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Abstract
This thesis focuses on the design of an array of accelerators for Compute-

Intensive Telecom Applications within the framework of a project founded by ESA
and carried out in Argotec, an Italian Aerospace Company developer and manufac-
turer of new solutions for astronaut comfort and the manufacturing of micro and
nano satellites for deep space.

In detail, this project aims at providing a novel architectural approach based
on a cluster of Field Programmable Gate Arrays (FPGA), which are programmable
devices that provide high flexibility and high performance thanks to their integra-
tion and re-configurability. This architectural model could enable the usage of non-
space-grade Commercial-of-the-Shelf (COTS) devices in long-life missions in harsh
radiation environments by leveraging the resource redundancy and distribution en-
abled by clustering methods, together with the possibility of different mitigation
technique application. Commercial-graded devices are made up of the newest and
most performing technology on the market and their use in space environment gives
advantages both in terms of performances and costs.

In detail, the present thesis focused on the design of a system with high comput-
ing capability by leveraging hardwired primitives present in state-of-the-art FPGAs
for Digital Signal Processing (DSP). These DSP units are attractive candidates to
balance the programmability typical of dedicated arithmetic logic units and the
high performance of dedicated hardware thanks to the possibility of implement a
variety of processing modes.
Overall, each DSP unit together with a specific management which will provides
signals and controls for data computations create a Programmable Functional Unit
(PFU) which is the the key element on which this thesis is based.

The main aim of this thesis is the development of a programmable and scalable
accelerator structure capable of executing a range of tasks for telecom applications
in space environment. Furthermore, the studies were also carried out with the aim
of optimising the architecture presented with a view to maximising performance
and minimising the resources used.

In order to achieve these goals, different design solutions were investigated, all
of which converged on a replicable architecture inside the target device via a ver-
sioning strategy that allowed for the most efficient use of resources and, as a result,
the array’s appropriate implementation. Furthermore, this design flow resulted in
the best trade-off in terms of flexibility, granularity and resource utilisation.
Finally, during the versioning process and on the final design, it was verified that
the project’s performance requirements were satisfied.
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1
Introduction

This chapter provide a brief introduction concerning the state of the art of cur-
rent methodologies and devices used in telecommunications for space. It evaluates
problems in using commercial devices to replace those currently used for space ap-
plications known as rad-hard devices [5].

First, section 1.1 sums up the current and future applications approaches that
are aimed at implementing more and more computational power through the use
of commercial technology, thus reducing costs and maintaining high reliability.

Then, in section 1.2 the FPGA will be presented, devices used as the core of
the project and which historically have a great use in the Telecom and Aerospace
environment. Finally, it will be briefly explained what COTS devices are, and what
advantages are obtained by introducing them in the space applications.

Subsequently, section 1.3 aims to provide an overview of the current state of
the art of satellite communication systems by presenting the techniques used for
earth to space transmission.

Finally, section 1.4 the main problems that affects devices in space environ-
ment are discussed. In detail, a focus is made on the main problems that are high
temperatures and radiation, examining their causes and what they entail. Finally,
the section ends by presenting some commonly used mitigation and recovery tech-
niques.
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1.1 Trends in Space Communication Sys-
tems

One of the main points in space application is the continuous increase in the amount
of data collected and sent to Earth. This is a direct consequence both of the desire
to know what is in space but, also, of the continuous devices shrinking that allow-
ing to integrate more and more sensors on a single chip capable of receiving and
accumulating an ever-increasing amount of data. The accumulation of data itself
is not a problem but, it is a problem to send an increasing amount of information
from a satellite to Earth.
In this view, a key factor in the evolution of telecom system for space is the digital
electronics advent and rapid expansion which will be briefly explained in section 1.3.
In fact, it has made possible a performance and memory capacity exponential in-
crease.
Additionally, this has also brought the big advantage of reducing satellites size [6].
Thanks to technologies evolution, in fact, it is possible to make very small satellites
weighing a few tens of kilograms. This has radically changed the space missions
point of view. Furthermore, also from the launches point of view it has allowed
many changes as many companies tend to focus on the launch of satellites with
masses of a few hundred kilograms allowing, among the others, launching costs re-
duction.
Thanks to the possibility of introducing COTS-type devices discussed in subsec-
tion 1.2.1 in the space environment, the common vision is to move from few large
satellites system to a system with many more satellites with smaller dimensions that
deal with more specific tasks and also having lower costs [7]. This is also greatly
encouraged by the entry of many private entities into the space sector allowing a
gradual increase in terms of performance thanks to the competition introduced.

Field Programmable Gate Arrays (FPGAs) discussed in section 1.2 provide
high computational density and efficiency for many computing applications by al-
lowing circuit customization for many applications of interest. FPGAs also support
programmability allowing to modify the circuit at a later time through reconfigura-
tion, allowing on the one hand to make updates and further improvements but, on
the other hand, also to take advantage of the unique ability of FPGAs to customize
the system for greater reliability problems discussed in section 1.4. Mainly for these
reasons there is a great interest in exploiting these advantages in space and other
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radiation environments [8].
Finally, the increased resource availability and performance margin enjoyed by FP-
GAs enable the inclusion of effective mitigation techniques both at the design level
and within its development flow. On the other hand, these improved parameters
allow the introduction of overlay infrastructures to increase the programmability
and abstraction in the implementation of the target functionality. Therefore, these
opportunities open the way for the development of scalable and reusable platforms
with high reliability not strictly bounded to target custom designs.

1.2 Field Programmable Gate Array
FPGA stands for Field Programmable Gate Array and is a particular type of device
that can be customized after manufacturing to implement different functionalities.
Specifically, they are made up of an array of three main blocks, which according
to the Xilinx (i.e., one of the main FPGA manufacturers) nomenclature can be re-
ferred as: Configurable Logic Block (CLB) units, RAM Memory Blocks (BRAM),
and Digital Signal Processor (DSP) as can be noticed in Figure 1.1.
CLB blocks have historically been present in the FPGA, they are the elements that
are actually programmable and are in turn composed of digital logic components
such as multiplexer, Flip Flop (FF) and look-up table (LUT) which can be suitably
configured to implement logic functions. On the other hand, BRAMs and DSPs
have been introduced over time to increase the functional capabilities of the device.

FPGAs are usually programmed using hardware description languages (HDL) such
as Verilog and VHDL. Then, a file describing their configuration called bitstream is
generated through a specific tool and will then be stored in a specific configuration
memory location inside the board. One of the main FPGA characteristics is the pos-
sibility of loading new configurations (both before and after deployment) and above
all downstream of manufacturing [9] (in opposite with ASIC device). In general, the
reconfigurability is the main FPGA feature and places it as an intermediate device
between ASIC (highly customizable with respect to the required performances but
not flexible at all) and general-purpose computation (highly flexible towards any
type of application, but not optimized, as it is generic).
Recently there has been an increase in the use of FPGAs thanks to both the high
computing capacity and the considerably lower energy consumption [10].
Among the most common applications are the medical electronics sector, automo-
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Figure 1.1: Internal FPGA Configuration [1]

tive sector, transmission, consumer electronics and last but not the least, in the
aerospace sector.
In particular, the wide use of these devices in the aerospace environment is mainly
due to the possibility to perform pre-prototyping, to the fact that often few sam-
ples are needed for these applications which would not justify the high costs to
be incurred for the design of an ASIC system, and for the possibility of increasing
reliability through the use of mitigation techniques which will be discussed in sec-
tion 1.4 that can be implemented thanks to the large number of resources available.
In particular, for aerospace environment, different types of devices are present on
the market, in the past in fact mainly Rad-Hard type devices were used (i.e., devices
specifically strengthened to withstand the problems that may arise in the space).
In subsection 1.2.1 will be shown how nowadays there is an increasing use of Com-
mercial Off the Shelf devices which allow to obtain several advantages in terms of
performance, price and production times [11].

1.2.1 Commercial of the Shelf
Commercial of the Shelf (COTS) is defined as a device that is [12]:

• A commercial item;
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• Sold in substantial quantities in the commercial market; And

• Offered to the State, by virtue of contract or subcontract at any level,
without modification, in the same form in which it is sold on the commercial
market.

The use of these systems is increasing sharply and ranges in different fields of ap-
plication including space environment.
In space, COTS devices compete, as anticipated, with conventional radiation-
resistant (rad-hard) components by offering the benefits of higher performance,
faster/cheaper development, ease of maintenance, ready-to-use development sys-
tems [13].
From one point of view, devices of this type in space can be severely damaged due to
the extreme conditions discussed in section 1.4. However, through the use of special
techniques discussed in subsection 1.4.3 it is possible to manage these problems and
obtain a good degree of reliability.
Moreover, the use of these devices has led to several advantages including the pos-
sibility of having several devices of this type on board a single satellite thanks to
their low cost. Lately, the use of COTS in highly reliable space applications is on
the rise and ranges from memory chips in flagship planetary explorers to various
pico/nanosat parts [13].

1.3 Satellite Communication Systems
Since the analog technology is fixed and does not allow the user to have any flexi-
bility, the trend over the years is to move towards digital systems allowing to use
programmable hardware logic but also software implementations. This technology
trend, in the field of space communication find its best example in the shift from
analog radio to Software-Defined Radios (SDR) techniques with which the final
product results in a compact and flexible communication system.

Applying this concept to small satellites can increase data throughput, add the
possibility to perform software updates over-the-air and make it possible to reuse
the hardware platform for multiple missions with different requirements [14].

As anticipated, old space telecommunication systems were based on analog
systems but have been replaced by digital ones using analog to digital conversions
and vice versa, in the following paragraph a brief explanation is provided.
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1.3.1 Digital Regenerative Processor
Initially, GEO satellites for telecom applications were based on the bent-pipe ap-
proach. In this configuration, the transponder receives a weak signal which is shifted
from the receiving frequency to the transmitting one. In addition, the system per-
forms certain operations such as amplification of the received signal and some purely
analogue functions. A scheme of principle is shown in the Figure 1.2.

Figure 1.2: Bent-Pipe Architecture

Modern systems maintain all the characteristics of bent-pipe systems, but add front-
ends processing and an Analog to Digital Conversion (ADC) and an inverse Digital
to Analog Conversion (DAC) to perform digital channelization functions. Moreover,
regenerative processors for GEO telecom satellites are mainly based on rad-hard de-
vices, which provide good level of flexibility and in-orbit re-configurability.
Satellites functionalities could be further extended to fully regenerative repeaters
adding feature such as multichannel digital re-generations supported by Fast Fourier
Transform (FFT), digital filtering, demodulators and modulators, channel encod-
ing/decoding as can be noticed from Figure 1.3 [15].
Finally, high performances are also obtained not only through the new communi-
cation systems but also thanks to the newest coding techniques. Channel coding
allow to obtain high data throughput with low Bit Error Rate (BER) by sending
appropriately coded information which will then be reconstructed at the receiver
side.
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Figure 1.3: Regenerative On-Board Processor Architecture

1.3.2 Channel Coding
Channel coding plays a very important role in modern communication systems.
For years, researches have been carried out to find coding schemes allowing to reach
that channel capacity. Turbo Codes and LDPC codes have solved the “capacity-
approaching challenge” for a point-to-point channel getting very close to channel
capacity limits. Typically, Turbo codes are good choices for power-constrained
links, instead LDPC codes serve well for higher data rate links when bandwidth is
constrained.
The LDPC codes will be explained in more detail in section 3.3, as they will be the
benchmark used in the program and in this thesis.

1.4 Deployment in Harsh Environment
The main problems when designing an electronic device for space applications are
related to the environmental threats to which devices will be exposed (e.g., vacuum,
radiation, extreme temperatures and many others).

Temperature and radiations threats consist of the most challenging aspects to
deal with and they will be presented in details in the following.
The effects of environmental problems in space can be very serious as to cause the
failure of the device and can range from intermittent and recoverable misbehavior
up to the complete non recoverable failure of the system. The devices suitability
is usually evaluated firstly through analysis and mathematical models, and in later
stages also through thermal and radiation testing on the component.
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1.4.1 Temperature
Heat transfer into space can occur mainly due to the effect of radiation or conduc-
tion.
Among them the main source of heat is the irradiation which has mainly three
sources:

• Direct solar radiation: it is the main source of radiation and therefore
of heat in space. However, direct solar flow of energy coming from the sun
is not constant, for two main aspects.
First, sun energy flow itself is not constant but depends significantly on
the solar cycle. Secondly, the flux impacting an Earth orbiting satellite is
strongly influenced by the Earth’s orbit around the sun.

• Reflected solar radiation: it refers to Earth reflected radiation into
space. However, a satellite orbiting the earth will not always be subject to
this type of radiation but only when it is in the area where the reflection
itself occurs.
Furthermore, the reflected energy flux is not constant as the flux itself is not
and because different reflective properties are present on the earth surface
(e.g., clouds, oceans or continent).

• Earth radiation: it is a combination of infrared radiation emitted by the
atmosphere and the surface of the earth. This aspect is greatly influenced
by the climatic conditions of the earth both on the surface and in the
clouds.

As in an any electronic device, keeping under control temperatures allows for higher
performance, lower power consumption and to prevent system failure. Therefore,
preliminary considerations for devices design become more complex since not only
internal thermal dissipation is present.

1.4.2 Radiation
Radiation is the main problem encountered in space device deployment and also
the one on which the program, presented in chapter 2, is focused.
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The typical effect is an energy transfer from the radiation to the atoms, which
causes an excitation or ionization of the electrons inside the silicon. If a sufficiently
high energy is transferred, the semiconductor characteristics can change leading to
transient or permanent misbehavior.
In detail, a long exposure to radiation can lead to an accumulation of effects that
can permanently damage the MOS. This effect is considered to be the maximum
Total Ionizing Dose (TID) a device can receive before it stops working.
On the other hand, single ionizing particles can instead cause instantaneous prob-
lems called Single Event Effects (SEEs), which can be permanent [16] (i.e., that
changes the structure of the semiconductor causing an enduring failure) or tran-
sient (i.e., which are extinguished after a while) problems. In the following these
last ones will be analyzed being the most critical for FPGA devices [17].

Transient Effects

These problems are also called soft errors as they can extinguish after a short period
of time. The most common are the following [18]:

• Single Event Upset (SEU): it is a corruption of the content of a mem-
ory element. This typically results from a sudden change in the charges
distribution within the memory control logic causing a bit inversion in a
specific information bit called bit-flit [19].

• Single Event Transient (SET): when an ion interacts with the p-n
junction in the active region of one transistor it can temporarily break the
barrier of the junction causing a voltage spike [18].
This type of problem can be present inside a memory and if it is sampled
from a memory element, it cause a SEU.

• Micro Single Event Latch-Up (Micro SEL): it is a recently studied
problem mainly originated due to dimensions and power supply level re-
duction. This problem occurs mainly near the input and output terminals
of a logic gate.

In order to improve electronics system reliability for space applications, different
mitigation technique can be exploited with the aim of hiding or solving the problems
generated by radiation.

9



1.4.3 Mitigation Techniques
The techniques used in FPGA solutions are different, among the others can be
stressed shielding, derating, redundancy and repairing. In this section a particu-
lar focus will be made on redundancy and repairing techniques that are the most
common in FPGA hardening.

Redundancy
This approach does not solve radiation effects but enable to mask them. Structural
redundancy consists of using several modules working in parallel and computing the
same calculation in order to have different results of the same operation and then
choose the results comparing them.
Within this class of techniques, the most common is the Triple Modular Redundancy
(TMR). It consists of triplicating the designed logic in the programmable resources
and then putting a logic voter which will provide the result based on two out of
three output. A high-level diagram is shown in the Figure 1.4.

Figure 1.4: Triple Modular Redundancy Mitigation

The use of this technique requires a greater amount of logic (i.e., at least three
times greater) and therefore considerations regarding additional resources and power
consumption should be made. However, the functional approaches of this technique
are much less costly in terms of resources. In fact, very often data replication and
instruction memory techniques are used [20] and [21].
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Repair

This method consists in correcting any eventual bit-flip that has occurred, this is
done by performing a refresh of the correct value inside the affected memory ele-
ment. One of the most popular and effective methods is scrubbing [22].
There are several methods to perform scrubbing, two of the most common are blind
and readback scrubbing. Blind scrubbing is based on memory updating without
considering whether they are corrupted or not. The readback scrubbing, instead,
is only performed when a problem is detected. Another classification can be made
with respect to updating timing: it can be identified periodic scrubbing which peri-
odically occurs or, instead, on-demand scrubbing which happen only upon a request.
One of the main advantages of this technique is the ability to correct errors pre-
venting them from accumulating.

1.5 Summary and Highlights
The use of COTS devices enable the possibility to obtain performances above those
possible with current Rad-Hard systems. Moreover, state-of-the-art technology al-
low to meet future Telecom applications demands requiring higher data rates for the
uplink, higher distances and improved regeneration capabilities. For these reasons
the use of COTS device for space applications is a rowing trend in last years.
On the other hand, as discussed in section 1.4, when deployed in space, COTS
devices can be severely harmed by the harsh environmental conditions of high vac-
uum, extreme temperatures, high levels of ionizing radiation.

In this view, the program presented in chapter 2, aims to provide a new per-
spective on possible architectures able to leverage the concepts just discussed in
previous sections. In fact, the envisioned architecture will include an array of pro-
grammable accelerators capable of maximizing the system performance by lever-
aging a high degree of parallelization, also providing the possibility to efficiently
support today satellite systems for communication.
Moreover, taking advantages of the clustering approach it will be possible to have
enough resources to obtain a structure able to address with appropriate strategies
the reliability problems discussed above.
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1.6 Outline
The current section describes the organization of the thesis and gives a short de-
scription of the content of each chapter:

Chapter 2 - provides an overview of the program, detailing its goal and highlighting
where the work carried out in this thesis takes place. Moreover, it gives
an overview of the envisioned structure and briefly explains the different
solutions analyzed with respect to different clustering strategies. Finally,
it focuses on the selected approach and presents the identified structural
strategy.

Chapter 3 - in this chapter the technical concepts relevant for the understanding of the
proposed architectural solution are provided. In detail, a focus on the two
main blocks on which the accelerator design is based (i.e., BRAM and DSP
unit) will be discussed showing their main features. Finally, backgrounds
on the decoder algorithm selected as telecom case study are provided.

Chapter 4 - details the architectural solution studied and implemented for the array
of accelerators, explaining the evolution of the structure created to then
converge on the final design. Then, the strategies used to exchange data
between computing cores and the envisioned memory structures will also
be briefly described. The chapter ends with a feasibility demonstration
done presenting the application of these studies to the selected case study.

Chapter 5 - presents the results, obtained through analysis, simulations and on board
tests. In particular, a trade-off analysis will be presented and then an
on-board test is discussed.

Chapter 6 - closes the thesis by discussing the main conclusions and possible future
developments of the work.
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2
Program Framework

The following chapter wants to present the framework of the European Space
Agency (ESA) project focused on Advanced Research in Telecommunications Sys-
tems and consists of researching and developing state-of-the-art and innovative
hardening techniques for Commercial-Off-The-Shelf (COTS) Field Programmable
Gate Array (FPGA) devices for digital telecommunications payloads.
In the following the preliminary considerations regarding possible implementations
and software/hardware architectural trade-offs will be presented.
The adopted approach is a clustered one consisting of an inter-FPGA network or-
ganized into Tiles and Nodes: a Node is a single FPGA device while the Tile is a
four nodes cluster structure. Each single FPGA node is used as an hybrid structure
which enable both general-purpose computation through the usage of soft micro-
processor and compute intensive custom operations. In fact, on the one hand a soft
microprocessor is used and, on the other hand, customization is achieved thanks to
the atomic functional block that has as its reference the digital signal processing
units (DSP) present on the FPGA and managed through appropriate host proces-
sors.

Specifically, in section 2.1 a brief analysis will show the main clustering strategy
benefits.

Then, in section 2.2 the structure of the single Node is presented and the main
two different architectural solutions illustrated. Moreover, how the final structure
was obtained and what advantages it brings will be depicted.

Finally, in section 2.3 details concerning the Programmable Functional Units
approach will be provided.
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2.1 Clustering Strategy Benefit
The opportunity of using more than one device to implement the architecture pro-
vides extra resources for the introduction of mitigation techniques.
Furthermore, exploiting parallelism and programmability rather than only dividing
the application on a custom collection of samples devoted to a specific functionality,
the opportunities for a scalable and the flexible re-purposing are maximized.
The envisioned Tile clustered architecture is reported in Figure 2.1 and it is com-
posed by four nodes where each node is composed by an FPGA.

Figure 2.1: Tile full-mesh Interconnections Architecture

In addition to what is reported in Figure 2.1, the final design architecture is envi-
sioned to be composed of at least 4 tiles as an overall clustered structure that allows
to increase the available resources once again.
The use of multiple devices (e.g.,four), allows to have high gains in terms of avail-
able resources also compared to the rad-hard solutions currently on the market.
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Moreover, the price can also be reduced considerably (i.e. by about two orders of
magnitude).
The gain in resources and performance provide opportunities to leverage several
mitigation techniques, as the one discussed in subsection 1.4.3. Furthermore, with
the improved parameters it is possible to implement infrastructures for high pro-
grammability in the implementation of the target functionality. These opportuni-
ties, therefore, pave the way for the development of scalable and reusable solutions,
highly reliable platforms not strictly linked to customized target projects.

2.2 Architecture
To map the functionality on the system different clustering approaches can be
adopted.
The key to achieving effective partitioning is determining the best approach for
breaking down the work to be distributed across the different nodes.
The main strategy can be related to the heterogeneous or homogeneous one [23].
In the first case, each node is different from the others and it has a dedicated task
and can be customized and optimized in order to execute it. In the second approach,
each node is architecturally equivalent and the task is homogeneously distributed.

In heterogeneous approach different cores are able to develop and carry out
different tasks in a parallel and in independent way. This usually translates in
providing better performance.
This strategy optimizes each sub-block in order to implement a specific application.
This solution can maximize performance but on the other hand it provide a limited
flexibility as each block is ad-hoc developed to execute a specific functionality.

On the other hand, the homogeneous architecture is mainly oriented in in-
crease scalability and reusability. The idea is mostly focused in nodes redundancy
that enables tasks decomposition in parallel computation.
In this approach different FPGAs are used but all of them are configured in the same
way exploiting programmability since no specific function is envisioned. Moreover,
performance of homogeneous approach cannot reach the optimizations opportuni-
ties of custom data path of heterogeneous ones.

These considerations motivate the Hybrid Solution selected as baseline for
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the project, presented in subsection 2.2.1. The goal is to obtain a trade-off between
flexibility and scalability that homogeneous structures allow without losing the per-
formances that can be reached with a dedicated structure such as the heterogeneous
one.
To do that, the idea is to use functional units based on re-configurable processors
(i.e., DSPs unit) in order to maintain a homogeneous structure but with the pos-
sibility of re-configuring and adapting the operations according to the needed. In
this way, the execution is no longer requested from generic microprocessors but is
attributed to properly instructed Programmable Functional Unit (PFU) which is
the main aim of this thesis and will be discussed in detail in the following chapters.

2.2.1 Hybrid Structure
In order to obtain a system able to maximize programmability and granularity, a
trade-off between the two main architectural approaches briefly discussed in previ-
ous section has been considered.
In this view, the identified architectural strategy will be equipped in a hybrid solu-
tion, developed by homogeneous software-oriented approaches, while maintaining a
high degree of efficiency in the optimal customization of specific functionalities, as
typically allowed by heterogeneous customized hardware solutions.
Through this efficient compromise, it was decided to implement an architectural
structure capable of maximizing the aspects of programmability and customization
through a clustered DSP-based Functional Units Array.
In each node, the array of DSP-based functional units will be managed through
a distribution of tasks and processing data by a programmable processor. This
processor will also be in charge of handling communications to the outside and ex-
changing data with the other nodes of the tile. An high level structure of the single
FPGA is reported in Figure 2.2.
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Figure 2.2: Hybrid Node Architecture

Each FPGA includes two main component types: fixed and programmable. The
fixed ones mainly refer to the various interfaces between the internal blocks and to
the connections to the outside for the other nodes of the tile. The programmable
types, instead, refer to the hierarchical structure that can be seen in the figure,
through three main levels of programmability:

• The deepest level of programmability is at the DSP units level, which allows
to implement a wide range of operations based on specific signals and it is
coupled with a BRAM, included into each PFU block.

• Subsequently, the second programmable level is constituted by the array of
PFU cluster, forming the Micro-Programmable Domain.

• Finally, the last layer is the one formed by the soft-processor acting as node
manager, identified as General Purpose Domain.
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2.3 Programmable Functional Unit
The use of different Programmable Functional Units (PFUs) allows to perform many
calculations on small data, benefiting from a high parallelism, and at the same time
developing the target algorithm. Each PFU will be set with the appropriate opcode
and will work on the corresponding data in order to process the current layer.
In other words, each PFU receives a partial subset of values which are stored in
the dedicated local memory and which will then be appropriately processed by the
DSP cores and by the boundary logic.

Nevertheless, thanks to the configuration in Figure 2.3, it is possible to maximize
the utilization of the FPGA by successfully couple DSP and BRAM present in
each PFU. As the structure itself of the FPGA, in fact, is organized in columns of
BRAMs and DSPs, the exploitable regions increase as much.
Finally, paying attention to the arrangement of the PFUs within the FPGA, it will
also be possible to reprogram suitable regions enabling the possibility to reconfigure
and restore a certain number of PFUs that will fail by implementing the scrubbing
technique mentioned in subsection 1.4.3.

2.3.1 High Level Functional Unit Structure
In order to obtain a system that is as high-performance and flexible as possible at
the same time, the wired primitives present in FPGAs for digital signal processing
(i.e., DSP) are very attractive.

According to specific control sequences, a DSP unit is able to process various
operations ranging from classical arithmetical or logical ones to specific parallel op-
portunities, more detailed analysis will be provided in following chapters and in [2].
Among these modes, the Single Instruction Multiple Data (SIMD) is extremely at-
tractive configuration targetting the parallel implementation of the selected testbed.
In the following chapters it will be examined in depth.
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Furthermore, in current FPGAs the DSPs are integrated in order to easily
interact with the user memories allowing faster local memory usage [24].
These considerations made possible to base the decoding activities core on the DSP
using the described configuration also reported in Figure 2.3.

Figure 2.3: DSP Tile

Finally, within each functional unit, a series of registers and components useful for
carrying out operations and sorting data will then be made available.
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3
Technical Background

This chapter aims to provide a brief description of the main characteristics of the
blocks and of the concepts used in the design of Programmable Functional Units.

As anticipated in previous chapters, DSP Unit and BRAM are the two fun-
damental blocks on which the realization of the Programmable Functional Unit is
based.
Therefore, they will be described in detail and the studies made to reach a level of
knowledge such as to be able to put programmability into practice shown.

Finally, the chapter closes with some details regarding the selected functional
testbed aimed at demonstrating its validity in terms of programmability and scal-
ability, also providing some useful details for the project understanding.

3.1 Digital Signal Processing Unit
A Digital Signal Processing unit is a specialized component device present on FP-
GAs able to execute arithmetic and logic operations with a very huge fields of
applications. In detail, the selected development board, uses the DSP48E2 primi-
tive [2].
The purpose is to dynamically manage it in order to run-time manipulate opera-
tions types.
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The auto inference by the synthesizer is the common approach for instantiating a
component like the DSP unit. It is an instance made directly in the HDL code
that allows to have full access to all the configuration and control signals of the
unit. However, using such an instance can be very complicated as it requires very
thorough and detailed knowledge of each individual control signal.

In [25] an interesting solution is proposed. The idea is to use a wrapper file
that incorporate the primitive instance and setting all the generics and port map
signals as a default value. The wrapper, in fact, has exactly the same generics and
ports as the primitive. In this way the instance becomes much more easy and only
the interested signals will be changed. These features allow to have a very compact
instance almost as much as a behavioral one, while still having access to all the
possible modes of the DSP.

DSP usage makes possible to achieve the scalability and flexibility without sacrific-
ing performance. The goal, in fact, is to be able to dynamically manage the DSP, as
anticipated, so as to be able to adapt its feature to the operations to be performed.
Some of the most common uses for the DSP are for example the MAC (Multiply
and Accumulate) functions in which the multiplier and the adder cooperate. Other
uses are for example FIR (Finite Impulse Response) [26] filters exploiting cascade
capabilities of the DSP.
The following thesis has the main aim of demonstrate DSP potentiality even outside
the common uses mentioned above.

3.1.1 Architecture Analysis
As the DSP usage is one of the main points of the PFUs it is important to manage
the wrapper described in the correct way.
To do this, the main steps are as following:

1. Correctly understand how it works and evaluate constraints or limits;

2. Figure out micro-controlled possibilities of control;

3. Understand how different operations can be dynamically selected to the
same DSP;

The structure of the DSP can be found in [2] and is reported below in Figure 3.1.
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Figure 3.1: DSP Architecture [2]

From Figure 3.1 different control signals can be noticed. All of them together
allow to control the DSP behavior. However, three among them deserve to be
mentioned as they are the ones with which the actual arithmetic operation and
data combinations are selected.

• OPMODE: it is a 9-bits control signal and it is responsible for X, Y, Z
and W multiplexer output arrangement. It is divided into 4 section that
are respectively of 2 bits for each X, Y and W multiplexers and 3 bits for
the Z one.

• INMODE: this signal drives Dual B Register and Pre-Adder block config-
urations. It is the trickiest among them. It is composed by 5 bits that com-
bined with three static controls (namely amultsel, bmultsel and preaddinsel)
can vary the possible combinations of input signals.

• ALUMODE: it consists of 4 bits and is responsible for selecting the arith-
metic or logic ALU operations.
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3.1.2 SIMD features
Among the main modes of the DSP the SIMD (Single Instruction Multiple Data)
surely deserve to be mentioned. This feature allows to work in parallel with multiple
data sets sharing the same instruction commands.
In Figure 3.2 a scheme which represents the possible configurations is reported.

Figure 3.2: DSP Architecture in SIMD Configuration [2]

The DSP allows to use this mode in two different configurations:
• Two 24-bits: the ALU will work separately on two data sets.

• Four 12-bits: the ALU will work on four different data sets.
Splitting into more sections the parallelism it is possible to exploit higher perfor-
mance. By using the four 12-bits configuration, for example, it is possible to improve
the throughput up to 4 times.

On the other hand, the SIMD mode does not allow to use all DSP features, but it
is limited to the Arithmetic Logic Unit (ALU) section and only some data input
configurations are allowed.
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3.2 Block RAM
The BRAMs are another types of primitives present on the selected board [24] are
organized in 36 Kb storage area cells. In detail, the 36 Kb memories can be used
as a single memory block or be divided into two equivalent 18 Kb memories.

As previously discussed, their organization is designed in order to optimize access
especially when working with DSPs unit through structures such as the one in
Figure 2.3 replicated several times on the board as reported in Figure 1.1.
Furthermore, it can be configured to work in three main modes:

• Single Port: in this case there is a single port for both reading and writing
operations and therefore only one of them can be performed at a time.

• Simple Dual Port: in this case there are two independent ports, one for
writing and one for reading, which can be used simultaneously.

• True Dual Port: in this case there are two independent ports, both of
which can be used for reading and writing simultaneously.

Both write and read operations are synchronous and require a clock cycle.

3.3 Selected Testbed
The functional testbed identification is mainly based on demonstrating the imple-
mentation opportunities trying at the same time to cover a relevant scenario for
space communications. Channel decoding is one of the most relevant; notably, the
Low Density Parity Check Codes algorithm [27] has been chosen thanks to its high
error correction capabilities.
Furthermore, the parallelization opportunities provided by the LPDC algorithm
allows to exploit the clustering concepts presented, allowing to perform operations
with several PFUs that cooperate in an optimal way for channel decoding.
Parallel approaches [28] have ranged from hardware implementations to software
ones. Particularly, either hardware implementations, multi-core processors imple-
mentations and purely software techniques to maximize multiple data computations
with a single instruction have been exploited.
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From one side, implementations with high levels of parallelization maximize perfor-
mance but produce an explosion of area and number of resources used, also reducing
the flexibility of the structure. On the other hand, a serial structure allows greater
flexibility but reduces the possible performance to a minimum.
Therefore, solutions that use a partial parallelism only on specific decoding sections
have been exploited obtaining an overall trade off between serial and parallel com-
putation capable of maximizing the gains in terms of performance and flexibility.

3.3.1 Algorithm
An interesting algorithm is the LDPC extended telemetry codeword encoding algo-
rithm involving an iterative technique known as Belief Propagation. This algorithm
propagates messages (i.e., probabilities) through a graph that can be represented
with the so called code parity check matrix H. The main characteristic of the H
matrix is the low density of ones. The general structure is reported in Figure 3.3.
More detailed analysis can be founded in [3] and [29].

Figure 3.3: H matrix [3]
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Analyzing the matrix of the New Generation Uplink CCSDS [3] can be noticed how
it can be decomposed into 128 x 128 sub-matrices. Each of these sub-matrices can
be equal to zero or have a single element per row and column equal to one.
These non-empty matrices are called circulats and are formed by Identity matrices
shifted by a certain amount. Finally, it can be noted that in a single row there are
only 3 or 6 circulating.
In [4] an extensive explanation about the algorithm is discussed.

In general, one of the most popular layered approach consist of the Min-Sum-
Algorithm (MSA) where the decoded words are obtained through a certain number
of iterations converging to the final results with a good degree of certainty.
Assuming to have:

y - received codeword.

m - rows of H matrix.

n - columns of H matrix.
The parallelizable and compute-intensive part of the algorithm is reported in Fig-
ure 3.4.

Figure 3.4: Layered MS Decoding Algorithm [4]

The layered algorithm in Figure 3.4 is one of the most advantageous and that is
why it was chosen. This makes out that the layers must be calculated serially,
since in many cases the output of the previous layer is the input of the next one.
On the other hand, all the messages related to a single circulant are independent.
Therefore, at least 128 elements of the 1024 H-Matrix reported in Figure 3.3 (i.e.,
samples per circulant) can be computed independently.
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From Figure 3.4 can also be identified three main sub-processing cycle:

1. VN processing: through a sequence of subtractions between the γ and
β values of the preceding iteration, this phase creates intermediate values
called α. Where β are the outcomes of the previous CN processing iteration
(or 0 in the case of the first iteration), and γ are the results of the previous
AP update iteration (or the inputs of the matrix in Figure 3.3 in the case of
the first iteration). It is a vertical processing so no type of dependency exist
between samples in the circulant. Therefore, depending on the number of
circulant in one layer (i.e., 3 or 6) all messages can be processed in parallel.

2. CN processing: provides the computation of new β values by concate-
nating the product of the signs of the other circulating α values with the
minimum of their absolute values. Also in this case the processing within
a circulant can be done concurrently. However, in this case dependency
exists between each circulant, so at most 128 messages can be processed
independently.

3. AP update: produces the new γ values by summing the α and β values
that have just been computed. This final processing cycle also can be com-
puted in parallel within the layer since no dependencies between circulant
exists.

These steps are repeated for all layers of the matrix H, and for each iteration it is
finally executed the hard-decision and the syndrome check.
These VN, CN and AP cycles are the core of the algorithm and will be mapped on
the Programmable Functional Units that will exploit the SIMD approach proposed
in section subsection 3.1.2.
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4
Design Overview

In this chapter the Programmable Functional Unit design is presented. It represents
the main computing resource to accelerate Digital Signal Processing tasks involved
in telecommunications and case study of this thesis. Moreover, it will be shown how
the PFUs will be able to communicate with the entire system to perform required
operations (e.g., the LDPC decoding selected as testbed).

First, a high level block diagram showing the Node structure will be displayed
and a brief introduction to how data flow is implemented within the system done,
then it will be presented a focus on the envisioned structure for PFUs data exchange.

Secondly, the preliminary design will then be presented; it was developed with
the aim of gradually approaching the envisioned architecture. In detail, the pre-
liminary architecture is proposed to highlight the the process carried out from the
baseline assumptions to the final solution.

Successively, a more accurate description of the final PFU is reported, also
showing the main differences and similarities between the final version and the pre-
liminary version previously mentioned.

The high-level architecture of the PFU is explained, providing details also re-
garding the PFUs cluster architecture and the main components. Subsequently,
the key features of the architecture will be highlighted such as the scalability op-
portunities.
Subsequently, the main features related to system programmability will be explained
through the preliminary envisioned Instruction Set Architecture (ISA).

The chapter ends with a focus on the implementation of the selected testbed,
demonstrating the validity and feasibility of the desired scalability concepts.
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4.1 Node Overview
The accelerator array designed in this thesis, as anticipated, is part of a more
complex structure called Node.
In detail, each Node is composed of several blocks whose main purposes are:

i. Communicate information about the node status to the spacecraft and
other nodes within the tile.

ii. Exchange data useful for the computations of the node (inbound and out-
bound).

iii. Monitor the system’s health and, if required, react with proper recovery
mechanisms.

iv. Manage the transfer of data to and from the main memory for processing.
In Figure 4.1 the high level block diagram showing the design main blocks is re-
ported. From this picture, the following building blocks can be identified:

• The main Processing System which is charge of two main activities: to run
the cluster management services, and to run the specific computations and
data-flow management operations.

• A dedicated health status monitoring IP core which has the main task of
monitor the health status of the Node and the Tile.

• The data link manager which is composed by two main blocks in charge of
managing the data flow across Nodes and within the Node itself.

• The DDR4 Memory Controller, which enable the access to the on-chip
external memory.

• The Data Link connections. In particular, a high-data-rate communication
protocol is required for data transfer and consequently the Aurora proto-
col is envisioned to be chosen, since it allows to reach up to 16 Gbps of
throughput on each lane.

• The Robust Bus for Health Status information exchange.

• The Control Link connection which is necessary for the observability of the
Node status. In detail, the connection for observability does not require
high-data-rate communications and it is therefore envisioned to be designed
with an I2C or CAN protocol.
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• At least one high-data-rate access and transfer device that allows data to
be transferred to and from the memory based on Direct Memory Access
(DMA) transfers.

• A dedicated interface infrastructure to feed and harvest data from the Array
of PFU-based Accelerators.

• The Array of PFU-based Accelerators, consisting of Clusters of Programmable
Functional units in charge of accelerating applications parallel and compute
intensive tasks.

Figure 4.1: High Level FPGA Block Diagram
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4.1.1 Design Flow
The identification of the architecture for the accelerator array has been guided by
two main drivers. On one hand, to satisfy system requirements, a framework has
been developed to achieve flexibility through scalability and programmability. On
the other hand, the design has been optimized in order to correctly address to the
requested execution of the selected testbed.
The project was designed using standards known as technical specifications, which
are the basic criteria that the design must fulfil. In detail, the main technical
specifications referred to the accelerator array design are:

i. The Node shall include an array of accelerators.

ii. The Node accelerators shall be programmable.

iii. Each Node accelerator shall include an addressable memory space and a
Digital Signal Processing unit.

iv. Each Node accelerator shall support at least the following SIMD instruc-
tions on operands of at least 8-bit or less than 16-bits:

• Sum;

• Subtraction;

• Absolute Value;

• Minimum among two values.

v. The array of accelerators shall support the instructions required to perform
the CN Processing, VN Processing, and AP Update of a Layered Quantized
Normalized Min-Sum LDPC decoding algorithm.

vi. The array of accelerators shall be composed by at least 128 processing
elements.

vii. Each 5% of available accelerators in the array shall provide an average
contribution of at least 1 Mbps while performing the computation for the
Layered Quantized Normalized Min-Sum LDPC decoding algorithm.

viii. The Node shall be able to receive and elaborate information for codewords
decoding with a gross rate of 20 Mbps.
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In this view, all possible techniques and methods to be employed to properly ful-
fil the above requirements were investigated using the study of various clustering
techniques, feasible strategies to minimise area and maximise performance while
fulfilling programmability.
In Figure 4.2 a flow diagram show the methodology used to for the identification of
the high-level system architecture.

Figure 4.2: High Level Methodology Flow

This assessment highlights the analysis performed according to the clustering ap-
proach that will be described in detail in the following sections.

In particular, the preliminary steps, as shown in the flow diagram in Figure 4.2,
were to establish a clustered structure that would fulfil the system requirements. In
addition, a potential scenario for performing a relevant test appropriate for verifying
the design was identified. In detail, the current structure has been developed mainly
to support the decoding of the LDPC for the CCSDS (1024; 1/2)[3].

Subsequently, the potential clustering strategies on the target device were ex-
amined in the architectural design, taking into consideration the feasibility in terms
of resources, as will be explained in further detail in subsection 5.2.1. Parallel to
that, the algorithm’s capabilities were chosen in order to allow for the right itera-
tions on the intended design. At the end of this step, a preliminary baseline of the
achievable performance of this preliminary design was carried out.

Finally, during the architectural finalization stage, the design was validated
via functional verification of the system’s behaviour, as well as an assessment of the
achievable performance has been performed.
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More in detail, the PFU design has followed and incremental approach, in order to
iteratively validate, test, and improve the envisioned functionality.
The main aspects tackled in this phase have consisted in:

i. Evaluate the DSP hard macro flexibility.

ii. Identify how to effectively couple the DSP hard macro with the BRAM-
based PFU Local Memory.

iii. Identify basic functional requirements and which of them shall be imple-
mented in DSP versus custom logic.

iv. Consolidate the preliminary strategy to cluster and manage groups of PFUs
presented in subsection 4.2.1.

v. Identify an effective strategy for feeding and harvesting data to/from these
clusters.

4.1.2 Data Flow
Data-flow mechanism has to be evaluated with respect to data transfer through
memory structures in the design. The envisioned memory units for data storing
in the design are mainly two: one is the main memory, the Double Data Rate
(DDR4), which is located off-chips (i.e., out of the FPGA) and contains both data
and instructions and it is located off chip, while the other large portion of memory is
made up of local memories organized as will be described in the following sections.
From Figure 4.1 the following data flows can be distinguished:

1. Incoming data from the outside are sent to the device through a high data
rate communication link. They are therefore stored inside the DDR which
is located off-chip.

2. Then, data has to be transferred in the FPGA through a specific block
that allows to have a proper interface with the external memory. As DDR
includes both computations data and processor instructions, it is important
to manage data transfer in an appropriated manner with the microproces-
sors.
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3. As soon as data have been transferred within the FPGA, they will be trans-
ferred to the accelerators array through a specific structure implementing
the clustering architecture discussed in subsection 4.2.1.

4. Finally, accelerators array computations results will follow the same path
in the opposite direction reaching the DDR memory.

One of the most critical points for data distribution the bottleneck due to the data
retrieve from the DDR as it is equipped with a single access point.
For this reason, a specific structure has been designed allowing to maximize the
distribution of data as much as possible by minimizing the storing latency but
above all allowing to have a reasonable fanout (i.e., number of inputs that can be
connected to the output of a only logical gate). In section subsection 4.2.1 this
point will be deepened.

4.2 Preliminary Design Overview
The goal of this section is to explain the design flow used to finalize the PFU
implementation/realization. In fact, this incremental approach allows to obtain
preliminary information in terms on resource usage and power consumption for
the design implementation and an initial estimation of the required time for the
decoding process.
In subsection 4.2.1, an high level overview of the clustered architecture will be
provided, in order to present the envisioned design.
Subsequently, in subsection 4.2.2 a general outlook on the preliminary version of
the functional unit will be provided, examining in more detail the main blocks that
make up the composition.
Finally, in subsection 4.2.3 it will be described which points can be consolidated
and which ones will have to be re-evaluated for the next design release.

4.2.1 Accelerators Array Infrastructure
The main reason for clustering consist of optimizing the data feeding and harvest-
ing management, avoid explosion of fanout and routing, and produce a replicable
structure that can scale with required computational effort.
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The envisioned structure has been designed in order to meet the requirements of the
selected testbed. In fact, in order to maintain performance requirements presented
in subsection 4.1.1, a number of PFUs have been estimated to process different
H-matrices decoding the LDPC code described in section 3.3 while maintaining
performance requirements.
In this view, the structure will allow to process multiple matrices as expected or to
re-execute a certain task in a specific region in order to recover from a hypothetical
failure of a section of the accelerators owing to the issues stated in section 1.4.
Since not all PFUs can be connected at the same time to the output bus coming
from the DDR, it was necessary to think of a structure that would allow to obtain a
feasible fanout. Typically, to have a low fanout it is possible to use a serial structure
that has a single access point connected to one block after another.
The PFUs organization wants to obtain a trade-off between these two aspects by
obtaining a structure with a low fanout (i.e., two) combined with a serial structure
that sends data to one PFU after another within the various clusters.
The envisioned clustering approach is shown in Figure 4.3, with the highlights of
the sub-portion of this structure.
Considering Figure 4.3, the maximum data width available for the exchange with
external memory elements, and the FPGA fabric layout, it has been obtained as
optimal clustering approach the following one:

• PFUs to be grouped in cluster of 8.

• Clusters of PFU to be grouped in branch of 2.

• Each cluster branch to be feed sequentially by a sub-portion of 32 bits of
the 512 available at the input of the cluster array.

• A total of 16 branches are required to execute support all the required PFU
cluster groups.

In detail, at the current stage, each cluster of a branch can be fed serially with 32-
bit inputs and starts its computation in a pipelined manner. Conversely, clusters of
different groups can process their input in parallel, as they can be fed at the same
time.
In fact, according to the current view, PFUs that belong to the same “Collection”
can make their processing concurrently, while PFUs belonging to the same Cluster
can process their data one after the other, as will be explained in detail in following
sections.
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Figure 4.3: Array of Clustered PFU-based Accelerators with the Highlights of
“Cluster” and “Collection”.

4.2.2 Initial PFU Design
As anticipated, the algorithm (CCSDS Layered Decoding, 1024-1/2) [3] is taken as
reference and mapped on the DSP-based functional units through a dedicated state
machine which evolves accordingly and provide a simpler set of programming word
to the PFU.

In this first implemented version, the DSP core is controlled at the low level by a
small FSM which manages the operations to be executed by the DSP according to
the task control sequence (which in the following will be addressed as OPCODE)
received, which will be optimized in a later stage.
In Figure 4.4 a high-level representation of the described PFU architecture is re-
ported.
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Figure 4.4: High Level PFU Preliminary Architecture

In detail, the PFU receives 32-bit wide inputs from outside and produces an
output of the same width. The PFU inputs and output signals can be acquired form
the PFU itself or “forwarded” to the next one. In fact, the preliminary PFU design
has been realized to enable the interconnection and cascading of several PFUs to
form a cluster.

The main effort has been focused in obtaining a baseline structure to analyze
and validate the architectural approach. Once such baseline has been consolidated,
it has been used as foundation to perform further and focused optimizations to
increase the programmable unit flexibility, while minting resource usage controlled.

Concerning the PFU structure, five main sub components can be considered: they
will be discussed in detail below.

Finite State Machine
Each PFU is equipped with two FSMs: a parent FSM that handles high-level con-
tacts with the outside world by sorting data to and from the BRAM or the next
PFU, and a smaller FSM identified in Figure 4.4 as the Wrapper FSM that is re-
sponsible for executing the algorithm. The FSM is not programmable at this stage
because it is specifically made for the DSP and operation management. This is one
of the most important components that will be developed and presented in the final
version in subsection 4.3.1.
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Because all PFUs in the cluster conduct the same functions, in addition to control-
ling programmability, it is also important to consider limiting the number of FSMs
within the same cluster in order to reduce resource utilization as much as possible.

Computing Core
The computing core present in each PFU is the DSP unit described in detail in
section 3.1. It was used in the SIMD configuration as can also be seen from the
high-level diagram shown in Figure 4.8. In this way the maximum computing ca-
pability is guaranteed, allowing to process 4 data sets in parallel exploiting the low
parallelism of the data being worked on.
As the description of the SIMD mode in subsection 3.1.2 has shown, the use of
this mode compromises the use of one of the input ports of the DSP (i.e., port
D). However, this does not introduce performance degradation for the execution of
required operations for the selected testbed as it does not require calculations be-
tween more than two operating per time. On the other hand, by taking advantage
of the programmability of the envisioned architecture, all ports can be re-titled if
needed for other applications.
The remaining input ports of the DSP have been suitably mapped to receive the
necessary input data coming from the BRAM or from the temporary support reg-
isters inside the PFU using suitable multiplexers. Similarly, the output port is
managed in order to allow the storage of the results in the local memory or in the
respective internal registers.
Finally, the DSP operations useful for the realization of the testbed are sums and
subtractions suitably mapped according to the algorithm described in section 3.3
that meet the technical specifications in subsection 4.1.1.

Local Memory
Each PFU includes a dedicated local memory, which similarly to the DPS unit is im-
plemented relying on a ultrascale primitive hard macro. In detail, the RAMB18E2
is used [24].
The high regularity and organization provided by the FPGA fabric between DSP
Slices and BRAM Slices enable to couple to each DSP one BRAM instantiated as
18 kbit RAM as discussed in subsection 2.3.1.
The RAMB18E2 is explicitly instantiated in the Hardware Description Language
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(HDL) as a Simple Dual Port RAM supporting 32-bit data width and up to 512
storage depth. In this way, each PFU local memory has a pair of ports allowing
independent reading and writing operations.
In fact, with two independent ports it will be possible to optimize the order of
execution, starting data processing while completing last data storage. Since only
one port for each operation is present, the possibility of writing/reading from the
outside or inside the PFU must be managed, a task that is devoted to the FSM
which controls the operations.
To efficiently manage this data transfer, both the interfaces of the memory have
been customised rather than depending on the supplier’s memory controllers, with
the goal of maximizing performance as much as possible. The standard interfaces
for accessing the BRAM, in fact, are AXI-type interfaces (i.e., a standardised com-
munication protocol for data transfer), which are very useful since they allow several
blocks to be interfaced with each other, but they have significant latencies, so it
was decided to work with a custom interface to maximise communication delays.

Ancillary Logic Components
As previously stated, each PFU inside is equipped with custom logic in order to
maximize performance. By using appropriate support registers, in fact, it is possi-
ble to minimize writing and reading latencies in the BRAM, managing to use the
DSP. However, a trade-off have been considered to achieve lower resource usage for
support registers and lower latencies.
Furthermore, through the use of sorting components (i.e., multiplexers) it is possi-
ble to supply the computing units with the necessary data. As anticipated, in fact,
each PFU has a single DSP that have to perform different operations, consequently
it is necessary to provide it with the necessary data for each iteration.
All custom components inside the PFU are managed by the cluster FSM. This
means that the enable of the registers and selectors of the multiplexers are suitably
controlled by an additional custom logic available for the whole cluster capable of
carrying out the operations required by the application.
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Input & Output PFU Interfaces

Each PFU shall enable the communication with the outside. In particular, the
PFU shall be capable or receiving input data as well as providing the output of
its computation. Furthermore, it will be necessary to provide to each cluster the
configuration words to implement the desired programmability as depicted in sub-
section 4.3.3. Finally, it will be necessary to provide the clock and reset respectively
to synchronize the operations and to provide system initialization as depicted in the
previous subsection paragraph. The main input and output interface are shown in
Figure 4.5.

Figure 4.5: PFU Input & Output Interfaces

The data transmission management and storage protocols are strictly linked to the
cluster organization described at the beginning of subsection 4.3.1. In detail, input
data arrive within a serial data protocol which requires longer times for data send-
ing but allows to reduce the parallelism of the communication buses.
Once memory have been loaded with input serial data, the Cluster FSM will con-
nect the input bus indicated in Figure 4.5 as Data_in with the input bus of the
next PFU named Data_in_next.
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4.2.3 Preliminary Design Evaluation
This first benchmark allows to verify the key concepts presented in subsection 4.1.1.
In particular, different architectural strategies were investigated allowing to identify
limitations and potentiality that the initial design presents.
The main ones are analyzed in detail below:

i. It has been possible to identify and investigate the DSP potentiality mainly
devoted to testbed operations. Moreover, it has been extended the know-
how to other operations as well, since system programmability is one of the
key aspects of the project.
Possible operations have been evaluated to be carried out in SIMD mode,
evaluating whether and which ones were sufficient for the realization of the
testbed and how to dynamically manage the control signals of the DSP to
exploit programmability. In detail, the main operations for the realization
of the testbed are additions, subtractions, absolute value and minimum
value. It has been seen that all these operations can be carried out through
appropriate configurations of the DSP.
However, a first limitation is the impossibility of carrying out operations
beyond simple additions and subtractions when working in SIMD unless
re-configuring the DSP. Furthermore, for the execution of the testbed it is
necessary to calculate the minimum value between five data and this is not
possible, the strategy is to calculate iteratively the minimum value in pairs
of two, paying higher latency.
Finally, for absolute value calculations it is necessary to perform two op-
erations with the same data in order to estimate the sign between the two
difference (i.e., performing 0-A and A-0 and then evaluating the sign the
absolute value is founded). This means that even working in SIMD 4x12
it is possible to calculate the absolute value of only two data at a time.
However, also in this case it has been considered that the latency intro-
duced with respect to the increase of resources necessary in the case of
implementation in sparse logic is a good compromise.

ii. It has been possible to couple the two key blocks (i.e., DSP and BRAM)
as will be deepened in subsection 4.3.2 by identifying the potentiality and
bottlenecks that this combination presents and how exploit the interaction
between these two blocks maximizing performance and minimizing the use
of resources.
In particular, the coupling alternatives between DSP and BRAM were eval-
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uated considering the latencies introduced with a intensive use of memory
or, on the other hand, the high use of resources in the case of intensive use
of temporary resources such as registers.
In detail, the use of temporary registers makes it possible to optimize pro-
cessing times while the intensive use of memory requires times for read and
write accesses, increasing processing times. The envisioned approach aims
to obtain a trade-off between these two aspects using the minimum amount
of resources sufficient to execute the operations with the minimum increase
in terms of execution time.

iii. It has been possible to identify the possibilities of implementing operations
with the use of custom logic and which through the use of the DSP, in detail
it was assessed that the use of custom logic for arithmetic operations did
not allow to obtain higher performance while introducing a considerable
overhead of resources. For this reason the architectural choices have moved
towards the intensive use of the DSP for arithmetic operations leaving the
custom logic only for the boundary operations such as multiplexer and
registers.
In detail, as previously anticipated, it has been opted for the use of the
DSP by exploiting the elementary operations to carry out all the steps of
the algorithm selected as testbed.

iv. It has been possible to consolidate the key concepts of the clustered ap-
proach identifying blocking points of the strategy. In this view, it has been
noted that it was necessary to use a grouping not only in terms of the
arrangement of the PFUs but also at a functional level, allowing to have a
single FSM for the cluster in order to minimize the resources utilization.
More in detail, the use of a shared FSM between the eight PFUs of the
cluster allows to share the operations limiting the programmability of the
system but allowing to have an optimization of the consumption of re-
sources. In this view, the penalty to pay for programmability is not very
relevant as it would also be difficult to manage a large number of PFUs
with such detailed granularity.

v. Finally, it has been possible to identify the reading and writing strategies
for input and output data in order to correctly synchronize the execution
of the operations.
In particular, it was tested the envisioned feeding system and the relative
output data reading through the serial interface which will be analyzed
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more in detail in subsection 4.3.1 allowing to have a continuous flow of
input and output data and so that the PFUs work in pipeline.
Furthermore, through the first implementations it was possible to test the
switch mechanism of the input bus and the relative output bus which are
suitably connected to the corresponding PFU according to the data being
received.

These considerations allowed to continue by incremental steps towards the final
structure, refining the envisioned architecture step by step.

4.3 Final Design Overview
The primary principles that have been applied in the design of the final PFU will
be outlined in this section, as it will presents the changes from the previous version
and the opportunities.
As anticipate, the Programmable Functional Units (PFUs) represent the main com-
puting resources to accelerate Digital Signal Processing tasks and it is envisioned
to be wrapped in a high-level programmable shell, capable to efficiently provide the
settings for the inner DSP, BRAM and ancillary components.
This control shell is envisioned to be used to manage a cluster of PFUs as will be
described in subsection 4.3.1 in opposite with the preliminary design described in
section 4.2 where each Functional Unit has its own hard-coded Finite State Machine.

Subsequently, in subsection 4.3.3, the proposed approach for exploiting programma-
bility will be detailed.
In this view, a trade off has been considered to obtain a sufficient granularity with-
out introducing an overhead in terms of minimum programmable and reconfigurable
area. In the proposed structure this minimum area corresponds to a cluster, com-
posed of 8 PFUs. This choice was made considering that a too large (i.e., all the
accelerators array) reprogrammable structure could be disadvantageous because it
would not allow for sufficient flexibility in terms of programmability and reconfigu-
ration time, on the other hand a structure with an excessively fine granularity (i.e., a
single PFU) could instead introduce a very large overhead in terms of management.
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More in detail, the updated clustered structure will be described in subsec-
tion 4.3.1, namely, the control unit will be shared for the cluster’s functional units,
as anticipated.

The internal structure of the PFU will next be described in detail in subsec-
tion 4.3.2, showing which main resources are employed.

The primary configurations and structure of the instruction supplied to the
PFU to accomplish programmability will thereafter be presented in subsection 4.3.3.

Finally, in section 4.4, the algorithm’s mapping onto the implemented structure
will be explained.

4.3.1 Clustering Approach
The cluster architecture has been realized in order to maximize computation through-
put while minimizing latencies. The involved latencies are mainly related to the
reading and writing of the input data. In fact, using the proposed structure, it is
possible to reduce data transfer latency and ensure that performance mostly de-
pends on data processing rather than transfer operation.
As an example, for data transfer of one of the tasks for the execution of the algo-
rithm selected as testbed, e.g. for the 3-circulants task, there will be 6 clock cycles
of latency and approximately 50 clock cycles for computation. Consequently, every
6 clock cycles a new PFU will start processing and every 6 cycles thereafter will
provide its output results.
The envisioned structure is reported in Figure 4.6.

In this structure, the data arrive on a 32-bit bus named DATA_in and are stored in
one PFU after another.
In detail, the incoming data are the gamma and beta values for the LDPC algorithm
decoding that must be processed, the first twelve or six values (depending on the
number of circulants within the processed layer) are stored in the BRAM within the
first PFU and subsequently through the block A will switch connecting the input
bus with the second PFU, and so on. In this way it is possible to reach all the
PFUs with a limited fanout and avoiding having a high latency. As a large number
of PFUs is present, in fact, it would not have been possible to reach each of them
individually as, assuming 128 PFUs and having to transfer 6 data each (e.g. in the
case of task 2 for the testbed algorithm), the last functional unit would have had a
latency of 128 · 6 clock cycles.
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Figure 4.6: High Level Cluster Block Diagram

After having communicated all the real data to the current cluster, data will
be sent to the second cluster which are part of the block called CLUSTER_GROUP in
Figure 4.3.
In particular, the sixteen groups of clusters will be filled in a serial way, one after
the other, and each cluster will be managed as just described. On the other hand,
the 16 groups will work in parallel and therefore the overall latency is equal to that
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of the single group.
Similarly, block B is used for reading the data produced by the PFUs and one after
the other connects the output of the PFUs to the output bus of the cluster named
as DATA_out.
The control signals produced by the cluster’s Finite State Machine are suitably
multiplexed to all the Functional Units of the cluster with the aim of performing
the operations with the correct timing. In detail, as data is delayed by a number
of clock cycles equal to the number of gamma values (i.e., 6 or 3 depending on
the number of circulants within the processed layer), the instructions will also be
delayed the same clock cycles. In this way, the processing of each PFU occurs
concurrently with the start of data transmission.

Scalability Assessment
The main goal of the analysis presented in the following is aimed at identifying an
architectural strategy capable of providing a solution able to maximize the porta-
bility and scalability. In fact, talking more specifically of scalability, the proposed
architecture embeds all the necessary components and computing feature to be
used as overlay concept. Differently from monolithic RTL approaches, this allows
to potentially extend the proposed solution both in terms of devices and number
of programmable accelerators to deploy different and bigger applications without
the needs to rethink the whole architecture, with the relative mitigation approaches
and providing opportunities for portability.
In particular, the cluster described at the beginning of subsection 4.3.1 is the ele-
mentary block on which the system is based. More in detail, groups of 2 clusters
form what is called CLUSTER GROUP and which is indicated in Figure 4.7. Subse-
quently, the group described is replicated several times (16 times for the testbed)
to obtain the final structure composed of a certain number of PFUs (256 PFUs for
the testbed purpose). Thus, the architecture obtained allows to process a layer of
the H matrix of the testbed in SIMD mode as will be depicted in section 4.4.
The key point that allow to have such a scalable structure is the use of a 512-bit
data bus which is divided into 16 sections of 32 as depicted in Figure 4.7.
From Figure 4.7 can be noticed how expanding the input feeding data bus it is pos-
sible to replicate different times the same structure obtaining different subsystems
working on a different data bus portion being completely parallel and independent.
As a result, the potential computing performance is n times higher then a single
branch, where n in the shown scenario is 16 since the 512-bit input bus was designed
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Figure 4.7: Clusters Scalability

to support 16 clusters.
For the system output, everything works in a specular way, the only difference is
due to the fact that while at the input, as seen from Figure 4.7, the clusters are
connected to the same bus obtaining a fanout 2, at the output this is not possible
and shall be used a different mechanism. In detail, the output data of the clusters
will be sent to a multiplexer and its output will then be sent to a data bus organized
exactly like the feeding bus that can be seen in the previous figure.

Commercial Architectures Comparison
The higher-level aspect of the clustered structure of several nodes anticipated in
section 2.1 is another key element that may help to estimate the system scalability.
The proposed architecture, in particular, is very similar to the conventional struc-
ture employed by current Graphics Processing Units (GPUs), which are built on a
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system of accelerators also known as Processing Elements (PEs) that are respon-
sible for supporting the compute intensive part of the calculation. GPUs, in fact,
are primarily intended to achieve fast throughput and contain a huge number of
computing units, making them ideal for compute-intensive applications that require
high speed [30].
Due to its array structure, FPGAs, on the other hand, provide a great level of flex-
ibility and programmability. In addiction, the architecture proposed in this thesis
makes it feasible to take use of the accelerator array’s programmability and flexi-
bility due to the specific characteristics that have been anticipated and are detailed
in depth in the subsequent sections.
In Table 4.1, a high-level comparison that allows an initial assessment in terms of
common characteristics such as operating frequency, operations performed per sec-
ond, power consumption, etc... This also allow a primary estimation of the main
feature comparing the XCKU040 FPGA [31][32] chosen as reference for the archi-
tecture testbed, and the GeForce-RTX-3070 [33], which is one among the latest
GPUs on the market.

RTX 3070 Current Architecture

Working Frequency [MHz] High Medium
(≈ 1500) (≈ 250)

Number of PEs High Medium-Low
(5888) (128-256)

Peak Throughput High Medium
(≈ 20 TOPps) (≈ 123 GOPps - 246 GOPps)

Power Consumption[W] High Low
(≈ 220) (≈ 13)

Memory Size [GB] Medium Medium
(≈ 8) (≈ 2)

Radiation Robustness No Yes
Updates Availability No Yes

Cost [$] Medium-Low Medium-High
(≈ 600) (≈ 2-3 K)

Table 4.1: Comparison Between Current Design Architecture and Commercial
GPU
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It should be observed that, in order to offer a fair comparison, the suggested archi-
tecture’s performance has been expressed in operations per second. To accomplish
so, the activities of storing and reading, adding, subtracting, calculating the mini-
mum and absolute value described in section 3.3 have been taken into consideration;
moreover, all arithmetic operations have been multiplied by 4 owing to the usage
of the SIMD mode described in subsection 3.1.2. This resulted in a total of 192
operations, which were completed in 50 clock cycles. With a working frequency
of 250 MHz, 192 operations will be completed in around 200 ns. The amount of
operations per second of each individual PFU may be calculated using a simple
proportion, the obtained value has been then multiplied by the node’s PFUs and
reported in Table 4.1.

As can be seen in this preliminary comparison, the structure performs less well in
in the case of a single node, but it supports applications in space field and allows
the FPGA structure’s high flexibility to be leveraged.
Furthermore, if the study is extended to a set of four nodes, as anticipated, a more
balanced comparison may be produced.

RTX 3070 Current Architecture

Working Frequency [MHz] High Medium
(≈ 1500) (≈ 250)

Number of PEs High Medium
(5888) (512-1024)

Peak Throughput High Medium-High
(≈ 20 TOPps) (≈ 492 GOPps - 984 GOPps)

Power Consumption[W] High Medium
(≈ 220) (≈ 52)

Memory Size [GB] Medium Medium
(≈ 8) (≈ 8)

Radiation Robustness No Yes
Updates Availability No Yes

Cost [$] Medium-Low High
(≈ 600) (≈ 8-12 K)

Table 4.2: Comparison Between Tile Architecture and Commercial GPU
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As can be observed in Table 4.2, the suggested design’s high scalability capabilities
allow performance to be extended to equal the order of magnitude of the calcula-
tion capabilities of standard graphics computation devices. This result is clearly
preliminary, and all data reported must be considered as order-of-magnitude esti-
mations; however, it is clear that it is feasible to create a structure that is as large
and high performing as needed by increasing the number of nodes as needed. While
the number of GPU accelerators is significant but constant, in this architecture it
may be increased or decreased by taking use of the idea of scalability.
However, the development of a system of this type requires a higher cost due to
the components used and the techniques needed to allow the system deployment in
space application. However, another very important aspect for space applications
can be noted, namely power consumption. One of key aspects in space is in fact
keeping power consumption under control, and this is also one of the aspects for
which common devices such as GPUs are not widely used in space environment.

4.3.2 Final PFU Design
The Programmable Functional Units (PFUs) envisioned architecture is based on
two main elements: a DSP unit and a BRAM. Furthermore, custom logic will also
be included allowing from one hand to have temporary registers or multiplexers to
increase the functional unit flexibility and, on the other hand, to obtain the logic
connections useful to implement a dedicated Finite State Machine (FSM) able to
manage the PFU operations.
However, the FSM will not be included in each PFU as this would drastically in-
crease the resources usage, thus it will be shared among a cluster, as discussed in
subsection 4.3.1.
In fact, different considerations were taken into account in designing the PFU ar-
chitecture:

i. First, the Node contains different blocks (e.g., microprocessors, the health
checking system, the block for external communication) which will use a
certain amount of resources on the device. The first analysis was therefore
to estimate how many resources are available for the accelerator array net
of those used for system management.

ii. Secondly, a trade-off between the use of custom logic (e.g., support tempo-
rary registers or multiplexers) and a BRAM based structure (i.e., less use
of temporary registers at the expense of greater latency) were analyzed.
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From one side, an higher customization increase computation flexibility and efficacy
at the cost of an increased amount of resources. On the other hand, it produces
a lower programmability feature than just using memory as storing point, also re-
quiring a greater amount of resources. These analyzes made possible to obtain a
structure that reflects the programmability project requirements without compro-
mising computational performances.
The high level diagram representing the PFU structure which operate complying
with the cluster FSM is shown in Figure 4.8 with the highlight of the SIMD mode
anticipated in previous sections.

Figure 4.8: PFU High Level Block Diagram

As can be seen from Figure 4.8, the two macro-blocks mentioned and also the custom
logic such as registers or multiplexers are present allowing to perform required oper-
ations. The FSM, in turn, instruct the PFUs accordingly to the received OPCODE
sequence ordering corresponding actions to the computing cores. The OPCODE is a
configuration word designed to allow the functional unit programmability. Through
this sequence of bits, in fact, it will be possible to request the execution of differ-
ent operations and to enable the needed resources behaviour. It will be further
discussed in subsection 4.3.3.
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4.3.3 Instruction Set
The current section provides an overview of the instruction set that allows PFUs
to perform a specific set of operations. In fact, the PFU either as single element
or relying on cascading properties, is envisioned to support a set of operations
consisting of the foundation for Telecom Functionalities, and more in details for
Digital Signal Processing.
In Figure 4.9 an high level representation of the Instruction format is reported. In
general, the format of the instruction set is contrived to support the configuration
of:

• Input/Output data management controls, referred as to IO Ctrl

• DSP primitive management, referred as to “DSP Ctrl”;

• BRAM primitive management, referred as to “BRAM Ctrl”;

• Ancillary Wrapper components (e.g., registers, Mux/Demux, etc.), referred
as to “A Ctrl”.

Figure 4.9: Instruction Set Format

The envisioned strategy is based on the development of different tasks that will
be defined in advance and appropriately programmed through the selection by the
application. For the management of the algorithm selected as testbed there will be
mainly two tasks necessary to carry out the operations for three or six circulants in
accordance with what has been described in section 1.4.
More in detail, a library has been created containing a package where tasks are
defined and, subsequently, depending on the task selected and the current iteration
managed from the Cluster FSM, the correct sequence will be supplied to the PFU.
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In Appendix A it is possible to see an example of a sequence of instructions for the
implementation of the task related to the operations for carrying out a layer of the
LDPC algorithm with 3 circulants.
The fundamental operations as well as the combinations thereof that can be used for
more complex tasks (i.e., the calculation of the minimum or of the absolute value)
can be suitably coded and inserted in the package at the time of programming.
In this way, it is possible to exploit the programmability of the system and it is also
possible to program each cluster of 8 PFUs in such a way to perform a different
task, expanding the potential of the system as much as possible.
In the next section the main operations required for the realization of one of the
two tasks for the realization of the LDPC algorithm will be presented.

4.4 LDPC Min-Sum Algorithm Mapping
In this section it will be shown how it is possible to use the structure created to
map the algorithm chosen as a testbed, in detail the main steps will be shown and
the chosen configurations explained.
The operations required to perform the Layered LDPC Min-Sum Algorithm decod-
ing kernel (i.e., VN Processing, CN Processing and AP Updated) to process one
row of the H-matrix are the ones explained in subsection 3.3.1.
The processing of each row of the H-matrix can be performed in parallel, using
the SIMD DSP feature presented in subsection 3.1.2 and the array of accelerators
depicted in subsection 4.2.1.
Therefore, to deploy the target telecom testbed, each PFU will perform four sets of
operands concurrently.
Nominally, the operation to perform can be dived into the following sets of opera-
tions:

• VN-Processing: a series of three or six subtractions (depending on the
number of circulants within the layer) to compute the α values.
In detail, this operations are carried out on the basis of gamma values
coming from outside and beta ones stored within the local memory. Con-
sequently, for the calculation of alpha it is necessary to perform 2 accesses
in memory, one to read the gamma value and one for the beta value which
will be both stored on two temporary registers. Subsequently, the alpha
results are stored both in local memory and in temporary registers. This
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is because on the one hand it is useful to keep them in support registers
to avoid additional latencies for the following gamma calculation. On the
other hand, for the calculation of the absolute value it may be useful to
have the values stored in memory avoiding higher combination of registers
selection and consequently a lower use of multiplexers.
As an example, in Table 4.3 can be noticed the steps for three circulants
computations related to the alpha values. .

Clock Store Operations Store Operations Read Operations ComputationsCycle (from outside) (from PFU)
1 Storing γ0÷3 Reading β0÷3

2 Storing γ4÷7 Reading γ0÷3

3 Storing γ8÷11 Reading β4÷7 Computing α0÷3

4 Storing α0÷3 Reading γ4÷7

5 Reading β8÷11 Computing α4÷7

6 Storing α4÷7 Reading γ8÷11

7 Computing α8÷11

8 Storing α8÷11

Table 4.3: Computing α Sequences

• CN-Processing: a series of three or six β computations (depending on
the number of circulants within the layer), which are obtained from the
concatenation between the product of the signs and the absolute minimum
of the involved α.
In detail, the beta computations are mainly divided into two phases, first
alpha absolute values are evaluated, then the minimum among the absolute
is calculated. More specifically, as anticipated in subsection 4.2.3 for both
these operations it was decided to use the DSP which, despite increasing
the latency due to the computation of the different operations, allows to
save considerably in terms of resources.
The evaluated absolute value will be stored in memory to minimize the use
of temporary registers. Subsequently, the minimum value will be evaluated,
in detail as has been anticipated, in the case of six circulants machines the
latency increases drastically as the minimum must be computed in pairs
and therefore for each beta value it is necessary to perform 4 iterations.
Finally, the minimum value is concatenated with the signs product and
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also stored in locale memory, in particular the beta value will be kept
locally for the next iteration.
As an example, in Table 4.4 can be noticed the steps for three circulants
computations related to the beta values. .

Clock Store Operations Store Operations Read Operations ComputationsCycle (from outside) (from PFU)
3 Storing γ8÷11 Reading beta2÷3 Computing α0÷3

4 Storing α0÷3 Reading γ4÷7 Computing absolute0÷1

5 Reading β8÷11 Computing α4÷7

6 Storing α4÷7 Reading γ8÷11 Computing absolute2÷3

7 Storing absolute0÷1 Computing α8÷11

8 Storing α8÷11 Computing absolute4÷5

9 Computing absolute6÷7

10 Storing absolute2÷3 Computing absolute8÷9

11 Computing absolute10÷11

12 Storing absolute4÷5 Computing β0÷3

13 Storing β0÷3 Computing β4÷7

14 Storing β4÷7 Computing β8÷11

15 Storing β8÷11

Table 4.4: Computing β Sequences

• AP-Update: a series of sum between the computed α and β to evaluate
the new γ values.
In detail, the operations required for the gamma calculation are simple
sums between beta and alpha. Therefore, each step requires to read pre-
viously calculated beta value from the memory and add it to the alpha
value which is stored in the temporary registers. Finally, the gamma value
just calculated is stored in memory and subsequently sent out through the
dedicated bus.
As an example, in Table 4.5 can be noticed the steps for three circulants
computations related to the beta values.
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Clock Store Operations Store Operations Read Operations ComputationsCycle (from outside) (from PFU)
15 Storing β8÷11 Computing γ0÷3

16 Storing γ0÷3 Computing γ4÷7

17 Storing γ4÷7 Computing γ8÷11

18 Storing γ8÷11

Table 4.5: Computing γ Sequences

From the operations shown in these tables it can be noticed how thanks to the use
of the DSP unit it is possible to perform the decoding operations required by the
testbed. Furthermore, through an efficient timing scheduling of the operations it
can be seen how the decoding sequences have been minimized as much as possible.
In fact, a first assessment was also carried out on the design achievable performance,
and will be discussed in detail in subsection 5.2.3.
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5
Results

This chapter will show the main analyzes and tests carried out to demonstrate the
correct functioning of the design and to verify the performance and potentiality of
the system.

The Xilinx Kintex Ultrascale XCKU040 [31][32] has been chosen for the tests as
it will also be the board used for the radiation tests once the design will be finalized.
In particular, the XCKU040 component was chosen owing to the availability of the
development board, making it a valid solution for the deployment of the intended
testbed implementation. It’s important to note, though, that the COTS XCKU060
[32] device is also available. It uses the same technology and core design as the
XCKU040, allowing for easy comparison and mobility. When comparing them, it
is easy to see that the resource count is somewhat lower. Following a preliminary
investigation, it was determined that the resources provided in the 040 version were
sufficient for an initial assessment of the design, which is why it was chosen.
The tools used for this development are provided by Xilinx and are:

• Vivado 2021.1

• Vitis 2021.1

• Xilinx Power Estimator

In detail, the flow followed for the verification and for the realization of the setup
created for the deployment of the tests will is firstly reported.

Secondly, the analysis carried out regarding the resources utilization will be
presented with the relative comparison between the two designs discussed in chapter
chapter 4.
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Subsequently, an analysis will be shown comparing the present proposal per-
forming the algorithm discussed in section 3.3 used as a testbed with a commercial
IP-CORE that performs the same function in terms mainly of resources and per-
formance.

Finally, the actual functioning of the structure will be demonstrated through
simulations and tests carried out on board tests.

It is important to note that in most of the analyses that follow, a comparison
will be done between the two designs outlined in chapter 4. Because the initial
version of the PFU was not small enough to be replicated the required number of
times, as will be addressed in detail in subsection 5.2.1, a limited number of PFUs
were evaluated in both situations to create a fair comparison (i.e. 128 PFUs for a
total of 16 clusters).

5.1 Methodology
The flow of analysis and verification followed consists of verifying the feasibility
possibilities of the design and subsequently an implementation on board for func-
tional and performance verification.
The methods used to validate the design are depicted in the flowchart assessment
in Figure 5.1. As can be seen, after having finished the architecture’s design, the
capability to integrate the array of accelerators on the board was verified through
the resource occupation analysis. Various portions of the design had to be reconsid-
ered during this phase in order to accommodate the required number of accelerators
within each board.

At the same time, the functionality of the model was validated using testbench
and simulations.

Subsequently, power and performance analysis was carried out in order to
verify the system’s capabilities, both in terms of power consumption and bandwidth.
Concluding the analysis point of view with a comparison was made between the
solution described in this thesis and a commercial device, which will be addressed
later, to verify the capabilities of the envisioned architecture and confirm the trade-
offs between programmability and growing occupancy.

Parallel to this, necessary data for on-board testing was obtained, and an
excel model was developed to provide a gold standard for measuring the accelerators
functionalities. Specifically, a collection of input data representing the input samples
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Figure 5.1: Results Analysis and Tests Methodology

for the LDPC decoding method defined in subsection 3.3.1 during this phase has
been generated.

Following that, the hardware design was functionally tested to check on-board
behaviour and validate the design; the output bits were generated starting from
input samples, and the architecture was thus consolidated.

5.2 Analysis
Some of the main analyses carried out to evaluate the intended structure will be
described in this section, with the goal of reporting the factors that have allowed
to fine-tune the project.
The resource analysis will be presented in depth first, with a comparison between
the two primary variants of the accelerator array discussed in the previous chapter.
Following that, a comparison with a commercial IP-CORE will be done in order to
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demonstrate the project’s capabilities and how they might be achieved.
The power consumption study will then be explained, with the help of the Xilinx
Power Estimator (XPE) tool, which allows an estimate of the static and dynamic
power that a section of the FPGA will require based on the resources utilization.
Finally, a performance study will be provided in two primary scenarios: absolute
performance and performance per Mb.

5.2.1 Resources Utilization
This subsection will present the results of the resource utilization analysis. In fact,
an assessment of the resources utilised for accelerators array was done based on the
preliminary partial designs acquired.
This analysis was originally performed in numerical form, resulting in the deploy-
ment of a cluster and then assuming a linear trend. Then, a confidence margin has
been added to the obtained results due to the preliminary nature of the utilised
design. Considered resources for the analysis are:

• CLB LUTs

• CLB Registers

• BRAM

• DSP

The analysis was conducted employing Vivado 2021.1, which was deployed to de-
velop and implement the design as well as collect resource use data using the
"report utilization" function. The current study was conducted by compar-
ing the two PFU variants reported in the previous chapter. The analysis findings
of the structure referred to as the first design, in which each PFU has its own FSM,
are reported in Table 5.1. In detail, the use in absolute terms and the percentage
occupancy on the target board will be shown for each component reported.
Because the computing structure is replicated many times within the cluster, the
PFU structure will be visibly more sophisticated in this situation, resulting in a
higher resource usage.
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CLB LUTs CLB Registers BRAMs DSPs
1 Cluster ≈ 5% ≈ 1% ≈ 1% ≈ 1%

16 Clusters ≈ 85% ≈ 25% ≈ 10% ≈ 5%
16 Clusters ≈110 % ≈ 30% ≈ 15% ≈ 10%x1.25 margin

Table 5.1: Resources Utilization First Design

Similarly, data from the analysis performed with the second design has been
provided in Table 5.2, resulting in a common FSM for each PFU within a cluster.
The duplicated structure in this scenario will just be that of the PFU without the
computational component; as a result, each PFU will process distinct data, but the
controls will not be replicated; as a consequence, a lower resource usage is expected
than in the prior example.

CLB LUTs CLB Registers BRAMs DSPs
1 Cluster ≈ 1% ≈ 1% ≈ 1% ≈ 1%

16 Clusters ≈ 30% ≈ 20% ≈ 10% ≈ 5%
16 Clusters ≈ 40% ≈ 25% ≈ 15% ≈ 10%x1.25 margin

Table 5.2: Resources Utilization Final Design

As anticipated, a multiplier factor of 1.25 is used to the final resource consumption,
although this structure ensures that the number of resources used is sufficient for
implementation on a board, it remains a conceptual analysis since it is linear ex-
tended to the entire PFU array.
Furthermore, as predicted, the improvements outlined in the preceding chapter
about the paradigm change with which the FSM is employed result in a significant
improvement in terms of resources, which in the case of LUTs, for example, results
to be less than half.
A bar graph has been provided that displays the trend of the key resources under
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investigation in order to offer a visual representation of the data presented in Ta-
ble 5.1 and Table 5.2. Only the resources relating to LUTs and Registers have been
reported for the sake of simplicity because, as can be seen from previous tables,
the data relating to BRAMs and PFUs do not change in the two designs because
the internal logic of the PFU has not changed in terms of storage memory (i.e., the
BRAM) and computing units (i.e., the DSP).

Figure 5.2: LUTs and FFs Resources Utilization Improvement per Cluster

5.2.2 Power Consumption
This paragraph describes the power analysis that has been carried out, in particular
the analysis that was carried out using the resource usage stated in subsection 5.2.1.
In fact, the Xilinx Power Estimator (XPE) can be used to assess dynamic and static
power consumption in relation to resource utilization.
In this case, the same tool (Vivado 2021.1) has been used for resource utilization to
extract the data in tables Table 5.1 and Table 5.2, and the XPE has been employed
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as a consequence. More specifically, the Xilinx XPE tool allows to choose the tem-
perature, the physical interface components, and lastly the resources themselves.
The data for the two designs are shown in Figure 5.3. In this analysis, the power
consumption was estimated exclusively for the accelerator array; no physical in-
terface with data and control link was taken into account, a toggle rate of 12.5%
and a 250 MHz working frequency have been considered, and finally the ambient
temperature was employed (i.e., 25°C).

Figure 5.3: Improvement from First to Second Design Power Consumption

As can be observed from Figure 5.3, the power consumption varies as expected,
exactly as the resources have been drastically lowered from the first to the second
design, also the power do. In further detail.
An other aspect to observe is the clear distinction between static and dynamic power
variation; as can be seen, the static power consumption increases relatively little,
whereas the dynamic power contributes the majority of the power consumption.
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5.2.3 Achievable Performance
The performance that the described design may achieve will be presented in this
paragraph. In particular, the results that will be discussed are closely linked to the
processing capabilities of a single cluster and then extended to the cluster array.
Moreover, the overhead associated with loading and reading the data will not be
addressed in this phase while only the clusters array performance will be estimated.
The first stage was to estimate the amount of clock cycles needed to complete a
computation, which was reported in Table 5.3.

Three Circulant Six Circulant
Clock Cycle per Task 85 169
Number of Required Tasks per Layer 4 4
Clock Cycle per

85 · 4 = 340 169 · 4 = 6761 Layer Computations

Table 5.3: Clock Cycle Evaluation for LDPC Decoding

Since each PFU processes four data in SIMD, each cluster will process 4 · 8 = 32

data. Because each layer has 128 data, it is essential to repeat four times on the
same cluster to complete a layer’s processing. This is why the last row in Table 5.3
has been computed by multiplying by four.
The H-Matrix, as specified in subsection 3.3.1, is made up of four layers of three
circulants and eight layers of six circulants. As a result, the total clock cycles
required to decode a matrix are:

CLK_CY CLEs = 4 ·LAY ER3CIRC +8 ·LAY ER6CIRC = 4 · 340+8 · 676 = 6, 768

(5.1)
Once the latency in terms of clock cycles has been evaluated, it can be estimated
the clock cycle required for a certain number of iterations required to obtain a
reasonable decoding performance. Supposing to work with 20 iterations the total
clock cycle will become:

CLK_CY CLE = 6, 768 · 20 = 135, 360 (5.2)

Once the overall latency has been estimated, with a certain working frequency
available, the overall performance can be evaluated. A reasonable assumption would
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be to use a frequency of 250 MHz, hence a period of 4 ns. With these parameters,
the computation time T required to process a matrix in a single cluster is:

T =
1

250 · 106
· 135, 360 = 540 µs (5.3)

This last calculation shows that it takes 540 µs to process a matrix, which according
to the CCSDS standard (1024,1/2) is made up of around 2560 bytes when considering
the rate 1/2 plus a little overhead for the first transmission packets.
As a result, the throughput of a single cluster, or the amount of bits processed per
second, may be calculated using a simple proportion:

540 µs : 2, 560 · 8 = 1 s : x =⇒ Th = x =
2, 560 · 8
540 · 10−6

≈ 38 Mbps (5.4)

Considering that the throughput previously calculated is specific to a single cluster
and that the overall array has 16 clusters, it may be finally possible to estimate the
throughput by considering that the clusters operate independently, resulting in the
following estimation:

Tharray = Thcluster · 16 ≈ 600 Mbps (5.5)

This last outcome exceeds the overall system’s performance requirement, which
demand a minimum throughput of 20 MSps over 8 bits, meaning 160 Mbps. With
a throughput of 600 Mbps on each node, the system has the required minimum
performance even assuming a margin of 100% and therefore reducing it to 300
Mbps, accordingly to the latencies that can be introduced by data transfers.
Furthermore, some consideration may be given to the number of PFUs required to
process 1 Mbps, which can be calculated using the following proportion:

128 PFU : 600 Mbps = x : 1 Mbps =⇒ x =
128 · 106

600 · 106
≈ 1 PFU (5.6)

Then, by applying a confidence margin of 100% considering the non-definitive nature
of the project, it can be obtained a number of PFUs equal to: #PFU = 2.
As a result, with a minimum structure of 128 PFUs, the accelerator array’s resources
will be utilised as:

PFU% =
2

128
· 100 = 2% (5.7)

While processing the target LDPC algorithm, this fulfils the 5% array usage re-
quirements mentioned above for 1 Mbps processing.
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5.2.4 Commercial IP-CORE Comparison
The study performed to evaluate the overhead of resources introduced by the solu-
tion described in this thesis in comparison to a commercial and monolithic custom
solution decoding the same matrix with the same standard [34] (CCSDS (1024, 1/2)
LDPC decoding will be described in this paragraph. The goal of such study is
to quantify what the trade-off is between the benefits of the current architecture
flexibility and programmability and the benefits of currently existing solutions. In
addition, the resources overhead has been quantified by comparing the described
Node to the commercial solution delivering the desired functionality.
To strengthen the trust in this comparison, it was validated that the commercial
reference used in [34] is compliant with the resource use of other solutions [35] with
similar resource usage and performance, even if they are based on different stan-
dards and algorithms. In particular, the XCKU040 FPGA has been considered for
the resources utilization of the designed structure, as it has been designated as the
testbed target device. The usage of a commercial IP-CORE, on the other hand, was
examined for use on a rad-hard device, notably the Virtex-5 [36] (XQR5VFX130),
which was chosen for its consolidated heritage in the space area. The resource uti-
lization in these two scenarios is provided in Table 5.4, with the ones used for the
designed accelerator arrays (essentially in charge of the calculation) and the one
required by the implementation of the commercial solution in presented.
In order to estimate the resource usage on the Virtex 5 device, the following consid-
erations have been considered in relation to IP Core resource utilization indicated
in [34], which has been mapped on the Zynq Ultrascale+ FPGA:

• LUTs: Because both FPGA families have the same number of LUTs per
CLB, their amounts have been assumed to be equal.

• Registers: the two FPGA families have a 1/2 Registers per CLB ratio.
Each CLB in the Ultrascale and Ultrascale+ comprises 16 Registers, but
the Virtex 5 only has 8 Registers. In the worst-case scenario, the number
of CLB required is double that of the Ultrascale scenario. In this view, an
x2 factor has been applied for Registers.

• BRAMs and DSPs: Because the primitives for memory and DSP are
comparable in both FPGA generations, no changes have been made.

However, given the Virtex 5 older technology and the unavailability of sophisticated
synthesis and Place & Route tools, the above statistics must be considered as op-
timistic for rad-hard device implementation.
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Current Resources Utilization Resources Utilization per
per Clusters Array [%] Commercial IP-CORE [%]

Mapping Device XCKU040 XQR5VFX130
LUTs ≈ 40% ≈ 15%

Registers ≈ 25% ≈ 25%
BRAMs ≈ 15% ≈ 5%

DSPs ≈ 10% 0%

Table 5.4: Comparison Between the Described Architecture and Commercial
IP-CORE Resources Utilization

As expected, the current solution has a higher averaged resource utilisation as seen
from Table 5.1. On the other hand, the comparison can be improved considering
that only about 85% of clusters array resources are used to achieve the performance
of the commercial IP-CORE, comparing them to the clusters array performance
detailed in subsection 5.2.3.
In Table 5.5 data have been derived using these assumptions, again considering the
implementation of the commercial IP-CORE on a rad-hard device.

Current Resources Utilization Resources Utilization for
per Clusters Array [%] Commercial IP-CORE[%]

Mapping Device XCKU040 XQR5VFX130
LUTs 25% 15%

Registers 15% 25%
BRAMs 10% 5%

DSPs 5% 0%

Table 5.5: Comparison Between the Described Architecture and Commercial
IP-CORE Resources Utilization with same Perfomance

As can be seen in Table 5.5, there is still a resource overhead for the current solution
on COTS devices. However, the possibilities that this architecture brings through
software programmability to perform different tasks allow the overhead of resources
to be eclipsed by the significant advantage in terms of flexibility acquired.
Moreover, it should also be noted that the use of a COTS device is much less
expensive than using a rad-hard board (i.e., about 5 times lower).
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5.3 Functional Verification
The results of the tests performed to validate the system’s functionality will be
displayed in this section. In detail, the tests has been performed as anticipated
implementing the algorithmic testbed presented in subsection 3.3.1.
The operation of a single cluster’s calculation will be depicted in particular for the
sake of simplicity and to prevent complicating the representation. The computing
of an individual clusters, on the other hand, is meant to be parallel, so each cluster
operates independently from the others.

Extracts from the simulation used to compute a 3-circulants task will be shown
in chapter subsection 5.3.1.

Section subsection 5.3.2 on the other hand, will display the outcome of the
6-circulants task’s computation realized on board.

5.3.1 Testbench Simulation
Highlights from the simulation will be given in this subsection, with the aim of
demonstrating proper operation execution. First, the predicted outcomes of each
PFU will be reported in the next paragraph, which were estimated using an excel
spreadsheet to provide a baseline against which to compare the data that will be
presented.

Expected Results
A test on random data has been conducted to check the system’s behaviour. The
input data and the expected partial and final results are shown in Table 5.6.
In detail, purely random values for the gamma values were selected while assuming
that just a single loop would be done, and therefore βs were set to 0. Values are
represented in hexadecimal on a 32-bit.
First, the whole simulation is presented in Figure 5.4, where the general functioning
of the cluster can be observed.
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Input γ Values Input β Values Partial α Results Partial Absolute β Results γ Results
(VN-PROCESSING) Value Results (CN-PROCESSING) (AP-UPDATE)

01020304 00000000 01020304 01020304 85868A88 86888D8C
05FAF608 00000000 05FAF608 05060A08 81020384 86FCF98C
F70A0BF4 00000000 F70A0BF4 090A0B0C 01828304 F88C8EF8

Table 5.6: Expected Results

From Figure 5.4 can be noticed how as soon as the start signal is received, the
cluster begins execution by recording the data that comes, which is confirmed by
the appropriate signal of validation. The results are sent to the output after a
certain latency, and they are also confirmed by an appropriate bit of validation.
Finally, the DONE signal is pulled up after all of the PFUs in the cluster have
produced the result, indicating that the cluster has completed processing.

Figure 5.4: Overall Simulation Behaviour

Subsequently, the behaviour of the FSM and individual PFUs may be studied in
depth. Figure 5.5 depicts the progression of the FSM states. The machine evolves
from the idle state to the st_g state, in which the data is stored in the memory, as
soon as the start signal comes.
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The machine then progresses into the alpha_abs_compute stage, which calculates
the α values and their absolute values. The beta_compute and sum states are then
used to derive the new β and γ values, respectively. Finally, the new derived data
are transferred to the output bus in the ex_end state. The FSM then goes back to
idle and waits for a new start pulse.

Figure 5.5: Finite State Machine Evolution

It is important to note that, while the first PFU execution ends when the FSM
returns to the idle state, the done signal is raised up later, since it denotes that all
PFUs in the cluster have been processed.
Next, the data transmission processes for the input and output data were then
provided in Figure 5.6 and Figure 5.7, respectively. The dynamics displayed in
Figure 4.5 can be seen in detail, with each PFU being linked to the input bus
only after the previous PFU has stored the relevant input data. Similarly, each

Figure 5.6: Input Data Transfer through PFUs

PFU data outputs are transferred to the preceding PFU in order to be sent on the
cluster main bus.
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Figure 5.7: Output Data Transfer through PFUs

Finally, in Figure 5.8, it can be observed the decoding process for the identified task
in progress. An example of memory usage is illustrated, in which, as mentioned in
chapter 4, all results (partial and final) are stored.
In detail, referring to the algorithm described in subsection 3.3.1, it can be noticed
the input data storage corresponding to the γ and β values. The partial results
linked to the computation of α and its absolute values are then also stored in spare
location of the memory. Finally, the β values saving is executed, followed by the
new γ values.

Figure 5.8: Partial and Final Results Storing

As can be observed, the results produced are equivalent to those computed using the
excel spreadsheet presented in Table 5.6, indicating the successful tasks execution.
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5.3.2 On Board Test
The results of the tests performed on the board will be shown in this chapter. To
verify the structure behaviour, Vivado was used to create a block diagram that
allows the employment of a processor with a stream and a memory mapping inter-
faces to transfer data and instructing tasks execution, respectively.

Vitis was then utilised to create a software that validated the board’s functioning.
It is responsible for conveying the input data and verify that the outputs are con-
sistent with the desired outcomes. The functional verification setup is shown in
Figure 5.9, where it can be seen the board in use and the application executing
correctly, as well as the outputs that will be explored in further detail later.

Figure 5.9: Setup for On Board Verification

In particular, the cluster functioning was tested as in subsection 5.3.1, but this time
for the task of executing the algorithm stated in subsection 3.3.1 with 6 circulants.
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In Figure 5.10 is shown the block diagram realized in order to obtain a design ca-
pable of interacting with the IP-CORE realized for the cluster.

In detail, an IP CORE was developed that operates as a bridge between the AXI
protocol used by the CPU and the memory mapped access used within cluster. It
includes two FIFOs which allow both input and output data to be downloaded and
read out using proper validation signals.
This bridge allows input data to be transferred via the AXI-stream protocol, which
is one of the standard protocols for sending a stream of data in a high-performance
way.
Moreover, an AXI-lite protocol has been added allowing the processor to access
several registers on the bridge in both read and write mode to perform the following
main operations:

• The output of the FIFO was linked to one register, where the cluster’s
calculated results were stored. It was suitably designed such that each
time that register was visited, a new result is saved there, allowing the
cluster’s findings to be retrieved by carrying out a series of accesses to this
register.

• The configuration that permits the task to be selected was transmitted to
another register.

• Another register was used to store the done bit, which allows information
about the conclusion of the activities to be stored.

• A fourth register was used to store the execution time, which was estimated
in terms of clock cycles from the moment the start signal was asserted
until the done signal was communicated, reflecting the cluster’s computing
delay. This number was calculated and found to be 171 clock-cycles for the
6-circulating task and 88 clock-cycles for the 3-circulating task. This result
confirms the system’s desired on-board behavior since it matches exactly
what was measured in simulation.

Finally, a generic processor and the UART blocks were also added, allowing data
to be transferred to the cluster and the results to be provided through UART.
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Figure 5.10: High Level Block Diagram

Subsequently, the bitstream was generated after validating the correct execution
of synthesis and implementation, providing the information necessary to be down-
loaded within the board, as detailed in section 1.2.
In particular, it was confirmed that the Vivado tool’s synthesis and implementa-
tion of the design were both consistent with what was expected in terms of resource
usage and time constraints. In fact, it can happens that the design would not
be placed while keeping the given frequency. This might happen when there is
high occupancy or while performing an extremely dense routing that necessitates
connecting specific blocks through very long pathways, preventing the parameters
provided from being respected.
As a result of the successful verification of these elements, it has been possible to
move on to the functional verification of the design.
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As anticipated, a C code was then created and delivered to the microprocessor using
Vitis. The code perform the following operations for task management:

• Loads the data to be processed by sending it through the stream interface
of the processor.

• Sends the task selection sequence to the memory mapped interface.

• Polls the done signal of the cluster.

• Reads the results when the execution is finished.

Finally, in the same code, a function that compare the expected data and confirms
(or not) the output results correctness was added.
The results of the automatic computation of c software and the execution of oper-
ations in hardware are shown in Appendix B, they will be compared by the code
but have also been shown in the table for visual feedback.
Finally, the outputs were validated in an automatic way using a few lines of code
in the microprocessor, which will return a set of information about the clusters and
PFUs verified, as well as the mismatches obtained, as an output on the UART.
Figure 5.11 reports the results of the verification of the cluster under evaluation.

Figure 5.11: Architectural Validation Test Results

As can be seen in both Table B.1 and Figure 5.11, the expected results are the same
as those achieved once the task is executed in hardware.
At the current stage, the overall Node architecture cannot be verified since a man-
agement system for transmitting and receiving input and output data is necessary
for the iterative execution of tasks within the clusters.
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6
Final Remarks

The design of a hardware accelerators array was reported in this thesis as part of
an ESA program, and it aims to enable the leveraging of COTS devices into the
space environment.
The following sections present the main conclusions findings and possible future
developments to further develop the described design.

6.1 Conclusion
The essential aspects of the thesis, as well as several technical concepts gained over
the course of the thesis and required for understanding it, were first introduced.
The accelerator array’s design phase was then presented.
In particular, the characteristics required of the accelerator array are mainly pro-
grammability and scalability. As far as programmability is concerned, tasks were
introduced to create a set of instructions that can be used to perform specific op-
erations such as those required by the LDPC algorithm used as a testbed. On the
other hand, for what concern scalability, the structure was designed to reflect as
far as possible the idea of replicating small fundamental structures called clusters
that can be appropriately programmed and work independently.
Several clusters might be employed to conduct different activities or the same op-
eration on different data to gain maximum flexibility. This also allows for the
prospective re-allocation of resources for tasks that may not be performed due to a
malfunction.
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To deal with the high number of PFUs that would be put into a structure, it was
discovered that the structure needed to be redesigned even if in this way no longer
each single PFU can be reprogrammed but only the whole cluster (i.e. 8 PFUs)
could be reprogrammed. From a programmability standpoint, this lowers flexibility,
but it ensures that the array can be implemented on the board. Given the necessity
for a high number of resources to control data flow and node health conditions, in
fact, the clusters resources and space are limited, thus a downsizing phase of the
design was done.
Finally, the system requirements were verified to ensure the design correctness. In
detail, as anticipated, the system requirements described guided the design of the
structure and defined the minimum characteristics and performance to be achieved
by the architecture. A full comparison of the program’s aims and the achieved
results can be seen below.

• The Node shall include an array of programmable accelerators.
This requirement have been full filled thanks to the introduction of the
described architecture in chapter 4 with and the current instruction set
described in subsection 4.3.3 and the capacity to perform two tasks with
the ability to expand programmability to a wide variety of activities.

• Each Node accelerators shall include an addressable memory space
and a Digital Signal Processing unit.
Thanks to the in dept study of the DSP unit, memory and a number of
scattered logic components such as multiplexers and registers described in
section 4.2 and subsection 4.3.2 allows this requirement to be validated.

• In order to support the instructions required to perform the CN
Processing, VN Processing, and AP Update of a Layered Quan-
tized Normalized Min-Sum LDPC decoding algorithm, each Node
accelerator shall support at least the following SIMD instructions
on operands of at least 8-bit: Sum, Subtraction, Absolute Value,
Minimum among two values.
The analysis of the applicability of the algorithm’s steps in subsection 3.3.1,
as well as the simulation of the computation in subsection 5.3.1 and the
board test in subsection 5.3.2, allow this requirement to be successfully
fulfilled thanks to the performing of the main operations described for the
three sections of the algorithm.

• The array of accelerators shall be composed by at least 128 pro-
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cessing elements.
As can be seen from the description of the architecture in Figure 4.3.1 and
the analysis of the resource occupancy in subsection 5.2.1, the implemen-
tation of the required minimum number of PFUs is verified, and it can also
be seen that there is room for improvement both with the current struc-
ture and with possible future upgrades of the array architecture that could
allow an even higher number of PFUs to be included. In fact, it can be
noticed from subsection 4.2.1 and Figure 4.3.1 how the architecture was
envisioned to handle a hypothetical increase to 256 PFUs; i.e., twice the
present amount.

• Each 5% of available accelerators in the array shall provide an av-
erage contribution of at least 1 Mbps while performing the com-
putation for the Layered Quantized Normalized Min-Sum LDPC
decoding algorithm.
The performance analysis shown in subsection 5.2.3 together with the con-
clusions reported regarding the PFUs utilization for the required decoding
rate show that it is possible to achieve 1 Mbps with a PFU usage of about
2% of the total array, thus verifying the system requirement.

• The Node shall be able to receive and elaborate information for
codewords decoding with a gross rate of 20 Mbps.
It has been possible to verify also this requirement through subsection 5.2.3
the possibility of achieving the required performance through an estimated
throughput of about 80 Mbps against the required minimum of 20 Mbps.

As can be seen, all the requirements that guided the design of the architecture have
been validated, proving that the project’s goal is accomplished and that expecta-
tions are satisfied, primarily in terms of structural flexibility, without compromising
calculation performance.
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6.2 Future Development
Because the research and design process is still ongoing, further adjustments and
improvements may be made to both the structure depicted in this thesis, which
would be an early version of the array structure, and the connectivity with the rest
of the design.
Beyond that, more tasks will also have to be added to the currently generated set
to allow for further programmability between different sorts of algorithms and/or
processes.

The interface with the node’s health controller must be improved and deepened
to allow for the detection of any faults and the position of the malfunctions within
the cluster, allowing for intervention and reconfiguration of the area of the array
where the failure occurred.

In addition, the board version specified for the flight model is the XCKU060,
which is a bigger version of the currently used XCKU040. In particular, the two
boards have the same functionality but differ in size, indicating that the 060 board
has greater resources available. This implies that in the flight version, the accel-
erators array might be expanded to a larger number in order to handle even more
tasks simultaneously.

Finally, some further investigations that can be carried out on design must be
taken into account, in addition to reconfiguration, in fact, other techniques can be
investigated such as redundancy (both structural and temporal) or even design.
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A
The key properties of the PFU in terms of programmability presented in subsec-
tion 4.3.3 will be described in this appendix. The structure of the instructions that
manage the elements within the PFU will be explained in more detail, as well as an
extract of microcode for executing one of the two jobs needed to operate the testbed.

Regarding the presentation of the instruction set in the following, it is important to
emphasise how despite the different instruction optimization techniques that pre-
vent the length of the configuration word for the PFU from exploding [37][38], it
was decided to focus the studies on other aspects of the architecture, and as a re-
sult, an almost 1:1 control mapping was used to simplify the instruction decoding
phase, leaving room for improvement in terms of possible future minimization.

In Figure A.1, it can be seen the general structure of how the controls are sent to
the PFUs.

Figure A.1: Instruction Format
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As can be seen, the fields are mainly divided into four categories:

• The input and output data management controls, which are used to manage
the multiplexers that handle the input and output data streams described
in subsection 4.3.1.

• The controls for managing the DSP unit including the three main control
sequences OPMODE, INMODE and ALUMODE described in section 3.1,
as well as a control for managing a multiplexer to selecting the data on
which operations should be performed.

• Memory management controls, comprising read and write addresses and
write enable, as well as a control for selecting data to be transmitted as
input for storage via a multiplexer divided into two portions called Input
Memory Controls and Read-Write Memory Controls.

• Several control signals used to enable the temporary registers.

Furthermore, as anticipated in subsection 4.3.3, a library of potential operations
has been realized with the goal of producing a collection of operations, or rather
tasks, that may be executed to carry out particular processes. There are two tasks
in the LDPC algorithm, for example, and they are distinguished by the scenario
with three or six cycles.
The order of instructions changes depending on the operations to be conducted and
is appropriately adjusted for the format of the tasks to be completed. An extract
of the circulating 3 task’s sequence of operations is provided in Figure A.2.
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Figure A.2: Extract of Instructions Sequence from Task for 3 Circulating LDPC
Decoding

In fact, the Xilinx DSP Units are capable of supporting all of the primary low-
level computations required by the examined telecom features, as anticipated in
section 3.1. Moreover, multiplications and additions may be easily implemented
in addition to the combinations enabling logic and arithmetic operations among
different signals (either with a wide bit width or in SIMD, for smaller operands).
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The following appendix shows the results obtained from performing the LDPC en-
coding operations described in Figure 3.4 of a cluster, i.e. 8 PFUs.
In particular, in order to test the system’s behavior, eight sets of data, randomly
generated, were put into the system to confirm that each PFU worked indepen-
dently of the preceding one.
Table B.1 shows the expected results and those obtained from the hardware execu-
tion in order to have a direct comparison.

PFU Expected β Expected γ
β Results γ ResultsResults Results

PFU0

05868A08 06888D0C 05868A08 06888D0C
01020304 06FCF90C 01020304 06FCF90C
81828384 788C8E78 81828384 788C8E78
01020304 0EF4F414 01020304 0EF4F414
81828384 70949670 81828384 70949670
01020304 16ECEC1C 01020304 16ECEC1C

PFU1

00000081 00000080 00000081 00000080
00000081 00000080 00000081 00000080
00000081 00000080 00000081 00000080
00000081 00000080 00000081 00000080
00000081 00000080 00000081 00000080
00000081 00000080 00000081 00000080

PFU2

02808F82 F57AA49E 02808F82 F57AA49E
0D020F8C 0B02FB8E 0D020F8C 0B02FB8E
82808F02 AD75DAB8 82808F02 AD75DAB8
82809402 B77EA3F6 82809402 B77EA3F6
82800F02 B679EDF0 82800F02 B679EDF0
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02000F82 E74DC2C9 02000F82 E74DC2C9

PFU3

13060189 FA4FFEA7 13060189 FA4FFEA7
1306010F FF25E406 1306010F FF25E406
13068309 DF1A84FA 13068309 DF1A84FA
13940109 008EF5F6 13940109 008EF5F6
13060189 001EFAD4 13060189 001EFAD4
93860189 B14EFD98 93860189 B14EFD98

PFU4

19020881 47291A48 19020881 47291A48
9C820881 837B1754 9C820881 837B1754
99078801 47096B05 99078801 47096B05
99020801 63262A0B 99020801 63262A0B
99820881 7D31523F 99820881 7D31523F
19028F84 354C8783 19028F84 354C8783

PFU5

01030301 EAEEF0F0 01030301 EAEEF0F0
01830301 F290E7F8 01830301 F290E7F8
01030507 FAFE0206 01030507 FAFE0206
87858381 88888888 87858381 88888888
81838381 8A8E9090 81838381 8A8E9090
81038381 92E79898 81038381 92E79898

PFU6

02828195 CEA54F88 02828195 CEA54F88
83021B0D 85D81C22 83021B0D 85D81C22
0282010D E4D31C49 0282010D E4D31C49
0282018D FFA32F73 0282018D FFA32F73
0202018D FFEC2A5A 0202018D FFEC2A5A
0216818D D514563E 0216818D D514563E

PFU7

810B0B8A 851F2932 810B0B8A 851F2932
840B8B0A 851F7B5C 840B8B0A 851F7B5C
010B8B0A F131712F 010B8B0A F131712F
010B8BA5 E323389B 010B8BA5 E323389B
81140B0A 8D1F163D 81140B0A 8D1F163D
010B8B0A E3608042 010B8B0A E3608042

Table B.1: On Board Results Comparing
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