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Chapter 1

State of the art

1.1 Von Neumann architecture

The Von Neumann architecture is a computer architecture based on two main
components as shown on Figure 1.1: a central processing unit and a memory
unit. This paradigm is usually used in modern computing architecture.

Those two elements are constantly communicating between them to ex-
change data. Indeed, the processing unit, here called CPU, is computing on
the data provided by the memory. In this configuration, the CPU and the
memory are strongly separated.

Figure 1.1: Von Neumann’s classical architecture composed of CPU and
memory

17



1 – State of the art

1.2 Memory bottleneck problem
The CPU is a very fast computational unit. On the contrary, the memory is
slower than CPU, due to the time required to read and write data.

As shown on Figure 1.2, the memory does not follow the trend of CPU
regarding performance. As a consequence, the CPU is constantly waiting for
the data from the memory.

Figure 1.2: Memory bottleneck problem

In other words, a lot of power, energy and time is spent moving the data
back and forth between those two elements, making the communication be-
tween the two really heavy.

A possible way to solve that problem could be to merge those two com-
ponents in some way: the Logic-In Memory solution is enlightened in this
thesis.

1.3 Logic in Memory architecture
Logic-In Memory (LiM) is an architecture aiming at solving the memory
bottleneck problem introduced by the Von Neumann architecture, by merg-
ing the processing unit and the memory, as depicted in Figure 1.3. This
merge should reduce as much as possible the exchanges between CPU and
memory and, by extension, lower the impact of the memory bottleneck on
performance.

As an example, this approach could equip each memory cell of the usual

18



1.3 – Logic in Memory architecture

Figure 1.3: Logic-In Memory (LiM) novel architecture that merges compu-
tation and memory

store unit and an additional logical unit: like simple gates. Therefore, the
computation is done directly where the data is and does not require any
communication process between the store unit and the logical unit. The
consequence is clear: the exchanges between CPU and memory are drastically
reduced.

1.3.1 Advantages and drawbacks over Von Neumann
LiM is a promising architectural solution to Von Neumann bottleneck be-
cause:

• less energy and computational time are required;

• it possesses a high degree of parallelization: the computation is done on
each word at the same time, on the contrary on CPU the computation
is sequential.

On the other hand, it still has some drawbacks in term of power and area.
It is explained by the dedicated logic unit added in each memory cell, making
the overall memory more complex.
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1 – State of the art

1.3.2 Possible applications
As said in section 1.3.1, the LiM architecture possesses a high degree of
parallelization. Therefore, the main applications are focused on those based
on a parallel algorithm. For instance: machine learning, convolution neural
networks, cryptography, and much more.

In this thesis, we emphasize on a specific application: the binary convolu-
tional neural network called XNOR-Net.

1.4 Neural network background
A minimal background would be useful to better understand the behavior of
the XNOR-Net, which is implemented in this thesis.

1.4.1 Neural network
A neural network (NN) is a network of nodes that is exploited to approach
and perform very complex tasks (for example image recognition). Those
tasks are memory intensive, which is why it could be an ideal application to
test the LiM.

1.4.2 Convolutional neural network
A convolutional neural network (CNN) behaves as a filter, performing the
convolution between weights and the input, that slides among the input
features.

This can achieve really high accuracy but at the cost of an improved
computational complexity.

1.4.3 Binary convolutional neural network
A binary convolutional neural network (BCNN) aims at reducing the com-
putational complexity of a standard CNN by approximating the input and
the weights: only two values are used and then represented by 0 and 1.

This approximation reduces the complexity, but unfortunately, it also re-
duces the accuracy of the NN.
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1.5 – XNOR-Net application

1.5 XNOR-Net application
The XNOR-Net is a BCNN. The chosen architecture to be implemented on
FPGA is the one described in [1].

1.5.1 Behavior
The XNOR-Net computes the binary convolution between IFMAP and K,
by performing several steps:

1. Having already IFMAP and K as binary values, applies the bitwise xnor
operation between those two inputs;

2. Counts the number of 1s, also known as pop-counting;

3. Computes the difference between 1s and 0s.

1.5.2 XNOR-Net LiM Architecture
As described, the entire architecture is composed of four main elements [1],
from which two of them are LiM arrays:

• LiM XNOR: performs the XNOR bitwise operation;

• Interface Decoder: sends the results from LiM XNOR to LiM Ones
Counter;

• LiM Ones Counter: performs the pop-counting operation;

• Pop Counting Logic: computes the difference between 1s and 0s.

The LiM XNOR contains in each memory cell a XNOR gate, in order to
perform the binary product between the content of the cell (store unit) and
an external binary input. The storing unit, which is here a flip-flop, keeps
the binary input value called IFMAP. The external binary input is actually
the associated weight.

In this way, each memory row is actually a convolution window.

On the other hand, the LiM Ones Counter has a flip-flop and a half-adder
inside each memory cell. The half-adder that are part of the same word are
connected together, where the first is fed by the Interface Decoder.

This way, when all bits have been received from the Interface Decoder,
the pop-count is read directly from the value held by the storing units.
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Finally, the pop-counting computation logic, to perform the difference
between 0s and 1s within a single word, is made of:

• a multiplexer: selects the current word

• a shifter: multiplies by two the value the LiM Ones Counter

• a subtractor: subtracts by the length of the word (number of bits)
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Chapter 2

VirtLAB

2.1 Overview
The VirtLAB [3] [4] [12] (Figure 2.1) is a board created for teaching purposes.
It is composed of 2 distinct parts: the Master side and the User one, which
are both equipped with a MCU (STM32L4) and a FPGA (Cyclone10).

Figure 2.1: Overview of the VirtLAB: main components and external con-
nections

The VirtLAB is directly connected to the host with a USB-C and a micro-
USB. The communication is then possible through the following software:
STMCube software, Quartus and a dedicated Java App.
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Figure 2.2: Overview of the VirtLAB: detailed schematics with all compo-
nents

This thesis concentrates on the User side: all the implementations are
done exploiting mainly the FPGA-User and the MCU-User.

The following sections describe briefly in more detail the functionalities of
the VirtLAB and what is used for the development of this thesis.

2.2 Setup tutorial
A setup tutorial of the VirtLAB has been written for teaching of research
purposes: it is exploited by courses at Politecnico di Torino and the research
team which works on the VirtLAB.

The full tutorial can be found in Appendix B.

2.3 Master side
The main components on the Master side (left side of Figure 2.2) are:

• MCU-Master

• FPGA-Master
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• LEDs: 4 for the MCU and 4 for the FPGA, mainly used for information
purposes

• Oscilloscope: allows to perform some measures on the board (power
and IO pin value)

• QSPI Flash: hold firmware of FPGAs

The Master side holds a predefined firmware for the MCU and the FPGA,
done by the professor (available on DropBox [11]). It is not to be modified
because it handles some critical parts of the board, like:

• Communicate with the ST Programmer to control which MCU is to be
programmed;

• Program the FPGAs;

• Implements the DSO;

• Manages the versioning of firmware with the QSPI Flash.

As a consequence, no firmware for the Master side was developed to pre-
serve its crucial functionalities.

2.3.1 QSPI Flash
The QSPI Flash on the VirtLAB is used to hold the firmware of the FPGA
User and Master. Indeed, when the VirtLAB is turned off and then on, the
firmware downloaded on the FPGAs are lost.

Writing these firmware on the QSPI Flash allows the MCU-Master to
program the FPGAs with those ones at the start of the VirtLAB.

Note that to write on the QSPI Flash, the VirtLAB must be connected
and turned on. For more information, see the setup tutorial in Appendix B.

FPGA-Master firmware on QSPI flash

Figure 2.3 shows the configuration to write a firmware for the FPGA-Master
on the QSPI.

The steps are:

• Connect the VirtLAB to the computer with the USB-c and micro-USB
and turn it on.
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Figure 2.3: QSPI Master: How to use with the dedicated Java App

• Open the Java App of the VirtLAB.

• Select the FPGA configuration.

• Select File RBF and QSPI flash Master.

• Select the firmware to be about by clicking on Browse. Here the target
file is fpga-master.rbf.

• Select the index 0 for the QSPI flash image.

• Finally, click in the big arrow on the center of the graphical interface.

• Wait for the process to be finished.

FPGA-User firmware on QSPI flash

Figure 2.4 describes the needed configuration to write a firmware for the
FPGA-Useron the QSPI.

The steps are similar to the FPGA-Master procedure and are the follow-
ings:

• Connect the VirtLAB to the computer with the USM-c and micro-USB
and turn it on.

• Open the Java App of the VirtLAB.
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Figure 2.4: QSPI User: How to use with the dedicated Java App

• Select the FPGA configuration.

• Select File RBF and QSPI flash User.

• Select the firmware to be about by clicking on Browse. Here the target
file is fpga-user.rbf.

• Select the index 1 for the QSPI flash image.

• Finally, click in the big arrow on the center of the graphical interface.

• Wait for the process to be finished.

2.3.2 Digital Storage Oscilloscope
The DSO (details on the characteristics in [12]) offers the possibility to mea-
sure the supply current of:

• User FPGA I/O (3.3 V);

• User FPGA PLL (2.5 V);

• User FPGA core (1.2 V);

• User MCU (3.3 V).
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The DSO could be triggered by the followings channels:

• IO9: digital trigger;

• Channel 1;

• Channel 1;

• User FPGA I/O (3.3 V);

• User FPGA PLL (2.5 V);

• User FPGA core (1.2 V);

• User MCU (3.3 V).

With the modes bellow:

• automatic;

• normal;

• single;

• halted.

The DSO stores the read values into a buffer. The trigger is used as a
temporal reference, which would be the middle of the buffer: then, the first
part of the buffer are values that have been sampled before the trigger and
the second part after the trigger.

The different methods to exploit the DSO are described in section 4.2.

2.4 User side
The User side (on the right of Figure 2.2) is the part of the board which is
programmed for this thesis.

The main components on the User side are:

• MCU-User

• FPGA-User

• LEDs: 4 for the MCU and 4 for the FPGA, mainly used for debug
purposes
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• 8 Switches: mainly used to interact manually with the design put on
the FPGA

• LCD: not used here

• GPIO pins: 32 IO interconnect the MCU-User and the FPGA-User
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Chapter 3

Hardware
implementations:
XNOR-net

3.1 Gitlab versioning
The sources of the thesis are shared and versioned on Gitlab [13].

Those sources collect all the versions of the XNOR-Net that are de-
scribed in the following sections, including the STM32CubdeIDE and Quar-
tus projects, to be ready to use. They are supported by ReadMe to explain
how to use them.

3.2 VHDL description
The XNOR-Net described in [1] is then described in VHDL.

3.2.1 Overview
As describe in [1], the XNOR-Net for LiM architecture computes the binary
convolution of IFMAP and weights, called K. The result of the convolution
is returned by OFMAP. The XNOR-Net is composed of five components, as
shown on Figure 3.1:

• Control Unit: generates the control signals to command the behavior
of the other components, which only compute the data;
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• LiM XNOR: memory which contains an XNOR gate for each cell, to
perform XNOR bitwise operations on inputs;

• Interface Decoder: sends data from LiM XNOR to LiM Ones Counter;

• LiM Ones Counter: memory which contains an half-adder in each
memory cell, to compute the pop counting, together with Pop Counting
Logic;

• Pop Counting Logic: some logic to finish the pop counting computa-
tion started by LiM Ones Counter.

Figure 3.1: XNOR-Net V1: overview

This VHDL follows the XNOR-Net architecture described in [1], and ad-
ditionally integrates a control unit.

The following sections go deeper into details for each component of the
XNOR-Net VHDL description.
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3.2.2 Control Unit
As already said, the XNOR-Net performs the binary convolution between
IFMAP and K. The control unit manages the entire flow in each component
to compute that overall operation.

In the following sections, let us consider that the memory is of size N ×M
with: N the number of bits per word; M the number of words.

As shown on Figure 3.2, the control unit is composed of six states:

• Reset: resets all components if RST is up
• Idle: resets counters, 1 clock cycles
• Filling_Xnor: writes inside LiM XNOR, M clock cycles
• Pre_Pop_Computing: starts sending LiM XNOR results to LiM

Ones Counter, 1 clock cycle
• Pop_Computing: computes number of 1s inside each word coming

from LiM XNOR, N clock cycles
• Results: sends difference between 0s and 1s for each word of the mem-

ory, one by one, M clock cycles

The Control unit does not need any external stimuli, except the reset
signal: the current stage changes by itself, and the flow cannot be stopped
without resetting. For this reason, this implementation requires a fully syn-
chronous protocol.

Indeed, some counters directly integrated into some components are used
for this synchronous protocol. In particular for the stage FILLING_XNOR
and RESULTS.

For FILLING_XNOR, at each clock cycle are expected a IFMAP and
K value to be written. When M clock cycles have passed, the control unit
considers that the memory is full and that the computation can be launched.

There is the same idea behind RESULTS state: it automatically sends
the results one by one. It means that the entity that wants to read those
results must be fully synchronized to be able to sample each result.

3.2.3 LiM XNOR
The LiM XNOR (Figure 3.3) does the xnor bitwise operation between IFMAP
and K inputs.

This is a memory of size N × M with:

• N : the size of one word, which corresponds to the size of K in bits
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Figure 3.2: XNOR-Net V1: Control Unit

• M : number of words (memory depth), which correspond to the size of
size(IFMAP ) ÷ size(K) in bit. Note that IFMAP must be a multiple
of K.

For instance, on Figure 3.3: K is 4-bit long, so four memory cells per word
are used; IFMAP is 8-bit long, so two words, i.e. two lines in memory.

Each memory cell is composed of one flip flop and one xnor gate. The
IFMAP value is held within the flipflops, and K is a combinatorial input
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Figure 3.3: XNOR-Net V1: LiM XNOR

directly connected to the xnor gate.
The output, OUT_XNOR, is the result of xnor operation between IFMAP

anf K.

The memory is filled word by word. Indeed, the signal EN_WORD
controls the enable signal of each flipflop, depending on the EN_FILLING
control signal value.

EN_WORD signal is built as follows:
• Each bit is associated to 1 word, which means that EN_WORD is M -bit

long
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– MSB: associated to word index M (first word generated, on top)
– LSB: associated to word index 1 (last word generated, on bottom)

The counter inside the LiM XNOR is used to inform the control unit that
the LiM is finally full: each word of the memory has been written. This im-
plies that the control unit will change state and go on with the computation.

As a consequence, the counter counts until the total number of words. In
the example on Figure 3.3, it counts until 2 and then set STOP_FILLING
at 1.

3.2.4 Interface Decoder
Once the LiM XNOR is full, the Interface Decoder (Figure 3.4 sends to the
LiM Ones Counter the results bit per bit from LiM XNOR.

Figure 3.4: XNOR-Net V1: Interface Decoder

It is composed of M NTO1 muxes, with M the number of words and N
the number of bits per word.
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As depicted on Figure 3.4, a counter selects the bit to be sent: its output
is used as a selector to the muxes. At each clock cycle, one bit of each word
is sent to the LiM Ones Counter. When all bits have been sent, i.e. the
counter reaches N and sets STOP_POP to 1, the computation is done:
the control unit changes the state to RESULTS.

3.2.5 LiM Ones Counter
The LiM Ones Counter (Figure 3.5), as its name tells, counts the number of
1s inside each word coming from LiM XNOR.

Figure 3.5: XNOR-Net V1: LiM Ones Counter

The LiM Ones Counter has the same dimensions than LiM XNOR, i.e. of
size N × M with:

• N : size of one word, which correspond to the size of K in bit
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• M : number of words (memory depth), which correspond to the size of
size(IFMAP ) ÷ size(K) in bit. Note that IFMAP must be a multiple
of K.

Here, each memory cell holds one flipflop and one half adder. When all bits
of each word have been received, the fliflops representing one word (flipflops
of the same line) hold the number of 1s present within the associated word
in LiM XNOR.

3.2.6 Pop Logic
Finally, the Pop Logic component (Figure 3.6) computes the difference be-
tween 0s and 1s within each word held in LiM XNOR. Its computation is
based on the one done earlier by the LiM Ones Counter.

Figure 3.6: XNOR-Net V1: Pop Logic

It does not compute that result for each word in parallel but one by one.
Indeed, a multiplexer, controlled by a counter, selects a word coming from
the LiM Ones Counter one by one.

As a consequence, one result is sent to the output each clock cycle. When
all results have been sent, i.e. the counter reaches two on Figure 3.6 and set
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STOP_RESULTS to 1, the overall computation finally ends. Then, the
control unit goes back to IDLE and is ready to launch another flow.

3.3 MCU based: C implementation
The MCU-based version is simply a C program that implements the XNOR-
Net behavior. The overview of the flowchart is shown on Figure 3.7.

Start

End

Xnor operation

Pop Count

Pop Logic

IFMAP, K

OFMAP

Figure 3.7: XNOR-
Net C program:
Overview

The program expects as inputs IFMAP and K, as
for the hardware implementation. It performs the xnor
operation on the inputs, then computes the popcount
of each word, and finally computes the difference be-
tween 0s and 1s within each word. The results are
directly written in OFMAP.

Note that the Interface Decoder phase is no longer
present: the popcount in C does not need to be fed
bit per bit. The results from the xnor operation are
processed as a whole.

To define the size of the memory within the C pro-
gram, three constants are used:

• NWORD: Number of words within the memory,
i.e. depth

• NBIT: Number of bits per word
• N_UINT_PER_WORD: equals to NBIT ÷32+

1, i.e. the number of uint32_t for representing
the entire word

One bitwise value is represented by a single bit of
a uint32_t. Thus, a single uint32_t can represents
at most 32 values. In the case of a word longer than
32 bit, additional uint32_t are necessary. As a con-
sequence, a single word is represented in the C pro-
gram by: a single uint32_t if NBIT ≤ 32; a list of
uint32_t if NBIT > 32.

For this reason, the input IFMAP is a list of
NWORD × N_UINT_PER_WORD uint32_t to

contain all bits.
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As for IFMAP, the input K is NBIT-long (i.e. the same size that a single
word of IFMAP): it means that K is represented as a list of
N_UINT_PER_WORD uint32_t.

On the contrary, OFMAP is a list of NWORD int. A single int value
is quite enough for representing the difference between 0s and 1s within
a single word. Indeed, the maximum value of a int is +2147483647 and
minimum value is −2147483648. To reach those values, a single word should
be 2147483647-bit long. Having a word as long as that does not have any
relevance in this thesis. That is why the result is coded using a single int
value.

3.3.1 XNOR operation
The XNOR operation (Figure 3.8) is applied on the inputs IFMAP and K
during this phase. The computed result is written in the output xnorres.

The xnorres variable is described exactly as IFMAP: a list of NWORD ×
N_UINT_PER_WORD uint32_t.

Two loops are used to achieve this computation:

• One for processing all word
• The other for processing all uint32_t of a single word

The output xnorres is then updated for each uint32_t, as followed, per-
forming the xnor bitwise operation between the corresponding uint32_t of
IFMAP and K:

xnorres[i*N_UINT_PER_WORD + j] |=
~(ifmap[i*N_UINT_PER_WORD + j] ^ k[j]) & mask ;

The algorithm complexity of this phase is then: O(M × N/32).

3.3.2 Pop Count operation
A built-in C method already exists to count the number of 1s within a bitwise
variable. Then pop count operation (Figure 3.9) consists on applying this
method, __pop_count(), on each uint32_t taken from xnorres.

The results are directly written in the OFMAP variable that will be mod-
ified in the next and final step.

The algorithm complexity of this phase is then: O(M × N/32).
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Start:  
Xnor Operation

Noi =  
M?

End: 
Xnor Operation

Calloc xnorres

index i = 0 
index j = 0

j ++

Update xnorres
No

Yes

i++

j =  
N/32?

Yes

IFMAP, K

xnorres

Figure 3.8: XNOR-Net C program: Xnor operation

3.3.3 Pop Logic operation

This phase computes as the logic circuit in the VHDL description the differ-
ence between 1s and 0s within each word.

To do so, this operation (Figure 3.10) uses again a for loop to compute
the final result. It takes OFMAP as an input, and for each word: multiply
the corresponding value by two and subtracts the result by the number of
bits of one word.

The algorithm complexity of this phase is then: O(M).
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Start: 
Pop Count

End: 
Pop Count

index i = 0 
index j = 0

Noi =  
M?

j ++

Update ofmap with
__popcount()

No

Yes

i++

j =  
N/32?

xnorres

ofmap

Yes

Figure 3.9: XNOR-Net C program: Pop Count operation

3.3.4 Algorithm cost
Grouping the cost of each phase, the overall cost is:

O(M) + 2 × O(M × N/32) ≈ O(MN).

3.4 FPGA based
3.4.1 Overview
The FPGA based implementation uses the VHDL description of the XNOR-
Net presented in section 3.2: this version is downloaded on the FPGA-User.
This holds a version of the XNOR-Net 4 × 2. The objectives of this version
are to:

• synthesize for the first time the XNOR-Net VHDL description with
Quartus;
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Start: 
Pop Logic

End: 
Pop Logic

index i = 0

Noi =  
M?

i++

ofmap = ofmap*2 - N

ofmap

ofmap

Yes

Figure 3.10: XNOR-Net C program: Pop Logic operation

• test a first instance of the XNOR-Net on the VirtLAB;

• debug and interact a simple version of the XNOR-Net.

The overall interconnection of this version is depicted on Figure 3.11.
The eight switches are putting the binary value of IFMAP, and K (4 bits

each) of the FPGA are the input to be written in the LiM. The LEDs are
set to the value of OFMAP.

Not having enough switches and LEDs, an external breadboard is con-
nected to the IOs of the VirtLAB to provide to the LiM the reset signal and
the clock and to observe the current state of the control unit.

The internal clock is not suitable for this implementation: human control
is needed to understand what is happening within the design of the LiM and
perfectly check whether the behavior is the one expected.
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IO

FPGA-User

RST 
Debounce Circuit

LEDs 
Current state

CLK 
Debounce Circuit

BreadBoardUser-Side VirtLab

Switches

LEDs

Figure 3.11: FPGA-based: Interconnection between the VirtLAB and the
external breadboard

3.4.2 Extended I/O using a Bread Board

A picture of the breadboard is on Figure 3.12.

Figure 3.12: Breadboard connected to VirtLAB
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The GND pin of the VirtLAB must be connected to the minus column on
the left of the breadboard. On the other hand, Vdd must be plugged on the
plus column on the right to feed the breadboard with the correct voltage.

On the top, there is a debounce circuit (pull-up) with a button for the
RST signal. The pin connected to the RST IO on the VirtLAB should be
put on the line where the two resistances and the button are connected.

In the middle, the second button and its debounce circuit (pull-down) are
for the CLK signal. As for the RST signal, the CLK IO on the VirtLAB
should be plugged into the line where the button and the two resistances
meet.

Finally, on the bottom, there are six LEDs: one for each state of the control
unit in the order (from RESET to RESULTS). One IO on the VirtLAB is
dedicated to one state. They must be aligned with the associated led on the
breadboard, at the resistance right side.

3.4.3 Debounce circuit
The debounce circuit for the RST and CLK signals is needed to compensate
for the unperfect behavior of the button. The used button is a push button:
when it is pressed, the value is unstable for a short period of time before
being finally stable. This is due to the piece of metal that the push button
moves while it is pressed: this piece of metal vibrates and needs time to
stabilize.

The debounce circuit is composed of:

• A push button;

• Two resistances;

• A capacitor.

The debounce circuit for the CLK signal is Pull-Up (Figure 3.13a). This
means that the CLK signal is set to 1 when the push button is up and to 0
when it is pressed.

On the contrary, the debounce circuit for the RST signal is Pull-Down
(Figure 3.13b): RST = 0 when the button is up; RST = 1 when the button
is pressed.

Even with this hardware debounce circuit, the phenomenon has not been
totally compensated, as shown on Figure 3.14. Ideally, the curve should be
flat without the first peak.
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(a) CLK signal: Pull-Up (b) RST signal: Pull-Down

Figure 3.13: Debounce circuits on the breadboard to compensate the misbe-
havior of the push buttons

Figure 3.14: Debounce Circuit Anomaly

A possible solution to this problem could be a debounce software.
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3.4.4 Debounce Software
The debounce software aims at stabilizing a signal due to misbehavior of a
push button, as for the debounce circuit. Instead of a physical circuit, it is
described with VHDL and integrated directly within the design.

Top entity

The debounce software detects when the button is pushed or not and waits
for the signal to stabilize, as emphasized on Figure 3.15. If the button is
activated when the value is equal to 1, then the debounce will wait for the
button value to be stable at this value for a certain period of time.

Figure 3.15: Debounce Software waveform: how does it react

The top entity of the debounce software is shown on Figure 3.16.

Figure 3.16: Debounce Software Top entity

The debounce software is described as a control unit that interacts with
an external counter. This counter informs the control unit if the button value
is stable or not.
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Control Unit

The control unit of the debounce software is depicted on Figure 3.17.

ACTIVATED

IDLE

RST='1' 
ENABLE='0' 

OUT_DEBOUNCE='0' 

ACTIVATED 

IS_STABLE && ACTIVATED

WAIT

RST='0' 
ENABLE='1' 

OUT_DEBOUNCE='0' 

STABLING

RST='0' 
ENABLE='1' 

OUT_DEBOUNCE='1'
ACTIVATED

ACTIVATED

IS_STABLE && ACTIVATED

ACTIVATED

DebounceSoftware 
Control Unit

Figure 3.17: Debounce Software Control Unit

It is composed of three states:

• IDLE: The button is NOT ACTIVATED. The external counter is then
reset, and the output is still at 0.

• WAIT: The button is ACTIVATED. The counter starts to measure the
time in which the button value must be activated to be considered stable.
If the value of the button changes during this state, the state IDLE is
automatically reached.

• STABLING: The button is ACTIVATED and IS_STABLE.
The counter finished its count, so the button value is considered as stable.
As a consequence, the OUTPUT_DEBOUNCE is set to 1.
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3.5 MCU-FPGA based
3.5.1 Overview
The MCU-FPGA-based version wants to introduce the LiM on FPGA as a
co-processor and to feed the inputs in a more straightforward way than the
FPGA-based version.

This means finally using the MCU and introducing a communication pro-
tocol between the MCU-User and the FPGA-User. On the VirtLAB User
side, the only common point between those two components are the 32 IOs.
The created protocol is described in subsection 3.5.4.

To allow the MCU to interact and control the LiM on the FPGA in a
smoother way, the XNOR-Net implementation has been updated. The list
and explanations of those changes are described in subsection 3.5.2.

3.5.2 Upgraded XNOR-net: changes overview
The previous VHDL description has been updated in order to have an exter-
nal control more flexible, which allows asynchronous communication between
MCU and FPGA.

Therefore, the following functionalities have been added:

• Read operation as for a classical memory: read enable with the
target address

• Write operation as for a classical memory: write enable with the
target address and input

• Enable signal for computing the convolution on the written inputs
• Acknowledgement response from LiM for the previous operations:

read, write, compute

The overview of the XNOR-Net top entity is depicted Figure 3.18.
Five new inputs have been added:

• WE_IFMAP: Write enable signal for IFMAP input

• WE_K: Write enable signal for K input

• RE: Read enable signal for OFMAP

• ADDR: Target address for read and write
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Figure 3.18: Updated XNOR-Net: Overview

• ENABLE_COMPUTING: Enable signal to compute the results on
current values in memory

And also three outputs:

• ACK_WRITE: Acknowledge on write operation (K and IFMAP)

• READY: The computation is done and the LiM could now be red

• ACK_READ: Acknowledge on read operation (OFMAP can now be
red)
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3.5.3 Upgraded XNOR-net: Control Unit

To take into account those new input signals, the control unit experienced
some changes: in particular on the states IDLE, FILLING_XNOR, and RE-
SULTS. Its final version is depicted on Figure 3.19.

Figure 3.19: Updated XNOR-Net: Control Unit

In the previous version, the states FILLING_XNOR and RESULTS were
not controlled by an external signal but by an internal one (EN_FILLING
and EN_RESULTS respectively), coming from an internal counter. There-
fore, the state IDLE is no longer useful: it was used to reset those internal
counters. Since it no longer exists for FILLING_XNOR, the RST_COUNT
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can now be done in that stage. That is why IDLE state has been definitively
removed.

Now the MCU is able to choose when and how to read and write the
LiM. As a consequence, the control unit stays in FILLING_XNOR state
until the ENABLE_COMPUTING input is set. Once in state RE-
SULTS, the control unit keeps that state until any write operation is re-
quested (WE_IFMAP and WE_K are both unset).

Table 3.1 sums up which are the windows in which it is possible interacting
with the XNOR-Net: in which states of the control unit is possible to request
some operations from the LiM.

Operation Associated states
Write IFMAP FILLING_XNOR, RESULTS

Write K FILLING_XNOR, RESULTS
Launch computation FILLING_XNOR

Read OFMAP RESULTS

Table 3.1: Constraints on operations given by external signals: states in
which they are processed

3.5.4 Communication Protocol characteristics
The created communication protocol between the MCU-User and the FPGA-
User uses the 32 IOs of the VirtLAB.

This is an asynchronous protocol, using time multiplexing.

The IOs are classified as followed (Figure 3.20):

• IO 0-5: MCU signals to be sent to FPGA

• IO 13-15: FPGA response signals

• IO 16-31: common databus

• IO 6-12: unused

This protocol is asynchronous because of the acknowledged response of
the FPGA when its processing is done: thanks to those signals, the MCU
is able to know when the FPGA is ready or has completed the requested
operation, independently of the frequency of both components.
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Figure 3.20: Protocol: Signals between MCU and FPGA

On the VirtLAB, the MCU is working at 80MHz and the FPGA at
10MHz. The asynchronous aspect of the protocol allows those two enti-
ties to work at different frequencies.

Being aware that it still poses some problems: if the output of one compo-
nent changes while the other one is sampling it (clock edge), it could create
some glitches (because of violation of hold or setup time).

In addition, this protocol uses some time multiplexing because of its
databus: those IOs do not have the same meaning in every step of the pro-
tocol.

First of all, the databus is common: both the MCU and FPGA can read
and write on it, but they are not allowed to write simultaneously.

The MCU could write on the bus for:
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• Write Operation: send the address, IFMAP or K value
• Read Operation: send the target address value

On the contrary, the FPGA is allowed to write on the bus only during the
read operation: to send the requested OFMAP value.

3.5.5 Writing operation
The first operation to be done is to fill the LiM XNOR inside the XNOR-
Net embedded on the FPGA with IFMAP and K. As highlighted in previous
sections, the LiM offers a memory interface similar to the classical one.

To write, the MCU should use three signals to be sent to the LiM:
we_addr_mcu, we_i_mcu or we_k_mcu and finally databus. On the
other hand, the FPGA responds with ack_addr_lim and ack_write_lim.

The flow of the writing operation is depicted on Figure 3.21 and Fig-
ure 3.22: one for the IFMAP input and the other one for the K input. The
mechanism is the same for both cases: the only difference is the write enable
signal that are actually used by the MCU, i.e. we_i_mcu for IFMAP or
we_k_mcu for K.

Figure 3.21: Protocol diagram: Write IFMAP

For instance, the steps to be followed, as depicted on Figure 3.21 are the
followings:

1. Write textbfaddr value on databus

2. Set we_addr_mcu at 1

3. Wait for ack_addr_lim

4. Set we_addr_mcu at 0
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Figure 3.22: Protocol diagram: Write K

5. Write IFMAP value on databus

6. Set we_i_mcu at 1

7. Wait for ack_write_lim

This operation has some constraints, coming from the current state of
the control unit. The LiM XNOR can be written only if the current stage
is RESULTS or FILLING_XNOR. This means that the rst_mcu signal
must be low and that the XNOR-Net is not currently computing, i.e. the
we_compute_mcu is low.

3.5.6 Launch computation operation
Once the data is written inside the LiM, the computation is ready to be
launched. This part of the protocol is described on Figure 3.23.

Figure 3.23: Protocol diagram: Compute

The steps to be performed are the followings:

1. Set we_compute_mcu at 1

2. Wait for ready_lim
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3. Set we_compute_mcu at 0

The computation can be launched only if the current stage of the control
unit is FILLING_XNOR.

The XNOR-Net has finished its computation only when ready_lim is
up.

3.5.7 Read operation
While the computation is done, the results could finally be red, as described
on Figure 3.24.

Figure 3.24: Protocol diagram: Read OFMAP

1. Write addr value on databus

2. Set we_addr_mcu at 1

3. Wait for ack_addr_lim

4. Set we_addr_mcu at 0

5. Set re_res_mcu at 1

6. Wait for ack_read_lim

7. Set re_res_mcu at 0

8. Read ofmap value on databus

For reading, the control unit must be in stage RESULTS, i.e. ready_lim
is set.
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Chapter 4

Measurements Methods

4.1 Timing measures
To estimate the performance of the XNOR-Net, the execution time for its
different implementations is measured, exploring different methods.

The execution time that should be interesting to measure are:

• Computation time of the algorithm: when the memory is already full,
in how much time the results are available

• Time to write a value: K and IFMAP

• Time to read a value: OFMAP

4.1.1 MCU
The timing measures could be done directly on the MCU-User. The following
sections present the different methods.

DWT register

The DWT (Data Watchpoint Trigger) is a register of the ARM cortex that
counts the number of clock cycles.

The process to be followed is depicted on Figure 4.1.

First, the use of the DWT register must be enable:

volatile uint32_t *DEMCR = (uint32_t *)0xE000EDFC;

Then, the cycle counter must be enable:
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Figure 4.1: Process of use of the DWT register

volatile uint32_t *DWT_CONTROL = (uint32_t *)0xE0001000;

Finally, the cycle counter value is available at the following address:
volatile uint32_t *DWT_CYCCNT = (uint32_t *)0xE0001004;

As shown on Figure 4.1, it is recommended to reset the cycle counter value
just before the start of the code to be measured. Then to read the value just
after the end of the targeted execution.

Timers and GPIO Interrupts

This method is particularly efficient for the MCU-FPGA based implementa-
tion because of its communication protocol based on IOs.

The idea of this method is represented on Figure 4.2, showing an example
for measuring the computation time.

The MCU asks the FPGA to compute by setting the signal
we_compute_mcu on the IO4. The FPGA answers the MCU when it has
completed the algorithm by setting ready_lim on IO15. Those IOs are then
used as trigger by a GPIO interrupt.

During the GPIO interrupt on IO4, it stores the current value of the
timer, and enables it. Then, during the GPIO interrupt on IO15, the timer
is disabled. The elapsed time is performed by subtracting the actual time of
the timer from the one stored before.
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Figure 4.2: GPIO interrupts example: how to measure computation time in
MCU-FPGA based implementation

The targeted timer is TIM2 and works at the frequency of the FPGA
multiplied by two: this is to avoid missed reading and improves the precision
of the measure.

Input Capture

The Input Capture method is unfortunately not realisable on the VirtLAB:
an IO cannot be assigned as Input Capture and GPIO at the same time.
Since the measures, to be the most precise possible, are based on the IO
values, this method is certainly not a good choice.

Timers only

This method is dedicated to MCU-based implementation, because it would
not be precise enough for the MCU-FPGA based. The communication pro-
tocol introduces delays, because of the while loop that waits for the IO value
to change. Most probably, checking the IO value implies going into some crit-
ical section and unexpectedly increases the measured execution time. Thus,
it is much better to detect the variation of the IOs with an interrupt, as
previously described in section 4.1.1.

By using the same timer as the method presented in section 4.1.1, this
one is controlled to measure the computation time of the MCU-based imple-
mentation as shown on Figure 4.3.

The computation is done by the step XNOR bitwise and Pop-counting.
The timer is consequently surrounding those operations: the timer is read
and enabled before the XNOR operation. Then, the timer is disabled and
read again after the pop-counting operation.
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Figure 4.3: Example of use of timers to measure computation time on MCU-
based implementation

By subtracting the read value, the elapsed time is obtained.

With the timer, it is recommended to check whether the max value has
been reached or not: otherwise, the subtraction result to obtain the final
execution time would be wrong. In this thesis, working on little dimensions
of the XNOR-Net, this problem is not encountered.

STM32CubeMonitor: Graphical interface

STM32CubeMonitor (Figure 4.4) allows to visualize graphically the value of
the global variables within the code of the MCU itself, while it is currently
computing. The measures are then done in real-time.

In fact, the execution time value of the LiM and the MCU that are com-
puting by the MCU are now visible in live.

For example, on Figure 4.4, with the help of a cursor, the read value of
compute_lim is 64.
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Figure 4.4: Measurement of execution time on ModelSim waves

4.1.2 VirtLAB Oscilloscope

The DSO on the master side of the VirtLAB has a digital trigger given by
IO9. This means that the DSO is measured depending on the value of IO9.

As a consequence, IO9 could be linked to the trigger signals of the algo-
rithm to measure, as the same time as power, the actual execution time.

4.1.3 ModelSim

This method is feasible only for the VHDL description of the LiM. This
method is interesting for comparing the results of other methods and checking
their precision.

ModelSim offers the functionality to observe the waves of the circuit over
time. By creating two cursors, it measures the elapsed time between the
two. On Figure 4.5, they are placed to measure the computation time: the
response time of the LiM with the signal READY after sending the trigger
signal ENABLE_COMPUTING.

Then the read elapsed time could be translated into a number of clock
cycles. On the simulation depicted on Figure 4.5, one clock cycle is equal
to 1ns, which means that the LiM took 33.5 clock cycles to compute the
algorithm on the given input
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Figure 4.5: Measurement of execution time on ModelSim waves

4.2 Power measurements
For measuring the power, the only explored way is to exploit the DSO em-
bedded on the Master side of the VirtLAB.

They are two options: the GUI and the CLI. The GUI is more intended for
students and teaching purposes: in fact, it gives only an overview of what is
happening on the user side. On the other hand, the CLI allows more precise
measures and automates them by writing some scripts.

4.2.1 VirtLAB DSO: Observable channels
The DSO is able to observe the following channels:

• Channel 1

• Channel 2

• FPGA Icc 3.3V

• FPGA Icc 2.5V

• FPGA Icc 1.2V: interest for this thesis

• MCU Icc 3.3V: interest for this thesis

4.2.2 VirtLAB DSO: Digital trigger IO9
The DSO should use a channel as a trigger to perform its measures.

This trigger could be of type:
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4.2 – Power measurements

• Automatic;

• Normal;

• Single;

• Halted.

In addition, the trigger could be set on rising or falling edge.

The channel that could be used as a trigger input is the same as the ones
observable plus a digital trigger: the IO9. This digital trigger permits to
directly include within the software the slot in which the measures should be
done. In other words, the IO9 must be set at the moment in which the MCU
or the FPGA will start the computation to be studied.

4.2.3 VirtLAB: Oscilloscope GUI
Within the Java App of the VirtLAB, a menu is dedicated to the DSO, as
shown on Figure 4.6.

Figure 4.6: DSO menu in the Java Application of the VirtLAB

This menu allows to graphically view the measure done by the DSO, rep-
resented on Figure 4.7.

On the bottom part, the signal to be observed could be selected (listed in
subsection 4.2.1), by clicking on the associated button Show. To deselect it,
it is enough to click on the Hide button.

On the top right, two parameters are modifiable: the timebase and the
trigger.

To start the DSO, click on the button Stopped in the trigger section on
the top right.
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Figure 4.7: Java App: DSO home

4.2.4 VirtLAB: Oscilloscope CLI
The MCU Master also implements a Command Line Interface to interact
with the DSO directly. The GUI (subsection 4.2.3) communicates with that
CLI to render the provided answers.

Connection

This CLI is accessible by being connected directly on the serial: on Windows
by using putty (configuration on Figure 4.8) or with minicom on Linux.

If the connection is successful, then the prompt VirtLAB KO> should ap-
pear after pressing any key, like on Figure 4.9. A command would then be
submitted (for example og on Figure 4.9): the command is correctly pro-
cessed if the prompt changes to VirtLAB OK>.

Commands

The commands available for the DSO are the followings:

• os <period>:

– Set sampling time for DSO inputs
– <period> : sampling time in nanoseconds, hex 32 bit number
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Figure 4.8: DSO CLI: connection with Putty on physical COM port

Figure 4.9: DSO CLI: connection successful, command og to verify the cur-
rent status

• ol <value>:

– Set input trigger level
– <value> : trigger level, hex 16 bit number

• op <edge>:

– Set input trigger edge
– <edge> : single character describing the selected edge:

∗ r : rising edge selected
∗ f : falling edge selected

• ot <type>:

– Set input trigger type
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– <type> : single character describing the selected type:
∗ a : automatic
∗ n : normal
∗ s : single
∗ h : halted

• oi <channel>:

– Select channel used as trigger input
– <channel> : ext. trigger (IO9), analog voltage channels (1 to 4),

analog current channels (5 to 8)
∗ 0 - Ext. digital trigger (IO9)
∗ 1 - MSO in 1
∗ 2 - MSO in 2
∗ 3 - Reserved
∗ 4 - Reserved
∗ 5 - User FPGA 3.3V supply current (I/O)
∗ 6 - User FPGA 2.5V supply current (PLL)
∗ 7 - User FPGA 1.2V supply current (Core)
∗ 8 - User MCU 3.3V supply current

• od <channel> <start> <length>:

– Get DSO sampled data for selected channel
– <channel> : input channel (1 to 8), hex 8bit number
– <start> : index of first sample to retrieve, hex 16bit number
– <length> : number of samples to retrieve, hex 16bit number

• og:

– Get the DSO status (16 bit word), here the possible values:
∗ 0 : stopped
∗ 1 : filling
∗ 2 : waiting
∗ 3 : armed
∗ 4 : triggered (dataValid flag)
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Python script

A script in python automates the reading of the measures by:

1. Connecting to the serial port;

2. Setting the trigger;

3. For the channels FPGA IO, FPGA Core and MCU does 20 times:

(a) Sends the command od;
(b) Reads the current values and format them be readable;
(c) Converts the values from hexadecimal to float (now the current is in

mA)
(d) Computes the average of the float values

4. Computes the current average (still in mA) of the 20 previous run for
each channel;

5. Calculates the associated power (in mW).

This script performs averaging on the measured values to avoid as much
as possible the impact of noise.

4.3 Area occupation
Quartus is the software used to synthesize the LiM and generate the ELF
file to be put on the FPGA. This tool provides some reports on the area
occupation of the current design. In particular, two of them are considered
and studied:

• Resource Usage Summary: To understand the overall occupation of the
design.

• Resource Utilization by Entity: To observe and analyse which part of
the design needs more area.
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Chapter 5

Results

5.1 Performance result approach
The followings sections state what has been measured to estimate the per-
formance of the LiM XNOR-Net.

For each aspect of performance, different dimensions have been explored:
the size of a word in bits and also the depth of the memory. The max
dimension explored is the biggest one feasible on the given FPGA: 1Kbyte
memory.

This way, the impact of the size is analysed and gives a first idea of the
situation in which the LiM could be a good choice.

5.1.1 Current measurements on VirtLAB
What is actually measured

Measures in which we are interested:

• FPGA Core: current for the LiM computation

• FPGA IO: current for the databus

• MCU: current for the protocol communication (FPGA-MCU based) and
the MCU-based computation

How the measurements are performed

The python script (described in section 4.2.4), which interacts with the DSO
CLI through a serial connection, is the primary source of all the values written
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in this thesis.
The FPGA frequency is set to slowClk, which is 32KHz so that the DSO

is able to sample correctly the computation (which has a 2us resolution).

Reference: empty FPGA

As a reference, here are the current values of each channel when the MCU
and the FPGA firmware are empty, i.e. are doing nothing special:

• FPGA Core: 1.85mA

• FPGA IO: 1.59mA

• MCU: 3.38mA

• FPGA PLL: 5.79mA

Additional measurements

In Appendix A can be found additional measurements, in particular current
measurements in mA that are not commented in this part.

5.1.2 Timing measurements
The selected method for the FPGA-MCU based is to use the GPIO Interrupt
and the timer TIM2, as explained in section 4.1.1.

On the contrary, for the MCU-based, the timer is used alone as described
in section 4.1.1.

5.1.3 Area occupation measurements
Only the default synthesis options of Quartus are used to synthesise the LiM
XNOR-Net.

As a reference, the FPGA-User on the VirtLAB has at its maximum 24624
logic elements.

5.2 MCU-FPGA based
The MCU-FPGA implementation requires taking care of both entities: the
MCU-User and the FPGA-User.
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They both perform some computation, and that is the reason why those
components are considered as a whole: the analysis of performance concerned
both the MCU and the FPGA.

5.2.1 Area occupation
Figure 5.1 summarizes the occupation area (in percentage) of the LiM on the
FPGA, based on the dimensions of the memory in bytes.
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Figure 5.1: Used area by LiM on FPGA

The length of the word does not have much impact on the occupied area:
the three curves with 32, 64, or 128 bit per word are almost merged together.

However, the area occupation drastically grows with the increasing mem-
ory dimensions.

In addition, the FPGA is already almost full for 1Kbyte memory!

5.2.2 Timing
Characteristics

Two frequencies are available for the FPGA-User:
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• slowClk = 32KHz

• mainClk = 10MHz

However, the measures are taken thanks to the timer TIM2 at 20MHz.
Those measures are then converted in clock cycles to be compared with the
MCU-based implementation: indeed, the MCU and the FPGA do not work
at the same frequency. Thinking in term of clock cycles make them more
comparable.

Execution time: LiM is computing

Table 5.1 states the timing performance for the LiM while it is computing:
i.e. from the instant it receives the enable signal of the computation to the
moment it responds with the ready acknowledge signal.

During the measures, the FPGA was working at 10MHz. The column
Compute TIM2 (cc) is the value of the timer, which means the number of
clock cycles that passed at a frequency of 20MHz. Compute TIM2 (us) is
the corresponding time to this number of cycles.

Bit/word #Words Compute
TIM2 (cc)

Compute
TIM2 (us)

Compute
slowClk (us)

32 4-256 65 3.25 1015
64 4-128 128 6.4 2000

128 4-64 256 12.8 4000

Table 5.1: Timing performance of the LiM while computing

The LiM is a fully parallel algorithm. Therefore, the computation time
does not depend at all on the number of words.

It only depends on the number of bits per word, i.e. the length of a single
word: the number of clock cycles corresponds exactly to the operations done
in stages pre_pop_computing and pop_computing of the XNOR-Net Control
Unit.

Execution time: MCU is writing

On the contrary, the execution time to fill the LiM completely depends ob-
viously on the number of words to be written.

72



5.2 – MCU-FPGA based

With the small databus at disposition, the address and the value to be
written are transmitted consecutively, one after the other. As a consequence,
two consecutive write operations are performed behind writing one value into
the LiM.

With the asynchronous protocol, writing one word could not be done in
only one clock cycle and could be different each time, depending on some
factors:

• The write_enable signal is not always set to write multiple values: be-
tween each write, it is set to 0 to reset the acknowledged answer of the
LiM

• The instant when the FPGA samples

5.2.3 Power
MCU is writing and LiM is computing

#Words FPGA IO
(mW)

FPGA Core
(mW) MCU (mW) Core +

MCU (mW)
4 6.07 2.30 13.27 15.57
8 5.97 2.32 12.64 14.96

16 5.97 2.33 12.08 14.41
32 5.94 2.37 11.65 14.02
64 5.87 2.41 11.45 13.86

128 5.87 2.53 11.29 13.82
256 5.87 2.72 11.32 14.04

Table 5.2: MCU-FPGA: power consumption for a 32-bit word during
the writing LiM + computation of the LiM XNOR-Net

The current measures (mA) of the different channel while the MCU is
writing inside the LiM and the LiM is computing are collected in Table A.4,
Table A.5 and Table A.6, classified by the length of the word in bit (32, 64
and 128).

The associated values but for the power (mW) are written in Table 5.2,
Table 5.3 and Table 5.4.

Figure 5.2 shows the correlation between the power consumption of the
FPGA Core and the size of the memory.
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#Words FPGA IO
(mW)

FPGA Core
(mW) MCU (mW) Core +

MCU (mW)
4 6.07 2.30 12.47 14.77
8 6.07 2.32 12.08 14.40

16 5.97 2.33 12.08 14.41
32 5.94 2.41 11.52 13.93
64 5.91 2.52 11.35 13.87

128 5.87 2.75 11.29 14.04

Table 5.3: MCU-FPGA: power consumption for a 64-bit word during
the writing LiM + computation of the LiM XNOR-Net

#Words FPGA IO
(mW)

FPGA Core
(mW) MCU (mW) Core +

MCU (mW)
4 6.11 2.34 13.20 15.54
8 6.04 2.36 11.65 14.01

16 5.97 2.42 11.48 13.90
32 5.94 2.52 11.35 13.87
64 5.91 2.75 11.39 14.14

Table 5.4: MCU-FPGA: power consumption for a 128-bit word during
the writing LiM + computation of the LiM XNOR-Net

The number of bits per word does not influence the power. However, from
256 bytes of memory, the power consumption increased, as it was stable for
smaller dimensions. This makes sense since the area is growing, and so are
the components within the LiM.

On the other hand, Figure 5.3 shows the overall power consumption of the
FPGA-MCU implementation by summing the power of the FPGA Core and
the MCU.

The LiM in this configuration seems to consume more for little dimensions
and starts to stabilize around 14 mW from 256 bytes memories.

LiM is computing

As the execution time of the computation of the LiM has been measured, it
is also interesting to do the same for the power: this way, the energy could
be calculated as well.
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Figure 5.2: Power consumption of the FPGA Core while MCU is writing and
LiM is computing

Table 5.5, Table 5.6 and Table 5.7 regroups the power value in mW of the
channels FPGA IO, FPGA Core and MCU.

#Words FPGA IO
(mW)

FPGA Core
(mW) MCU (mW) Core +

MCU (mW)
4 6.59 2.36 47.38 49.74
8 6.60 2.42 47.36 49.78

16 5.96 2.48 23.61 26.09
32 6.28 2.69 35.57 38.26
64 6.28 3.07 35.58 38.65

128 7.60 3.96 82.16 86.12
256 6.91 4.79 58.91 63.70

Table 5.5: MCU-FPGA: power consumption for a 32-bit word during
the computation only of the LiM XNOR-Net

The value of the MCU channel is much bigger while the FPGA-MCU is
computing than when the MCU is writing inside the LiM as well. It is also
unstable and does not seem to be linked to memory size.
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Figure 5.3: Power consumption FPGA Core and the MCU: while MCU is
writing and LiM is computing

#Words FPGA IO
(mW)

FPGA Core
(mW) MCU (mW) Core +

MCU (mW)
4 6.91 2.44 58.95 61.39
8 7.01 2.68 70.76 73.44

16 7.25 2.78 70.70 73.48
32 6.91 3.11 59.00 62.11
64 6.91 3.73 59.00 62.73

128 6.59 4.18 47.35 51.53

Table 5.6: MCU-FPGA: power consumption for a 64-bit word during
the computation only of the LiM XNOR-Net

The same behavior appears for the channel FPGA IO, which is the databus.
These results are quite counter-intuitive. The MCU and FPGA IO chan-

nels should hold the same value for a given length of word because the number
of words does not influence the execution time of the LiM (and so the FPGA):
it should be transparent for the MCU and the databus.

This could be explained by the fact that the MCU is constantly waiting
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#Words FPGA IO
(mW)

FPGA Core
(mW) MCU (mW) Core +

MCU (mW)
4 6.90 2.53 58.97 61.50
8 7.22 2.76 70.75 73.51

16 6.78 3.09 59.14 62.23
32 7.25 3.58 70.71 73.33
64 7.21 5.00 70.75 75.75

Table 5.7: MCU-FPGA: power consumption for a 128-bit word during
the computation only of the LiM XNOR-Net

for the FPGA to answer and does nothing else: the FPGA is so slow that
the MCU gets stuck for a long time. This is done by the following code lines:

while (HAL_GPIO_ReadPin(GPIOE, IO15_Pin) == GPIO_PIN_RESET) {
// Do nothing, waiting for ready

}

In the case that the HAL function HAL_GPIO_ReadPin requires some spe-
cial computation and resources, it could exploit and stimulate in an stronger
way the MCU and the databus.

On the other hand, when the MCU is writing inside the LiM, the commu-
nication between the two entities is more efficient and reactive: the FPGA
should answer in less than two clock cycles, as slow as it is.

Figure 5.4 gives a graphical view of the power consumption of the FPGA
core while it is only computing.

As expected, even if the execution time does not change, the power instead
increases with the number of words: more area, so more components in order
to process additional words, and that has a consequence on the power.

MCU is resetting the LiM

As a reference, the channels have been measured while the MCU is resetting
the LiM for all dimensions.

Here what can be said about thoses values:

• FPGA IO and MCU channels hold the same value than the reference in
section 5.1.1:
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Figure 5.4: Power consumption of the FPGA while computing the LiM
XNOR-Net

– FPGA IO = 1.59mA;

– MCU = 3.38mA.

• FPGA Core hold more or less the same value when it is resetting or
computing.

5.2.4 Energy

The energy is calculated based on the results of the previous sections and is
listed in Table 5.8.

Figure 5.5 emphasizes on the flatness of the energy regarding the memory
size. However, it strongly depends on the length of the word.

This is due to the execution time that is correlated to the number of bits
per word. Thus, for the same memory size, more energy is needed.
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#Words 32-bit word
Energy (uJ))

64-bit word
Energy (uJ))

128-bit word
Energy (uJ))

4 0.16 0.39 0.79
8 0.16 0.47 0.94

16 0.08 0.47 0.80
32 0.12 0.40 0.94
64 0.13 0.40 0.97

128 0.28 0.33 NONE
256 0.21 NONE NONE

Table 5.8: MCU-FPGA: energy during the computation only of the LiM
XNOR-Net
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Figure 5.5: Energy of the LiM while computing

5.3 MCU-based

5.3.1 Timing

As for the FPGA-MCU implementation, the measures are done using the
TIM2 of frequency 20MHz, even if the MCU works at 80MHz.

79



5 – Results

Table 5.9, Table 5.10 and Table 5.11 collect the results from the measures
of TIM2.

The column Compute TIM2 (cc) is the value of the counter at the end
of the process, so the number of samples / clock cycles that passed. The
column Compute TIM2 (us) gives the associated execution time.

Bit/word #Words Compute TIM2 (cc) Compute TIM2 (us)
32 4 186 9.3
32 8 337 16.85
32 16 639 31.95
32 32 1243 62.15
32 64 2451 122.55
32 128 4944 247.2
32 256 9698 484.9

Table 5.9: 32-bit word: Timing performance of the MCU while computing

Bit/word #Words Compute TIM2 (cc) Compute TIM2 (us)
64 4 321 16.05
64 8 607 30.35
64 16 1179 58.95
64 32 2323 116.15
64 64 4689 234.45
64 128 9186 459.3

Table 5.10: 64-bit word: Timing performance of the MCU while computing

The MCU, on the opposite of the LiM, is sequential. Consequently, the
execution depends on the number of bits per word and the number of words.
For the same size, the execution time is still similar.

5.3.2 Power consumption
The Tables 5.12, 5.13 and 5.14 collects the measures done on the MCU-based
implementation.

The MCU is programmed to execute in an infinite loop the function per-
forming the XNOR-Net behavior. While the MCU is computing this loop,
the current value of the MCU is measured.
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Bit/word #Words Compute TIM2 (cc) Compute TIM2 (us)
128 4 573 28.65
128 8 1111 55.55
128 16 2187 109.35
128 32 4417 220.85
128 64 8719 435.95

Table 5.11: 128-bit word: Timing performance of the MCU while comput-
ing

Bit/word #Words MCU (mA) MCU (mW)
32 4 3.34 11.02
32 8 3.30 10.89
32 16 3.28 10.82
32 32 3.27 10.79
32 64 3.26 10.76
32 128 3.26 10.76
32 256 3.26 10.76

Table 5.12: MCU: current and power measures for a 32-bit word during
the write + computation of the XNOR-Net

Figure 5.6 sums up the results from the Table 5.12, 5.13 and 5.14.
The Figure 5.6 highlights the flatness of the power consumption. To be

comparable with the LiM, the exact same dimensions are tested. However,
1kbytes is relatively minor for the computing power of a MCU.

In other words, the dimensions are not huge enough to have a real impact
on the power consumption of the MCU and to make conclusions.

5.3.3 Energy
Taking the results from the previous section, Table 5.15 sums up the energy
used for the given dimensions.

The MCU working at a high frequency like 80MHz shows how low energy
it needs. However, the energy needed increases considerably with the memory
size.

This is due to the complexity of the sequential algorithm that takes care
of every single value, one by one.
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Bit/word #Words MCU (mA) MCU (mW)
64 4 3.26 10.76
64 8 3.26 10.76
64 16 3.25 10.73
64 32 3.24 10.69
64 64 3.24 10.69
64 128 3.25 10.73

Table 5.13: MCU: current measures for a 64-bit word during the computa-
tion of the XNOR-Net

Bit/word #Words MCU (mA) MCU (mW)
128 4 3.26 10.76
128 8 3.24 10.69
128 16 3.23 10.66
128 32 3.23 10.66
128 64 3.24 10.69

Table 5.14: MCU: current measures for a 128-bit word during the compu-
tation of the XNOR-Net

5.4 Comparison

5.4.1 Execution time
The speedup of the LiM over the MCU is shown on Figure 5.8. The MCU
working at 80MHz and the FPGA at 10MHz, the LiM allows a huge speedup
over the MCU alone.

The speedup is given by the number of words because it emphasises on
the parallel aspect of the LiM that the MCU does not have. Indeed, with
only 256 words of 32-bit, the speedup is about 150.

The LiM takes advantage when it holds a really deep memory.

Nevertheless, the LiM is eight times slower than the MCU, but it still is
drastically faster than the MCU, even for really small memories (less than
1kbytes).

With the clock of the FPGA sets at 32KHz, there is no speedup: the
MCU execution time is always lower than the one of the LiM.
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Figure 5.6: Power consumption of the MCU while computing the XNOR-Net

#Words 32-bit word
Energy (uJ))

64-bit word
Energy (uJ))

128-bit word
Energy (uJ))

4 0.10 0.17 0.31
8 0.18 0.33 0.59

16 0.35 0.63 1.17
32 0.67 1.24 2.35
64 1.32 2.51 4.66

128 2.66 4.93 NONE
256 5.22 NONE NONE

Table 5.15: MCU: energy during the computation

This shows how crucial it is to choose the correct frequency for the FPGA.

5.4.2 Energy
Figure 5.9 demonstrates the energy saved by the LiM over the MCU, by
memory sizes.

The LiM, even with an FPGA working at 10MHz, is able to save energy
for almost all dimensions of memories, being compared to a MCU working
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Figure 5.7: Energy of the MCU while computing
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Figure 5.9: Energy performance: how much the LiM saves on MCU

at 80MHz.
The LiM is more energy saving when the size of a word is smaller: as

explained in subsection 5.2.4, the execution time is linked to the number of
bit per word and therefore increase the energy.

85



86



Chapter 6

Conclusions and Future
works

This thesis aims at implementing on FPGA an architecture Logic-In-Memory
so that to estimate the impact of this paradigm on a real board. The chosen
application is the XNOR-Net, a BCNN, which is an embarrassingly parallel
algorithm.

The used board for those implementations is the VirtLAB and has also
been exploited for measuring the performance of the XNOR-Net on the
board.

Three implementations have been done, from which two have been strongly
studied with a deep analysis of performance: the MCU-based and the FPGA-
MCU based. The first one implements the sequential behavior of the XNOR-
Net. The second one takes advantage of the LiM: the FPGA is used as a
co-processor to the MCU.

The results demonstrate that the LiM is drastically more efficient than
the MCU in terms of energy and execution time, even with small memories.
The advantages are even more substantial with a deep memory and a small
word length (i.e. number of bits per word). Those results are even seen
nevertheless how slow the FPGA in comparison to the MCU: the FPGA is
working at 10MHz and the MCU 80MHz. This means that the impact of the
LiM is visible even being eight times slower than the MCU.

Unfortunately, these speedup and saved energy are at the cost of area
occupation: the FPGA is full with a 1kbytes memory.

As a future work, the implementation of other types of LiM on FPGA to
continue exploring the impact of this paradigm and find a way to reduce the
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area occupation.

88



Bibliography

[1] A. Coluccio and M. Vacca and G. Turvani, Logic-in-Memory Computa-
tion: Is It Worth It? A Binary Neural Network Case Study, Journal of a
Low Power Electronics and Applications, 2020.

[2] Andrea Coluccio, Master’s Thesis: In-Memory Binary Neural Networks,
10 April 2019

[3] Prof. Massimo Ruo Roch - DET Politenico di Torino, VirtLab schematics,
31 October 2020

[4] VLSI - Politecnico di Torino, VirtLab 1.2 Overview, 6 April 2021
[5] ST Microelectronics, STM32L4x5 and STM32L4x6 advanced Arm®-based

32-bit MCUs, Reference Manual RM0351 - Rev 6 - April 2018
[6] ST Microelectronics, Description of STM32F4 HAL and low-layer

drivers, User Manual UM1725 - Rev 7 - June 2021
[7] ST Microelectronics, Description of STM32L4/L4+ HAL and low-layer

drivers, User Manual UM1884 - Rev 9 - September 2021
[8] Prof. M. Zamboni, Prof. M. Martina, Dr. G. Turvani, ing. Y. Ardesi, ing.

G.A. Cirillo, ing. A.Coluccio, Dott. U. Garlando, Laboratori 7-8-9-10 di
Elettronica dei Sistemi Digitali, Politecnico di Torino

[9] How to count cycles on ARM Cortex M, http://embeddedb.blogspot.
com/2013/10/how-to-count-cycles-on-arm-cortex-m.html

[10] Measuring code execution time on ARM Cortex-M MCUs,
https://embeddedcomputing.com/technology/processing/
measuring-code-execution-time-on-arm-cortex-m-mcus

[11] Sources for the VirtLab given by prof. M. Ruo Roch, https://www.
dropbox.com/sh/wiq0b8y306ae3b2/AACzBp05XYW7v3jnoo3dLFZTa?dl=
0

[12] Massimo Ruo Roch and Maurizio Martina, VirtLAB: A Low-Cost Plat-
form for Electronics Lab Experiments, Sensors 2022

[13] Coralie Allioux, Sources of the thesis: implementations, scripts and re-
sults, https://git.vlsilab.polito.it/coralie.allioux/xnor-net,

89

http://embeddedb.blogspot.com/2013/10/how-to-count-cycles-on-arm-cortex-m.html
http://embeddedb.blogspot.com/2013/10/how-to-count-cycles-on-arm-cortex-m.html
https://embeddedcomputing.com/technology/processing/measuring-code-execution-time-on-arm-cortex-m-mcus
https://embeddedcomputing.com/technology/processing/measuring-code-execution-time-on-arm-cortex-m-mcus
https://www.dropbox.com/sh/wiq0b8y306ae3b2/AACzBp05XYW7v3jnoo3dLFZTa?dl=0
https://www.dropbox.com/sh/wiq0b8y306ae3b2/AACzBp05XYW7v3jnoo3dLFZTa?dl=0
https://www.dropbox.com/sh/wiq0b8y306ae3b2/AACzBp05XYW7v3jnoo3dLFZTa?dl=0
https://git.vlsilab.polito.it/coralie.allioux/xnor-net


Bibliography

2021-2022

90



Appendix A

Additional measures

A.1 MCU-FPGA based: FPGA a 32KHz
A.1.1 LiM is computing

#Words FPGA IO
(mW)

FPGA Core
(mW) MCU (mW) Core +

MCU (mW)
4 6.63 2.18 47.53 49.70
8 6.63 2.20 47.52 49.72

16 5.99 2.18 23.68 25.85
32 6.30 2.22 35.66 37.88
64 6.30 2.45 35.65 37.92

128 7.63 2.53 82.47 85.00
256 6.95 2.65 59.01 61.66

Table A.1: MCU-FPGA: power consumption for a 32-bit word during
the computation only of the LiM XNOR-Net

A.1.2 MCU is writing and LiM is computing

A.1.3 Energy with FPGA at 32KHz
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#Words FPGA IO
(mW)

FPGA Core
(mW) MCU (mW) Core +

MCU (mW)
4 6.94 2.24 59.12 61.36
8 7.27 2.28 70.86 73.14

16 7.28 2.31 70.88 73.19
32 6.93 2.35 59.15 61.50
64 6.93 2.45 59.13 61.58

128 6.61 2.64 47.46 50.10

Table A.2: MCU-FPGA: power consumption for a 64-bit word during
the computation only of the LiM XNOR-Net

#Words FPGA IO
(mW)

FPGA Core
(mW) MCU (mW) Core +

MCU (mW)
4 6.93 2.27 59.12 61.37
8 7.24 2.32 70.91 73.23

16 6.91 2.36 59.29 61.65
32 7.28 2.46 70.87 73.33
64 7.24 2.71 11.39 70.92

Table A.3: MCU-FPGA: power consumption for a 128-bit word during
the computation only of the LiM XNOR-Net

Bit/word #Words FPGA IO
(mA)

FPGA Core
(mA) MCU (mA)

32 4 1.84 1.92 4.02
32 8 1.81 1.93 3.83
32 16 1.81 1.94 3.66
32 32 1.80 1.97 3.53
32 64 1.78 2.01 3.47
32 128 1.78 2.11 3.42
32 256 1.78 2.27 3.43

Table A.4: MCU-FPGA: current measures for a 32-bit word during the
writing LiM + computation of the LiM XNOR-Net

92



A.1 – MCU-FPGA based: FPGA a 32KHz

Bit/word #Words FPGA IO
(mA)

FPGA Core
(mA) MCU (mA)

64 4 1.84 1.92 3.78
64 8 1.84 1.93 3.66
64 16 1.81 1.94 3.66
64 32 1.80 2.01 3.49
64 64 1.79 2.10 3.44
64 128 1.78 2.29 3.42

Table A.5: MCU-FPGA: current measures for a 64-bit word during the
writing LiM + computation of the LiM XNOR-Net

Bit/word #Words FPGA IO
(mA)

FPGA Core
(mA) MCU (mA)

128 4 1.85 1.95 4.00
128 8 1.83 1.97 3.53
128 16 1.81 2.02 3.48
128 32 1.80 2.10 3.44
128 64 1.79 2.29 3.45

Table A.6: MCU-FPGA: current measures for a 128-bit word during the
writing LiM + computation of the LiM XNOR-Net

#Words 32-bit word
Energy (uJ))

64-bit word
Energy (uJ))

128-bit word
Energy (uJ))

4 50.45 122.72 245.48
8 50.47 146.28 292.92

16 26.24 146.38 246.60
32 38.45 123.00 293.32
64 38.49 123.16 283.68

128 86.28 100.20 NONE
256 62.58 NONE NONE

Table A.7: MCU-FPGA: energy during the computation only of the LiM
XNOR-Net
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Tutorial VirtLab
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B – Tutorial VirtLab

B.1 Introduction
This tutorial aims at explaining how to set up the environment in order to
use the VirtLab, which means: how to connect to the VirtLab and how
to program it.

To do so, some software tools are needed in order to communicate with
the VirtLab. When those communication ways are operational, programming
the VirtLab becomes possible.

The main sources of the VirtLab are available on the following link:
https://www.dropbox.com/sh/wiq0b8y306ae3b2/AACzBp05XYW7v3jnoo3dLFZTa?
dl=0.

This tutorial has been tested on and is targeting Windows 10/11
and GNU/Linux.

B.2 Connecting the VirtLab to a PC
The VirtLab needs to be connected to the PC, as shown on Figure B.1, via
two cables:

• via microUSB (top left)
• and USB-C (bottom left)

The interrupter for turning ON/OFF the board is in red. To be more
precise, on the picture, the board is actually connected to the PC with the
interrupter turned OFF.

Note: Those two cables uses an USB or USB-C port of the PC, depending
on the PC characteristics.
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B.2 – Connecting the VirtLab to a PC

Figure B.1: VirtLab board conected to a PC
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B.3 Needed software
This section exposes the list of needed software, in order to properly use the
VirtLab. As a consequence, those programs must be installed on the PC
physically connected to the VirtLab.

B.3.1 General overview: Interaction between software
and VirtLab

The general schematic of the communication between software and the Virt-
Lab is depicted on Figure B.2. The board is connected via two cables, as
seen previously in section B.2. This schematic emphasizes on what are the
purposes of those ports, which software tools are needed and how they inter-
act together. A MCU ST-LINK programmer is given (top left), connected
via microUSB. This programmer can download the compiled code (ELF file)
on one of the MCUs. The ELF file can be created as explained in subsec-
tion B.3.6, using ST-Cube IDE, and can be downloaded on the MCU with
the ST-Cube Programmer (subsection B.3.5). On the other hand, to pro-
gram the FPGAs, the USB-C port is used to download a RBF file, which
can be created with Quartus Prime (subsection B.3.7).

Figure B.2: Interaction between software and VirtLab
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B.3.2 Stlinkbridge
Stlinkbridge is a C++ application which uses the ST’s API in order to
recognize and connect to the MCU programmer. Since the VirtLab contains
two MCUs, one of them needs to be chosen and specified to be programmed.
The job of that application is allowing the user to select the desired MCU.

The sources (executable and library file) are available on the Dropbox
folder:
virtLAB/Software/stlinkbridge/. Choose the subfolder corresponding to
your operating system: linux/ or win64/.

The following two commands are available to select the desired MCU:

stlinkbridge m #choose Master MCU
stlinkbridge u #choose User MCU

The VirtLab GUI (subsection B.3.4) uses those commands: hence, the
stlinkbridge command must be accessible without having to specify the
path to the Stlinkbridge application. The procedure to do so is explained
in section B.4.

B.3.3 JDK 17
The JDK contains tools for developing and running Java programs. It is
necessary for running the VirtLab GUI (subsection B.3.4).

If already installed, you can check the current version with the following
command:

java -version

Otherwise, go to https://www.oracle.com/java/technologies/downloads/,
download the files for your operating system and install the development kit.
Then, check the current version running the java -version command.

Note: The JDK 8 is obsolete for this setup. Not all version were tested.
However, it is well known that the JDK 17 fits: hence, JDK 17 is the recom-
mended version.

B.3.4 VirtLab GUI
VirtLab GUI is a Graphical User Interface, located on the Dropbox folder
(dist/VirtLabUI-v1.0.jar, unzipping virtLAB/Software/VirtLabUI-v1.0.zip).
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This software is used for communicating with the VirtLab. It allows one to
choose which MCU to program and to program the FPGAs.

It needs Stlinkbridge (called by the GUI) and JDK 17 (executes the GUI).
It can be launched on the command line by using JDK, with the following

command:

java -jar VirtLabUI-v1.0.jar

Note: This interface aims at simplifying the interaction with the VirtLab,
even if in theory, it is not strictly necessary.

B.3.5 STM32CubeProg

This ST’s program is used for downloading the ELF file (created by Cube
IDE) on the MCU. You only need to use STM32CubeProg to initialize the
VirtLab by programming the Master MCU (the first time you use it or if a
firmware update is released) because only the ELF file is provided. If the
Master MCU already contains the firmware, you do not have to perform this
step.

When you develop your own code, you can directly and only use
STM32CubeIDE for coding, creating the ELF file and downloading
it on the MCU.

The download link can be found bellow:
https://www.st.com/en/development-tools/stm32cubeprog.html#overview

Note: You must register to download that software.

B.3.6 STM32CubeIDE

This ST’s software IDE allows one to program and compile some pieces of
code, in order to create an ELF file, which will be then downloaded on the
MCU.

The download link can be found bellow:
https://www.st.com/en/development-tools/stm32cubeide.html

Note: No need for a particular tutorial: an ELF example file is given
within the sources.
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B.3.7 Quartus
Quartus Prime is a software tool used to program the FPGA, i.e. compiling
the VHDL design files and creating the associated row binary file (RBF)
to be downloaded to the FPGA. This RBF file can be downloaded to the
VirtLab through the VirtLab GUI.
Quartus Prime can be retrieved at the following download link: https:
//fpgasoftware.intel.com/?edition=lite

We suggest you to download the following individual files, according to
your operating system:

• Quartus Prime Lite Edition (Free): Quartus Prime (includes Nios II
EDS)

• Devices: Cyclone 10 LP device support

Once Quartus Prime has been successfully installed, the recommended pro-
cedure is to exploit the project available in the Dropbbox folder virtLAB/
Hardware/FPGA-templates/fpga-user-template and modify (i.e. include
the top entity of your design and do the proper port map) the fpga-user.vhd
file. In this case, the target FPGA selection (family Cyclone 10 LP, de-
vice 10CL025YE144C8G) and the pin assignment are already done. Once the
project is compiled, an RBF file is automatically generated and can be down-
loaded to the FPGA. If the RBF is not generated click on Assignments −→
Device −→ Device and Pin Options −→ Programming Files and check
Raw Binary File (.rbf), as shown in Figure B.3. Then click on Ok.
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Figure B.3: Selection of RBF output file.
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B.4 Setting up the environment

B.4.1 For Windows 10/11
As explained in the subsection B.3.2, the Stlinkbridge program should be
run by the command line. To do so, it needs to be added in the environment
variable called PATH.

Note: In this tutorial, the language of the PC is set to Italian. In order
to cover more languages, the text contains the English version.

• STEP 1: Search for the environment variable control panel: Search for
the control panel Edit the system environment variables through
the Windows search (by typing env if English or ambi if Italian)

• STEP 2: Click on Environment variables...

• STEP 3: Select Path in System Variables and click Modify

• STEP 4: Create a new entry by clicking on New

• STEP 5: Click on Browse... and select the directory where STLinkbridge
program (executable and library files) is

• STEP 6: Done! Dismiss all windows by clicking on OK (three times)

Note: To verify if the Path variable is updated correctly, run the stlinkbridge
command within the command line.

B.4.2 For GNU/Linux
Alias for VirtLab GUI

This alias is recommended for using the GUI in a smoother way: through
the command line, using a direct command like VirtLab. To do so, modify
the file ~/.bashrc by adding the following line:

alias VirtLab='java -jar DirectPath/VirtLabUI-v1.0.jar'

Note: DO CHANGE DirectPath with the precise location of the program
on your PC.
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Figure B.4: STEP 1: Search for the environment variable control panel

Stlinkbridge configuration

Open the ~/.bashrc and add the following lines:

# Updating the PATH to use the direct command "stlinkbridge"
PATH="$PATH:/path/to/stlinkbridge/executable/"

# Updating the location of the needed libraries
export LD_LIBRARY_PATH="/path/to/stlinkbridge/library/"

The paths of the library and stlinkbridge executable depends on where
you put the virtLAB Dropbox folder. Let’s assume, for instance, that the
virtLAB folder is located in /home/virtLAB/. The previous lines become:

# Updating the PATH to use the direct command "stlinkbridge"
PATH="$PATH:/home/virtLAB/Software/stlinkbridge/"

# Updating the location of the needed libraries
export LD_LIBRARY_PATH="/home/virtLAB/Software/stlinkbridge/"

To take into account those changes, execute the following command:

source ~/.bashrc
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Figure B.5: STEP 2: Click on Environment variables...

Note: «~» before /.bashrc is a shortcut for specifying your home. There-
fore, you can use that command independently on your current location within
the file tree, known with pwd.

Update user groups

In order to execute everything, some permissions are needed that are resolved
by adding some groups to the current user.

To do so, execute the following command:

sudo usermod -a -G dialout,plugdev $USERNAME

Reboot your PC.
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Figure B.6: STEP 3: Select Path in System Variables and click Modify

Note: You can verifying if everything went well with the id command:
observe for the groups plugdev and dialout after the reboot.
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Figure B.7: STEP 4: Create a new entry by clicking on New
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Figure B.8: STEP 5: Click on Browse... and select the directory where
STLinkbridge program (executable and library files) is

14



B.4 – Setting up the environment

Figure B.9: STEP 6: Done! Dismiss all windows by clicking on OK (three
times)
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B.5 First use of VirtLab
For the first use of the VirtLab, neither the FPGAs nor MCU are pro-
grammed. Once the firmware available on Dropbox
virtLAB/Firmware/virtlab-master/virtlab-master.elf is downloaded to
the master MCU, one can program the FPGAs (master and user) through
the VirtLab GUI. This section explains how to download this firmware on
the MCU master.

• STEP 1: Connect the VirtLab to the PC via USB-C and microUSB, as
described in section B.2.

• STEP 2: Switch on the board by turning on the interrupter at the
bottom left of the board.

• STEP 3: Launch the Java application (by using the alias created before
in section B.4.2 ; or on Windows by double clicking on the program file).

• STEP 4: Go to MCU tab

• STEP 5: Select Master and click Apply. The LED associated with the
MCUs is now orange, as shown in Figure B.12. It confirms that the
MCU-Master is the one selected.

• STEP 6: Open STM32CubeProg. Connect to the ST’s programmer
present on the board by clicking Connect. The top left LED of the
Virtlab is now blinking Green/Red, which means that the programmer
is well connected.

• STEP 7: Click on Open file and choose the firmware called virtlab-
master.elf. Current code on the MCU is depicted in the middle.

• STEP 8: Click on Download to upload on the MCU the file previously
selected.. Dismiss the successful pop-up by clicking OK and disconnect
by clicking on Disconnect. The top-left LED is now fixed to Red.

• STEP 10: Switch off and then switch on the board (same interrupter
as in step 2) to apply the changes. The uploaded firmware turns on the
MCU-Master LEDs from right to left and vice versa (visual confirma-
tion). Done!
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Figure B.10: STEP 4: Go to MCU tab

Figure B.11: STEP 5: Select Master and click Apply

With this firmware on the MCU master, you are now able to
program the FPGA. Indeed, it implements the links between the
MCU master and the FPGAs shown on Figure B.2.

Note: Since that firmware is written on the Flash memory of the MCU,
this step needs to be executed only the first time you use the VirtLab (or
if a master MCU firmware update is released). The next time the board is
shutting down and then turning on, the firmware is automatically loaded and
executed.
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Figure B.12: VirtLab: MCU Master selected, ORANGE LED

Figure B.13: Connect to the ST’s programmer present on the board by
clicking Connect
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Figure B.14: STEP 7: Click on Open file and choose the firmware called
virtlab-master.elf. Current code on the MCU is depicted in the middle.

Figure B.15: STEP 8: Click on Download to upload on the MCU the file
previously selected.

19



B – Tutorial VirtLab

B.6 Program on VirtLab
You will need to use the MCU user and FPGA user for your laboratory expe-
riences, whereas the FPGA master shall be reserved for specific applications.
This section is devolved to explaining how to program these devices.

B.6.1 Program MCU User
The procedure is the same as the one explained for programming the MCU
master in the section section B.5. You can use the given example file:
virtLAB/Firmware/virtLab-user/virtLab-user.elf. The only difference
is to select the MCU user on the MCU tab of the VirtLab GUI, as shown
on Figure B.16. The LED associated with the MCU on the board will be
turned green: Figure B.17.

Figure B.16: VirtLab GUI MCU: choose MCU user and apply

B.6.2 Program FPGA User
You can use the following example file: virtLAB/Hardware/FPGA-templates/
fpga-user/fpga-user.rbf. This program turns on the FPGA LEDs ac-
cording to the status of the switches from n°5 to n°8 (switch ON −→ LED
ON and vice versa).

• STEP 1: Connect the VirtLab to the PC via USB-C and microUSB, as
described in section section B.2.

• STEP 2: Turn on the interrupter at the bottom right of the board.
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Figure B.17: VirtLab: MCU User selected, GREEN LED

• STEP 3: Launch the Java application (by using the alias created before
in section B.4.2 ; or on Windows by double clicking on the program file).

• STEP 4: Connect to the communication port by clicking Connect. Then,
Got to FPGA tab.. Generally, there will be only one port detected,
which is the USB-C one of the board. The name of the port shall be
ttyACMX in a Linux operating system and COMX under Windows, where
X is a number. If under Windows you do not see the serial port, go to
the Device manager −→ Ports (COM and LPT). Here, Windows should
enumerate two ports:

– Serial USB device (COMX).
– STMicroelectronics STLink Virtual COM port (COMY).

The serial port to which you need to connect to program the FPGAs
is the Serial USB device (COMX). Under Linux, if you do not manage
to connect to the serial port, you are recommended to install minicom.
Then type

minicom -o -D /dev/ttyACMX

where X is usually either 0 or 1, and check if you manage to connect to
the serial port.

• STEP 5: Select File RBF and User FPGA. Then choose an RBF file
by using Browse button. Finally click on the centered arrow, and wait
for the status bar on the bottom right to be full.. Done!
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Figure B.18: STEP 4: Connect to the communication port by clicking
Connect. Then, Got to FPGA tab.

Figure B.19: STEP 5: Select File RBF and User FPGA. Then choose an
RBF file by using Browse button. Finally click on the centered arrow, and
wait for the status bar on the bottom right to be full.

If you are using the example file, you can now check by using the switches
5 to 8 and observing the FPGA User LEDs. Keep in mind that if the MCU
User is not programmed yet, that program can behave badly because of some
active pull-up on the un-programmed components.

Note: Since that firmware is written on the RAM of the FPGA, those
steps need to be done each time the board is shutting down and then turning
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on.

B.6.3 Program FPGA Master
You can follow the same steps of subsection B.6.2. By changing the parame-
ters on the FPGAs tab: VirtLabUI: Upload RBF file on FPGA Master. You
can use the following example file instead:
virtLAB/Hardware/FPGA-templates/fpga-master/output_files/fpga-master.
rbf.

Figure B.20: VirtLabUI: Upload RBF file on FPGA Master

Note: DO IT ONLY IF NECESSARY and if explicitly required
by the laboratory experience you are carrying out. To test your
VHDL designs, you must use the FPGA User.
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