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"And how many years can some
people exist before they’re allowed to
be free? The answer is blowin’ in the
wind"

-Bob Dylan

Alla mia nonna, alla quale il tempo non ha
permesso di esserci, ma il cui affetto nel vento
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Abstract

Research related to Artificial Neural Networks (ANN) enhanced the realization of effi-
cient hardware structures able to perform new and highly complex tasks. The hardware
realization of ANN requires massive resources, leading to space requirements, computa-
tional time, and power consumption challenges. In parallel to this, in recent years, the
scaling process dictated by Moore’s law has started to show future limitations related to
the same, previously mentioned, technological aspects. Therefore, researchers began to
study and develop new ways of realizing digital electronics. Among the range of proposed
alternatives, Field-Coupled Nanocomputing (FCN) is one of the most promising in the
group of "Beyond CMOS" technologies. The two main characteristics of this paradigm are
the possibility of implementing devices in highly dense functional arrays and the reduced
power dissipation.

The proposed hardware neural network has its basis in the molecular implementation
of the FCN paradigm. In this technology, the information is encoded in the charge di-
stribution within each molecule, whereas electrostatic interactions between neighboring
molecules ensure information propagation, thus avoiding current flow. Molecular FCN
has shown promising results concerning the realization of standard digital gates.

The work developed in this thesis has its basis on the results already present in the
literature, which show the potential advantages of using FCN to implement single neu-
ron models. These results come from the demonstrated linear behavior of the adopted
molecules, which are capable of adding up the effects from the surrounding circuit. Star-
ting from these concepts, this thesis expands the analysis towards realizing new hardware
architectural solutions for neural network development.

The procedure followed during this work analyzes possible strengths and issues the
proposed implementation presents and consists of a two-step analysis of the main struc-
tures present in the network. First, the interface molecules have been characterized to
encode a certain weight, enlarging their study to cover process variations.

Then, the properties of the output molecules and the information propagation structure
have also been described and characterized. Therefore, it was possible to determine the
properties the molecules should have to accomplish the task as neurons and derive the
layout and timing requirements of the circuit. A Self-Consistent ElectRostatic Potential
Algorithm (SCERPA) is adopted to simulate the circuits and solve molecular interactions
iteratively.

The outcomes confirm the possibility for the proposed structure to work as a neural
network. Indeed, the output of each neuron switches when the sum of the weighted input
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reaches a defined threshold and the computed pieces of information propagate correctly
through the network. Therefore, it was possible to predict the circuit’s final output value
with remarkable accuracy.

Finally, we demonstrate the functionality of the proposed network to perform pattern
recognition tasks and compare the outcomes with those obtained from software-trained
feed-forward neural networks. The comparison was successful, and the proposed circuit
correctly classified four different 3x3 matrix paths. Moreover, the molecular FCN network
uses fewer neurons to perform the task. Furthermore, from a hardware point of view,
the structure obtained is compact compared to state-of-the-art silicon solutions, and the
involved paradigm avoids current flow. In conclusion, the work developed in this thesis
demonstrates the initial expectations: molecules can be used to create artificial neurons,
and the proper connection among them can correctly implement working neural networks.
This thesis places grounding rules for realizing molecular FCN neural networks; further
analysis would be needed to fulfill possible more complex requirements than the ones
analyzed so far.
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Chapter 1

Introduction to molecular
FCN

1.1 General principles
Information processing followed since the invention of the transistor an unprecedented
improvement in the history of technology. Over the past 50 years, the technology evolution
in terms of devices miniaturization followed the general trend traced by Moore’s law [1].
Moore predicted in 1965 that the number of transistors in an integrated circuit would be
doubled every year; actually, in 1975, the prediction was updated to a doubling every two
years [2]. The general trend is reported in figure 1.1.

Unfortunately, this proceeding will not always be conceivable. The demand for den-
ser products with reduced power consumption is giving the fabrication companies some
problems in realizing such devices. Therefore, silicon technologies seem to show some
limitations about those parameters, which are not easy to overcome.
For these reasons, research is moving forward to find solutions to substitute silicon as
soon as it becomes unreliable. It is essential to consider that changing a specific techno-
logy with a new one is a complex task. Indeed, some primary considerations have to be
provided, particularly concerning the standard electronics basic building blocks, as state
variables and inputs/output electrical definitions [3] [4].
Among all the characteristics that the candidate technologies must show, power consump-
tion and scalability of devices play a significant role. Moreover, the first one is also related
to the speed at which the circuit will work, which increases with short interconnection lines
and small devices’ dimensions. However, miniaturization involves the presence of more
and more elements in a reduced space, meaning that, in some cases, a higher amount of
power has to be dissipated. In addition, the increased miniaturization involves possible
quantum mechanic effects. These are, for instance, scattering events, tunneling effect, and
quantization of energy levels [5].
All these aspects are constantly considered and updated in the ITRS report [6].
Two main paths have been highlighted as possible candidates for the future of integration
in electronics [6]:
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Introduction to molecular FCN

Fig. 1.1: Moore law trend: increase of number of transistors through the years

• More than Moore: this refers to the possibility of producing heterogeneous integrated
systems such as System-on-Chip. The idea is to build complex systems integrating
all the elements on the same chip.

• Beyond CMOS: in this case, new technologies rely on different paradigms introduced
to overcome silicon limitations.

Among all the possible solutions introduced in the ITRS report, the more interesting
for this work is the Field Coupling Nanocomputing (FCN) paradigm, implemented in the
Quantum Dot Cellular Automata (QCA) technology.

1.2 Beyond CMOS solutions: FCN and QCA
As previously anticipated, FCN is one of the solutions proposed in the international road-
map as a potential candidate to replace the current CMOS technology. Above all the
exciting characteristics defining FCN, the more appealing one is the possibility of elimina-
ting current flow through wiring, which is one of the leading causes of power dissipation
in electronics nowadays. Moreover, this would allow arranging quasi-reversible operations
from a thermodynamic point of view [7], [8] .
FCN has been physically demonstrated with different implementations, such as the me-
tallic [9] and magnetic [10]. In general, there is the possibility to obtain tiny devices that
can be operated at room temperature [11]. Concerning the molecular implementation of
the FCN paradigm, it relies on Quantum-dot Cellular Automata (QCA) structures. In
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this solution, the idea is to have quantum dots as the low potential regions where the
charge is more stable and more likely to stay.
This chapter introduces the basic principles of the QCA paradigm and then the realization
in the molecular field.

1.2.1 QCA introduction
To properly understand how the field coupling paradigm works, it is essential to introduce
the most common way in which it can be implemented [9], i.e., Quantum-dot Cellular
Automata. The primary cell is represented as a square in which four dots are present,
reported in figure 1.2.

(a) Basic cell QCA (b) Logic ’0’ (c) Logic ’1’

Fig. 1.2: Basic cell schematic representation for QCA paradigm

Above are reported three important figures to understand the basic concepts behind
the QCA implementation. Figure 1.2a reports the basic scheme of a single cell. The four
white circles are the low potential regions where the electrons can be confined. The char-
ges move into those dots according to external influences in terms of electric interaction.
In particular, in a QCA cell, there are just two stable configurations where the charge
can localize due to the need to minimize Coulomb repulsion [12]. These are reported in
figures 1.2b and 1.2c.
Both these charge distributions can be associated with corresponding binary informa-
tion arbitrarily chosen. Given this brief introduction, it is important to understand how
information propagation occurs. For this purpose, look at figure 1.3.

Fig. 1.3: Schematic propagation in QCA technology

In figure 1.3, it is reported the basic schematic of the propagation mechanism, in this
case, is considered just the influence derived from one molecule on the others. The red
lines across the dots are the electric field lines derived from the charge distribution between
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the two dots. According to the rules of electrostatic, the lines are moving out from the
positive pole and entering the negative one. The voltage derived from this will have an
opposite sign following equation 1.1.

E = −∆V

∆s
(1.1)

The minus sign indicates that E points toward decreasing potential. The electric field
lines will influence the charge distribution on the other quantum dots in the circuit. Look,
for instance, at the first two dots on the right-hand cell. In this case, the electric field
deriving from the cell on the left forces the electrons to move in the opposite direction:
the binary information can be propagated through the structure, as reported in figure
1.4. As already said, this configuration provides the most negligible value for Coulomb
repulsion within the electrons [8]. As soon as the first cell switches its content, the whole
wire will follow the same behavior, providing the propagation of binary values.
Notice that this explanation is just a massive simplification of the actual situation, in
which all the electric field lines deriving from all the dots have to be considered.

Fig. 1.4: QCA wire composed by six cells

As a last remark for this introduction, consider the explanation about the electric field
lines and the coupling within neighboring dots. From the physical explanation, it is more
clear how this technique avoids energy dissipation as much as possible: there is no current
flowing through the structure but charges moving in different quantum dots. In this way,
the energy dissipated is in the order of 10−20J [13], at least two orders of magnitude lower
than the energy dissipated during a transistor switching.

QCA implementation of logic functions

Every technology aiming to replace CMOS must present the possibility of building all the
elements allowing to reproduce the same blocks on which standard electronics are built,
such as the more common basic gates and logic functions.
In particular, OR gates, AND gates, Majority Voters, and inverters must be present and
working with this paradigm.
This section presents all the basic gates to deeply understand how the QCA paradigm
can cope with the requests of digital logic design. In general, it is possible to say that a
proper circuit layout is needed to implement a given digital circuit with QCA and FCN
paradigms. Indeed, according to the cells specific positions, a different working behavior
can be obtained. First, it is essential to introduce the majority voter [12], whose schematic
structure is reported in figure 1.5a.
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(a) MV gate (b) OR gate (c) AND gate

Fig. 1.5: Majority Voter, AND, OR gates layout

The circuit consists of three input cells placed on three different sides of a central
one. The charge configuration of the central cell will be equal to the most present at
its interfaces, as reported in figure 1.5a. There are two logical ‘1’ inputs and just one
logical ‘0’. According to the need to minimize the Coulomb repulsion, charges distribute
to provide a logic ‘1’ value. Notice that this structure is highly relevant for this thesis
since it will become the primary block of the neural layouts proposed in the following.
About that, it is crucial to introduce the concept of polarization of a QCA cell, which is
the primary solution to measure the effective distribution of charges among the dots. This
concept will be recalled in several parts of this work, and the formula can be appreciated
in 1.2.

P = Q1 + Q3 − Q2 − Q4
Q1 + Q2 + Q3 + Q4 (1.2)

Therefore, it is possible to have a numerical evaluation of the charge distribution among
the four dots of the cell.
Notice that, in the previously shown example related to the majority voter, since each
cell is influencing the others, there will be different kinds of influences. Indeed, the color
representation reported in the figure is just a simplified sketch of the situation. All these
considerations will be analyzed in more detail in the following parts of this thesis.
As previously anticipated, it is possible to realize other basic logic gates from the majority
voter structure. In figure 1.5b and 1.5c are reported the layouts for the OR and AND
gates, respectively. In figure 1.5b is reported the OR gate layout, as said, it is the same
of a majority voter except for a fixed input representing a logic ‘1’. On the other end,
figure 1.5c reports the AND gate layout. Given the presence of the fixed input at ‘0’, to
obtain a logical ‘1’, the other two inputs must be configured as logic ones. According to
the usual AND cell truth table, the output will be a ‘0’ value in all the other cases. FCN
paradigm implemented with QCA technology has also proven reliable for more complex
circuit solutions [14]. An example is the inverter, reported in figure 1.6.
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Fig. 1.6: Inverter layout

As it is possible to see in figure 1.6, the input and output configurations are opposite
in the structure. The circuit takes advantage of the diagonal coupling within the cells,
providing the inversion of the propagating information.
Usually, in CMOS technology, the inverter is one of the primary and more straightforward
realizable gates. In QCA, the inverter is already not that straightforward to be imple-
mented.
Another structure example can be, for instance, the XOR gate, analyzed in [14], which is
even more complicated and whose structure has to be subjected to proper adjustments to
provide a correct propagation.

Clock structure in QCA

Among the general rules governing the QCA paradigm in terms of functionalities, one of
the most important is the division of the circuit in regions controlled by different clock
signals. Those regions are activated only when the corresponding clock signal has an
active value, allowing the electrons to move through the dots according to the incoming
input voltage.
The reasons for which the insertion of the clock signal is essential are several. Some of
them are listed below, together with some hints about the layout design:

• Avoid the loss of information for long propagation. Indeed, for too long wires, the
information risks being lost. Indeed, as soon as the clock signal is released, the
charges tend to move randomly in one of the two stable configurations if the correct
information doesn’t arrive in a concise amount of time.

• Provide an unidirectional propagation of the information

• Allow sending more information with a certain time separation, introducing in this
way a sort of pipelining procedure

• with proper modification of the cell structure, the clock signal will force the charge
into intermediate positions to make the switch easier from one dot to the other.
Therefore, the cell must show six dots instead of four. The two additional ones will
be used as charge containers as soon as the clock for that cell is non-active. The
schematic of this new cell is reported in figure 1.7. The cell is in a reset state if the
charge is confined in the two other dots. It is important to remark that these two
intermediate regions are not stable positions for the charge.
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• A correct clock region design has to avoid possible propagation clashes; this is a fun-
damental concept. Thinking again of a long wire made by QCA cells, it is reasonable
to believe that as soon as the corresponding clock region goes active, all the cells
in that area are ready to switch their content. However, the charge situation is not
stable: the cells will tend to change to one of the two stable configurations as soon
as possible. If the information meant to be propagated has not arrived, it might be
lost in the propagation. A simplified example is reported in figure 1.8.

Fig. 1.7: Six dots cell schematic. Depending on the value of the clock field the charge can
place itself according to the reported schematic

Fig. 1.8: Clash event schematic

It is, therefore, interesting to understand how to provide the clock to the circuit.
A single clock signal shows two flat regions and two transition regions. The reason for the
smooth edges is double. First of all derives from technological limitations, so the impossi-
bility to physically realize a perfect square wave. On the other hand, a smooth transition
from negative to positive values reduces the power consumption [13] and contributes to
avoiding possible metastable conditions during the propagation [15].
The general representation of the clock signal is reported in figure 1.9.

Fig. 1.9: Clock signal phases

Along with the signal’s different time steps, the QCA cell behaves differently. As re-
ported in the figure, there is the switch phase, the hold phase, the release phase, and the
reset phase. The charge is gradually pushed towards the two dots in the switch phase
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with the increasing electric field deriving from the clock.
The charge distribution is maintained at its maximum value in the hold phase when the
clock signal is active. After the hold phase, the electric field from the clock reverses its
sign gradually, and the charges are stably stored in the additional dots during the reset
state. It is important to remark that this last condition is not a stable one for the charges
from an energetic point of view. For this reason, they tend to move out of that situation
as soon as possible to minimize Coulomb’s repulsion.
This is the starting point to obtain correct adiabatic propagation; this consists of having
the clock signals, one for each clock region, partially superimposed in time. This way, the
information propagation is maintained stably in one direction, and the charge configura-
tion is not lost. In the opposite case, charges tend to configure randomly in one of the
two stable configurations, as previously explained.
A graphical representation of this situation is reported in figure 1.10. Notice how the
signals are superimposed one with the other. As a ground rule, the falling edge of a first
clock signal corresponds to the activation of the following. In general, the maximum and
minimum levels of the clock field should be such that in the reset state is equal to −2 V

nm

and in the hold state +2 V
nm .

Fig. 1.10: Adiabatic propagation

So, it is interesting to look at the actual propagation expected when dealing with
the schematic representation reported in figure 1.11. Imagine having three clock regions
driven by the clock signals presented before. The information propagation across the cells
is adiabatic since each clock zone is stably active while the following one is activating,
allowing the correct information propagation through the wire. As soon as the first region
is in a reset state, the input driver can change its configuration to propagate a new binary
value at the following step. This way, it is possible to implement a pipelining procedure.

In figure 1.11 it is just reported graphically the same situation described in words in
the previous paragraph. Notice how the information propagates along the wire. Initially,
only the first clock region is subjected to the input driver influence. Then, the second
signal moves out from the reset phase, and the cells polarize according to the neighboring
charge distribution. The second region has to influence the following one in the third
step. It is essential to remark that the second region must be stable and sufficiently long
to maintain the information until the last zone is entirely active. At the same time, the
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Fig. 1.11: Adiabatic propagation through the wire

first region deactivates, and the driver can eventually change its value. The situation goes
this way for all the time needed to end the propagation, with logical ‘0’ and ‘1’ successively
propagated through the structure.
As a final remark, as reported in [14], all the circuits previously presented can be subjected
to clock signals and clock division. In all cases, the information propagation improves using
the clock signals.

1.3 Molecular FCN
The previous sections introduced the rules that must be respected and understood to deal
with the FCN paradigm implemented with the QCA solution. From a practical imple-
mentation point of view, research is moving in different directions, leading to different
technological solutions showing positive and negative aspects. Previously was already
mentioned the ongoing work on magnetic interactions [10] [16]. Other solutions rely on
GaAs/AlGaAs heterostructures, given the possibility of creating quantum wells with tho-
se. These have the problem of impossibility to lateral branching [17], making them useless
if the interest is building logic functions. Notice that nowadays, the most used solution is
the magnetic one.
In general, to develop a possible technology for QCA, the structure must be one of the
schematic cells reported so far in terms of characteristics. So for each cell, there is the
need to have six dots, and moving charges should be present.
Another exciting possibility is the molecular one. Specific and ad-hoc synthesized mo-
lecules are used and properly arranged through self-assembly to develop the QCA cell.
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Molecules can represent a real breakthrough solution for FCN implementation thanks to
moving charges within the structure. Indeed, it is possible to state that molecules can
contribute to implementing extremely dense devices due to their nanometric size. The
power consumption is minimal, and molecules have been proven reliable when working at
room temperature [18]. From a technological point of view, molecules can also provide
some advantages in the fabrication process. Indeed, if the goal is to design devices at na-
nometric sizes, there is the need to involve complex fabrication processes for lithography
to achieve such small nodes. Working with molecules implies taking advantage of their
self-assembly [19] property, which can be considered rather simple to other techniques.
Moreover, there is the possibility to work at extremely high frequencies, as reported in [20].

1.3.1 Molecules for molecular FCN
In the previous paragraph, some interesting characteristics of molecules have also been
cited from a technological point of view. The main problem in this aspect is finding proper
candidates to act as molecules for FCN implementations. In general, the molecules have
to show the following characteristics:

• they must present moving charges, passing from one dot to the other through
tunneling

• charges have to be stored in redox centers

• there is the need for a third dot in which the charges are localized in the reset state

• must be sensitive to an external electric field

• the electric field can be applied either in the vertical direction (clock) and longitudinal
one (driving electric field)

• molecules have to be deposited through self-assembly on an underlying substrate

In the course of the still ongoing research in this field, have been proposed several
candidate molecules. For instance, a possible single-molecule solution is analyzed in [21],
in which the authors propose a single tetra-ruthenium complex to work as the entire QCA
cell, having four dots in which the charge can be placed.
In general, the proposed molecules divide in the one presenting only three among the
six needed dots and others that can be used alone due to their four dots plus a fifth
keeping the charge in the reset state. Notice that it is not simple to manage all the
technological requirements. For instance, the diallyl-butane is not a viable candidate
given the impossibility of being linked to an underlying substrate [22].
Among all these possible solutions, the molecule that is going to be used and deeply
analyzed in this work is the bis-ferrocene, whose structure is reported in figure 1.12. This
is one of the most studied and characterized molecules in literature [22]. As can be seen in
the figure, the molecule is composed of two ferrocene groups working as charge containers
during the active state of the cell, a carbazole group hosts the charges in the reset state,
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and finally, a thiol group. The function of this last element is structural since it allows
the link between the molecule and the gold substrate below [23].

Fig. 1.12: Bis-ferrocene molecular structure [23]

The bis-ferrocene molecule has been ad-hoc synthesized for molecular FCN applica-
tions, as reported in [19] and [24]. From figure 1.12, it is possible to identify the three
dots that can store the charge according to the involved influence. Dot1 and Dot2 are the
low potential regions in which the charge is stored to encode the logic state. Notice that
a single molecule alone is not stable and does not allow to have all the six dots previously
presented for QCA implementation. For this reason, the standard cell is made up of two
bis-ferrocene molecules that, together, form the needed six-dots cell.

1.3.2 Model and simulations
In FCN solutions, it is fundamental to find strategies to correctly evaluate how propaga-
tion occurs; the analysis should be done in the most computationally efficient way. For
what concerns the analysis of molecules in quantum chemistry are well-established ab-
initio simulations [25]. These can be used to study the interactions present within a single
molecule or between different molecules. Therefore, molecules can be characterized rigo-
rously. However, the main problem is that the computational weight is very high; since
it purely relies on quantum mechanic analysis, the calculations are expensive in terms of
time and computation. This solution is completely unusable if the goal is to deal with
complex molecular QCA circuits. Therefore, it is imperative to define a set of algorithms
and figures of merit that well represents the different situations taking into account the
more reliable representation of the molecule behavior.
In the course of the work the adopted methodology relied on SCERPA algorithm [26] [14]
[27].
As for any electronic device, the basic building block, i.e., the molecule, has to be cha-
racterized. This first step is crucial since all the definitions of charge distributions are
analyzed and will be used to model the molecule behavior as soon as it is inserted into a
complex circuit.
To characterize the molecule, the previously mentioned ab-initio calculations are adopted.
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In particular, the density functional theory is involved [28]. The characterization of the
molecule is provided by observing and saving the molecule response when subjected to an
external driving field. Look at figure 1.13a to have a model representation of this analysis.
The figure reports a typical situation that can be analyzed whenever it is needed to cha-
racterize a new molecule. The molecule under test is subjected to an external electric field
derived either from a point charge or another molecule with a specific charge distribution.
The electric field is directly proportional to the voltage difference among the dots and,
therefore, the charge distribution on the driving molecule. Notice that the simulation
of just two coupled molecules is already quite expensive from a computational point of
view. For this reason, it is essential to limit this type of analysis to such complexity.
At the simulation level, the distance between the molecules must be chosen accordingly
to the actual working scenario, i.e., the lattice constant of the material onto which the
self-assembly monolayer will be performed.
Another critical type of analysis is the one related to the presence of an external clock
field [29], in that case, the electric field is applied along the vertical direction, providing
the charge to be distributed in the carbazole or between the two ferrocene dots. The
schematic of this analysis is reported in figure 1.13b. It is possible to appreciate a very
simplified schematic of the performed evaluation. A longitudinal electric field generated
by a point charge simulates the presence of an external clock field. In particular, it is
supposed to be such that the electrons move to the two upper dots. Then, the application
of the electric field deriving from another molecule or, more in general, from a second
electric field perpendicular to the first one will move the charges to one dot or the other.

(a) (b)

Fig. 1.13: Schematic representation of ab-initio simulations. Left: top view of molecule
to molecule interaction. Right: external voltage influence analysis

The results of the ab-initio calculations must then be processed. At this point, some
new figures of merit have to be defined to read the behavior of a certain molecule easily
and comparable to others.
There are several figures of merit that can be defined and described [29], some of them
are listed here below:

• aggregated charge (AC): the overall charge in each dot computed as the sum of all
the atomic charges. This FOM is also involved in the definition of other essential
characterizations of the molecular behavior
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• Electric field generated at the receiver: this is the parameter of a particular mo-
lecule under test that works as a driver subjecting another molecule at a certain
distance. With the previously defined aggregated charge is relatively easy to com-
pute the electric field generated at a given distance using the formulas of standard
electrostatics.

• Vin- AC Transcharacteristics (VACT): this is probably one of the most important
figures of merit related to the subject. As already explained in this introductory part,
the molecular FCN paradigm core is that the molecules charges distribute according
to the input electric field. Using the formulas of electrostatics is straightforward to
find the input voltage to the subject molecule, described in 1.3.

VD,MUT =
Ú

γ
ED · dl = VD

1
rMUT

1

2
− VD

1
rMUT

2

2
(1.3)

ED is the electric field generated by the charge distribution on the driver molecule
and γ is the path depending on the relative position of the two dots. Another positive
aspect of relying on very known and easy formulas is that it would be possible to
analyze rotations and misalignments within molecules in detail without increasing
the computational weight. At the same time, it is possible to evaluate the aggregated
charges on the different dots within a certain input voltage range. Therefore, it is
possible to define VACT curves, which describe the relation within the incoming
electric field and the aggregated charge among the dots.
The VACT can be defined for different clock values, the one reported in figure 1.14
is related to the bis-ferrocene molecule subjected to Ck = +2 V

nm .

Fig. 1.14: VACT of the bis-ferrocene molecule

Before moving on, just a tiny remark is necessary. As it is possible to notice in figure
1.14, the two curves for dots one and two are not perfectly symmetrical and do not
cross zero. This behavior is due to the not perfectly balanced and ordered structure
of the molecule itself, and it will be taken into account several times in this work.
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• From the aggregated charge characterization is also possible to derive the output
voltage generated by the molecule, giving rise to a Vin/Vout curve from which it is
possible to evaluate the gain of the molecule. Its value cannot be higher than one
since the aggregated charge is always lower than one. In the best conditions, the
gain value reaches the unitary value.

Self-Consistent ElectRostatic Potential Algorithm (SCERPA) introduction

After defining the main characteristics of each candidate molecule, it is possible to move
on with the third and last stage of the analysis of a molecular FCN circuit. In this case,
something more complex must be done since the system complexity increases. In particu-
lar, as noted previously, ab-initio evaluation cannot be considered a possible solution at
this stage.
Think at this point to use bis-ferrocene molecules. The interaction among the molecules
in the layout defines the aggregated charge distributions. SCERPA is a comprehensive
algorithm that has been proven extremely useful in analyzing complex molecular QCA
systems [27]. The central core of the algorithm is solving the self-consistent field loop
present due to the interaction between the molecules and the surrounding ones. Imagine
first a simple situation in which only two molecules are present: the charge distribution of
the first one depends either on the input driver voltage to which it is subjected but also
on the Vout of the second molecule. Indeed, the aggregate charge separation in the second
molecule produces an electric field affecting the polarization of the first one.
The mechanism described is accurate for each molecule involved in a complex system. For
this reason, the algorithm must solve a loop whose exit condition is to reach stable values
of aggregated charges in all the molecules. Of course, notice that the mutual influence
within molecules is valid provided that the two are not too far from each other. In that
case, the electric fields are too weak to influence the other molecule; SCERPA considers
this concept through the interaction radius parameter.
The working flow of SCERPA can be divided into three main steps [27], listed and
commented here below:

• Initialization stage: the layout, the clock regions, and the driver voltages are defined
as well as the biasing conditions to each molecule

• Interaction stage: the interaction within the molecules is taken into account, and
the loop is solved. The algorithm refines the solution until it reaches a user-defined
convergence condition.

• output stage: after evaluating the voltage contributions at each molecule, the algori-
thm, taking advantage of the VACTs of the involved molecules, can identify the final
aggregated charges at all the dots, providing graphical and numerical representations
of them on output files.
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1.3.3 Technological implementation of molecular FCN
Regarding technological implementation, the literature does not offer too many hints.
However, some important research related to the subject can be found in [30], [23] and
[31].
This section offers a general idea about this kind of technology technical implementation
and limitations. First, consider figure 1.15 which offers a schematic representation of the
system physical structure. It is a simplified schematic of a bis-ferrocene wire deposited on a
gold substrate. As already mentioned, the molecules have to be provided with a part whose
aim is to attach to the below metal film systematically; for what concerns the bis-ferrocene
molecule, the thiol group is the part devoted to this task. The technological solution used
is the self-assembly monolayer technique. It allows ordered molecule deposition to be
obtained, provided that the gold substrate has a constant lattice.

Fig. 1.15: Graphical simplified representation of a bis-ferrocene wire deposited on a gold
substrate

Notice that the last consideration is not that straightforward since it is not easy to
have deposition of the thin metal film with uniform geometry. The main risk is the
possible presence of regions with different heights; in the end, there will be the presence of
grains on the metal strip. The deposition then would not be ordered; molecules will show
different intermolecular distances, one from the other. The risk is to stop propagating the
information through the wire or, in general, through the molecular structure.
Another important aspect is the generation of the electric fields needed to make the
system work. Two sources of the electric field have to be present, one in the longitudinal
direction for the driver implementation and the other in the vertical to realize the clock
field. The usually adopted solution consists of a trench structure: at the bottom of the
trench is fabricated the gold film onto which the molecules are deposited. At the top of
it are fabricated the electrodes used to generate the field lines that serve as input drivers
and the clock field generation. In particular, the clock field is generated by applying a
potential difference between the top electrodes and the gold nanowire at the bottom of
the trench. The schematic representation of this trench technique is reported in figure
1.16.

It is possible to provide some important considerations from a technological point
of view. The height of the trench must be chosen so that the electric field lines can
effectively influence the charge distribution within the molecule. This idea must also be
realized in the other direction, not to separate the two top electrodes too much and keep
the electric field as effective as possible. So the parameters that must be controlled during
the technological process are the height of the gold nanowire, the size of the molecule, the
depth and width of the trench, and the parameters related to self-assembly realization.
As a last remark, avoiding complete process variations in this structure is difficult. The
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Fig. 1.16: Trench solution for the molecular FCN implementation

problem related to the presence of grains has already been mentioned; another important
one concerns the impossibility of precisely realizing the clock regions division. In that
situation, some problems arise:

Fig. 1.17: Real separation of clock region in a physical implementation of FCN paradigm.
Some molecules could not be directly subjected to a predefined clock region, being them
in between of the electrodes providing the electric field lines

• the electric field lines coming from a particular clock zone, so from a specific pair of
electrodes that subjects a portion of the circuit, could also affect other molecules.
Actually, this is not a real problem. The electric field lines are in the direction
orthogonal to the propagation, which will not be affected dramatically.

• the effect of the driver is not subjecting the first molecule of the circuit but a particu-
lar portion of it. However, this effect can be considered negligible if the information
propagation moves in one direction only.
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• A more severe problem is related to the limited precision of the technological solution
through which the electrodes are fabricated, i.e., the resolution of the lithographic
technique involved. The issue is having a certain number of molecules in between two
clock regions, not directly subjected to one or the other, as reported in figure 1.17.
Again, if the flow is unidirectional, the charge configuration of these molecules will
be the correct one. The solution to this problem is a very well-controlled adiabatic
propagation.
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Chapter 2

Artificial neural networks: an
overview

Artificial neural networks are one of the most promising and explored paradigms in ma-
chine learning implementations [32]. The number of different applications in which it is
possible to find this kind of architectural solution is vast. These are pattern recognition,
voice coding, writing recognition, face detection, and smart grids[33].
The main advantages related to the introduction of neural networks derive from the pos-
sibility of building them either in software or hardware and the flexibility associated with
both these realizations. Considering the human brain as a reference starting point in
technology can be proven to be a winning solution. First, the brain is a highly efficient
machine, capable of achieving computation ratings in the range of 1017 FLOPS [34]. The
basic idea behind artificial neural networks is to introduce in electronics or informatics the
concepts at the base of the brain functionality. Of course, the purpose is not to reprodu-
ce the same behavior with similar computational characteristics, which would be simply
unfeasible for nowadays technology.
This chapter will deal with the prior helpful knowledge for the proposed work. The analysis
will be directed toward a hardware implementation of the artificial neural networks.
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2.1 From human brain to hardware implementation
The human brain is formed by millions and millions of neurons coupled together. Each
neuron elaborates the electrical signals coming at its input and, depending on those values,
will spike, i.e., activate, or not. A spiking neuron generates a peak of potential, which
is then propagated along the axon. The synapse is the input connection linking two or
more nerve tissues. It is so the physical interconnection within two neurons. The main
components of interest in the biological neuron [35] are listed here below:

• Nucleus/Cell body: this is the computation center for each neuron. The neuron
body evaluates the weighted sum of the inputs connected to it through the synapses.
If the resulting value is higher than the spiking threshold, the neuron activates, and
the action potential propagates [36].

• Axon: this is the part of the neuron whose aim is to propagate the action potential.
As in all interconnection wirings in digital electronics, the information derived from
the neuron is not to be lost either by inversion or lossy propagation effects.

• Synapses: these are the interconnections within the input dendrites and the central
body of the cell. In biology are usually labeled as chemical and electrical according
to the working behavior.

Previously a fundamental concept was introduced related to the weighted sum of the
inputs: it is how each neuron spikes or not. Different models of how a neuron spikes have
been proposed over the years; among all, the Hodgkin-Huxley model [37] [38] is probably
the most famous and adopted from an electronic perspective. The fact that the different
inputs have different weights is significant because it increases the flexibility of the neuron
itself. Moreover, the brain has high plasticity, meaning it can adjust according to different
needs and external inputs. The synaptic plasticity translates in practice into the dynamic
variation of the weights, allowing the brain to change and evolve in time.
All these concepts has to be translated into hardware.

2.1.1 Types of neural networks

It is possible to refer to a group of neurons connected as a neural network. According
to how the information propagates in the algorithm, it is possible to identify two main
categories: feed-forward networks [39] and recurrent networks. The first consists of propa-
gation in only one direction; the network organizes into a set of mutually interconnected
layers without feedback. Feed-forward networks can be considered the most accessible
type of solution. On the other end, as the name suggests, the recurrent networks include
cycles, allowing to the implementation of more sophisticated algorithms at the price of a
more complex physical realization.
This work will deal mainly with feed-forward neural networks, whose schematic represen-
tation is reported in figure 2.1.
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Fig. 2.1: Feed-forward neural network schematic

In general, in a feed-forward neural network, it is possible to provide a three-layer
division: the input layer is the one in charge of taking the inputs, eventually multiplying
them by a certain weight, and then distributing the results toward the inner layers of the
structure. In the hidden layers, which can be one or more depending on the network com-
plexity and task, the starting information is evaluated by all the neurons; at each neuron
site, it is possible to provide different coefficients and operations. In the last stage, the
output layer is present. There, the output results are computed.
It is important to detail the single neuron structure and analyze how it can be transposed
into hardware. This is presented in figure 2.2. It is possible to notice the block representa-
tion that implements what was briefly exposed previously. The inputs are evaluated and
multiplied by certain weights. Then, the single results are summed together. The output
follows a certain activation function, which is the curve describing the spiking behavior
of the neuron. If the input result is higher than the neuron threshold, the neuron can be
considered active, and the spike occurs. Notice that the activation function is not unique;
different implementations can have different activation curves according to the needs or
the technology implementing the neuron. The mathematical equation used to model the
single neuron behavior is reported in equation 2.1, where θ is an arbitrary bias that can
be applied.

yk =
NØ

i=1
bik · xi + θk (2.1)

In its simplicity, this formula will be fundamental in this thesis.
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Fig. 2.2: Single neuron block scheme

Different activation functions depend on the kind of equation that describes them. The
need for a non-linear activation function in the neuron implementation derives from the
fact that a linear curve is too simple to provide complex tasks, such as sophisticated map-
pings or information extraction from non-correlated input data. Therefore, an equation
with a degree higher than one must be adopted. Moreover, to implement optimization
strategies, the activation function has also to be differentiable [40]. Some examples are
listed below and reported graphically in figures 2.3:

• Step function

• Hyperbolic tangent

• Sigmoid

• sign function

• exponential

• linear: better suited for linear regression models [40]

• leaky ReLu function [40]

(a) Linear activation function (b) Heaviside activation function
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(c) Sign activation function (d) Hyperbolic tangent activation function

Fig. 2.3: Examples of activation functions

As already said, the chosen activation function has to meet the necessity of the system
to be implemented. On the other hand, the activation function could be defined by the
components present in the circuit for a hardware-implemented neural network.
In conclusion to this section, it is interesting to make a first and fundamental example of
a realizable neuron: the perceptron [41]. It was the first-ever realized neuron, and will be
central in the following discussions. It is often used as a binary classifier, given that its
activation function is the Heaviside equation.

2.1.2 Learning mechanisms
In the previous section, was introduced the concept of synaptic plasticity. It is how the
brain adapts to improve specific tasks solving capabilities. This concept translates into
the need for an initial training or learning process in which the network adapts to solve
the job in the best way possible to minimize errors. In the same way, artificial neural
networks have to work to maximize performances. There are mainly two ways in which a
generic neural network can be trained [42]:

• Supervised learning: in this technique, the network is trained with known inputs,
and the results are compared with a scheme known as a-priori

• Unsupervised learning: in this case is the network itself that learns how to interpret
a cluster of an unlabeled dataset, i.e., a set of data that the trainer does not know
how to classify in principle

The learning step main goal is to ensure that all the neurons in the network have the
correct weights so that the output results have a minimum error to the expected ones.
In general, it is possible to say it is an iterative process. Concerning the training of a
hardware neural network, there are mainly three possibilities [32]. The first one consists
of off-chip learning. The system, in this case, is trained in a software environment, which
provides the fastest learning possible. The main problem is that there is no indication
of the actual and physical behavior of the network. Indeed, this is something testable
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only directly on the realized chip. To overcome this problem, it is possible to adopt on-
chip learning, in which only the hardware is used. With this technique, the choice of
the weights, besides being slower, can be considered more reliable. There is then a third
possibility, which can be considered in-between the previous two. In this case, both the
software and hardware are inserted into the training loop. The main advantage of this
solution is the higher precision that can be associated with the weights, thanks to the
presence of the software’s computational capabilities.

2.1.3 Possible hardware implementations
There are different ways to realize neural networks physically. First, CMOS digital cir-
cuits can be adopted; the main advantage of this solution consists of the advanced and
well-known fabrication processes related to CMOS [43]. Moreover, such a device can easily
interface with external circuitry and standard electronics. In this category, the solution
involving FPGA is worth mentioning as attractive given the flexibility of these devices
[44].
In general, to provide a new hardware solution for ANN, the main effort must be put into
the physical realization of its main features. These are the weights, that in CMOS can be
implemented with latches [32], the threshold mechanism [45] and the activation function,
which is related to the hardware realization of the neuron.
For what concerns the activation function, it is possible to say that it represents the most
complex part to be realized, given its native non-linear behavior. Look-up tables have to
be introduced [32] to achieve such a result.
A second possible physical realization relies on analog circuitry; despite being more com-
plex to be realized on a large scale and having higher area consumption, this kind of
solution is interesting from the efficiency point of view [46]. Other interesting aspects
of analog ANN are the possibility of working in continuous mode and reaching stability
through feedback. Solutions of this type are already available in the literature and have
proven to be working [47], [48]. An exciting solution for the training methodology of
analog ANN is reported in [49].
The main issue related to the analog solution is the proper update of the weights, parti-
cularly in an on-chip learning phase. Commonly resistors are used to represent weights.
Since the main physical quantities in an analog circuit are voltages and currents, resistors
may offer an easy way to implement the sum. Unfortunately, once a resistor is inserted
into the circuit, it is impossible to modify its value during the training session. For this
purpose, some new technologies have been introduced to overcome the problem.
The most promising is the memristor [50]. These devices can be thought of as two-port
elements with variable resistance whose physical realization was performed for the first
time in 2007 in HP laboratories [51]. Despite it can be obtained through a well-known
fabrication process, such as the production of thin-film oxide, the interfacing with the
CMOS circuitry is not that straightforward.
More complex devices adopting this technology are becoming useful on a commercial sca-
le, such as the Resistive Random Access Memory (RRAM) [52], [53].
As a last possibility, it is worth mentioning hybrid technologies, where there is the presen-
ce of both the analog and digital parts, achieving the option of taking the main advantages

25



Artificial neural networks: an overview

of the two combined [54].
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Chapter 3

FCN paradigm and
neuromorphic computing

In recent years, hardware neural networks have been a real breakthrough in the techno-
logy environment. The application range they can be involved in is vast, ranging from
robotics to biomedical and consumer electronics. Several examples of technologies invol-
ving neural networks were reported in the previous chapter. Therefore, it is crucial to find
new possible solutions from a technological and architectural point of view to increase the
efficiency and connectivity of hardware-implemented ANN.
This chapter gives a complete overview of the possibility of implementing ANN in a non-
conventional technology such as molecular FCN. In this way, what was explained in the
first two chapters is linked together to explore this possibility.
In recent years, such solutions have been explored; in particular, the primary ground
steps were provided by E.P. Blair and S.Koziol in [55]. They proposed using quantum-dot
cellular automata paradigms to implement simple neurons able to provide neuromorphic
computation.
The suggested system has the following characteristics. To mimic the synaptic weight, it
is possible to introduce partial clocking of the interfaces at the neuron inputs. The neuron
spikes if the sum of all the input configurations, weighted by a non-complete activation of
the clock zone, is higher than a certain threshold.
The threshold mechanism is fascinating since it involves introducing fixed cells whose
influence could be either excitatory or inhibitory. The signals integration, i.e., the sum-
mation, takes advantage of the majority voting behavior, which is well known in QCA
technologies. In figure 3.1 is reported a schematic representation of the solution proposed.
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Fig. 3.1: First neuron schematic representation

It is exciting to adopt these basic ground rules and adapt them to the molecular case.
The first advantage is the possibility of implementing the majority voting technique in
the molecular solution for QCA, as commented in the first chapter of this work. One
possible problem is related to the use of partial clocking. This technique implies that the
last cells of the wire will not be completely polarized. This becomes a critical issue to
be solved using molecules since the charge will not be stable in such a configuration, and
information loss can occur.
For what concerns the threshold implementation, the method proposed by the authors
in [55] is not that straightforward since it implies the addition of other interfaces at the
input of the majority voter structure. Such solutions have not been analyzed in detail in
the molecular field for quantum-dot cellular automata.
For this reason, the grounding rules exposed in this section can work only as a reference
for proposing a new implementation of such neural networks.
A step forward in the analysis and realization of neuron-like structure using molecular FCN
has been made in [56], and this is going to be the starting point of the study proposed in
this thesis.
The basic structure of the single neuron cell is reported in figure 3.2.

Fig. 3.2: Neuron cell schematic and usual representation comparison

It is helpful to highlight the essential concepts on which the analysis basis. Provided

29



FCN paradigm and neuromorphic computing

that the circuit layout underneath the molecular neural network is the well-known majo-
rity voter, the main characteristic of the system is the presence of more than one kind of
molecule along the circuit. In this way, different molecules work as distinct interfaces to
the MV, giving rise to varying values of weights. The majority voting procedure consi-
ders the different polarization levels at the inputs, and, according to those, the output is
calculated.
A further exciting point is that for some combinations of input voltages and interfaces,
the usual behavior of the majority voter can be reversed. Indeed, the less present configu-
ration at the MV inputs can be reported on the output, provided that it is applied on the
more robust interface, i.e., the one having the higher weight. It is a fundamental result
that will be shown in the following.
The possibility of working with the majority voter layout has one major problem: up to
now, only three inputs voting techniques have been analyzed in detail, meaning that only
neurons with three inputs could be implemented with accuracy. It is a limitation that
concerns the realization of multilayered neural networks. However, the majority voting
allows to realize, with the molecular FCN paradigm, the equation reported in 2.1, i.e.,
it is possible to apply, with some tolerances, the simple neuron model to the molecular
neuron layout.
Above in this section have been reported some hints related to the evaluation of the
weights. As seen in the first chapter of this thesis, several figures of merit can be introdu-
ced to characterize a candidate molecule to work with the FCN paradigm. Among those,
there is the P-Vin curve.
Different molecules can show different kinds of AC-Vin relationships, this depends on seve-
ral characteristics of the molecule itself. For instance: the presence of counter-ion [19] [57],
the molecule’s nature, and the molecule’s geometry. An important parameter that defines
the different molecules involved is registered in [56] as α. It is the minimum input voltage
for which the molecules saturate, i.e., show the maximum charge distribution among their
dots. Different molecules have been ad-hoc synthesized in a simulation environment, with
the same geometry but different α values, and for each of them, was evaluated the polari-
zation curves induced on the central cell by the molecule under test influence. The weight
of the cell made by the molecules under analysis is defined as the angular coefficient of
this curve; this concept will be clearer later in this chapter. This way, all the molecules
are classified as interfaces to the neuron central cell.
As the last point, it is worth mentioning the possible implementation of the threshold
mechanism, proposed and analyzed in detail in [56]. It consists of applying an external
voltage on the molecule at the output of the neuron cell. The resulting voltage must
overcome a specific bias in output to the central cell. Another possible solution is to find
molecules such that the deriving QCA cell has a certain tendency toward a positive or
negative polarization.
Summing up these necessary considerations, it is possible to state that:

• the neuron cell is going to have the same layout of a majority voter gate

• the cells at the interface of the central one, i.e., the neuron body, will be made of
ad-hoc synthesized molecules
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• A certain weight characterizes each molecule; this is given by the angular coefficient
of the induced P-Vin curve evaluated on the central cell.

• the equation used to characterize such a structure is the one already reported in the
introduction to neural networks part (2.1)

• the threshold mechanism can be delivered with particular kind of molecules or with
the application of an external voltage on the first molecule present after the neuron
body

After this introductory part related to the fundamental reasoning behind the structure
of a possible neuron made of molecules, it is necessary to provide an overview related to
the organization of the research work done in this thesis.

3.1 Step 1: Analysis and characterization of the in-
terfaces

Starting from the previously exposed ideas, it is possible to trace a series of steps followed
to build up the final system: a working neural network based on the molecular FCN
paradigm.
The first step consists of defining the molecules characteristics in terms of saturation
voltage and analyzing their weights; this was done through the simulation layout reported
in figure 3.3.

Fig. 3.3: Interface analysis schematic representation

The molecules in the central cell are bis-ferrocenes, while the output molecule is a
dummy one, meaning that it will have zero charge distribution for any input voltage
value. Thus it serves as a reference to take the output voltage. Interestingly, the other
three interfaces are made of ad-hoc synthesized molecules, with the needed characteristics
explained previously.
To evaluate one interface at a time, a voltage sweep is performed on the one of interest
while the other two are left turned off. In SCERPA this behavior is relatively easy to
implement: all the m1, m2, and m3 interfaces are driver molecules, showing a fixed
charge distribution according to the input voltage they are subjected to.
In this way, it is possible to evaluate for each molecule on each interface the induced P-Vin
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curve on the neuron central cell and the corresponding angular coefficient, expressed as
reported in equation 3.1.

w = P

Vi
(3.1)

A second step to build up the whole system consists of reversing the bis-ferrocene
positions with that of the molecules under analysis. The same kind of curves can be ob-
tained and, consequently, their weights. Therefore, evaluating the bis-ferrocene molecule
influence on the ad-hoc synthesized ones is possible.
The layout of this analysis is reported in figure 3.4.

Fig. 3.4: Interface analysis layout: effect of bisferrocene on molecules under test

As a last consideration, it is noteworthy to consider the kind of molecules that will
be taken into account. These are asymmetric molecules, meaning that their aggregated
charge distribution ranges from 0 to 1 or, generally, from zero to a higher than one positive
value. Moreover, the presence of the counter-ion is fundamental in keeping the molecule
neutral for each input voltage. Thanks to that, possible crosstalk-related problems can
be avoided, as shown in this work following.

3.1.1 Step 1.1: Analysis of a more complex interfacing mecha-
nism

The next step needed to build up an exhaustive system analysis consists of connecting the
two previous studies. In this case, bis-ferrocene drivers influence the ad-hoc synthesized
molecules cells subjecting the central bis-ferrocenes. The main scope is to analyze the po-
larization of the bis-ferrocene cell subjected to different molecules driven by bis-ferrocene
drivers. The importance of this analysis is to derive the differences from the previous
case in which only the drivers were present at the interface, allowing to reach a more
general and realistic point of view of the neuron behavior. Moreover, the layout that will
be obtained is the one to use as the single neuron cell.
As done before, the polarization curve is the main instrument to evaluate the interface
weight. The idea is to build up a table of weights and use them in a block way: kno-
wing the cell present at a specific input, the importance of that interface will change, and
the associated weight will go in linear combination with the input voltage coming from
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the bis-ferrocene drivers. This layout, in the course of this thesis, will be referred to as
additional cell. Figure 3.5 reports a graphical representation of what was just clarified.

Fig. 3.5: Interface analysis layout: additional cell

Before building the system up, some numerical and graphical results will be given.
In particular, it is interesting to understand how different combinations of interfaces and
input voltages will behave if compared to the theoretical outcomes of the weighted linear
combination of the input voltages, reported in equation 3.2.

V out = wm1 · Vin1 + wm2 · Vin2 + wm3 · Vin3 (3.2)

where wmX and VinX are the weights and input voltages at each interface (X = 1, 2,
3). Demonstrating this point is essential since this is the fundamental behavior of neural
networks. If the error between the theoretical results and the obtained ones is not so high,
it will be actual proof of the feasibility of the molecular neural network.

3.2 Step 2: Propagation analysis on a molecular wire
Molecular wires are needed to connect more than one neuron. Besides being analyzed
deeply in literature [22], it is crucial to consider which is the best solution for the network
application. In particular, some characteristics of the wire have to be studied and fixed
to find the best way to transport the information derived from the computation in a first
neuron to a second one. These are the length of the wire, i.e., the number of molecules
present on the wire; the number of clock zones; the number of molecules needed in each
clock zone; how the information propagates, i.e., analog or digital propagation.
This last point is significant since it will define the type of neural networks realizable with
this technology. A fully digital application will imply the possibility of designing linear
binary classifiers efficiently.
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The layout proposed in figure 3.6 shows the basic schematic of a neuron to which an
output wire is connected.

Fig. 3.6: Schematic layout of a neuron connected to the output wire. The number of cells
in the wire is completely representative in this case

3.3 Step 3: first network structure and layout cha-
racterization

The next step in this work will be to build a neural network that considers all the reaso-
nings provided about the necessary elements.
The first simulated is made of just three neurons in the input layer and another neuron in
the output layer. The difficulty in providing such a solution is correctly propagating the
information from different neurons synchronously. To do that, a specific and correct clock
region distribution is required. That, as will be shown, moves away from the standard
adiabatic one in some cases.
The necessity of an ad-hoc clock signal distribution derives from the presence of different
molecules in the structure, which have no equal response to the application of the same
electric field.
The structure that will be shown, built up step by step with exhaustive analysis for each
interface, is the one documented in figure 3.7. To conclude, a feasibility study has been
developed to compare software simulated neural networks with those built with the pro-
posed set of molecules and weights. The outcome of this last analysis is a well-working
neural classifier able to evaluate different input binary patterns correctly.

Fig. 3.7: First neural network schematic representation
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Chapter 4

Interface analysis and weight
evaluation

In the first part of the neuron analysis, it is necessary to define the primary building blocks
that will be used in the study. In particular, the principal aspect treated in this chapter
concerns the definition of different interfaces and their actual influence on the polarization
of the central cell, i.e., on the neuron body. The interfaces have to be characterized from
a physical point of view, defining the needed molecules to implement such a system. The
influence of these molecules must then be evaluated numerically, and the weight of the
interfaces extracted and compared with the other results.
Finally, has been also performed a parametric analysis of the weights according to inter-
molecular distance. The possibility of providing an FCN circuit made of different kinds of
molecules is appealing also thanks to features inserted in SCERPA [56]: once the molecule
is synthesized, so its VACT curves have been defined, they can be imported into SCERPA
and used without the need of any further effort.
The definition of the VACT curves can be either extracted from computational analysis
or built ad-hoc according to the scope. In this work, the second approach was preferred.

4.1 Definition of the molecules

As the first step in this analysis, as mentioned before, it is fundamental to define the type
of molecules realizing the final neural network. According to the results provided in [56]
the defined molecules are characterized by the following saturation voltages, i.e., α values:
1V, 1.5V, 2V, 2.5V and 3V. As it is possible to imagine, the higher the saturation voltage,
the lower the charge distribution considering the same input.
The transcharacteristics are reported in figure 4.1, in which it is possible to verify the
just provided observation. The reported results in figure 4.1 are examples of asymmetric
transcharacteristics.
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Fig. 4.1: VACTs for each of the proposed molecules

There is not much to say concerning the geometrical realization of the molecules. The
most relevant thing is that they are built on the structure of the bis-ferrocene, having
so two primary dots hosting the charge and a third one that is useful to keep the charge
when the molecule is forced into a reset state.
The counter-ion has been proven a successful solution for the realization of molecular
FCN solutions since it can solve or, at least, mitigate crosstalk. For this reason, there is a
fourth dot whose charge value is such that the molecule is neutral for each input voltage.
The global neutrality of a molecule is reached if, for each input voltage value, the sum of
the charges contained in the molecule is 0.
As a possible graphical representation of what just said, look at figure 4.2, which reports
a highlight on the VACT for the molecule characterized by α = 1V . Notice the presence
of the curve for the fourth dot having an aggregated charge value equal to -1 in the whole
range of input voltages.
Notice that the aggregated charge values range from 0 to 1 for all the considered curves.
Moreover, the curves cross the zero value and behave specularly for positive or negative
input voltage values.
These last considerations are an idealization of the working behavior of the proposed
molecules. It is important to remember that both of them are not true in the case of the
bis-ferrocene molecule, which, as seen in the first chapter of this thesis, has an aggregated
charge characteristic that does not cross zero.
As a last thing it is important to highlight that the curves present in figures 4.1 and 4.2
are both related to a clock value equal to +2 V

nm . It is the more interesting but not the
only one. In figure 4.3 is reported the aggregated charge distribution plot for a clock value
equal to -2 V

nm . Notice that the difference in the α value is not of interest in this case since
the charge can be at a maximum of 0.07 in the two upper dots; so, in practice, absent.
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Fig. 4.2: VACT for α = 1V molecule with presence of counter-ion on dot4

Fig. 4.3: VACTs obtained for CK = -2 V
nm

4.2 Analysis of the interfaces and weights extraction
Once the molecules are defined and characterized, the weight coefficients must be evalua-
ted; these are useful for implementing the final neural network.
The weights are estimated starting from the polarization on a central cell made of bis-
ferrocenes through a sweep on the input voltages on a driver cell made by the molecules
previously defined. Figure 4.4 shows the basic layout structure.
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Fig. 4.4: Starting layout used for the weights extraction. This layout is going to be called
drivers only

The elements present in the circuit are the following ones: the central cell, on which
the polarization values are going to be evaluated, is made of bis-ferrocene molecules; the
drivers are turned on one at a time with a sweep in input voltages that ranges from -2V
up to 2V, in this way it is possible to extract the polarization curve; the last molecule,
present at the output of the central cell, is a dummy molecule whose aim is to give a
reference for the voltage evaluation out of the neuron body.
The polarization of the central cell will follow, as can be predicted from the basic theory
of molecular FCN, the same charge distribution of the active driver.
In figure 4.5 is reported a snapshot representing the situation in which the m3 driver
is active and made of α = 1V molecules, while the other two interfaces are off. The
intermolecular distance along the y-axis equals 0.9nm, while the one along the z-axis is
2nm. The input voltage on the active driver is 0.5V. Notice how the charge distribution
in the driver is not complete since made of molecules that saturate for voltages equal to
or higher than 1V.

After this first introductory part, it is possible to move on and evaluate the weight
coefficients. These must be computed for each molecule on each interface. The graphs are
reported in the set of figures 4.6. All of them report the curves for all the three interfaces:
dr3 is what was previously defined as m3, dr2 is m2 interface, and dr1 corresponds to m1.
Notice that the curves related to m2 and m1 are perfectly superimposed; this indicates
the symmetric properties of these two interfaces. All the voltage values are normalized to
the maximum VMAX that can subject a molecule when inserted into an FCN circuit. It is
possible to demonstrate that this value is 1V [56]. Some important considerations can also
be provided regarding the curves. First, as already anticipated, the higher the α value,
the lower the absolute polarization in the central cell. This means that the influence of
the corresponding driver molecules is low.
To evaluate the weights, the angular coefficients must be computed. Since the curves are
not perfectly linear in the whole range of input voltages, the coefficient is considered in
the most linear region. For what concerns the value at which the central cell saturates,
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Fig. 4.5: Starting layout with active driver and charge distribution on the central cell. d
= 0.9nm, Vin = 0.5V

it is clear that there is also dependency on the saturation voltage of the active interface
molecules. In figure 4.6a, with 1V molecules, the saturation of the central cell is reached
for Vin ≃ ±0.5V . The higher the saturation voltage of the molecule, the higher the input
voltage needed to saturate the central cell. In the extreme case of α = 3V , the saturation
cannot be reached in the range Vin = ±1V .
Looking at the different curves, it is important to highlight that the m3 interface influences
more than the other two. This behavior is due to the geometry of the chosen layout,
implying a stronger influence of the electric field and, therefore, a higher polarization of
the central molecules. As a final analysis of the polarization curves, the weights can be
extracted. As already anticipated, the weights for m1 and m2 will be perfectly equal due
to symmetry reasons. All the values are listed in table 4.1.

α m1 m2 m3
1V 0.676 0.676 0.918
1.5V 0.45 0.45 0.622
2V 0.332 0.332 0.464
2.5V 0.266 0.266 0.37
3V 0.22 0.22 0.295

Table 4.1: Weights values: molecule X on bis-ferrocene
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(a) α = 1V (b) α = 1.5V

(c) α = 2V (d) α = 2.5V

(e) α = 3V

Fig. 4.6: Polarization curves for the molecules under analysis

A further important thing to highlight is that with this technology, all the weight
coefficients will be lower than 1. The gain of a QCA cell implemented with molecules
cannot be higher than one; thus, the interface weight will always be between 0 and 1.
This behavior is easily explainable given the intrinsic nature of propagation in molecular
FCN: the voltage at the output of a molecule can be, at maximum, equal to the input one
in case of saturation.
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4.2.1 Voltage analysis of the drivers only layout
With the weights just calculated, it is interesting to make some first trials applying to the
molecular structure the equation 3.2.
To accomplish this task, the procedure was the following: one of the three interfaces is
subjected to a sweep in the input voltage values while fixed voltages influence the other
two. The weight formula is evaluated in its ideal form on the whole voltage range. In this
way, it was possible to understand whether or not the model works and find some critical
regions in which the structure cannot correctly operate as a neuron of an ANN.
To compare the obtained results with those calculated with the ideal formula, it is possible
to consider the voltage at the output of the left molecule of the central cell. In the proposed
graph, the dummy molecule voltage is also present. It is helpful to have an idea of the
voltage that will influence the first molecules of the output wire, which will be positioned
in the next steps in the same position as the dummy molecule.
The first example is characterized by:

• Interface m3: input voltage sweep from -2V to 2V. α = 1V

• Interface m2: Vin2 = 0.5V, α = 2V

• Interface m1: Vin1 = 0V, α = 2V . This interface is going to be non influent in this
first example.

The results are reported in figure 4.7.
From this first simulation, some interesting analyses can be provided. Looking at the

graph reported in figure 4.7b, it is possible to notice that in the region in which the out-
put voltage on the central cell has a linear variation, the difference with the ideal curve
obtained through the application of equation 3.2 is relatively small. This linear region
falls approximately within -0.5V and 1V. For lower or higher values the voltage on the
molecule saturates due to the saturation of the charge distribution within the dots. In
figure 4.7c is reported the error curve; this shows minimal values in the linear region and
then increases in magnitude at the extreme of the input voltage range.
The error increases because the adopted model does not consider the molecules satura-
tion, meaning that the voltage prediction works well until the charge distribution is not
maximized.
Another point is that the obtained voltage curve is not symmetric to zero but shifted
towards positive values. This behavior is due to the presence of the fixed voltage provided
by interface m2, which is a positive one. Therefore it enhances the polarization of the
central cell when the interface m3 has the same configuration and reduces it when the
charge distributions are opposite within the two drivers.
As a second example consider the following one:

• Interface m3: Vin3 =0.7V, α = 1.5V

• Interface m2: voltage sweep from -2V up to 2V. α = 1V

• Interface m1: Vin1 = -0.8V, α = 2.5V
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(a) (b)

(c)

Fig. 4.7: Simulation results. 4.7a represents a snapshot of layout and the polarization on
the involved molecules. 4.7b shows the output voltage curves. 4.7c reports the error curve:
difference between the ideal output voltage and the one obtained on the first molecule of
the cell

The simulation results are reported in figures 4.8. In this case, it is possible to notice
an error higher than in the previous simulation but still relatively small in the same input
voltage range. Therefore, once again, when the central cell is working in its linear region,
Vout tends to follow quite well its ideal behavior.
The interesting point is that the shift toward positive values is even more evident than in
the previous example; the output voltage curve is completely asymmetric to Vout = 0V .
Notice in figure 4.8a that, besides two interfaces configured as logical ‘1’, the central cell
has the charge not distributed. It means that the influence of m3, which is quite strong
in this case, is such that it counteracts the contributions of the other two. An actual
inversion of the majority voter behavior is not present but the result strongly opens to
the possibility.
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(a) (b)

(c)

Fig. 4.8: Simulation results. m3: α = 1.5V Vin3 = 0.7V , m2 = sweep, m1: α = 2.5V
Vin1 = −0.8V

At last, consider the following situation:

• Interface m3: Vin3 = -0.8V, α = 3V

• Interface m2: Vin2 = -1V, α = 2V

• Interface m1: Input voltage sweep. α = 1.5V

The presented one is an extreme situation involving molecules with high saturation
voltages. However, the results are useful to highlight the point; these are reported in
figures 4.9. In 4.9b, it is clear how the output voltage shifts toward negative values.
The maximum positive value that this combination of voltages and interface molecules
provides is close to 0V. It is also interesting to notice the polarization curve of the central
cell, noticing how it is almost completely on the positive side of the y-axis. This means
that one of the two logical configurations is prevailing upon the other for this circuit.
However, although two interfaces have the same configuration when m1 has the opposite
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one, the output voltage will be slightly positive. Therefore, it is also possible to state that
the voltage inversion will be stronger by using molecules with lower α on interface m1.
This can be considered as the first example of inversion of the usual working behavior of
the majority voter. In the following of this work, other examples will be reported.
In conclusion, the main result that can be highlighted is the possibility of predicting with
a small error the behavior of the central cell of the neuron whenever the combination
of interfaces and input voltages avoids cell saturation. Once the charge distribution is
maximum in the cell, the mathematical equation used to describe the single neuron cannot
properly track the behavior, which is restricted to the molecular implementation and not
native to neural networks. In the proposed examples, the errors in the useful region are
quite small, but besides the detailed result analysis, it is interesting to notice how the
sign of the predicted voltage is always the correct one. This last consideration will be
extremely useful and analyzed in-depth in the following.

(a) (b)

(c)

Fig. 4.9: Simulation results. m3: α = 3V Vin3 = −0.8V , m2: α = 2V , Vin2 = −1V , m1:
sweep
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4.3 Toward a complete structure: the additional cell
layout

After evaluating the single interfaces and the different influences that the new simulated
molecules have on the polarization of the central cell, it is essential to move on and
complicate the structure to reach more realistic modeling of the circuit layout. We will
refer to this second solution as additional cell case. The interfaces will not be used as
drivers but are directly subjected to the influence of driver cells made by bis-ferrocenes
and transport the information to the neuron body. Therefore, the input voltages from
the drivers are weighted by the interfaces. The central cell computes its configuration
according to the weighted sum of the inputs. The basic structure of this solution is the
one reported in figure 3.5.
Before analyzing this complete structure, it is crucial to understand the type of influence
that the bis-ferrocene drivers are going to have on the interfaces.

4.3.1 Effect of bis-ferrocene drivers on MUT cells
This paragraph explains the analysis previously mentioned. The basic layout is reported
in figure 4.10. As done in the first analysis, have been evaluated first the polarization
curves and, consequently, the weight coefficients of such interfacing. Starting from the m3

Fig. 4.10: Adopted layout for the analysis of the influence of bis-ferrocene on MUT cells

interface, i.e., the longitudinal to the MUT cell, the results are reported in figure 4.11, in
which is documented the case for α = 1V . It is interesting to look at figure 4.11b, which
reports the polarization curve evaluated on the cell made of α = 1V molecules. The main
difference from the circuit with the bis-ferrocene, evaluated in the previous section, is the
lower polarization value reached in correspondence to the input voltage range boundaries.
These are equal to 0.3 and -0.3. Also, in figure 4.11a a not complete polarization of the
cell under analysis can be seen. This behavior is clearly due to the high saturation voltage
that such molecules show, which prevents a complete charge separation among the upper
dots of the molecules. At this point, it is straightforward to say that the higher the Vsat

value, the lower the maximum values reached by the polarization curve.
The results for interface m3 are reported in figure 4.12.
As correctly predicted, the higher the saturation voltage, the lower the charge distribution.
The polarization is almost absent for the α = 3V case.
At this point m3 interface is completely described, and the analysis can move toward
the other two. The polarization curves are reported in figure 4.13. Again, the layout is
symmetric along the z-axis.

46



Interface analysis and weight evaluation

(a) (b)

Fig. 4.11: Figure a: circuit layout. Figure b: polarization curve for α = 1V on m3

In general, the polarization values found are lower than those for interface m3. It is
due to the geometrical realization of the circuit, which has a larger molecule separation
along the vertical direction. All the results follow the expectations. The extracted weight
coefficients are reported in table 4.2.

α m1 m2 m3
1V 0.297 0.297 0.395
1.5V 0.152 0.152 0.209
2V 0.102 0.102 0.144
2.5V 0.0772 0.0772 0.107
3V 0.062 0.062 0.085

Table 4.2: Weights values: bis-ferrocene on molecule X

4.3.2 Additional cell layout and the problem of crosstalk
Adding a further cell in the structure is a step toward the final analysis of the basic
structure of a single neuron. The structure consists of a bis-ferrocene cell working as
a driver; the molecules directly couple with the interface cell, built with a pair of the
ad-hoc synthesized molecules. Then, in a second clock region, there is the central cell of
the neuron, in which the computation will take place. In figure 4.14 are present the two
snapshots of the simulation involving α = 1V molecules. From figure 4.14 it is possible to
notice the influence that a specific interface has on the polarization of the neuron body
made with bis-ferrocenes. The polarization level is not high either at the interface or the
central cell. The interesting point that can be analyzed here is the back-propagation from
the central cell to the interface molecules. This phenomenon will increase the polarization
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(a) (b)

(c) (d)

Fig. 4.12: Figure a: α = 1.5V . Figure b: α = 2V . Figure c: α = 2.5V . Figure d: α = 3V .
Interface m3

at the interface side when the second clock region goes active. Another aspect that must
be considered is the border effect on the last molecule.
In figure 4.15 are plotted the polarization curves in different moments of the propagation.

To properly read these graphs, consider the following notation:

• Interface before: this is the polarization curve of the interface when the central
cell, i.e., the second clock region, is still turned off. Interestingly, the same was found
in the previous analysis of bis-ferrocene on molecule X interaction.

• Interface after: this is the curve representing the polarization of the interface cell
when the second clock region is active. This curve is equal to the one defined as
"interface(CK2)" in the other graph. The back-propagation effect is evident in the
increased polarization.

• Central: this last polarization curve refers to the central cell behavior.
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(a) (b)

(c) (d)

(e)

Fig. 4.13: Figure a: α = 1V . Figure b: α = 1.5V . Figure c: α = 2V . Figure d: α = 2.5V .
Figure d: α = 3V . Interface m1

Looking at figure 4.15b, it is possible to notice how the polarization curve of the bis-
ferrocene central cell ranges from around -0.2 up to 0.4; these values are lower than the
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(a) (b)

Fig. 4.14: Interface m3. Information propagation with interface α = 1V

(a) (b)

Fig. 4.15: Interface m3. Polarization with interface α = 1V .

ones found in the drivers only analysis. The reason for that is the real presence of the
interface molecules in this situation, which provides a decrease in the polarization and
lower output voltages due to their high saturation values. For this reason, to properly
understand the effect of a given molecule at the interface of the complete structure, it
is needed to re-evaluate the weights and, therefore, consider the polarization curves of
the central cell in different situations. This procedure must be done for all the molecules
on all the interfaces. The values obtained are the ones involved in the voltage analysis
that will be provided later on in the study of the neural network. As expected, the new
coefficient values are lower than in the previous cases.
The plots present in figure 4.16 report the polarization curves for all the molecules under
test placed on interface m3.
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(a) α = 1.5V (b) α = 1.5V

(c) α = 2V (d) α = 2V

(e) α = 2.5V (f) α = 2.5V
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(g) α = 3V (h) α = 3V

Fig. 4.16: Polarization curves for all the molecules in additional cell case. Interface m3
analysis

Two interesting primary considerations can be made about the above graphs. First,
it is evident that for molecules characterized by higher values of saturation voltage, the
effect of the back-propagation is almost null. The curves before and after the central cell
activation superimpose almost perfectly in those cases, such as for α = 3V .
This behavior is connected to the second important observation: for high values of α, the
charge distribution in the central cell molecules becomes lower; in the last plots of figure
4.16 it can be either considered to be null. Interestingly, the polarization curves are not
symmetric to the graph y-axis. In all the cases, the polarization shifts towards positive
values.
This behavior is due to the asymmetric nature of the bis-ferrocene, which gives rise
to asymmetric VACT and, therefore, to non-symmetric polarization curves. The bis-
ferrocene central cell tends to distribute the charges in such a way to have positive po-
larization. This behavior is evident in the cases in which the saturation voltage of the
interface molecules is high.

Vertical interfacing and crosstalk

The analysis of m1 and m2 interfaces requires a more detailed study due to some issues.
First, the coupling is different from the one present along the y-direction; this is true for
any FCN circuit. Moreover, it is different how the charges sense the electric field. It is
important to remember that the electric field can be decomposed in contributions along
the axis; of course, those can have various amplitudes. This concept is important because,
as shown in the following, the crosstalk event is a real issue for molecular circuits built
along the vertical direction.
Consider this situation: interface m1 characterized by α = 1.5V saturation voltage, and
the involved layout is the additional cell.
The results are reported in figure 4.17.

Figure 4.17a shows a snapshot of the performed simulation, while 4.17b reports the
polarization curve evaluated on the central cell.
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(a) (b)

Fig. 4.17: Interface m1. Additional cell layout with α = 1.5V

In particular, from this last one, it is possible to understand that, with the system as
it is, the circuit does not work. The polarization reaches a positive saturation value for
voltages higher than zero and viceversa for the negative side. Moreover, considering the
neural implementation, such an interface cannot be characterized by a weight coefficient
since there is no linear transition on the curve.
From a charge distribution point of view is useful to look at the snapshot reported on the
left figure of 4.17. The charge is localized on the two lower dots along the z-axis due to
the need to minimize Coulomb repulsion. The same problem can be noticed considering
m2. In that situation, the charge will be localized on the two upper dots instead of the
lower interface.
This is a big issue, particularly concerning the neural application under study.
This behavior can be thought of as molecular crosstalk, which is present in globally non-
neutral molecules. The radial component of the electric field superimposes the propagation
component. This radial component is not influencing the horizontal direction but only
the vertical one. Consequently, the superposition of the previously mentioned contribu-
tion distributes the charges in the same direction, i.e., on corresponding dots of the two
molecules forming the cell.
This analysis is important since it justifies the introduction of the counter-ion on the
fourth dot of each molecule, thus using only globally neutral molecules on the circuit.
The polarization curves obtained for the same interface with the presence of counter-ion
are documented in figure 4.18.

The curves reported have similar characteristics to those presented in the analysis of
interface m3. In this case, there is a clear change to the previous results: a linear region
is present, and, therefore, the charge is better distributed among the dots of the central
cell.
For what concerns the P −Vin plots, an asymmetric behavior can be highlighted once more
in the central cell polarization. Interestingly, this structure is not completely symmetric,
opposite to the drivers only layout. Indeed, even though the crosstalk problems are solved
using counter-ion, Coulomb repulsion has different effects if considered from the top or
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(a) (b)

Fig. 4.18: Interface m1. Additional cell layout with α = 1.5V , influence of the counter-ion

(a) (b)

Fig. 4.19: Interface m2. Additional cell layout with α = 1.5V

the bottom along the z-axis. So, m1 interfaces enhance negative polarization values, while
m2 does the opposite. This behavior implies that the weights are not equal for m2 and
m1 interfaces.
In figure 4.20 are reported the polarization curves obtained in the analysis of interface m1
with the additional cell layout. As expected, the extreme values of the polarization become
lower with the increase of the α parameter. In figure 4.19 is present the polarization curve
for α = 1.5V , obtained on the bottom interface.
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(a) α = 1V (b) α = 1V

(c) α = 2V (d) α = 2V

(e) α = 2.5V (f) α = 2.5V
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(g) α = 3V (h) α = 3V

Fig. 4.20: Polarization curves for each molecule under analysis placed on interface m1

Charge distribution analysis

The previous section reports all the polarization curves obtained from the analysis of
the upper interface, i.e., m1. It is interesting to notice how the one related to α = 1V ,
reported in 4.20a, has a strange behavior if compared to the others. Moreover, this is
the only case in which m1 and m2 results are not comparable since the m2 curve shows a
smoother transition, as reported in figure 4.21. The issue that such behavior arises is that

Fig. 4.21: Additional cell layout. Interface m2, α = 1V

the weights are different and not comparable. For this reason, it was necessary to provide
an in-depth analysis to understand the main reasons that caused this. Specifically, has
been carried out a charge distribution analysis among the dots of the molecules in the
central cell both for m1 and m2 cases. In figure 4.22 is reported a graphical representation
of the dots positions from the interfaces point of view. In table 4.3 is presented the ideal
combination of dots between which symmetry is expected if the same input voltage is
assumed.

56



Interface analysis and weight evaluation

Fig. 4.22: Schematic representation: dots and molecules numbering

m1 m2
dot1mol1 dot2mol4
dot2mol1 dot1mol4
dot1mol2 dot2mol3
dot2mol2 dot1mol3

Table 4.3: Symmetries expected within dots of the central cell in m1 and m2 cases. With
equal driving voltage, the charge distribution among those dots should be ideally equal

The charge distribution is evaluated on the interface and central cells for m2 and m1 cases.
The input voltage range goes from -1V to 0V to focus the attention on the range in which
the main problems occur. The results are reported in figures 4.23 and 4.24. The first
presents the curve obtained from the analysis of the central cell, while the other shows
the results obtained from the interface.
Looking at figure 4.23 it is visible a not proper charge separation on the molecule tagged
as mol4 for input values ranging from -1V up to 0.6V. It is the same range in which
the unwanted transition towards high polarization occurs in figure 4.20a. Looking at
the counterpart of m2, reported on the right graph in 4.23, it is possible to appreciate
a higher charge separation in the same input range. This situation occurs only in the
central cell if molecules with saturation voltage equal to 1V are present at the interface.
Indeed, the charge distribution is almost the same among corresponding dots in the case
where α = 1.5V molecules are present at the interface of the bis-ferrocene central cell.
This concept can also be understood from the comparable behavior of the corresponding
polarization curves, reported in figures 4.18a and 4.19a.
Moreover, also for what concerns the interface charge distribution, no regions with null
polarization can be detected either for m1 or m2. Therefore, the problem is just on the
central bis-ferrocene cell with m1 connected to it. The reason behind this behavior can be
a sum of causes. It is worth mentioning the possible presence of residual crosstalk effects,
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the non-symmetric geometry and VACT of the bis-ferrocene molecule, and the absence of
other molecules balancing the circuit, thus causing possible unwanted effects.
In conclusion, it is crucial to decide whether or not to consider the weights of this interface
equal to the one derived for m2. Considering the voltage analysis and results in the
following section, the more reasonable values have been found by considering the two
interfaces as symmetric, thus having the same weight coefficients. This choice relegates
the problems pointed out in this section mainly to the non-balanced structure of the
circuit.

(a) m1 (b) m2

Fig. 4.23: Charge distribution plot for Vin = [−1V, 0V ]. Central cell

(a) m1 (b) m2

Fig. 4.24: Charge distribution plot for Vin = [−1V, 0V ]. Interface cell
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Interface coefficients evaluation

As the last step, it is possible to evaluate the weight coefficients. The procedure is the
same as in the previous cases. The polarization curves whose angular coefficient have
been evaluated are the ones related to the central cell of the additional cell layout. In this
way, the interface can be considered a building block that, once placed, has a different
influence on the neuron body polarization, depending on the molecules involved.
The weights are reported in table 4.4, these are the final ones involved in all the following
analyses and considered when applying the neuron’s equation 3.2.

α m1 m2 m3
1V 0.3543 0.3543 0.456
1.5V 0.1523 0.1631 0.0689
2V 0.1105 0.1169 0.0253
2.5V 0.0899 0.0945 0.0153
3V 0.0774 0.0811 0.0132

Table 4.4: Weight values: additional cell layout

Notice how, in this case, for α higher than 1.5V, interface m3 has a more negligible
influence than m1 and m2. Moreover, the symmetric behavior of the vertical interfaces is
valid only if the analysis carried out in the previous section is assumed. The corresponding
coefficients are not equal but very close in amplitude for all the other molecules.

4.3.3 Voltage analysis for the additional cell case

The importance of the voltage analysis derives from the final objective that this work
proposes. Evaluating the voltage behavior in different conditions of inputs and interfaces
is essential since it provides a general idea about critical situations that can arise. In
this section are provided some numerical analysis and comments about them. Before
moving on, it is necessary to make a general and descriptive evaluation of the voltages
and the influences involved in the structure. Until now, have been evaluated only separated
interfaces; placing everything together implies that all the interfaces will have a specific
impact on the polarization of the neighboring ones and viceversa. For this purpose, look
at figure 4.25, in which are summarized the main voltage contributions and couplings.
The light blue dots represent a possible inputs configuration; imagine at this point that
the weights combine in such a way that the circuit works as a majority voter. Before
the activation of the central cell, there is mutual influence along the diagonals; the black
lines in the figure represent this. The results of these couplings are represented with the
shadowed red-colored dots.
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Fig. 4.25: Voltage influences among the circuit

Notice that the main problem in the particular situation under analysis is the influence
within interfaces m3 and m2. Indeed, the cells lose polarization, and the charge tends to
be distributed more homogeneously.
As soon as the central cell turns on, there will be back-propagation, and finally, the
molecules reach the more stable and final configuration. Back-propagation is taken into
account by the green arrows in figure 4.25 and it was already analyzed in the polarization
curves presented in the previous section. Of course, the interfaces having same polarization
as the one computed will experience an increase in their polarization, while the opposite
happens in the reciprocal case.
Before moving on in the analysis it is essential to describe the choice regarding the signs
of the input voltages at the interface. According to the weighted input formulation and
the results, the best sign convention is the following one:

• Positive sign for input voltages providing a logic ‘0’

• Negative sign for input voltages providing a logic ‘1’

Figure 4.26 reports the first example of coupling within cells among the diagonals.
These are highly indicative since only interface m3 is active, while the drivers on the
other two are non-active. From 4.26a it is visible the influence that the activation of m3
has on the other two. All the interfaces present molecules with α = 1V . These gain a
certain amount of polarization due to the electric field lines coming from m3. Therefore,
their polarization is different from zero, which should be expected considering only the
influence of corresponding turned-off drivers.
These results are confirmed by the polarization curves reported in figure 4.26b.

From the proposed figures, it is possible to notice how the diagonal coupling influences
the polarization on the non-active interfaces m1 and m2. It is interesting to evaluate
the behavior of the induced polarization. From the plot in 4.26a, it is clear that m1 is
subjected to a positive polarization, while on m2, a negative one is present. The important
point is that for this circuit, the signs of the diagonally induced charge distributions are
always the same on the whole input voltage range. In the case the vertical interfaces
are active too, the resulting polarizations in the circuit have to consider both direct and
diagonal couplings.
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(a) Circuit snapshot (b) Polarization curves before central cell activa-
tion

ù

(c) Polarization curves with central cell active

Fig. 4.26: Effects of the diagonal coupling and back-propagation

Moreover, in figure 4.26c, can be appreciated the back-propagation effects deriving from
the configuration of the charges in the central cell. In this case, all three interfaces follow
the exact behavior of the central cell.
The characterization of the diagonal coupling should be done for all the interfaces, and
with all the molecules involved, such work would be necessary for the final implementation
and in-depth understanding of all the possible scenarios. However, this is out of the scope
of the present work; at this point, it is enough to understand the possible impact of this
effect on neural computation.
In the last part of this section, two other examples present different possible situations.
In the first one, the configuration of the circuit is the following:

• Interface m3: input voltage sweep from -2V to +2V, α = 1.5V

• Interface m2: Vin2 = 0.7V , α = 2V
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• Interface m1: Vin1 = −0.8V , α = 2V

The results are reported in figures 4.27, which shows the polarization curve at the
interfaces before and after the central cell activation. The third one reports a voltage
analysis on the whole input range. The curves must be read in this way: Vout1 is the
voltage on the first molecule of m1; Vout8 is, instead, referring to the interface m3; finally
Voutc is the voltage evaluated on the left molecule of the central cell, as usual.
Related to this, some interesting considerations can be provided. First, it is possible to
appreciate how, in the linear region of the Vout curve, the errors within the expected
ideal values given by 3.2 and the obtained ones are minimal; the difference value within
expected and obtained voltages is going to referred as prediction error. This result is due
to the particular combination of interfaces and inputs chosen for this simulation. Indeed,
the provided polarization is low for all the interfaces, meaning it is possible to neglect
the spurious contributions from other interfaces through diagonal or vertical coupling.
Moreover, the fact that the curves are close indicates the quality of the weights evaluated
in the previous section. Thanks to this simulation, it is possible to state that it will be
possible to reasonably predict the voltage on the first molecule of the central cell and,
consequently, its final configuration. Similar reasoning can be applied to the polarization
curves reported in figures 4.27a and 4.27b. About the first one, some comparisons can be
made with the results presented in 4.26b. The polarization values obtained on the vertical
interfaces are comparable. The main difference is that similar results were obtained only
with the influence of m3 along the diagonals in the previous case. In this second case, the
upper and lower drivers are active, so the polarization achieved through their influence
must be summed to the one obtained through diagonal coupling. This last contribution
is smaller than in the previous case. That is mainly due to the presence of molecules
characterized by α values higher than one. These, as already analyzed, are more difficult
to be polarized, and the charge distribution among their dots is lower, thus obtaining a
cell less susceptible to external influences. A third and last example is reported in figures
4.28. The new configuration is:

• Interface m3: input voltage sweep from -2V to +2V, α = 1.5V

• Interface m2: Vin2 = 0.7V , α = 2V

• Interface m1: Vin1 = −0.7V , α = 1.5V

Notice that the green line in figure 4.28c represents the ideal line shifted down by an
amount equal to the mean error present in the linear region of the Vout curve. This case is
interesting given the presence of different molecules on the two cells along the z-direction
of the circuit. As can be noticed from the curves, the polarization is not symmetric as
in the last analyzed simulation but more significant on the cell having a lower α value,
i.e., m1. The voltage analysis still provides good results, even though the error is greater
than the one measured before. Moreover, it is possible to demonstrate that, with proper
weight selection, the least present logical configuration can be transported to the neuron
output, reversing the usual behavior of the majority voter circuit. An example of this is
the following:
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• Interface m3: α = 1.5V, Vin3 = 0.4V

• Interface m2: α = 1.5V, Vin2 = 0.5V

• Interface m1: α = 1V, Vin1 = −0.7V

As anticipated, m1 is the prevailing interface in this case, and, even if its configuration
is less present than the first two, this is the one that propagates to the output. The
voltage obtained from the simulations on the first molecule of the central cell is equal
to -0.1753V, with a prediction error equal to 0.0364 in absolute value. Notice that this
result, particularly the low prediction error, justifies the choice related to the weight for
the α = 1V molecules on interface m1.

(a) (b)

(c)

Fig. 4.27: Voltage and polarization results for the additional cell complete structure.
Second example.
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(a) (b)

(c)

Fig. 4.28: Voltage and polarization results for the additional cell complete structure.
Third example.

4.3.4 Parametric analysis

Many simulations were performed to define some basic general rules of workability of the
circuit. Summing up the results, it is possible to provide parametric analyses, in which the
parameter can be either the input voltage to a certain interface or the molecules present.
The two graphs in 4.29 report examples for each type of study. Specifically, in the plot
shown in figure 4.29a, the parameter is the α value of the molecules placed on interface
m3. The input voltage Vin3 is set to 0.8V. The other two have fixed-configuration: m1 is
characterized by α = 2V and Vin1 = -0.6V; m2 instead shows α = 2V and Vin2 = 0.7V.
The values reported on the graph are the errors obtained concerning the ideal calculation,
the polarization of the central cell, and the voltage obtained on the dummy molecule. For
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what concerns the first two, it is possible to verify what was already understood from
simpler layouts: the lower, in absolute terms, the polarization of the central cell, the
lower the displacement from ideality. Indeed, the error curve increases with increasing α
parameter, and the polarization becomes lower in absolute value.
The situation reported in 4.29b shows some different behavior. In this case, the parameter
is the input voltage on the interface m3, which is set with α = 1V molecules. The other
interfaces have the following setup: α = 2V , Vin2 = 0.7V on m2; α = 2V, Vin1 = −0.6V
on m1. This second example is of particular interest since it shows an almost flat behavior
of the error value around 0 over the whole input voltage range analyzed, which goes from
-0.8V to 0.8V. The polarization, instead, has a straight behavior from positive to negative
values. The conclusion deduced from this second set of results is that this configuration
is extremely stable for any voltage value at the input of m3. Such a behavior derives from
the presence of one strong interface while the other two contribute not significantly to
the central cell final polarization and, moreover, have opposite voltages and same α. This
way, the computational cell mainly follows the behavior of m3.

(a) (b)

Fig. 4.29: Parametric analysis of additional cell layout

Several analyses of the same type can be provided to define trend behavior for different
configurations of the interface molecules or the input voltage coming from a specific di-
rection. In general, it is possible to highlight similar considerations to those found before:
the behavior of the error is not easy to predict and depends on the mutual influences
present on the structure and the active molecules. In general, with this type of system is
difficult to work out of linearity due to the low polarization of the interfaces. However,
even if small, the evaluated error can lead to wrong predictions of the final logic behavior
of the neuron. These considerations are going to be analyzed in detail in the following
chapters. At this point, a general idea of the possible scenarios is enough to state that
such a neuron can work if inserted into a network.
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Influence of intermolecular distance

At the end of the first chapter were given some hints related to the technological imple-
mentation of FCN. As in any fabrication process in electronics, the different steps to which
the device is subjected have some tolerances and limited resolution. For this reason, pro-
cess variations can affect the final device. One parameter with a significant influence is the
distance within the molecules, i.e., the intermolecular distance. When dealing with a new
type of circuit, it is crucial to characterize different values of the most critical geometrical
parameters. Up to now, the intermolecular distance along the longitudinal direction was
always set equal to 0.9nm. This section presents parametric analyses to characterize the
system for different spaces within the molecules.
Besides the importance of a formal numerical evaluation, the general trend has to be ana-
lyzed; for this reason, to stay in an easy situation, the chosen layout is the drivers only,
and the parametrized distance is the one along the y-direction.
The three sets of plots in figures 4.30a, 4.30b and 4.30c reports all the polarization curves
obtained studying m3, m2 and m1 for different values of separation within the molecules.
These are characterized, in this first case, by α = 1.5V . The range for the distance change
is [0.8nm, 1.3nm].

In all the graphs reported, it is possible to notice how the increase of the distance
parameter decreases the weight of the molecules. On the other end, its reduction tends to
drive the bis-ferrocene into saturation. These behaviors are evident in the curves related to
d = 0.9nm. For separation values along the y-direction higher than 1nm, we can highlight
a sort of saturation in the behavior of the different curves. Interestingly, in m3, the curves
reach this value slower than in the other two cases. This is reasonable since the distance
variation applied for these simulations involves to a lesser extent the cells on the vertical
interfaces. Indeed, each molecule is getting closer or farther to the other one in the same
cell, but the distance from the neighboring cell is unchanged since it lies in the z-direction.
Having in mind the steps performed on d = 0.9nm, it is possible to follow the same path
to evaluate the trend of the parameters defining the polarization curves for each interface.
The results are reported in figures 4.31a, 4.31b, notice that just the curves for m2 and
m3 are reported since the driver only layout maintain the symmetry within m1 and m2.
Each graph reports three curves:

• m: this is the weight coefficient of the interface

• Vsat: this is the voltage value at which the polarization of the central cell reaches
saturation

• Pmax: this is the maximum value of the polarization on the central cell.

The more interesting profile is the one related to the weight coefficients. As could
have been understood from the polarization analysis, the curve decreases with distance.
The weights for separation values lower than 0.85nm are higher than one. It is a clear
indication that for any value present at the cell input, with such a small distance, the
central cell will saturate. For spaces larger than 1nm, the coupling within the molecules
tends to become null; consequently, the curve tends to zero.
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(a) m1 (b) m2

(c) m3

Fig. 4.30: Polarization curves for different values of intermolecular distance. α = 1.5V

(a) m1 (b) m2

Fig. 4.31: Parameter curve vs distance variation. α = 1.5V
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From a mathematical point of view, this trend can be evaluated as a decaying exponen-
tial, and this is reasonable since, from the standard rules of electrostatics, is well-known
that the influence of an electric field on a certain point in space is inversely proportional
to the square root of the distance. In the same way have been characterized the interfa-
ces for other molecules. For instance, the results for α = 1V are reported in the sets of
figures 4.32 and 4.33. In these can be noticed the same trends as in the previous graphs.
Therefore, it is correct to state that, whatever the molecule under study, the results of
the distance parametric analysis will provide the same result.

(a) m2 (b) m3

Fig. 4.32: Polarization curves vs distance variation. α = 1V

(a) m2 (b) m3

Fig. 4.33: Curve fitting α = 1V

This analysis can be considered enough. Obviously can be enlarged to understand
better the additional cell layout behavior and, therefore, of the complete neuron. However,
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the essential point of this work was to set a limit to the intermolecular distance that should
be adopted. This can be defined in the range between 0.9nm and 1nm.
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Chapter 5

Propagation analysis for
molecular FCN neural
networks

The information transport is a critical point in developing any electronic technology.
The main requirements are that information is not degraded along the wire on which is
transmitted, and the logic value at the end of the wire is congruent with the one sent. In
order to propose a solution for the realization of neural networks in molecular FCN, it is
mandatory to study how the molecular wire propagates the logic values.
Molecular wires are analyzed in depth in literature [22]. However, the main focus of this
chapter is the characterization of the output wire connected to the neuron in terms of
molecules and clock region distribution. In this way, the final result will be inserted in
the neural network, connected to the already studied neuron cell.

5.1 Output wire characterization
The first parameter under test is the distance within the molecules. The starting layout
is the one defined as additional cell, with d = 0.9nm along the y axis. A first example is
reported in figure 5.1. These results are obtained through a simulation involving a sweep
on m3 = 1V, while Vin2 = 0.7V on m2 = 2V and Vin1 = −0.7V on m1 = 1.5V. The clock
regions are organized as follows:

• clock region one hosts the interface cells

• clock region two his occupied by the central cell of the neuron

• clock region three influences the output cell only

The clock signals have been configured according to rules of the adiabatic propagation
[14].
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(a) (b)

(c)

Fig. 5.1: Addition of the output cell. m3 = 1V, m2 = 2V Vin2 = 0.7V, m1 = 1.5V Vin1 =
0.7V

Figure 5.1 shows the voltage and charge distribution results as soon as the central cell
is active. It is possible to notice a strongly non-symmetric behavior of the Vout values in
the input voltage range. At this point, the same considerations carried out in chapter 4
can be considered valid. The situation changes as soon as the output cell of bis-ferrocene
is activated by the influence of the third clock signal; the results are reported in figure 5.2.
The main evident behavior is that the system polarization saturates for any input voltage
value. The polarization, indeed, assumes values equal either to -1 or +1, with a vertical
transition between the two. Notice that the voltage at which the transition occurs is not
at 0V; this is due to the non-symmetric behavior of bis-ferrocene VACT. It is possible to
conclude this first analysis with 0.9nm distance, saying that it is impossible to propagate
the information linearly. The final system will be fully digital, working only with two
binary values.

In hardware implementation of ANN, mainly the analog ones, the signal levels going
through the network can have any voltage value. An analog-like performance of the
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(a) (b)

Fig. 5.2: Addition of the output cell: activation of the output cell

molecular circuit would increase the possibilities related to this solution. On the other
hand, if a digital system is the goal, it is enough to work with analog values on the driver
side and then saturate the charge distribution at the beginning of the output wire to
transport logical ‘0’ and ‘1’.
To develop an analog system with molecules, it is needed to work in the linear region
of the characteristics, preventing the charge from complete distribution. For this reason,
such a result is not easy to obtain. In the following sections of this chapter, different
parameters and configurations are analyzed to understand the possibility of implementing
an analog neural network with the molecular FCN paradigm.

5.1.1 Saturation voltage variation
Following the results reported so far, something must be changed to have non-saturated
propagation, either in the structure geometry or in the molecule selection. Indeed, the-
re are mainly two parameters that it is possible to change to try to develop an analog
propagation: the saturation voltage of the molecules and the intermolecular distance.
Concerning the first, it is possible to consider the lowest value of the ones introduced by
this work, i.e., α = 1V .
At this point, only the output wire is simulated since the main focus is on how the informa-
tion propagates, thus decreasing the computational weight of each simulation. Therefore,
the driver represents the computed information at the input of the wire, which generally
could have values between -0.8V and 0.8V.
The results of the simulation are reported in figure 5.3. Figure 5.3a is particularly intere-
sting since it reports the Vout curves on each molecule of the wire. Through this figure of
merit, it is possible to evaluate the decaying behavior of the voltages along the molecular
wire. In this case, with molecules having a saturation voltage double to that of the bis-
ferrocene, the propagation cannot occur, and the information is inevitably lost after the
first cell. This behavior is confirmed by the two other figures of merit in 5.3, in particular
the one reporting the charge distribution along the wire.
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(a)

(b) (c)

Fig. 5.3: Molecular wire made of α = 1V molecules

The above considerations allow to state that the change of the saturation voltage, i.e.,
of the molecules, adopted in the realization of the molecular output wire is not a solution
at this point. The main reason for that is the extremely fast decay of the information
during the propagation, thus not allowing for a correct read-out.

5.1.2 Change of the intermolecular distance
At the beginning of this chapter, it was shown that there is no possibility of working in
linear conditions for separation values lower than 1nm. Being discarded the possibility
of changing the molecules, the remaining parameter is the intermolecular distance, whose
influence has already been explained at the end of chapter four.
The structure that is going to be analyzed is the following one:

• the driver simulates the presence of an input to the central cell, thus representing
the combination of the input voltages from the interfaces
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• the first cell of the molecular wire works as the central cell of the neuron and is
located in the first clock region

• the other molecules of the output represent the output wire and are controlled by
the second clock zone

• given the results obtained in the previous section, all the molecules involved are
bis-ferrocenes

What will be analyzed is the type of propagation according to different distances d and
different lengths of the wire, i.e., different number of molecules. For each case evaluated
with d = 1nm, the maximum voltages that can be applied at the input of the wire before
it reaches the saturation condition are considered. It is also interesting to compare the
results with the d = 0.9nm situation. Some preliminary analyses are reported in figure
5.4.
The curves can be defined as follows:

• Vout first ck1: it is the output voltage on the first cell of the molecular wire when
the second region is not active yet, so the output voltage at the output of the neuron
body

• Vout first ck2: is the output voltage on the first molecule of the output wire when the
second clock region is active. It is possible to highlight the effects of back-propagation
by means of this curve

• Vout last ck2: is the voltage evaluated on the last molecule of the output wire when
the second clock region is active. It is interesting since it will represent the input to
the next neuron interface in the complete structure. A too low value will translate
into a very small interface polarization.

Looking at the results related to d = 0.9nm, it is possible to notice that these are very
similar, confirming the results already found: it is impossible to have linear propagation
with such separation. For what concerns the results for d equal to 1nm a linear transition
is present; it suggests the possibility of working in a non-saturated region and transporting
analog information. Notice that another condition to have linear propagation is that the
voltage computed by the neuron and given in input to the wire is small enough to prevent
the wire from saturating.

Given the results, it is possible to say that the situation reported so far can be associa-
ted with very local interconnections from a technological point of view. Local connections
in FCN technologies have to be handled with care due to the possible presence of spurious
influences deriving from electric field lines propagating through the circuit.

5.1.3 Wire length parametric analysis
Consider a four cells wire. Notice that the first two molecules represent the central cell
of the neuron and, therefore, are activated by the first clock signal. Consequently, just
six molecules form the wire. Before moving on in the analysis of the results, it is helpful
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(a) Two cells 0.9nm (b) Two cells 1nm

(c) Three cells 0.9nm (d) Three cells 1nm

(e) Four cells 0.9nm (f) Four cells 1nm

Fig. 5.4: Polarization and output voltage characteristics of molecular wires with two clock
regions, variable distance and variable number of molecules
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to introduce two parameters, namely β+ and β−. These are, respectively, the maximum
and the minimum values that can be applied at the input of the wire before it reaches the
saturation condition.
In figure 5.5 are reported the curves representing the output voltage for each molecule in
the chain for the four cells wire.

Fig. 5.5: Output voltages on all the molecules of a molecular wire with d=1nm

From the figure above, it is evident the presence of a linear region. The maximum input
values are β+ = 0.4V and β− = −0.4V . Due to the linear propagation and border effects,
the voltage at the output of each molecule decreases with the increase of the distance
from the input driver. This behavior is correct since, without the complete polarization
of the charge distribution, the voltage gain of each cell is lower than one, meaning that
the voltage decreases from one cell to the following. To provide some more parametric
study, figure 5.6 presents the same results but with increased intermolecular distance,
equal to 1.1nm. It is evident that there is no propagation in this case, and the results
are similar to the case in which α = 1V molecules were used to build the output chain.
The first conclusion is that the only possible value of molecule separation is 1nm to work
in the analog domain. It also confirms the analysis related to the change of the weights,
highlighting that for too high separation, the weights of the interfaces would become too
low to make the system work correctly.

Restoring back the distance to 1nm, it is possible to provide other more profound
studies considering applying single inputs to the wire. In figure 5.7 are reported the results
related to the situation in which the input voltage is set at -0.4V; as can be expected, the
wire works in the linear domain. In figure 5.7a are reported the output voltages at each
molecule; it is evident the lossy behavior present in this type of solution.

Also related to this simulation, it is interesting to evaluate the polarization on the last
cell of the wire, which is equal to 0.0662. From this value, it is possible to state that the
charge separation on the last cell is practically absent. Therefore, the arising problem is
the low influence on the interface cell that will be connected at the end of the wire. Border
effects and linear propagation combined are such that the information is still correct from
an overall charge distribution point of view, but the exact voltage value is completely
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Fig. 5.6: Output voltages on all the molecules of a molecular wire with d=1.1nm

(a) (b)

Fig. 5.7: Output voltages and charge distribution on an eight molecules wire subjected to
an input voltage V in = −0.4V

lost. It is a major problem that has to be solved if the goal is to achieve a working
analog propagation. Notice that the lossy behavior and border effects are independent of
the length of the wire. Whatever N, provided that it does not generate saturation, the
voltage will be small on the last molecule of the wire, and the system will lose the initial
analog information.
In figure 5.8a is reported the case for Vin = 0.4V , notice that the problems just pointed out
are present also in this case. However, the voltage values are higher, and the polarization
level on the last cell is equal to -0.1439. As a final result, figure 5.8b reports the voltage
trend curve for Vin = 0.5V , for such an input voltage the molecules in the wire saturate.
The consequence is that the molecules have equal in magnitude and opposite in sign output
voltages, around 0.6V. Once again, the initial voltage value is lost, but the polarization
on the last cell has a useful value equal to -0.4176.
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(a)

(b)

Fig. 5.8: Output voltages and charge distribution on an eight molecules wire subjected to
an input voltage Vin = 0.4V and Vin = 0.5V

Similar considerations can be carried out for longer wires. Before moving on, notice
that only two clock regions have been used. This solution can be critical in some cases.
Indeed, for too-long wires, the molecules farther to the driver will tend to distribute their
charges on the dots before the arrival of the authentic information. This behavior creates
the possibility of clash events. Moreover, having just two clock regions means creating a
direct connection within the central cells of the different neurons. Theoretically, this is
not a problem if the wires length is the same for the three interfaces. However, it is not
always possible to ensure this condition, so it is better to introduce a third clock region
splitting the output wire. In this way, it is possible to achieve adiabatic propagation.
Another critical consideration concerns the dimension of each of the two clock regions in
the output wire. Take as an example a molecular wire organized in the following way:
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• the first two molecules represent the central cell of a first neuron and are placed in
the first clock region

• output wire made of twelve bis-ferrocene molecules organized as follows:

– eight molecules in the second clock region
– four molecules in the third clock region

• two interface cells presented at the end of the output wire and influenced by the
third clock signal, making the total number of molecules in this region equal to six.
The saturation voltage of the molecules in this cell is equal to 1V.

• two final bis-ferrocene molecules forming the central cell of a second neuron

This simulation is interesting since it contains almost all the elements that will be present
in the final solution for the output chain. Moreover, looking at the results reported in figure
5.9, it is possible to derive some critical points related to the clock regions organization.
For this example has been applied Vin = 0.65V to make the wire saturates. Due to the
saturation of the wire, the propagation of the information starts to seem more compliant
with adiabatic propagation theory. However, the main problem is that as soon as the first
clock region is deactivated, the molecules in the second one lose the charge distribution,
and the information is completely lost. So it is possible to say that even with the proper
conditions in terms of clock regions and saturation, the transport of digital information
can have some serious problems. Therefore, it is needed to increase the length of the
whole wire or, at least, the number of molecules present in the second clock region. As
an example, consider the results reported in figures 5.10a-5.10b, there is considered an
eighteen molecules wire with the same clock region division seen in the previous case.
The number of molecules present in the second zone is increased to eight. From these
last results, it is even more clear that the digital solution for propagating the information
through the neural network is the best to provide a stable and reliable solution to the
problem. However, to achieve it, the design must respect the constraints related to the
number of molecules and the voltages applied to the structure. The first one is achievable
by correctly placing molecules in the different clock regions. The second is instead more
critical. In the previous chapters, was showed that the voltage at the neuron output could
be minimal depending on the input values. If the 1nm solution is chosen, the propagation
cannot occur since the wire is not saturated, and the information is lost. Moreover, there
is a second problem to be considered. In Chapter 4 was performed a parametric analysis
of the weights concerning intermolecular distance variation: with increasing distance, the
weights would reduce almost exponentially. That result is confirmed in figure 5.10b.
The wire has to be implemented with a valuable amount of molecules distributed in the
clock regions to provide correct adiabatic propagation. Even though the information
arrives at the wire end and, therefore, at the interface cell, the consequent polarization of
the central cell is extremely low. This is a significant problem whose solution can be just
the reduction of the intermolecular distance.
These results are also confirmed by the voltage analysis reported in figure 5.11 and become
even more evident by taking into account molecules with α higher than 1V. At the end of
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this part of the discussion, it is again apparent how the digital solution should be preferred
to the analog, even if it will imply the loss of the exact value computed at the neuron site.

(a) (b)

(c) (d)

Fig. 5.9: Propagation on the complete wire and connection with the second neuron central
cell: Vin = 0.65V, 12 molecules on the wire, 2 interface molecules and two bis-ferrocenes
molecules implementing the connection with a second neuron

(a) (b)
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(a) (b)

Fig. 5.10: Charge distribution plot of the propagation across an eighteen molecules wire
and connection with a second neuron across an interface cell α = 1V

Fig. 5.11: Voltage trend analysis across a N = 18 molecular wire with interface cell at the
end. Voltages at the end of the molecular chain are extremely low.

5.2 Clock profile definition
The critical points found in the previous sections are related to how to saturate a mole-
cular wire characterized by d = 1nm. The analog solution with the structures adopted
so far seems to be not a concrete possibility. Indeed, there are two main problems: the
requirement of a minimum number of molecules in the second clock region and the in-
formation fading with distance. A possible idea to overcome these problems and achieve
the analog implementation of the final neural network is to introduce step variations in
the clock profile. These are already present in FCN solutions given the impossibility of
generating a square wave with perfect vertical edges.
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As a consequence, the clock signal is going to take different intermediate values between
the extremes -2 V

nm and +2 V
nm .

In a first approximation, the analyzed clock signals are those reported in figure 5.12. For
simplicity and preliminary evaluation of possible achievable behavior, the involved wire
divides into just two clock regions.

Fig. 5.12: First ideal clock signals

It is important to remark that the proposed profile is just a first approximation to move
out from ideality. The step variation is present only on the falling edge of each signal,
which have a shift in phase one to the other. The outcomes of the first simulation are
reported in figure 5.13. The input voltage is 0.3V, and the number of molecules present
in the wire equals 14. The molecules are all bis-ferrocenes. Notice that with the ideal
clock configuration, the consequences of border effects would be evident and, therefore, a
substantial reduction of the voltage at the end of the wire. In the results reported in 5.13
it is evident that thanks to the presence of the slower variation of the clock signals, the
propagation is sustained, and the molecules in the wire have maximum charge separation.
It is interesting to notice that the propagation properly occurs in this case. Due to the
usual reasons, some border effects are still present on the last molecule. In figure 5.13d
it is important to notice that, even if the first clock region in the wire is turned off, the
molecules in the second one are capable of maintaining their charge distribution. This is
the main effect of introducing the intermediate values in the clock. Moreover, comparing
this result with the one reported in figure 5.13b, it is possible to notice a reduction in the
border effect.
From this first analysis, the idea of avoiding turning off immediately the first clock signal
seems to be engaging to maintain and stabilize the information along the wire. Diffe-
rent simulations were performed involving different wire lengths. However, remarkable
differences with the case reported cannot be highlighted.
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(a) (b)

(c) (d)

Fig. 5.13: Vin = 0.3V , N = 14, d = 1nm

5.2.1 More realistic clock profile
As already said, the clock signal waveforms introduced in the previous section are highly
idealized. It is important to understand if the benefits pointed out so far can also be
confirmed with the introduction of a more realistic clock, in which a finite number of
steps characterizes both the falling and rising edges of the clock signals. The updated
clock signals are reported in the graphs 5.14a and 5.14b.

The two figures differ mainly in the number of steps introduced in the transition. In-
deed, the waveforms in 5.14a are characterized by steps of height 0.5 V

nm , while in the other
case those are equal to 0.1 V

nm . The results found in the two situations can be considered
comparable; for this reason, to improve the computational time of each simulation, only
the results related to the use of the first signal will be presented. An important aspect
to be noticed is the scale of the x-axis of the plots. These show the steps multiplied by
10 for plotting easiness. The simulation results proposed in this section are referred to by
the step number, from which the values of the two clock signals at that time instant can
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(a) (b)

Fig. 5.14: Complete clock waveforms

be derived.
The first proposed simulation has the following characteristics:

• N = 18 bis-ferrocene molecules

• intermolecular distance equal to 1nm

• Vin = 0.3V . Notice that with clock signal showing vertical transitions, such a value
would not provide the saturation of the molecules in the wire.

The results are reported in figures 5.15a-5.15d. The first plot in figure 5.15a repre-
sents the first time instant, in which only the clock region number one is active. On the
last molecule there is a strong influence of the border effects. In 5.15b the second clock
region activates, and its effects are visible on the voltages present in the first zone. The
wire then saturates when all the molecules are subjected to a clock field equal to 0 V

nm ,
whose plot, in terms of charge distribution across the dots, is reported in figure 5.16. It
is interesting to notice a lower charge separation due to the reduced value of the elec-
tric field at that time step. Then, in figure 5.15d is reported the last propagation step, in
which it is possible to appreciate a useful polarization on the last cell of the molecular wire.
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(a) Step 1 (b) Step 4

(c) Step 5 (d) Step 9

Fig. 5.15: Vin = 0.3V , d = 1nm, N = 18

Fig. 5.16: First simulation: charge distribution for CK1 = CK2 = 0 V
nm

86



Propagation analysis for molecular FCN neural networks

Overall, it is possible to consider these first results satisfactory. We tested different
input voltage values, such as 0.1V, obtaining the same results as those reported above.
This implies that the behavior of a wire clocked in this way is independent of the input
voltage level. Once again, the final result is a binary wire. Therefore, it was not possible
to obtain the analog solution for any input.
Another critical value is the polarization of the last cell of the wire, being this the one in
contact with the linked neuron. Also, in this case, the values are almost equal indepen-
dently of the number of molecules present in the molecular chain.
Summing up the results presented, it is possible to state that the best solution for infor-
mation propagation is a digital one. The slow variation of the clock allows reaching the
saturation for any values at the input with an intermolecular distance equal to 1nm.

5.3 Saturator molecules
It is important to summarize all the results found in the analysis related to the output
wire. A list of them is reported here below.

• Number of molecules: the number of molecules, after a certain threshold value,
does not change the wire behavior. A low amount in the second region can lead to the
information loss as soon as the first clock region is turned off. This last observation
is true in both the cases of ideal and non-ideal clock signals.

• Type of molecules: the only useful molecule to implement the molecular wire is
bis-ferrocene. If molecules with higher Vsat are involved, the result is the complete
loss of the information.

• Intermolecular distance: the intermolecular distance at this point has to be selec-
ted. The starting idea was to implement analog propagation in the circuit. However,
the results show that the digital implementation fits better the requirement of ha-
ving good propagation and a useful voltage at the end of the wire. Moreover, the
weights associated with a charge separation equal to 1nm are too low for successful
neuromorphic computation at the neuron site.

The last analysis consists of the introduction of saturator molecules. These are ad-hoc
characterized molecules whose saturation voltage is lower than the one of bis-ferrocene.
In figure 5.17 is reported the VACT for a 0.1V saturator molecule considered with a clock
signal equal to +2 V

nm . This molecule, positioned either at the beginning or at the end of
the molecular wire, ensures that saturation is reached for each input voltage and sustained
until the end with d = 1nm. In other words, it has to guarantee a digital solution for any
case when the intermolecular distance is high.
The behavior of this molecule, when placed at the beginning of the wire, is evident and
will be analyzed in great detail in the following sections. It is worth providing some results
related to its possible influence at the wire end.
Consider the case in which an eighteen molecular wire is subjected to an input voltage
equal to 0.3V. The last cell of the wire is made by α = 0.1V molecules. The results are
reported in figures 5.18a-5.18b, representing the first and the last steps of the propagation.
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Fig. 5.17: VACT α = 0.1V , clk = 2 V
nm

(a) Step 1 (b) Step 9

Fig. 5.18: Vin = 0.3V , d = 1nm, N = 18. Saturator molecules at the end of the wire

These results have to be compared with those presented in figure 5.8b, even though
there is no presence of interface molecules at the end of the wire. Besides that, it is
evident how the saturator increases the polarization at the end of the wire, whose value
is equal to -0.9084. Consequently, the related interface influence on the connected wire is
more significant. This opens the possibility of using the saturator molecules to increase
the voltage level at a specific interface, making it more influent than the others connected
to the same neuron.
As a second possible use of the saturator molecules, it is worth to mention the realization
of smaller clock regions. Indeed, it is possible to demonstrate that, without the saturators,
the minimum number of molecules that have to be present in the second clock zone is
equal to six with d equal to 1nm. In figure 5.19 are shown the results for a molecular
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wire made of fourteen bis-ferrocenes, in which six of them are localized in the second clock
region. Therefore, it is possible to state that the saturator molecules at the end of the wire
are going to make possible the realization of more stable digital local interconnections.
The value of the polarization on the last cell is -0.9084.

(a) Step 1 (b) Step 9

Fig. 5.19: Vin = 0.3V , d = 1nm, N = 14. Saturator molecules at the end of the wire

Through this study, it was proven that that the presence of molecules with a steep
VACT curve can provide some improvements in the digital propagation of the information
along a molecular wire. In the following of this work, saturator molecules will be mainly
proposed at the beginning of the wire, unregarding the intermolecular distance.

5.4 Final choice for d and connection with the second
neuron

In the previous sections, were delivered several ground considerations to understand the
final structure of the axon of the molecular neural network. Different techniques were
presented to work with an intermolecular distance equal to 1nm. The analog propagation
of the information was not achieved, and the wire had to be saturated, implementing a
binary network. The remaining problem related to a high separation is the one concerning
the low weights of the interfaces. For this reason, provided that the final neural network
will be a fully digital one, it is better to work with 0.9nm within the molecules. This way,
saturation is ensured along the wire, and the weight coefficients have proper values for
neuromorphic purposes.
It is also possible to complicate the wire structure to analyze better the different compo-
nents’ behavior in a whole system. The design of the adopted molecular wire is reported
in figure 5.20a. There are three clock regions. The first two split the propagation along
the wire according to the analysis performed in the previous sections, while the third clock
influences only the bis-ferrocene cell connected at the end of the wire. The interface cell is
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localized in the second zone. Moreover, a further cell is added at the far end to simulate
propagation after the computation at the neuron site. It is possible to appreciate the
waveforms and time relations of these signals in figure 5.20b.

(a)

(b)

Fig. 5.20: Clock regions organization and timing. Preliminary assumptions

Notice how the three regions behave: CK1 and CK2 are in complete phase rotation,
i.e,. the first’s maximum value corresponds to the second’s minimum. The third region
takes the value present in the second region and propagates it to the first one again, so to
the last cell of the wire. Focusing the attention on the propagation behavior, it is possible
to study the results from a simulation in which the input voltage was set to be 0.65V and
the distance to 0.9nm. These are reported in figures 5.21a-5.21c. In 5.21a, it is possible to
notice the moment in which the information reaches the bis-ferrocene cell. Consider that
the last cell, governed by the first clock signal, presents some small charge distribution.
The information propagates through the wire and arrives at the interface cell, which is
characterized by α = 1V . The logic value is correctly evaluated after the interface, and
the propagation can proceed. From a timing point of view, this simulation confirms the
correctness of the adopted clock distribution. However, some problems can be highlighted
if the goal is to transport multiple successive binary values. This can be easily understood
from a practical example, reported in figures 5.22a-5.22f.

In this last case, the objective was to correctly transport two different binary values
with corresponding input values from the drivers equal to -0.6V and 0.2V. Bis-ferrocene
molecules form the wire, and the interface has α = 1V molecules. As in the previous
example, the neuron central cell and the output molecules are connected at the wire end.
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(a) (b) (c)

Fig. 5.21: Potential plots: propagation along the complete molecular wire. Vin = 0.65V ,
d = 0.9nm

(a) (b) (c)

(d) (e) (f)

Fig. 5.22: Multiple inputs propagation. The clash event is evident from the charge distri-
bution plots

The first snapshot is related to propagating the first logic value; in the second one, the
input changes, and the corresponding logic value starts to move. The main problems
are evident in 5.22c in which a clash occurs, making the propagation through the wire
extremely unstable with the possibility of complete loss of the correct information.
This behavior derives from the back-propagation from the second clock region while the
first is trying to transport an opposite binary value. A possible solution is to introduce
the saturator molecules at the beginning of each wire to solve this problem. In this way,
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the strong polarization obtained in the saturation cell will overcome the effects of back-
propagation and the new charge configuration. In figures 5.23a-5.23f are reported the
results of the simulation. The other parameters remain unchanged.

(a) (b) (c)

(d) (e) (f)

Fig. 5.23: Multiple inputs propagation with the introduction of saturator molecules

The issue seems to be solved. However, the introduction of molecules with such a small
saturation voltage will lead to important issues if an interface with a high α parameter
is present. Indeed, as soon as the first clock zone gets active, the saturator molecules
polarize randomly in one of the two stable configurations, biasing their charges depending
on spurious electric field influences. This effect combines with the low polarization of
interface cells with high saturation voltage. The final result is that the information could
be completely lost also in this case since the system is not reliable. Simulation results are
proposed in figures 5.24a-5.24f. The idea of saturating the wire at the front end is positive
and is not mandatory to renounce to it. Indeed, it can be shown that by increasing Vsat

of the saturator up to 0.3V, thus maintaining it lower than 0.5V, it is possible to save
the benefits related to the use of such molecules and, at the same time, avoid information
loss. The results showing this concept are reported in the pictures 5.25a-5.25f. In figure
5.26 is reported the VACT of the new saturator molecules.
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(a) (b) (c)

(d) (e) (f)

Fig. 5.24: Multiple input propagation with interface cell having α = 1.5V

(a) (b) (c)

(d) (e) (f)

Fig. 5.25: Multiple input propagation with interface cell having α = 1.5V and α = 0.3V
on the saturator cells
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Fig. 5.26: VACT α = 0.3V , clk = 2 V
nm

The only problem remaining is the possible presence of clash events in propagation.
Even though the introduction of low Vsat molecules allow for the correct value recon-
struction; this is an unstable situation that is better to avoid. Moreover, the sudden
configuration change within a molecule would increase the overall power dissipated by the
structure. The main reason this situation can occur is, as already explained, the back-
propagation from the second region. It is due to the absence of a reset state in the clock
configuration adopted so far. For this reason, the clock signals must be modified. The
change has to combine with the saturator molecules’ effects, providing a stable and safe
transport of the information through the entire molecular wire for every interface.

5.5 Clock signal change and three-wires layout ana-
lysis

As anticipated at the end of the previous section, the clock signal waveforms have to be
modified to avoid problems related to clashes. The waveforms are reported graphically
in figure 5.27. It is essential to highlight the differences from those used in the preceding
simulations. First, in this case, each clock signal has fewer steps on its edges. Specifically
only one is present at 0 V

nm . That allows for the reduction of the computational cost per
simulation.
The second significant variation is the introduction of a fourth clock signal. It is mainly
needed to isolate the saturator molecules from the rest of the circuit, activating them
only when the computation is stable on the central cell of the neuron. Without this trick,
the risk is to have back-propagation from the saturator molecule to the interface cells,
affecting the correct evaluation of the final output. Also related to this signal, notice how
it is time-shifted to the others. This solution allows to take the logic value from the central
cell and transport it to the output wire. Without this shift in time, the risk is that, for
low polarization values on the central cell, the charge configuration goes down to zero to
move out from the unstable situation.
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Fig. 5.27: New clock signals

This system of signals was proven to work correctly with the single wire cases, and,
therefore, it has been possible to test it on a complete structure. In this case, all interfaces
are present, and the inputs come from three input wires. The schematic representation
of the structure is reported in figure 5.28a, while in 5.28b is presented the clock region
distribution.

(a) (b)

Fig. 5.28: Circuit schematic and clock regions organization

As a first simulation in order to prove the validity of the developed structure consider
the following, in which multiple inputs propagation is desired:

• m1: α = 1V , Vin = [0.3V, 0.3V]

• m2: α = 2V , Vin = [-0.5V, 0.8V]

• m3: α = 1.5V , Vin = [-0.5V, 0.8V]
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It is possible to appreciate the results of this simulation in figures 5.29, in which are
reported the initial and final time instants for each of the two proposed input sets.

(a) First instant, first input set (b) Last instant, first input set

(c) First instant, second input set (d) Last instant, second input set

Fig. 5.29: Simulation results for the first proposed simulation

It is important to highlight that the propagation of the binary information through the
structure was successful in both cases. The adopted circuit solution is working correctly,
and the effects related to back-propagation and clash events during the input change have
been completely removed. Another critical study concerns the possibility of reversing
the usual behavior of the majority voter, already implemented for both drivers only and
additional cell layouts. To have such behavior, consider the inputs configuration suggested
here below, and whose results are reported in figure 5.30.

• m1: α = 2V , Vin = -0.3V

• m2: α = 2V , Vin = -0.4V

• m3: α = 1V , Vin = 1V
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(a) (b)

(c) (d)

Fig. 5.30: Simulation results from the second proposed simulation

This simulation proves that it is possible to achieve the inversion of the usual behavior
of the majority voter with the three-wires circuit. This result has been obtained by intro-
ducing two interfaces presenting a high saturation voltage while the other is characterized
by α = 1V , thus having the maximum possible weight.
As a final remark, notice that the exact input values present at the drivers just indicate
the binary values that will be propagated along the corresponding wire. A positive input
value will correspond to a logic ‘0’, while a negative voltage to a logic ‘1’. At the interface
inputs, the voltage levels will be around 0.5V, considering the influence of saturation and
border effects.

5.5.1 Voltage analysis
Even though the neural network analysis is moving toward a logical implementation, it is
useful to continue the study of the analog values that can be obtained in different working
situations.
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The involved circuit is the one presented in the previous section. For what concern the
analysis is essential to remind the explanation about figure 4.25 in Chapter 4. The dif-
ferent effects presented in that section will also be important in this case and, for some
input combinations, will be effective in the final computation. A comparison is going to
be provided between the results obtained with additional cell layout and the three-wires
structure. Such an analysis is important to understand how the saturation of the molecu-
les in the wire and the consequent loss of the starting analog value affect the computation.
The coefficients introduced in the weighted input formula are the ones presented in table
4.4. As a last remark, it is essential to fix how the sign of the voltage values has been
considered according to the logic value propagating along the corresponding wire. Look
at the schematic presented in figure 5.31. There are reported voltage values considered
for the computation in the circuit characterized by the input wires. Notice that a simpli-
fication was applied: the actual sign of the voltage at the input of a particular interface is
considered negative if the logic value is ‘1’ and positive if ‘0’. This assumption considers
the voltage across the two molecules of an interface cell to be equal, which is not always
correct due to the diagonal coupling. However, the results obtained with this assumption
can be considered successful and generally in line with the expectations.

Fig. 5.31: Schematic of the chosen voltages to perform computation on the neuron

The results of the different simulations are reported in the following way:
• For each input and interface combination, were performed the simulations with

additional cell and three-wires layouts

• For the additional cell were computed the ideal results

• Related to the three-wires are presented three different results:
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– V outa: output voltage prediction before the activation of the central cell. So the
input values are evaluated before the activation of the central cell and according
with the schematic in figure 5.29

– V outb: output voltage prediction with input values evaluated when the central
cell is active, these are influenced by back-propagation

– V outc: actual value taken from the outcome of the simulation

The numerical results are reported in tables 5.1 and 5.2. There are four possible types
of results, indicated with different colors in the tables. The first one is the correct and
normal behavior of the neuron, which behaves as a majority voter and whose outcome
is in line with the numerical evaluation of the neuron formula 3.2. The yellow rows
concern those simulations in which the input having the higher weight propagates to the
neuron output besides being the less recurrent. These results can be correctly predicted.
The errors, so the situations when there is an opposite polarity between the simulation
and prediction voltages, are highlighted in red. At last, in green, a situation in which
the results provided by the additional cell structure and the complete one have different
polarity is reported. The most important consideration about these results is that, for
both layouts, it is possible to predict the voltage sign on the first molecule in the central
cell with a high correctness rate. This is valid for the case of normal or reversed behavior
of the majority voter circuit. It is worth mentioning that the differences between the ideal
and actual values are lower in the additional cell neuron structure. This result is clearly
due to the induced saturation characterizing the wires of the more complex system. For
what concern the presence of prediction errors, a more in-depth analysis is required.
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Output voltage results: additional cell neuron
Nr. m1 m2 m3 Vout ideal Vout real
1 α = 1.5V

Vin = -0.3V
α = 1V Vin
= 0.4V

α = 2.5V
Vin = -0.5V

0.088V 0.11364V

2 α = 2V Vin
= 0.5V

α = 2V Vin
= 0.4V

α = 2V Vin
= -0.3V

0.094V 0.02354V

3 α = 1.5V
Vin = -0.3V

α = 1.5V
Vin = 0.4V

α = 1.5V
Vin = -0.5V

-0.03338V -0.0295V

4 α = 2V Vin
= 0.6V

α = 2V Vin
= 0.4V

α = 1V Vin
= -0.5V

-0.115V -0.07893V

5 α = 1V Vin
= 0.4V

α = 1V Vin
= 0.4V

α = 1.5V
Vin = 0.5V

0.317V 0.376V

6 α = 1.5V
Vin = -0.5V

α = 1V Vin
= -0.4V

α = 1V Vin
= -0.4V

-0.317V -0.44979V

7 α = 1.5V
Vin = -0.2V

α = 1V Vin
= 0.3V

α = 2V Vin
= -0.6V

0.06065V 0.09278V

8 α = 1.5V
Vin = -0.2V

α = 1.5V
Vin = 0.4V

α = 2.5V
Vin = -0.8V

0.02254V 0.01653V

9 α = 2V Vin
= -0.3V

α = 2V Vin
= 0.4V

α = 2.5V
Vin = -0.5V

0.04103V 0.03168V

10 α = 2V Vin
= 0.3V

α = 2V Vin
= -0.7V

α = 2.5V
Vin = 0.5V

-0.04103V -0.01974V

11 α = 1V Vin
= 0.3V

α = 1V Vin
= -0.7V

α = 2.5V
Vin = 0.5V

-0.127V -0.10374V

11 α = 1V Vin
= 0.3V

α = 1V Vin
= -0.7V

α = 1V Vin
= 0.5V

0.086V 0.22863V

13 α = 1.5V
Vin = -0.5V

α = 2V Vin
= 0.5V

α = 2.5V
Vin = -0.5V

-0.025V -0.04342V

14 α = 1.5V
Vin = 0.3V

α = 2V Vin
= -0.3V

α = 2.5V
Vin = 0.3V

0.01521V 0.0.00014V

15 α = 2.5V
Vin = -0.5V

α = 1.5V
Vin = 0.4V

α = 2V Vin
= -0.3V

0.0127V 0.03647V

16 α = 2.5V
Vin = -0.5V

α = 2V Vin
= 0.4V

α = 1V Vin
= -0.3V

-0.116V -0.08118V

17 α = 1.5V
Vin = -0.3V

α = 2.5V
Vin = 0.5V

α = 1.5V
Vin = -0.5V

-0.03613V -0.07495V

18 α = 1.5V
Vin = 0.4V

α = 1.5V
Vin = -0.2V

α = 2.5V
Vin = 0.8V

0.04054V 0.03979V

Table 5.1: Output voltages simple majority voter
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Output voltage results:neuron with input wires

Simulation
number

V outa V outb V outc

1 0.157V 0.195V 0.39918V

2 0.157V 0.195V 0.39918V

3 -0.045V -0.037V -0.28521V

4 -0.151V -0.174V -0.42176V

5 0.698V 0.534V 0.52035V

6 -0.447V -0.406V -0.5136V

7 0.154V 0.196V 0.4595V

8 0.1693V 0.02702V -0.2446V

9 0.01081V 0.01764V -0.1369V

10 0.007V 0.014V 0.1367V

11 -0.267V -0.25V -0.281V

12 0.294V 0.361V 0.4881V

13 -0.016V -0.07V -0.2561V

14 0.167V 0.1738V 0.1434V

15 0.051V 0.063V 0.3237V

16 -0.226V -0.239V -0.4305V

17 -0.0669V -0.583V -0.29018V

18 0.0056V 0.0046V -0.2474V

Table 5.2: Output voltages three-wires layout

Prediction error: definition and causes

Prediction errors arise the need for a deep understanding of such events’ nature and
possible causes. First, it is important to define what is an error in the neuromorphic
computation under analysis. From the molecular point of view, the results are all correct
since the final configuration present in the central cell is the one that provides the highest
stability to the whole structure. This consideration implies that the simplicity of the
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adopted model limits our ability to track the correct output voltage value. There are two
possible causes of prediction errors related to the model defined. The first one consists of
not considering the shift of the bis-ferrocene transcharacteristics. Consider for instance
simulation number nine in table 5.2. The predicted voltage is lower than 0.0395V, which is
the value for which the charge distribution among the bis-ferrocene dots is null. Therefore,
charges move toward the second dot of the first molecule, while the expectations point to
the opposite case. This situation is verified every time the combination of the voltages
gives rise to a final value lower than the VACT right shift. A possible solution could
be to include in the model a shift of the weighted sum toward the left to ideally center
the transcharacteristic around 0V. The corresponding mathematical equation is written
in 5.1.

V out = (wm1 · Vin1 + wm2 · Vin2 + wm3 · Vin3) − V bisfe
shift (5.1)

A second reason can be identified in not taking into account the diagonal coupling
contributions on the final interface polarization. In order to solve this problem, a super-
position effect analysis is needed for each interface cell. The polarization on each molecule
results from the combination of the input voltage value and the induced voltage through
diagonal coupling. The final polarization on each interface can be evaluated as

Pind+dir = f(V driver
in + Vdiagonal) (5.2)

were ind stands for induced and dir for direct. Then, being the voltage at the output
of each molecule a function of the polarization on the corresponding cell, the resulting
voltage in input to the central cell is going to be

Vinx = f(Pind+dir) (5.3)

The final proposed model is reported in the equation here below:

Vout = ((wm1 ·Vin1(P interface1
ind+dir )+wm2 ·Vin2(P interface2

ind+dir )+wm3 ·Vin3(P interface3
ind+dir ))−V bisfe

shift (5.4)

Concerning this thesis objective, this analysis is enough from the point of view of
exact modeling. The proposed complex model can be a starting point for further studies
in future research. In the rest of the thesis, we will deal with prediction errors trying to
focus on how to avoid them from a circuit implementation point of view.

5.6 Final considerations for interconnections
In the course of this chapter, has been analyzed the best solution to implement neurons
connected with long input wires. Once connected to the additional cell neurons, these
two will be used to build the final structure of the neural network.
The analog solution was not feasible with the elements involved, so a digital implemen-
tation seems to be more reliable from the point of view of computation and information
transport. Saturators are placed at the beginning of all the wires to ensure the binary
behavior, and the intermolecular distance is equal to 0.9nm. The choice of such value
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ensures reasonable weights for all the interfaces.
For what concern the clock structure and waveforms, the present study proposes a solution
with at least four regions, with signals having proper time shift one to the others. Major
attention must be paid to the saturator molecules activation to avoid loss of information
due to back-propagation.
Several simulations have confirmed the validity of the proposed circuit and the compliance
of the results to those found in the preceding chapters.
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Chapter 6

Connecting neurons together

This thesis final goal is to propose a neural network with the circuit blocks defined so far.
In this chapter, the network is built step by step by adopting all the basic structures that
have been described. As a remark, the graphical result is the one reported in figure 6.1

Fig. 6.1: Schematic of the neural network

The ANN is formed by one input layer made of three neurons and an output layer
made of just one neuron. From a practical point of view, it is possible to adopt such
a network to perform simple classification problems. The molecular implementation of
the input layer will be made with additional cell neurons, whose output propagates along
wires whose structure was discussed in Chapter 5.
The simulation arrangements reported in this chapter are taken from tables 5.2 and 5.1
to have a clear expectation and focus on the way the neurons have to be joined together
from a structural and geometrical point of view.

6.1 First input neuron: connection with m3
The first elementary network consists of the simple connection within an additional cell
input neuron with interface m3 of the output neuron. The schematic representation of the

105



Connecting neurons together

circuit is proposed in figure 6.2 which also shows the adopted clock structure. Consider
that the schematic in 6.2 is highly ideal for what concerns the number of molecules present
in each clock region. Concerning the clock signals, it is possible to rely on those presented
in 5.27.

Fig. 6.2: Connections of two neurons. Clock regions distribution along the proposed
circuit.

The wires are divided into two clock regions; as found in Chapter 5, this is a stable
and safe operating solution. The interface molecules are placed in the second clock region,
while the third clock signal activates the central cells. Then the saturators are located in
the fourth clock region as the first cell of each wire. For what concern output layer’s m1
and m2 interfaces, these are still driven by driver cells emulating the presence of neurons.
Consider as a first example the input neuron to be configured as in simulation number
two in 5.1, while the output neuron follows the exact configuration of simulation number
twelve of the same table. A logic ‘1’ should propagate to the output neuron from the
input layer. The information coming from interface m2 is expected to be the prevailing
one at the output. The results of this simulation are reported in figures 6.3.

From the snapshots, it is clear that the expectations are not respected, particularly
concerning the output neuron, in which the inversion of the MV working behavior does not
properly occur. It is therefore important to understand which are the causes. In figure
6.3b it is possible to see that the output wire, being placed partially in the first clock
region, is already polarized before the arrival of the information. So the output neuron
central cell will suffer from the back-propagation of the output wire, and if the polarization
on the neuron is low, this will compromise the correct evaluation of the inputs, causing

106



Connecting neurons together

(a) (b)

(c)

Fig. 6.3: First connection simulation of two neurons together

information loss. To solve this problem have been provided two main modifications. The
first one consists of changing the clock signal timing to activate the first region later in
time. Until the fourth clock region molecules are not active and stable, CK1 stays low.
The second change implies increasing the number of cells placed in the fourth region.
Therefore, there will be a higher separation between the output wire cells and the neuron
body. The modified clock waveforms and region schematic are reported in figures 6.4 and
6.5.

The same simulation was performed again to prove the effectiveness of the proposed
changes, with results reported in figures 6.6a and 6.6b. It is evident that the circuit works
according to the expectations and the logic value in output to the circuit is a logic ‘1’.
This is what can be expected looking at the results reported in tables 5.2 and 5.1.
This achievement is of particular importance since it is the first example of a correct
connection within two neurons and the first step toward realizing the complete structure.
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Fig. 6.4: Second clock region organization along the circuit

Fig. 6.5: Clock signals timing variation

6.1.1 Change the input values
Before moving on with the analysis of more complex architectures, it is worth spending
some time analyzing the propagation of different pieces of information to verify the correct
behavior of the circuit. The goal is to maintain the concepts of adiabatic propagation so
that the inputs can change after resetting the neighboring cells. This way, it is possible to
avoid propagation clashes and the consequent loss of the correct binary value. An example
is reported in figures 6.7a-6.7d. On the input neuron, the configuration is presented in
simulation number seven of table 5.2, while on the output layer, the interfaces are set
as in simulation twelfth. The first neuron is subjected to the same voltage values as in
the mentioned simulation for what concerns the inputs. On interfaces m1 and m2 of the
output neuron are applied Vin1 = Vin2 = 0.5V . The final result is logic zero, which is
congruent with the expectations. At the first neuron output, the firstly computed result
moves along the output wire until it reaches the interface m3 of the second neuron. The
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(a) Propagation of logic ‘0’ to the output neuron (b) Propagation of logic ‘1’ computed in the out-
put layer

Fig. 6.6: Propagation along the modified network

variation of the input values is visible in figure 6.7b. Notice that both the second and the
third regions turn off simultaneously. Then, moving forward in time, these are activated
again, and, after the second set of inputs has been correctly evaluated by the neuron, the
new computed information can also propagate through the structure. At this point, an
inversion behavior occurs for the new input values at the output neuron interfaces, as can
be expected.
This straightforward example is another important step useful for building the final struc-
ture. The proposed structure correctly handles the presence of more than one set of inputs.
As a last consideration, it is important to highlight the initial latency of the binary values
before they propagate along the output wire of the circuit. The output is spurious and
not of interest before the latency elapses.
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(a) (b)

(c) (d)

Fig. 6.7: Input voltages variation during the propagation. The circuit behaves correctly

Voltage evaluation

This section proposes some hints about the voltage analysis in the two neuron structure
under study. Even though, as already explained, the direction of this work is pointing
toward digital applications, it is interesting to understand the analog behavior of the
neurons and find possible differences with the circuits presented so far.
Many simulations have been performed, focusing the attention on the voltage levels on the
first cell of the input neuron. The configurations adopted in these analysis are, once again,
taken from tables 5.2 and 5.1. This way, it is possible to compare the results obtained on
this circuit with those evaluated for the additional cell neurons. For what concerns the
output layer, the voltage levels are comparable with the ones found using the three-wires
neuron.
First, look at tables 6.1 for some examples.
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Output voltage results: input neuron on m3 interface

Input layer Output layer Expected Vout,
input layer

Obtained Vout,
input layer

Simulation 3 Simulation 14 -0.0295V -0.27316V

Simulation 5 Simulation 15 0.376V 0.49025V

Simulation 6 Simulation 15 -0.44979V -0.5911V

Simulation 14 Simulation 15 -0.04342V -0.25142V

Simulation 18 Simulation 5 -0.07495V -0.2774V

Simulation 17 Simulation 4 -0.08118V -0.42531V

Simulation 1 Simulation 5 0.11364V 0.32852V

Table 6.1: Output voltages on the central cell of the input neuron

From the values reported in the table above, it is clear that all the results are correct
from a digital point of view. The circuit works as can be expected for all the proposed
setups. The main problem is related to the difference between the expected Vout and the
ones computed with this circuit.
The reason for that is the high number of molecules in the architecture under study. The
number of electric field lines influencing the charges in each molecule is higher, thus pro-
ducing a general increase in the charge distribution among the dots. According to FCN
theory, it increases the voltages at the output of each cell.
At this point, the quality and correct ongoing of the circuit has been successfully demon-
strated with two neurons connected.

6.2 Second input neuron: connection with interface
m2

This section analyzes how a third neuron can be placed into the structure and connected
to the output layer. The final circuit derived from this study consists of two additional cell
neurons connected to the output layer. The third input of the output neuron is simply a
driver whose logic value propagates through a molecular wire. Notice that this analysis
can also be considered valid for what concerns interface m1 of the output neuron, being
the structure symmetrical.
First thing is to identify the best way to place the neuron on the bottom wire connected
to the output. A first assumption consisted in rotating the neuron layout by 90°. If this
solution works correctly, no further modifications must be applied to the circuit structure.
As a first case, consider the input voltages equal to 0.5V and all the interface molecules
characterized by α = 1V . The results are reported in figure 6.8.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6.8: Propagation through the three neurons network. Bottom neuron rotated by 90°

It is possible to state, at a first look, that the propagation is acceptable and the final
computation works correctly. However, it is mandatory to highlight an essential thing
in figure 6.8d. At the beginning of propagation on the vertical wire, charges move in
the two upper dots of the cell to minimize Coulomb repulsion. It is an apparent effect
of crosstalk and introduces uncertainty in the information propagation. Even if, in the
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end, the correct logic value is recovered and transmitted, it is better to avoid this kind of
situation. So, the final structure should have a safe and easy-analyzable behavior. The
crosstalk effect is even more evident if higher α molecules are involved. A highlight on
the presence of crosstalk for such a neuron, having at the bottom an interface α = 2V , is
reported in figure 6.9.

Fig. 6.9: Vertical neuron. Bottom interface: α = 2V , lateral interfaces: α = 1V

It is, therefore, evident that this proposed layout is not entirely correct. Indeed, even
though all the performed simulations are correct from a binary point of view, it is better
to avoid the presence of crosstalk as much as possible.
For this reason, the circuit layout has been modified both in circuit and clock characteri-
stics. In figure 6.10, it is possible to appreciate the new circuit layout that will be used
from now on. The propagation moves from left to right, compliant with usual applications
of molecular FCN.
In the region of the bottom wire where there is a change of direction from horizontal to
vertical, it is possible to observe a typical solution adopted to avoid loss of information.
A fifth clock signal has been added to provide transport as stable as possible, and it has
to drive the cells in the bottom corner. Notice that the first cell of the vertical wire can
also be included in this region, thus providing further reliability to the circuit. As alrea-
dy happened for the fourth clock signal, adding the fifth signal was not straightforward.
The main problem is transporting the information from clock region number one (yellow
cells) and moving it to the first (light green cells). Nothing changes for what concerns the
other components: the interfaces are controlled by CK2, while CK4 controls the saturator
molecules at the beginning of each wire.

In conclusion, with the clock signals and timing reported in figure 6.11, it is possible
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Fig. 6.10: Three neurons network schematic

Fig. 6.11: Final working clock profile

to propagate every information through the circuit correctly. This layout will also be
adopted for the final addition of the third input neuron on interface m1.
For the sake of simplicity, from now on, the neurons in the structure will be referred to in
this way: the neuron connected to interface m3 of the output layer is named Neuron A,
the other two on m2 and m1 are going to be, respectively, Neuron B and Neuron C.
Consider now the situation reported below:

• Neuron A:

– m3: α = 1V , Vin3 = −0.5V
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– m2: α = 1V , Vin2 = −0.5V

– m1: α = 1V , Vin1 = −0.5V

• Neuron B:

– m3: α = 1V , Vin3 = −0.5V

– m2: α = 1V , Vin2 = −0.5V

– m1: α = 1.5V , Vin1 = −0.5V

• Output neuron: all interfaces α = 1V

It is a straightforward configuration concerning the interfaces and the input voltages.
However, it will be helpful to understand the information propagation behavior and verify
the neurons’ independence. This last consideration is crucial. Indeed, the layout must
guarantee that the neurons on the input layer can compute the corresponding output
values without considering external influences, i.e., electric field lines coming from the
rest of the circuit. This is obvious regarding the output neuron, while the design must
involve a certain amount of space between Neuron A and Neuron B active regions. The
first results obtained with this circuit in the configuration explained before are reported
in figures 6.12a-6.12i.

The computation is correct in all the neurons, and it is possible to demonstrate that
the voltage levels in output to the central cells of A and B are equal to those found in the
two neurons circuit, thus eliminating the risk of spurious electric field couplings. After
the neurons computation, the information propagates through the circuit. The correct
organization of the clock regions avoids clashes and interference problems. The change in
the direction is correctly performed in the bottom wire, thanks to the proper timing of
CK5. Finally, the output layer accurately evaluates the incoming binary values, and the
final result can be transported along the output wire.
Once again, have been performed an analysis related to the voltage levels according to the
basic formula 3.2, the results are compared with the previously obtained ones to highlight
possible critical setups of the interfaces. The driver connected to interface m1 is fixed at
0.5V.
The output neuron has all the interfaces with α = 1V . Some numerical results taken from
the input neurons are written in tables 6.2 and 6.3. The red-colored cells indicate an error
in the result prediction, which also occurs in these simulations.
The advantage of having an output layer in the network is the possibility of avoiding
the effects of prediction errors in one of the three input neurons. Consider, for instance,
the fifth simulation in table 6.3; in Neuron B, the expected binary value was a logic ‘0’.
Instead, a logic ‘1’ is computed and transported through the network. Ideally, the input
at the interfaces of the output neuron should be ‘000’, respectively, for m1, m3, and
m2. It would give a final output value corresponding to logic ‘0’. With the actual values
computed by the neurons, the input set corresponds to ‘001’, which provides logic ‘0’ as
well at the output due to the presence of α = 1V molecules on all the output neuron
sides. This example is a clear case in which possible mismatches within simulation and
predictions can be solved by proper configuration of the output layer and their possible
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6.12: Working solution to propagate informations along a circuit with three neurons

effects nullified. The key point is the identification of possible critical situations through
the independent analysis of neurons and the proper configuration of the weights at the
output interfaces.
On the other hand, in some cases, as the third simulation in table 6.3, the prediction
error would lead to designing a network computing wrong results. In that case, always
considering the configuration presented before, the input set to the output layer is ‘101’,
giving a logic ‘1’ while the expectations were toward a logic ‘0’.
Therefore, the main phase in building a neural network in this way consists of identifying
the expected behavior of the output and, through single neuron analysis, configuring all
the subcircuits according to the needs.
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Neuron A
m3 m2 m1 Vout

-0.5V 0.8V -0.5V 0.09364V
0.5V 0.5V 0.5V 0.36695V
0.8V -0.5V -0.4V -0.29863V
0.7V -0.5V 0.3V -0.05315V
0.5V 0.7V -0.5V 0.08351V
-0.2V -0.5V 0.5V -0.00506V
0.5V 0.8V 0.5V 0.47324V
α = 2V α = 1V α = 1V

(a) First simulation: Neuron A

Neuron B
m3 m2 m1 Vout

-0.7V 0.5V 0.8V 0.08742V
0.5V -0.4V 0.5V 0.0519V
0.4V -0.7V -0.8V -0.12699V
0.8V -0.8V 0.2V 0.00162V
-0.5V 0.2V -0.5V -0.0708V
0.8V 0.6V -0.3V 0.07867V
0.5V -0.8V 0.5V 0.0141V
α =
1.5V

α =
2.5V

α = 2V

(b) First simulation: Neuron B

Table 6.2: Output voltages on the central cells. First simulation

Neuron A
m3 m2 m1 Vout

-0.5V -0.5V -0.5V -0.4867
0.5V 0.5V 0.5V 0.4867V
0.5V -0.5V -0.5V -0.0307V
0.5V -0.5V 0.5V 0.3236V
0.5V 0.5V -0.5V 0.1324V
-0.5V -0.5V 0.5V -0.1324V
-0.5V -0.5V 0.5V 0.3236V
α = 1V α =

1.5V
α = 1V

(a) Second simulation: Neuron A

Neuron B
m3 m2 m1 Vout

-0.5V -0.5V -0.5V -0.49225V
0.5V 0.5V 0.5V 0.4524V
0.5V -0.5V -0.5V 0.0036V
0.5V -0.5V 0.5V 0.3579V
0.5V 0.5V -0.5V 0.0981V
-0.5V -0.5V 0.5V -0.0981V
-0.5V -0.5V 0.5V 0.3579V
α = 1V α =

2.5V
α = 1V

(b) Second simulation: Neuron B

Table 6.3: Output voltages on the central cells. Second simulation
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6.3 Third input neuron: connection with m1
It is necessary to add the third input neuron to complete the layout of the neural network:
Neuron C connected to the m1 interface of the output layer.
The operation is relatively straightforward since it is a replica of the circuit introduced
on interface m2. Being these two symmetrical from a circuit point of view, it is enough to
report the same cell organization adopted before. The final circuit schematic of the two-
layer neural network is reported in figure 6.13. Notice that, as anticipated, at both the
corners of the input wires, a further cell is present to improve the propagation stability.
This is the final structure of the neural network and one of the basic building blocks
present in more complex circuits proposed in the following chapter.

Fig. 6.13: Four neurons network schematic

From a propagation point of view, nothing has to be added since, as said, the cells
added on interface m1 behave in the same way analyzed for the bottom connection.
It is interesting to verify simulation results to prove the correctness of the proposed so-
lution. A first one is reported in figures 6.14a-6.14d. The configuration of the different
blocks in the circuit is the following:

• Neuron A:

– m3: α = 2.5V , Vin = −0.5V

– m2: α = 1V , Vin = 0.8V

– m1: α = 2V , Vin = −0.5V
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• Neuron B:

– m3: α = 2.5V , Vin = −0.7V

– m2: α = 1.5V , Vin = 0.5V

– m1: α = 1.5V , Vin = 0.8V

• Neuron C:

– m3: α = 1V , Vin = 0.4V

– m2: α = 2.5V , Vin = 0.6V

– m1: α = 2.5V , Vin = −0.3V

• Output Neuron:

– m3: α = 1V

– m2: α = 1V

– m1: α = 1V

Focusing the attention on the propagation itself, it is possible to state that everything
works as expected. Moreover, considering the coefficients reported in 4.4, the logic value
obtained at the network’s output is in line with the expectations.
As a second topic, it is interesting to go more into the detail about the error suppression
capabilities of the output layer. To do such an analysis, consider the input sets in tables
6.4 - 6.7, in which are reported the interface configuration and input sets respectively for
Neurons A, C, and B. The setup of the input layer is exactly the one presented previously,
while the output neuron has α = 1.5V on m3, α = 1V on m2, and α = 3V on m1.
This last configuration represents the correction applied to the structure to minimize the
error rate. In the tables, the rows highlighted in red represent an error in evaluating the
output values in the input layer. However, it is possible to appreciate that the errors
can be suppressed with the adopted interfaces on the output layer. This is a strong
demonstration of the possibility of reducing the error rate of the network by a proper
combination of the available weights. Unfortunately, the correction is not successful for
all the input sets, meaning that probably further modifications would be needed. Indeed,
in table 6.7, the last row, colored in red, indicates the presence of a mismatch between the
prediction and the obtained values. In figures 6.15a-6.15b are reported, respectively, the
first and the last propagation time instants for the last input set reported in the tables
below.
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(a) (b)

(c) (d)

Fig. 6.14: Complete neural network: three neurons on the input layer and one neuron on
the output layer
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(a) (b)

Fig. 6.15: Complete neural network: configuration present in the last row of table 6.4.
First and last steps in the propagation

Neuron A
m3: α = 2.5V m2: α = 1V m1: α = 2V Vout

-0.5V 0.8V -0.5V 0.18324V
0.5V 0.5V 0.5V 0.27735V
0.8V -0.5V -0.4V -0.14943V
0.7V -0.5V 0.3V -0.08107V
0.5V 0.7V -0.5V 0.23771V
-0.2V -0.5V 0.5V -0.13988V

Table 6.4: Neuron A

Neuron C
m3: α = 1V m2: α = 2.5V m1: α = 2.5V Vout

0.4V 0.6V -0.3V 0.2345V
0.3V 0.4V 0.5V 0.18225V
-0.7V -0.3V -0.4V -0.3537V
0.1V -0.1V 0.2V 0.03921V
-0.4V 0.5V 0.6V -0.12957V
-0.3V 0.7V 0.2V -0.06759V

Table 6.6: Neuron C
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Neuron B
m3: α = 2.5V m2: α = 1.5V m1: α = 1.5V Vout

-0.7V 0.5V 0.8V 0.14046V
0.5V -0.4V 0.5V 0.05586V
0.4V -0.7V -0.8V -0.2001V
0.8V -0.8V 0.2V -0.0281V
0.8V -0.8V 0.2V -0.08848V
0.8V 0.6V -0.3V 0.12409V

Table 6.5: Neuron B

Final output logic values
Expected Obtained without correc-

tion
Obtained with correction

0 0 0
0 0 0
1 1 1
1 1 1
1 0 1
1 0 0

Table 6.7: Output logic values: the error rate reduces thanks to the proper choice of the
output neuron interfaces

122



Connecting neurons together

123



Chapter 7

Pattern recognition using
molecular FCN neural
networks

A whole set of grounding rules and considerations have been provided in the previous
chapters. According to those, it is possible to build a functional neural network based on
molecular Field-Coupled Nanocomputing.
Until now, the analyses carried out on the circuits focused the attention on the voltages
and possible prediction error evaluations. It is then essential to move forward from the
analog domain related to the topic and put some effort into realizing digital networks
able to perform real-field scenario tasks. A new network will be defined starting from the
considerations performed in the last part of this thesis. The circuit will perform simple
pattern recognition tasks, and the results will be compared with those obtained through
a software-trained feed-forward neural network.

7.1 Pattern recognition

First, it is essential to define the task that the neural network has to accomplish. The
choice was to build a circuit that correctly classifies four different patterns arranged in 3x3
matrix arrays. It is a common application field for feed-forward neural networks [58], as
those feasible with molecular technology so far. Even though such networks are adopted
in complex real-world situations, such as medical and financial, we are limiting, as said,
in recognizing just a limited number of paths and, according to that, provide proper logic
values at the circuit output. However, the results that will be shown offer a first and
unambiguous indication of the functionalities of the proposed solution.
The four patterns to be classified are reported in figures 7.1a-7.1d.
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(a) Pattern A (b) Pattern B (c) Pattern C (d) Pattern D

Fig. 7.1: 3x3 binary images

These simple matrices will represent the inputs to the neural network, which has to
provide the correct outputs depending on the pattern under analysis. In particular, two
bits are needed to recognize four different input combinations in a logic domain. Therefore,
two bit parallelism must be guaranteed at the circuit output.
In addition, it is of primary importance to define criteria to apply the correct voltage levels
according to the encoded pixel. The choice consists of associating to the black colored
pixels a logic ‘1’ and a ‘0’ to the white ones. From the molecular point of view, the previous
chapters explained the association between logical ‘1’ and ‘0’ to negative and positive input
voltages, respectively. In particular, for this analysis, voltages show absolute values equal
to 0.5V; in this way, it was possible to provide flexibility to the neurons working behavior.
The just explained procedure can be considered compliant with the nowadays available
solutions for image recognition applications based on deep learning [59]. Given the high
number of colors in an input image, analog values are associated with each pixel. For
this thesis purposes, the digital implementation developed in this section is enough and
provides a first step toward implementing molecular FCN neural networks.
Concerning the outputs, the desired values are those presented in table 7.1. Notice that
patterns C and D can be though as modifications of pattern A. Therefore, they must be
classified in a different way. Some more analysis related to variations of input patterns
will be provided in the following.

Pattern Output1 Output2
A 1 0
B 0 1
C 1 1
D 0 0

Table 7.1: Expected truth table of the final circuit

7.2 Software trained neural networks
As anticipated at the beginning of this chapter, a comparison will be performed between
the neural network outcomes and those obtained through software simulations. The scope
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is to evaluate the possibilities regarding the number of neurons involved in the two solu-
tions to reach the same results.
The software network is feed-forward and fully connected; this choice allows for maintai-
ning the programming complexity as low as possible. The goal network is schematically
reported in figure 7.2.

Fig. 7.2: Feed-forward fully connected neural network

From the schematic, it is clear that there are an input and output layer and a certain
number of hidden layers, whose amount has to be defined according to the training phase
considerations. Usually, these networks topologies are well suited for classification purpo-
ses [59].
So, the first step in the development procedure was to decide the kind of algorithm needed
to train the neural network. Considering that the amount of possible solutions is huge,
the choice was to start with the more classical and easy to be implemented: the back-
propagation algorithm [60].
The algorithm has been implemented using Matlab. Even though Mathworks offers a
working toolbox to design and simulate neural networks [61], an ad-hoc code has been
preferred. In this way, it was possible to study and go into the detail of the design proce-
dure of the network itself.
The program is reported in the boxes in the following pages and consists of three main
parts:

• Training script training the network to recognize a pre-defined number of patterns

• Deep Learning script implementing the back-propagation and delta rule algorithms

• Test script to verify the network functionalities

The training and deep learning codes are reported below in the two boxes. First,
the input patterns are defined, while the correct output matrix associate each input to
the proper output bits. The weights for each neuron in each layer are randomly defined
according to the code line.

w_x = 2*rand(n, y)
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Where n is the number of neurons and y is the number of inputs to each neuron. The
code also allows uploading already evaluated weights through an if statement.
The main core of the training phase is the for loop at the end of the script.
It is important to notice that to achieve high accuracy in the results, there are two main
parameters: the number of epochs and the number of neurons per layer. The first is simply
the number of times the network is trained, improving the weight evaluation. For each
iteration, the deep learning function is recalled. It implements the back-propagation
rule and can be analyzed in the second box. The number of patterns to be recognized
represents the amount of iteration of a for loop updating the weights values in each
epoch. The output of each layer is computed according to the inputs, the current weights,
and the activation function. In this case, the activation function is the same for all the
neurons and is of the REctified Linear Unit (ReLU) type. Figure 7.3 reports its graphical
characteristics.

Fig. 7.3: ReLU activation function

The error is the difference between the correct output and the obtained one.
After that, the delta rule algorithm can start and leads to the weight adjustments through
the back-propagation of the errors from the output to the input layer. Notice that the
weight coefficients correction rate is governed by alpha parameter; the smaller it is, the
longer and more precise will be the training procedure. The weight adjustment formula
is the following:

Wx,t+1 = Wx,t + α · δ · outputLayerx−1,t (7.1)

Where Wx,t is the weight vector of layer x at time t+1, α is the updating coefficient,
δ represents the propagated error and outputLayerx−1,t is the vector representing the
outcome of hidden layer number x-1 at time t. The formula is quite easy to understand
and works for each layer in the neural network.
As the last point, it is worth providing some words related to the testing procedure. The
code is reported in the third box on the following pages.
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The script loads the .mat file produced as an output in the previous stage; this contains
all the weights for each layer organized in matrix structures. Then, the rest of the code
allows for selecting one among the four images and provides it at the neural network
inputs. The pieces of information propagate along with the structure according to the
weighted inputs formula and the chosen activation function.
Besides the awareness of the simplicity of the proposed code, it was extremely helpful in
understanding the general working behavior of such a neural network. Moreover, it was
possible to have a rough idea of the needs regarding the number of neurons and input
handling for the realization of the molecular FCN circuit.

Training Network

input_image(:,:,1) = [0 1 0; 1 0 1; 0 1 0;];
input_image(:,:,2) = [1 0 1; 0 1 0; 1 0 1;];
input_image(:,:,3) = [1 0 1; 0 1 0; 1 1 1;];
input_image(:,:,4) = [0 0 0; 0 1 0; 1 0 1;];
correct_output= [0 1; 1 0; 1 1; 0 0;];
new_set = 1;
if new_set == 1

n = 20;
w1 = 2*rand(n,9)-1; w2 = 2*rand(n,n)-1;
w3 = 2*rand(n,n)-1; w3_bis = 2*rand(n,n)-1;
w4 = 2*rand(n,n)-1; w5 = 2*rand(n,n)-1;
w6 = 2*rand(2,n)-1;

else
w1 = dlmread("w1.txt"); w2 = dlmread("w2.txt");
w3 = dlmread("w3.txt"); w3_bis = dlmread("w3_bis.txt");
w4 = dlmread("w4.txt"); w5 = dlmread("w5.txt");
w6 = dlmread("w6.txt");

end
for epoch = 1:800000

[w1, w2, w3, w3_bis, w4, w5, w6] =
deeplearning(w1, w2, w3, w3_bis, w4,

w5, w6, input_image, correct_output);
end

save('DeepNeuralNetwork.mat');

Back-propagation and Delta rule

function[w1, w2, w3, w3_bis, w4,w5,w6] =
deeplearning(w1, w2, w3, w3_bis,

w4,w5,w6, input_image, correct_output)
alpha = 0.0001; %% control learning rate
N = 4; %four patterns digits we want to recognized
for k = 1:N
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reshaped_input_image = reshape(input_image(:,:,k), 9,1 );
input_of_hidden_layer1 = w1*reshaped_input_image;
output_of_hidden_layer1 = ReLu(input_of_hidden_layer1);

input_of_hidden_layer2 = w2*output_of_hidden_layer1;
output_of_hidden_layer2 = ReLu(input_of_hidden_layer2);

%
input_of_hidden_layer3 = w3*output_of_hidden_layer2;
output_of_hidden_layer3 = ReLu(input_of_hidden_layer3);

input_of_hidden_layer3_bis = w3_bis*output_of_hidden_layer3;
output_of_hidden_layer3_bis = ReLu(input_of_hidden_layer3_bis);

input_of_hidden_layer4 = w4*output_of_hidden_layer3_bis;
output_of_hidden_layer4 = ReLu(input_of_hidden_layer4);

input_of_hidden_layer5 = w5*output_of_hidden_layer4;
output_of_hidden_layer5 = ReLu(input_of_hidden_layer5);

input_of_output_node = w6*output_of_hidden_layer5;
final_output = ReLu(input_of_output_node);

correct_output_transpose = correct_output(k,:)'; %single column image
error = correct_output_transpose - final_output;

delta = error; %% needed to apply delta rule to %%evaluate the weights
%%of the hidden layers

error_of_hidden_layer5 = w6'*delta;
delta5 = (input_of_hidden_layer5>0).*error_of_hidden_layer5;

error_of_hidden_layer4 = w5'*delta5;
delta4 = (input_of_hidden_layer4>0).*error_of_hidden_layer4;

error_of_hidden_layer3_bis = w4'*delta4;
delta3_bis = (input_of_hidden_layer3_bis>0).*error_of_hidden_layer3_bis;

error_of_hidden_layer3 = w3_bis'*delta3_bis;
delta3 = (input_of_hidden_layer3>0).*error_of_hidden_layer3;

error_of_hidden_layer2 = w3'*delta3;
delta2 = (input_of_hidden_layer2>0).*error_of_hidden_layer2;

error_of_hidden_layer1 = w2'*delta2;
delta1 = (input_of_hidden_layer1>0).*error_of_hidden_layer1;

adjustment_of_w6 = alpha*delta*output_of_hidden_layer5';
adjustment_of_w5 = alpha*delta5*output_of_hidden_layer4';
adjustment_of_w4 = alpha*delta4*output_of_hidden_layer3_bis';
adjustment_of_w3_bis = alpha*delta3_bis*output_of_hidden_layer3';
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adjustment_of_w3 = alpha*delta3*output_of_hidden_layer2';
adjustment_of_w2 = alpha*delta2*output_of_hidden_layer1';
adjustment_of_w1 = alpha*delta1*reshaped_input_image';
w6 = w6+adjustment_of_w6; w5 = w5+adjustment_of_w5;
w4 = w4+adjustment_of_w4; w3_bis = w3_bis+adjustment_of_w3_bis;
w3 = w3+adjustment_of_w3; w2 = w2+adjustment_of_w2;
w1 = w1+adjustment_of_w1;
end

end

Test Neural Network

load('DeepNeuralNetwork.mat');

input_image(:,:,1) = [0 1 0; 1 0 1; 0 1 0;];
input_image(:,:,2) = [1 0 1; 0 1 0; 1 0 1;];
input_image(:,:,3) = [1 0 1; 0 1 0; 1 1 1;];
input_image(:,:,4) = [0 0 0; 0 1 0; 1 0 1;];
chosen_image = input_image(:,:,4);

chosen_image = reshape(chosen_image, 9,1);
input_of_hidden_layer1 = w1*chosen_image;

output_of_hidden_layer1 = ReLu(input_of_hidden_layer1);

input_of_hidden_layer2 = w2*output_of_hidden_layer1;
output_of_hidden_layer2 = ReLu(input_of_hidden_layer2);

%
input_of_hidden_layer3 = w3*output_of_hidden_layer2;
output_of_hidden_layer3 = ReLu(input_of_hidden_layer3);

input_of_hidden_layer3_bis = w3_bis*output_of_hidden_layer3;
output_of_hidden_layer3_bis = ReLu(input_of_hidden_layer3_bis);

input_of_hidden_layer4 = w4*output_of_hidden_layer3_bis;
output_of_hidden_layer4 = ReLu(input_of_hidden_layer4);

input_of_hidden_layer5 = w5*output_of_hidden_layer4;
output_of_hidden_layer5 = ReLu(input_of_hidden_layer5);

input_of_output_node = w6* output_of_hidden_layer5;
final_output = ReLu(input_of_output_node);

7.2.1 Software results for the proposed task
Therefore, the software network was trained to solve the proposed pattern recognition
problem. It is essential to highlight the conditions in which a correct working behavior, i.e.,
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correct classification of the inputs, has been obtained. First, the number of information to
the first layer of the network equals nine, i.e., the number of digits in which each pattern
can be decomposed. Several trials have been performed to identify the correct balance
between the number of epochs and the neurons in each layer, considering that just two
neurons form the output layer. Furthermore, the minimum number of neurons in the
hidden layers is equal to twenty. The neurons organize into one input and output layer
and five hidden layers. The network has been trained for 800000 epochs to reach weight
coefficients satisfying the needs.

7.3 Molecular FCN neural classifier
The implementation of a molecular FCN classifier is not straightforward at all. The main
reason for that is the impossibility of organizing the molecular structure in the same way
done in the software network. Indeed, the type of neurons with which it is possible to
work with has three inputs, thus eliminating the possibility of working with fully connected
circuits. Another problem arises considering full connection among neurons: the molecular
wires would become high in number, extremely difficult to separate, and cross-wires would
be needed. Unfortunately, cross-wire structures are still under preliminary analysis and
could not be used for this task. Another difference to the software-trained network is the
molecules activation function, which has a tansigmoid behavior [62].
As said in the previous section, the number of inputs to the structure equals nine. So,
the first step consists of designing a molecular structure that takes nine different values as
inputs of the circuit. For this reason, has been introduced the concept of macro-neurons.
Figure 7.4 reports the circuit block schematic.

Fig. 7.4: Final circuit schematic block diagram

Each macro-neuron takes nine inputs and provide a different output, according to
the truth table reported in 7.1. Given that each macro-neuron is an independent neural
network providing a different output value with equal inputs, two different combinations
of molecules must be found to compute the outputs properly.

7.3.1 Architecture analysis of the molecular circuit
In figure 7.5, it is possible to appreciate the circuit layout of the single macro-neuron,
combined with how the inputs stimulate the structure.

131



Pattern recognition using molecular FCN neural networks

Fig. 7.5: Macro-neuron layout and inputs organization

The circuit can be divided into three equal parts showing the same layout defined at
the end of the discussion in Chapter 6. The design is the same regarding the geometry and
the clock region organization. The outputs of these three sub-circuits go into a further
neuron which provides the final output of each macro-neuron. Notice that there are three
layers: the input layer, the output layer, and only one hidden layer.
For what concerns the input organization, the solution is rather obvious. Since the sin-
gle neurons cannot evaluate nine voltages simultaneously, the three-block division of the
circuit comes into help. Therefore, each block is subjected to a different triplet of inputs:
the top one by the first matrix row, the middle one by the second, and the third by the
last row. Ideally, using the same structure for more than nine inputs could be possible.
In addition, notice that all the three neurons in each block are subjected to the same
voltages. The final neural network has its basis on the just proposed circuit. Indeed, as
anticipated by the scheme in the previous section, it is enough to double the structure to
provide the second output. The final layout can be appreciated as a whole in figure 7.6.
The circuit shows eighteen neurons in the input layer, one hidden layer of six neurons,
and a two-neurons output layer. In the figure, a pair of sample outputs are also visible,
highlighting that, even though the voltages to the two macro-neurons are the same, the
outcomes could be different according to the input pattern. This behavior is due to the
different molecules selection in the two macro-neurons.
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Fig. 7.6: Complete molecular structure schematic

7.3.2 Training phase and molecules selection
Designers can provide the training phase of hardware neural networks in different ways,
as exhaustively explained in the second chapter of this thesis. However, a trial and error
solution was preferred in this first molecular FCN neural network analysis. This choice is
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mainly due to the need for grounding rules combined with the simplicity of the proposed
design. Another possible solution consists of a weight coefficient normalization of the
numbers provided by the software training phase.
Focusing on the molecular FCN layout design, consider Pattern A. The outputs must be,
respectively for macro-neuron 1 and 2, logic ‘1’ and ‘0’. Concerning the first, it is possible,
in an initial approximation, to place the interface molecules in such a way to have logic ‘1’
at the output of each neuron of the input layer. According to that, consider two possible
neuron circuit layouts:

• Inverting layout: in this case interface m3 has α = 1V , while the other two are
characterized by α = 3V . This layout ensures the less present input on m3 to be
propagated

• Non-inverting layout: in this second solution interface m3 has α value equal to
3V, and m1 = m2 have α = 1V . In this way, the propagation of the more present
inputs is ensured.

So, for what concern Pattern A in macro-neuron 1, it is enough to place non-inverting
layouts in the top and the bottom neurons and inverting arrangements in the middle. In
this way, the outputs of each neuron will be logical ‘1’, and it is enough to place at the
output neuron interface molecules having α = 1V to ensure the correct behavior. This
straightforward solution works well for Pattern A, Pattern B, and Pattern C.
Some problems may arise concerning Pattern D. Indeed, the desired output would be equal
to ‘0’, whereas the proposed solution would provide a ‘1’, thus leading to a classification
error. Therefore, some further reasoning is needed.
Consider Pattern A and Pattern D. The primary difference between those two is in the first
input row. The computation in macro-neuron 1 provides a logic ’1’ and a ’0’, respectively
for the two cases. These are precisely the values desired in output for correct classification.
For this reason, it is necessary to change the interfaces at the output neuron such that the
input coming from interface m1 will be almost automatically transported to the output.
To do that, the output neuron changes as follows:

• interface m1: α = 1V

• interface m2: α = 2.5V

• interface m3: α = 3V

Notice that for the two non-mentioned patterns, the results will be correct. Indeed,
according to the same reasons, the output of the circuit will be the one coming from the
upper side of the network, which is congruent to the expected result.
For what concerns the second macro-neuron it is interesting to notice that symmetric
reasoning can be provided. Indeed, the behavior of the circuit subparts is simply reversed
from the previous case. According to that, the layout of this second sub-circuit is opposite
to the other. The interfaces design choices for the bottom macro-neuron are listed here
below:

• interface m1: α = 2.5V
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• interface m2: α = 1V

• interface m3: α = 3V

In this case, interface m2 will provide the output-driving voltage input.
The complete layout selections for macro-neuron 1 and macro-neuron 2 are listed in
the following. It is important to remark the symmetric properties of the two developed
layouts. For the upper macro-neuron the final chosen solution shows:

• Input layer neurons

– neurons in the upper and bottom parts of the circuit
∗ Interface m3: α = 3V
∗ Interface m2=interface m1: α = 1V

– middle-circuit neuron
∗ Interface m3: α = 1V
∗ Interface m2=interface m1: α = 3V

• Hidden layer neurons

– all the interface molecules characterized by α = 1V

• Output layer neuron

– Interface m3: α = 3V
– Interface m2: α = 2.5V
– Interface m1: α = 1V

On the other hand, the bottom macro-neuron has the following characteristics:

• Input layer neurons

– neurons in the upper and bottom parts of the circuit
∗ Interface m3: α = 1V
∗ Interface m2=interface m1: α = 3V

– middle circuit neurons
∗ Interface m3: α = 3V
∗ Interface m2=interface m1: α = 1V

• Hidden layer neurons

– all the interface molecules characterized by α = 1V

• Output layer neuron

– Interface m3: α = 3V
– Interface m2: α = 1V
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– Interface m1: α = 2.5V

The developed circuit is somehow more complex for the proposed problem than what
is necessary. However, as a general rule in neural networks, a higher layer complexity
would allow for evaluation errors correction and more complex task solving capabilities.
Being this the first example, the choices in molecular layout and active molecules were
relatively straightforward, but they can serve as a starting point for further and deeper
analyses.

7.4 Graphical results for molecular FCN classifier
This section presents the results related to the classification problem proposed in this
chapter. The two macro-neurons were simulated separately for each input pattern to
avoid extremely long simulations. The figures report different instants taken in the infor-
mation propagation. The logic values are encoded in terms of molecular cell polarization.
In particular, a positive polarization corresponds to a high logic value, and a negative
polarization to a low logic value. In the case under study, the polarization values will be
either +1 or -1 in all circumstances. The clocking scheme regulating the propagation is
made by five clock regions, as presented in chapter six. Of course, the main difference
between the circuits analyzed in the last chapter is the higher latency. The results are
presented in the following simulation snapshots. In particular, the instants reported are
related to the computations in the hidden and output layers, respectively, placed in the
left and right images. As it is possible to appreciate, the expected results perfectly coin-
cide with the obtained one. This result strongly confirms the working behavior of the
developed network. The classification is performed correctly for all the input patterns in
the upper and bottom macro-neurons.
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(a) macro-neuron 1.
Pattern A, hidden layer computation

(b) macro-neuron 1.
Pattern A, output layer computation

Fig. 7.7: Upper Macro-neuron. Pattern A evaluation. Output is logic 1

(a) macro-neuron 2.
Pattern A, hidden layer computation

(b) macro-neuron 2.
Pattern A, output layer computation

Fig. 7.8: Bottom Macro-neuron. Pattern A evaluation. Output is logic 0
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(a) macro-neuron 1.
Pattern B, hidden layer computation

(b) macro-neuron 1.
Pattern B, output layer computation

Fig. 7.9: Upper Macro-neuron. Pattern B evaluation. Output is logic 0

(a) macro-neuron 2.
Pattern B, hidden layer computation

(b) macro-neuron 2.
Pattern B, output layer computation

Fig. 7.10: Bottom Macro-neuron. Pattern B evaluation. Output is logic 1
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(a) macro-neuron 1.
Pattern C, hidden layer computation

(b) macro-neuron 1.
Pattern C, output layer computation

Fig. 7.11: Upper Macro-neuron. Pattern C evaluation. Output is logic 1

(a) macro-neuron 2.
Pattern C, hidden layer computation

(b) macro-neuron 2.
Pattern C, output layer computation

Fig. 7.12: Bottom Macro-neuron. Pattern C evaluation. Output is logic 1
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(a) macro-neuron 1.
Pattern D, hidden layer computation

(b) macro-neuron 1.
Pattern D, output layer computation

Fig. 7.13: Upper Macro-neuron. Pattern D evaluation. Output is logic 0

(a) macro-neuron 2.
Pattern D, hidden layer computation

(b) macro-neuron 2.
Pattern D, output layer computation

Fig. 7.14: Bottom Macro-neuron. Pattern D evaluation. Output is logic 0

7.4.1 Robustness analysis of the proposed network
In designing any neural network, it is crucial to understand and mathematically evaluate
the correctness rate of the outputs. This procedure can be done for variations of the
original input patterns. This section provides a robustness analysis of the proposed neural
network. Specifically, different patterns were presented at the circuit inputs. The new
3x3 matrices are modifications of the original Pattern A, shown in the previous section.
A perfectly working classifier will classify all the new inputs as ‘00’ or ‘11’. If the circuit
provides the same output for a particular modified pattern as for Pattern A or Pattern
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B, it is possible to state that the network is not trained enough to recognize that specific
input pattern as wrong. The designer’s goal is to minimize these events, meaning that
the choice of the weights must be the best one. Notice that in this section are presented
just the result of this kind of analysis without adjusting the weight coefficients, i.e., the
molecules. This way, it is possible to demonstrate the quality of the proposed solution.

Modified input patterns and numerical results

Several trials must be performed to provide a valuable analysis of input error rejections.
Notice that Pattern C and Pattern D, can be already seen as variations of Pattern A
and, consequently, classified as ‘11’ and ‘00’, respectively. This study aims to enlarge
the concept by introducing several wrong input patterns starting from Pattern A. The
variations consist of one or more pixels switching their content to mimic the incoming
wrong values to the circuit inputs.
In figures 7.15a-7.16h, are reported the new patterns introduced to perform the analysis.
Table 7.2 reports the outcomes of the circuit when subjected to each of these new patterns.
There are three different types of results. The first one is related mainly to Pattern A
and Pattern B, which must be classified as ‘10’ and ‘01’, respectively. Indeed, in the
previous section, has been already demonstrated the functionality of the network in this
sense. Then, any input modification of the two main patterns should be classified in
another way, namely ‘00’ or ‘11’. However, for some input combinations, the circuit cannot
provide the correct classification and recognizes the pattern as a correct one. These cases
should represent the least frequent condition for a classifier. In table 7.2, each input set
is associated with the provided classification and its correctness. In addition to this, it
is important to specify that the Network interpretation column presents how the circuit
interprets the pattern, i.e., correct or wrong. Then, the Classification correctness is the
quality of the proposed classification. Indeed, even though the network interprets a certain
pattern as correct, the result can be wrong due to a non-correct interpretation. In such
a case, the training phase should be repeated to refine and improve the classification to
overcome the mentioned issue.
Some analysis of the results is needed at this point. It is important to recall the final
decisions taken for the molecules at the various interfaces of the neural network. Consider,
for instance, the pattern labeled with the letter E. The outcome of the neural network is
‘00’, meaning that the network can classify this input set as wrong or, at least, different
either from Pattern A and Pattern B. This result is mainly due to the presence of two
logic ‘0’ in the first row of the matrix. So, the output of macro-neuron 1 is a ‘0’, following
the outcome of the upper inner layer coming from interface m1 connected to the output
layer. The same considerations can be provided for Pattern G. A different case can be
highlighted, for instance, for Pattern F. In that situation, the modification to Pattern A is
in the central pixel in the middle row. However, the middle row is almost non-influencing
the computation on the output layer according to the chosen weights. Indeed, interface
m3 connected to the output neuron has molecules characterized by α = 3V . The situation
just commented can be considered the first problem related to the designed network: any
variation in the middle row is not taken into account by the network. Concerning macro-
neuron 2, the driving interface at the output neuron site is m2. On the bottom neuron
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of the circuit, the stronger interface is, instead, m3, on which molecules with α = 1V
are placed. Taking Pattern L as an example, it is, therefore, clear the reason why it is
classified as not correct.
Summing up all these considerations, it is possible to conclude that the network is not
reliable for variations in the middle row of the 3x3 pixel matrix. The first and third rows’
most influential interfaces at the input layer side are m1 and m3. For this reason, the
network recognizes as wrong all the patterns with different configurations in those pixels
with respect to patterns A and B. However, for some input combinations, the network as
it is is not able to guarantee correct classification. This problem is related to the choice
of the weights. Indeed, the most probable way to solve it is to increase the complexity of
the network by selecting different molecules for the hidden layer and, parallel to that, find
a solution to improve the evaluation at the input and output layers. A possible proposal
involves using other molecules to those adopted in this network, exploring solutions for
α values different from 1V and 3V. This way, it would be possible to explore better the
computation capability of the proposed network layout.

Correcteness rate evaluation

Through the simulations carried on and discussed in this chapter, it is possible to evaluate
the rate at which the designed network provides a proper and correct classification of the
pattern at its inputs. From table 7.2, it is possible to evaluate this number. Indeed,
correctly classifying eleven patterns among the overall seventeen analyzed makes the cor-
rectness rate equal to 64.7%. Although this value represents a good starting point for a
molecular FCN neural network, it should be increased in future works. Moreover, it is
also possible to make an estimation considering a higher number of possible pixel combi-
nations in the 3x3 input matrix and considering the network analysis. From the by-hand
evaluation of 226 different arrangements of the 3x3 pixel matrix, it was calculated that the
rate at which the output should be correct is 63%. This value is highly approximated but
confirms the rate evaluated from the simulation outcomes. Once again, it is important to
remark that, despite this being a good starting point, future analyses should guarantee
better results.

(a) Pattern E (b) Pattern F (c) Pattern G (d) Pattern H (e) Pattern I
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(a) Pattern L (b) Pattern M (c) Pattern N (d) Pattern O (e) Pattern P

(f) Pattern Q (g) Pattern R (h) Pattern S

Fig. 7.16: 3x3 binary images obtained by modifications of Pattern A and Pattern B

Pattern Output Network interpretation Classification correctness
A 10 correct
B 01 correct
C 11 correct
D 00 correct
E 00 wrong
F 10 correct ✗

G 00 wrong
H 10 correct ✗

I 10 correct ✗

L 11 wrong
M 11 wrong
N 11 wrong
O 10 correct ✗

P 01 correct ✗

Q 11 wrong
R 10 correct ✗

S 00 wrong

Table 7.2: Results of the robustness analysis
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Chapter 8

Conclusions

The subjects treated in this work include several aspects of technology. Nowadays, the
demand for neural network applications is enormous and, in some cases, moves far from
the classical computing problems. The challenges related to hardware neural networks
are still a lot. Parallel to these, there is the need to find solutions to overcome the issues
associated with CMOS scaling. According to that, research is ongoing in different fields.
In particular, FCN has proven to be one of the most exciting and innovative solutions to
improve device speed and power consumption. The main advantage related to this techno-
logy is the absence of current flow. In this work, starting from the intrinsic characteristics
of the molecules involved, FCN neuromorphic computation has been explored. This thesis
designs a working solution for neural networks relying on molecular Field-Coupled Nano-
computing. The main challenges were the design of a proper single neuron cell and the
transport of the information through the structure. Related to this second task, the main
challenge was properly designing the clock region distribution and timing, considering the
different molecules in the circuit layout.
The various parts have been analyzed separately. First, the focus was on the design of
the neuron and the verification of the proper behavior compared to the state-of-the-art
neuromorphic computation. It has been shown that the neuron behavior is coherent and
predictable for different combinations of interface molecules and input voltages. Moreover,
the definition of dark regions in which the neuron behavior cannot be predicted has also
been analyzed in detail.
In the second part of the work, the goal was to define a propagation structure capable
of transporting the information from one neuron to another without loss of information.
In that study, saturator molecules were introduced as a valuable solution to ensure stable
and fully digital information propagation. Furthermore, the clock signals profile has been
defined considering the molecules present in the layout. The solution ensures correct pro-
pagation and information transport in the different parts of the final structure.
A step-by-step procedure was adopted to build a first working prototype of a molecular
FCN neural network. The final solution involved a total of four neurons together. The
network was in-depth analyzed to explore the functionality and find solutions to ensure
the correct working behavior of the circuit. All the results were compared to those obtai-
ned by hand calculations using the weighted sum of the input voltages. This thesis defines
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possible critical situations that can arise, considering the molecules proposed so far. For
this purpose, a new molecular neuron model was proposed to account for diagonal and
spurious contributions to each interface polarization, with the possibility of enlarging the
prediction capabilities of the circuit behavior.
The network was then arranged to deal with pattern recognition problems. Precisely, 3x3
matrix patterns form the inputs to the neural network. With the solution proposed it was
possible to reach classification correctness up to 64%.
The aspects that should still be analyzed are many. One of the most important ones
consists of enlarging the neural model, starting from the solution proposed in this thesis,
to improve the prediction coherency to the circuit outcomes. Starting from this point,
building more complex networks capable of solving more complex tasks would be possi-
ble. In parallel to this, new structures for propagation should be studied to increase the
network connectivity. This way, the network would become more complex, increasing its
flexibility and solving properties. In conclusion, it is worth mentioning the necessity of re-
liable techniques to evaluate the energy consumption of the molecular neural networks to
properly compare the results with the dissipation values characterizing the state-of-the-art
silicon-based neural networks.
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