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Summary

Hyperdimensional computing (HDC) is a neural inspired computing paradigm
derived from the cognitive model proposed by Pentti Kanerva in 1988.
Hyperdimensional computing consists in representing data through pseudo-random
ultra-wide vectors, referred as hypervectors, with independent and identically
distributed (i.i.d) components. A typical dimension (D) of an hypervector is D =
10000. The high dimensionality comes from the attempt to replicate the human
brain complex behavior which uses billions of synapses and neurons.
Hypervectors can be either binary, i.e. each of their dimensions is represented as a
bit that can take a single value between ‘1’ or ‘0’, or non-binary, if their elements
are integers or floating point.
In the binary case, an hypervector is defined as dense if the number of ‘1’ and ‘0’
is the same, while an hypervector is defined as sparse if ‘1’-bits are present with a
lower percentage than ‘0’-bits.
The main advantages of Hyperdimensional computing are robustness and effi-
ciency. Indeed, a vector with an higher dimensionality can tolerate an higher
number of corrupted bit without losing information.
As regards efficiency, data represented with hyperdimensional computing are com-
bined using a set of three simple operations: addition, multiplication (or bitwise
xor for binary cases) and permutation, which require lower hardware resources.
Hyperdimensional computing is employed to compute similarity between entities.
In particular, different entities are associated to different hypervectors in the hy-
perdimensional space.
To map data into hypervectors, an encoding phase is needed. There are two main
encoding methods, the record-based method and the N-gram based method.
Both of them require a memory called Continuous Item Memory (CiM) which
stores Level Hypervectors (L), i.e. hypervectors which represent the value that
an input variable can assume.
During the training phase of the classifier, data from the same class are encoded
and then combined together in order to create a class hypervector. Class hyper-
vectors are stored in the Associative Memory (aM). During the test phase, a
query hypervector is compared to all the class hypervectors inside the aM, which
gives as a result the class with the highest similarity to the input vector.
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Researches on human brain functionality inspired not only cognitive algorithms,
but also new types of sensors. In this thesis, particular attention is given to a type
of bio-inspired sensors called Event cameras.
Differently from standard frame-based cameras, images with event cameras are not
captured at a constant frame. Instead, event cameras report changes in brightness
in asynchronous way, which are referred as events. This results in acquiring images
with low latency, high temporal resolution (µs), and high input dynamic (140 dB).
In this thesis, an hardware accelerator based on hyperdimensional computing is im-
plemented to classify images acquired with event cameras, also known as Dynamic
Vision Sensors (DVS).The implemented classifier was developed in collaboration
with ing. Fabrizio Ottati. The proposed HDC model uses dense and binary hy-
pervectors with dimension D = 8192. 8 levels of quantization are used for input
data, i.e. values of data are discretized in 8 levels, all represented with 8 Level
Hypervectors. A record-based approach is used for the encoding phase.
To reduce the dimensions of the Continuous Item Memory, a single Seed Hyper-
vector is manipulated to obtain the other Level Hypervectors, instead of storing
them in the CiM.
The design is validated on the N-MNIST dataset, while features of images are
represented with istograms of Averaged Time Surfaces (HATS).
The HATS system used to extract features from the dataset, was implemented in
software by ing. Fabrizio Ottati.
The whole HDC model is at first implemented in software, to validate the behavior
of the model and to obtain first results.
After software validation, the RTL of the design is described in HDL and simulated
using ModelSim simulator.
Only the encoder and the inference modules of the model are implemented in hard-
ware. The training phase of the classifier is instead implemented in software. The
training in software generates the class hypervectors which are then stored in the
Associative Memory inside the Inference Module.
Since not all architectures can handle the whole hypervector given the high dimen-
sionality, the hardware design is serialized in order to process parts of hypervectors
at different times. Hence, the design is configurable, i.e. the number and the size
of the hypervector chunks can be user defined. In particular, the model can be
configured to process hypervectors divided from 8 parts with 1024 bits each, to
1024 parts with 8 bits each.
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Figure 1: Overview on the Implemented Design

The design is also validated on FPGA using the proFPGA prototyping sys-
tem. The target FPGA on which the design is implemented is the Xilinx Virtex-7
2000T FPGA. Thanks to Xilinx Vivado software, measurements of power, latency
and resources utilization were extracted from the Xilinx Virtex-7 2000T FPGA with
four different configuration of the design: 64x128, 32x256, 16x512, 8x1024. For all
the configurations, an accuracy of 83% is obtained on the N-MNIST dataset.

Configuration Time (ms) Dynamic Power (W) Static Power (W) Total Power (W)
64x128 3.7 0.033 1.373 1.40
32x256 1.92 0.055 1.373 1.428
16x512 1.02 0.099 1.373 1.472
8x1024 0.57 0.181 1.377 1.558

Table 1: Measurements of required time and power for the inference of a single
sample in each of the four configuration. The target FPGA is the Virtex 7 2000T.
The clock period is 10 ns.

As can be seen, a configuration with a high number of parts with a reduced
width requires a longer time to predict the class of a single sample, but it consumes
less dynamic power.
The four configurations were also implemented on FPGAs from different families,
in order to assess the low resources requirements of the hyperdimensional comput-
ing. In particular, the used FPGAs were: Spartan-7 xc7s25c, Spartan-7 xc7s100f,
Artix-7 xc7a15T, Artix-7 xc7a200t, Kintex-7 xc7k70t, Kintex-7 xc7k480t, Virtex-7
xcv585t and Virtex-7 xc7vx1140t.
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Chapter 1

Hyperdimensional
Computing

1.1 Introduction on Hyperdimensional Comput-
ing

Hyperdimensional Computing (HDC) is a paradigm developed by Pentti
Kanerva [14] based on researches on brain capability. As a matter of fact, the
human brain and a standard computer have different approaches at the same tasks.
While a computer is optimized to excel in computationally heavy routine, the
human brain is much slower in calculation but flexible in learning activities. Hence,
brain-like computing can be exploited in cognitive operations, such as clas-
sifying data.
Even if traditional computers and brains have different capabilities derived from
their different structure, the construction of a brain-like architecture is not neces-
sary to obtain a more “intelligent” system. However, studying the brain structure
is fundamental to extract a cognitive model of computation.
Hyperdimensionality comes from the human brain structure composed of billions of
neurons and synapses, which suggest that a large number of signals is fundamen-
tal for efficient cognitive functions. For this reason computing is done with words
of nearly 10000 bits that are called hypervectors. Hypervectors are defined as
points of an hyperdimensional space,called hyperspace. Each of these points rep-
resents a real-world entity and similar entities have similar vectors.
As stated in [14], given the large amount of bits, two hypervectors are consid-
ered similar if they differ in less then one third of their bits, while they are
orthogonal if they have half or more non-identical bits.
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1.2 Advantages
Brain-like computational paradigm was mainly introduced for its innate capability
to adapt to different learning algorithm. It is however the higher dimensionality
which gives the most remarkable properties to the model. Hypervectors are indeed
redundant and random, which makes Hyperdimensional Computing robust to
failure and efficient in terms of required operations.

1.2.1 Robustness
Hypervectors are made with more than thousands of bits and this implies that even
if a large number of bits is corrupted the hypervector can still hold its information
without loss. In learning application, two different hyperectors are associated to
two different entities, and due to redundancy those entities can be discerned even
if 33% of bits [14] in the hypervectors are incorrect, i.e. two hypervectors are still
considered similar if they have less than one third of different bits.
Robustness can be further improved using the so called holistic representation
[14], which results in equally spreading the information among all the bits. In stan-
dard binary representation the importance of a bit is bound to its position, thus
the severity of failures depends on the position of the damaged bit; in the holistic
representation the information loss depends only on the number of corrupted bits,
leading to an higher tolerance for errors.
In [8], Sizhe Zhang et al. assessed the robustness to errors of hyperdimensional
computing. Errors are simulated and studied in the associative memory [see 1.3.3],
given the memory-centric approach of HDC. Errors are modelled using the single
bit flip (SBF) approach, which randomly flips a single bit to generate an error.
Robustness is asserted by measuring accuracy variation while classifying three dif-
ferent datasets:

• ISOLET: collection of voice audio of the 26 letters of the English alphabet,
from 150 different subjects;

• HAR: a collection of 12 types of human activities from 30 different subjects;

• CARDIO: a collection of fetal heart rates (FHR).

Three different dimensions for hypervectors are used: 10000, 5000 and 3000. In
addition, data are represented with three different width: 16-bit, 8-bit, and 1-bit.
Each HDC model is tuned by applying different retraining rates and epochs, in
order to increase performances in accuracy.
Simulations are run with an error rate varying from 10−9 to 10−1 in a logarithmic
scale.
Results in [8] state that accuracy starts to drop after an error rate of 10−6, which is
9 times higher than the error rate tolerated by standard computing (< 10−15) and
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Configuration 16-bit 8-bit 1-bit
10000 5000 3000 10000 5000 3000 10000 5000 3000

ISOLET 94.42 94.48 93.97 94.42 94.55 94.03 93.134 88.64 85.12
HAR 93.77 93.58 93.93 91.71 92.75 93.26 87.16 86.46 85.20

CARDIO 93.43 92.29 91.55 92.96 92.96 86.38 86.85 82.16 77.93

Table 1.1: Error-Free accuracy (%) for HDC classification with three different
datasets and configuration. Table adapted from [8].

similar to the one tolerated by Neural Networks (from 10−9 to 10−6). The error
rate has different impact according to the application: in ISOLET classification,
accuracy drops after an error rate of 10−4, while for HAR and CARDIO, there is a
significant loss in accuracy with an error rate of 10−5.
Robustness of HDC classifier is also related to the data-width as can be seen in
Table 1.2. The reason of this is that for wider data, errors become more significant
if they affect higher-order bits. Hence, when implementing an HDC design, the
right data width should be used in order to increase robustness while maintaining
a proper accuracy.

Critical Error Rate
16-bit 8-bit 1-bit

ISOLET 10−4 10−4 10−2

HAR 10−5 10−5 10−2

CADIO 10−5 10−5 10−2

Table 1.2: Error rate at which accuracy starts to drop for ISOLET, HAR and
CARDIO datasets with different data width. Table extracted from [8].

1.2.2 Efficiency
HD computing consists of a sequence of simple operation which are more hardware
friendly and less power angry then normal Machine Learning approaches.
The HD standard algorithm starts with the generation of a random hyper-
vector which is then bound with other vectors using permutation and a mul-
tiplication [see 1.3.2]. Accumulation of related vectors is done with majority
voting of bits in the same position, while similarity is computed with the Ham-
ming distance in case of binary hypervectors, or with cosine similarity in
non-binary cases [see 1.3.5].
To better define the efficiency of HDC, an example of performances comparison
between a deep neural network and an hyperdimensional classifier is reported in
[9], where Mohsen Imani et al. proposed VoiceHD, an hyperdimensional classifier
for voice signals.
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VoiceHD model consists in using dense binary hypervectors with dimension D =
10000 bits, to classify voice signals from the ISOLET dataset [see 1.2.1]. A unique
hypervector is assigned to each frequency bin, hence for the 617 frequency bins
in the ISOLET dataset, N = 617 hypervectors are needed. Voice signals are en-
coded using a record-based approach [see 1.3.4], in which each input frequency is
translated into an hypervector and then binded with the correspondent channel
hypervector.
The design is described in Matlab, with the model trained on ISOLET 1-2-3-4 and
tested on ISOLET 5. VoiceHD is then compared with a neural network with three
hidden layer: L1 : 617, L2 : 1024, L3 : 1024, L4 : 512, L5 : 26. The measurements
of power, execution time and accuracy are performed on CPU cores, in particular
the Intel Core i7 processor (4-core, 2.8GHz, 16 GB memory).
Results reported by Mohsen Imani et al. show how the implemented binary hy-
perdimensional classifier reaches a 11.9x higher energy efficiency, 5.3x faster testing
time and 4.6x faster training time compared to the deep neural network [Table 1.3].

NN VoiceHD
Training Execution Time/Training Set 17min 3.7min
Testing Energy Consumption/Single Query 454mJ 38mJ

Execution Time/Single Query 4.61ms 1.14ms

Table 1.3: Energy consumption and execution time of Neural Network and VoiceHD
on CPU. Table adapted from [9].

Other examples of HD computing efficiency compared to standard machine learning
approach are reported in 1.4.

1.3 Model
Any computing system is composed of three main aspects [1]: data representa-
tion, data trasformation, data retrieval. Within the Hyperdimensional com-
puting paradigm, data are represented with hypervectors and transformed using
only multiplication, addition and permutation [see 1.3.2].
HD computing is mostly applied in classification problems, which are divided in
two phases: training, i.e. the process to create entities which represent the main
aspects of other entities that belong to the same class, and testing, i.e. associating
an input entity to its class. In Hyperdimensional computing each class is repre-
sented with an hypervector denominated as class hypervector. The collection of
class hypervectors is stored in the Associative Memory [see 1.3.3]. During test-
ing phase, an input hypervector denominated query hypervector is compared to
all class hypervectors through an associative search in order to predict with a
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certain accuracy to which class the query hypervector belongs.

Figure 1.1: Scheme of classification with Hyperdimensional computing. Training
data are encoded and processed to create class hypervectors stored in the Asso-
ciative Memory [aM]. Test data are encoded to create a query vector and then
compared with each class vector inside the aM. Image adapted from [1].

1.3.1 Data Representation
An hypervector [11] is a more than 1,000 dimension wide word which represents
a point in the hyperspace. Elements inside hypervectors are random and inde-
pendent and identically distributed (i.i.d).
Due to their holistic representation, information inside an hypervector is equally
distributed in each component, hence each dimension holds the same amount of
data.
Binary hypervectors are hypervectors with only binary elements, i.e. each di-
mension is represented with a single bit; binary hypervectors are referred as dense
hypervectors if ’1’-bits and ’0’-bits are present with the same ratio, whilst binary
hypervectors with a larger portion of ’0’-bits are referred as sparse hypervectors.
In Non-binary representation, hypervectors are usually ternary, where each di-
mension can take a value only in the set {−1; 0; 1}, or integer.
Data representation directly affects efficiency and accuracy of the HD comput-
ing model. In [10], a full binary HD classifier with the possibility of retraining
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called BinHD is proposed. The performances of BinHD are compared with a
baseline HD algorithm using three different data representation. The first tested
baseline configuration consists in using float data both for encoding and for the
model (Float/Float). The second uses a non-binary encoder with a binary model
(Float/Binary), while the third uses a binary encoder and a binary model (Bina-
ry/Binary). Performances are evaluated for four tasks: speech recognition (ISO-
LET), acitivity recognition (UCIHAR), Face recognition (FACE) and cardiotocograms
classification (CARDIO).
As shown in Table 1.4, apart from the higher accuracy obtained with retraining in
BinHD, in a full binary model the classification accuracy is lower with respect to
other data representation. However, there is a reduction on the size of the model
and the memory footprint of respectively 24.6x and 32x than the non-binary model
(Float/Float), as shown in Table 1.5 and Table 1.6.

Accuracy(%)
Encoding/Model ISOLET UCIHAR FACE CARDIO
Float/Float HD 93.5 95.8 95.3 99.0

Float/Binary HD 88.1 91.3 91.9 93.8
Binary/Binary HD 85.6 87.3 83.5 90.2

BinHD 91.5 95.7 94.3 99.5

Table 1.4: Classification accuracy of BinHD and Baseline HD in different configu-
rations. Table adapted from [10].

Training Memory Footprint (MB)
Encoding/Model ISOLET UCIHAR FACE CARDIO
Float/Float HD 251 249 898 77

Float/Binary HD 251 249 898 77
Binary/Binary HD 10 13 34 3

BinHD 10 13 34 3

Table 1.5: Training memory footprint of BinHD and Baseline HD in different con-
figurations. Table adapted from [10].

1.3.2 Arithmetic
Hyperdimensional computing arithmetic has a set of operations that process
d-dimensional inputs and produce d-dimensional outputs preserving
the dimensionality [1]. All operations are also point-wise, hence elements in the
same position are combined together without influence from other components.
The first of the three main operation is addition, which in the hyperdimensional
model is also called bundling. In order to preserve the same type of representation
after adding a set of hypervectors a normalization is performed. Normalization

6



1.3 – Model

Model Size (KB)
Encoding/Model ISOLET UCIHAR FACE CARDIO
Float/Float HD 1015.6 468.7 78.1 117.2

Float/Binary HD 31.7 14.6 2.4 3.7
Binary/Binary HD 31.7 14.6 2.4 3.7

BinHD 31.7 14.6 2.4 3.7

Table 1.6: Model size of BinHD and Baseline HD in different configurations. Table
adapted from [10].

is usually obtained with a weighted mean in case of non-binary representation,
or with a majority voting in binary case [eq. 1.1].

A = 1 0 1 0 0 1 0 1, (1.1)
B = 0 0 0 1 0 0 0 1,

C = 1 0 0 0 0 0 0 1,

[A + B + C] = 1 0 0 0 0 0 0 1.

Hyperdimensional addition is characterized by an important property, which is that
the resulting vector is similar to the addends, in the sense that the distance between
the sum vector and the added vectors is minimum. This property is fundamental
for classification since an hypervector produced by bundling a set of hypervectors
can represent the whole set, being it similar to each vector inside the set itself.
Hyperdimensional multiplication [eq. 1.2] is also referred as binding, since it is
used to bind vectors. The association x = a can be indeed represented as X ∗ A in
the hyperdimensional space, where X and A hypervectors associated respectively
to x and a.
Contrary to addition, multiplication results in a vector that is orthogonal to all
of the inputs. Multiplication is indeed used to represent structured data and for
that reason cannot be similar to any of the bound vectors.

A = 0 0 0 0 0 1 0 1, (1.2)
B = 1 0 1 1 0 0 0 1,

A
p

B = 1 0 1 1 0 1 0 0.

Other important properties of hyperdimensional multiplication [14] are:

• Invertibility: it is possible to retrieve one input vector knowing the other;

Z = X ∗ Y −→ Y ∗ Z = X and X ∗ Z = Y (1.3)
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• Distribution: multiplication distributes over addition;

Z ∗ [X + Y ] = [Z ∗X + Z ∗ Y ] (1.4)

• Distance Preservation: two different hypervectors with a certain distance
multiplied by the same hypervector produce as outputs two hypervectors with
the same distance as the inputs.

with XA = A ∗X and YA = A ∗ Y −→ |XA ∗ YA| = |X ∗ Y | (1.5)

with | · | representing the distance between hypervectors.

In case of a binary representation, hyperdimensional multiplication consists in a
bitwise XOR, simplifying hardware requirements.
The third fundamental operation is permutation [eq. 1.6], i.e. reordering ele-
ments inside the hypervector. Given X as an input hypervector, the permutation
is denoted as the product between X and a permutation matrix Π: XΠ = ΠX,
where XΠ is the permuted vector.

A = 0 0 0 0 0 1 0 1, (1.6)

ρ(A) = 1 0 0 0 0 0 1 0.

Permutation is characterized by the same properties of multiplication [14]: invert-
ibility, distribution, distance preservation and orthogonality with respect to inputs.
Permutation is typically used to represent sequence of data together with addition
[14]; in fact, addition alone cannot represent an ordered set of elements since it does
not preserve the order. Hence, with hyperdimensional arithmetic the sequence AB
is represented as: S = ΠA + B. Larger sequences are obtained by progressively
permuting elements, as for example the sequence ABCDEF is represented as:

S = Π[Π[Π[Π[ΠA + B] + C] + D] + E] + F (1.7)

By exploiting the properties of addition, multiplication and permutation it is there-
fore possible to embed a data record inside a single hypervector [14]: given as
an example three different channels channel_1 [A], channel_2 [B] and channel_3
[C], and the three sensed value value_1 [X], value_2 [Y], value_3 [Z], the actual
order of sensed values and their respective channels can be condensed as:

S = Π[Π[X ∗ A] + [Y ∗B]] + Z ∗ C (1.8)
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1.3.3 Memory
As explained in the previous section, with Hyperdimensional computing significant
entities are represented with hypervectors that need to be stored in order to be
exploited in algorithms. The type of memories in which those vectors are stored
depends on their function and their origin. Hypervectors which represent simple
entities are memorized in what is called an Item Memory (iM).
The item memory can be defined as a record of significant vectors with the main
characteristic of being autoassociative [14], which means that it is a content
addressable memory addressed with vectors that are similar to the stored ones.
Hence a vector is stored using itself as the address. In particular, it is possible
to obtain a noise-free version of a noisy vector using it as an address to the Item
Memory, if the noise is not large enough to make those vectors completely different.
The class hypervectors used to represent classes in classification problems are
instead stored in the Associative Memory (aM). The number of stored vectors
inside the Associative Memory corresponds to the number of classes, and classifi-
cation is done by comparing a query hypervector to all the elements inside the
memory: the class vector with the lowest difference with respect to the query vector
represents the class where the query vector most likely belongs [Figure 1.1].
In certain encoding algorithm, a third type of memory is required, called Contin-
uous Item Memory (CiM). This memory stores vectors which do not represent
entities but different levels of values that a variable can assume. Indeed, when a
real quantity is mapped in the hyperdimensional space, it can assume only a limited
number of values depending on the provided resolution. The CiM indeed stores L
= number of possible values vectors called Level Hypervectors.
Levels hypervectors are not mutually orthogonal, since vectors which represent
close values must be similar, while the minimum and maximum values must be
orthogonal. This relation between level hypervectors can be easily obtained by
taking a random vector to represent the lowest value, called seed hypervector,
and splitting one of is halves in L - 1 parts [2]; those parts are then progressively in-
verted in order to have the level hypervector associated to the maximum value with
half of his bits complementary to the minimum level hypervector, thus obtaining
orthogonality.

1.3.4 Encoding
Encoding consists in translating input data into hypervectors. Accordingly to the
type of data to be converted, two types of encoding methods are mainly used [1].
Record-based Encoding [Figure 1.2] maps both data values and data po-
sitions. Each position is represented with a position hypervector IDi where
1 ≤ i ≤ N with N = number of positions. Values are instead discretized and
represented using level hypervectors Li where 1 ≤ i ≤ m with m = number
of quantization levels. While position hypervectors are orthogonal among them,
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level hypervectors preserve the similarity of the value they represent, i.e. L1 is
similar to L2 but orthogonal to Lm. Position hypervectors are stored in the Item
Memory whilst level hypervectors are stored in the Continuous Item Memory [see
1.3.3]. With record based encoding, a feature vector h with N features each with
m possible values, is encoded as:

H = Li ⊕ ID1 + Li ⊕ ID2 + ... + Li ⊕ IDN−1 + Li ⊕ IDN , (1.9)
Li ∈ {L1, L2, ..., Lm}, with 1 ≤ i ≤ m.

Figure 1.2: Record based encoding. Position hypervectors read from the Item
Memory (iM) are indicated as ID, while level hypervectors read from the Continuous
Item Memory (CiM) are indicated as L. Image adapted from [1].

The alternative encoding method is referred as N-gram Encoding [Figure 1.3].
In this case the position of a feature inside the feature vector is not encoded using
a position hypervector but it is instead derived from the level hypervector through
permutation. In this case a level hypervector Li associated to the value of the
feature at position m is permuted m−1 times before being bound to the other level
hypervectors. Differently from record-based encoding, the hypervectors H which
maps a feature vector is obtained by binding the level hypervectors, i.e. using
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multiplication, instead of bundling them [eq. 1.10].

H = Li ⊕ ΠL2 ⊕ ...⊕ ΠN−1LN (1.10)
Li ∈ {L1, L2, ..., Lm}, with 1 ≤ i ≤ N.

Figure 1.3: N-gram based encoding. Level hypervectors read from the Continuous
Item Memory [CiM] are indicated with L. Image adapted from [1].

1.3.5 Distance Evaluation
As stated in section [1.2.2],the similarity between hypervectors is computed using
the Hamming distance for binary hypervectors, and cosine similarity for non-
binary hypervectors.
In case of two binary hypervectors, they are considered similar if their Normalized
Hamming [eq.1.11] distance is low, with a distance equal to 0 indicating two identi-
cal hypervectors. If instead the normalized Hamming distance has a value greater
or equal than 0.5, the two vectors are considered orthogonal [1].

Ham(A, B) = 1
d

dØ
i=1

1A(i) /=B(i) (1.11)
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Indicating with d the dimension of the hypervector, for higher d the probability for
vectors to have similar values becomes smaller, while the probability for vectors to
be orthogonal becomes higher [14] . This phenomenon has important implications
since with higher grade of orthogonality tolerance to errors increases, since it is
possible to distinguish hypervectors even with a large number of damaged bit [1, 14].
Hamming distance cannot be applied in presence of non-binary hypervectors. In
that case the cosine similarity [eq. 1.12] is used as a similarity metric. Cosine
similarity measures only the orientation between vectors, i.e. the angle between
them, without taking into account their magnitude. Differently from Hamming
distance, an higher value of cosine similarity indicates lower difference between
vector, with a cosine similarity equal to 1 meaning identical vectors or an angle
of 0° in terms of orientation. If the cosine similarity is 0 then hypervectors are
dissimilar, i.e. they form an angle of 90° thus being orthogonal.

cos(A, B) = A ·B
|A||B|

(1.12)

As can be seen by the formulation of the two previously illustrated distance metrics,
the cosine similarity requires more resource with respect to the Hamming distance
in case of hardware implementation. Indeed for Hamming distance only XOR ports
and a counter of ones are needed, while a multiplier is needed for cosine similarity.

1.4 Applications and examples from Literature
In [1] some application of hyperdimensional computing for classification problems
are presented. In European Language Recognition, different languages are classified
through encoding N-grams, i.e sequence of N letters [Figure 1.4]. At first, each
of the 27 letters of the alphabet is represented with a random seed hypervector;
then N-grams are generated with permutation and multiplication of letter hyper-
vectors inside a series formed of N elements.Finally, the text is encoded by adding
all present N-grams hypervectors. By comparing the text hypervector with
class hypervectors that map each studied languages, it is possible to predict the
language in which the text is written.

As observed in [11], the HD approach reach a better accuracy with respect the
baseline algorithm if the N-gram is formed by N = 2 letters. For N ≥ 3, the base-
line machine learning algorithm displays higher accuracy. As can be seen in Table
1.7, for N-grams of three or less letters, HD model also requires a larger amount of
memory with respect to the baseline method. However, while the baseline approach
memory requirements grow exponentially with the complexity of the N-grams, HD
computing manage to maintain the same hardware structure. Indeed, for N-grams
with 5 letters, the baseline algorithm requires 500x larger memory size with respect
to the HD model.
Manuel Schmuck et al. [2] implemented an HD classifier for hand gesture recogni-
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Figure 1.4: Scheme of language classification using trigrams. Two main module im-
plemented: an encoding module for text hypervectors construction, and a searching
module were query vectors are compare to the language hypervectors stored in the
associative memory. Image adapted from [1].

N-grams Accuracy(%) Memory (KB)
HD Baseline HD Baseline

N = 2 93.2 90.9 670 39
N = 3 96.7 97.9 680 532
N = 4 97.1 99.2 960 13837
N = 5 95.0 99.8 700 373092

Table 1.7: Classification accuracy and memory requirements of HD and baseline
classifiers. Table adapted from [11].

tion. Inputs are EMG analog signals taken with a four-channel wearable sensor.
Each channel is independently encoded with a record-based approach, where chan-
nels are used as position hypervectors and discretized EMG signals are mapped
using level hypervectors. The sequence of received signals is instead encoded
with an N-gram approach. Hence, encoding is split in two modules [Figure 1.5] to
keep track not only on the spatial correlation of channels but also the tempo-
ral correlation of samples. [12] focuses more on simplifying the computational
model for hyperdimensional computing algorithms that use floating point ele-
ments. Hence, the QuantHD framework is proposed. QuantHD uses a complete
binary HD model, thus enhancing efficiency, and faces the low accuracy problem
typical of binary models using an iterative training approach. In particular,
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Figure 1.5: Scheme of HD architecture for EMG signals classification. Three mod-
ules implemented: a spatial encoder that maps each signal to its channel;a temporal
encoder to keep track of the sequence of samples and an associative memory for
training or testing. Image adapted from [2].

QuantHD improves of the 17% the HD classification accuracy in face recogni-
tion taks [Table 1.8].
In QuantHD, after the initial standard training with non-binary hypervectors fol-
lows a quantization phase, which transforms non-quantized hypervectors in binary
hypervectors; hence a retraining process is done. During retraining, a first classifi-
cation is executed on binary hypervectors in order to understand which hypervector
Hq is misclassified. After that, the non-quantized counterpart H of the misclas-
sified hypervector is subtracted from the non-quantized class hypervector of the
mispredicted class Cmiss and added to its real class hypervector Cmatch according
to a learning rate α [eq. 1.13]. Retraining is reiterated until the classification
error ∆E is less than a threshold E, thus both the non-quantized and quantized
models adapt to the dataset.

Cmiss = Cmiss − αH and Cmatch = Cmatch + αH 0 < α < 1 (1.13)

The performances of QuantHD are evaluated on four different datasetets, and then
compared with a baseline HD algorithm, a multi-level perceptron (MLP) and
a binary neural network (BNN) [Table 1.9]. Training results are reported on
ARM Cortex A53 CPU, while testing results on Kintex-7 FPGA KC705.
In [15] Mohsen Imani et al. presented BRIC, a binary hyperdimensional classifier

which goal is to reduce energy consumed during encoding phase. BRIC maps
an input feature vector F = {f1,f2,..,fn}, with N = number of features, using
Random Projection, which consists in multiplying the feature vector with a
random projection matrix of D = dimension of hypervectors bipolar vectors of
length N. Indicated as P, with Pi ∈ {-1,1}n, the projection vectors inside the
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Baseline HD QuantHD
Non-Quantized Binary Non-Quantized Binary Ternary

ISOLET 91.1% 88.1% 95.8% 94.6% 95.3%
UCIHAR 93.8% 77.4% 98.1% 96.5% 97.2%

PAMPAP2 88.9% 85.7% 92.7% 91.3% 92.7%
FACE 95.9% 68.4% 96.2% 94.6% 95.4%

CARDIO 93.7% 90.9% 97.4% 95.3% 97.7%
EXTRA 70.2% 66.7% 74.1% 72.6% 74.0%

Table 1.8: Comparison of QuantHD accuracy with non-quantized, binary and
ternary model with baseline HD computing with non-quantized and binary model.
Table adapted from [12].

Accuracy(%) CPU Training (s) FPGA Inference (µs) Model Size
MLP BNN HD MLP BNN HD MLP BNN HD MLP BNN HD

ISOLET 95.8 96.1 95.8 2.08 17.69 0.31 27.39 5.24 0.40 1.81MB 56.7KB 65.0KB
UCIHAR 97.3 95.9 97.2 1.04 8.32 0.12 21.43 5.18 0.37 1.68MB 52.7KB 30.0KB
PAMAP2 95.8 94.2 92.7 0.61 4.75 0.07 13.07 3.78 0.35 0.68MB 21.3KB 15.0KB

FACE 96.1 96.1 95.4 0.56 4.30 0.04 17.68 5.11 0.34 1.77MB 55.3KB 5.0KB

Table 1.9: Comparison of accuracy, efficiency and model size between MLP, BNN
and QuantHD. Table adapted from [12].

matrix, the sign of the inner product between a component of P and F gives out
a single dimension hi of the output encoded hypervector H [eq. 1.14].

hi = sign(Pi · F ) with H = {h1, h2, ..., hD} (1.14)

The introduced optimization uses a sparse random projection matrix,i.e. a
projection matrix with a percentage of non-zero elements below 50%, thus avoid-
ing more than one half of operations required for encoding. However, a random
sparse matrix requires random addressing to access non-zero elements, hence requir-
ing additional energy. To avoid this problem the principle of locality is exploited:
random non-zero elements are placed near to each other inside the matrix, with
each row of the matrix being a shifted version of the previous one. In this way,
accessing the matrix becomes predictable, since the elements inside the row w cor-
respond to the elements at row 0 shifted w-times by a fixed number of position.
Being the vectors inside the projection matrix ternary, Pi ∈ {−1,0,1}, there is no
actual need of multiplication, since the inner product is performed only with addi-
tion/subtraction, further improving encoding efficiency. As stated in [15], thanks
to the usage of a locality-based projection matrix and a full pipelined FPGA im-
plementation, BRIC reaches a 64.1x and 43.8x energy efficiency in training and
testing with respect to the baseline HD computing, with a speed up of 9.8x in
training phase and 6.1x in testing phase.
The efficiency of hyperdimensional computing is strongly related to dimensions,
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indeed a lower dimensionality leads to a faster algorithm and to a greater energy
saving. Reducing vectors dimension however reduces performances in terms of ac-
curacy. For all the previous reasons, Chenyu Huang et al. [13] proposed MHD,
a newer encoding block for HD computing where the type of encoding approach
and hypervectors dimension are configurable. MHD is composed of two modules,
a main stage and a decider stage, and has four types of classifier: one using
record-based encoding and a dimension of 10.000, one using N-gram based encod-
ing with 10.000 dimensions, one using record-based encoding and a dimension of
2000 and finally one using N-gram based encoding with 2000 dimensions. The main
stage trains with all encoding methods and all dimensions in parallel, producing
the four classifier, then the decider stage assign a classifier to an input vector based
on confidence. Since a model with higher dimensions always gives better results,
the decider stage is configured to prefer the classifier with the lowest dimensional-
ity if the accuracy has an acceptable grade of degradation compared to efficiency
improvement. MHD implementation provides five configuration: from 1-level of
hierarchy, i.e. with a single type of encoding at a fixed dimension, to 8 levels of
hierarchy, with 2 types of encoding and four possible dimensions. Its performances
are tested in speech recognition task [Table 1.10].

As reported in [13], MHD reaches a 6.6x energy improvement with respect to

1-level 2-level 4-level 6-level 8-level
Configuration Encoder Encoding I Encoder I Encoder II Encoder I Encoder II Encoder I Encoder II Encoder I Encoder II

Speech Recognition Dimensions 10000 10000 2000 10000 2000 4000 10000 2000 4000 6000 10000
Model Size 67.5KB 70KB 72.5KB 75KB 77.5KB

Classification Accuracy 93.6% 95.9% 95.9% 95.9% 95.9%

Table 1.10: Model size and classification accuracy of MHD in different configura-
tions. Table adapted from [13].

single level baseline HD computing model, with a speed-up if 6.3x.
In [16] a methodology based on Processing in-Memory (PIM) is proposed to
accelerate HD computing performances. PIM indeed performs a set of tasks inside
the memory without using processing cores and avoiding the bottle-neck of memory
access. To exploit the advantage of in-memory architecture, the proposed method
called SearcHD uses fully binary HD computing algorithm. In this way, each step
of HD computing, i.e. encoding, training and inference, is implemented in-memory
without non-binary operation.
In HD computing, during training, classes are created by adding together vectors
belonging to that specific class, and this creates vectors with non binary elements
that need to be normalized to be employed in a binary model. In SearcHD the
operation of adding vectors while creating a class is replaced with Bitwise Sub-
stitution. This means that given two vectors A and B, some bits of B are copied
in A at the same indices. If A and B are similar, less bits of A are changed while
cloning. Since some bits of A are changed while B remains the same, A is called
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a binary accumulator and B is called the operand.
To cope for the loss in accuracy with HD computing using binary model, vec-
tor quantization is proposed, where multiple vectors are associated to the same
class. Hence, training keeps information of the same class in different hypervectors.
Therefore for k classes there are N model vectors. Those N vectors for each
class are initialized as random input hypervectors belonging to that class. Training
is done by updating the model vector inside a class that has the lowest hamming
distance with the input vector of that label. In other words, the input vector is
compared to all the model vectors of the class indicated by its label, and after
the most similar model vector is found, the model vector is modified using bitwise
substitution. This algorithm allows to encode only useful parts of hypervectors,
i.e. the one in the most similar piece, without the need of encoding all data. After
the model is updated for all the training dataset, classification is done by com-
paring the query hypervector to all the k x N class hypervectors. According to
what is reported in [16], SearchHD can reach a 31.1x higher energy efficiency and
12.8x speed-up with respect to baseline HD computing. In addition, using eight
hypervectors per class and 16 hypervectors per class gives an higher accuracy of
respectively 9.2% and 12.7% with respect the baseline implementation.
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Chapter 2

Event-Based Cameras

2.1 Event Cameras
Researches on brain structure and capabilities inspired the implementation of novel
algorithm and sensors which aim to reproduce neural capacity to interpret and
perceive reality.
Particular attention was given to the realization of the so called silicon retinas
[3], i.e. bio-inspired cameras, since sight is the primary interface between brain
and environment. Event cameras are also referred as Dynamic Vision Sensors
(DVS).
Instead of sampling images at a constant frame rate, DVS measure brightness
changes in each of its pixel in asynchronous way, with each pixel independently
sampled from others. The output of a DVS is therefore a stream of events for each
pixel, with an event e defined as a data structure containing x and y coordinates
of the pixel, the time of occurrence t, and the polarity p of the change, i.e. if
brightness increased or decreased.An event is reported any time the relative pixel
measures an higher or lower brightness than a stored log intensity, with respect
to a given threshold. The log intensity stored in the pixel is then updated with the
latest measured value.
Event transmission from pixel to out of the camera is done through a shared digi-
tal bus address-event representation (AER) with a readout rate ranging from
2MHz to 1200MHz [3].

2.1.1 Advantages of Event Cameras
Being completely asynchronous, event-based systems are faster than standard
frame-based cameras; indeed, any time a change in brightness is detected it is
reported, without waiting for a clock signal. In addiction, pixels inside DVS are
completely independent thus further reducing latency, since each pixel can report
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its measurements without being temporized by a global entity.
Events are read with a clock frequency of 1MHz, therefore with an high temporal
resolution of 1µs.
The consequence of transmitting only changes in brightness is the reduction of re-
dundancy [3], considering that a constant intensity value is not reported twice.
Without reporting redundant events, the number of transmissions is reduced, thus
leading to a significant reduction of consumed power. The medium power used by
a standard camera is about 10mW, while an event cameras uses only 10µW [3].
Event cameras surpass standard cameras also in the input dynamic range. While
an high-quality frame-based camera reaches a maximum of 60dB of dynamic, a
standard DVS as a dynamic range of above 120dB, thus being able to receive sig-
nals both in dark or bright environments. This higher dynamic comes directly from
pixel operating independently and in the logarithmic scale [3].
As illustrated in this section, the properties which make event cameras attractive
are their high temporal resolution and low latency, together with low power
consumption and an high dynamic range. However, this novel approach to
data sensing requires proper frameworks which can exploit the complete potential
of event cameras. Algorithm used for frame-based cameras are in fact not ap-
plicable, since DVS outputs have a totally different structure with respect to the
sequence of dense images at a fixed frequency like the standard cameras.
In addition, brightness sensing in DVS is done via recording changes, hence data
meaning depends on current and past information. A proper quantization meth-
ods for events is also not present, therefore reducing noise becomes harder than in
standard cases.

2.1.2 Typologies of Event Cameras Design
Event cameras are also referred as DVS, but an actual DVS is a first type of design
of an event cameras. The circuit of a DVS is composed by a continuous-time
photoreceptor capacitively coupled to a readout circuit [3]. Any time a new
event is sampled, the readout circuit value is reset [Figure 2.1].
A main problem with applications using DVS is that they require an absolute value
of brightness to interpret information reported from the DVS. Hence, new types of
event-based camera were implements in order to simultaneously measure brightness
absolute values and changes.

An example of these types of cameras is represented by the Asynchronous Time-
based Image Sensor [ATIS]. In ATIS, the simpler DVS acts as a subpixel which
measures brightness change and which signals another subpixel into reading abso-
lute intensity. The DVS subpixel is referred as change detection (CD), while the
absolute intensity subpixel is referred as exposure measurement (EM). When a
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Figure 2.1: Overview on light change to event conversion performed by a DVS.
Image taken from [3].

change is detected, the CD brings a capacitor to an high voltage, then a photodiode
discharge the capacitor accordingly to brightness: a brighter light results in a faster
discharge of the capacitor [3]. With the ATIS, a dynamic range of more than 120dB
is achieved, but the cost in terms of area is doubled, since each pixel contains two
modules.
A more efficient design is represented by the Dynamic and Active Pixel Vision
Sensor (DAVIS). DAVIS reduces pixel size by combining in a single pixel a stan-
dard active pixel sensor (APS) and a DVS [Figure 2.2]. This is done by using
a single photodiode shared between absolute intensity sensor and the DVS, while
the readout circuit introduces an area overhead of about 5% [3].
Since the APS is a standard type of pixel, it can be programmed to capture frames

at a constant rate. However this configuration is rarely used since it is not coherent
with event cameras behavior.
Even if they present different designs and specifics, ATIS and DAVIS are also re-
ferred as DVS since they include a DVS as a submodule.

2.2 Event Representation and Processing Meth-
ods

Event cameras introduced a new way to represent data extracted from images, i.e.
events. Acquisition of events is asynchronous, sparse and with high resolution and
low latency. Hence, event processing should preserve the advantages introduced by
the low latency.
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Figure 2.2: Simplified DAVIS pixel design. Image taken from [3].

Event processing methods can be divided according to the number of processed
elements, or according to how events are processed.
Based on the number of events processed at each iteration, event processing algo-
rithms are divided in two categories: event-by-event basis methods process sin-
gle events at time, thus having a minimum latency; group or packets of events
methods wait for a certain amount of events to be recorded before processing them
altogether. In the later case, latency increases due to waiting for events. There is
however a blurred division line between those two methods, since a group of events
algorithm can still use groups of a single element, and an event-by-event algorithm
needs a set of information coming from previous events for reliable estimations [3].
The way in which events are processed divides event processing algorithms in
model-based methods and model-free methods.

2.2.1 Types of Event Representation
In this section, a list of event representation method will be reported,as illustrated
in [3].
Individual events representation report events as single points. It is used in
event-by-event algorithms like probabilistic filters or Spiking Neural Net-
works (SNN).
With Event packet representation, a number N e of events ek in the same spatio-
temporal zone are combined to obtain an output E = {ek}Ne

k=1. The number of
events in a packet depends on the algorithm.
Events in the same spatio-temporal zone are converted in 2D images with the
Event Frame representation. In this way, frame produced from events can serve
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as inputs for standard image processing algorithms. The advantage of using event
cameras to produce standard frames resides in the definition of more defined edges
and in information about not only the presence, but also absence of events.
Differently from Event Frame, Time surface (TS) representationmaps events in
a 2D configuration which intensity is correlated to motion. TS records the motion
history of a certain area with a set of values, with higher values corresponding
to more recent events. For this reason, time-surfaces are also referred as Motion
History Images.
In TS, information is compressed since each pixel stores only a single time value,
called timestamp. Timestamp represents the time in which the last event occurred
at that pixel.
Voxel Grid represent events with 3D histograms. Therefore, temporal information
is not altered by projecting it in a 2D representation. Event polarity can be stored
in a single voxel or shared wight neighbour voxel in what is called a interpolated
voxel grid, with the second method resulting in higher accuracy.
3D point set represents group of events in 3D space, using the time information
as the third dimension, while Point sets on image plane represents events as
evolving set of 2D points.
Additionally to recording events, Motion-compensated event image represen-
tation makes also motion estimations. While passing through pixels, a moving edge
generates events that can be properly warped in order to obtain sharp images, i.e.
images with better defined edges.
A motion-invariant representation of events is given by Reconstructed images
where image reconstruction is obtained by integrating events over time. A set of
events represents indeed a series of brightness variation over time, thus integrating
events ideally produces an absolute value of brightness. In reality, pixels do not
record the total amount of brightness at a certain time, but they store changes.
Hence, the result of events integration is an indication on how much brightness
changed at the end of the measuring window. The original brightness at the start
of measurements must be added to brightness change in order to correctly recon-
struct images.
In event representation and processing an important aspect regards polarities. Po-
larities are generated by motion, since a moving object simultaneously increases and
decrease brightness in a scene, according to its direction. Hence, studying polarities
can be useful for motion estimation, but superfluous in other cases. It is also im-
portant to say that values of opposite polarities recorded at the same time are not
complementary, i.e. it is not possible to extract the value associated to a positive
polarity starting from the value of the negative polarity registered at the same time.
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2.2.2 Event Processing Methods
As stated in 2.2, event processing methods can be either event-by-event or for
group of events, according to the quantity of processed events. Which of these
two approaches should be used depends on event representation and hardware re-
sources [3].
Event-by-event methods need to be able to process asynchronous data with a min-
imum latency, and to acquire information from multiple sources. Methods which
satisfy these requirements can be found in deterministic filters or artificial
neural network (ANN). One application of event-by-event model-free, i.e. unsu-
pervised [see 2.2], method is in object classification using spiking neural network
(SNN), as reported in [17].
Events are mostly processed in groups since each event stores only a small fraction
of information and because processing many events at the same time is helpful in
reducing noise. In addition, event-by-event methods requires external additive in-
formation for a correct evaluation of images, while Group of Events based method
are usually self-sufficient [3]. Given the presence of many representation for packets
of events, many group-based algorithm are available.
Events represented like a standard image, like with event frames representation, can
be processed using classical image-based learning algorithm, like SVM or Random
Forest.
Time surfaces are capable to detect edges, hence they are deployed in motion de-
tection or shape recognition. TS are also used as features extractor or as inputs for
convolutional neural network (CNN).
Voxel grids are mainly used for optical flow estimation or deep neural net-
work (DNN). Since voxel grids are tridimensional, algorithms using this type of
representation require larger memory space and higher computational effort.
Event-by-event and group of events based processing are also used together; in
fact, some image classification algorithms use processing for group of events during
training and event-by-event processing during testing, as in [18].

2.3 Algorithms and Applications of DVS
One of the first and simplest application based on DVS can be found in feature
detection and tracking. Thanks to event cameras, tracking is faster and less con-
suming, although requiring customized algorithm. In tracking, it is fundamental to
record data variation at any time without missing; this is however a tougher task
with event cameras, since they report fast changing values. Tracking depends also
on the observed object and its features: for simple tracking problems, the moving
object is considered as a source of events with a non-defined shape; for more com-
plex algorithm, the shape of the tracked object is user defined. Tracking algorithm
are used in traffic monitoring and surveillance, microrobotics and particle tracking
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in fluids.
Another example of event-driven vision application is in the Optical Flow Esti-
mation. Optical flow estimation consists in computing velocity of objects without
information about shape and motion. In standard approach using frame-based cam-
eras, optical flow is done by comparing sequences of images; with event-cameras
this is obviously not possible. Some approaches transform events in suitable data
for classical frame-based algorithm, while others rely on more complex structures
like neural networks.
Event cameras are also applied for 3D reconstruction. Problems regarding depth
estimation can be divided in many categories, based on the approach and used de-
vices. Instantaneous stereo reconstruction consists in estimating depth instan-
taneously, i.e. in a narrow interval, recording and then matching events taken from
two or more synchronized cameras. A possible approach to event matching is rep-
resented by normalized cross-correlation done on event frame or time surfaces.
The same approach of events recording and event matching as in instantaneous
stereo is done with the Multi-Perspective Panoramas method. However in this
case cameras are not synchronized.
Monocular Depth Estimation uses a single cameras instead of many. For this
reason, event correlation cannot be used. Instead, in multi-perspective panoramas
the events recorded by a single moving cameras are integrated over time for depth
estimation. With this approach, depth estimation is no more instantaneous.
All the aforementioned depth estimations were passive, i.e. they simply record
events. Depth Estimation using Structures Light is instead an active ap-
proach, which consists in projecting light in the scene and then measuring reflec-
tion.
Event cameras can be used also for image reconstruction [see 2.2.1], or even
for Recognition. Early event-based object recognition algorithms consisted on a
static camera capturing events generated by movements of the tracked object that
is modeled as a simple shape. In case of a more complex object, its geometry is
extracted by matching its features with template shapes. Feature matching is typ-
ically done with classifier, like the Nearest Neighbor. The main problem of this
process is to determine which features to match. Features can be specified a priori
or extracted from the available data, with the second case leading to better results.
A type of algorithm that automatically extracts features from data is clustering,
i.e. an unsupervised learning algorithm which groups data around centers accord-
ing to distance. The produced groups of data are called clusters, and each center
of those clusters represents a feature.
Another approach to classification, using data recorded from event cameras, consists
in transforming events into tensors, which are entities more suitable for hierarchi-
cal models like neural network. In the latest case, events are represented with time
surfaces, which can averaged to obtain a more reliable representation.
An example of classification algorithm using averaged time surfaces is the HATS
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[5]. HATS has also the peculiarity of receiving images from a DVS mounted on a
moving vehicle; this results in a more difficult classification task with respect to the
case of images taken from a static camera.
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Chapter 3

Hierarchical Representation
of Time-Surfaces

As explained in section 2.2.1, events cameras offer higher temporal resolution,
higher dynamic range and less energy consumption with respect to standard frame-
based cameras [3, 4, 5]. However, the full potential of these sensors is not fully
exploited due to the lack of proper algorithms and architectures for classification
on event-objects.
A classifier for DVS based on a low-level operator referred as Local Memory
Time Surfaces is proposed in [4]. In order to improve robustness to errors and
noises, Local Memory Time Surfaces can be combined to obtain an higher order
representation called Histograms of Averaged Time Surfaces (HATS), as pro-
posed in [5].
In this chapter, the time-surfaces representation is explained, followed by the illus-
tration of Local Memory Time Surfaces and Histograms of Averaged Time Surfaces,
as presented respectively in [4] and [5]. Afterward, a comparison of performances
between image classification using standard approaches and HATS taken from [5]
are reported.

3.1 Time Surfaces Inspired Models
3.1.1 Time Surfaces
The motion of an object in front an event-cameras, or the movement of the camera
itself, produces events in pixels of the cameras. The set of those events represents
the object position and dynamics. Hence, time-surfaces can be exploited to repre-
sent sets of events in order to keep track of the target object activity.
An event is mathematically defined as:

ei = [xi, ti, pi]T , i ∈ N (3.1)
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where xi = [xi, yi]T represents the location of the event inside the pixel grid, ti

indicates the time of arrival of the event and pi is the polarity, with pi ∈ {−1,1}.
Negative polarity is indicated as −1, while 1 indicates positive polarity.
Defined u = [ux, uy]T as a square neighborhood of pixels centered in xi, a time
context Ti(u, p) around the event ei is defined as:

Ti(u, p) = max
j≤i
{tj|xj = (xi + u), pj = p} (3.2)

where ux ∈ {−R, ..., R} and uy ∈ {−R, ..., R}, with R radius of the neighborhood.
After the definition of the time contest Ti(u, p), the time surface Si(u, p) can be
computed by applying an exponential decay kernel on values of Ti(x, p):

Si(u, p) = e−(ti−Ti(u,p))/τ (3.3)

with τ time constant of the kernel. The exponential decay not only extend the
representation of activities to past events, but also highlights recent events by
weighting values of events according to their arrival time.
Time-surface prototypes are a set of time surfaces which represents features
of the observed scenes. Time-surface prototypes are obtained from time-surface
through clustering [4].
When an event is reported, its time-surface is computed and then compared with
each time-surface prototype. An output event is then generated from the closer
prototype to the input event surface.
The starting condition of time-surface clustering consists in a set of N time-surface
prototypes Cn, with n ∈ [1, N ], where each prototype is described as in equation 3.2.
Any time an event ei is reported, its correspondent time-surface Si is computed.
The cluster Ck to which Si belongs is computed as the cluster with the lowest
euclidean distance from Si. After that, Ck undergoes to an updating process as
described in the following equation:

Ck ← Ck + α(Si − βCk) (3.4)

where:
α = 0.01

1 + pk

20000
(3.5)

β = cos(Ck, Si) = Ck · Si

∥Ck∥ · ∥Si∥
(3.6)

with pk number of the time-surfaces already assigned to Ck.
With the clustering algorithm, sequences of input events are transformed into pro-
totype activations [4]

feati = [xi, yi, ti, ki]T (3.7)

with ki index of the cluster center Ck.
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3.1.2 Local Memory Time Surfaces
The result of the clustering algorithm illustrated in section 3.1.1 is a time-surface
prototype which has the same structure of a time-surface. Hence, the same cluster-
ing algorithm used on time-surfaces can be applied to time-surface prototypes. For
this reason, in [4], a hierarchical model for time-surface representation is proposed
[Figure 3.1].
The model consists in repeating the clustering algorithm L times, in which the
output of one clustering works as the input of the following. In particular, after
each level of the hierarchy, referred as Layers, the output carries more information
with respect to the previous output. Before entering the following Layer, the pro-
duced time-surface prototypes are filtered using the same exponential decay kernel
function expressed in equation 3.3.
Layers of the hierarchical model are characterized by three parameters:

• Rl: radius of the time-surface neighborhood;

• τ l: time constant of the exponential kernel;

• Nl: number of cluster centers, i.e. number of of time-surface prototypes.

At each level, Rl, τl and Nl, are multiplied by a factor K, different for each param-
eter:

Rl+1 = KR ·Rl (3.8)
τl+1 = Kτ · τl (3.9)

Nl+1 = KN ·Nl (3.10)

The advantage of a multi-layer model is in the accumulation of information among
each layer. In this way, two entities with very close characteristics can be discerned
by underlying small difference with the repeated clustering [4].
This Hierarchical model for time-surfaces representation is also called Local Mem-
ory Time Surfaces since past events need to be stored in memory elements to be
used in time-surfaces prototypes computations.

3.1.3 Histograms of Averaged Time Surfaces
In [5], the concept of Local Memory Time Surfaces is further improved for imple-
menting a more compact and robust time-surface representation.
The grid of pixels in the camera are divided into cells {Cl}L

l=1 of size KxK. His-
tograms are then extracted from each cell, by adding together the time-surfaces
representing events inside the cell, as reported in equation 3.11:

hC(u, p) =
Ø

ei∈C

Tei
(u, p) (3.11)
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Figure 3.1: Overview of the Hierachical Time-surfaces model. When an input fea-
ture matches a prototype (green boxes) inside the layer, an output is reported.
Each input is convoluted with an exponential decay kernel (red boxes) before en-
tering the next layer (blue boxes). Image adapted from [4].

with hC representing the histogram for cell C, and ei the events inside C.
The output of an event cameras depends also on contrasts, since objects with higher
contrast produce more events than object with lower contrast. In [5], a solution to
avoid dependence on contrast for histograms representing cells is proposed. His-
tograms are indeed normalized according to the number of events |C| occurred in
the spatio-temporal neighborhood used to compute the histogram, as reported in
equation 3.12.

hc(z, p) = 1
|C|

hC(u, p) = 1
|C|

Ø
ei∈C

Tei
(u, p) (3.12)

As result, a stream of events is represented, with the approach used in [5], as a
vector of cell histograms for each polarity p, position u and cells C (3.13).

H(ei) = [hC1 , ...., hCL
]T (3.13)

The descriptor introduced in [5] is referred as HATS, from Histograms of Averaged
Time Surfaces.

3.1.4 Shared Memory Units
As stated in section 3.1.2, past events need to be stored in memory to be accessed
for computation. Since events are asynchronous, memory needs to be accessed
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asynchronously and with low latency in order to retrieve events in the neighbor-
hood needed for the computation of the histogram representing the input event.
In [5] a possible solution to the memory access issue is obtained by using shared
memory units. In particular, in [5] it is noticed that for a neighborhood radius R
equal to the cell width K, events in the same cell share an high amount of neighbor
points used to compute the relative time-surfaces. In this way, it is not necessary
to retrieve past events for all events inside a cell as in the case of a smaller radius.
For this reason, a single memory unit MC stores all the past events for events
inside the relative cell C. With this configuration, when a new event is reported,
events to compute time-surfaces are searched only inside MC , thus reducing access
in memory.

Algorithm 1 HATS pseudo-code. Adapted from [5]
Input: Events E = {ei}I

i=1
Initial Values: hCl

= 0, |Cl| = 0,MCl
= 0 for all l

for i=1,...,I do
Cl = getCell(xi,yi)
Tei

= TimeSurface(ei, MCl
)

hCl
= hCl

+ Tei

MCl
= MCl

t
ei

Cl = Cl + 1
end for
return H = [hCl

/Cl,...,hCl
/Cl]

3.2 Classification Results
The proposed HATS method is born as a feature extractor. Hence, to asses its
contribution to classification performances, in [5] outputs of HATS are used as
features for a linear Support Vector Machine (SVM) classifier. Results of the
SVM are then compared with the results of a Spiking Neural Network, with
H-First [17] and with HOTS [4]. For the features extracted with HOTS, the same
linear SVM approach as in HATS is used. For all methods, a 20% of the training
data is used as a validation set. In this way it is possible to retrain the classifiers
on all the training set to find the best configuration. All the cited approach are
tested on five datasets:

• N-MNIST: collection of handwritten digits divided in 60000 training samples
and 10000 test samples;

• N-Caltech101:images of objects divided in 100 categories plus a beckground;
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Figure 3.2: Overview of HATS architecture. Pixels are grouped in Cells C with
size K x K. When an event ei is generated, the neighbor events are searched inside
the shared local memory MC . In this way a time surface is computed and added
to the correspondent histogram hC . Image adapted from [5].

• CIFAR10-DVS: 10000 frame-based images converted in 10000 event streams;

• MNIST-DVS: 300000 DVS recording of handwritten digit;

• NCARS: collection of objects in urban environments recorded with an ATIS
mounted on a car.

N-MIST and N-Caltech101 are converted from the standard MNIST and Caltech101
datasets by acquiring each image inside the datasets with a moving ATIS [see 2.1.2].
MNIST-DVS and CIFAR10-DVS are created by recording a moving image on a
monitor with a non-moving DVS [5].
The conversion is necessary to transform frame-based images into a stream of events
suitable for event-based classifiers.
NCARS dataset is instead a dataset created by the authors of [5] and it is a first
example of data recording using DVS in a real situation. As reported in [5], HATS
outperforms all the other classification models and with a large margin, as can be
seen in Table 3.1. In [5], performances of the tested classifiers are compared also
in terms of latency and computational time.
Average Computational time is computed as the ratio between the total time re-
quired to extract features on the whole training set and the amount of samples in
the training set.
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N-MNIST N-Caltech101 MNIST-DVS CIFAR10-DVS N-CARS
H-First [17] 71.2 5.4 59,5 7,7 56,1
HOTS [4] 80,8 21,0 80,3 27,1 62,3

SNN 83,7 19,6 82,4 24,5 78,9
HATS [5] 99,1 64,2 98,4 52,4 90,2

Table 3.1: Comparison of classification accuracy (%) on five datasets. Table
adapted from [5].

Latency is instead defined as the time window used to accumulate information in
order to classify a sample.
Results in [5] show how HATS reaches a 20x speed-up factor with respect to the
HOTS and a 40x factor with respect to SNN. For what concern latency, there is

N-CARS Average Time per Sample (ms)
HOTS 157.57
SNN 285.95

HATS 7.28

Table 3.2: Comparison of average time per sample (ms) between HOTS, HATS and
SNN on N-cars dataset. Table adapted [5].

a trade-off between the length of the time window and accuracy: with a narrower
time window, even if latency is reduced, the number of collected information is low
and leads to incorrect classification. In [5], HATS reaches an accuracy of 90,2% on
the N-CARS dataset with a latency of l = 100ms. For latencies lower than 20 ms,
the resulting accuracy goes below 80%.
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Chapter 4

Digital Design

In this section, the main contribution of this thesis will be reported. In particu-
lar, the goal of this thesis is to implement an Hardware Accelerator based on
hyperdimensional computing for image classification, with images captured with
Dynamic Vision Sensors. The objective is also to design an hardware module which
is efficient and which can be implemented in different FPGA platforms. Indeed,
hyperdimensional computing is based on the utilization of words with high dimen-
sionality, around 10000 bits, and for this reason not all FPGA have the necessary
resources to implement an hyperdimensional module. Hence, the hardware design
is configurable, i.e. the parallelism of the words used at each iteration can be spec-
ified by the user.
The proposed classifier was developed in collaboration with Ing. Fabrizio Ottati.
The design of the classifier is divided in two parts: a training phase made in soft-
ware, and a test phase implemented in hardware. The software implementation is
used not only to train hypervectors which represent the classes of the model, but
also for accuracy comparison with the test phase implemented in hardware.
For classification, a set of features is needed to represent the characteristics of im-
ages. Given the results reported in [5], features of input images are extracted using
the HATS model. The HATS feature extractor was reproduced in software by
ing. Fabrizio Ottati.
The HATS module produces as output a series of histograms which represent the
features of images to be classifies, with a single histogram associated to each image.
The design is tested on the N-MNIST dataset, which is a set of images of hand-
written digits [see 3.1.1]. The dataset is divided in 60000 samples for training and
10000 samples for testing, with digits belonging to 10 different classes.
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Figure 4.1: Overview on the implemented HDC classifier.

4.1 Proposed HDC Model Description
4.1.1 Encoding Phase
The HATS feature extractor presented in [5], and reproduced via software by ing.
Fabrizio Ottati, represent samples of the dataset as histograms. In particular,
histograms are organized as follows [Figure 4.2]:

• 2 Polarities, representing the ON and OFF polarity that each event reported
by a DVS can assume [see 3.1.1];

• 49 cells for each polarity. Cells are organized in a matrix of 7x7 cells, referred
in this work as polarity matrix ;

• 25 subcells for each cell. Subcells are arranged in a matrix of 5x5 subcells,
referred in this work as grid of cells.

for a total of 2450 values in each histogram.
During encoding phase, each histogram is mapped into a single hypervector. This

is done at first by encoding a value and its coordinates inside the subcell into an
hypervector; the produced cell hypervector is then combined with other cell hyper-
vectors inside the matrix representing a single polarity; finally, the two hypervectors
representing negative and positive polarity are xored together, thus producing as
output an hypervector which contains information about each feature value and its
position inside the histogram [Algorithm 2].
Each value of the feature is mapped into a Level Hypervector. Level hypervec-
tors are hypervectors which represent the possible values that an input feature can
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Figure 4.2: Overview on features organized as histograms with the HATS [5] method

assume [see 1.3.4]. Level hypervectors must preserve the similarity between values:
two input features with similar values shall be mapped into two level hypervectors
with a small percentage of different bits, whereas two different input values shall be
translated into two orthogonal hypervectors. For this reason, Level Hypervectors
in this project are produced by starting from a single hypervector which represents
the minimum level, called seed hypervector, whose parts are progressively com-
plemented in order to obtain the next levels, see 4.3.2 for further details.
Each level hypervector is then binded to the cell it belongs. As mentioned before,
values in the histogram are organized in matrix of cells. The position inside the
matrix is described by a set of two coordinates (x, y), which represent respectively
the column and the row of the cell to which the input value belongs. An hyper-
vector is associated to each possible values of x and y, for a total of 7 column
hypervectors and 7 row hypervectors for the polarity matrix, and 5 column
hypervectors and 5 row hypervectors for the grid of cells.
In this work, instead of storing all possible position hypervectors inside a mem-
ory [see 1.3.3], they are computed when needed starting from a seed position
hypervectors. Since four coordinates are needed, x and y for the grid of cells
and x and y for polarity matrix, only four orthogonal seed position hypervec-
tors are stored. Those seed position hypervectors represent the first column/row
of each matrix. The next rows and columns are computed by rotating N-times
the proper seed hypervector, with N = index of the row/column [Figure 4.3].
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An hypervector representing a single cell is obtained by accumulating hypervectors

Figure 4.3: Example of a cell encoding. The seed hypervectors representing the
column 0 and the row 0 are rotated respectively by three positions and two positions
in order to obtain the position hypervector related to the column number 3 and
the row number 2. Position hypervectors are then binded together before being
binded with the level hypervector that represents the feature value inside the cell
at position 2x3.

of each subcell inside the grid, and then performing a majority voting. Hypervec-
tors inside the grid of cells are added together through a component-wise addition,
producing as output a non-binary cell hypervector. The cell hypervector is hence-
forth binarized via thresholding: if the values accumulated inside each component
are greater or equal than the number of the accumulated hypervectors, they are
represented with a ’1’; in the opposite case, they are represented with a ’0’. The
same accumulation and thresholding process is repeated to obtain the polarity hy-
pervector.
Once both polarity hypervectors are computed, they are binded together by rotat-
ing the negative polarity hypervector and then xoring it with the positive polarity
hypervector.
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Algorithm 2 Encoding pseudo-code.
Input: histogram h (2x7x7x5x5)
Initial Values: hist_hv = “0”; pol_hv = “0”; cell_hv = “0”; input_hv = “0”;
subcell_hv = “0”; grid_hv = “0”.
for p=0,1 do

for cy=0,...,6 do
for cx=0,...,6 do

for y=0,...,4 do
for x=0,...,4 do

input_hv = vectorize(h[p,cx,cy,x,y])
subcell_hv = input_hv xor rotate(grid_col_seed,x) xor ro-
tate(grid_row_seed,y)
grid_hv = grid_hv + subcell_hv

end for
end for
grid_hv = binarize(grid_hv,25)
cell_hv = grid_hv xor rotate(cell_col_seed,cx) xor ro-
tate(cell_row_seed, cy)
pol_hv = pol_hv + cell_hv

end for
end for
pol_hv = binarize(pol_hv,49)
hist_hv = pol_hv xor totate(hist_hv,p)

end for
return hist_hv = hypervector representing the entire histogram

Algorithm 3 Binarization pseudo-code.
Input: hv = hypervector, n = number of accumulated vectors, D = length of the
hypervector.
for i = 0,....,D-1 do

if hv[i] ≥ n then
bin_hv[i] = ’1’

else
bin_hv[i] = ’0’

end if
end for
return bin_hv = binarized hypervector
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4.1.2 Training Phase

The second step for the classification model is represented by Training. This phase
consists in creating a number of hypervectors equal to the number of possible classes
in which samples from the dataset are divided. These hypervectors are referred as
Class Hypervectors, stored in the associative memory (aM) [see 1.3.3].
A class hypervector shall represent the main characteristics of all hypervectors
related to the samples belonging to that particular class. In order to do this,
the properties of HDC are exploited. As illustrated in section 1.3.2, addition of
hypervectors gives as output a resulting hypervector which is similar to all the
addends. Hence it is possible to create a class hypervector which is similar to all
the hypervectors inside the class it represents by adding those hypervectors. The
operation of adding hypervecctors is also called bundling.
Addition is pointwise, thus all dimension are added independently from each other.
Components inside the result hypervector are however non-binary. For this reason
a binarization process is needed to transform a non-binary class hypervector into
a binary hypervector. Binarization works as in the encoding phase, i.e. through
thresholding.
In conclusion, training consists in encoding an input hypervector and then adding
it to its class hypervector.
Once this process is repeated on the whole training set, class hypervectors are
binarized according to the number of accumulated vectors [Algorithm 4].

Algorithm 4 Training pseudo-code.
Input: histogram h (2x7x7x5x5)
Parameters: L = length of the dataset; C = number of classes.
Initial Values: class_hv[0:C-1] = “0”, accumulated[0:C-1] = 0
for i=0,...,L-1 do

hist_hv = encode(h[i])
class_hv[label] = class_hv[label] + hist_hv
accumulated[label] = accumulated[label] + 1

end for
for i=0,...,C-1 do

class_hv[i]= binarize(class_hv[i], accumulated[i])
end for
return class_hv[0:C-1] = set of class hypervectors
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Figure 4.4: Overview of HD training process. Once a sample from the training set
in encoded into an hypervector, it is added to its corresponding class inside the
Associative Memory.

4.1.3 Inference

Inference is the process in which the classifier assign a class to an input query
hypervector. The performances of a classifier are indeed evaluated by comparing
the number of query hypervector assigned to the correct class with respect to the
total amount of tested hypervectors. The ratio between the number of correct
predictions and the total amount of predictions represent the accuracy of the
model.

accuracy = #correct predictions
#total amount of predictions (4.1)

In the proposed design, once a histogram is mapped into an hypervector, it is com-
pared to each class hypervector inside the associative memory. Being the proposed
HDC model binary, similarity between the query hypervector and class hypervec-
tors is computed using Hamming distance [see 1.3.5].
Durint the Inference phase, the Hamming distance is computed between the query
hypervector and all the class hypervectors. The query hypervector is then assigned
to the class with the minimum distance [Algorithm 5].
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For what concern the hardware implementation of inference, the usage of Ham-
ming distance represents a great advantage with respect to other similarity mea-
surements, as for example cosine similarity, since it is realized by a bit-wise xor
between the query and the class hypervector, together with a counter of ones.
Hence, there is no need for multipliers, which are costly in terms of hardware re-
sources.

Algorithm 5 Inference pseudo-code.
Input: histogram h (2x7x7x5x5)
Parameters: C = number of classes.
Initial Values: distance = 0; min_dist = MAX_VALUE.
hist_hv = encode(h)
for i=0,...,C-1 do

distance = count_ones(hist_hv xor class_hv[i])
if distance ≤ min_dist then

min_dist = distance
predicted_class = class[i]

end if
end for
return predicted_class = class to which the input hypervector most likely
belongs

42



4.2 – Design Choices

Figure 4.5: Overview of HD inference process. Once a sample from the test set
in encoded into an hypervector, it is compared through Hamming distance to each
class hypervector inside the Associative Memory. The query hyprvector is associ-
ated to the class with the minimum Hamming distance.

4.2 Design Choices
When talking about an HDC model, three are the main design choices to be spec-
ified: the dimension D of the hypervectors, the bitwidth of the input data, and
the data representation, i.e. if the components of the hypervectors are binary or
not.
The HDC model proposed in this work is a dense binary model with hypervec-
tors of length D = 8192 and with input data written on 3 bits.
The dimensionality of hypervectors is chosen as the closest power of 2 to the
typical dimensionality of hypervectors, i.e. D = 10000, in order to simplify hard-
ware description.
For what concern the bitwidth of the input data, input values are represented on 3
bits to reduce the usage of unnecessary bits. In addiction, using input data with re-
duced bitwidth leads to a more robust system, as reported in [8] [see 1.2.1]. Hence,
input data can assume all integer values between 0 and 7, extremes included.
As mentioned before, one of the objective of this work is to design an HDC mod-
ule that can be implemented on FPGAs without excessive hardware requirements.
Hence, implementing a design which uses all the 8192 bits of the hypervector can
be inconvenient.
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For this reason, in this work the hardware design is serialized: each hypervector is
not processed in a single step, but it is divided in parts with lower parallelism that
are processed in different steps.
In this way, hardware requirements are reduced and also, by choosing the proper
length of hypervector parts, it is possible to adapt the hardware design to a target
FPGA [see 7].

4.2.1 Serialization
Serialization of the hardware introduces two new parameters: the number of hyper-
vector parts P, and the bitwidth of hypervector parts N. These two parameters are
correlated since N = D/P , i.e. the number of bits in each part of the hypervector
depends on the dimension of the hypervector D and the number of parts P in which
the hypervector is divided.

Figure 4.6: Overview of Hypervector division. The hypervector with dimension D
is divided in parts with dimension N.

With serialization, each phase of the HDC model is repeated P = number of
parts time. This means that encoding is not performed in a single step. Hence, if
in a full parallel configuration an input sample is directly mapped into an hyper-
vector, with a serialized configuration the sample must be read P times in order to
create the P parts of the input hypervector [see 4.1.1]. This implies the necessity
of an input memory which stores each value of the input histogram, since values
are read at each iteration of the encoding phase.
An histogram is made by 2450 values represented on 3-bits, therefore the input
memory is characterized by a depth DM = 4096 and a width W = 3, in order
to store the whole histogram. From now on, the input memory will be referred as
histogram memory.
The histogram memory is organized as follows: rows from 0 to 1224 store values of
the negative polarity matrix, while rows from 2048 to 3272 store values of the pos-
itive polarity matrix. Values are order according to both their coordinates inside
the Matrix and their coordinates inside the grid of cells [Figure 4.7].
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Figure 4.7: Overview on the Histogram Memory organization and addressing. Val-
ues of the input histogram are ordered according to their polarity p, their coordi-
nates inside the cell (cx,cy), and their coordinates inside the subcells (x,y). The
address of a value is formed by the MSB which corresponds to the polarity of the
value (0,1), and by a sequence of bits representing the index of the value inside the
polarity matrix.

As stated before, the implemented design is configurable by the user. This is
done by describing each hardware block in RTL as a generic component. User can
specify the number of parts of the hypervector by running a python code which
writes the chosen parameters inside a constants package which is used for the
hardware implementation.
The design can be configured to process from 8 parts of hypervector with 1024 bits
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each, to 1024 parts of hypervector with 8 bits each. In this work, four of the possible
configurations are tested: 64 parts of hypervector with 128 bits each (64x128); 32
parts of hypervector with 256 bits each (32x256); 16 parts of hypervector with 512
bits each (16x512) and 8 parts of hypervector with 10124 bits each (8x10124).
A comparison in terms of resource requirements, time and power between the four
implementations is reported in chapter 7.

4.2.2 Seed ROMs and Associative Memory

An important role in the encoding phase is played by seed hypervectors. As ex-
plained in section 4.1.1, during the encoding phase, an input value is mapped into
an hypervector and then binded to the hypervectors which represent the position of
the value inside the grid of cells or the polarity matrix. An hypervector is needed to
represent each position. Hence, for the 5x5 grid of cells, 5 hypervectors are needed
to represent rows and 5 hypervectors are needed to represent columns, while for
the 7x7 polarity matrix, 7 hypervectors are needed for the rows and 7 hypervectors
are needed for the columns, for a total of 1225 position hypervectors. Given the
dimension D = 8192 of each hypervector, if all the position hypervectors would be
stored, a total of 1225x8129 = 10035200 bits are deployed, which is a huge number
of bits for just base vectors.
To avoid the usage of excessive bits, position hypervectors are computed starting
from a single hypervector which represent the position 0, i.e. the seed hypervec-
tor [Figure 4.3]. For four coordinates, four seed hypervectors are needed. Seed
hypervectors are random and mutually orthogonal, and since their value is fixed
at the beginning of the algorithm, each of them is stored in a ROM, referred in
this work as seed ROM. Due to serialization, position hypervectors are divided in
parts; therefore each line of the seed ROMs stores a part of the seed hypervector
[Figure 4.8].
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Figure 4.8: A seed hypervector stored in a Seed ROM. Each row of the Seed ROM
stores a part of the seed hypervector.

Since a seed hypervector corresponds to the position hypervector of position
0, other position hypervectors are obtained by rotating the seed hypervector by
a number of bits equal to the position, e.g the seed hypervector is rotated three
times to obtain the position hypervector of position 3 and 6 times to obtain the
position hypervector of position 6. Serialization however introduces an issue in
rotation, since rotating a part of the hypervector is different from rotating the
whole hypervector [Figure 4.9].

Figure 4.9: Example of seed vector rotation. Since the part hypervector does not
store all bits, rotating a part hypervector gives a different result from rotating the
whole hypervector.

The solution to this problem is to store additional bits in each row of the seed
ROM. Those additional bits represent the input bits in case of a full hypervector
rotation. Since the row and column hypervectors for the grid of subcells are rotated
for a maximum of 4 positions, 4 additional bits are inserted at the beginning of
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each row of their respective seed ROMS [Figure 4.10]
For the same reason, since the row and column hypervectors for the polarity matrix
are rotated for a maximum of 6 positions, 6 additional bits are inserted at the
beginning of each row of their ROMS. Given P = number of parts of the hypervector,
4xP additive bits are needed for the seed ROMs related to the grid of subcells,
whereas 6xP additive bits are needed in the case of the polarity matrix.

Figure 4.10: Seed ROMs with additive bits. Starting from row 1, each row store
the last AB bits of the previous hypervector. At the contrary, the row 0 stores the
last AB bits of the last hypervector.

In addition to the four seed ROM used to store each position hypervector, a
fifth ROM is used to store the CiM seed vector. As reported in section 1.3.3,
the Continuous Item Memory (CiM), stores level hypervectors, i.e. hypervectors
which maps the possible values that an input variable can assume. In the design
implemented in this work, data are represented on 3 bits, therefore they can assume
8 possible values. Hence, the CiM should store 8 level hypervectors. As in the case
of position hypervectors, it is however possible to obtain all other level hypervectors
by starting from the level hypervector representing the value 0, referred CiM seed
hypervector. Therefore, there is no need for a memory which stores all the level
hypervectors, but just a seed ROM storing the level hypervector 0, referred as CiM
seed ROM. Details about the process used to obtain a generic level hypevector
from the level hypervector 0 are reported in 4.3.2. Since the CiM seed hypervector
is not rotated, no additional bits are inserted in the rows of the CiM seed ROM.
An other fundamental memory block for an HDC model is represented by the As-
sociative Memory (aM), i.e. the memory which stores all class hypervectors. In
this work, the training phase is executed in software, hence the associative memory

48



4.2 – Design Choices

is updated offline. Therefore, since the hypervectors inside the associative mem-
ory are fixed and known before the start of the hardware operations, the aM is
implemented in hardware as a ROM storing all classes hypervectors. Given the
serialization, each class hypervector is divided in parts, hence the associative mem-
ory ROM is divided in C = number of classes block, with P = number of parts
hypervectors.
The address for the associative memory is then divided in two parts: a tag which
points to the class block, and an offset which points to the part hypervector inside
the block. Since the number of classes for the dataset used in this work is C = 10
classes, the tag of the address has a length of 4bits. The number of bits for the
offset depends on the number of parts.

Figure 4.11: Overview on the implemented associative memory. The aM is divided
in C = number of classes blocks, with P = number of parts hypervectors inside
each block. The address for the associative memory is composed by a tag, which
points to the blocks of the aM, and an offset which points to the part hypervector
inside the block.

49



4 – Digital Design

4.3 Encoder Module

4.3.1 Encoder Building Blocks

The firs block of the Encoder Module is represented by the histogram memory
[Figure 4.7]. The histogram memory is composed by 4096 rows with 3 bits each. As
illustrated in section 4.2.1, only 2450 values of the histogram memory comes from
the input histogram. The other rows are initialized to 0, but they are not used for
encoding.
The address of the histogram memory is divided in two segments: the first segment
(MSBs) represent the polarity of the addressed value, while the remaining bits
indicate the index of the value inside its polarity matrix.
Both the components of the histogram memory address are generated by counters.
The MSBs of the address is generated by a counter referred as polarity counter
which compute how many polarities are processed. The parallelism of the polarity
counter is BPL = ⌈log2NP ⌉ with NP = number of polarities. In this project, only
two polarities are used, hence NP = 2, meaning that BPL = 1 bit.
The second counter, called memory address counter, generates the remaining
bits of the histogram memory address. The parallelism of the memory address
counter is DM = ⌈log2NV ⌉, with NV = number of values for each polarity. Since
for each polarity matrix 1225 values are present, DM = 11 bits. The total number
of bits for the histogram memory address is then BPL + DM = 12 bits.
After the start signal, which indicates that the encoding process has began, input
values are stored inside the histogram memory at each cycle.
When both terminal counts of the polarity counter and the memory address counter
are asserted, the encoder module stops memorizing values and starts the encoding
phase.
Due to serialization, the encoding phase is repeated P times, with P = number
of parts. In order to compute the number of parts already processed, a counter
is employed. This counter, referred as part counter, has parallelism of Pb =
⌈log2P ⌉. Once the part counter asserts its terminal count, the encoding phase is
concluded, meaning that all parts of the histogram hypervector have been sent
to the inference module.
The encoder module contains also five seed ROMs [see 4.2.2].

One of the seed ROMs is used as the input of the CiM generator [see 4.3.2]. This
ROMs is called CiM seed ROM and has depth DPM = P = number of parts, and
width WM = N = lengths of each part hypervector. Outputs of the CiM seed ROM
represent the parts of the level hypervector which maps the 0 value and which is
transformed into the other level hypervectors by the CiM generator.
Two of the seed ROMs, called grid row seed ROM and grid col seed ROM,
store parts of the hypervectors which represent respectively the row 0 and the
column 0 of the grid of subcells.
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Figure 4.12: Overview of the encoder module.Each building block is reported
with its name and parallelism.Different parallelisms are highlighted with differ-
ent colours.

The grid row seed ROM has depth DM = P and width WM = N + Ngrow - 1,
with Ngrow = number of rows in the grid of subcells.
The grid col seed ROM has depth DM = P and width WM = N + Ngcol - 1, with
Ngcol = number of columns in the grid of subcells.
The width of these two memory is different from N because of the presence of the
additive bits [see 4.2.2]. In this project, since the grid of subcells is a square matrix
with 5 columns and 5 rows, Ngcol = Ngrow = 5, i.e. the grid row seed ROM and
the grid col seed ROM have the same size. Outputs of the two grid seed ROMs are
used as inputs for the grid bundler [see 4.3.3].
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The remaining two seed ROMs, called cells row seed ROM and cells col seed
ROM store parts of the seed hypervectors which represent the row 0 and column
0 inside the polarity matrix.
The cells row seed ROM has depth DM = P and width WM = N + Ncrow - 1,
with Ncrow = number of rows in the polarity matrix.
The cells col seed ROM has depth DM = P and width WM = N + Nccol - 1, with
Nccol = number of columns in the polarity matrix.
Also in these two seed ROM, the width is different from N because of the additive
bits. The polarity matrix has 7 columns and 7 rows, hence Nccol = Ncrow = 7,
meaning that the cells row seed ROM and the cells col seed ROM have the same
size. Outputs of the two cells seed ROMs are used as inputs for the cell bundler
[see 4.3.3].
All five seed ROMs are addressed using the output of the part counter. This in
order to use the proper part of seed hypervectors at each iteration.

Figure 4.13: Portion of the encoder timing diagram.State transitions of the grid
bundler and cell bundler are also reported.

4.3.2 CiM Generator
The CiM generator is a block used to map an input value into an hypervector.
In baseline approaches, the vectorization of the input is achieved by mapping the
value to a level hypervector, stored in the Continuous Item Memory (CiM). In
particular, the input value is used as an address for the CiM, so that the output of
the CiM is the level hypervector which represents the input value.
This method is however inconvenient, since it requires a large CiM for an higher
number of possible levels. For this reason, in this project level hypervectors are not
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Figure 4.14: Sequence of encoder operations.

stored inside the CiM, instead they are created when needed by operating on a seed
hypervector. This seed hypervector represent the zero level of the input values.
The seed hypervector is at first divided in NL = number of possible levels
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parts. Then, each other level hypervector can be computed by complementing a
number of parts of the seed hypervector equal to the input value. For example, the
level hypervector 3 is obtained by complementing three parts of the seed hypervec-
tor.
This approach grants a fundamental property of level hypervectors, i.e. that level
hypervectors representing close values are similar while level hypervector repre-
senting opposite values are orthogonal. Indeed, with the proposed approach the
difference between two input values is mapped as the number of different parts
between the corresponding level hypervectors [Figure 4.15].
In hardware, the CiM generator is implemented by xoring the proper part of the

Figure 4.15: Example of two level hypervectors generated by complementing parts
of a seed hypervector, with 6 possible levels.

CiM seed hypervector with a single bit coming from the s-hot LUT.
The s-hot LUT [2] is a LUT which takes an input of Q bits, and gives as output
a stream of 2Q bits where the number of bit set to ’1’ is equal to the input value.
If the input value is equal to s, s consecutive bits, starting from the LSB, of the
s-hot output are equal to ’1’, while the others are set to ’0’. In this work, inputs
of the s-hot LUT are the input data value. Since the input data value are written
on Q = 3 bits, the output of the s-hot LUT is 8 bit wide. A multuplexer with
8 inputs of 1 bit length, a selection signal of three bits and a single bit output is
used to select the proper bit from the output of the s-hot LUT to be sent to the
CiM generator, in order to be xored with the target part of the CiM seed vector
[Figure 4.16]. The selection signal of the multiplexer is obtained by dividing the
output of the part counter by the length of the s-hot LUT output. Indeed, due
to serialization, each bit of the s-hot LUT output is used N = L/P times, with L
= length of the s-hot LUT output, i.e. the number of possible level hypervectors,
and P = number of parts in which the hypervector is divided. The sequence of
operations done in the CiM generator are reported in Algorithm 6.
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Figure 4.16: Overview on the s-hot LUT. For an input data written on 3 bits, the
output is written on 8 bits. The number of bits set to ’1’ in the output is equal to
the value of the input data.

Figure 4.17: Overview on the datapath of the s-hot LUT together with the CiM
generator. Signals with different parallelism are highlighted with different colours.

4.3.3 Cell and Grid Bundler

The function of the Grid Bundler is to bind an hypervector to the hypervectors
representing its coordinates inside its cell in order to create a cell hypervector.
Then, cell hypervectors are accumulated to create an hypervector which represent
the whole matrix of cells.
This operation is repeated two times: at first to create an hypervector representing
the gird of subcells, (grid hypervector), starting from level hypervectors which
are obtained from input values with the CiM generator; then, all the grid hypervec-
tors are binded with their coordinates inside the polarity matrix and added together
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Algorithm 6 CiM generator pseudo-code.
Input: value[2:0]
Parameters: Q = bits of the input; L = 2Q = length of the LUT output; P =
number of parts; N = length of a part of the hypervector.
for i=0,...,P-1 do

CiM_seed_vector = CiM_seed_ROM[i]
out_lut= getSHLUTOut(value)
bit_index = i / L
CiM_out = CiM_seed_vector xor out_lut[bit_index]

end for
return CiM_out[N-1:0]= part of the level hypervector associated to the input
value.

to form the polarity hypervector [see Algorithm 2].
Since the operation to create grid hypervectors and polarities hypervectors are the
same, their are implemented with the same block. To avoid confusion, the first
bundler which takes inputs from the CiM generator and produces a grid hyper-
vector is referred as grid bundler; the second bundler which takes inputs from the
first bundler and produces a polarity hypervector is referred as cell bundler.

The first block of the grid bundler is an input register which stores the output
of the previous block. In particular, in the case of the grid bundler used to obtain
the grid hypervector, the input comes from the CiM generator, whilst in the case
of the grid bundler used for the cell hypervector, the input came from the first grid
bundler. The parallelism of this register is N = D/P, where D = 8192 bits, i.e. the
dimension of the hypervector, and P = number of parts introduced by serialization.
Also two shifter registers are present at the input. They store the output of the
seed ROMs which contain the position hypervectors related to the column index,
in case of the col seed ROM, and the row index in case of the row seed ROM
[see 4.2.2].
Shift registers are used to rotate the seed vector in order to obtain the proper po-
sition hyervector [see 4.1.1]. The parallelism of the shift register is NS = N + AB,
where AB are the additive bit needed to obtain a rotation of the part of the seed
hypervector consistent to the rotation of the whole seed hypervector [see 4.2.2].
However, only the first N bits of the output of the shift registers are used. This in
order to perform a bitwsise operation between the output of the two shift registers
and the output of the input register, thus producing the subcell hypervector, for
grid bundler, or the cell hypervector for the cell bundler.

To produce the grid hypervector, or the polarity hypervector, all the subcell
hypervectors, or the cell hypervectors, are added together and then binarized by
thresholding. In hardware, this is implemented using Up/Down Counters (U/D
counter). In particular, each bit of a subcell hypervector, or cell hypervector, is
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Figure 4.18: Overview on the datapath of the Grid/Cell Bundler. Signals with
different parallelism are highlighted with different colours.

used as the up/down signal of the U/D counter. If the bit of the hypervector is ’0’,
the value inside the counter is reduced by a factor -1, whilst if the bit is ’1’, the value
of the counter is increased by 1. For an hypervector with N dimensions, N U/D
counters are needed, one associated to each dimension. Using the U/D counter it
is possible to know for each dimension if the number of ’1’-bits in the accumulated
hypervectors is higher than the number of ’0’-bits. Indeed, if after accumulating all
hypervectors the value inside the U/D counter is positive, i.e. the MSB is ’0’, there
is a majority of ’1’ in that dimension, otherwise if the value is negative, MSB equal
to ’1’, there is a majority of ’0’. Since data inside the U/D counters can be positive
or negative, they are represented in complement two. Hence, the parallelism of the
U/D counters is U = ⌈log2(Nrow ·Ncol)⌉ + 1, where Nrow and Ncol are respectively
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Algorithm 7 Grid/Cell bundler pseudo-code.
Input: input_hv[N-1:0]
Parameters: N = bits of the part hypervector; Nc = number of column; Nr =
number of row; P = number of parts.
for i=0,...,P-1 do

row_hv = row_seed_ROM[P]; col_hv = col_seed_ROM[P].
for y=0,...,Nr do

col_hv = col_seed_ROM[P]
row_hv = rotate(row_hv,y)
for x=0,...,Nc do

col_hv = rotate(col_hv,x)
subcell_hv = col_hv xor row_hv xor input_hv
grid_hv = grid_hv + subcell_hv

end for
end for
grid_hv_out = binarize(grid_hv)

end for
return grid_hv_out = part of the hypervector which encode the whole grid/-
matrix.

the number of rows and columns of the matrix, therefore the result of their product
corresponds to the number of hypervectors inside the matrix, i.e. the number of
accumulated hypervectors. For the grid bundler, Nrow = Ncol = 5, hence U = 6,
while for the cell bundler Nrow = Ncol = 7, hence U = 7.
Once all hypervectors are accumulated with the U/D counter, the output hyper-
vector is obtained by complementing the signal bit of the U/D counters for each
dimension.
The output hypervector is then stored in the output register.
Two additional counters are used to indicate the column and the row of the input
vector. Once the terminal counts of both counters are asserted, all hypervectors
inside the grid of subcells or polarity matrix have been accumulated.

4.3.4 Polarity Bundler
The polarity bundler is used to bind together the two polarity hypervectors com-
ing from the cell bunlder. In this way, the final hypervector which encode the whole
histogram is obtained. This hypervector is referred as histogram hypervector.
The operations of the polarity bundler are divided in two phases. In the first phase,
all the part hypervector of the first polarity vector are stored in a set of shifter reg-
isters with parallel inputs. In the second phase, the previously stored parts of
polarity hypervector are shifted by one position and then progressively xored with
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the part of the second polarity hypervector. A part counter, is used to count how
many parts were processed for each polarity. A second counter, called polarity
counter, indicates how many polarity were encoded. The parallelism of the part
counter is Pb = ⌈log2P ⌉, with P = number of parts, while the parallelism of the
polarity counter is BPL = ⌈log2NP ⌉, with NP = number of polarities. Since two
polarities are encoded, NP = 2 and BPL = 1.
As shown in Figure 4.19, the first block of the polarity bundler is an input register

Figure 4.19: Overview on the datapath of the polarity bundler. Signals with dif-
ferent parallelism are highlighted with different colours

which stores the part of the polarity hypervector coming from the cell bundler. A
multiplexer is used to select which is the input of the set of shifter register between
the input hypervector, or the product of the xor between the input hypervector
and the respective hypervector already stored.
The output register is used to store the part of the final histogram hypervector
presented at the input of the inference module.

59



4 – Digital Design

Algorithm 8 Polarity bundler pseudo-code.
Input: input_hv[N-1:0]
Parameters: N = bits of the part hypervector; P = number of parts; NP =
number of polarities.
for i=0,...,NP-1 do

if i > 0 then
shift_reg_hvs[P-1:0] = rotate(shift_reg_hvs[P-1:0],1)

end if
for p=0,...,P-1 do

pol_part_hv = shift_reg_hvs[P-1]
shift_reg_hvs[P-1:1] ← shift_reg_hvs[P-2:0]
if i=0 then

shift_reg_hvs[0] = input_hv
else

shift_reg_hvs[0] = input_hv xor pol_part_hv
end if
if i=NP-1 then

pol_data_out = shift_reg_hvs[0]
end if

end for
end for
return pol_data_out = part of the hypervector which encode the whole his-
togram.
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4.4 Inference Module

4.4.1 Inference Module Design

In standard conditions where all dimensions of an hypervector are processed to-
gether, inference is performed in a single phase, by comparing the query hyper-
vector to all the class hypervectors inside the associative memory. Similarity
between query and class hypervectors is computed using Hamming distance.
In this project, however, the whole HDC model is serialized, hence hypervectors
are divided in parts. This means that it is not possible to assign a class to an
hypervector by just comparing one of its part to one part of the class hypervectors.
Hence, operations of the inference module are divided in two phases: in a first
phase, the distances between each part of the query hypervector and the corre-
spondent part of the classes hypervector are accumulated; then in the last phase,
all the accumulated distances are compared in order to find the minimum distance,
and therefore the class to which assign the input hypervector. In the first step of the
inference execution, differences between the query hypervector and the class hyper-
vectors are evaluated. Since hypervectors are divided in parts, due to serialization,
before obtaining the real difference between two hypervectors, the difference be-
tween each part processed at each iteration of the inference must be accumulated.
For this reason, a second memory, called difference memory is introduced, along-
side the associative memory, to store the differences computed at each iteration of
the serialized inference. Indeed, at each iteration of the serialized inference a part
of the query hypervector is sent by the encoder to the inference block. This part
of the query hypervector is then compared with the respective parts of the class
hypervectors, by evaluating the distance. The distance counts for the number of
different bits, and it is implemented in hardware by using a counter of ones which
input is the xor between the two compared vectors.
After being computed, each distance is accumulated in the proper row of the dis-
tance memory. After each parts of the input query hypervector are processed, the
accumulated distances are sent to the comparator block, which select the minimum
distance and the related class.
In hardware, the distance memory is address by the tag counter, i.e. a counter
which output represents the tag of a class in the associative memory. Since the
dataset in this project is composed by 10 classes, the parallelism of the tag counter
is TB = ⌈log210⌉ = 4 bits.
The tag counter is also used to address the associative memory together with the
part counter. Indeed, the tag counter points to the class blocks inside thee asso-
ciative memory, while the part counter works like an offset that points to the part
of the class hypervector inside the class block [Figure 4.11].
Once a part of the class hypervector is read, it is xored with the input part of the
query hypervector. The output of the xor is sent to a counter of ones, which gives
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as a result the partial distance between the two vectors. In the first iteration of the
inference, i.e. for the first part, the partial distance is directly stored in the differ-
ence memory location pointed by the tag counter. For the following iterations, the
partial distance is added to the difference previously stored in the same memory
location.
The input of the distance memory is selected using a multiplexer, which output

Figure 4.20: Overview on the Inference Module datapath. Signals with different
parallelism are highlighted with different colours.

corresponds to the output of the counter of ones for the first iteration, and to the
result of the addition between the new partial distance and the previous partial
distance for the other iterations.
Since the total dimension of the hypervectors is D = 8192, two hypervector can
differ for 8192 bits. Hence the total difference, and also the partial distance for
computations, are represented in hardware with DMB = ⌈log28192⌉+ 1 = 14 bits.
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After all differences between all parts of the query hypervector and all parts of all
classes are computed, the comparison process starts.
The module responsible for comaprison is called comparator. It takes as inputs
the output of the tag counter, which represents the tag associated to a class, and
the distance stored in the distance memory location pointed by the tag counter
output. At each iteration, the input distance is compared to the value stored in the
internal register (result register) of the comparator; if the input distance is lower
than the previously stored difference it is stored in the result register, together with
the tag output which is stored in the tag register. Once the tag counter asserts
the terminal count, the comparison process is terminated, and the values stored in
the tag register and the result register are presented in output respectively as the
inferred class and its relative minimum distance.

Figure 4.21: Overview on the datapath of the comparator componet of the inference
module. Signals with different parallelism are highlighted with different colours.
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Algorithm 9 Inference pseudo-code.
Input: query_hv[N-1:0]
Initial conditions: min_dist = MAX_VALUE
Parameters: N = bits of the part hypervector; C = number of classes; P =
number of parts.
for i=0,...,P-1 do

for c=0,...,C-1 do
bind_hv = query_hv xor class_hv[c][i]
distance = countOnes(bind_hv)
if i=0 then

dist_mem[c] = distance
else

dist_mem[c] = dist_mem[c] + distance
end if

end for
end for
for c=0,...,C-1 do

if dist_mem[c] < min_dist then
min_dist = dist_mem
class_tag = c

end if
end for
return class_tag = inferred class; min_dist = distance between the query
hypervector and the associated class

Operations of the encoder module and the inference module are pipelined. In-
deed, once the encoder sends the encoded part of the histogram vector to the
inference module, it restarts its operations. In this way, while the inference module
is computing and accumulating the distances between the received hypervector and
the stored class hypervectors, the encoder processes the next part of the hypervec-
tor. Once the encoder have processed all parts of the histogram hypervector, it
waits until the inference module concludes the distance comparison and gives the
output results. After inference results are are given, the encoder can restart its
operations.
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Figure 4.22: Scheduling of operations of the encoder and the inference modules.
While the inference module computes and accumulates the distances related to a
part hypervector, the encoder is operating on the next part hypervector.

4.4.2 Inference Results
In this project, four possible configurations of the design are tested: the first con-
figuration divides hypervectors in 64 parts with 128 bits each(64x128); the second
and the third configurations divide hypervectors respectively in 32 parts with 256
bits each (32x256) and 16 parts with 512 bits (16x512); the fourth and last config-
uration uses 8 parts of the hypervector with 1024 bits each (8x1024).
The firs test on the four design is done using the ModelSim Simulator. The test used
for the simulation comes from the N-MNIST dataset [see 3.2]. All the four im-
plemented design achieve on the 10000 samples of the test set an accuracy of 83%,
which is coherent with the result of the software implementation without retraining.
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Chapter 5

The proFPGA system

The proFPGA quad V7 system is a scalable and modular prototyping solution
for multiple FPGAs [19].
The system architecture is modular, i.e. it is implemented using a set of building
blocks of different typologies. A block can be a motherboard, a FPGA, a memory
or a cable [20].
Remote system configuration, automatic board detection, automatic I/O voltage

Figure 5.1: Top view of the proFPGA system. Image taken from [6].

settings and safety mechanism are some examples of the features provided by the
proFPGA prototyping system [6]. Communication between the implemented de-
sign inside proFPGA and the workstation is done using the Module Message
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Interface 64 [see 6].
The first part of this chapter illustrates the used device among all the possible
module that proFPGA can support.
Then, a brief explanation on how to create and how to use the configuration file is
reported.
Finally, in the last part the work-flow followed to set-up and run the proposed de-
sign on the FPGA is presented.

5.1 ProFPGA Devices
5.1.1 Motherboard
The motherboard represents the infrastructure of the proFPGA system.
Features provided by the Motherboard are [7]:

Figure 5.2: ProFPGA Motherboard.

• Mechanical support: the Motherboard is used as the base structure on which
FPGA modules are mounted;

• Clock generation and distribution: up to 8 clocks can be generated;

• Power Management and Protection: the system sustain up to 1.3 kW;

• JTAG chain: for Xilinx and Altera Modules debugging;

• MMI-64 communication access: for data transmission between workstation
and proFPGA;
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• others.

Modules mounted on the motherboard are organized following a coordinate system
[Figure 5.3]. Coordinates are indicated with two letters and a number. The first
letter of the coordinate code is a T, if the module is in the top side, or a B if the
module is in the bottom side.
The second letter goes from A to D and indicates the column of the module.
The number, from 1 to 4, represents the rows of the coordinate system.

Figure 5.3: Motherboard coordinate system.

The proFPGA system used in this project has two available FPGA modules: the
Virtex 7 2000 T FPGA and the Zynq z100 FPGA. For tests, only the Virtex-7
module will be used.
The Virtex-7 requires four connectors, in this case: TA1, TA2, TB1, TB2. Ac-
cording to proFPGA notation, a module is named after the top left connector.
Hence, the Virtex 7 will be referred as fpga_module_ta1. For further informa-
tion about the motherboard see the relative chapter in [19].
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5.1.2 Xilinx Virtex 7 2000T
The design proposed in this project is tested on the Xilinx Virtex 7 2000T FPGA.
The full part name to be inserted in a Vivado project is “xc7v2000tflg1925-2”.
In Virtex series 7, Configurable Logic Blocks are made by two SLICEs, which
contains four 6-inputs LUT and eight flip-flop each [Figure 5.4].
Available resources on Xilinx Virtex 7 2000T are reported in Table 7.1.

Figure 5.4: Configurable logic block inside the Virtex 7 FPGA. Image taken from
[6].

5.2 ProFPGA Builder and Configuration File
The proFPGA Builder is one of the software tools provived by proFPGA along-
side the hardware.
The builder is only used to create the configuration file which is needed to set up
the FPGA and load the bitstream. To launch the builder, open a terminal and
type the command:

profpga_builder
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A complete description on the required steps to create a project and a configuration
file are reported in [21]. In general, the steps to follow with the proFPGA builder
are:

• Specify the location of the project;

• Specify the ip address of the system to connect, in this case http://172.16.0.230;

• Specify the location of the board description files;

• Specify the FPGA image file for each used FPGA.

Once all steps are executed correctly, the builder produces the configuration file.
The configuration file used in this project is reported below:

name = "profpga";
profpga_debug = 0;
debug = 0;
backend = "tcp";
backends :
{

tcp :
{

ipaddr = "172.16.0.230";
port = 0xD11D;

};
pcie :
{

device = "/dev/mmi64pcie0";
};

};
system_configuration :
{

sysconfig_match = "FIT";
fpga_speedgrade_match = "FIT";
motherboard_1 :
{

type = "MB-4M-R2";
fpga_module_ta1 :
{

type = "FM-XC7V2000T-R2";
speed_grade = 2;
bitstream = "user_mmi64.bit";
v_io_ta1 = "AUTO";

71



5 – The proFPGA system

v_io_ta2 = "AUTO";
v_io_tb1 = "AUTO";
v_io_tb2 = "AUTO";
v_io_ba1 = "AUTO";
v_io_ba2 = "AUTO";
v_io_bb1 = "AUTO";
v_io_bb2 = "AUTO";

};
fpga_module_tc1 :
{

type = "FM-XC7Z100-R1";
speed_grade = 1;
v_io_ta1 = "AUTO";
v_io_ta2 = "AUTO";
v_io_ba1 = "AUTO";
v_io_ba2 = "AUTO";
boot_mode = "JTAG";
usb_mode = "DEVICE";
usb_id = "UNUSED";
ps_npor = "SWITCH";
ps_nsrst = "SWITCH";
geth_config2 = "GND";
geth_config3 = "LED1";

};
clock_configuration :
{

clk_0 :
{

source = "LOCAL";
};
clk_1 :
{

source = "125MHz";
multiply = 5;
divide = 125;

};
clk_2 :
{

source = "125MHz";
multiply = 5;
divide = 125;

};
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clk_3 :
{

source = "125MHz";
multiply = 5;
divide = 125;

};
clk_4 :
{

source = "125MHz";
multiply = 5;
divide = 125;

};
};
sync_configuration :
{

sync_0 :
{

source = "GENERATOR";
};
sync_1 :
{

source = "GENERATOR";
};
sync_2 :
{

source = "GENERATOR";
};
sync_3 :
{

source = "GENERATOR";
};
sync_4 :
{

source = "GENERATOR";
};

};
};
x_board_list = ( );

};

In the reported configuration file, it is possible to specify which type of connection
is used. In particular, line:
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backend = "tcp";

indicates that the Ethernet connection is selected. It is possible to switch to the
PCIe connection by writing:

backend = "pcie";

As can be seen in the file, five clocks are generated. The first clock, i.e clk_0, is
the clock assigned to the HDL module of the proFPGA system. The frequency of
clk_0 is fixed at 100 MHz. For what concern the remaining clocks, from clk_1
to clk_4, their frequency is user defined. Indeed, in the configuration file three
parameters for each clock are reported:

• source : the staring frequency;

• multiply : multiplication factor;

• divide : value which divides the product between the source and the multipli-
cation factor.

Taken clk_1 as example, its frequency can be computed starting from the values
in the configuration file as follows:

fclk1 = source ·multiply

divide
= 125MHz · 5

125 = 5MHz (5.1)

In this work, only clk_0 will be used as a clock, hence there is no interest in the
frequency of the other clocks.
In order to load the bitstream on the FPGA, the configuration file is launched with
the command:

profpga_run <configuration_file_name > --up

This command will turn ON the FPGA. To power down the FPGA run the com-
mand:

profpga_run <configuration_file_name > --down

.

5.3 Work-Flow
5.3.1 Directory Organization
Files of the project are organized as in Figure 5.5. The directory organization
is inspired by the demo_designs [22] reported as examples from ProDesign [6].
Defined as $WORK the path of the project directory, what follows is a description
of the content of the directory.

74



5.3 – Work-Flow

Figure 5.5: Work Directory Organization.

• $WORK/rtl/user_design/*: Includes all the VHDL (or Verilog) files of
the user design. The presence of testbenches in this directory should be
avoided, since testbenches are not synthesized.

• $WORK/rtl/user_mmi64.vhd : HDL of the module from which the bit-
stream is generated. It contains the components of the MMI64 interface and
the user design top entity.User can modify this file only in the blocks de-
limited with the -START USER SPACE- and -END USER SPACE-
keywords.

• $WORK/test/main.c: C program used to the define the operations of the
MMI64 interface.

• $WORK/test/compile_me.sh: script that compiles the main.c program
and creates the usertest executable. The script must be launched after chang-
ing the main.c file and before turning up the FPGA.

• $WORK/test/profpga.cfg: Configuration file which sets up the FPGA and
loads the bitstream. It is described in 5.2.

• $WORK/test/user_mmi64.bit: Bitstream generated from the
user_mmi64.vhd file.

• $WORK/test/usertest: Executable of the main.c file, created with the
compile_me.sh script.

• $WORK/vivado/vivado.tcl: Script used to generate the synthesized netlist,
i.e the user_mmi64_synthesized.dcp inside the $WORK/vivado/out-
put folder
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• $WORK/vivado/output/*: Folder that contains the outputs generated by
running the vivado.tcl script.

• $WORK/vivado/report/*: Folder that contains the reports generated by
running the vivado.tcl script.

• $WORK/vivado/synthesize_me.sh: script which launches the vivado.tcl
script to perform synthesis.

• $WORK/vivado/user_design.tcl: contains the name of the user defined
components. It is used by vivado.tcl script to perform synthesis. User must
specify the name of each component of the implemented design inside this file.

• $WORK/vivado/constraints/user_mmi64.xdc File with clock constaints
and PIN mappings. It must not be modified.

5.3.2 Steps for Project Implementation
In this section, all the steps required to synthesize, load and run the project on the
proFPGA system will be reported.

1. Copy the VHDL (or Verilog) files of all components of the design in the
$WORK/rtl/user_design folder.

2. Modify the $WORK/rtl/user_mmi64.vhd file by inserting the top entity
of the design and all the needed signals.

3. Move in the $WORK/vivado directory and write the names of all HDL
components in the user_design.tcl script.

4. Launch the synthesize_me.sh script by typing:
./ synthesize_me .sh vhdl

If vhdl is the target language. If the target language is Verilog, run the same
command by changing vhdl with verilog. If the synthesis is correctly ex-
ecuted, the user_mmi64_synthesized.dcp file will be generated in the
reports folder. Otherwise, errors will be reported.

5. copy user_mmi64_synthesized.dcp in the $WORK/test folder.

6. Move in $WORK/test folder.

7. Edit the main.c file and compile it using the compile_me.sh script, which
is launched by typing:
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./ compile_me .sh

If compilation succeeded, the usertest executable is created.

8. Turn ON the FPGA and load the bitstream by typing:
profpga_run profpga .cfg --up

This command can be also used to reboot the FPGA.

9. Start the emulation by running:
./ usertest profpga .cfg

10. Once the emulation is done, switch off the motherboard by typing:
profpga_run profpga .cfg --down
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Chapter 6

Interface with proFPGA

6.1 Module Message Interface 64

6.1.1 Introduction on MMI64

Figure 6.1: Overview of the MMI64 communication system

The Module Message Interface 64 (MMI64) is a module provided by proF-
PGA system, which allows the communication between the user workstation and
the design inside the FPGA.
Communication can happen through two types of connectors: the PCIe and the
Ethernet.
The PCIe is the fastest connector, since it reaches a data exchange rate of 3.2 Gbps,
however it is less reliable.
The Ethernet connectors is slower, with a maximum data exchange rate of 100
Mbps, but it is more reliable than the PCIe.
For this reason, in this project the Ethernet will be used as the communication
standard.
User can select which connector too use by editing the configuration file [see 5.2].
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The MMI64 module is implemented in hardware as a register file. The user can de-
fine the number of registers and their parallelism by editing the user_mmi64.vhd
file [see 5.3.1].
Data are read or written in the register file using the proper functions in the C
program.

6.1.2 C Program
The main.c file [see 5.3.1], is the file used to exchange data between the workstation
and the FPGA.
In order to read or write data, the proper MMI64 functions should be used. Since
datawidth can be chosen between 8, 16, 32 and 64 bits, there are four functions for
data reading and four functions for data writing, one for each possible datawidth.
Those functions are:

mmi64_regif_write_8_ack();
mmi64_regif_write_16_ack();
mmi64_regif_write_32_ack();
mmi64_regif_write_64_ack();

to write data in registers, and

mmi64_regif_read_8();
mmi64_regif_read_16();
mmi64_regif_read_32();
mmi64_regif_read_64();

to read data from registers. Each function requires four parameters: the name of
the module, the initial address of the register file, the number of written (read)
registers and the pointer to the variable to be written (read).
An example on how these function are used is reported below:
// Array of 8 uint32_t data , corresponding to the

instantiated
// register file
uint32_t wdata [8];
// Reading variable
uint32_t rdata32 ;
// You can write one to all the words of the register

file
wdata [0] = 10;
wdata [1] = 5;
wdata [2] = 9;
// Write 3 words (10 ,5 and 9), from address 0 till third
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// register
status = mmi64_regif_write_32_ack (user_module ,0,3, wdata32

);
CHECK(status);
wdata [0] = 666;
// Write the value 666 in the address 5 (the sixth

register )
status = mmi64_regif_write_32_ack (user_module ,5,1, wdata32

);
CHECK(status);
// Read 1 word at address 3
status = mmi64_regif_read_32 (user_module ,3,1,& rdata32 );
CHECK(status);

See [23] for more information about the MMI64 C program.

6.1.3 HDL Module
As can be seen in FIgure 6.2, the MMI64 module is made of 5 main blocks.
The profpga_clocksync module works as a PLL. It takes a clock input and mul-

Figure 6.2: Overview on MMI64 datapath. Image adapted from [7].

tiplies and divides its frequency according to the values written in the configuration
file [see 5.2]. Since the system can provide up to 4 clocks, four profpga_clocksync
modules are present.
Profpga_ctrl allows the communication between the C program and the user
module.
The mmi64_m_regif module represents the interface with the MMI64 register
file, i.e reg_FF. Through mmi64_m_regif it is possible to deine the number of
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register and the data width of the register file.
A portion of the user_mmi64.vhd file used in this project is reported below.

-- --------------------USER SPACE ----------------------
reg_accept <= '1';
REG_FF : process ( mmi64_clk )
begin
if rising_edge ( mmi64_clk ) then
-- handle register transfers
if reg_en ='1' and reg_accept ='1' then

if reg_we ='1' then -- write to registers
reg_rvalid <= '0';
reg_rdata <= (others =>'0');
case reg_addr is

when "0001" => start <= std_logic ( reg_wdata (0));
input_write_tx <= std_logic ( reg_wdata (1));
ack_rec_tx <= std_logic ( reg_wdata (2));
data_in <= unsigned ( reg_wdata (Q+2 downto3 ));
output_ack_tx <= std_logic ( reg_wdata (Q+3));

when others => start <= '0';
end case;

else -- read from registers
reg_rvalid <= '1';

case reg_addr is
when "0000" =>

reg_rdata (0) <= std_ulogic ( wait_start_rx );
reg_rdata (1) <= std_ulogic ( wait_input_rx );
reg_rdata (2) <= std_ulogic ( input_ack_rx );

when others => reg_rdata (CTB -1 downto 0) <= (
others => '0');

end case;
end if;

else -- no transfer or not accepted
reg_rvalid <= '0';
reg_rdata <= (others =>'0');

end if;
-- reset values

if mmi64_reset ='1' then
reg_rvalid <= '0';
reg_rdata <= (others =>'0');
data_in <= (others =>'0');
start <= '0';

end if;

82



6.2 – The Handshake Protocol

end if;
end process REG_FF;
-- ------------------END USER SPACE --------------------

6.2 The Handshake Protocol
An important role in data transmission is played by transmission protocols.
They are needed to ensure that the wanted data arrive at the wanted time.
Protocols become crucial when the communicating entities do not share the same
clock, hence they work at different frequencies.
This last case happens when connecting the workstation to the design inside the
FPGA using Ethernet connector. The implemented design uses a clock with a
frequency f = 100MHz, while the Ethernet connectors works with a variable fre-
quency which depends on the environment.
For this reason, the implementation of an handshake protocol is needed.
In particular, the implemented protocol is a 4-bit handshake, used both for inputs
and outputs, Two additive bits are used to make the algorithm start.
At the input, the handshake protocol is used to write data from the PC to input
histogram memory [see 4.2.1] of the implemented design. The handshake is re-
peated for each input value [Figure 6.3].

Figure 6.3: Input handshake timing diagram.

At the output, the handshake protocol is used to write the inferred class and its
relative distance on the PC. In this case, the handshake is repeated a single time,
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since the class and the distance are sent together [Figure 6.4].

Figure 6.4: Output handshake timing diagram.

In the ideal case, i.e. if the handshake is performed with the minimum number of
clock cycles, 6 clock cycles are needed to write a single value. Hence, the handshake
introduces an overhead of 5 clock cycles with respect to the implementation without
protocol, in which a data is written in a single cycle. However, the last case is an
optimistic implementation. Indeed, when connecting two different blocks is always
good practice to introduce a protocol for data exchange.
Figure 6.5 reports the flow of the handshake. In the handshake, a total of 8 signals
are involved:

• wait_start_rx: transmitted from the FPGA. Signal which indicates that
the design is ready to start the algorithm. It is asserted at the beginning
of the algorithm and it is deasserted when the start signal is sent from the
workstation.

• start: sent from the workstation. Signal which starts the algorithm. It is
asserted when the wait_start_rx signal is received, and deasserted when the
wait_input_rx signal is received.

• wait_input_rx transmitted from the FPGA. Signal which indicates that the
design is waiting for an input to be written in the memory. It is asserted when
the start signal is received, and deasserted when the input_write_tx signal is
received.

• input_write_tx transmitted from the workstation. Signal which indicates
that a valid data is sent to the memory of the design. It is asserted when the
wait_input_rx is received, and deasserted when the input_ack_rx signal is
received.
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• input_ack_rx transmitted from the FPGA. Signal which indicates that the
data transmitted by the workstation was received. It is asserted when the
input_write_tx signal is received, and deasserted when the ack_rec_tx signal
is received.

• ack_rec_tx transmitted from the workstation. Signal which inidicates that
the workstation received the acknowledges signal. It is asserted when the
input_ack_rx is received, and deasserted when the inference_done signal is
received.

• inference_done transmitted from the FPGA. It is asserted when the out-
put of the design is valid. It is deasserted when the output_ack_tx signal is
received.

• ouptut_ack_tx transmitted from the workstation. Signal which indicates
that the workstation received the output of the FPGA. It is asserted when
the inference_done signal is received, and deasserted when the wait_start_rx
signal is received

Figure 6.5: Flow of the handshake.
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6.3 Results from FPGA Implementation
All the four proposed configuration for the HDC classifier were tested on the Virtex
7 2000T FPGA mounted on the proFPGA system. Thanks to the handshake pro-
tocol, data were correctly transmitted to the FPGA. Inference results are coherent
with the simulation on ModelSim and with the software emulation. In particular,
the sequence of predicted classes and their relative minimum distances are the same
for all the three types of tests. The design held an accuracy of acc = 83% for all
the configurations on the N-MNIST dataset.
An issue related to the implementation on FPGA is the time required to perform
the test. Data transmission using the MMI64 interface adds a large time overhead.
Indeed, for the 64x128 implementation, around 7.6s for sample are needed to trans-
mit all data and receiving results. For this reason, it was necessary to understand
how long it takes for each design to give an output without considering the time
overhead introduced by communication.
This measurement is done by implementing a counter on each design which counts
how many cycles are required from the moment when all the input data were trans-
mitted and the moment when the output is transmitted from the FPGA. Hence,
cycles required for the input and the output handshake are not counted.
The number of required cycles, and the relative elapsed time computed with a clock
period of 10 ns, are reported in Table 6.1.

From what can be seen in Table 6.1, the effective required time for the 64x128

Configuration Required Cycles Elapsed Time (ms)
64x128 358474 3.6
32x256 179274 1.8
16x512 89674 0.9
8x1024 44874 0.45

Table 6.1: Required cycles and elapsed time for a single sample.

configuration is 2000x lower with respect to the total required time considering data
transmission by Ethernet connector. More on timing results is reported in 7.3.
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Results

7.1 Setup

In this chapter, measurements in term of resources utilization, timing and power
will be reported.
Measurements are obtained for all the four proposed configurations through the
Xilinx Vivado software. The target FPGA used for the vivado project is the
Virtex 7 2000T FPGA. The complete FPGA name used in Vivado software is
xc7v2000tflg1925-2.
To obtain more accurate results during implementation using Vivado software, a
clock constraint should be assigned to the project. In order to have all the four
design using the same clock frequency, a period of T = 10 ns was chosen for the
constrained clock, for a frequency of 100 MHz.
In order to test the possibility of implementing the proposed design also on smaller
FPGAs, all the four configurations were tested on FPGA from four different fam-
ilies. In particular, two FPGAs per family were tesetd: one with the minimum
number of resources and one with the maximum number of resources. The tested
FPGA families are, in order of capacity: Spartan 7, Artix 7, Kintex 7 and Virtex
7.
A full parallel version of the hardware accelerator is implemented as a reference for
utilization and timing measurements.
Power results are extracted using back annotation. The design are simulated with
Vivado Simulator, and from the simulation a SAIF file is generated. The Switch-
ing Activity Interchange Format (SAIF) is a file which annotates the switching
activities of the implemented netlist. Using the SAIF file, it is possible to obtain a
more accurate power estimation.
The script to run the simulation, write the SAIF file and extract power results was
provided by ing. Fabrizio Ottati.
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7.2 Utilization

7.2.1 Virtex 7 2000T

The utilization results taken as reference come from the implementation of the four
configurations of the proposed design on the Virtex 7 2000T FPGA.
The total amount of resources in the target FPGA are reported in Table 7.1. Table
7.2 reports the number of used resources for all four configurations.

LUT REGs BRAM DSP I/O
1221600 2443200 1292 2160 1200

Table 7.1: Virtex 7 2000T resources

Configuration LUT REGs BRAM DSP I/O
n° % n° % n° % n° % n° %

64x128 8061 0.66 11590 0.47 14.5 1.12 0 0 47 3.9
32x256 13793 1.13 15088 0.62 20.5 1.59 0 0 47 3.9
16x512 22529 1.84 24421 1 0.5 0.04 0 0 47 3.9
8x1024 41417 3.39 40589 1.66 0.5 0.04 0 0 47 3.9

Table 7.2: Number of used resources for the implementation of the four configura-
tions on the Virtex 7 2000T FPGA.

As can be seen, the number of used resources is very limited, implying that the
proposed HDC accelerator does not require a large FPGA to be implemented [Fig-
ure 7.1]. The number of I/O pin used is the same for each configuration, since the
parallelism of input and output signals does not change. In addition, the percent-
age of used DSPs is 0, since the accelerator does not perform complex arithmetic
operations.
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(a) 64x128 configuration (b) 32x256 configuration

(c) 16x512 configuration (d) 8x1024 configuration

Figure 7.1: Area of the HDC module wwith respect to the total area of the Virtex
7 2000T FPGA.

For what concern BRAM utilization, in the 16x512 and the 8x1024 configuration
the percentage is close to 0 because of timing constraints. Indeed, in order to sat-
isfy timing requirements, the Vivado software maps the memory used in the 16x512
and 8x1024 implementation not with BRAM but with sparse registers, hence the
growth in the number of used registers.

7.2.2 Spartan 7 25C
The next FPGA where the design is implemented is the Spartan 7 xc7a25C. It is
chosen because it is one of the FPGA with the lowest number of resources [Table
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7.3].

LUT REGs BRAM
14600 29200 45

Table 7.3: Spartan 7 25C resources

Given the limited amount of resources, only the implementation of the 64x128
and 32x256 configurations are correctly executed, meaning that the other configu-
rations cannot be implemented on this FPGA.

Configuration LUT REGs BRAM
n° % n° % n° %

64x128 8060 55.21 11590 39.69 14.5 32.22
32x256 13632 93.37 15123 51.79 20.5 45.56

Table 7.4: Number of used resources for the implementation of the 64x128 and
32x256 configurations on the Spartan 7 25C FPGA.

Figure 7.2: Area of the 64x128 configuration module with respect to the total area
of the Spartan 7 25C FPGA.
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Figure 7.3: Area of the 32x256 configuration module with respect to the total area
of the Spartan 7 25C FPGA.

7.2.3 Spartan 7 100F

The second tested FPGA of the Spartan 7 family is the model xc7s100f. In this
case, the implementation of all four configuration is possible. However, the 16x512
and the 8x1024 implementations failed to meet the timing requirements, i.e. they
cannot be correctly executed on this FPGA with the selected clock frequency of
100 MHz.

LUT REGs BRAM
64000 128000 120

Table 7.5: Spartan 7 100F resources
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(a) 64x128 configuration (b) 32x256 configuration

(c) 16x512 configuration (d) 8x1024 configuration

Figure 7.4: Area of the HDC module with respect to the total area of the Spartan
7 100F FPGA.

Configuration LUT REGs BRAM
n° % n° % n° %

64x128 8060 12.59 11590 9.05 14.5 12.08
32x256 13606 21.26 15090 11.79 20.5 17.08
16x512 22534 35 24421 19.00 0.5 0.42
8x1024 41417 64.7 40589 31.71 0.5 0.42

Table 7.6: Number of used resources for the Spartan 7 100F FPGA.

7.2.4 Artix 7 15T

The first tested FPGA of the Artix 7 family is the Artix 7 xc7a15t model. In this
case, only the 64x128 configuration is correctly implemented.
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LUT REGs BRAM
10400 20800 25

Table 7.7: Artix 7 15T resources

Configuration LUT REGs BRAM
n° % n° % n° %

64x128 8060 77.50 11590 55.72 14.5 58

Table 7.8: Number of used resources for the implementation of the 64x128 config-
uration on the Artix 7 15T FPGA.

Figure 7.5: Area of the HDC module with respect to the total area of the Artix 7
15T FPGA.

7.2.5 Artix 7 200T

The second FPGA from the Artix 7 families is the model xc7a200t. In this case all
the configurations are correctly implemented.

LUT REGs BRAM
133800 267600 365

Table 7.9: Artix 7 200T resources
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(a) 64x128 configuration (b) 32x256 configuration

(c) 16x512 configuration (d) 8x1024 configuration

Figure 7.6: Area of the HDC module with respect to the total area of the Artix 7
200T FPGA.

Configuration LUT REGs BRAM
n° % n° % n° %

64x128 8060 6.02 11590 4.33 14.5 3.97
32x256 13794 10.31 15088 5.64 20.5 5.62
16x512 22534 16.84 24421 9.13 0.5 0.14
8x1024 41417 30.95 40589 15.17 0.5 0.14

Table 7.10: Number of used resources for the Artix 7 200T FPGA.

7.2.6 Kintex 7 70T

The first tested FPGA of the Kintex 7 family is the Kintex 7 xc7k70t board, which
is the FPGA from the Kintex 7 family with the lowest number of resources. All
four configurations are correctly implemented, except for the 8x1024 configuration.
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LUT REGs BRAM
41000 82000 135

Table 7.11: Kintex 7 70T resources

(a) 64x128 configuration (b) 32x256 configuration

(c) 16x512 configuration

Figure 7.7: Area of the HDC module with respect to the total area of the Kintex
7 70T FPGA.

Configuration LUT REGs BRAM
n° % n° % n° %

64x128 8060 19.97 11590 14.10 14.5 10.74
32x256 12052 29.4 14842 18.1 24.5 18.15
16x512 22534 54.96 24421 29.78 0.5 0.37

Table 7.12: Number of used resources for the Kintex 7 70T FPGA.
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7.2.7 Kintex 7 480T

The second tested FPGA of the Kintex 7 family is the xc7k480t model. it is the
Kintex model with the highest number of resources. All four configurations are
correctly implemented.

LUT REGs BRAM
298600 597200 955

Table 7.13: Kintex 7 480T resources

(a) 64x128 configuration (b) 32x256 configuration

(c) 16x512 configuration (d) 8x1024 configuration

Figure 7.8: Area of the HDC module with respect to the total area of the Kintex
7 480T FPGA.

96



7.2 – Utilization

Configuration LUT REGs BRAM
n° % n° % n° %

64x128 8062 2.70 11590 1.94 14.5 1.52
32x256 13606 4.5 15090 2.5 24.5 2.57
16x512 22532 7.55 24421 4.09 0.5 0.05
8x1024 41419 13.87 40589 6.8 0.5 0.05

Table 7.14: Number of used resources for the kintex 7 480T FPGA.

7.2.8 Virtex 7 585T

In addition to the Virtex 7 2000T FPGA, other two FPGAs from the Virtex 7 family
are tested. The first FPGA, i.e. the Virtex 7 FPGA with the lowest number of
resources, is the xc7v585t model. All four configurations are correctly implemented.

LUT REGs BRAM
364200 728400 795

Table 7.15: Virtex 7 585T resources
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(a) 64x128 configuration (b) 32x256 configuration

(c) 16x512 configuration (d) 8x1024 configuration

Figure 7.9: Area of the HDC module with respect to the total area of the Virtex 7
585T FPGA.

Configuration LUT REGs BRAM
n° % n° % n° %

64x128 8062 2.2 11590 1.59 14.5 1.82
32x256 13792 3.7 15088 2.07 20.5 3.08
16x512 22532 6.2 24421 3.35 0.5 0.06
8x1024 41418 11.3 40589 5.57 0.5 0.06

Table 7.16: Number of used resources for the Virex 7 585T FPGA.

7.2.9 Virtex 7 11400T

The third tested Virtex 7 FPGA is the xc7vx1140T model. It is the second FPGA
of the Virtex 7 family in terms of number of resources, since the Virtex 7 2000T
has higher capacity. All four configurations are correctly implemented.
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LUT REGs BRAM
712000 1424000 1880

Table 7.17: Virtex 7 1140T resources

(a) 64x128 configuration (b) 32x256 configuration

(c) 16x512 configuration (d) 8x1024 configuration

Figure 7.10: Area of the HDC module with respect to the total area of the Virtex
7 1140T FPGA.

Configuration LUT REGs BRAM
n° % n° % n° %

64x128 8059 1.13 11590 0.81 14.5 0.77
32x256 13792 1.94 15088 1.06 20.5 1.09
16x512 22532 3.16 24421 1.71 0.5 0.03
8x1024 41418 5.82 40589 2.85 0.5 0.03

Table 7.18: Number of used resources for the Virtex 7 1140T FPGA.

99



7 – Results

7.2.10 Full Parallel Configuration

In order to understand the advantages in terms of area of the serialized implemen-
tation of the design, a full parallel configuration is also implemented.
In this case, hypervectors are not divided in pats. Instead, the design processes the
complete hypervector, with it 8192 bits, at each iteration.
With a parallel implementation, the encoding phase is executed a single time for
each input value. Hence, there is no need for the input histogram memory, since
input values are only read once.
The utilization of resources for the full parallel configuration (1x8192) are taken by
implementing the design on the Virtex 7 2000T FPGA.
As can be seen in Table 7.19, also for the full parallel configuration the Vivado

Configuration LUT REGs BRAM
n° % n° % n° %

1x8192 135837 11.12 192047 7.86 0 0

Table 7.19: Number of used resources for the implementation of the full parallel
configuration on the Virtex 7 2000T FPGA.

software does not map memories with BRAM, but it uses sparse registers.
Another important result from the implementation is that the full parallel config-
uration has a critical path delay of 30.65 ns, hence it cannot be correctly executed
using the target clock with a period of 10ns.
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Figure 7.11: Area of the full parallel configuration for the HDC design with respect
to the total area of the Virtex 7 2000T FPGA.

7.3 Time

7.3.1 Critical Path Delay

Thanks to Xilinx Vivado software, it is possible to extract information on the crit-
ical path delay for all the configurations and all the tested FPGAs.
Table 7.20 reports the maximum delay for each configuration and each tested
FPGA. The critical path delay for the full parallel configuration is obtained by
implementing the configuration on the Virtex 7 2000T. In particular, the maxi-
mum delay for the full parallel design is of 30.67ns, three times higher than the
target clock frequency.
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FPGA Crititcal Path Delay (ns)
64x128 32x256 16x512 8x1024

Spartan 7 25c 7.20 8.33 - -
Spartan 7 100f 7.5 9.34 10.39 11.72

Artix 7 15t 7.16 - - -
Artix 7 200t 8.13 8.7 8.2 9.73
Kintex 7 70t 6.19 8.4 7.12 -
Kintex 7 480t 6.4 8.61 7.52 8.38
Virtex 7 585t 6.01 7.42 7.609 7.66
Virtex 7 1140t 7.57 7.76 7.85 8.76
Virtex 7 2000t 6.3 8.21 8.28 9.9

Table 7.20: Maximum delay for all the configurations and all the tested FPGAs.
Delayes highlighted in red are higher than the clock period (10 ns).

Figure 7.12: Resource Utilization (%) and Critical Path Delay (ns) for the Virtex
7 2000T with all serial and parallel configurations.
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Figure 7.13: Resource Utilization (%) and Critical Path Delay (ns) for the Spartan
7 family. A value equal to 0 indicates that the configuration was not implemented.
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Figure 7.14: Resource Utilization (%) and Critical Path Delay (ns) for the Artix 7
family. A value equal to 0 indicates that the configuration was not implemented.
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Figure 7.15: Resource Utilization (%) and Critical Path Delay (ns) for the Kintex
7 family. A value equal to 0 indicates that the configuration was not implemented.
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Figure 7.16: Resource Utilization (%) and Critical Path Delay (ns) for the Virtex
7 family. A value equal to 0 indicates that the configuration was not implemented.

7.3.2 Required Time For Classification

The implementation of the four configurations of the design are simulated on the
Virtex 7 2000T FPGA using the Xilinx Vivado Simulator. In this way it is possible
to verify the correct behavior of the implemented netlist.
Through the simulation, information about the required time to classify an input
histogram are extracted. Table 7.21 reports the required time to classify a single
histogram for all four configuration. These time measurements are different from
the ones reported in Table 6.1 because they take into account also the time required
for the handshake. In particular, for the simulation on FPGA using Vivado, the
hanshake is executed in the optimal condition, i.e. with the minimum number of
cycles.
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Configuration Required Time (ms) Clock Cycles
64x128 3.7 370000
32x256 1.92 192000
16x512 1.02 102000
8x1204 0.57 57000

Table 7.21: Time and Clock cycles required to process a single histogram for all
configuration. Clock cycles are computed by dividing the required time by the clock
period equal to 10 ns.

As expected, the required time decreases as the number of processed parts de-
creases. This because in a configuration where an hypervector is divided in a lower
number of parts, the number of time a phase of the classifier is repeated is lower.
Through ModelSim simulator, the required time for the full parallel configuration
to process a single histogram is measured. The full parallel configuration takes
about 387µs to process a single histogram, with a clock period of 32ns. Hence, the
full parallel configuration requires about 12094 clock cycles, which is a much lower
value with respect to the clock cycles required for the serialized implementation.

Figure 7.17: Required time to process a single sample with the 64x128 configuration.
The clock period is 10ns. Image from Vivado Simulator.
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Figure 7.18: Required time to process a single sample with the 32x256 configuration.
The clock period is 10ns. Image from Vivado Simulator.

Figure 7.19: Required time to process a single sample with the 16x512 configuration.
The clock period is 10ns. Image from Vivado Simulator.
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Figure 7.20: Required time to process a single sample with the 8x1024 configuration.
The clock period is 10ns. Image from Vivado Simulator.

Figure 7.21: Required time to process a single sample with the full parallel config-
uration. The clock period is 32ns. Image from ModelSim Simulator.

From the required clock cycles reported in Table 7.21, and the critical path de-
lays in Table 7.21, it is possible to compute the required time to process a single
sample for all the configuration on all the tested FPGAs when working at the max-
imum frequency.
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7 – Results

FPGA 64x128 32x256 16x512 8x1024
fmax Time fmax Time fmax Time fmax Time

Spartan 7 15C 125MHz 2.96ms 111MHz 1.73ms - - - -
Spartan 7 100F 125MHz 2.96ms 100MHz 1.92ms 91MHz 1.12ms 83MHz 0.69ms

Artix 7 12T 125MHz 2.96ms - - - - - -
Artix 7 200T 111MHz 3.33ms 111MHz 1.73ms 111MHz 0.92ms 100MHz 0.57ms
Kintex 7 70T 143MHz 2.59ms 111MHz 1.73ms 125MHz 0.82ms - -
Kintex 7 480T 143MHz 2.59ms 111MHz 1.73ms 125MHz 0.82ms 111MHz 0.51ms
Virtex 7 585T 143MHz 2.59ms 125MHz 1.54ms 125MHz 0.82ms 125MHz 0.46ms
Virtex 7 1140T 125MHz 2.96ms 125MHz 1.54ms 125MHz 0.82ms 111MHz 0.51ms
Virtex 7 2000T 143MHz 2.59ms 111MHz 1.73ms 111MHz 0.92ms 100MHz 0.57ms

Table 7.22: Required Time for a single sample for all configurations on different
FPGAs. Results estimated by using the maximum frequency for each configuration.

7.4 Power
The power measurements are obtained through the back annotation method.
Through Xilinx Vivado software, the four designs are implemented on the target
FPGA to obtain a netlist which is then simulated with the Vivado Simulator.
From the simulation of the netlist, a SAIF file is reported. The SAIF file contains
the switching activity for each net of the design and it is used by the Vivado power
analysis tool to compute the power consumed by the implemented design.
In order to obtain a more accurate power analysis, the simulation with the Vivado
Software must be set as post-implementation timing simulation .
The post-implementation timing simulation works only on verilog files, hence a
verilog testbench must be implemented in order to simulate a design and obtain
correct results.
All the steps for the simulation, saif file extraction and power measurements can
be performed with a script.
In this project, the script to obtain power reports was provided by ing. Fabrizio
Ottati.
More on how to run the power analysis tool on Vivado can be found in [24].
Table 7.23 reports power measurements for all the four configuration using the
Virtex 7 2000T FPGA, with a clock frequency of 100MHz.

Configuration Dynamic Power Static Power Total Power
W % W % W

64x128 0.033 2.3 1.373 97.7 1.406
32x256 0.055 3.9 1.373 96.1 1.428
16x512 0.099 6.72 1.373 93.28 1.472
8x1024 0.181 11.6 1.377 88,4 1.558

Table 7.23: Power Measurements of the four configuration of the HDC design, using
the Virtex 7 2000T as the target FPGA.
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7.4 – Power

What follow is a series of tables which report the power measurements for all
the four configuration tested on different FPGAs.

FPGA Dynamic Power Static Power Total Power
W % W % W

Spartan 7 25C 0.029 25.66 0.084 74.34 0.113
Spartan 7 100F 0.032 17.67 0.149 82.33 0.181

Artix 7 15T 0.030 24.39 0.093 75.61 0.123
Artix 7 200T 0.054 23.28 0.177 76.72 0.231
Kintex 7 70T 0.031 20.94 0.117 79.06 0.148
Kintex 7 70T 0.031 6.9 0.417 93.1 0.448
Virtex 7 585T 0.033 6.38 0.485 93.62 0.518
Virtex 7 1140T 0.033 2.63 1.223 97.37 1.256

Table 7.24: Power measurements of the 64x128 configuration on various FPGAs

FPGA Dynamic Power Static Power Total Power
W % W % W

Spartan 7 25C 0.048 36.09 0.084 63.15 0.132
Spartan 7 100F 0.053 0.150 0.203
Artix 7 200T 0.054 23.37 0.177 76.62 0.231
Kintex 7 70T 0.048 28.91 0.118 71.08 0.166

Virtex 7 1140T 0.053 4.15 1.224 95.85 1.277

Table 7.25: Power measurements of the 32x256 configuration on various FPGAs

FPGA Dynamic Power Static Power Total Power
W % W % W

Kintex 7 480T 0.100 19.31 0.418 80.69 0.518
Virtex 7 1140T 0.096 7.27 1.224 92.7 1.32

Table 7.26: Power measurements of the 16x512 configuration on various FPGAs

FPGA Dynamic Power Static Power Total Power
W % W % W

Kintex 7 480T 0.189 31.03 0.420 68.97 0.609
Virtex 7 1140T 0.187 13.22 1.227 86.78 1.414

Table 7.27: Power measurements of the 8x1024 configuration on various FPGAs
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7 – Results

As expected, the dynamic power grows with the parallelism of the parts of
hypervectors. The static power is instead releated to the complexity of the FPGA.
It is lower for FPGAs with lower capacity and higher for larger FPGAs.
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Chapter 8

Conclusion and Future
Works

In this project, an hardware accelerator for images classification based on hyper-
dimensional computing was implemented. In particular, the classified images are
acquired using a novel type of bio-inspired sensors called Dynamic Vision Sensors.
To my knowledge, this is one of the first works which implement an hardware so-
lution for DVS classification using Hyperdimensional Computing.
The proposed design is scalable, since the number of processed parts of hypervec-
tors can be configured. This lead to the realization of a design that can be adapted
for the implementation on smaller FPGAs.
Results report an accuracy of the proposed design on the N-MNIST dataset of 83%,
without retraining.
For what concern utilization, time and power measurements, a configuration which
uses parts of hypervector with lower parallelism takes longer time to provide a
single output; however, it uses a lower percentage of resources and consumes less
dynamic power.
Results in terms of accuracy can be improved in future works by applying a re-
training process on the whole dataset, in order to better tune the model.
In particular, training in this project is performed via software. A possible task for
future works is to implement training online, i.e. directly on the hardware.
To better assess the capabilities of the proposed design, the hardware module can
be tested on other datasets different from the N-MNIST dataset used in this project.
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