimal one.

• As neighbour solution exploration method, the high-level policy getNeigh-
bourHardwareAware is used, in order to obtain a neighbour mapping ex-
ploiting the calibration data information.

This new placement algorithm was implemented to have an initial mapping
strategy linked to the core routing method implemented in the presented work, that
is, the Hardware-aware routing explained in Chapter 6. The aim is to have an
initial mapping capable of simplifying the work done by this routing strategy, in
the following layout-synthesis phase.

4.4 Layout Synthesis Tool - Placement
Besides offering a flexible python library for integrating the layout synthesis
phase in any quantum compilation toolchain, an additional set of scripts was devel-
oped, composing the layout synthesis tool: it is a command-line application
(console application), designated to the end-user for performing the placement and
routing operations without having a programming knowledge.

The layout synthesis tool is composed of two scripts:

layout_synthesis_tool_placement.py: it is a command-line application al-
lowing the user to apply all the placement algorithms described in this
chapter to any quantum circuit, targeting a superconducting, ion trap, NMR
or quantum dots NISQ device.
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layout_synthesis_tool_routing.py: it is a command-line application allowing
the user to apply all the routing algorithms described in Chapter 5 to
any quantum circuit, targeting a superconducting, ion trap, NMR or quantum
dots NISQ device.

4.4.1 Placement tool overview
Inputs: all the inputs must be passed as console arguments to the python script

layout_synthesis_tool_placement.py. The inputs are divided into two cate-
gories:

Required arguments: mandatory for performing the placement.
• inputQasmFile: the relative (to the working directory) or absolute

path to the OpenQASM 2.0 description of the quantum circuit target
of the placement. Any quantum gates available in the OpenQASM 2.0
language can be used. All the barriers and comments inside the
description are ignored and not included in the output placed circuit.

• outputQasmFolder: the relative (to the working directory) or ab-
solute path to the folder where to store the output OpenQASM 2.0
description of the quantum circuit after the placement operation is
performed.

• backendConfigurationFile: the relative (to the working directory)
or absolute path to the .cfg configuration file describing the NISQ
device target of the placement step. This can be a superconducting,
NMR, ion trap or quantum dots device. A detailed explanation on
how to model a generic device using a configuration file is reported in
Section 6.1.

Optional arguments: for setting all the configurable parameters. Any miss-
ing optional argument is set to a default value.
• -a: the initial mapping generation algorithm to use in order to perform

the placement step. Available strategies are: Trivial Mapping, Simu-
lated Annealing Dense Mapping, Simulated Annealing Hardware-Aware
Mapping. It is set to Trivial Mapping by default.

• –swapNumberWeight: the coefficient to be multiplied by the S
matrix in the D matrix computation (used for the Simulated Annealing
Hardware-Aware Mapping algorithm). For a detailed explanation on
this placement strategy, see Section 4.3.4. It is set to 0.5 by default.

• –swapErrorWeight: the coefficient to be multiplied by the E ma-
trix in the D matrix computation (used for the Simulated Annealing
Hardware-Aware Mapping algorithm). For a detailed explanation on
this placement strategy, see Section 4.3.4. It is set to 0.5 by default.
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• –swapTimeWeight: the coefficient to be multiplied by the T ma-
trix in the D matrix computation (used for the Simulated Annealing
Hardware-Aware Mapping algorithm). For a detailed explanation on
this placement strategy, see Section 4.3.4. It is set to 0 by default.

• –isRZvirtual: used only for NMR, quantum dots and ion trap tech-
nologies. True if the RZ gates are implemented virtually, False oth-
erwise (used for the Simulated Annealing Hardware-Aware Mapping
algorithm). For a detailed explanation on this placement strategy, see
Section 4.3.4. It is set to False by default.

• –Ti: the initial temperature parameter, used by the simulated anneal-
ing metaheuristic (used for the Simulated Annealing Dense Mapping
and Simulated Annealing Hardware-Aware Mapping algorithms). It is
set to 10 by default.

• –Tf: the final temperature parameter, used by the simulated annealing
metaheuristic (used for the Simulated Annealing Dense Mapping and
Simulated Annealing Hardware-Aware Mapping algorithms). It is set
to 10−6 by default.

• –delta: the temperature cooling parameter, used by the simulated an-
nealing metaheuristic (used for the Simulated Annealing Dense Map-
ping and Simulated Annealing Hardware-Aware Mapping algorithms).
It is set to 0.9 by default.

Outputs: the placement step produces two outputs:

• outputQasmFile: the OpenQASM 2.0 description of the placed quan-
tum circuit. The file is written inside the outputQasmFolder directory.

• initialMapping: the initial logical to physical qubits mapping applied
by the placement procedure.

In Figure 4.16 is shown a schematic illustrating the inputs and outputs of the layout
synthesis placement tool.
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layout_synthesis_tool_placement.py

Layout Synthesis Tool

layout_synthesis_tool_routing.py

Figure 4.15. Representation of the python scripts composing the imple-
mented layout synthesis tool. The script performing the placement phase
is highlighted in red.

backend.cfg

layout_synthesis_tool_placement.py

circuit.qasm

outputFolderPath

Optional arguments

Required
arguments

outputFolderPath/circuit_placed.qasm

initial mapping

Figure 4.16. Schematic representation of the inputs and outputs of the layout
synthesis placement tool. The inputs of the tool are divided into two categories:
required and optional, as explained in Section 4.4.1. The outputs of the tool are:
the placed quantum circuit and the initial mapping applied.
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Chapter 5

Routing

As explained in Chapter 4, the static mapping between logical and physical qubits,
established during the placement step, is usually not enough to satisfy all the
coupling-constraint of the target NISQ device. This mapping must dynamically
change during the circuit execution, to solve all the connectivity requirements.
To accomplish this, a second fundamental step in order to complete the layout
synthesis operation is required, the routing.

Definition 5.0.1. The routing consists in a transformation of the quantum circuit,
adding additional gates, allowing a dynamic change of the mapping between the
logical and physical qubits, to fulfil the coupling-constraint of a target quantum
computing device [11, Sec. 3.3], [6, Sec. 3.2], [21, Sec. 7], [43, Sec. 3.A].

The most common way to implement this dynamic change is through the addi-
tion of swap gates (Figure 5.1) to the quantum circuit. A swap gate applied to two
physical qubits exchanges the logical qubits to which they are mapped. After
a swap gate is added to the circuit, the following gates must be relabelled, to
ensure that the unitary transformations applied to each logical qubit in the input
and output circuits are the same (thus a swap gate changes the interacting nodes
of the circuit). Swap gates are added until all the nodes’ interactions are allowed
in the target coupling-graph.
Another option available to solve a coupling-constraint violation is relabelling a CX
gate with a bridge gate when possible. A bridge gate allows implementing a CX
between two disconnected nodes having one common neighbour without altering
the current mapping, like shown in Figure 5.2.

After the routing is complete, the spatial and temporal coordinates (tj, xj) for
each gate j composing the quantum circuit are the final ones [6, Sec. 2]. They
indicate when and where to apply each specific transformations, meaning in which
order and to which nodes apply each gate, to correctly implement the desired
quantum algorithm.
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n0 : ×

n1 : ×

Figure 5.1. Swap gate example.

n0 : • • •
n1 : = • •
n2 :

Figure 5.2. Bridge gate example.

n0 : X • ×

n1 : H • • × H

n2 :
g2

•

n3 :
g1 g3 g4

n4 :

Figure 5.3. Output quantum circuit
obtained after the routing is complete.
All the gates are applied to physical
qubits of the target backend. The
two-qubits gates are labelled as g1, g2, g3
and g4. Each two-qubit gate respects the
coupling-constraint of the target cou-
pling-graph illustrated in Figure 5.4.

n0 n1 n2

n3

n4

q1

q0

q2

Figure 5.4. Graph representation of
the NISQ device target of the routing
plus the final logical to physical qubit
mapping (after it changed dynamically
from πinit at the end of the quantum
circuit). The black circles and lines
show the coupling-graph of the backend
(modelling the ibmq_lima [13] super-
conducting device topology). The red
circles and arrows represent the final
mapping, each logical qubit (red circle)
is connected to a physical qubit (black
circle). The nodes n3 and n4 are not
mapped because the quantum circuit of
Figure 4.1 is composed of only 3 logical
qubits.
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Example 5.0.1. To have a better grasp of the routing procedure, the following ex-
ample will continue the layout synthesis for the scenario exposed in Example 4.0.1.

After the quantum circuit of Figure 4.1 was placed for the NISQ device depicted
in Figure 4.2, where also the applied initial mapping πinit = {q0 −→ n0, q1 −→ n1, q2 −→
n2} is indicated, some problematic was highlighted: the two-qubit gate g4 did not
respect the coupling-constraint of the target device, thus the quantum circuit was
still not executable, as it can be noted by looking at Figure 4.3.
The routing procedure needs to transform the placed quantum circuit, adding
additional gates, to solve this coupling-constraint violation.

A possible solution might be the final circuit presented in Figure 5.3. There,
it is noticeable that the quantum circuit was altered during the routing phase,
in particular, a swap gate was added before the problematic gate g4. The swap
gate dynamically changes the current mapping of logical to physical qubits,
bringing it from πinit to πfinal = {q0 −→ n1, q1 −→ n0, q2 −→ n2}. The gate g4, that
in the original circuit of Figure 4.1 was an interaction between the nodes n0 and
n2, became in the output circuit an interaction between n1 and n2 (the interacting
logical qubits are still q0 and q2), completely executable in the target NISQ device.
A further transformation observable in Figure 5.3 is that the Hadamard gate (H
gate), applied after the g4 gate, was relocated. In the placed circuit (Figure 4.3)
it was applied to n0, in the final one it is applied to n1. This is to ensure that
the same transformations are applied to the same logical qubits, for the
output circuit of the routing procedure.

5.1 State-of-the-art

The layout synthesis problem is NP-Complete [23, Theorem 3.1]. Splitting it into
two sub-problems, namely placement and routing, makes it manageable but does
not reduce the computational complexity of each individual phase.
Like the placement, also the routing has two main branches of approaches to find
a valid solution [6, Sec. 4]: reformulate the problem with an equivalent mathe-
matical model to find the exact solution employing an appropriate solver [44], [45],
[46], [47], or use heuristics to cut off the search exploration time, hoping to find
a near optimal solution [32], [42], [23], [33], [34], [35].

Since Qiskit [26] and t|ket〉 [21] are the selected quantum frameworks used for
comparison during the benchmarking phase, Section 5.1.1 and Section 5.1.2 intend
to prepare the reader on the main routing strategies that they incorporate. Sec-
tion 5.1.3 explains an essential algorithm required for understanding the presented
work, the SABRE heuristic.
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5.1.1 Qiskit routing algorithms

The Qiskit framework, at the time of writing, offers four main routing strategies
that can be utilised during the quantum circuit transpilation process [22].

The first and the simplest strategy is the BasicSwap [48]. When a two-qubits
gate interaction is not allowed in the backend coupling-graph, it inserts one or more
swap gates in front of it to make it compatible (following the shortest path between
the involved physical qubits). This routing strategy was included in the presented
layout synthesis library, as explained in Section 5.2.3.

The default heuristic used by the transpiler is the StochasticSwap [49]. This
strategy adopts a stochastic (randomized) algorithm, and this implies that the
output result will not be the same for repeated runs. Indeed, a distribution of
quantum circuits with different characteristics will be obtained.

An optional routing strategy is the LookaheadSwap [50]. This is the imple-
mentation of the Sven Jandura’s algorithm presented for the 2018 Qiskit Developer
Challenge [51].
The algorithm explores the quantum gates composing the input circuit and marks
each gate that can be executed (meaning that respects the target coupling-graph
constraints) as executed. If a gate cannot be executed, at least one swap gate must
be added to the quantum circuit. The algorithm searches for the best swap gate
to add using the following procedure:

1. The distance among each pairs of logical qubits, qi and qj, is defined as the
length of the shortest path connecting the nodes π(qi) and π(qj) (where π
is the current mapping) in the coupling-graph. Among all the possible swap
gates, the four most promising ones are found: these are the swap gates
minimising the total distance between the interacting logical qubits for the
following two-qubit gates.

2. For each of the four most promising swap gates, repeat the swap gate search
procedure explained in Step 1 with a depth of four, supposing that the swap
gate is applied to the circuit. The maximum number of final mappings explored
is 44 = 256.

3. The circuit transformation that allowed for the most two-qubit gates to be
executed is selected, and the first swap gate in this path is added to the
input quantum circuit. The algorithm then continues up to completion.

The last routing strategy worth to mention, integrated in Qiskit, is the Sabre-
Layout one [39], that is explained in Section 5.1.3 since it is relevant for the
presented work and needs its own space.
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5.1.2 t|ket〉 routing algorithms
The main algorithm available in the t|ket〉 quantum framework, at the time of writ-
ing, is the LexiRouteRoutingMethod that uses the lexicographical comparison
approach explained in [11, Sec. 3].
This strategy is completely technology-agnostic, since it can be run without
modifications for any quantum technology, and hardware-unaware, since it does
not require the calibration data of the target NISQ device. The only requirement
is the target coupling-graph in order to specify the allowed two-qubits interactions.
Another peculiarity of this routing method is that it can work on quantum circuits
that were placed using a partial initial mapping: that is, a placement such that
not all the involved logical qubits are mapped to a physical one, but that will be
completed by the routing algorithm on-the-fly.

n0 : X • H

n1 : H • •

n2 :
g2

•

n3 :
g1 g3 g4

n4 :

Figure 5.5. Example showing the t|ket〉 quantum framework slicing the
quantum circuit of Figure 4.3 into timesteps. Each timestep is numbered,
starting from one, from left to right.

In order to work, the algorithm requires the input quantum circuit to be divided
into timesteps (or slices). A timestep is a set of gates that can be executed in
parallel since there are no dependencies among them. Each timestep is num-
bered based on the dependencies among the gates composing the circuit: the
timestep having gates with no dependencies at all (the ones at the topological start
of the quantum circuit) constitute the timestep s1. The timestep having gates de-
pendent only to the ones of s1 constitute the timestep s2, and so on. Figure 5.5
shows an example of quantum circuit slicing performed by the Cambridge quantum
compilation tool.

The LexiRouteRoutingMethod takes as input:
• The sliced input quantum circuit, already placed with a partial or complete

initial mapping.

• The initial mapping, applied during the placement step.
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• The lookahead parameter, employed when picking a swap gate: it defines
the number of two-qubits gates to consider when finding the best swap gate
to add.

The routing procedure iteratively builds a new output quantum circuit, ap-
pending gates respecting the dependencies imposed by the timesteps slicing, and
inserting swap gates when necessary, to fulfil the coupling-constraint requirements.
Since the routing can work on a partial initial mapping, in such scenario the par-
tial mapping is automatically completed: for a two-qubits interaction where one
logical qubit is not mapped to a physical one, this logical qubit is mapped to the
nearest free node, with the aim of minimising the topological distance between the
interacting nodes.

The algorithm proceeds timestep by timestep starting from the first one. All
single-qubit gates and the two-qubits gates that are connected in hardware can
be directly appended to the output quantum circuit. If after this procedure the
current timestep is empty, the strategy proceeds to the next timestep, otherwise
one or more swap gates must be added to the routed circuit.

In order to proceed with the swap gate insertion, the best candidate swap
must be computed. To accomplish this, a list of candidate swap gates is generated
to select the best one, with the aim of minimising the total number of swap gates
added by the procedure. This list is generated as follows:

1. Σ0 = swaps(s0) is generated, containing all the swap gates that can change
the mapping of an interacting logical qubit in the current timestep.

2. Σt+1 = arg minσ∈Σt d(st, σ •m) is generated up to ΣlookaheadP arameter, where:

• st denotes the timestep t.
• Σt denotes the set of candidate swap gates for the timestep st

• σ •m denotes the action of applying the swap gate σ to the mapping m,
that is, the new mapping after that swap gate is applied.

• d(s,m) is the distance vector, estimating the number of swap gates to
add to the timestep s with the mapping m, to make all of its two-qubits
gates executable in the target hardware.

• d(st, σ •m) is estimating the number of swap gates to add to the timestep
st to make all of its two-qubits gates executable in the target hardware,
after the swap gate σ is applied to m.

• arg minσ∈Σt d(st, σ •m) is computing the set of swap gates in Σt min-
imising the distance vector d(st, σ • m): that is, the set of swap gates
minimising the approximated number of swap gates required to make all
of the two-qubits gates in st executable in the target hardware, after the
swap gate σ is applied.
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• ΣlookaheadP arameter is the last set of candidate swap gates that can be gen-
erated. The higher the lookahead parameter, the more timesteps are con-
sidered for the best swap gate computation.

3. The algorithm proceeds until |Σt| = 1 or a predefined maximum number of
iterations is reached. The best swap gate found is appended to the routed cir-
cuit. If a swap gate could not be found (in some cases the strategy gets stuck),
swap gates are added connecting the furthest interacting nodes, following the
shortest path between them in the coupling-graph.

5.1.3 SABRE routing algorithm
Because the core routing algorithm implemented in the presented work is the
hardware-aware one, explained in details in Chapter 6, it is essential to men-
tion the father of this routing strategy, expanded by the authors of [42]: the
swap-based bidirectional heuristic search algorithm (SABRE) [32]. It was
presented as a novel swap insertion heuristic labelled, when published, as capable of
outperforming the best known routing algorithms. For these reasons, it was also in-
corporated as an available routing strategy inside the Qiskit quantum framework.
The objectives at the heart of this routing strategy were to build an algorithm
flexible for targeting any NISQ device topology, aiming at maximising the final
circuit fidelity and minimizing the circuit depth (trying to avoid the insertion
of non parallelisable swap gates) and being scalable to work with quantum com-
puting devices composed of hundreds of physical qubits with a reasonable execution
time.

The heuristic approach used by SABRE is composed of two main operations:

Preprocessing: it is the first operation required, that initialises the needed data
structures [32, Sec. 4.1].
The tasks performed are:

• Distance matrix D[ ][ ] computation, applying the Floyd-Warshall
algorithm [52] to the coupling-graph of the target quantum computing
device. It computes the all-pairs shortest path between all the nodes
of the input graph: that is, the lengths of the shortest paths between each
pair of nodes. D[i][j] contains the minimum number of swap gates required
to apply a swap between node i and node j (satisfying the coupling-
constraint).

• Circuit DAG generation. The input quantum circuit is represented
using a directed acyclic graph (DAG), storing the dependencies among the
quantum gates. The first nodes of the DAG from a topological perspective
(the nodes having zero in-degree) are immediately executable, since
they have no dependencies. A generic quantum gate represented as a
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node of the DAG can be executed only if all of its predecessors have
been executed.

• Front layer initialisation. The front layer F is the set of quantum gates,
composing the circuit DAG, that have no dependencies among them and
on any other non executed gate. This means that all the gates in F can
always be executed from a dependency perspective, even if this might not
be the case from a hardware perspective (for example, if it is a two-qubits
gate and the interacting nodes are not connected in the target coupling-
graph).
This front layer will constantly be updated during the routing process,
removing the gates that can be executed and inserting their successors.
This is done in order to explore the quantum gates composing the circuit
in topological order, respecting their dependencies.

SWAP-Based Heuristic Search: The second operation is the main routing heuris-
tic, that scans the input quantum circuit in topological order, thus respecting
the DAG dependencies, and inserts swap gates when a two-qubits interaction is
not allowed in the target NISQ device [32, Sec. 4.2]. Its inputs are the distance
matrix D, the circuit DAG, the front layer F , the coupling-graph Gcoupling and
the initial mapping πinit, which is the starting point of the routing.
The main steps performed by the algorithm are:

1. The algorithm begins the topological scan starting from the initial F ,
and labels as executed the quantum gates that can be executed (both
considering the DAG dependencies and the hardware constraints). If the
front layer F is empty, the algorithm ends since all the quantum gates have
been executed. Otherwise, a list called Execute_gate_list is constructed:
it contains all the single-qubit gates and all the two-qubits gates in F
that can be executed. A two-qubits gate inside F can be executed if its
interacting nodes are connected by an edge in Gcoupling.

2. If Execute_gate_list is not empty, all of its gates are removed from F
(that is equivalent to label them as executed). Every time that a gate
is removed from F its successors are evaluated, to check if they must be
inserted inside the front layer: if a successor of the removed gate have no
dependency with a gate in F , it is added to the front layer. After this the
algorithm repeats from Step 1.

3. Otherwise, if Execute_gate_list is empty, it means that all the gates com-
posing F are two-qubits gates whose interacting nodes are not connected
in hardware. A swap gate must be inserted to satisfy the connectivity
constraints. The list SWAP_candidate_list is constructed: it contains all
the possible swap gates for each node involved in an interaction contained
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in F (that is, the swap gates that can bring the interacting logical qubits
in F closer in hardware).

4. Each swap inside SWAP_candidate_list is rated using a heuristic cost
function H. The swap with the lowest score is added to the output quan-
tum circuit, and the algorithm repeats from Step 1.
For the rating, it is possible to use two heuristics: Equation (5.1) and
Equation (5.2), both reported from [32, Sec. 4.4].

H =
Ø

gate∈F

D[π(gate.q1)][π(gate.q2)] (5.1)

H = max((decay(SWAP.q1), decay(SWAP.q2))

·
; 1

|F |
Ø

gate∈F

D[π(gate.q1)][π(gate.q2)]

+W · 1
|E|

Ø
gate∈E

D[π(gate.q1)][π(gate.q2)
< (5.2)

The former is the simplest version of the function, summing the shortest
path distances between the interacting nodes for each gate inside the
front layer, where:
• D[ ][ ] is the distance matrix computed during the preprocessing phase.
• π is the current mapping supposing the candidate swap gate, for which
H must be computed, was added to the quantum circuit.

• π(gate.q1) and π(gate.q2) are the interacting nodes of gate given the
current mapping π.

The latter is the most complete version of the heuristic, taking in consid-
eration also the impact of a swap gate insertion for the future gates (thus,
adding the look-ahead ability), and also allows flexibility for preferring
swap gates that are parallelisable.
The final H presented in Equation (5.2) is composed of:
• decay(qi) is the decay effect. It is used in order to prefer the addition

of non overlapping swap gates, that is, swap gates acting on different
nodes. Parallelisable swap gates might be preferred in order to avoid
increasing the final circuit depth. This decay effect depends on a tun-
able parameter δ, in this way the user can decide the importance
of reducing the final circuit depth.

• |F | is the number of quantum gates inside the front layer F .
1

|F | is used to normalise the summation of the distances between the
gates in F .
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• |E| is the number of quantum gates inside the extended layer E.
This set contains some successors of the gates in F , where the size of
E is a tunable parameter. In this way, the user can decide the
depth of the look-ahead ability.

1
|E| is used to normalise the summation of the distances between the
gates in E.

• W is the look-ahead parameter. It is a real value such that 0 ≤
W < 1 that is used to reduce the importance of the look-ahead
ability.

This routing heuristic is the same procedure used by the hardware-aware rout-
ing algorithm. The only modifications required are related to the preprocessing
phase, and heuristic cost function definitions. For a more in-depth explana-
tion and a view of the flow-chart illustrating the implemented algorithm, see
Section 6.2.

5.2 Layout Synthesis Library - Routing

node.py vertex.py circuit.py backend.py placer.py router.py

Layout Synthesis Library

simulatedAnnealing.py

Figure 5.6. Representation of the python scripts composing the implemented
layout synthesis library. The one containing the Router class is highlighted in red.

This section and the following Chapter 6 are devoted to explaining how the
routing phase was implemented in the proposed layout synthesis library.
The task of transforming the input quantum circuit, allowing a dynamic change of
the logical to physical qubits mapping and making all the gates compliant to the
target topology is held by the Router class, inside the router.py python script
composing the library.
It encapsulates all the functionalities and routing strategies available to solve the
routing problem.

5.2.1 Performing the routing of a quantum circuit
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Routing algorithms 

BasicRouting 

NMR:Superconducting: Ion Trap: Quantum Dot:

HaRouting

HaRoutingSmart

BasicRouting

HaRouting

HaRoutingSmart

BasicRouting 

HaRouting

HaRoutingSmart

BasicRouting 

HaRouting

HaRoutingSmart

Figure 5.7. Available routing algorithms, developed and incorporated into the lay-
out synthesis library, for each targetable quantum technology. The ones depicted
in yellow are suited for non-fully-connected topologies, while the ones depicted in
light blue are suited for fully-connected topologies.

1 OPENQASM 2.0;
2 include "qelib1.inc";
3 qreg q[5];
4 creg c[4];
5

6 x q[0];
7 y q[1];
8 cx q[0], q[2];
9 h q[2];

10 x q[3];
11

12 measure q[0] -> c[0];
13 measure q[1] -> c[1];
14 measure q[2] -> c[2];
15 measure q[3] -> c[3];

Figure 5.8. Input OpenQASM 2.0 de-
scription of the circuit. All the gates
are considered to be applied to nodes
of the architecture represented in Fig-
ure 4.11, that is also indicating the ini-
tial mapping applied: a trivial mapping
(see Section 4.2.3).

1 OPENQASM 2.0;
2 include "qelib1.inc";
3 qreg q[5];
4 creg c[4];
5

6 x q[0];
7 y q[1];
8 swap q[2], q[1];
9 cx q[0], q[1];

10 h q[1];
11 x q[3];
12

13 measure q[0] -> c[0];
14 measure q[2] -> c[1];
15 measure q[1] -> c[2];
16 measure q[3] -> c[3];

Figure 5.9. Output OpenQASM 2.0
generated by the routing step. All the
quantum gates in this description are
applied to physical qubits and all the
two-qubits interactions are allowed in
the target coupling-graph.
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The available routing strategies for each targetable quantum technology, imple-
mented inside the layout synthesis library, are depicted in Figure 5.7.
The Router class provides three route methods in order to perform the routing
phase:

routeBasicRouting: it is the simplest strategy available, suited for targeting
non-fully-connected topologies and hardware-unaware (does not re-
quire the calibration data of the target NISQ device). This algorithm is ex-
plained in details in Section 5.2.3.

routeHardwareAwareRouting: it is the most performant heuristic implemented
in the proposed layout synthesis library. Suited for targeting non-fully-
connected topologies, it is hardware-aware (it requires the calibration
data of the target NISQ device), and it has the intent of optimising the fi-
delity, number of additional gates and total execution time in a way
that is completely configurable by the user. This algorithm is explained in
details in Section 6.2.

routeHardwareAwareRoutingSmart: it is a smart adaptation of the Hard-
wareAwareRouting algorithm suited for targeting fully-connected topolo-
gies. It is hardware-aware (it requires the calibration data of the target
NISQ device), and it has the intent of optimising the total execution time of
the output quantum circuit. This algorithm is explained in details in Sec-
tion 6.3.2.

Each of the aforementioned methods performs the following required tasks:

• Constructs an output quantum circuit in which the same quantum gates of
the input circuit are applied in the same order (respecting the dependencies
among them), and to the same logical qubits, ensuring that the output cir-
cuit implements the same initial unitary transformation (thus not altering the
functional behaviour of the circuit).

• Whenever an interaction is not allowed in the target NISQ device (according to
the coupling-graph), swap gates are inserted to dynamically change the log-
ical to physical qubits mapping, or a CX gate is relabelled with a bridge
one, when possible. The following gates must be updated in accordance to
the transformation.

• In the output quantum circuit, all the two-qubits gates must be applied
to a couple of nodes that are allowed to interact in the target NISQ
device.

The input of this step is a quantum circuit described using the OpenQASM
2.0 language that was already placed, thus all the gates are considered to be
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applied to physical qubits. Besides the target circuit and architecture, also the
applied initial mapping must be passed, in order to compute and show the final
mapping between logical and physical qubits (reached dynamically at the end of
the quantum circuit execution).
The output of this step is still a quantum circuit described using the OpenQASM
2.0 language, that is completely executable on the specified target quantum com-
puting device because it respects all its connectivity constraints (the gates com-
posing the circuit must be native gates available in the target quantum technology,
this requirement is fulfilled during the logic synthesis block of a quantum circuit
compilation toolchain).

Example 5.2.1. The following example will clarify the tasks performed during the
routing phase for a quantum circuit violating some coupling-constraint.

The presented case of study is the routing of the circuit described by the Open-
QASM 2.0 code of Figure 5.8, using the NISQ device shown in Figure 4.11 as the
target coupling-graph, where also the initial mapping applied during the placement
is indicated: πinit = {q0 −→ n0, q1 −→ n1, q2 −→ n2, q3 −→ n3}.
Figure 5.9 shows the result of the routing phase transformations:

• X q[0]; and Y q[0]; remained unaltered since they are single-qubit gates, thus
have no connectivity constraint.

• The quantum gate CX q[0], q[2]; of the input circuit was not executable,
because there is not an edge in the target coupling-graph between the nodes
n0 and n2. For this reason, the routing phase added the line swap q[2], q[1],
bringing after its execution the interacting logical qubits q0 and q2, connected
in the quantum hardware. In particular, once the added swap gate has been
executed, the logical to physical qubits mapping dynamically changes from
πinit to πfinal = {q0 −→ n0, q1 −→ n2, q2 −→ n1, q3 −→ n3}.
It is essential to notice that after the swap gate is added, all the subsequent
gates are relabelled accordingly:

– CX q[0], q[2]; −→ CX q[0], q[1]; because the interacting logical qubits are
q0 and q2 and, after the swap gate gets executed, πfinal(q2) = n1.

– H q[2]; −→ H q[1]; because the target logical qubit is q2 and, after the swap
gate gets executed, πfinal(q2) = n1.

The modifications explained before underline that the logical qubits on which
each gate is applied to do not change after the routing.

• The quantum gate X q[3] remains unchanged because the target logical qubit
is q3 and πinit(q3) = πfinal(q3) = n3.

• One important thing to understand is that the measure location of each logical
qubit does not change after the routing step. If the logical qubit i was measured
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in the classical bit j, then after the routing the i-th logical qubit of the circuit
will still be measured in the same j-th classical bit:

– measure q[0] −→ c[0]; −→ measure q[0] −→ c[0]; because πinit(q0) =
πfinal(q0) = n0.

– measure q[1] −→ c[1]; −→ measure q[2] −→ c[1]; because πfinal(q1) = n2.
– measure q[2] −→ c[2]; −→ measure q[1] −→ c[2]; because πfinal(q2) = n1.
– measure q[3] −→ c[3]; −→ measure q[3] −→ c[3]; because πinit(q3) =
πfinal(q3) = n3.

5.2.2 Internal implementation
This section is devoted to showing the details of how each routing method presented
in Section 5.2.1 performs its duty.

Before focusing on this, it is mandatory to recall that the presented layout
synthesis library internally represents the input quantum circuit using the Circuit
class (see Section 3.1.1), containing two data-structures: a DAG for the quantum
gates dependencies and a list for the measures. The target quantum computing
device of the routing step is abstracted using a class, Backend, that contains a
graph (the coupling-graph) representing the connectivity constraints among its
nodes (see Section 6.1 for further details).

The implemented library offers some basic methods, giving to the routing
algorithms the necessary required functionalities. These basic methods are:

checkGateSatisfiesConnectivity: checks whether a quantum gate satisfies the
connectivity constraints of the target quantum device. This is true in two
conditions: if the gate is a single-qubit gate or if it is a two-qubits gate and
there exists an edge in the coupling-graph connecting the interacting nodes.

Swap: appends a swap gate to the routed quantum circuit while relabelling all
the gates in the original (placed) circuit DAG accordingly. The method also
updates the measures list of the routed circuit to ensure that the classical bit
where each logical qubit is measured is the same as in the original input one.
Every time that a swap gate is added, the internal information on the mapping
between logical and physical qubits πcurrent is updated. This is required to
output the final mapping πfinal.

Bridge: appends a bridge gate to the routed quantum circuit, substituting a CX
gate.

These aforementioned methods are the basic building blocks to any routing
strategy. Each algorithm implementing the routing procedure follows the following
structure for iteratively generating an output routed quantum circuit:
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1. Extract the first layer of the original quantum circuit (a layer is a set
of quantum gates having no dependencies among them, see Section 3.1.1 for
details on how the circuit is sliced in layers underling the gates dependencies).
The first layer is removed from the original circuit during the extraction,
employing the extractLayer1 method of the Circuit class composing the library.

2. Insert in the output (routed) quantum circuit all the single-qubit gates
and the two-qubits gates of the extracted first layer, respecting the coupling-
constraint of the target device. Whenever a gate is added to the output circuit,
it is also removed from the first layer.

3. If the first layer is not empty at this point, it means that it contains
some two-qubits interactions that are not allowed in the target coupling-graph.
Swap or bridge (if possible) gates must be added to make the interacting logical
qubits connected in hardware. The strategy used for selecting such swap or
bridge gates depends on the implemented routing algorithm.

4. Until the original circuit is not empty (meaning all of its gates have been
extracted and inserted in the output circuit), repeat from Step 1.

The structure depicted before allows building an output quantum circuit respect-
ing the gates dependencies of the original one, having all the nodes’ interactions
allowed in the target NISQ device. It is used by the basic routing strategy explained
in Section 5.2.3 and the hardware-aware ones explained in Chapter 6.

It is worth to mention that all the basic methods underlined before and all
the data structures and methods used for representing quantum circuits (see Sec-
tion 3.1.1), offered by the proposed layout synthesis library, allow implementing any
routing strategy. The structure explained before is just the suggested structure
to follow when implementing a routing algorithm, but it is not mandatory.

5.2.3 BasicRouting strategy
The simplest strategy implemented as solution to the routing problem is the Basi-
cRouting, inspired by the Qiskit BasicSwap [48] explained in Section 5.1.1. The
algorithm is suited to solve the connectivity violations for non-fully-connected
topologies, otherwise no modifications are performed to the input quantum cir-
cuit. It is also hardware-unaware, because it does not require the calibration
data of the target NISQ device. Indeed, the only hardware information needed is
the coupling-graph in order to check for the allowed two-qubits interactions.

Its core idea is the following: when a two-qubit gate interaction is not allowed in
the backend coupling-graph, it inserts one or more swap gates in front of it to make
it compatible (following the shortest path between the involved physical qubits)
with the hardware device.
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Figure 5.10. Flow chart of the BasicRouting algorithm.

68



5.2 – Layout Synthesis Library - Routing

Figure 5.10 shows the flow-chart of the presented routing strategy.
Its required inputs are:

• placedCircuit: the input quantum circuit of the routing procedure for which
the placement was already performed.

• πinit: the initial mapping applied during the placement. It is required since
during the routing phase, the current (considering all the swap gates added
to the circuit) mapping between logical and physical qubits is tracked to out-
put the final mapping πfinal (the mapping at the end of the quantum circuit
execution, before the measure operations).

The main steps followed by the presented strategy are:

1. The first step is an initialisation phase. The algorithm constructs step-by-
step a new quantum circuit (routedCircuit), extracting gates from the placed
circuit and inserting them in the new one, respecting their dependencies.
During this initialisation the routedCircuit is instantiated: at the beginning
it contains no quantum gates; the quantum and classical registers size match
the ones of the original circuit; the measures operations are the same as the
placed circuit ones.

2. The first layer of the input quantum circuit is extracted (thus it is
removed from the original circuit). All of its composing single-qubit gates and
the two-qubits gates applied to nodes connected in the target coupling-graph
are simply added to the output circuit.

3. If at this step the first layer is not empty, it means that it contains one
or more two-qubits interactions that are not allowed on the target hardware.
For each of the remaining gates inside the first layer, the following operations
are preformed: its interacting nodes ni and nj are identified; the shortest
path between them in the target coupling-graph is computed, resorting to the
Dijkstra’s algorithm [53]; swap gates are added following the shortest path
from ni to nj in order to connect the interacting logical qubits.

4. The algorithm repeats from Step 1 until all the gates of the input circuit are
appended to the output one.

It is necessary to mention that the input placedCircuit is not modified
during the routing procedure. The heuristic works on a copy of the original
quantum circuit DAG to avoid modifying it.
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5.3 Layout Synthesis Tool - Routing
Besides offering a flexible python library for integrating the layout synthesis
phase in any quantum compilation toolchain, an additional set of scripts was devel-
oped, composing the layout synthesis tool: it is a command-line application
(console application), designated to the end-user for performing the placement and
routing operations without having a programming knowledge.

layout_synthesis_tool_placement.py

Layout Synthesis Tool

layout_synthesis_tool_routing.py

Figure 5.11. Representation of the python scripts composing the imple-
mented layout synthesis tool. The script performing the routing phase is
highlighted in red.

The layout synthesis tool is composed of two scripts:

layout_synthesis_tool_placement.py: it is a command-line application al-
lowing the user to apply all the placement algorithms described in
Chapter 4 to any quantum circuit, targeting a superconducting, ion trap,
NMR or quantum dot NISQ device.

layout_synthesis_tool_routing.py: it is a command-line application allowing
the user to apply all the routing algorithms described in this chapter to
any quantum circuit, targeting a superconducting, ion trap, NMR or quantum
dot NISQ device.

5.3.1 Routing tool overview
Inputs: all the inputs must be passed as console arguments to the python script

layout_synthesis_tool_routing.py. The inputs are divided into two categories:

Required arguments: mandatory for performing the routing.
• inputQasmFile: the relative (to the working directory) or absolute

path to the OpenQASM 2.0 description of the placed quantum cir-
cuit, target of the routing procedure. Any quantum gates available
in the OpenQASM 2.0 language can be used. All the barriers and
comments inside the description are ignored and not included in the
output routed circuit.
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backend.cfg

layout_synthesis_tool_routing.py

circuit_placed.qasm

outputFolderPath

Optional arguments

Required
arguments

outputFolderPath/circuit_placed_routed.qasm

final mapping

initial mapping

Figure 5.12. Schematic representation of the inputs and outputs of the layout
synthesis routing tool. The inputs of the tool are divided into two categories:
required and optional, as explained in Section 5.3.1. The outputs of the tool are:
the routed quantum circuit and the final mapping.
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• outputQasmFolder: the relative (to the working directory) or ab-
solute path to the folder where to store the output OpenQASM 2.0
description of the quantum circuit, after the routing operation is per-
formed.

• backendConfigurationFile: the relative (to the working directory)
or absolute path to the .cfg configuration file describing the NISQ
device target of the routing step. This can be a superconducting,
NMR, ion trap or quantum dot device. A detailed explanation on
how to model a generic device using a configuration file is reported in
Section 6.1.

• initialMapping: the initial mapping applied during the placement
step.

Optional arguments: for setting all the configurable parameters. Any miss-
ing optional argument is set to a default value.
• -a: the routing algorithm to use. Available strategies are: Basic Rout-

ing, Hardware-Aware Routing, Hardware-Aware Routing Smart. It is
set to Basic Routing by default.

• –swapNumberWeight: the coefficient to be multiplied by the S
matrix in the D matrix computation (used for the Hardware-Aware
Routing and Hardware-Aware Routing Smart algorithms). For a de-
tailed explanation of these routing strategies, see Chapter 6. It is set
to 0.5 by default.

• –swapErrorWeight: the coefficient to be multiplied by the E matrix
in the D matrix computation (used for the Hardware-Aware Routing
and Hardware-Aware Routing Smart algorithms). For a detailed ex-
planation of these routing strategies, see Chapter 6. It is set to 0.5 by
default.

• –swapTimeWeight: the coefficient to be multiplied by the T matrix
in the D matrix computation (used for the Hardware-Aware Routing
and Hardware-Aware Routing Smart algorithms). For a detailed ex-
planation of these routing strategies, see Chapter 6. It is set to 0 by
default.

• –isRZvirtual: used only for NMR, quantum dot and ion trap tech-
nologies. True if the RZ gates are implemented virtually, False oth-
erwise (used for the Hardware-Aware Routing and Hardware-Aware
Routing Smart algorithms). For a detailed explanation of these rout-
ing strategies, see Chapter 6. It is set to False by default.

• –heuristic: the heuristic cost function to estimate the cost of a
swap gate. Available options are: basic and lookahead (used for the
Hardware-Aware Routing algorithm). For a detailed explanation of
this routing strategy, see Section 6.2. It is set to basic by default.
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• –lookaheadDepth: the number of layers to use for the lookahead
layer (used for the Hardware-Aware Routing and Hardware-Aware Rout-
ingSmart algorithms). For a detailed explanation of these routing
strategies, see Chapter 6. It is set to 20 by default.

• –lookaheadWeight: the weight parameter specifying the impact of
the lookahead layer in the lookahead heuristic cost function (used for
the Hardware-Aware Routing and Hardware-Aware Routing Smart al-
gorithms). For a detailed explanation of these routing strategies, see
Chapter 6. It is set to 0.5 by default.

• –translateSwap: if True the swap gates are translated based on
the native gates available in the backend quantum technology (CX
gates for superconducting and ion trap devices, CZ gates for NMR
and quantum dot ones). They are not translated otherwise. It is set
to False by default.

• –CZtoRZZ: if True, for NMR and quantum dot technologies, during
the swap gate decomposition the CZ gates are decomposed according
to Figure 6.6. They are not decomposed otherwise. It is set to False
by default.

• –CXtoRXX: if True, for ion trap technology, during the swap gate
decomposition the CX gates are decomposed according to Figure 6.14
(with the optional parameter v set to 1). They are not further decom-
posed otherwise. It is set to False by default.

Outputs: the routing step produces two outputs:

• outputQasmFile: the OpenQASM 2.0 description of the routed quan-
tum circuit. The file is written inside the outputQasmFolder directory.

• finalMapping: the final logical to physical qubits mapping, reached dy-
namically starting from the initial mapping after all the swap gates added
by the routing procedure are executed.

In Figure 5.12 is shown a schematic illustrating the inputs and outputs of the
layout synthesis routing tool.
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Chapter 6

Hardware-Aware routing
strategies

As already explained in Section 1.2, today’s quantum computing devices are labelled
as NISQ, where the “N” stands for noisy. Indeed, the noise is limiting their
computational capabilities. For this reason, it is essential that during the layout
synthesis, not only the target coupling-constraint are satisfied, but this task must
be accomplished side by side with an optimization on figure of merits such as:
number of additional gates, final quantum circuit fidelity, final quantum
circuit execution time.

The BasicRouting algorithm, presented in Section 5.2.3, is able to perform the
routing step targeting any quantum technology, but its simplistic nature is not
best suited for performing strong optimisations. Moreover, the algorithm is suited
for routing non-fully-connected topologies: no modifications are performed
when targeting a fully-connected device, because all of the two-qubits gates com-
posing the input circuit are respecting the target coupling-constraint.

The need for a smarter routing heuristic for the presented work, combined with
the necessity for NISQ devices of optimising as much as possible the previously
cited main figure of merits, led to the implementation of two hardware-aware
routing strategies. These algorithms were already underlined in the presentation
of the Router class in Section 5.2.1, that is:

Hardware-aware routing: it is the implementation of the routing algorithm
presented in [42]. The algorithm is suited for targeting non-fully-connected
topologies, aiming at reaching a better optimisation in respect to the simplest
BasicRouting algorithm.

Hardware-aware routing smart: it is a smart adaptation of the original rout-
ing algorithm presented in [42] suited for targeting fully-connected-topologies.
This was required for solving the problem explained in the introduction, that
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is, even if the coupling-contraints are satisfied, trying to optimise the final
quantum circuit.

These strategies are labelled as hardware-aware because they are exploiting
the provided calibration data of the target quantum computing device, in order to
make smarter decisions during the routing process. The calibration data is a table
containing the main properties regarding the nodes and the nodes’ interactions of
the target NISQ device. Table 6.1 is an example of the calibration data for the
ibmq_lima superconducting device [13].

Backend name ibmq_lima
Number of nodes 5
n0 - n1 CNOT error rate 4.772e-3
n1 - n0 CNOT error rate 4.772e-3
... ...
n0 - n1 CNOT gate time 305.778 ns
n1 - n0 CNOT gate time 341.333 ns
... ...
T1 n0 123.54 µs
T2 n0 165.6 µs
... ...

Table 6.1. In this table, a portion of the properties extrapolated from the
ibmq_lima [13] superconducting device calibration data are presented.

The remaining of this chapter is organised as follows: Section 6.1 is devoted to
explaining how a NISQ device is abstracted in the proposed layout synthesis library,
Section 6.2 explains the implementation of the original HaRoutingAlgorithm that
in the original paper [42] is suited for targeting superconducting quantum devices
with a non-fully-connected topology; Section 6.3.2 explains the extension of the
original algorithm for working with non-fully-connected topologies.

6.1 The Backend class
This section is devoted to explaining how a NISQ device is abstracted in the pro-
posed layout synthesis library. Indeed, this is required not only for understanding
the implementation of the hardware-aware routing strategies, but also for com-
prehending how the original algorithm [42], mainly intended for superconducting
devices, was adapted to target all the available quantum technologies in
the presented library. For this reason, it is mandatory to understand how a
NISQ device is modelled.
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node.py vertex.py circuit.py backend.py placer.py router.py

Layout Synthesis Library

simulatedAnnealing.py

Figure 6.1. Representation of the python scripts composing the imple-
mented layout synthesis library. The ones containing the Backend and Node
classes are highlighted in red.

Backend

SuperconductingBackend NmrBackend QuantumDotBackend IonTrapBackend

Figure 6.2. The SuperconductingBackend, NmrBackend, QuantumDotBackend
and IonTrapBackend classes are all children of the Backend class

This abstraction happens using the Backend class inside the backend.py python
script composing the library. It provides all the necessary functionalities required
for obtaining the necessary backend information, both for checking the allowed
two-qubits interactions, and also for extracting the main hardware proper-
ties (for example interaction fidelity and interaction execution time) required by
the hardware-aware routing algorithms (Section 6.2 and Section 6.3.2) and
hardware-aware simulated annealing placement algorithm (Section 4.3.4).
Specifically, the Backend class (and thus also all the technology-specific Backend
classes) provides to the Placer and Router classes the information on the allowed
two-nodes interactions, to correctly perform the layout synthesis phase (see Sec-
tion 3.1 for further details).

The Backend class is mostly generic. Indeed, it is independent of a specific
quantum technology and can be used for modelling the allowed two-qubits inter-
actions of a target quantum computing device, without error rates and gate times
information. It is used for defining the main attributes and methods inherited by
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technology-specific backend classes.
These backend classes are: SuperconductingBackend modelling superconduct-
ing NISQ devices, see Section 6.1.1 for details; NmrBackend modelling NMR
NISQ devices, see Section 6.1.2 for details; modelling quantum dot NISQ devices,
see Section 6.1.3 for details; IonTrapBackend modelling ion trap NISQ devices,
see Section 6.1.4 for details.

The generic attributes defined for all the available quantum technologies are:

n_nodes: the number of nodes (physical qubits) composing the NISQ device.

nodes: list of the nodes composing the NISQ device. Each node is an instance of
the Node class, used for modelling a physical qubit.

technology: string specifying the technology used for implementing the NISQ de-
vice (for generic backends, it is None).

The generic methods defined for all the available quantum technologies are:

drawCouplingGraph(): it draws the coupling-graph of the backend with Mat-
plotlib [54].

getDistance(node1, node2): it extracts the shortest path length (number of
edges) between two nodes in the coupling-graph.

isFullyConnected(): it checks if the NISQ device has a fully-connected topology
(all interactions are allowed) or not.

6.1.1 Superconducting technology

n0 n1 n2

n3

n4

Figure 6.3. Directed coupling-graph representing the ibmq_lima IBMQ super-
conducting quantum device [13]. Each vertex of the graph represents a physical
qubit. Each edge represents an allowed two-qubits interaction, and the graph is
a directed one since the superconducting native two-qubit gate (the CX gate)
is generally not symmetric.
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1 [Basic]
2 technology = S
3 n_nodes = 5
4

5 [CXErrorRate]
6 0-1 = 0.005654368978596724
7 1-0 = 0.005654368978596724
8 1-2 = 0.006470157327009479
9 1-3 = 0.013136050396215682

10 2-1 = 0.006470157327009479
11 3-1 = 0.013136050396215682
12 3-4 = 0.01751329647388042
13 4-3 = 0.01751329647388042
14

15 [CXGateTime]
16 0-1 = 305.77777777777777e-9
17 1-0 = 341.3333333333333e-9
18 1-2 = 334.22222222222223e-9
19 1-3 = 497.7777777777778e-9
20 2-1 = 298.66666666666663e-9
21 3-1 = 462.2222222222222e-9
22 3-4 = 519.1111111111111e-9
23 4-3 = 483.5555555555555e-9

Figure 6.4. ibmq_lima.cfg configuration file modelling the ibmq_lima
IBMQ superconducting quantum device [13]. All the provided gate times
are expressed in ns.

q0 : × • •

q1 : ×
=

•

Figure 6.5. Swap gate decomposition using three consecutive CX gates.
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General information regarding the implementation of a quantum computing de-
vice resorting to superconducting technology is provided in Section 1.4. NISQ
devices implemented using this technology are generally non-fully-connected,
for this reason the layout synthesis procedure is mandatory for solving the
coupling-constraint.

The SuperconductingBackend class was implemented for modelling supercon-
ducting quantum computing devices. Being a Backend, it provides to the Placer and
Router classes the information on the allowed two-nodes interactions, mandatory
for performing the layout synthesis. Furthermore, being a technology-specific
Backed class, it provides additional information such as the gate time and error
rate for an allowed two-nodes interaction. This additional information is required
by the Hardware-Aware and Hardware-Aware smart routing algorithms, for the
pre-processing phase (see Section 6.2.1).
The main attributes composing this class are:

couplingGraph: it is a directed graph that is used for representing the coupling-
graph of the architecture. The reason why a directed graph is required is
that in superconducting technology, the error rate and gate time for a two-
qubits interaction change when the control and target nodes are exchanged (the
interaction is not symmetric). An example of coupling-graph representation
for a superconducting device is the one depicted in Figure 6.3.

technology: string specifying the technology used for implementing the NISQ de-
vice. It is “S” for superconducting quantum computers.

The main methods offered by this class are:

getCXErrorRate(controlNode, targetNode): extracts the error rate for ap-
plying the quantum gate: “CX controlNode, targetNode”. The CX gate for
superconducting quantum devices is not symmetric, thus different error rates
may be obtained if the nodes are inverted.

getCXGateTime(controlNode, targetNode): extracts the gate time for ap-
plying the quantum gate: “CX controlNode, targetNode”. The CX gate for
superconducting quantum devices is not symmetric, thus different gate times
may be obtained if the nodes are inverted.

getSwapErrorRate(node1, node2): extracts the error rate for applying the
swap gate to node1 and node2.
The error rate of a swap gate is computed supposing that it is implemented
as 3 consecutive CX gates, that are the native two-qubits gates available for
superconducting technology. The decomposition of the swap gate using 3 CX
gates is shown in Figure 6.5.
This error rate is thus dependent on the error rate for executing a CX between
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the two nodes (considering that for superconducting devices, the CX gate is
not symmetric). The symmetry of the swap gate is exploited, and the error
rate is computed in the best case scenario (in accordance to [42, Sec. 3.A]).
For best case scenario, it is intended:

SWAPerrorRate = 1−
3
CXsuccessRatenode1−node2·CXsuccessRatenode2−node1

· max (CXsuccessRatenode1−node2, CXsuccessRatenode2−node1)
4

(6.1)

getSwapGateTime(node1, node2): extracts the gate time for applying the
swap gate to node1 and node2.
The gate time of a swap gate is computed supposing that it is implemented
as 3 consecutive CX gates, that are the native two-qubits gates available for
superconducting technology. The decomposition of the swap gate using 3 CX
gates is shown in Figure 6.5.
This gate time is thus dependent on the gate time for executing a CX between
the two nodes (considering that for superconducting devices, the CX gate is
not symmetric). The symmetry of the swap gate is exploited, and the gate
time is computed in the best case scenario (the same computation done in [42,
Sec. 3.A]). For best case scenario, it is intended:

SWAPgateT ime = CXgateT imenode1−node2 + CXgateT imenode2−node1

+ min (CXgateT imenode1−node2, CXgateT imenode2−node1) (6.2)

Besides instantiating a superconducting backend class manually, by passing all
the required parameters to its constructor, the layout synthesis library offers a
method, fromConfigurationFile(cfgFilePath), allowing the automatic in-
stantiation of a SuperconductingBackend reading a configuration file (.cfg).
Such file contains all the figure of merits required for the correct NISQ device
modelling.

In Figure 6.4 it is reported the configuration file modelling the ibmq_lima IBMQ
supercondicting quantum device. Each superconducting configuration file is com-
posed of three sections:

Basic: it contains the basic details of the NISQ device: the technology (“S” for
superconducting devices) and the number of nodes.

CXErrorRate: it contains the allowed two-qubits interactions, as well as the error
rate for each one.

CXGateTime: it contains the allowed two-qubits interactions, as well as the gate
time for each one. All the gate times inside this section are expressed in ns.
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All the information inside Figure 6.4 regarding device topology, CX gate time
and CX error rate were retrieved from [13]. Due to the open-source nature of the
IBM quantum project, that guarantees a high availability of calibration data for
their superconducting devices, the proposed approach for modelling this family of
NISQ device is by directly using the available data. The same strategy is also used
in the original implementation of the hardware-aware routing algorithm [55], where
it is possible to specify the name of an IBM Quantum backend, and the calibration
data are automatically retrieved.

6.1.2 NMR technology
General information regarding the implementation of a quantum computing device
resorting to liquid-state NMR technology is provided in Section 1.5. NISQ devices
implemented using this technology are generally fully-connected, for this reason
the layout synthesis procedure is not mandatory, because all the interactions
are allowed. However, recalling that for NMR NISQ devices, the gate times and
error rates are dependent on the J-coupling parameter (which can be seen as an
indicator of the interaction strength), a layout synthesis phase modifying the input
quantum circuit, preferring the strongest interactions inside the molecule, could
lead to an output quantum circuit with an optimal total gate time and total error
rate.

The NmrBackend class was implemented for modelling NMR quantum comput-
ing devices. Being a Backend, it provides to the Placer and Router classes the
information on the allowed two-nodes interactions, mandatory for performing the
layout synthesis. Furthermore, being a technology-specific Backed class, it
provides additional information such as the gate time and error rate for an allowed
two-nodes interaction. This additional information is required by the Hardware-
Aware and Hardware-Aware smart routing algorithms, for the pre-processing phase
(see Section 6.2.1). It is similar to the SuperconductingBackend class, with the
addition of modelling also the single-qubit gates times. This is a requirement for
computing the swap gate time according to the decompositions of Figure 6.5 and
Figure 6.7.
The main attributes composing this class are:

couplingGraph: it is an undirected graph that is used for representing the
coupling-graph of the architecture. The reason why an undirected graph is
sufficient to model a NMR quantum computing device is that the gate time and
error rate of the native two-qubits interaction (Rzz gate) depend only on the
J-coupling constant, that is fixed for every couple of nuclei inside the molecule.
This graph specifies the allowed two-qubits interactions, while also storing the
J-coupling constant between the interacting nodes as an attribute of the
edges. An example of coupling-graph representation for a NMR device is the
one depicted in Figure 6.9.
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technology: string specifying the technology used for implementing the NISQ de-
vice. It is “M” for NMR quantum computers.

nodesEncoding: specifies which nuclei are used for encoding a node (for example,
nodesEncoding[0] = “13C” means that n0 is encoded using the Carbon-13
isotope). The allowed isotopes available in the current version of the library
are Hydrogen-1 (1H), Carbon-13 (13C) and Fluorine-19 (19F).

Br: RF magnetic field amplitude in T.

The main methods offered by this class are:

getJcoupling(node1, node2): extracts the J-coupling constant for the node1 -
node2 interaction.

getSingleQubitGateTime(node, theta, isRZ, isRZvirtual): extracts the gate
time required for applying a Rx, Ry or Rz gate on the target node. Its inputs
are:

• node: the node target of the single-qubit gate.
• theta: the angle of rotation.
• isRZ: False for Rx and Ry gates, True for Rz gates.
• isRZvirtual: True if the RZ gates are implemented virtually, False oth-

erwise.

The gate time for Rx and Ry gates is computed with:

τ = θ

ω∗,k

, (6.3)

where θ is the angle of ration and ω∗,k is the amplitude of the RF field computed
as:

ω∗,k = γn ·Br, (6.4)

where γn is the nuclear gyromagnetic ratio and Br is the alternating magnetic
field amplitude.
The Rz gate time is instead computed supposing the decomposition:

Rz(α) = Rx(π2 )Ry(α)Rx(−π

2 ). (6.5)

Thus, summing the gate times for the sequential Rx and Ry gates computed
using Equation (6.3). If the Rz gates are instead implemented virtually, the
gate time is 0 s.
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getCZGateTime(controlNode, targetNode, isRZvirtual): extracts the gate
time for applying the quantum gate: “CZ controlNode, targetNode”. The CZ
gate for NMR quantum devices is completely symmetric, thus the same gate
times are obtained if the nodes are inverted.
The gate time of the CZ is computed supposing the gate is decomposed as
shown in Figure 6.6.
The CZ gate time is thus computed summing:

• The gate time for applying a Rz gate to the control node. In case the Rz
gates are implemented virtually, the gate time is considered 0 s. Otherwise,
if the Rz gates are not implemented virtually, the gate time is computed
resorting to the getSingleQubitGateTime(node, theta, isRZ, isRZvirtual)
method.

• The gate time for applying a Rz gate to the target node. In case the Rz
gates are implemented virtually, the gate time is considered 0 s. Otherwise,
if the Rz gates are not implemented virtually, the gate time is computed
resorting to the getSingleQubitGateTime(node, theta, isRZ, isRZvirtual)
method.

• The time for applying the Rzz gate to the control and target node, com-
puted as τ =

--- 1
2J

---, where J is the J-coupling constant between the inter-
acting nodes in Hz.

getCXGateTime(controlNode, targetNode, isRZvirtual): extracts the gate
time for applying the quantum gate: “CX controlNode, targetNode”. The CX
gate for NMR quantum devices is not symmetric, thus different gate times
may be obtained if the nodes are inverted.
The gate time of the CX is computed supposing the gate is decomposed as
shown in Figure 6.7.
The CX gate time is thus computed summing:

• Two times the gate time for applying a Hadamard gate to the target node.
There are two possible ways for computing it, depending on if the Rz gates
are implemented virtually or not. In the first scenario, the gate is supposed
to be decomposed according to Figure 6.10, in the latter scenario instead
it is supposed to be decomposed as depicted in Figure 6.8.

• The gate time for applying a CZ gate, computed resorting to the getCZ-
GateTime(controlNode, targetNode, isRZvirtual) method.

getSwapGateTime(node1, node2, isRZvirtual): extracts the gate time for
applying the swap gate to node1 and node2. The gate time of a swap gate
is computed supposing that it is implemented as three consecutive CX gates.
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The decomposition of the swap gate using three CX gates is shown in Fig-
ure 6.5.
This gate time is thus dependent on the gate time for executing a CX between
the two nodes (considering that for NMR devices, the CX gate is not sym-
metric) computed resorting to the getCXGateTime(controlNode, targetNode,
isRZvirtual) method. Indeed, the gate time is also dependent on if the Rz
gates are implemented virtually or not since this changes the CX gate time.
The symmetry of the swap gate is exploited, and the gate time is computed in
the best case scenario (the same computation done in [42, Sec. 3.A]). For the
best case scenario swap gate time computation, the Equation (6.2) is used.

getSwapErrorRate(node1, node2, isRZvirtual): extracts the error rate for
applying the swap gate to node1 and node2.
The error rate of a swap gate is computed supposing that it is implemented as
three consecutive CX gates. The decomposition of the swap gate using three
CX gates is shown in Figure 6.5.
The error is also dependent on if the Rz gates are implemented virtually or not.
The symmetry of the swap gate is exploited, and the error rate is considered
identical even if the interacting nodes are exchanged.

q0 : RZ (−sign(J)π
2 ) •

ZZ (sign(J)π
2 )

q1 : RZ (−sign(J)π
2 ) •

Figure 6.6. Implementation of the CZ gate for NMR and quantum dot quan-
tum technologies, using the available native set of gates. J is the J-coupling or
Exchange-Interaction (for quantum dots) constant between the nodes mapped
to the logical qubits q0 and q1 .

q0 : •
q1 : H • H

Figure 6.7. Implementation of the CX gate for NMR and quantum dot quantum
technologies, decomposing it using H and CZ gates.

Besides instantiating a NMR backend class manually, by passing all the required
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q0 : H = RY (π
2 ) RX (π)

Figure 6.8. Decomposition of the Hadamard gate using Ry and Rx rotations.
This decomposition is employed when the Rz gates are not implemented virtually,
this is convenient remembering that in this case the Rz gate times are computed
following the decomposition depicted in Equation (6.5).

n0 n1

n2 n3

Figure 6.9. Undirected coupling-graph representing the crotonic_acid NMR
quantum device [16, Sec. 8.3]. Each node represents a physical qubit and each edge
represents an allowed two-qubits interaction. The architecture is fully-connected
but each interacting has a different J-coupling constant.

q0 : H = RY (−π
2 ) RZ (π)

Figure 6.10. Decomposition of the Hadamard gate using Ry and Rz rotations.
This decomposition is employed when the Rz gates are implemented virtually to
exploit their 0 s gate times.
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1 [Basic]
2 technology = M
3 n_nodes = 4
4 nodesEncoding = 13C, 13C, 13C, 13C
5 Br = 2.25e-6
6 minJ = 0.0
7

8 [JCoupling]
9 0-1 = 72.36

10 0-2 = 1.18
11 0-3 = 7.04
12 1-2 = 69.72
13 1-3 = 1.46
14 2-3 = 41.64
15

16 [SwapErrorRate_RzVirtual]
17 0-1 = 0.020083505167633464
18 0-2 = 0.21272011748545017
19 0-3 = 0.05981919466011165
20 1-2 = 0.017818414934632876
21 1-3 = 0.21582003282713824
22 2-3 = 0.01659076432867268
23

24 [SwapErrorRate_NotRzVirtual]
25 0-1 = 0.12461441845941845
26 0-2 = 0.39120315984675824
27 0-3 = 0.12999113996228395
28 1-2 = 0.1364459093362509
29 1-3 = 0.34847636244448155
30 2-3 = 0.07858987866826672

Figure 6.11. crotonic_acid.cfg configuration file modelling the crotonic_acid
molecule. All the information regarding n_nodes, nodesEncoding, Br and the
J-coupling constants, were retrieved from [16, Sec. 8.3]. The swap gate error
rates, with the Rz gates implement virtually and not implemented virtually, were
computed performing a simulation using MATLAB QuanTO [56].
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parameters to its constructor, the layout synthesis library offers a method, from-
ConfigurationFile(cfgFilePath), allowing the automatic instantiation of a
NmrBackend reading a configuration file (.cfg). Such file contains all the figure
of merits required for the correct NISQ device modelling.

In Figure 6.11, is reported the configuration file modelling the crotonic_acid
NMR quantum device, where all the molecule properties are retrieved from [16,
Sec. 8.3].
Each NMR configuration file is composed of four sections:

Basic: it contains the basic details of the NISQ device:

• technology: “M” for NMR quantum computers.
• n_nodes: the number of nodes of the device.
• nodesEncoding: the isotopes used for encoding each node, starting from
n up to nn_nodes.

• Br: alternating magnetic field amplitude in T.
• minJ: the minimum J-coupling constant threshold in absolute value in

Hz. All the interactions having a J-coupling constant such that J <
|minJ | are discarded since the interaction is considered too weak. This
parameter can also be set to 0 Hz, thus accepting all the interactions.

JCoupling: it contains the allowed two-qubits interactions, as well as the J-coupling
constant for each interaction in Hz.

SwapErrorRate_RzVirtual: it contains the swap gate error rates for all the
valid two-nodes interactions, when the Rz gates are implemented virtually.

SwapErrorRate_NotRzVirtual: it contains the swap gate error rates for all the
valid two-nodes interactions, when the Rz gates are not implemented virtually.

For computing the swap gate error rates of the crotonic_acid backend, reported
in Figure 6.11, a python script was developed: compute_NMR_Swap_Error_Rates.py.
For each pair of nodes of the backend (thus, for each possible swap gate), the script
performs the following steps:

1. Construct a quantum circuit for generating a random superposition state be-
tween the two nodes to be swapped.

2. This quantum circuit is simulated using the MATLAB QuanTO [56] simu-
lator, having the crotonic_acid as target backend. The output density matrix
ρ′ is retrieved from the simulator.

3. Construct the ideal swap gate unitary matrix Uswap and apply it to the density
matrix ρ′:

ρ = Uswap · ρ′ · U †
swap

88



6.1 – The Backend class

4. Add the swap gate decomposition to the quantum circuit generated from Step
1. This decomposition depends on if the Rz gates are implemented virtually
or not: for the latter scenario, all the Rz gates are further decomposed to Rx
and Ry rotations, according to Equation (6.5).

5. Simulate this new quantum circuit using the MATLAB QuanTO simulator.
The output density matrix σ is retrieved from the simulator.

6. Compute the fidelity [5, Sec. 9.2.2] F (ρ, σ), measuring the closeness between
the two density matrices, as:

F (ρ, σ) = tr
;ñ

ρ1/2σρ1/2
<

7. The computed error rate for the current simulation is 1 − F (ρ, σ). The script
repeats from Step 1 for a configurable number of simulation shots. The average
measured error rate is the final one.

6.1.3 Quantum dots technology
General information regarding the implementation of a quantum computing device
resorting to quantum dot technology is provided in Section 1.6. NISQ devices
implemented using this technology are generally non-fully-connected, for this
reason the layout synthesis procedure is mandatory for solving the coupling-
constraint.

The QuantumDotBackend class was implemented for modelling quantum dot
quantum computing devices. Being a Backend, it provides to the Placer and
Router classes the information on the allowed two-nodes interactions, mandatory
for performing the layout synthesis. Furthermore, being a technology-specific
Backed class, it provides additional information such as the gate time and error
rate for an allowed two-nodes interaction. This additional information is required
by the Hardware-Aware and Hardware-Aware smart routing algorithms, for the pre-
processing phase (see Section 6.2.1). It is similar to the SuperconductingBackend
class, with the addition of modelling also the single-qubit gates times. This is a
requirement for computing the swap gate time according to the decompositions of
Figure 6.5 and Figure 6.7.
The main attributes composing this class are:

couplingGraph: it is an undirected graph that is used for representing the
coupling-graph of the architecture. The reason why an undirected graph is
sufficient to model a quantum dot quantum computing device is that the gate
time and error rate of the native two-qubits interaction (Rzz gate) depend
only on the Exchange-Interaction constant, that is fixed for every couple of
nodes. This graph specifies the allowed two-qubits interactions, while also
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storing the Exchange-Interaction constant between the interacting nodes
as an attribute of the edges. An example of coupling-graph representation for
a quantum dot device is the one depicted in Figure 6.12.

technology: string specifying the technology used for implementing the NISQ de-
vice. It is “Q” for quantum dot quantum computers.

RxyGateTimes_halfpi: the tuple of gate times in s for applying a Rx or Ry
gate with an angle of π

2 to each node of the quantum dot backend.

The main methods offered by this class are:

getExchangeInteraction(node1, node2): extracts the Exchange-Interaction con-
stant for the node1 -node2 interaction.

getSingleQubitGateTime(node, theta, isRZ, isRZvirtual): extracts the gate
time required for applying a Rx, Ry or Rz gate on the target node. Its inputs
are:

• node: the node target of the single-qubit gate.
• theta: the angle of rotation.
• isRZ: False for Rx and Ry gates, True for Rz gates.
• isRZvirtual: True if the RZ gates are implemented virtually, False oth-

erwise.

The gate time for Rx and Ry gates is computed with:

τ(θ) =
-----τ(Rxy(π

2 )) · θ
π
2

-----, (6.6)

where τ(Rxy(π
2 )) is extracted from RxyGateTimes_halfpi.

The Rz gate time is instead computed supposing the decomposition of Equa-
tion (6.5). Thus, summing the gate times for the sequential Rx and Ry gates
computed using Equation (6.6). If the Rz gates are instead implemented vir-
tually, the gate time is 0 s.

getCZGateTime(controlNode, targetNode, isRZvirtual): extracts the gate
time for applying the quantum gate: “CZ controlNode, targetNode”. The CZ
gate for quantum dot quantum devices is completely symmetric, thus the same
gate times are obtained if the nodes are inverted.
The gate time of the CZ is computed supposing the gate is decomposed as
shown in Figure 6.6.
The CZ gate time is thus computed summing:
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• The gate time for applying a Rz gate to the control node. In case the Rz
gates are implemented virtually, the gate time is considered 0 s. Otherwise,
if the Rz gates are not implemented virtually, the gate time is computed
resorting to the getSingleQubitGateTime(node, theta, isRZ, isRZvirtual)
method.

• The gate time for applying a Rz gate to the target node. In case the Rz
gates are implemented virtually, the gate time is considered 0 s. Otherwise,
if the Rz gates are not implemented virtually, the gate time is computed
resorting to the getSingleQubitGateTime(node, theta, isRZ, isRZvirtual)
method.

• The time for applying the Rzz gate to the control and target node, com-
puted as τ =

--- 1
2E

---, where E is the Exchange-Interaction constant between
the interacting nodes in Hz.

getCXGateTime(controlNode, targetNode, isRZvirtual): extracts the gate
time for applying the quantum gate: “CX controlNode, targetNode”. The CX
gate for quantum dot quantum devices is not symmetric, thus different gate
times may be obtained if the nodes are inverted.
The gate time of the CX is computed supposing the gate is decomposed as
shown in Figure 6.7.
The CX gate time is thus computed summing:

• Two times the gate time for applying a Hadamard gate to the target node.
There are two possible ways for computing it, depending on if the Rz gates
are implemented virtually or not. In the first scenario, the gate is supposed
to be decomposed according to Figure 6.10, in the latter scenario instead
it is supposed to be decomposed as depicted in Figure 6.8.

• The gate time for applying a CZ gate, computed resorting to the getCZ-
GateTime(controlNode, targetNode, isRZvirtual) method.

getSwapGateTime(node1, node2, isRZvirtual): extracts the gate time for
applying the swap gate to node1 and node2. The gate time of a swap gate
is computed supposing that it is implemented as three consecutive CX gates.
The decomposition of the swap gate using three CX gates is shown in Fig-
ure 6.5.
This gate time is thus dependent on the gate time for executing a CX between
the two nodes (considering that for quantum dot devices, the CX gate is not
symmetric) computed resorting to the getCXGateTime(controlNode, targetN-
ode, isRZvirtual) method. Indeed, the gate time is also dependent on if the Rz
gates are implemented virtually or not, since this changes the CX gate time.
The symmetry of the swap gate is exploited, and the gate time is computed in
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the best case scenario (the same computation done in [42, Sec. 3.A]). For the
best case scenario swap gate time computation, the Equation (6.2) is used.

getSwapErrorRate(node1, node2, isRZvirtual): extracts the error rate for
applying the swap gate to node1 and node2.
The error rate of a swap gate is computed supposing that it is implemented as
three consecutive CX gates. The decomposition of the swap gate using three
CX gates is shown in Figure 6.5.
The error is also dependent on if the Rz gates are implemented virtually or not.
The symmetry of the swap gate is exploited, and the error rate is considered
identical even if the interacting nodes are exchanged.

n0 n1 n2 n3 n4

Figure 6.12. Undirected coupling-graph representing the 5nodes_quantum_dot
quantum device. Each node represents a physical qubit and each edge represents
an allowed two-qubits interaction. The architecture’s topology is linear.

Besides instantiating a quantum dot backend class manually, by passing all the
required parameters to its constructor, the layout synthesis library offers a method,
fromConfigurationFile(cfgFilePath), allowing the automatic instantiation
of a QuantumDotBackend reading a configuration file (.cfg). Such file contains
all the figure of merits required for the correct quantum dot device modelling.

In Figure 6.13, is reported the configuration file modelling the 5nodes_quantum_dot
quantum device, constructed expanding the two-nodes device presented in [17].
Each quantum dot configuration file is composed of five sections:

Basic: it contains the basic details of the NISQ device:

• technology: “Q” for quantum dot quantum computers.
• n_nodes: the number of nodes of the device.
• minExchangeInteraction: the minimum Exchange-Interaction constant

threshold in absolute value in Hz. All the interactions having an Exchange-
Interaction constant such that E < |minE| are discarded since the inter-
action is considered too weak. This parameter can also be set to 0 Hz,
thus accepting all the interactions.

RxyGateTime_halfpi: it contains the gate times for applying a Rx or Ry gate
to any node of the quantum computing device.

Exchange-Interaction: it contains the allowed two-qubits interactions, as well as
the Exchange-Interaction constant for each interaction in Hz.
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1 [Basic]
2 technology = Q
3 n_nodes = 5
4 minExchangeInteraction = 0.0
5

6 [RxyGateTime_halfpi]
7 0 = 250e-9
8 1 = 250e-9
9 2 = 250e-9

10 3 = 250e-9
11 4 = 250e-9
12

13 [ExchangeInteraction]
14 0-1 = 3.3333e6
15 1-2 = 3.0303e6
16 2-3 = 3.5211e6
17 3-4 = 2.7473e6
18

19 [SwapErrorRate_RzVirtual]
20 0-1 = 0.02846304062851257
21 1-2 = 0.031122655777865327
22 2-3 = 0.02945493745835359
23 3-4 = 0.02857003229001298
24

25 [SwapErrorRate_NotRzVirtual]
26 0-1 = 0.24301050424747428
27 1-2 = 0.264886331325479
28 2-3 = 0.26083669687701094
29 3-4 = 0.23818706397897216

Figure 6.13. 5nodes_quantum_dot.cfg configuration file modelling the
5nodes_quantum_dot quantum device depicted in Figure 6.12.
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SwapErrorRate_RzVirtual: it contains the swap gate error rates for all the
valid two-nodes interactions, when the Rz gates are implemented virtually.

SwapErrorRate_NotRzVirtual: it contains the swap gate error rates for all the
valid two-nodes interactions, when the Rz gates are not implemented virtually.

For computing the swap gate error rates of the 5nodes_quantum_dot backend,
reported in Figure 6.13, a python script was developed:
compute_QuantumDot_Swap_Error_Rates.py. It uses the MATLAB QuanTO
simulator, following the same procedure explained in Section 6.1.2.

6.1.4 Ion Trap technology
General information regarding the implementation of a quantum computing device
resorting to ion trap technology is provided in Section 1.7. In particular, the pre-
sented work aims at modelling a single-trap NISQ device with a linear chain of
ions. Other architectures such as Quantum Charge Coupled Device [18, Sec. 1] are
not part of the presented layout synthesis library. NISQ devices implemented using
this technology are generally fully-connected, for this reason the layout syn-
thesis procedure is not mandatory, because all the interactions are allowed.
However, different pair of ions may have different gate times and error rates. A
layout synthesis phase modifying the input quantum circuit, preferring the better
interactions, could lead to an output quantum circuit with an optimal total gate
time and total error rate.

The IonTrapBackend class was implemented for modelling ion trap quantum
computing devices. Being a Backend, it provides to the Placer and Router classes
the information on the allowed two-nodes interactions, mandatory for performing
the layout synthesis. Furthermore, being a technology-specific Backed class,
it provides additional information such as the gate time and error rate for an allowed
two-nodes interaction. This additional information is required by the Hardware-
Aware and Hardware-Aware smart routing algorithms, for the pre-processing phase
(see Section 6.2.1). It is similar to the SuperconductingBackend class, with the
addition of modelling also the single-qubit gates times. This is a requirement for
computing the swap gate time according to the decompositions of Figure 6.5 and
Figure 6.14.
The main attributes composing this class are:

couplingGraph: it is an undirected graph that is used for representing the
coupling-graph of the architecture. The reason why an undirected graph is
sufficient to model an ion trap quantum computing device is that the gate
time and error rate, of the native two-qubits interaction (Rxx gate), are fixed
for every couple of interacting nodes. This graph specifies the allowed two-
qubits interactions, while also storing the sign of the phase χ (see Section 1.7
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for further details), the gate time of the Rxx gate and the error rate of
the Rxx gate between the interacting nodes as an attribute of the edges.

technology: string specifying the technology used for implementing the NISQ de-
vice. It is “I” for ion trap quantum computers.

RxyGateTimes_halfpi: the tuple of gate times in s for applying a Rx or Ry
gate with an angle of π

2 to each node of the ion trap backend.

RxyErrorRates_halfpi: the tuple of error rates for applying a Rx or Ry gate
with an angle of π

2 to each node of the ion trap backend.

The main methods offered by this class are:

getSignX(node1, node2): extracts the sign of the interaction parameter χ for
the node1 -node2 interaction.

getSingleQubitGateTime(node, theta, isRZ, isRZvirtual): extracts the gate
time required for applying a Rx, Ry or Rz gate on the target node. Its inputs
are:

• node: the node target of the single-qubit gate.
• theta: the angle of rotation.
• isRZ: False for Rx and Ry gates, True for Rz gates.
• isRZvirtual: True if the RZ gates are implemented virtually, False oth-

erwise.

The gate time for Rx and Ry gates is computed with:

τ(θ) =
-----τ(Rxy(π

2 )) · θ
π
2

-----, (6.7)

where τ(Rxy(π
2 )) is extracted from RxyGateTimes_halfpi.

The Rz gate time is instead computed supposing the decomposition of Equa-
tion (6.5). Thus, summing the gate times for the sequential Rx and Ry gates
computed using Equation (6.7). If the Rz gates are instead implemented vir-
tually, the gate time is 0 s.

getSingleQubitErrorRate(node, theta, isRZ, isRZvirtual): extracts the er-
ror rate for applying a Rx, Ry or Rz gate on the target node. Its inputs are:

• node: the node target of the single-qubit gate.
• theta: the angle of rotation.
• isRZ: False for Rx and Ry gates, True for Rz gates.
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• isRZvirtual: True if the RZ gates are implemented virtually, False oth-
erwise.

The error rate for Rx and Ry gates is computed with:

E(θ) =
E(Rxy(π

2 )) · θ
π
2

, (6.8)

where E(Rxy(π
2 )) is extracted from RxyErrorRates_halfpi.

The Rz error rate is instead computed supposing the decomposition of Equa-
tion (6.5). Thus, according to:

E = 1 −RXYsuccessRate, (6.9)

where RXYsuccessRate is computed multiplying all the success rates of the se-
quential Rx and Ry gates of the Equation (6.5) decomposition. The success
rate of a Rx or Ry gate is computed as 1 − E(Rxy(π

2 )).
If the Rz gates are instead implemented virtually, the error rate is 0.

getCXGateTime(controlNode, targetNode, isRZvirtual): extracts the gate
time for applying the quantum gate: “CX controlNode, targetNode”. The CX
gate for ion trap quantum devices is not symmetric, thus different gate times
may be obtained if the nodes are inverted.
The gate time of the CX is computed supposing the gate is decomposed as
shown in Figure 6.14.
The CX gate time is thus computed summing:

• The gate time for applying a Ry gate to the control node, computed with
the getSingleQubitGateTime(node, theta, isRZ, isRZvirtual) method.

• The gate time for applying a Rxx gate to the control and target node. This
information is stored as an attribute of the edge connecting the interacting
nodes in the coupling-graph.

• The gate time for applying a Rx gate to the control node, computed with
the getSingleQubitGateTime(node, theta, isRZ, isRZvirtual) method.

• The gate time for applying a Rx gate to the target node, computed with
the getSingleQubitGateTime(node, theta, isRZ, isRZvirtual) method.

• The gate time for applying a Ry gate to the control node, computed with
the getSingleQubitGateTime(node, theta, isRZ, isRZvirtual) method.

getCXErrorRate(controlNode, targetNode, isRZvirtual): extracts the er-
ror rate for applying the quantum gate: “CX controlNode, targetNode”. The
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CX gate for ion trap quantum devices is not symmetric, thus different error
rates may be obtained if the nodes are inverted.
The error rate of the CX is computed supposing the gate is decomposed as
shown in Figure 6.14.
The CX error rate is thus computed as:

E = 1 − totSuccessRate, (6.10)

where totSuccessRate is computed multiplying:

• The success rate for applying a Ry gate to the control node, computed
with the getSingleQubitErrorRate(node, theta, isRZ, isRZvirtual) method.

• The success rate for applying a Rxx gate to the control and target node.
The information on the error rate is stored as an attribute of the edge
connecting the interacting nodes in the coupling-graph.

• The success rate for applying a Rx gate to the control node, computed
with the getSingleQubitErrorRate(node, theta, isRZ, isRZvirtual) method.

• The success rate for applying a Rx gate to the target node, computed with
the getSingleQubitErrorRate(node, theta, isRZ, isRZvirtual) method.

• The success rate for applying a Ry gate to the control node, computed
with the getSingleQubitErrorRate(node, theta, isRZ, isRZvirtual) method.

getCZGateTime(controlNode, targetNode, isRZvirtual): extracts the gate
time for applying the quantum gate: “CZ controlNode, targetNode”. The CZ
gate for ion trap quantum devices is not symmetric, thus different gate times
may be obtained if the nodes are inverted.
The gate time of the CZ is computed supposing the gate is decomposed as
shown in Figure 6.15.
The CZ gate time is thus computed summing:

• Two times the gate time for applying a Hadamard gate to the target node.
There are two possible ways for computing it, depending on if the Rz gates
are implemented virtually or not. In the first scenario, the gate is supposed
to be decomposed according to Figure 6.10, in the latter scenario instead
it is supposed to be decomposed as depicted in Figure 6.8.

• The gate time for applying a CX gate, computed resorting to the getCX-
GateTime(controlNode, targetNode, isRZvirtual) method.

getSwapGateTime(node1, node2, isRZvirtual): extracts the gate time for
applying the swap gate to node1 and node2. The gate time of a swap gate
is computed supposing that it is implemented as three consecutive CX gates.
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The decomposition of the swap gate using three CX gates is shown in Fig-
ure 6.5.
This gate time is thus dependent on the gate time for executing a CX between
the two nodes (considering that for ion trap devices, the CX gate is not sym-
metric) computed resorting to the getCXGateTime(controlNode, targetNode,
isRZvirtual) method. Indeed, the gate time is also dependent on if the Rz
gates are implemented virtually or not, since this changes the CX gate time.
The symmetry of the swap gate is exploited, and the gate time is computed in
the best case scenario (the same computation done in [42, Sec. 3.A]). For the
best case scenario swap gate time computation, the Equation (6.2) is used.

getSwapErrorRate(node1, node2, isRZvirtual): extracts the error rate for
applying the swap gate to node1 and node2.
The error rate of a swap gate is computed supposing that it is implemented as
three consecutive CX gates. The decomposition of the swap gate using three
CX gates is shown in Figure 6.5.
This error rate is thus dependent on the error rate for executing a CX between
the two nodes (considering that for ion trap devices, the CX gate is not sym-
metric) computed resorting to the getCXErrorRate(controlNode, targetNode,
isRZvirtual) method. Indeed, the error rate is also dependent on if the Rz
gates are implemented virtually or not, since this changes the CX gate time.
The symmetry of the swap gate is exploited, and the gate time is computed in
the best case scenario (the same computation done in [42, Sec. 3.A]). For the
best case scenario swap gate time computation, the Equation (6.1) is used.

Besides instantiating an ion trap backend class manually, by passing all the
required parameters to its constructor, the layout synthesis library offers a method,
fromConfigurationFile(cfgFilePath), allowing the automatic instantiation
of a IonTrapBackend reading a configuration file (.cfg). Such file contains all
the figure of merits required for the correct ion trap device modelling.
Each ion trap configuration file is composed of five sections:

Basic: it contains the basic details of the NISQ device:

• technology: “I” for ion trap quantum computers.
• n_nodes: the number of nodes of the device.
• maxMsGateTime: the threshold on the maximum execution time for

the Mølmer–Sørensen gate (MS gate) [20]. All the interactions having an
MS gate time such that τMS > maxMsGateT ime are discarded, since the
interaction is considered too weak.

• maxMsErrorRate: the threshold on the maximum error rate for the
Mølmer–Sørensen gate (MS gate) [20]. All the interactions having an MS
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error rate such that EMS > maxMsErrorRate are discarded, since the
interaction is considered too weak.

RxyGateTime_halfpi: it contains the gate times for applying a Rx or Ry gate
to any node of the quantum computing device.

RxyErrorRate_halfpi: it contains the error rates for applying a Rx or Ry gate
to any node of the quantum computing device.

signX: it contains the allowed two-qubits interactions, as well as the sign of the
phase parameter χ for each interaction (+1 or -1).

MsGateTime: it contains the gate time for applying the Mølmer–Sørensen gate
(MS gate) [20] to each pair of interacting nodes.

MsErrorRate: it contains the error rate for applying the Mølmer–Sørensen gate
(MS gate) [20] to each pair of interacting nodes.

q0 : RY (v π
2 )

RXX (sgn(χ)π
4 )

RX (−sgn(χ)π
2 ) RY (−v π

2 )

q1 : RX (−v · sgn(χ)π
2 )

Figure 6.14. Decomposition of the CX gate using the native gates available for
ion trap quantum technology, reported from [57]. The sign of the phase χ depends
on the couple interacting ions. v = ±1 can be chosen arbitraly [57]. The Rxx gate
is implemented using the Mølmer–Sørensen gate (MS gate) [20].

q0 : •
q1 : H H

Figure 6.15. Implementation of the CZ gate for ion trap quantum technology,
decomposing it using H and CX gates.

For the successive benchmarking phase of the layout synthesis library, a model
for an ion trap device is required. Indeed, a python script was developed:
I_generate_backend_cfg.py. It allows the generation of a configuration file for a
17-nodes ion trap device, having the MS gate times linearly dependent on the ions
distances in the linear chain of ions. This model is proposed in [58]. In this article,
the required gate times for executing an MS gate for some couple of ions at a fixed
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distance are computed. After interpolating the gate times as a function of the ion
distance, the linear relation obtained is:

MSgateT ime = 10 + 38d, (6.11)

where MSgateT ime is in [ µs] and d is the ion’s distance.
For the MS gate error rates computation, the model reported in [18, Sec. 7.C]

was selected. In this model, the error rate of the MS gate has a linear dependency on
the MS gate time (the greater the time of application of the two-qubits interaction,
the greater the error rate):

MSgateF idelity = 1 − Γτ − A(2n̄+ 1), (6.12)

where A ∝ Nions

ln (Nions) is a scaling factor, n̄ is the vibrational energy of the ion chain
and Γ is the background heating rate of the trap in quanta/ s.

Being the second part of Equation (6.12) (A(2n̄ + 1)), used for modelling the
decreasing of the fidelity during the shuttling operations (see Section 1.7), the
scaling parameter A is set to 0 to neglect this effect. Furthermore, following the
data provided in [58, Sec. 5], the background heating rate Γ is set to 25 quanta/ s.
For τ(Rxy(π

2 )) and E(Rxy(π
2 )) of respectively Equation (6.7) and Equation (6.8),

the sample values reported in [59] are used.

6.2 Hardware-aware routing algorithm
The most performant algorithm implemented in the proposed layout synthesis li-
brary is the Hardware-Aware Routing algorithm. It is the implementation
of the novel routing approach proposed in [42], solving the coupling-constraint for
quantum computing devices with a non-fully-connected topology, and optimis-
ing the final quantum circuit gate time and fidelity exploiting the calibration
data of the target device.

The father of this routing approach is the SABRE heuristic [32], explained in
Section 5.1.3. The main modifications implemented by the authors of [42] are:

• Use the calibration data of the target device in order to perform the D
matrix computation (see Section 5.1.3 for further details).

• If possible, substitute a problematic CX gate (not respecting the coupling-
constraint) with a bridge gate (Figure 5.2) instead of adding a swap gate,
avoid altering the current logical to physical qubits mapping, when this is not
convenient.

In the presented work, the routing algorithm reported in [42, Sec. 3] is integrated
into the layout synthesis library. The original article is mainly targetting IBM
Quantum superconducting devices. Indeed, the algorithm was adapted for
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working also with NMR, quantum dot and ion trap NISQ devices with a non-
fully-connected topology. To perform this adaption, a modelling of the swap
gate time and error rate was necessary, extrapolating the required information
from the calibration data of the target device. This is accomplished using the
technology-specific Backend classes (SuperconductingBackend, NmrBackend,
QuantumDotBackend and IonTrapBackend) as explained in Section 6.1.
With all the complexity of computing the swap gate time and error rate abstracted
inside these classes, the core routing algorithm is the same independently on the
target quantum technology.

6.2.1 Hardware-Aware routing algorithm - Preprocessing
phase

The first phase of the Hardware-Aware routing algorithm is the distance matrices
generation S, E and T , for computing the D matrix, that will be used by the
routing phase for scoring all the candidate swap gates.

In Figure 6.16 it is depicted the generation process of the distance matrices. The
steps performed for generating the S, E, T and D matrices are:

1. All the information retrieved from the calibration data is used for abstract-
ing the target quantum computing device using a technology-specific Backend
class, as explained in Section 6.1.

2. Initialise an empty undirected graph called Gtmp.

3. For each couple of connected nodes inside the target coupling graph, ni and nj,
compute their swap gate time (tij) and swap error rate (eij). This is done using
the methods offered by the technology-specific Backend classes, see Section 6.1
for further details.

4. Add an edge in the Gtmp graph between ni and nj, having tij and eij as edge
weights.

5. Apply the Floyd–Warshall algorithm [52] to the Gtmp graph. This algo-
rithm finds the length of the shortest-path between any pair of nodes
in the input graph. The shortest path can be computed in two different
modalities:

• The shortest path between two nodes is the path having the minimal
total number of edges.

• The shortest path between two nodes is the path having the minimal
total sum of a specific weight, for all the edges in the path.
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Applying the Floyd–Warshall algorithm to Gtmp three times, with different
modalities, it is possible to compute the S, E and T distance matrices as
follows:

• S matrix computation: the shortest path between two nodes is the
path having the minimal number of edges.

• E matrix computation: the shortest path between two nodes is the
path having the minimal total sum of the eij weight.

• T matrix computation: the shortest path between two nodes is the
path having the minimal total sum of the tij weight.

6. The final distance matrix D is computed as follows:

α1 · S + α2 · E + α3 · T, (6.13)

where α1, α2 and α3 are configurable parameters.
Before computing the D matrix according to Equation (6.13), the matrices S,
E and T are normalised, to have the same scale.

Used for modelling the 

Apply the Floyd–Warshall algorithm 
for generating the matrices

Used for generating  
the temporary  
graph 

Backend

Calibration data

Used for  
computing the 

Figure 6.16. From the calibration data to the S, E, T and D matrices.

It is essential to know what each matrix represents, in order to understand the
aim of the distance matrices computation:

• The matrix S is storing the shortest path length for any pair of nodes
in the target quantum computing device. A generic entry S[i][j] represents
the number of swap gates required for applying a swap gate to ni and nj,
respecting the target coupling-contraints.
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• The matrix E is used for approximating the error rate for swapping any
pair of nodes in the target quantum computing device. A generic entry E[i][j]
represents the approximated total swap error rate for applying a swap
gate to ni and nj, respecting the target coupling-contraints.

• The matrix T is used for approximating the gate time for swapping any pair
of nodes in the target quantum computing device. A generic entry T [i][j]
represents the approximated total swap gate time for applying a swap
gate to ni and nj, respecting the target coupling-contraints.

• The matrix D is used for approximating the distance for swapping any pair
of nodes in the target quantum computing device. For distance, it is intended
the combination of number of swap gates, error rate and gate time. A generic
entry D[i][j] represents the approximated distance for applying a swap gate
to ni and nj, respecting the target coupling-constraint.

6.2.2 Hardware-Aware routing algorithm - How the swap
gates are scored

q0 : H •
L

q1 : X • •

q2 : F
Y

Figure 6.17. At the beginning, the
output routed circuit is empty and the
gates of the input circuit having no
dependency constitute the front layer
F . The look-ahead layer L contains
some successors of the gates inside F .
In this scenario, all the successors of
the gates inside F constitute the look-
ahead layer L.

q0 : H •

q1 : X • •
L

q2 : F
Y

Figure 6.18. After the H and X
single-qubit gates of the circuit de-
picted in Figure 6.17 are routed (added
to the output routed circuit), they are
removed from the front layer. The new
front layer is now composed of only
the CZ gate, since it is the only non-
routed gate having no dependency. All
the CZ gate successors constitute the
look-ahead layer L.

The Hardware-Aware routing algorithm, exactly like the SABRE [32] routing
algorithm, generates a set of candidate swap gates that are scored to
find the best one. Before proceeding with the explanation of the core routing
procedure, it is essential to explain how the candidate swap gates are scored.
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The input quantum circuit is divided into two layers (set of gates): the front
layer F and the lookahead layer L:

• The front layer F is the set of quantum gates, composing the circuit, that
have no dependencies among them and on any other non-routed gate (a gate
that was not already added to the output routed circuit). This means that
all the gates in F can always be executed from a dependency perspective,
even if this might not be the case from a hardware perspective (for example,
if it is a two-qubits gate and the interacting nodes are not connected in the
target coupling-graph). The front layer will constantly be updated during the
routing process, removing the gates as soon as they are routed and inserting
their successors. This is done in order to explore the quantum gates composing
the circuit in topological order, respecting their dependencies.

• The look-ahead layer L is the set of some quantum gates, successors of the
gates in F . The size of the look-ahead layer is completely configurable,
allowing a flexible depth of the look-ahead ability.

An example of evolution of the F and L layer is reported in Figure 6.17 and
Figure 6.18.

In order to assign a score to a candidate swap gate, bringing the logical
to physical qubits mapping (when executed) from πcurrent to πtemp, it is possible to
use two heuristic cost functions:

The basic cost function Hbasic:

Hbasic =
Ø

gate∈F

D[πtemp(gate.q1)][πtemp(gate.q2)], (6.14)

where:

• D[ ][ ] is the distance matrix computed during the preprocessing phase.
• πtemp is the new logical to physical qubits mapping, supposing the can-

didate swap gate for which Hbasic must be computed, is added to the
quantum circuit and executed.

• πtemp(gate.q1) and πtemp(gate.q2) are the interacting nodes of gate given
the new mapping πtemp.

It is the simplest version of the heuristic, summing the distances between the
interacting nodes for each gate inside the front layer. For distance between
two nodes, it is intended the combination of swap gate number, swap error
rate and swap gate time required for making the interaction compatible with
the target hardware.
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The look-ahead cost function Hlookahead:

Hlookahead = 1
|F |

Ø
gate∈F

D[πtemp(gate.q1)][πtemp(gate.q2)]

+W · 1
|L|

Ø
gate∈L

D[πtemp(gate.q1)][πtemp(gate.q2), (6.15)

where:

• D[ ][ ] is the distance matrix computed during the preprocessing phase.
• πtemp is the new logical to physical qubits mapping, supposing the can-

didate swap gate for which Hlookahead must be computed, is added to the
quantum circuit and executed.

• πtemp(gate.q1) and πtemp(gate.q2) are the interacting nodes of gate given
the new mapping πtemp.

• |F | is the number of quantum gates inside the front layer F .
1

|F | is used to normalise the summation of the distances between the
interacting nodes of the gates in F .

• |L| is the number of quantum gates inside the look-ahead layer L. This
set contains some successors of the gates in F , where the size of L is a
tunable parameter. In this way, the look-ahead ability is flexible.
1

|L| is used to normalise the summation of the distances between the
interacting nodes of the gates in L.

• W is the look-ahead parameter. It is a real value such that 0 ≤ W < 1
that is used to reduce the importance of the look-ahead ability.

It is the most complete version of the heuristic, summing the distances be-
tween the interacting nodes for each gate inside the front and look-ahead layer.
For distance between two nodes, it is intended the combination of swap gate
number, swap error rate and swap gate time required for making the interac-
tion compatible with the target hardware.

The last requirement for evaluating a candidate swap gate is computing the
effect of the swap gate insertion to the gates composing the look-ahead
layer. Sometimes adding a swap gate might have a negative impact on the
look-ahead layer, increasing the “distance” among the interacting nodes of the
gates composing L. This effect is computed according to:

Effect =
Ø

gate∈L

D[πcurrent(gate.q1)][πcurrent(gate.q2)]

−D[πtemp(gate.q1)][πtemp(gate.q2)], (6.16)
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where πcurrent is the logical to physical qubits mapping before the candidate swap
gate is added to the quantum circuit and executed.
If Effect is negative, the candidate swap gate addition increases the “distance”
between the interacting nodes of the look-ahead layer L.

6.2.3 Hardware-Aware routing algorithm - Routing phase
Figure 6.19 shows the flow-chart of the core routing strategy for the Hardware-
Aware routing algorithm.

Its required inputs are:

• placedCircuit: the input quantum circuit of the routing procedure for which
the placement was already performed.

• πinit: the initial mapping applied during the placement. It is required since
during the routing phase, the current (considering all the swap gates added
to the circuit) mapping between logical and physical qubits is tracked to out-
put the final mapping πfinal (the mapping at the end of the quantum circuit
execution, before the measure operations).

The main steps followed by the presented strategy are:

1. The first step is an initialisation phase. The algorithm constructs step-by-
step a new quantum circuit (routedCircuit), extracting gates from the placed
circuit and inserting them in the new one, respecting their dependencies.
During this initialisation, the routedCircuit is instantiated: at the beginning
it contains no quantum gates; the quantum and classical registers size match
the ones of the original circuit; the measures operations are the same as the
placed circuit ones.

2. The first layer of the input quantum circuit is extracted (thus it is
removed from the original circuit). All of its composing single-qubit gates and
the two-qubits gates applied to nodes connected in the target coupling-graph
are simply added to the output circuit.

3. If, at this step, the first layer is not empty, it means that it contains one
or more two-qubits interactions that are not allowed on the target hardware.
Therefore, the insertion of a swap gate (or a bridge gate, when possible) is
mandatory for proceeding with the routing. The list swapCandidateList
is constructed: it contains all the swap gates that can modify the logical to
physical qubits mapping for at least one node associated with an interaction
in the front layer F (without considering previously explored mappings).

4. Each candidate node inside swapCandidateList is scored using theHbasic (Equa-
tion (6.14)) or the Hlookahead (Equation (6.15)) heuristic cost function (it is a
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 = empty quantum circuit with the same quantum and classical register size with
respect to placedCircuit, and the same measures list

Yes

N
o

 is empty

Append all the single-qubit gates to

Return 

Yes

N
o

single-qubit gates in 

Append all the two-qubits gates
respecting the coupling-contraints

to 

Start

Yes
N

o
 contains two-qubits gates  

respecting the coupling-constraints

No

Yes

 set of swap
gates modifying the mapping of the
interacting nodes for the gates in F

N
o

Yes
 

contains only one  
gate that is a CX

Append the  gate to
the routed quantum circuit

No

Yes

 
 and  

the interacting nodes of the CX
 have a common neighbour  

Substitute the CX gate with a
bridge one in the routed circuit

Assign a score to each swap 
using the  or 

 heuristic cost function

Compute , the swap gate
with the minimum score. If more than

one swap gate has the same minimum
score, pick one randomly

 list of
gates that became executable after the

 gate addition

Figure 6.19. Flow chart of the Hardware-Aware routing algorithm.
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configurable parameter). The best swap labelled as bestSwap is the one min-
imising the heuristic cost function. If there are more than one swap gates
having the same minimal H, one is chosen randomly.

5. If the addition of the bestSwap to the routedCircuit allows one and only one
gate in F to became executable:

(a) Defining πcurrent −→ πnew the effect on the current mapping πcurrent of the
bestSwap addition. If the new executable gate is a CX gate acting on the
logical qubits qi and qj, and if the length of the shortest path between
the nodes ni = πnew(qi) and nj = πnew(qj) is exactly 2 (that is, if the two
interacting nodes of the new executable gate have one common neighbour):
• Compute the effect of the bestSwap addition using Equation (6.16). If

the effect is negative, the CX gate is substituted with a bridge gate in
the output routed circuit.

• Otherwise, proceed to Step 6.
(b) Else proceed to Step 6.

6. The bestSwap is added to the routedCircuit. The algorithm then repeats from
Step 3 and continues until all the gates of the placed input circuit are added
to the output routed circuit.

6.3 Routing techniques for fully-connected topolo-
gies

The routing phase explained in Chapter 5 and the procedures implemented in the
proposed layout synthesis library, presented in Section 5.2.3 and Section 6.2, are
related to NISQ devices having a non-fully-connected topology. Indeed, in these de-
vices, the information on the allowed two-qubits interactions is explicit. However,
for some quantum technologies having a fully-connected topology, such as NMR
and ion-trap (single-trap devices, see Section 1.7), this information is implicit in-
stead: all the interactions are theoretically allowed by the device, but in practice
some interactions are hard to implement, and their fidelity and execution time
would be unacceptable [33, Sec. 1]. Specifically, for NMR devices the hard to im-
plement interactions are the ones acting on nuclei having a low J-coupling constant,
while for ion trap devices, the problematic interactions are related to distant ions
inside the ion trap (following the model presented in Section 6.1.4).
Therefore, even if routing techniques are not mandatory for fully-connected quan-
tum computing devices, in practice this might be essential to have meaning-
ful results. For this reason, two hardware-aware approaches to perform the
routing phase targeting NISQ devices having a fully-connected topology are imple-
mented in the proposed library:
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1. Break the fully-connected topology, configuring a threshold on the minimum
interaction strength accepted. This strategy is explained in Section 6.3.1.

2. The Hardware-Aware smart routing algorithm. This strategy is explained in
Section 6.3.2.

The aim of both the two approaches is to avoid applying two-qubits gates on the
weaker interactions of the target NISQ device.

6.3.1 Breaking the fully-connected topology with a mini-
mum threshold

n0 n1

n2 n3

72.36

1.18 7.04
69.

72

1.46

41.64

Figure 6.20. Undirected coupling-
graph representing the crotonic_acid
NMR quantum device [16, Sec. 8.3].
Each node represents a physical qubit
and each edge represents an allowed
two-qubits interaction. The architec-
ture is fully-connected, but each inter-
acting pair of nodes has a different J-
coupling constant, shown in Hz. The
weakest interactions are highlighted in
red.
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n2 n3
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Figure 6.21. Representation of the cro-
tonic_acid NMR quantum device [16,
Sec. 8.3] shown in Figure 6.20 after con-
figuring a minimum J-coupling thresh-
old of 1.47 Hz. The weakest interactions
are removed and the topology became
non-fully-connected.

The first possibility offered by the proposed library, for routing a fully-connected
quantum device, is to impose a minimum threshold on the interaction strength.
It is essential to remark that the nature of the interaction strength parameter
depends on the modelled quantum technology. For example, for NMR
technology-specific Backend classes (see Section 6.1.2), it is possible to specify a
minimum J-coupling parameter, since the strength (thus, execution time and
error rate) of the interaction depends on the J-coupling constant (see Section 1.5
for further details). After breaking the fully-connected topology with a minimum
threshold, it is possible to use the Hardware-Aware routing algorithm in the classical
way (see Section 6.2). An example showing how it is possible to break the fully-
connected topology for the crotonic_acid NISQ device is depicted in Figure 6.20
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and Figure 6.21.

n0 n1

n2 n3
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Figure 6.22. Undirected coupling-
graph representing only 4 ions of the
modelled ion trap backend explained in
Section 6.1.4. Each node represents a
physical qubit and each edge represents
an allowed two-qubits interaction. The
architecture is fully-connected, but
each interacting pair of ions has a
different MS gate time (and error
rate, not depicted in this picture),
shown in s. The weakest interaction is
highlighted in red.
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Figure 6.23. Representation of the ion
trap backend coupling-graph shown in
Figure 6.22 after configuring a max-
imum MS gate time of 86 µs. The
weakest interaction is removed from the
graph and the topology became non-
fully-connected.

For ion trap technology-specific Backend classes, it is possible to break the fully-
connected topology imposing a maximum gate time and error rate for the MS gate
(as explained in Section 6.1.4). In particular, only the interactions having τMS ≤
maxMsGateT ime and EMS ≤ maxMsErrorRate are considered allowed in the
target hardware. An example showing how it is possible to break the fully-connected
topology for an ion trap NISQ device is shown in Figure 6.22 and Figure 6.23.

6.3.2 Hardware-aware routing smart algorithm
For the presented work, an attempt to adapt routing techniques for NISQ devices
having a fully-connected topology is made. Specifically, the original hardware-
aware routing algorithm presented in Section 6.2 is expanded, making it compatible
for targetting fully-connected quantum devices, aiming at optimising the final
quantum circuit execution time (if this is feasible). The idea is to compute the
best swap gate in accordance to the original algorithm, and then check if its addition
(considering the overhead to perform it) could bring the two-qubits interactions
towards the stronger interacting nodes, improving the final circuit execution
time.
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The pre-processing phase for computing the distance matrices remained un-
changed in this adaptation (see Section 6.2.1 for further details). The modifications
touched only the core routing strategy.
The flow-chart of the hardware-aware smart routing algorithm is shown in Fig-
ure 6.24. The main steps of the new algorithm are:

1. The first step is an initialisation phase. The algorithm constructs step-by-
step a new quantum circuit (routedCircuit), extracting gates from the placed
circuit and inserting them in the new one, respecting their dependencies.
During this initialisation, the routedCircuit is instantiated: at the beginning
it contains no quantum gates; the quantum and classical registers size match
the ones of the original circuit; the measures operations are the same as the
placed circuit ones.

2. The first layer of the input quantum circuit is extracted (thus it is
removed from the original circuit). All of its composing single-qubit gates
are simply added to the output circuit. It is essential to understand that
all the remaining two-qubits gates in the first layer are considered valid
in hardware, thus the hardware-aware smart routing algorithm can
target only NISQ devices with a fully-connected architecture.

3. If, at this step, the first layer is not empty, it means that it contains one
or more two-qubits interactions. The algorithm extracts the first gate inside
the front layer, labelled as currGate. The best swap gate bestSwap is
computed using the same procedure explained in Section 6.2 (using the look-
ahead heuristic, Equation (6.15)). The time required for applying bestSwap
is computed and labelled as bestSwapTime.

4. At this stage, the algorithm checks wether it is more convenient to just add cur-
rGate to the routed circuit, or it might be favorable adding bestSwap before.
To accomplish this, the approximated front and look-ahead layer execution
time must be computed: one time considering adding bestSwap to the out-
put circuit (suppSwapTotalGateTime), and a second time supposing not
adding it, leaving the circuit as it is (currTotalGateTime).
The approximated front and look-ahead total execution time is computed as
following:

τF,L =
Ø

gate∈F

τgate +
Ø

gate∈L

τgate, (6.17)

where:

• F and L are respectively the front and the look-ahead layer.
• gate is a two-qubits gate inside F or L.
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• τgate is the gate execution time. This time is different when computing
currTotalGateTime or suppSwapTotalGateTime. In the first case the in-
teracting nodes of gate are the ones of the original circuit, in the latter
these interacting nodes might change as a consequence of the bestSwap
addition. The gate execution time is computed using the methods offered
by the technology-specific classes abstractions (see Section 6.1), with two
required approximantions:
(a) For superconducting quantum devices, not modelling the time required

for executing a single-qubit gate (see Section 6.1.1), in case gate is a
CZ gate, its gate time is approximated to the gate time required for
executing a CX to the same target nodes as gate.

(b) If a two-qubits interaction is not a CX or CZ gate (even if this is the
expected scenario, since it is usual to perform the layout synthesis
before the CX or CZ gate decomposition):
– For superconducting and ion trap devices, all the non-CX and non-

CZ gates are considered CX gates for the gate time computation.
– For NMR and quantum dot devices, all the non-CX and non-CZ

gates are considered CZ gates for the gate time computation.

When computing the SuppSwapTotalGateTime, bestSwapTime is added to
τF,L, taking in consideration the overhead of the swap gate addition.
The single-qubit gate times are not considered in Equation (6.17). This is be-
cause these times are usually similar regardless of the target node. Therefore,
the heuristic aims at minimising the total execution time considering only the
two-qubits interactions.

5. If SuppSwapTotalGateTime is lower than currTotalGateTime, the bestSwap
is added to the routed circuit, otherwise gate is added. The algorithm then
repeats from Step 3 and continues until all the gates of the placed input circuit
are added to the output routed circuit.
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Figure 6.24. Flow chart of the Hardware-Aware smart routing algorithm.
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Chapter 7

Benchmarking

After the development of the proposed layout synthesis library, it was essential to
assess the correctness of the heuristics implementation and evaluate the per-
formance of the included strategies against the state-of-the-art, for some selected
figure of merits. For the latter task, the implemented strategies were benchmarked
against IBM’s Qiskit and Cambridge Quantum Computing’s t|ket〉, the
two leading quantum compilation toolchains at the time of writing. Therefore, a
series of Python scripts are developed to accomplish these two tasks. This chap-
ter is devoted to explaining the verification and benchmarking procedures, and
presenting the evaluated results. Specifically, the chapter is structured as follows:
in Section 7.1 an in-depth explanation of the testing procedures is presented; in
Section 7.2 the functional checking results are underlined, to validate all the im-
plemented heuristics; in Section 7.3 the results of the benchmarking phase for the
implemented placement heuristics are presented; in Section 7.5 and Section 7.4
the results of the benchmarking phase for the implemented routing heuristics are
presented.

7.1 General information

7.1.1 Tested circuits
A set of quantum circuits description written in the OpenQASM 2.0 language
was constructed in order to perform the functional equivalence checking and the
benchmarking tests. The same circuits used in [15, Ch. 5] are selected, in particular
they are retrieved from [60] and [61].
Following the approach used by [32, Sec. 5] and [42, Sec. 4], the quantum cir-
cuits used for the benchmarking phase are divided into three sets: small-sized,
medium-sized and large-sized, depending on the size of the quantum register.
Furthermore, only circuits with fewer than 35000 quantum gates are chosen.
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The only modifications performed to the selected circuits is to rename the quan-
tum and classical register to respectively “q” and “c” (convention required by the
proposed library), and to add the measurement operations in some circuits where
this was missing (measuring the final state in the classical register is mandatory for
performing the functional equivalence checking).

To emulate the expected use-case for the presented layout synthesis library (that
is, a subsequent step to the logic synthesis phase, before decomposing the two-qubits
interactions), all the circuits were rebased using the technology’s legal set of
gates as defined in [15, Ch. 5]. Specifically:

• For superconducting technology the gate basis is: {U1, U2, U3, CX}

• For NMR and quantum dots technology the gate basis is: {RX , RY , RZ , CZ}

• For trapped ions technology the gate basis is: {RX , RY , RZ , CX}

To perform the rebasing task, the Qiskit Terra Transpiler [22] was employed
(Qiskit Terra libraries version 0.18.3), configuring an optimisation level of
0, to avoid any further optimisation.

All the tests evaluated in this chapter were performed using as input quan-
tum circuits these rebased circuits. Because of the limited number of physical
qubits for the NMR and quantum dots considered backends, only the small-sized
circuits set was utilised for these technologies. Specifically, the NMR back-
end was tested only with the small-sized circuits with at most four qubits, and the
quantum dots backend was tested only with the small-sized circuits with at most
five qubits.

7.1.2 Backend configuration files used for testing
The proposed layout synthesis library requires a backend configuration file con-
taining all the information on the allowed two-qubit interactions and quantum
gates features (used only for the hardware-aware placement and routing strate-
gies). Therefore, four configuration files were used for the testing phase,
one for each target technology available. Specifically:

• For superconducting technology, the ibmq_toronto.cfg backend configura-
tion file was developed, modelling the mocked version of the ibmq_toronto
27-qubits superconducting device [62].

• For NMR technology, the crotonic_acid.cfg backend configuration file was
developed (shown in Figure 6.11), modelling the crotonic acid 4-qubits NMR
quantum device [16, Sec. 8.3].

• For quantum dots technology, the 5nodes_quantum_dot.cfg backend con-
figuration file was developed (shown in Figure 6.13), modelling the 5-qubits
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quantum dots device presented in Section 6.1.3, constructed expanding the
data available in [17].

• For trapped ions technology, the ion_trap_experimental.cfg backend con-
figuration file was developed, modelling the 17-qubits trapped ions device pre-
sented in Section 6.1.4

7.1.3 Functional equivalence - methodology
It is mandatory that all the implemented heuristics do not alter the functional
behaviour of the final quantum circuit. Therefore, since in the implemented li-
brary the classical bits where each logical qubit is measured remain constant, the
frequency of measurement for each eigenstate of the output circuit must be simi-
lar to the input one (before performing the placement and the routing). Thus, the
functional equivalence checking task can be accomplished resorting to a discrete
probability distributions divergence computation.
An alternative verification strategy is to compute the fidelity [5, Sec. 9.2.2] between
the input and output circuit’s quantum states, before the measures operations are
performed, and to assess that the fidelity is close to one. To accomplish this, the
state vector of the output circuit must be reordered (based on the swap gates
applied) before computing the fidelity. This strategy is more precise, but the com-
putational complexity for both the simulation and the state vector reordering is
not negligible. Indeed, it was performed only for small quantum circuits and small
NISQ devices during the development phase. In this chapter, only the results of
the functional equivalence checking resorting to a discrete probability distribution
divergence computation are presented.

Specifically, the main steps performed during the functional equivalence checking
are:

1. The functional equivalence checking ensures the closeness between the in-
put_circuit and the ouput_circuit, that are respectively:

• The input quantum circuit, before applying any layout synthesis transfor-
mations (placement, routing or both).

• The quantum circuit output of the placement or routing step (or both).

2. Both the input_circuit and the ouput_circuit are simulated employing the
Qiskit Aer QASM simulator (Qiskit Aer libraries version 0.9.1) [63],
using 20000 simulation shots. Indeed, this simulator returns the frequency of
each measured eigenstate, that is, a discrete probability distribution.

3. The divergence between these two distributions is computed according to
three different metrics:
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Kullback Leibler divergence (KLD): it estimates the “difference” between
the two distributions [64]. Therefore, to prove the functional equivalence,
a KLD close to zero must be obtained. The KLD is computed as:

DKL(P∥Q) =
Ø
x∈χ

P (x) log
3
P (x)
Q(x)

4
, (7.1)

where P and Q are the two discrete probability distributions.
The KLD can be computed only for discrete probability distributions hav-
ing a common support. Indeed, for the KLD computation only the
common support is used, and all the non-common measures are randomly
distributed to the common ones (with uniform probability).

Hellinger fidelity: it measures the “closeness” between the two distributions
in percentage (Hellinger fidelity ∈ [0,1]). This fidelity is computed resort-
ing to the Qiskit Terra API, in order to have a metric that is not directly
developed (to further prove the functional equivalence). This fidelity, in
the official documentation [65], is defined as: (1 − H2)2, where H is the
Hellinger distance between the two distributions computed as:

H(P,Q) = 1√
2

öõõô kØ
i=1

(√pi − √
qi)2, (7.2)

where P = (p1, . . . , pk) and Q = (q1, . . . , qk) are the two discrete proba-
bility distributions.
Since this metric measures how much the two discrete probability distri-
butions are “close”, a Hellinger fidelity near one must be obtained.

Fidelity (approximated): it measures the closeness between the two dis-
crete probability distributions in percentage (fidelity approximated ∈ [0,1]).
It is labelled as “approximated” since it is computed as the fidelity [5,
Sec. 9.2.2] between the two reconstructed state vectors, using only the
frequency of measurement of each egeinstate, obtained from the Qiskit Aer
QASM simulator.
For the fidelity (approximated) computation only the common support
of the two discrete probability distributions is used. Indeed, if after the
simulations the two supports have at least one non-common element, the
following steps are performed:
(a) The common support is extracted, and the percentage of non-common

measures is computed for both the original and the transformed dis-
crete probability distributions.

(b) For the fidelity (approximated) computation only the common support
is used, and all the non-common measures are randomly distributed
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to the common ones (with uniform probability). If the percentage of
non-common measures is greater than 0.05 (for the input or the output
distribution), the fidelity is set to zero (due to the high percentage
of non-common measures).

4. For the two discrete probability distributions (and thus, quantum circuits) to
be equivalent, all the three different metrics explained before must not exceed
some defined thresholds:

• For the KLD, the maximum acceptable threshold is set to 0.05.
• For the Hellinger fidelity, the minimum acceptable threshold is set to

0.95.
• For the fidelity (approximated), the minimum acceptable threshold

is set to 0.95.

7.1.4 Coupling-constraint checking
Following the definition of the routing step (Definition 5.0.1), it is essential that
after applying each implemented routing heuristic, the two-qubit interactions com-
posing the output circuit satisfy the coupling-constraint of the target NISQ
device. Therefore, also a coupling-constraint check is performed for all the im-
plemented routing strategy. It is accomplished by counting the number of non-
hardware compliant interactions and making sure that they are equal to zero.

For all the available routing techniques in the proposed layout synthesis library,
for all the target technologies and for all the testing circuits, the number of non-
allowed interactions was always zero, thus validating the routing heuristics
implementation.

7.1.5 Benchmarking phase
In order to evaluate the performance of the implemented heuristics and to compare
them against Qiskit and t|ket〉, a benchmarking phase is essential. Thus, a set
of quantum circuit metrics was defined in order to evaluate and compare the
different layout synthesis strategies. Different metrics are used for the placement
and routing steps, and also for different target hardware topologies (fully-connected
and non-fully-connected), ensuring a fair comparison.

Placement step

After the placement step, the logical qubits are mapped to the physical ones, but
the placed quantum circuit is probably not executable in hardware yet. Indeed, an
evaluation of the total execution time and error rate is not possible.
The selected metric in order to compare the quality of the different implemented
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placement procedures is the number of non-executable two-qubit gates. Place-
ment algorithms that allow the most two-qubit interactions to be executed without
any further swap gate addition (during the subsequent routing phase) are preferred.

This metric of evaluation is used for all the implemented placement proce-
dures: Trivial Mapping, Simulated Annealing Dense Mapping and Simulated An-
nealing Hardware-Aware Mapping. This comparison is only valid for the non-fully-
connected hardware technology (superconducting and quantum dots), since it would
be unfair to compare it to the fully-connected topologies of NMR and trapped ions
devices. Indeed, for the latter a different strategy is used, explained later in this
section.

All the implemented placement strategies cited before are compared (for the
selected metric) against the Qiskit placement strategies.

Placement and routing steps - non-fully-connected technologies

Since the routing step follows the placement, it could not be evaluated alone. There-
fore, the complete layout synthesis, with different combinations of available
placement and routing strategies, is evaluated.

The selected metrics for performing the benchmarking are the following:

swapCount: the number of swap gates added in the final quantum circuit descrip-
tion.

CF_circuitDepth: the circuit depth compression factor between the input circuit
(rebased_circuit) and the output one (placed_routed_circuit). It is one of the
metrics used in [66, Sec. 2.3], computed as:

CF_circuitDepth = circuit depth(rebased_circuit)
circuit depth(placed_routed_circuit) (7.3)

The circuit depth is defined as the number of layers of the quantum circuit.

CF_gateCount: the circuit gate count compression factor between the input
circuit (rebased_circuit) and the output one (placed_routed_circuit). It is
one of the metrics used in [66, Sec. 2.3], computed as:

CF_gateCount = gate count(rebased_circuit)
gate count(placed_routed_circuit) (7.4)

For the gate count, both the single-qubit and two-qubit gates are considered.

totalExecutionTime: the approximated total execution time of the final quan-
tum circuit. The methods available in the technology-specific Backend classes
(see Section 6.1) are used to perform this computation. Moreover, the follow-
ing additional information is used:
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• For the superconducting backend, the U2 gate time is extrapolated from
the FakeToronto [62] system properties (the X gate time). The U1 gate
times are set to 0 when the Rz gates are implemented virtually, otherwise
they are supposed to be implemented using a U3 gate. For the latter, the
gate time is set to τ(U3) = 2 · τ(U2).

circuit cost function C: the overall cost of the output quantum circuit, defined
by a single metric. It is one of the metrics used in [66, Sec. 2.3], computed as:

C = −D logK −
Ø

i

logFi
1q −

Ø
j

logFj
2q, (7.5)

where:

• D is the output circuit depth (the number of layers).
• K is a constant penalisation factor. Different K values are used for the four

different backends, ensuring that: Favg
1q < K < Favg

2q (the same strategy
adopted in [66, Sec. 2.3]). All the values of K used for performing the
benchmarks are underlined in Table 7.4.

• Fi
1q is the i-th single-qubit gate fidelity, computed as 1−gate_error_rate.

This error rate is computed as:
– For the superconducting backend, the U2 error rates are extrapolated

from the FakeToronto [62] system properties (the X gate error). The
U1 error rates are set to 0 when the Rz gates are implemented virtually,
otherwise they are supposed to be implemented using a U3 gate. For
the latter, the error rate is set to E(U3) = 2 · E(U2).

– For the quantum dots backend, the Rx(π
2 ) error rates are computed

performing a simulation using MATLAB QuanTO [56], as explained
in Section 6.1.2. The Rx(θ) error rates are computed as:

E(Rx(θ)) =
E(Rx(π

2 )) · θ
π
2

(7.6)

The Ry error rates are supposed equal to the Rx ones. The Rz gates if
not implemented virtually are supposed to be decomposed according
to Equation (6.5).

• Fj
2q is the j-th two-qubit gate fidelity, computed as 1 − gate_error_rate.

This error rate is computed as:
– For the superconducting backend, the getCXErrorRate method of the

SuperConductingBackend class is used (see Section 6.1.1).
– For the quantum dots backend, the CZ error rates are computed per-

forming a simulation using MATLAB QuanTO [56], as explained in
Section 6.1.2.
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Different combinations of the implemented placement and routing strategies
cited before are compared (for the selected metrics) against the Qiskit and t|ket〉
ones.

Placement and routing steps - fully-connected technologies

For fully-connected technologies (NMR and trapped ions), it would not be fair
to compare the number of swap gates added during the layout synthesis phase.
The reason for this is that, theoretically, no swap gates are required to satisfy the
coupling-constraint of the target NISQ device, but they might be added to achieve
a more optimised final quantum circuit.

The two metrics used for benchmarking the layout synthesis of the fully-connected
technologies are:

totalExecutionTime: the approximated total execution time of the final quan-
tum circuit. The methods available in the technology-specific Backend classes
(see Section 6.1) are used to perform this computation.

circuit cost function C: the overall cost of the output quantum circuit, defined
by a single metric. It is one of the metrics used in [66, Sec. 2.3], computed as:

C = −D logK −
Ø

i

logFi
1q −

Ø
j

logFj
2q, (7.7)

where:

• D is the output circuit depth (the number of layers).
• K is a constant penalisation factor. Different K values are used for the four

different backends, ensuring that: Favg
1q < K < Favg

2q (the same strategy
adopted in [66, Sec. 2.3]). All the values of K used for performing the
benchmarks are underlined in Table 7.4.

• Fi
1q is the i-th single-qubit gate fidelity, computed as 1−gate_error_rate.

This error rate is computed as following:
– For the trapped ions backend, the getSingleQubitErrorRate method of

the IonTrapBackend class is used (see Section 6.1.4).
– For the NMR backend, the Rx(π

2 ) error rates are computed perform-
ing a simulation using MATLAB QuanTO [56], as explained in Sec-
tion 6.1.2. The Rx(θ) error rates are computed using Equation (7.6)
The Ry error rates are supposed equal to the Rx ones. The Rz gates if
not implemented virtually are supposed to be decomposed according
to Equation (6.5)

• Fj
2q is the j-th two-qubit gate fidelity, computed as 1 − gate_error_rate.

This error rate is computed as following:

124



7.1 – General information

– For the trapped ions backend, the getCXErrorRate method of the Ion-
TrapBackend class is used (see Section 6.1.4).

– For the NMR backend, the CZ error rates are computed performing
a simulation using MATLAB QuanTO [56], as explained in Sec-
tion 6.1.2.

For the comparison (using the selected metrics), the routing algorithms for fully-
connected topologies, presented in Sections 6.3.1 and 6.3.2 are evaluated and com-
pared to performing only the placement step, to assess if these implemented so-
lutions could add further optimisation. Furthermore, the comparison is also done
against the Qiskit and t|ket〉 placement and routing strategies.

Qiskit placement and routing

All the quantum circuits used for the benchmarking of the proposed layout synthesis
library were also placed and routed using the Qiskit compilation toolchain, in
order to perform a comparison.
The applied Qiskit’s placement strategies are:

• DenseLayout [37].

• SabreLayout [39].

• NoiseAdaptiveLayout [38].

The applied Qiskit’s routing strategies are:

• SabreSwap [67].

• StochasticSwap [49].

All these placement and routing strategies are well explained in Section 4.1.1 and
Section 5.1.1.

All the four target backends presented in Section 7.1.2 were modelled using the
Qiskit Terra API. Specifically, for each backend, two data-structures are required:

• The CouplingMap representing the allowed two-qubit interactions.

• The BackendProperties representing the information on the quantum gates
features. This data structure is required for the NoiseAdaptiveLayout and
DenseLayout placement strategies. Specifically, the latter was tested in two
modalities: without using the BackendProperties (hardware-unaware), or with
this additional information (hardware-aware).

The BackendProperties for each tested backend were constructed as follows:
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• For the superconducting backend, they are extracted from the FakeToronto
[62] class instance.

• For the trapped ions backend, they were constructed using the available CX
error rates.

• For the NMR and quantum dot backends, they were constructed using the
available CZ error rates. Since the NoiseAdaptiveLayout placement algo-
rithm requires the CX error rates, to perform a fair comparison the CZ error
rates in the BackendProperties were represented as CX error rates.

• For the NMR, quantum dots and trapped ions backends, the readout error
rates information was not used, as this was not available. Furthermore, this
information is not an optimisation metric considered during the layout syn-
thesis phase by the implemented heuristics.

t|ket〉 placement and routing

All the quantum circuits used for the benchmarking of the proposed layout synthesis
library were also placed and routed using the t|ket〉 compilation toolchain, in order
to perform a comparison. Specifically the pytket library version 1.3.0 [21, Sec.
1.4] was utilised.

The applied t|ket〉’s placement strategies are:

• LinePlacement [11, Sec. 3.2]

• GraphPlacement [21, Sec. 7.1]

• NoiseAwarePlacement [21, Sec. 9.2]

All these placement strategies are well explained in Section 4.1.2.
All the four target backends presented in Section 7.1.2 were modelled using the

pytket API. Specifically, for each backend, two data-structures are required:

• An Architecture object containing the list of the allowed nodes interactions
only.

• A dictionary specifying the two-qubits error rates. In particular, this data-
structure is required only for the NoiseAwarePlacement, being the only t|ket〉’s
hardware-aware strategy tested. This placement heuristic can also use the
single-qubit and readout error rates. During the benchmarking phase, the
algorithm was tested using two modalities: one in which the single-qubit error
rates were not passed, and another in which this additional information was
also passed. The readout error rates information was never used instead.
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The t|ket〉’s routing strategy applied is the default one, using the lexicograph-
ical comparison, presented in Section 5.1.2.

Since the t|ket〉’s placement strategies may produce a partial mapping, the
placement alone could not be used for comparison. The results of the
complete layout synthesis procedure, using all the combinations of the previously
cited placement and routing strategy, are presented in this chapter.

7.2 Functional equivalence - evaluation of results
Figures 7.1 to 7.5 underline the correctness of the implemented heuristics. Specif-
ically, for the majority of the circuits under test, both the fidelity (approximated)
and the Hellinger fidelity are very close to one. Moreover, also the KLD is near
zero for the majority of the tested quantum circuits. The circuits with the highest
KLD (also with the lowest Hellinger and approximated fidelity) are the ones of the
medium-sized set (the results are similar independently of the target technology),
and the ising_n10.qasm circuit is the “worst” one. Indeed, not only is this result
expected due to the large number of measured eigenstate in this circuit, but also
the fidelities and KLD do not exceed the acceptable thresholds, still validating the
proposed layout synthesis library.

All of the implemented heuristics were subject to functional equivalence check-
ing, using different parameter configuration. In this section, the results are reported
only for some combination of placement and routing heuristics, and for a specific
configuration. The results are independent of the heuristic applied and are more
related to the quantum circuit set, proving even more strongly their correct-
ness.
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Figure 7.1. Results of the functional equivalence checking test for the Simu-
latedAnnealingHardwareAwareMapping placement strategy. The quantum circuits
under test are the small-sized circuits, and the target technology is trapped ions.
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Figure 7.2. Results of the functional equivalence checking test for the Triv-
ialMapping placement strategy combined with the BasicRouting routing strat-
egy. The quantum circuits under test are the small-sized circuits, and the
target technology is superconducting.
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Figure 7.3. Results of the functional equivalence checking test for the TrivialMap-
ping placement strategy combined with the HardwareAwareRouting routing strat-
egy. The quantum circuits under test are the medium-sized circuits, and the target
technology is superconducting.
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Figure 7.4. Results of the functional equivalence checking test for the Sim-
ulatedAnnealingDenseMapping placement strategy combined with the Hard-
wareAwareRouting routing strategy. The quantum circuits under test are the
small-sized circuits, and the target technology is quantum dots.
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Figure 7.5. Results of the functional equivalence checking test for the Simu-
latedAnnealingHardwareAwareMapping placement strategy combined with the
HardwareAwareRouting routing strategy. The quantum circuits under test are
the large-sized circuits (only the first 25 circuits are shown), and the target
technology is superconducting.
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Circuit under test name Number
adder_n4.qasm 0
basis_change_n3.qasm 1
basis_trotter_n4.qasm 2
bell_n4.qasm 3
cat_state_n4.qasm 4
deutsch_n2.qasm 5
dnn_n2.qasm 6
error_correctiond3_n5.qasm 7
fredkin_n3.qasm 8
grover_n2.qasm 9
hs4_n4.qasm 10
iswap_n2.qasm 11
linearsolver_n3.qasm 12
lpn_n5.qasm 13
pea_n5.qasm 14
qaoa_n3.qasm 15
qec_en_n5.qasm 16
qft_n4.qasm 17
qrng_n4.qasm 18
quantumwalks_n2.qasm 19
teleportation_n3.qasm 20
toffoli_n3.qasm 21
variational_n4.qasm 22
vqe_uccsd_n4.qasm 23
wstate_n3.qasm 24

Table 7.1. Small-sized quantum circuits set.

Circuit under test name Number
adder_n10.qasm 0
dnn_n8.qasm 1
ising_n10.qasm 2
qaoa_n6.qasm 3
qpe_n9.qasm 4
sat_n11.qasm 5
simon_n6.qasm 6
vqe_uccsd_n6.qasm 7
vqe_uccsd_n8.qasm 8

Table 7.2. Medium-sized quantum circuits set.
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Circuit under test name Number
0410184_169.qasm 0
3_17_13.qasm 1
4_49_16.qasm 2
4gt11_84.qasm 3
4gt12-v1_89.qasm 4
4gt13-v1_93.qasm 5
4gt4-v1_74.qasm 6
4gt5_77.qasm 7
4mod5-bdd_287.qasm 8
4mod5-v1_24.qasm 9
4mod7-v1_96.qasm 10
9symml_195.qasm 11
adr4_197.qasm 12
aj-e11_165.qasm 13
alu-bdd_288.qasm 14
alu-v4_37.qasm 15
bv_n14.qasm 16
C17_204.qasm 17
clip_206.qasm 18
cm152a_212.qasm 19
cm42a_207.qasm 20
cm82a_208.qasm 21
cm85a_209.qasm 22
cnt3-5_180.qasm 23
co14_215.qasm 24

Table 7.3. Large-sized quantum circuits set (only the first 25 circuits are shown).

Quantum technology K
Superconducting 0.9892
NMR 0.9893
Quantum dots 0.9994
Trapped ions 0.9789

Table 7.4. K penalisation factor used for the circuit cost function C computation.
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7.3 Benchmarking results - Placement

In this section, the results of the benchmarking phase for the placement step alone
are reported, shown in Figures 7.6 to 7.9. Specifically, in each figure, the average
number of non-allowed two-qubit interactions (considering all the quantum
circuits in each set) is plotted. All the results presented in this chapter suppose that
the Rz gates are implemented virtually, since this is the typical condition when
a quantum circuit in a real NISQ device is executed. Indeed, this information is used
for the error rates computation in all the hardware-aware placement strategies (both
the ones implemented in the presented library and the tested Qiskit’s heuristics).
For the Simulated Annealing Hardware-Aware Mapping strategy, in the previously
cited figures the configured coefficients are also indicated, in the form: Sα1Eα2Tα3
(see Section 6.2.1 for more details about these coefficients).

7.3.1 Small-sized circuits set

Figure 7.6 underlines that for the small-sized quantum circuits set and for the super-
conducting technology, all the implemented heuristics outperform the Qiskit’s
ones, with a number of non-allowed interactions sensibly reduced. In particular,
the implemented methods obtain an improvement of roughly 25% with respect to
the IBM’s compiler.
It was unexpected that the TrivialMapping strategy, being the simplest one, could
have better results, for the small-sized circuits and superconducting technology,
when compared to the smarter Qiskit’s strategies. These results could be related
to the fact that the metrics considered for the optimisation by the smart algorithms
are slightly different and more complex than the one used for comparison in this
section. Therefore, a placement which is worse than others from the number of
non-allowed two-qubit interactions point of view, can be optimal considering other
figure of merits, such as the number of swap gates required in the routing stage.
For example, the aim of the Qiskit SabreLayout is the minimisation of the total
number of swap gates added for the complete SABRE layout synthesis procedure.
It is possible that to a higher number of non-allowed interactions obtained after
the initial mapping, corresponds a lower number of swap gates added during the
routing phase. Furthermore, the goal of the Qiskit NoiseAdaptiveLayout is more
related to the error rates minimisation rather than the non-allowed interactions
minimisation. The slight discrepancy between the comparison metric and the one
used for the optimisation process of each algorithm is probably more evident on
small circuits, where the solution space is reduced, allowing the trivial algorithm
to have a good chance of delivering an optimal or suboptimal placement.
The situation is different for the small-sized circuits set for the quantum dots back-
end, as shown in Figure 7.9. Specifically, the Qiskit Dense Layout and the Qiskit
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SabreLayout have similar results to the ones offered by the proposed li-
brary. The Qiskit NoiseAdaptiveLayout is instead the worst strategy for maximis-
ing the allowed two-qubit interactions.
Summarising the results for the small-sized circuits set, the optimal placement
strategy is the implemented Simulated Annealing Hardware-Aware Map-
ping, showing for both superconducting and quantum dots technology the maxi-
mum reduction of non-allowed two-qubit interactions.

7.3.2 Medium-sized circuits set
For the medium-sized circuits set, shown in Figure 7.7, the results are instead dif-
ferent. Specifically, the Qiskit SabreLayout and the Qiskit NoiseAdaptiveLayout
show the best results for reducing the non-allowed interactions. Further-
more and surprisingly, for the other heuristics, the results show that the simplest
implemented strategy (the TrivialMapping) has better results than all the others
smarter algorithms. As for the small-sized circuits set, the explanation to this
strange behaviour could be related to a different optimisation metric sought by
these strategies.

7.3.3 Large-sized circuits set
For the large-sized circuits set, presented in Figure 7.8, all the placement strate-
gies have comparable results. The Simulated Annealing Hardware-Aware Map-
ping and the Qiskit SabreLayout still show a slight improvement. Indeed, the good
results of the SABRE reverse traversal mapping were expected (based on the pub-
lished results in the associated literature), and the similarities with the implemented
heuristic is encouraging for validating the proposed methodology.

7.3.4 Review of the results
In all the figures shown it is possible to notice that the implemented TrivialMapping
and Simulated Annealing Dense Layout have identical results. The reason for this
is that the latter strategy starts its iterative search using the trivial mapping as
starting configuration. Indeed, for both the superconducting and the quantum
dots backend, the connectivity of this trivial mapping corresponds to the
maximum one, thus the two heuristics return the same mapping.

Summarising the presented evaluations, the implemented Simulated Annealing
Hardware-Aware Mapping seems to slightly outperforms all the other heuristics
for all the tested technologies and circuits sets, except for the medium-sized one.
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Figure 7.6. Results of the benchmarking test for the placement strategies.
The quantum circuits under test are the small-sized circuits, and the target
technology is superconducting.
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Figure 7.7. Results of the benchmarking test for the placement strategies.
The quantum circuits under test are the medium-sized circuits, and the target
technology is superconducting.
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Figure 7.8. Results of the benchmarking test for the placement strategies.
The quantum circuits under test are the large-sized circuits, and the target
technology is superconducting.
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Figure 7.9. Results of the benchmarking test for the placement strategies.
The quantum circuits under test are the small-sized circuits, and the target
technology is quantum dots.
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7.4 Benchmarking results - Placement and Rout-
ing - non-fully-connected technologies

In this section, the results of the benchmarking phase for the placement and rout-
ing step (the complete layout synthesis) of the non-fully-connected technologies
(superconducting and quantum dots) are reported, shown in Figures 7.10 to 7.21.
Specifically, for each technology, the average number of swap gates added,
the average execution time and the average circuit cost function C are
plotted. All the results presented in this section suppose that the Rz gates are
implemented virtually, since this is the typical condition when executing a quan-
tum circuit in a real NISQ device. Indeed, this information is used for the error
rates computation in all the hardware-aware placement and routing strategies (both
the ones implemented in the presented library and the tested Qiskit’s and t|ket〉’s
heuristics).
For the Simulated Annealing Hardware-Aware Mapping and the Hardware-Aware
Routing strategies, in the previously cited figures, the configured coefficients are
also indicated, in the form: Sα1Eα2Tα3 (see Section 6.2.1 for more details about
these coefficients).

7.4.1 Small-sized circuits set
For the small-sized quantum circuits and for the superconducting technology, as it is
possible to notice in Figures 7.10 to 7.12, the Hardware-Aware Routing algorithm
always outperforms all the Qiskit’s strategies (in all the three compared
metrics), with results comparable to the ones obtained by the t|ket〉’s compiler.
Moreover, the combination of the implemented Simulated Annealing Hardware-
Aware Mapping and Hardware-Aware Routing shows a slight improvement even
compared to the t|ket〉’s strategies, in terms of minimum average value of swap
gates added, execution time and circuit cost function C.
An unexpected result noticeable in these plots is that the simplest implemented
layout synthesis strategy (Trivial Mapping plus Basic Routing) shows results not
so far with respect to the smarter ones, and sometimes even better than the
Qiskit’s heuristics. However, remembering that all of these strategies are heuristics
solutions and not exact algorithms, the outcomes are reasonable. Furthermore,
because the tested circuits are short, the number of feasible solutions (layouts)
might be restricted, with only a little margin for improvement.

For the small-sized circuits set and for the quantum dots technology, shown in
Figures 7.19 to 7.21, all the heuristics implemented for the proposed library, the
Qiskit’ones and t|ket〉’ones seem to have consistent results. In particular, the
execution time and circuit cost function C are almost identical independently on
the applied layout synthesis strategies. It might be that due to the tested device
coupling-graph (linear topology), for the tried circuits, the possible improvements
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in terms of execution time and error rate are quite limited, independently on the
adopted strategy.

7.4.2 Medium-sized circuits set
The results of the medium-sized circuits set for the superconducting technology,
shown in Figures 7.13 to 7.15, underline that the optimal swap gate count and
execution time is strongly related to the routing strategy, and almost independent
of the initial mapping applied. Specifically, the worst results are obtained with
the implemented Basic Routing and the Qiskit StochasticSwap. Indeed, these out-
comes affirms the stronger optimisation power of the other tested heuristics. The
best results (for these two metrics) are obtained with all the t|ket〉’s strategies and
with the combination of Qiskit SabreSwap and Qiskit SabreRouting (that is, the
complete SABRE layout synthesis).
The implemented Hardware-Aware Routing algorithm shows a slightly worse op-
timisation compared to SabreRouting, for all the three considered metrics. Being
SABRE the father of the implemented Hardware-Aware Routing algorithm, the sim-
ilarity between the obtained results was expected, even if in this particular scenario,
the latter obtained an inferior optimisation.

7.4.3 Large-sized circuits set
For the large-sized circuits set and for the superconducting technology, shown in
Figures 7.16 to 7.18, the results are consistent for all the three compared
metrics. Specifically, the worst results are obtained with the Basic Routing
strategy (independently of the placement heuristic used) and all the combinations
of the Qiskit’s tested heuristics. The best results are obtained instead with the
implemented Simulated Annealing Hardware-Aware Mapping and Hardware-Aware
Routing and all the tested t|ket〉’s strategies. Indeed, the Hardware-Aware Routing
has almost identical results to the t|ket〉’s LexiRouteRouting regarding swap gate
count and execution time, showing even better results for the circuit cost function
C.
The obtained findings agree with the expectations, demonstrating that the Hardware-
Aware Routing, by leveraging calibration data knowledge, outperforms its father
algorithm (the complete SABRE layout synthesis) in all the three metrics.

7.4.4 Review of the results
Summarising the obtained results, on average the combination of Simulated An-
nealing Hardware-Aware Mapping and the Hardware-Aware Routing outperforms
the SABRE routing strategy, even if the latter has some better results in specific
tested scenarios (like for the medium-sized circuits set).
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It is surprising that the t|ket〉’s GraphPlacement plus LexiRouteRouting strategy,
being hardware-unaware and thus without the information on the quantum
gates features, have comparable results to the implemented hardware-aware lay-
out synthesis procedures. Nevertheless, the advantage of the Cambridge Quan-
tum’s compiler in terms of computational capabilities, being completely developed
in C++, is most probably exploited to obtain these good results.
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Figure 7.10. Results of the benchmarking test for the placement and routing
strategies. The quantum circuits under test are the small-sized circuits, and the
target technology is superconducting.
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Figure 7.11. Results of the benchmarking test for the placement and routing
strategies. The quantum circuits under test are the small-sized circuits, and the
target technology is superconducting.
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Figure 7.12. Results of the benchmarking test for the placement and routing
strategies. The quantum circuits under test are the small-sized circuits, and the
target technology is superconducting.
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Figure 7.13. Results of the benchmarking test for the placement and routing
strategies. The quantum circuits under test are the medium-sized circuits, and
the target technology is superconducting.
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Figure 7.14. Results of the benchmarking test for the placement and routing
strategies. The quantum circuits under test are the medium-sized circuits, and
the target technology is superconducting.
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Figure 7.15. Results of the benchmarking test for the placement and routing
strategies. The quantum circuits under test are the medium-sized circuits, and
the target technology is superconducting.
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Figure 7.16. Results of the benchmarking test for the placement and routing
strategies. The quantum circuits under test are the large-sized circuits, and the
target technology is superconducting.
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Figure 7.17. Results of the benchmarking test for the placement and routing
strategies. The quantum circuits under test are the large-sized circuits, and the
target technology is superconducting.
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LexiRouteRouting
TKET NoiseAwarePlacement(with nodes_errors) + 
LexiRouteRouting

Figure 7.18. Results of the benchmarking test for the placement and routing
strategies. The quantum circuits under test are the large-sized circuits, and the
target technology is superconducting.
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Figure 7.19. Results of the benchmarking test for the placement and routing
strategies. The quantum circuits under test are the small-sized circuits, and the
target technology is quantum dots.
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Figure 7.20. Results of the benchmarking test for the placement and routing
strategies. The quantum circuits under test are the small-sized circuits, and the
target technology is quantum dots.
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Figure 7.21. Results of the benchmarking test for the placement and routing
strategies. The quantum circuits under test are the small-sized circuits, and the
target technology is quantum dots.
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7.5 Benchmarking results - Placement and Rout-
ing - fully-connected technologies

In this section, the results of the benchmarking phase for the placement and routing
step (the complete layout synthesis) of the fully-connected technologies (NMR
and trapped ions) are reported, shown in Figures 7.22 to 7.29. Specifically, for each
technology, the average execution time and the average circuit cost function
C are plotted. All the results presented in this section suppose that the Rz gates
are implemented virtually, since this is the typical condition when executing a
quantum circuit in a real NISQ device. Indeed, this information is used for the error
rates computation in all the hardware-aware placement and routing strategies (both
the ones implemented in the presented library and the tested Qiskit’s and t|ket〉’s
heuristics). Moreover, for benchmarking the Hardware-Aware Routing strategy,
the connectivity of the two fully-connected backends is broken (as explained in
Section 6.3.1). In details, for the NMR backend a minimum J-coupling threshold
of 1.47 Hz is set, and for the trapped ions backend the maximum MS gate time
and error rate are set to respectively 504 µs and 0.0126.
For the Simulated Annealing Hardware-Aware Mapping and the Hardware-Aware
Routing Smart strategies, in the previously cited figures, the configured coefficients
are also indicated, in the form: Sα1Eα2Tα3 (see Section 6.2.1 for more details
about these coefficients).

7.5.1 Small-sized and medium-sized circuits set
For the small-sized and medium-sized circuits set, for both NMR and trapped ions,
the results seems very similar. Indeed, all the implemented strategies seems to have
the best optimisation in terms of execution time. The Hardware-Aware Routing
Smart algorithm has, for some circuits, obtained a slightly powerful optimisation,
but the average is not significantly affected.

In order to benchmark the strength of the implemented routing strategies for
fully-connected technologies, and compare the results with the strategy of simply
not adding any swap gates, Tables 7.5 to 7.7 show the results of respectively:
TrivialMapping alone, TrivialMapping plus the Hardware-Aware Routing strategy,
TrivialMapping plus the Hardware-Aware Routing Smart strategy. All of these
strategies were tested considering the NMR backend.
The results underline that all the circuits for which Hardware-Aware Routing and
Hardware-Aware Routing Smart does not add any swap gates (swap count is equal
to zero) have the same execution times as when TrivialMapping was used alone.
On the other hand, for circuits in which these strategies adds swap gates, the
execution times are always reduced. These results demonstrate that even if
the technologies are fully-connected, by using smarter routing strategies
some optimisations are still reachable. The obtained results are not a surprise

151



7 – Benchmarking

for the Hardware-Aware Routing Smart algorithm, since it explicitly checks that
the overhead of inserting a swap gate is repaid, but still the average are important
due to its heuristic nature.

7.5.2 Large-sized circuits set
Remarkable results can be observed in Figure 7.28. There, it is noticeable that the
implemented Hardware-Aware Routing Smart algorithm improves the average total
execution time, reaching the best results against all the other heuristics, both
the implemented ones and the Qiskit’s and t|ket〉’s solutions.
These promising results underline that for the fully-connected technologies in which
the strength of the two-qubit interactions varies (meaning different execution time
and/or error rate), using a smart algorithm that prefers the stronger interactions
could lead to a better optimised final quantum circuit.

7.5.3 Review of results
For all the tested circuits sets and for both the two fully-connected technologies,
only the implemented routing strategies adds some swap gates, aiming to reach
a stronger optimisation. The Qiskit’s and t|ket〉’s heuristics only modified the
quantum circuit during the placement step. Indeed, all of these major compilers
assumes that being the devices fully-connected, the routing procedure does not
require performing any modification on the quantum circuit.

The implemented routing strategies for the fully-connected devices try a different
approach. Instead of accepting the quantum circuit as executable, an attempt to
optimise the final execution time is made. Specifically, the available information on
the gate features are exploited, checking if it might be worth to pay the overhead
of inserting swap gates to avoid the weaker interactions.
Extremely good results are obtained using the Hardware-Aware Routing Smart
algorithm, that inserts swap gates to bring the interactions towards the stronger
interacting nodes. The obtained outcomes underline that in the worst scenario, this
algorithm does not modify at all the quantum circuit’s main figure of merits. In
the best scenario, however, the execution time is minimised. The obtained results
strongly suggests that more research on the routing procedures for fully-connected
devices must be explored.
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Figure 7.22. Results of the benchmarking test for the placement and routing
strategies of the fully-connected technologies. The quantum circuits under test
are the small-sized circuits, and the target technology is NMR.
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Figure 7.23. Results of the benchmarking test for the placement and routing
strategies of the fully-connected technologies. The quantum circuits under test
are the small-sized circuits, and the target technology is NMR.
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Figure 7.24. Results of the benchmarking test for the placement and routing
strategies of the fully-connected technologies. The quantum circuits under test
are the small-sized circuits, and the target technology is trapped ions.
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Figure 7.25. Results of the benchmarking test for the placement and routing
strategies of the fully-connected technologies. The quantum circuits under test
are the small-sized circuits, and the target technology is trapped ions.
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Figure 7.26. Results of the benchmarking test for the placement and routing
strategies of the fully-connected technologies. The quantum circuits under test
are the medium-sized circuits, and the target technology is trapped ions.
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Figure 7.27. Results of the benchmarking test for the placement and routing
strategies of the fully-connected technologies. The quantum circuits under test
are the medium-sized circuits, and the target technology is trapped ions.
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Figure 7.28. Results of the benchmarking test for the placement and routing
strategies of the fully-connected technologies. The quantum circuits under test
are the large-sized circuits, and the target technology is trapped ions.
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Figure 7.29. Results of the benchmarking test for the placement and routing
strategies of the fully-connected technologies. The quantum circuits under test
are the large-sized circuits, and the target technology is trapped ions.
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TrivialMapping
Circuit name Swap count Execution time [s]
adder_n4.qasm 0 0.944301

basis_change_n3.qasm 0 0.547967
basis_trotter_n4.qasm 0 52.276457

bell_n4.qasm 0 1.295001
cat_state_n4.qasm 0 0.243986
deutsch_n2.qasm 0 0.183303

dnn_n2.qasm 0 4.857846
fredkin_n3.qasm 0 1.491774

grover_n2.qasm 0 0.532622
hs4_n4.qasm 0 0.992432

iswap_n2.qasm 0 0.283597
linearsolver_n3.qasm 0 0.712982

qaoa_n3.qasm 0 1.376494
qft_n4.qasm 0 2.639705
qrng_n4.qasm 0 0.124513

quantumwalks_n2.qasm 0 1.525190
teleportation_n3.qasm 0 0.263107

toffoli_n3.qasm 0 1.352919
variational_n4.qasm 0 1.419673
vqe_uccsd_n4.qasm 0 9.143029
wstate_n3.qasm 0 1.695306

Table 7.5. Results of the benchmarking test for the TrivialMapping strategy
of the fully-connected technologies. The quantum circuits under test are the
small-sized circuits, and the target technology is NMR.
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TrivialMapping + HaRouting(S0.5E0.0T0.5)
Circuit name Swap count Execution time [s]
adder_n4.qasm 0 0.944301

basis_change_n3.qasm 0 0.547967
basis_trotter_n4.qasm 0 52.276457

bell_n4.qasm 1 0.961430
cat_state_n4.qasm 0 0.243986
deutsch_n2.qasm 0 0.183303

dnn_n2.qasm 0 4.857846
fredkin_n3.qasm 3 0.909449

grover_n2.qasm 0 0.532622
hs4_n4.qasm 0 0.992432

iswap_n2.qasm 0 0.283597
linearsolver_n3.qasm 0 0.712982

qaoa_n3.qasm 2 0.710398
qft_n4.qasm 2 1.494051
qrng_n4.qasm 0 0.124513

quantumwalks_n2.qasm 0 1.525190
teleportation_n3.qasm 0 0.263107

toffoli_n3.qasm 3 0.768762
variational_n4.qasm 0 1.419673
vqe_uccsd_n4.qasm 0 9.143029
wstate_n3.qasm 3 1.111149

Table 7.6. Results of the benchmarking test for the TrivialMapping plus Hard-
ware-Aware Routing strategy of the fully-connected technologies. The quantum
circuits under test are the small-sized circuits, and the target technology is NMR
(with broken connectivity).
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TrivialMapping + HaRoutingSmart(S0.5E0.0T0.5)
Circuit name Swap count Execution time [s]
adder_n4.qasm 0 0.944301

basis_change_n3.qasm 0 0.547967
basis_trotter_n4.qasm 0 52.276457

bell_n4.qasm 1 0.961430
cat_state_n4.qasm 0 0.243986
deutsch_n2.qasm 0 0.183303

dnn_n2.qasm 0 4.857846
fredkin_n3.qasm 1 1.158726

grover_n2.qasm 0 0.532622
hs4_n4.qasm 0 0.992432

iswap_n2.qasm 0 0.283597
linearsolver_n3.qasm 0 0.712982

qaoa_n3.qasm 0 1.376494
qft_n4.qasm 3 1.395679
qrng_n4.qasm 0 0.124513

quantumwalks_n2.qasm 0 1.525190
teleportation_n3.qasm 0 0.263107

toffoli_n3.qasm 2 1.103118
variational_n4.qasm 0 1.419673
vqe_uccsd_n4.qasm 0 9.143029
wstate_n3.qasm 2 1.445767

Table 7.7. Results of the benchmarking test for the TrivialMapping plus
Hardware-Aware Routing Smart strategy of the fully-connected technolo-
gies. The quantum circuits under test are the small-sized circuits, and the
target technology is NMR.
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Chapter 8

Conclusions

The target of this thesis was the development of a layout synthesis library, com-
pletely independent of any quantum compilation framework, to perform the place-
ment and routing steps in order to bring an abstract quantum circuit description
into a physical one, executable on quantum computing hardware.

One point must be emphasised. The proposed library was not developed to
replace nor competing with the state-of-the-art compilers in terms of optimisation
strength. The key component of the proposed work is flexibility. The library pro-
vides classes and methods to rapidly and efficiently implement layout synthesis
procedures, in order to assess their potential. It was implemented for simplifying
the research activities in this fascinating field, and not for competing with other
toolchains.
Heuristic solutions were explored and incorporated inside this work, with the con-
fidence and hopefulness that scalability will be the main concern for NISQ devices
in the near future.

The developed library is compatible with superconducting, quantum dots, NMR
and trapped ions technologies, where each target device is defined by a backend con-
figuration file in which also the gate features information can be included. For com-
puting this calibration data, different strategies were adopted. For superconducting
devices, this information is directly retrieved from the IBM Quantum project. For
NMR and quantum dots backends, the error rates were computed by using the
MATLAB QuanTO simulator of VLSI Lab of Politecnico di Torino. For trapped
ions instead, the gate features computation was performed by using a model found
in the associated literature.

The most powerful strategies developed for the proposed library are all based
on the novel hardware-aware approach, exploiting the quantum gates features to
make smarter decisions. These clever procedures were tested for all the current
state-of-the-art quantum technologies, demonstrating that satisfactory optimisa-
tion results could be obtained. Indeed, the optimisation power that the proposed
library strategies can reach is comparable to the consolidated Qiskit and t|ket〉
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compilers, validating even more the proposed approaches.

Moreover, during the production of this work a research effort was made, to
evaluate if cleverer routing procedures should be tried even for fully-connected
technologies. The results of this study are remarkable: when the gate features
depend on the interacting nodes, even if the target device has no connectivity lim-
itations, still swap gates addition could be beneficial for the final quantum circuits
main figure of merits.
However, the obtained outcomes also underline the limitation of such heuristic solu-
tions, which cannot always make the optimal decision in every step of the iterative
exploration process.

Following the completion of the library’s development, the work was integrated
inside the VLSI quantum circuits compilation toolchain, completing the ambitious
project started by M. Avitabile in 2021 of realising a full and independent quan-
tum compiler. All the previous advice proposed for the placement and routing
integration was followed, maintaining the original philosophy of allowing an easy
expansion.
Although the library and the toolchain are complete, there is still room for improve-
ment. First and foremost, to enhance the results in terms of compilation time, the
available placement and routing procedures should be implemented using a com-
piled and performant language, such as C++, instead of an interpreted one. In
this way, the library would transform into a shell around the core layout synthesis
implementation. Maybe in this way, also computationally heavier solutions might
be explored.
Secondly, following the advancements in quantum computing hardware, the exist-
ing quantum technologies gate characteristics modelling may be enhanced, while
also adding additional future devised quantum device implementations. For ex-
ample, the support for trapped ions technology could be expanded, by allowing
the abstraction of more recent architectures such as the Quantum Charge Coupled
Device (QCCD). In this way the “classical” routing approach for this technology,
implemented through ion shuttling, can be integrated.
Furthermore, an automatic tool for the generation of the backend configuration file
could be produced for all the supported technologies. Last but not the least, the
proposed library could always be expanded, exploring future publications on the
layout synthesis problem.

The contemporary NISQ devices appear to be highly promising for converting
the theoretical quantum advantage into a practical one. Indeed, the main objective
is proving that the “bet” of the quantum model of computation is actually worth
it. To contribute to this incredible achievement, a quantum compilation toolchain
is essential, in order to effectively execute a quantum circuit and make it produce
meaningful results. The hope is that the produced work will constantly be expanded
by future researchers to continuously improve (at least at a circuital level) the
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execution of quantum algorithms on real device, with the hope that will better
solve problems of interest for Society and Industries.
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