
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Enabling Digital Project Management –

Development of Backend Libraries

Supervisor: Candidate:
Prof. Paolo Eugenio Demagistris Emin Suleymanov

In collaboration with: PM-Lab of PoliTo

A. Y. 2021/2022

1

Abstract

Various digital tools exist for Project Management which applies various project management
methodologies, and new tools are created or existing ones are improved due to needs of Project
Management industry. Whereas, they may have some gaps. This thesis will develop a unified
storable model to support financial flow of a project by applying object-oriented programming
methodologies to project management software. OOP provides some benefits such as reusability,
flexibility. The thesis has been accomplished in collaboration with Project Management
Laboratory of Politecnico di Torino and purpose of the thesis is to develop software that presents
reusable object models for project finance. This platform is considered as Python based web-
application which enables digital environment for Project Management. The software will contain
following elements: backend, frontend and API endpoints for interaction between them.

2

Table of Contents

Abstract 1

Introduction ..4
The Problems in Managing Projects ..4

Object-Oriented Project Management (O2PM) ..4

Object-Oriented Programming (OOP) ..5

Implementation ...7

Used tools and technologies ...7

Python ..7
Django ...7

REST API ..8

Django REST framework ..9

Django REST Knox ...9
JSON ..9

SQLite ..9

Git ..10

Jupyter notebook ...11

Project Management Software – Backend API’s ...11
Structure of Django project ...11

Structure of Django application ...12

Permissions ..12

Accounts application ...13
Projects application ...14

Project Charter application ...17

Project Resources application ..19

Project Procurements application ..21

3

Project Budget application ..22

Frontend ...28

Informative Use Case ..29

Registration ...29
Definition of User Role ...29

Deactivating and Activating User account ..30

Login ...30

Project creation ..31
Adding Stakeholder to Project ..32

Assigning User Permission ...32

Adding Project Charter ..32

Editing Project Charter ..33

Adding Business Case SWOT ...34

Budget Allocation ...34

Adding Project Resource ...35

Adding Resource Spending ...36

Adding Procurement Contract ...36

Adding Contract Spending ..37

Acquisition of Actual Cost ..38

Forecasting Future Spending ...38

Requisition of Additional Funds ...39

Testing ..41

What is testing ...41
What is Integration testing ..41

Testing of REST API’s ...41

Conclusion ...43

References 44

4

Introduction

The Problems in Managing Projects
Many of the real issues a project manager faces are: requirement elucidation, senior management
involvement, change control, risk management, user involvement, work breakdown and allocation,
team management, technology and process change management, and tracking and monitoring [1].

According to many researches, the conventional approaches of project management have some
problems. For instance, significantly large part of projects isn’t finished on time or budget

management problems exist. As a solution, Object-Oriented Project Management (O2PM)
technique is provided.

Object-Oriented Project Management (O2PM)
The objective of object-oriented management is to provide a clear set of principles set into a
framework that enables all participants while minimizing management overhead [2].

Object-Oriented Project Management applies Object-Oriented Programming paradigm to Project
Management. Object-Oriented approach contains some main concepts such as classes and
members, objects and attributes and so on. The five main activities of the object-oriented approach
listed below.

1. finding classes and objects
2. identifying structures
3. identifying subjects
4. defining attributes
5. defining services

In a typical project context, the project manager uses software to establish a project plan, allocates
tasks, deadlines, and effort to the team members, whereas any appropriate mechanism doesn’t exist

to encapsulate work and set boundaries. This makes accountability a significant problem, also
problems occur with measuring the amount of work completed and producing effective reporting.

Most of these matters are resolved by O2PM. The core components are as follows:

• Encapsulation – team members can effectively work within specified bounds when work
deliverables are encapsulated and boundaries are made apparent. Stronger governance and,

5

more significantly, accountability will result from encapsulating work in this way.
Additionally, it makes identification of problems and their solution easy.

• Inheritance – establishes the project's architecture, rules, standards, and processes, which
every team member and the work deliverables have to inherit them.

• Polymorphism – presents the meaning that a unique object can have multiple alternative
representations

• Communication –the interfaces may be created that the encapsulated deliverables will use
to communicate with others.

Object-Oriented Programming (OOP)
Object-oriented programming (OOP) is a programming paradigm based on the concept of
"objects", which can contain data and code: data in the form of fields (often known
as attributes or properties), and code, in the form of procedures (often known as methods) [3].

The following elements make up the Object-Oriented Programming structure:

• Classes – data types defined by user, which is used to construct separate objects,
attributes, and methods.

• Objects – are instances of a class that are generated using specified data. Objects can be
abstract entities or things in the real world.

• Methods – define the behavior of an object and placed inside a class. Methods are attached
to class instances (objects) and allow to access and alter the object’s data fields.

• Attributes – are described in the class template. When a new object of the class is created,
attributes field contains particular data of the object.

Object-oriented programming is supported by the majority of the most widely used programming
languages, including C++, Java, Python, etc. OOP provides many benefits such as modularity,
reusability, productivity, security, flexibility.

Four key principles form the foundation of object-oriented programming:

• Encapsulation – information is encapsulated inside an object and only a limited amount
of data is revealed. This aspect of data concealing contributes to increased program
security.

6

• Inheritance – makes codes of other classes reusable. Programmers can reuse common
logic by keeping a distinct hierarchy when assigning relationships and subclasses between
objects.

• Polymorphism – objects and methods may share same behaviors more than one form.
Polymorphism decreases the demand to duplicate code.

• Abstraction – is an object-oriented programming paradigm that "shows" only relevant
properties and "hides" extraneous data.

7

Implementation

Used tools and technologies

Python
As a programming language, it’s general-purpose and high-level. High-level programming
language means that development of a computer program with python is simpler, allows to
automate significant domains of computing systems, a code is more understandable, and more
readable than using low-level programming languages. A meaning of general-purpose
programming language is that in contrast to domain-specific programming languages, python is
not considered for a solution of any specific problem, it can be applied on a solution of various
areas. It supports a variety of programming paradigms, including functional programming and
object-oriented programming. A simplicity of its syntax makes python popular rather than other
high-level programming languages. It is used in various fields of software development, for
instance, desktop applications, web application, data analysis etc.

Django
Django is a python-based web framework which allows to develop web applications rapidly,
makes development of complex, database-driven web applications easy, takes care of security and
assists developers to get rid of common security mistakes such as SQL injection, cross-site request
forgery etc. It pursues MVT (model-view-template) architectural pattern. MVT is a software
design pattern and consists of three main components Model, View and Template. The Model is a
source of information about our data and corresponds a database table. The View is responsible for
executing business logic, interacting with a carry data, and rendering a template. The Template is
a presentation layer that takes care of the entire user interface. Moreover, django uses ORM
(object-relational mapper) which intercedes between data models (defined as Python class) and
relational database (Model). Django also presents an optional administrative panel which allows
CRUD operations over data models and helps developers to save time during development.

8

REST API
API stands for application programming interface which is a set of protocols and definitions for
computers or computer programs to communicate with one another.

REST (Representational State Transfer) is not a protocol or a standard, it’s just a software
architectural style that allows users to communicate with RESTful web services. It delivers a
representation of the state of the resource to the requester or endpoint when a client sends request
using A RESTful API. This data may be transferred via HTTP in one of several formats such as
plain text, JSON, HTML. Although, multiple possible formats, the most preferred file format is
JSON among them, because of its language-agnostic feature, it has good readability by either
humans or machines.

REST API requests can be made by following HTTP methods:

GET – the most used HTTP method, returns a representational view of the contents and data of a
resource.

POST – the only HTTP method in the RESTful API that primarily works with resource collections.
Creates a new resource and associate it with the proper hierarchy.

PUT – modifies a resource by completely replacing its content.

PATCH – another HTTP mechanism for updating resources, it just alters resource contents rather
than replacing them, like the PUT technique does.

DELETE – deletes a single resource completely

Below diagram describes how data transferred between a client and a server using REST API.

9

Django REST framework
Django Rest Framework (DRF) is a robust and adaptable toolset that allows us to quickly create
RESTful APIs using Django models. It represents class based generic API views and serializers,
so with a few lines of code we can rapidly create views for api endpoints by avoiding common
mistakes. Also, it provides “ApiTestCase” class to test api’s by integration test.

Django REST Knox
While creating a web application, security is one of the important domains that has been taken care
of that. At this point, Knox framework offers easy to use authentication for API endpoints built
with DRF. Knox is token-based authentication and fixes various issues with DRF's built-in Token
Authentication. For instance, token is generated per one call in login views with Knox or it presents
expiration of tokens etc.

JSON
JSON (JavaScript Object Notation) is a format for data exchange that is simple to use. Reading
and writing are simple tasks for humans. Machines can easily parse and generate it. JSON is a
language-independent text format that incorporates standards common to programmers of the C
family of languages, like C, JavaScript, C++, Python, C#, and many others. JSON is an ideal data-
transfer language because of these characteristics.

JSON is made up of two basic structures:

• Name/value pairs are grouped together as a collection. This is represented as an object,
record, struct, dictionary, hash table, keyed list, or associative array in many languages.

• An ordered list of values. This is implemented as an array, vector, list, or sequence in most
programming languages.

These are data structures that are universal. They are supported in some form or another by almost
all modern programming languages. It's logical that a data format that can be used in various
programming languages is based on these structures.

SQLite
SQLite is a compact software library that presents a relational database management system. It
implements a transactional SQL database engine that is self-contained, serverless, and requires no
configuration. Self-contained means it only needs little support of the operating system or a third-
party library. Thus, it is applicable in any environment, including embedded devices, for instance,
game consoles or Android phones. SQLite doesn’t use a separate server process like other SQL

databases. A data is read and written directly to ordinary disk files. So, a single disk file contains

10

a whole SQL database, including many tables, indices, triggers, and views. All these features make
it so popular among other database management systems.

Git
In the world, Git is the most popular decentralized version control system which stands for Global
Information Tracker. It’s a piece of software that allows us to track changes made to any group of
files. Git is built to manage a wide range of jobs, from tiny to extremely large in a rapid and
efficient way. It’s typically used to coordinate work among developers who are working on source
code together while software development. An essential element of Git is a repository that contains
a project. A repository might be locally saved or hosted on a website like GitHub. Commits are
used to save the project's progress throughout development. All commits of the project are listed
in the commit history. Furthermore, a commit creates a possibility of reverting or forwarding the
code to any prior commit in the history.

The files of each Git project go through various phases:

• Working directory – files that have been modified but are not yet ready to commit because
they are untracked.

• Staging directory – when updated files are added to the staging environment, it’s indicated

that they're ready to commit.
• Committed – the commit history contains snapshots of files from the staging area.

The following diagram indicates the Git workflow.

11

Jupyter notebook
Jupyter Notebook is an interactive computational environment for generating notebook documents
that is accessible through the web. A Jupyter Notebook document is a web-based REPL (read-
eval-print-loop) with an ordered list of input/output cells that may consist of code, rich media, text
(Markdown), plots and mathematics. A notebook is a JSON document that follows a versioned
format and commonly ends with the ".ipynb" extension beneath the interface. It may link to a
variety of kernels for allowing to programming in many languages.

Project Management Software
Backend API’s
It is a web application which is responsible for enabling of a digital environment for the project
management. Main focus of the thesis is a backend side (server-side) of the web application that
allows to manage funding and spending for steering of a project. Thus, this digital environment
provides various functionalities such as control over stakeholder accounts, management of project
budget, tracking of project spending etc. Moreover, various parts of a project are accessible by
stakeholders within certain permissions. All of these functionalities are provided as API endpoints
(REST API’s) that allow a frontend side of the web application to communicate with backend.
Frontend side is represented as a Jupyter notebook document to present outputs of API’s.

Structure of Django project
The backend API’s are developed as a Django project. Each Django project may have several
python packages which one of them is a main package contains configurations of entire project
and rest of them are django applications. In our case, main package is called dpm_env and contains
some files such as settings, urls and so on. Settings.py file demonstrates default configurations of
the project which consists of implemented django applications (python packages) including local
and third-party packages, database configurations, REST framework configurations, security
settings etc. Urls.py file plays a role of gateway inside the project. Because, redirecting of each api
request to a related endpoint is realized by this url settings.

urlpatterns = [

 path('admin/', admin.site.urls),

 path('accounts/', include('accounts.urls'), name='accounts'),

 path('projects/', include('projects.urls'), name='projects'),

12

Figure 1. URL patterns of the project

Structure of Django application
Our project consists of six main django applications. Django application is a Python package that
allows us to split a django project into small packages due to business logic.

An application may use common Django conventions, such as having models, tests, urls, and views
submodules [4].

Model – Django's built-in tool for creating tables, their fields, and other constraints.

View – responsible for accepting web request and returning response and describes business logic.
Django views can be created as function-based or class-based.

Serializer – used in DRF to convert objects into data types that are understandable by front-end
frameworks and vice versa.

Urls – a set of URL patterns are used by Django to determine dedicated view for the requested
URL.

Test – Django offers a framework for tests that allows unit and integration tests.

Implemented django applications are:

• Accounts application
• Projects application
• Project Charter application
• Project Resources application
• Project Procurements application
• Project Budget application

Permissions
Access to each API endpoint requires a certain permission in the system. Permissions are defined
using permissions module of DRF and Django guardian implementation. Some methods, such as
assign_perm, remove_perm, get_user_perms are offered by Django Guardian which allows to
assign certain permissions to each stakeholder for each project. Within these permissions a
stakeholder can edit certain part of the project such as spending, project charter, resources, project

 path('api-schema/', schema_view.with_ui(

 'swagger', cache_timeout=0), name='schema-swagger-ui'),

 path('redoc/', schema_view.with_ui(

 'redoc', cache_timeout=0), name='schema-redoc'),

]

13

budget. For instance, add_project_resource permission allows a stakeholder to add a new resource
to the project.

Figure 2. Object level permission example

Accounts application
It’s responsible for administration of stakeholder accounts. Accounts application contains “User”

model which is a Python class and corresponds a table with same name in the database. The
properties of the User model demonstrated below.

Figure 3. User model

The properties first_name, last_name and email defined as required fields that must be provided,
email field is also unique identifier that defines each user can have one account while registration
of a new stakeholder. The field of user_role is considered to manage permissions and
responsibilities of a stakeholder in the system. It represents several choices to be set as value which
are:

• PMO – project management office
• PM – project manager
• PS – project sponsor
• PC – project controller
• PSC – project scheduler
• PP – project planner
• AS – administrative staff

class hasAddProjectResourcePermission(permissions.BasePermission):

 def has_object_permission(self, request, view, obj):

 permissions = get_user_perms(request.user, obj)
 return 'add_project_resource' in permissions

class User(AbstractBaseUser, PermissionsMixin):

 first_name = models.CharField(max_length=255, blank=False)

 last_name = models.CharField(max_length=255, blank=False)

 email = models.EmailField(max_length=255, unique=True)

 user_role = models.CharField(

 max_length=3,

 choices=[('PMO', 'PMO'), ('PM', 'PM'), ('PS', 'PS'), ('PC', 'PC'),

 ('PSC', 'PSC'), ('PP', 'PP'), ('AS', 'AS'), ('U', 'U')],

 default='U'

)

 is_active = models.BooleanField(default=True)

 is_staff = models.BooleanField(default=False)
 is_superuser = models.BooleanField(default=False)

14

• U – unknown

is_active field defines account status to conduct an access of a stakeholder to the system. Last two
properties serve for accounts of administration staff.

Accounts application provides seven API endpoints to execute operation on the User data model.

• Register API – any specific permission is not required. Everybody can register by
providing his credentials such as name, surname, email. Dedicated view class will handle
request, forward data to linked serializer class, it will check validity of email, password
etc. and a new account will be created if all credentials are valid. In response, it returns
details of registered user.

• Login API – by providing email and password stakeholders can sign in to the system.
Related serializer class finds user data from database due to given email, if account is active
forwards data to linked view class. View class creates a new authentication token for user
and returns them as response.

• User Details API – represents details of specified user account. Just account owner and
pmo type user have access to the endpoint.

• User List API – only pmo type user can get an entire list of users by sending request to
the API endpoint.

• Activate User API – pmo type user may re-activate suspended user account using the API
endpoint to allow access to the system. PMO just needs to include user id in request URL.

• Deactivate User API – pmo type user may prevent login of a user by deactivating his
account. It’s enough to include specified user in the request.

• Update User Role API – directly after registration user role is set as unknown, however,
user needs to be defined his user role to become a stakeholder of any project. So, this can
be done by pmo type user by sending request to the API endpoint with related credentials.

Projects application
Projects application contains some basic data about the project. The Project model of projects
application serves for generation of a new project instance and consists of data fields present
primary information about a project which are project_name, author of a project, starting date of
a project and involved stakeholders.

15

class Project(models.Model):

 project_name = models.CharField(max_length=255, blank=False)

 author = models.ForeignKey(User, on_delete=models.CASCADE)

 created = models.DateTimeField(auto_now_add=True)

 stakeholders = models.ManyToManyField(User, blank=True,

 related_name="stakeholders")

 def actual_cost(self):

 resource_spending = project_budget.models.ResourceSpending.objects.all()

 .filter(project=self).filter(approval_status='approved')

 .aggregate(Sum('amount')).get('amount__sum')

 contract_spending = project_budget.models.ContractSpending.objects.all()

 .filter(project=self).filter(approval_status='approved')

 .aggregate(Sum('amount')).get('amount__sum')

 if not resource_spending:

 resource_spending = 0.0

 if not contract_spending:

 contract_spending = 0.0

 actual_cost= resource_spending + contract_spending

 return {

 "actual_cost": actual_cost,

 "resource_spending": resource_spending,

 "contract_spending": contract_spending

 }

 def __str__(self):

 return self.project_name

 class Meta:

 ordering = ('project_name',)

 permissions = (

 ('add_project_charter', 'Can add project charter/to project charter'),

 ('change_project_charter', 'Can change project charter'),

 ('delete_project_charter', 'Can delete project charter'),

 ('view_project_charter', 'Can view project charter'),

 ('add_additional_budget', 'Can add additional budget request'),

 ('change_additional_budget', 'Can change additional budget'),

 ('view_additional_budget', 'Can view additional budget'),

 ('add_project_resource', 'Can add project resource'),

 ('change_project_resource', 'Can change project resource'),

16

Figure 4. Project model

The Project model provides a method named actual_cost that allows to track actual cost of entire
project including spending for resources and procurements. Management of various operations
over models is administrated via permissions (project_charter, resource, contract, spending)
defined in addition to the default project permissions (add_project, change_project,
delete_project, view_project) in the Meta class of Project model.

Thirteen API endpoints are defined in the Projects application to edit user permissions, involved
stakeholders and project data.

• Project API – only pmo type users has access to the endpoint. Authorized pmo can
generate a new project instance by sending primary credentials: project_name and his id.
First stakeholder of project is an author of the project and all permissions are assigned
automatically directly after creation of project.

• Edit Project API – allows to edit project name. Requires a permission of change_project.

• Delete Project API – a stakeholder who has delete_project permission can delete entire
project using project’s id.

• Project Details API – requires a permission of view_project and provides all details of a
project including budget, project charter, business case swots etc.

• Get projects of stakeholder API – each authorized stakeholder can get a list of his projects
with brief information about per project. It doesn’t require any individual permission.

• Add stakeholder to project API – a user with add_project permission may add a new
stakeholder to the project. Presenting of project id and stakeholder account id is enough to
make user a stakeholder of the project.

 ('delete_project_resource', 'Can delete project resource'),

 ('view_project_resource', 'Can view project resource'),

 ('add_project_contract', 'Can add project contract'),

 ('change_project_contract', 'Can change project contract'),

 ('delete_project_contract', 'Can delete project contract'),

 ('view_project_contract', 'Can view project contract'),

 ('add_project_spending', 'Can add project spending'),

 ('change_project_spending', 'Can change project spending'),

 ('delete_project_spending', 'Can delete project spending'),

 ('view_project_spending', 'Can view project spending'),
)

17

• Remove stakeholder from project API – requires to have delete_project per mission. A
stakeholder may be deleted from stakeholder list of the project by sending API request to
the endpoint. Project id and stakeholder account id have to be inserted to the body of API
request.

• Get stakeholders of project API – a user who has view_project permission may get a list
of stakeholders of the project. Just required parameter for the request is id of specified
project.

• Get actual cost of project API – provides brief information about actual cost of entire
project including resource spending, procurement spending. A user who has view_project
permission may access to the endpoint.

• Assign project permissions to stakeholder API – an author of a project may assign
project permissions to a stakeholder of the project using the endpoint. He needs to specify
needed permissions for assignment in the API request. The system has various kinds of
permissions (such as budget permissions, spending permissions) in addition to four main
project permissions: add_project, change_project, delete_project, view_project. These
permissions allow to access the endpoints of applications.

• Assign all project permissions to stakeholder API – all permissions can be assigned to
a stakeholder in a single request using this API endpoint without need to specify
permissions list. Only author of the project has access to the endpoint.

• Delete project permissions of stakeholder API – only an author of the project can access
to the endpoint to remove project permissions of a stakeholder. He must include a list of
permissions which there is need to delete.

• Get permissions of stakeholder API – an author of the project or owner of the user
account may get permissions list of given stakeholder. So, this list contains all permissions
of the stakeholder for the project.

Project Charter application
It is in charge of regulating the project charter including business case swot (strengths, weaknesses,
opportunities, threats). This application consists of two data models, namely, project charter and
business case swot.

class ProjectCharter(models.Model):

 project = models.OneToOneField(Project, related_name='project_charter',

on_delete=models.CASCADE)

 author = models.ForeignKey(User, on_delete=models.CASCADE)

 created = models.DateTimeField(auto_now_add=True)

18

Figure 5. Project Charter model

project field of project charter model identifies that project charter belongs to which project. Each
project can have just one project charter in the system. Furthermore, as it appears from their names
author, created, last_updated fields declare some fundamental data about a project charter. sow
(project statement of work), contract and business_case properties are described as primary inputs
to generate project charter.

Figure 6. Business Case SWOT model

Every project charter may have multiple business case swot instances. project_charter property
identifies linked project charter instance for generated business case swot item. SWOT is an
acronym for strengths, weaknesses, opportunities and threats. Thus, business case swot model
includes a property named swot_type that defines a category of business case swot item among
strengths, weaknesses, opportunities and threats. content field describes a text body of business
case swot item.

 last_updated = models.DateTimeField(auto_now=True)

 sow = models.CharField(max_length=1024, blank=True, null=True)

 contract = models.CharField(max_length=1024, blank=True, null=True)

 business_case = models.CharField(max_length=1024, blank=True, null=True)

 def __str__(self):

 return self.project.project_name

 class Meta:

 ordering = ('project',)

class BusinessCaseSWOT(models.Model):

 project_charter = models.ForeignKey(ProjectCharter,

related_name='bus_case_swot', on_delete=models.CASCADE)

 swot_type = models.CharField(

 max_length=11,

 choices=[('strength', 'strength'), ('weakness', 'weakness'),

 ('opportunity', 'opportunity'), ('threat', 'threat'),]

)

 content = models.CharField(max_length=1024, blank=True)

 def __str__(self):

 return self.swot_type

 class Meta:
 ordering = ('project_charter',)

19

Eight API endpoints listed below provides a possibility for editing project charter and business
case swot items.

• Project Charter API – a user who has add_project_charter user permission or author of
the project can generate project charter for the project by sending required credentials to
the endpoint. These credentials are project statement of work, contract, business case etc.

• Edit Project Charter API – allows to edit project charter partially. Project statement of
work, contract, business case fields may be edited by declaring in the body of the request.
The endpoint requires to have change_project_charter user permission.

• Project Charter Details API – provides detailed information about the project charter of
specified project. Thus, entire information about budget, business case swot items etc. are
included in the response body. A user who sends API request just need to have
view_project_charter user permission.

• Delete Project Charter API – simply deletes a project charter including all data which is
linked to the project charter such as business case swot instances. Requires a user
permission of delete_project_charter.

• Business Case SWOT API – inserts a new business case swot instance to the project
charter. A user needs add_project_charter user permission to add a new business case swot
item to the project charter.

• Business Case SWOT Details API – presents a single business case swot instance in
details using its database id. To access to the endpoint a user must have
view_project_charter permission.

• Business Case SWOT List of Project Charter API – provides a list of all business case
swot items inserted in the project charter. It requires view_project_charter user permission
to access to the endpoint.

• Delete Business Case SWOT API – removes a business case swot item from the project
charter. A user must have delete_project_charter user permission to remove it from the
project charter.

Project Resources application
The application represents API endpoints to take care of project resources. Project Resources
application contains Resource model that is data structure for project resources instance.

20

Figure 7. Resource model

A resource item is linked to a project which is identified by project property in the Resource model.
The name property determines a title for a project resource item. The description property is
considered for explanatory information about a project resource item. cost and unit fields define
respectively, unit cost of resource and unit as measure which default value is euro for unit property.
In a project, resources may be classified in various categories such as human, material and so on.
The category property allows to categorize project resources.

The application consists of five API endpoints to assist users for handling project resources.

• Add Resource API – each stakeholder of the project may access to the endpoint for
insertion of a new resource to the project if the stakeholder has add_project_resource
permission.

• Update Resource API – presents a possibility to edit name, description, cost and category
properties of a project resource item. Required user permission is change_project_resource
for the API endpoint.

• Get Resource API – a stakeholder may get details of a single project resource item. A
stakeholder needs view_project_resource permission to request information about details
of project resource.

• Get Resource List of Project API – provides a list of all resources inserted to the project.
A stakeholder must have view_project_resource permission to get the list.

• Remove Resource API – requires delete_project_resource permission to allow access to
the API endpoint. It deletes mentioned project resource permanently.

class Resource(models.Model):

 project = models.ForeignKey(Project, on_delete=models.CASCADE)

 name = models.CharField(max_length=255)

 description = models.TextField(max_length=1024, default=None)

 cost = models.FloatField(default=0.00)

 unit = models.CharField(max_length=255, default='euro')

 category = models.CharField(max_length=255)

 def __str__(self):

 return self.name

 class Meta:
 ordering = ('project', 'name')

21

Project Procurements application
Project Procurements application covers all agreements for third-party purchases in a project.
Thus, the application presents Contract model that is declared as data structure for purchase
agreements.

Figure 8. Contract model

The project property of the model defines that contract belongs to which project. The field of
product determines a title for purchased product, description property describes details of
purchase. unit_price and unit properties define cost of purchased product for each unit and unit
measure, and assignment property expresses amount of product agreed for purchase with third-
party supplier which is demonstrated in the supplier field of the model. date field defines creation
date of the contract. Additionally, Contract model contains total_cost method that is responsible
for computing total payment amount for the purchase.

Management of procurement contracts are carried out by five API endpoints of Project
Procurements application.

• Add Contract API – generates a new procurement contract based on described contract
details in the request. A stakeholder must have a user permission add_project_contract to
access to the API endpoint.

• Update Contract API – allows to edit contract data and requires change_project_contract
permission for given contract to update the contract details.

class Contract(models.Model):

 project = models.ForeignKey(Project, on_delete=models.CASCADE)

 product = models.CharField(max_length=255)

 description = models.TextField(blank=True, max_length=1024)

 unit_price = models.FloatField(default=0)

 unit = models.CharField(max_length=255, default='euro')

 assignment = models.IntegerField(default=0)

 supplier = models.CharField(max_length=255)

 date = models.DateField()

 def total_cost(self):

 return self.unit_price * self.assignment

 def __str__(self):

 return self.product

 class Meta:
 ordering = ('project', 'date')

22

• Get Contract Details API – an authorized stakeholder may obtain all details of the
requested contract. view_project_contract permission is required for the API endpoint.

• Get All Contracts of Project API – returns entire list of created contracts of the project
declared in the request. It’s mandatory to have view_project_contract permission for
accessing to the endpoint.

• Delete Contract API – removes a specified contract from the system. The endpoint
requires delete_project_contract user permission to proceed with operation.

Project Budget application
The application covers operations on project budget and spending. Four data models, namely,
ProjectBudget, AdditionalBudget, ResourceSpending, ContractSpending are replaced in the
Project Budget application.

Budget of a project is defined as a collection of annual budgets during the project progress. Thus,
ProjectBudget model is considered as data model for annual budget.

class ProjectBudget(models.Model):

 project_charter = models.ForeignKey(ProjectCharter,

related_name='project_budget', on_delete=models.CASCADE)

 year = models.IntegerField(('year'), choices=year_choices(),

 default=current_year())

 budget = models.FloatField(default=0.00)

 def actual_cost(self):

 resource_spending = ResourceSpending.objects.all().filter(budget=self)

 .filter(approval_status='approved').aggregate(Sum('amount'))

 .get('amount__sum')

 contract_spending = ContractSpending.objects.all().filter(budget=self)

 .filter(approval_status='approved').aggregate(Sum('amount'))

 .get('amount__sum')

 if not resource_spending:

 resource_spending = 0.0

 if not contract_spending:

 contract_spending = 0.0

 actual_cost= resource_spending + contract_spending

 return {

 "year": self.year,

 "budget": self.budget,

 "actual_cost": actual_cost,

23

Figure 9. Project Budget model

Project budget is described in a simple structure. It has three properties that express linked project
charter, budget year and amount of budget. Although, its structure is simple, it provides a method
called actual_cost which is so practical. The method computes total spending for annual budget
and returns information about annual spending with details.

Sometimes project spending may exceed annual budget which project manager may need to
request additional funds to cover these expenses. AdditionalBudget model is considered for
management of additional budget.

Figure 10. Additional Budget model

budget property identifies annual budget that additional fund belongs. Amount of request fund is
determined by amount property. Current date and time of additional fund request is automatically
inserted to the date field to identify creation date and time of the request. status property expresses
confirmation status of created additional budget request which default value is waiting and may
be replaced with approved or denied during acceptance of the request.

Project expenses are divided into resource spending (internal) and contract spending
(procurement), and data models are presented for each of them.

 "resource_spending": resource_spending,

 "contract_spending": contract_spending

 }

 def __str__(self):

 return str(self.year)

 class Meta:
 ordering = ('project_charter', 'year')

class AdditionalBudget(models.Model):

 budget = models.ForeignKey(ProjectBudget, on_delete=models.CASCADE)

 amount = models.FloatField(default=0.0)

 date = models.DateTimeField(auto_now_add=True)

 status = models.CharField(

 max_length=8,

 choices=[('waiting', 'waiting'), ('approved', 'approved'),

 ('denied', 'denied')],

 default=('waiting')

)

 def __str__(self):

 return str(self.amount)

 class Meta:
 ordering = ('budget',)

24

Resource spending is responsible for internal payments based on project resources and presented
by ResourceSpending model.

Figure 11. Resource Spending model

project, resource and budget properties express linked project, resource and budget. assignment
property is used to identify total payment amount of a spending which defined by amount property
and automatically calculated by the system during insertion of a new spending. description
property contains text data about details of a spending. date property identifies date of a spending
and allows the system to control expenditure’s date that matches with a year of annual budget to

avoid wrong budget usage. A spending has approval_status property that describes validity of a
spending. The system automatically computes actual cost for the budget including current
spending, if it’s over budget the spending is stored with a status of denied, otherwise approval
status becomes approved.

Procurement spending is described ContractSpending data model which determines a payment for
a predefined procurement contract.

class ResourceSpending(models.Model):

 project = models.ForeignKey(Project, on_delete=models.CASCADE)

 resource = models.ForeignKey(Resource, on_delete=models.CASCADE)

 budget = models.ForeignKey(ProjectBudget, on_delete=models.CASCADE)

 assignment = models.IntegerField(default=0)

 amount = models.FloatField(default=0.00)

 description = models.TextField(blank=True, max_length=1024)

 date = models.DateField()

 approval_status = models.CharField(max_length=9,

 choices=[('approved', 'approved'), ('denied', 'denied')] ,

 default=('approved')

)

 def __str__(self):

 return str(self.resource)

 class Meta:
 ordering = ('project', 'budget')

class ContractSpending(models.Model):

 project = models.ForeignKey(Project, on_delete=models.CASCADE)

 contract = models.ForeignKey(Contract, on_delete=models.CASCADE)

 budget = models.ForeignKey(ProjectBudget, on_delete=models.CASCADE)

 amount = models.FloatField(default=0.00)

25

Figure 12. Resource Spending model

It has similar properties with ResourceSpending model, whereas it’s linked to a predefined

procurement contract instead of project resource. Amount property defines final payment amount
and automatically computed by system based on the linked contract.

Functionalities of the Project Budget application are controlled by following twenty-three API
endpoints.

• Project Budget API – allows to set annual budget of a project. It can be done with
add_project_charter user permission. Budgets of several years may be allocated at the
same time.

• Edit Project Budget API – provides functionality to update data of an annual budget.
Required user permission is change_project_charter.

• Actual Cost of Project according to Budget API – computes total spending of a project
which related to a mentioned annual budget. A stakeholder needs view_project_charter
permission to access to the endpoint.

• Project Budget Details API – presents details of a mentioned annual budget. It requires
view_project_charter user permission for access.

• Total Project Budget API – returns a list of all budgets related to project charter. An
authorized user must have view_project_charter user permission to request budget list.

• Delete Project Budget API – permanently removes mentioned annual budget instance. It
requires delete_project_charter user permission to delete budget instance from linked
project charter.

• Delete Total Project Budget API – deletes all annual budget instances from specified
project charter. delete_project_charter user permission is needed to access to the endpoint.

 description = models.TextField(blank=True, max_length=1024)

 date = models.DateField()

 approval_status = models.CharField(max_length=9,

 choices=[('approved', 'approved'), ('denied', 'denied')] ,

 default=('approved')

)

 def __str__(self):

 return str(self.contract)

 class Meta:
 ordering = ('project', 'budget')

26

• Request Additional Budget API – additional funds may be requested from a project
sponsor when annual budget is not sufficient to complete tasks. By using the API endpoint,
a stakeholder who has add_additional_budget permission could place additional budget
request in the system to be confirmed by project sponsor. A fund request is created in
addition to an annual budget of a project.

• Update Additional Fund Request Status API – allows a project sponsor to define a status
of additional budget request. He can accept or reject additional fund request by having
change_additional_budget user permission.

• Additional Budget Requests API – requires view_additional_budget user permission, and
returns a list of all additional fund requests for specified project.

• Additional Budget Details API – returns details of a mentioned additional budget request.
view_additional_budget permission is needed to access to the API endpoint.

• Add Resource Spending API – creates a new resource spending instance. Firstly,
accepted data is validated to identify validity of spending date, or actual cost including the
new spending is under budget (including additional funds), if all conditions are satisfied
the spending is stored and approved by the system. Access to the endpoint requires
add_project_budget_spending permission.

• Update Resource Spending API – requires change_project_budget_spending user
permission, and allows to edit specified resource spending instance. If provided data is
valid, the instance is updated, otherwise its status is changed to denied.

• Resource Spending Details API – presents detailed information about mentioned
resource spending instance. Needed user permission for access to the endpoint is
view_project_budget_spending.

• Resource Spendings by Budget API – represents a list of resource spendings related to
specified annual budget of a project. A user permission of view_project_budget_spending
is needed for the endpoint.

• Delete Resource Spending API – removes requested resource spending instance.
delete_project_budget_spending user permission is needed for the operation.

• Add Contract Spending API – checks validity of accepted data that date matches with
mentioned annual budget, actual cost of project for the budget is not over the annual budget
including additional funds, if the data is valid, inserts a new contract spending instance to
the system. The API endpoint requires add_project_budget_spending permission to add a
new spending to the budget.

27

• Update Contract Spending API – allows to edit mentioned contract spending instance.
change_project_budget_spending user permission is needed for editing.

• Contract Spending Details API – is responsible for providing detailed information about
specified contract spending instance. A stakeholder needs view_project_budget_spending
permission to get details of a contract spending instance.

• Contract Spendings by Budget API – a list of all contract spending instances are returned
based on mentioned annual budget of a project. The endpoint requires
view_project_budget_spending permission for access.

• Delete Contract Spending API – requires delete_project_budget_spending permission
for access, and removes specified contract spending instance permanently.

• Forecast Future Spending API – allows to forecast future spending using earned value
management model. The application contains a class called EVA that applies Earned Value
Management model. The EVA class accepts some data such as number of scheduled tasks,
task duration etc., and provides a lot of methods such as budgeted cost, cost variance etc.
assists to forecast future spending.

Figure 13. Earned Value Analysis class

The endpoint requires view_project_budget_spending permission for access.

• Forecast Balance API – forecasts future balance using EVA class. It computes
estimate_to_complete and estimate_at_complete values for future balance applying EVM
method. view_project_budget_spending permission is needed for access to the endpoint.

class EVA:

 def __init__(self, **kwargs):

 self._total_scheduled_tasks = kwargs['total_scheduled_tasks']

 self._task_duration = kwargs['task_duration']

 self._employee_cost_day = kwargs['employee_cost_day']

 self._actual_activity = kwargs['actual_activity']

 ...

 def budgeted_cost(self):

 return self._multiply(self.employee_cost_hour(),

 self.scheduled_acticity())

...

28

Frontend
Frontend side of the software is developed as a Jupyter notebook document just to have clear visual
presentation of system. API requests are sent from this document according to use case of the
system and obtained results are demonstrated as tables, graphs using pandas library.

29

Informative Use Case

Registration
User addresses a POST request to …/accounts/register/ by including following body:

If data is valid, and there is not any registered user with this email address, a new user account is
created, result of registration and account data is returned as response.

As default, user role is U(stands for unknown). System administrator defines user role of PMO
using administration panel (…/admin/), then project management office can manage other user
accounts and define their role in the system.

Definition of User Role
Project management office sends a PATCH request to /accounts/user-account/user-role/update/
by defining user role in the request body.

{

 "first_name": "Luca",

 "last_name": "Verdi",

 "email": "pmo@email.com",

 "password": "pasword",

 "confirm_password": "password"
}

{

 "detail": "User resgistered succesfully!",

 "user": {

 "id": 8,

 "first_name": "Luca",

 "last_name": "Verdi",

 "email": "pmo@email.com",

 "user_role": "U",

 "is_active": true

 }
}

30

If operation is completed successfully, it returns 204 HTTP status code.

Deactivating and Activating User Account

Project management office sends a PATCH request to /accounts/user-account/deactivateuser/
with empty body for deactivating user account.

Project management office sends a PATCH request to /accounts/user-account/activateuser/ with
empty body for activating user account.

Login

Login endpoint is responsible for authorization of user to use other API endpoints. User addresses
a POST request to /accounts/login/ by including email and password in the body.

If user account is active, the endpoint generates an authorization token for specified user, and
returns auth-token together with account data in response.

{

 "user_role": "PS"
}

{

"detail": "User deactivated succesfully"
}

{

"detail": "User activated succesfully"
}

{

 "email": "pmo@email.com",

 "password": "password"
}

{

 "user": {

 "id": 3,

 "first_name": "Luca",

 "last_name": "Verdi",

 "email": "pmo@email.com",

31

Project Creation

Project management office addresses a POST request to /projects/create/ with following body.

The endpoint generates a new project instance and makes the author the first stakeholder of the
project, and returns generated project data in response.

"user_role": "PMO",

 "is_active": true

 },

 "auth_token": "58dfcc483a385c16e9050ed2f331f256e640e2c334a0d98e8c21d4831d3036f9"
}

Project Creation body

{

 "project_name": "thesis project",

 "author": user-id
}

Project Creation response

{

 "detail": "Project created successfully.",

 "project": {

 "id": 2,

 "project_name": "thesis project",

 "author": {

 "id": 3,

 "first_name": "Luca",

 "last_name": "Verdi",

 "email": "pmo@email.com",

 "user_role": "PMO"

 },

 "created": "2022-06-20T16:09:33.234615Z",

 "stakeholders": [

 {

 "id": 3,

 "first_name": "Luca",

 "last_name": "Verdi",

 "email": "pmo@email.com",

 "user_role": "PMO"

 }

],

 "project_charter": null

 }

}

32

Adding Stakeholder to Project

Project management office sends a PATCH request to /projects/example-
project/stakeholders/add/ by inserting specified users in the request.

The endpoint informs about result in response.

Assigning User Permission
User permissions may be assigned in two ways, all together or partly.

Project management office may send a POST request to /projects/permissions/add/ with following
request body to assign permissions partly.

For assigning of all permissions in one request, project management office must send a POST
request to /projects/permissions/assign-all/ with following request.

If assignment is successful, the endpoints return 201 HTTP status code.

Adding Project Charter

Stakeholder has to send a POST request to /projects/project-charter/create/ with following request
body.

Adding Stakeholder body

{

 "stakeholders": [5, 6]

}

Adding Stakeholder response

{

 "detail": "Stakeholders added successfully"
}

Assigning User Permissions partly - body

{

 "user_id": 4,

 "project_id": 1,

 "permissions": ["change_project","view_additional_budget","add_project_charter"]
}

Assigning User Permissions all - body

{

 "user_id": 4,

 "project_id": 1
}

33

If the stakeholder has add_project_charter permission, requested project charter is generated and
details returned in response with 201 HTTP status code.

Editing Project Charter
Stakeholder sends a PATCH request to /projects/project-charter/example-project-charter/edit/ by
inserting new data in the request body to edit project charter.

If the user has change_project_charter permission, the project charter is updated and result
message returned in response with 200 HTTP status code.

Adding Project Charter body

{

 "project": 4,

 "author": 4,

 "sow": "standard thesis outline",

 "contract": "Guida Studente DIGEP per la tesi",

 "business_case": "Research Case Digital PM"
}

Adding Project Charter response

{

 "detail": "Project charter created successfully.",

 "project_charter": {

 "id": 2,

 "project": 2,

 "author": 3,

 "created": "2022-06-20T16:56:08.583088Z",

 "last_updated": "2022-06-20T16:56:08.583088Z",

 "sow": "standard thesis outline",

 "contract": "Guida Studente DIGEP per la tesi",

 "business_case": "Research Case Digital PM",

 "bus_case_swot": [],

 "project_budget": []

 }
}

Editing Project Charter body

{

 "sow": "standard thesis outline",

 "contract": "Guida Studente DIGEP per la tesi",

 "business_case": "Research Case Digital PM"

}

34

Adding Business Case SWOT
Stakeholder addresses a POST request to /projects/project-charter/swot/add/ with following
request body.

If the stakeholder has user permission to add something to the project charter, a new business case
swot is added, result message and business case swot instance returned in response with 201 HTTP
status code.

}

Budget Allocation
If a stakeholder has user permission to allocate project budget, he may address a POST request to
/projects/project-charter/budget/set/example-project-charter/ with a list of budgets request body.

Editing Project Charter response

{

 "detail": "Project charter updated successfully"
}

Adding Business Case SWOT body

{

 "project_charter": 2,

 "swot_type": "opportunity",

 "content": "A standard for PM exists"
}

Adding Business Case SWOT response

{

 "detail": "Business case swot added successfully.",

 "swot": {

 "id": 5,

 "project_charter": 2,

 "swot_type": "opportunity",

 "content": "A standard for PM exists"
 }

Budget Allocation body

[

 {

 "year": 2022,

 "budget": 23000.00

 },

 ...
]

35

After allocation of budget, the endpoint returns a list of allocated budget instances in response with
201 HTTP status code.

Adding Project Resource
To add a new resource to a project, a stakeholder must have certain user permission. POST request
is sent to /projects/resources/add/ with details of a new resource in the request body.

The endpoint inserts the new resource to the system and returns following response with 201 HTTP
status code.

Budget Allocation response

[

 {

 "id": 7,

 "project_charter": 2,

 "year": 2022,

 "budget": 23000.0

 },

 ...
]

Project Resource body

{

 "project": 2,

 "name": "engineer",

 "description": "price in eur/hour",

 "cost": 12.00,

 "category": "human"
}

Adding Project Resource response

{

 "detail": "Resource added successfully.",

 "resource": {

 "id": 4,

 "project": 2,

 "name": "engineer",

 "description": "price in eur/hour",

 "cost": 12.0,

 "unit": "euro",

 "category": "human"

 }

}

36

Adding Resource Spending
Stakeholder needs special user permission for spending. He must send POST request to
/projects/project-charter/budget/resource-spending/add/ with details of spending in the request
body.

The endpoint controls actual cost of project, if it’s under budget stores the new spending with

status of approved and returns following response.

Adding Procurement Contract
A stakeholder must have add_project_contract permission to add new contract. POST request is
sent to /projects/procurements/contracts/add/ with details of the contract in the body.

Adding Resource Spending body

{

 "project": 2,

 "resource": 4,

 "budget": 7,

 "assignment": 10,

 "description": "some information about spending",

 "date": "2022-05-12"
}

Adding Resource Spending response

{

 "detail": "Resource Spending added successfully.",

 "resource-spending": {

 "id": 3,

 "project": 2,

 "resource": 4,

 "budget": 7,

 "assignment": 10,

 "amount": 120.0,

 "description": "some information about spending",

 "date": "2022-05-12",

 "approval_status": "approved"

 }
}

Procurement Contract body

{

 "project": 2,

 "product": "wood",

 "description": "wood with good quality",

 "unit_price": 2.50,

37

Returned response consists of result message and created contract instance.

Adding Contract Spending
Stakeholder must send POST request to /projects/project-charter/budget/contract-spending/add/
by inserting following request body.

Actual cost of project is controlled by the system, if it’s under budget the spending saved with
status of approved, and following response is returned.

 "assignment": 100,

 "supplier": "New Wood MMC",

 "date": "2022-06-09"
}

Procurement Contract response

{

 "detail": "Contract added successfully.",

 "contract": {

 "id": 2,

 "project": 2,

 "product": "wood",

 "description": "wood with good quality",

 "unit_price": 2.5,

 "unit": "euro",

 "assignment": 100,

 "supplier": "New Wood MMC",

 "date": "2022-06-09"

 }
}

Adding Contract Spending body

{

 "project": 2,

 "contract": 2,

 "budget": 7,

 "description": "details of spending",

 "date": "2022-06-12"
}

Adding Contract Spending response

{

 "detail": "Contract Spending added successfully.",

 "contract-spending": {

 "id": 1,

 "project": 2,

38

Acquisition of Actual Cost
The system allows to calculate actual cost in two ways: due to annual budget and due to entire
project.

Actual cost of entire project is acquired by addressing GET request to /projects/example-
project/actual-cost/get/.

To get actual cost due to budget, a stakeholder must send GET request to /projects/project-
charter/budget/example-budget/actual-cost/get/.

Forecasting Future Spending
Authorized stakeholder may send POST request to /projects/project-charter/budget/example-
budget/forecast-future-spending/ by inserting following body in the request to forecast future
spending.

"contract": 2,

 "budget": 7,

 "amount": 250.0,

 "description": "details of spending",

 "date": "2022-06-12",

 "approval_status": "approved"

 }

}

Actual Cost of Project - response

{

 "actual_cost": 490.0,

 "resource_spending": 240.0,

 "contract_spending": 250.0
}

Actual Cost of Annual Budget - response

{

 "year": 2022,

 "budget": 23000.0,

 "actual_cost": 230.0,

 "resource_spending": 110.0,

 "contract_spending": 120.0
}

Forecasting body

{

 "total_scheduled_tasks": 64,

 "task_duration": 8,

 "employee_cost_day": 800,

39

Forecasting is made by applying Earned Value Management model and all details provided in
response.

Requisition Additional Funds
project manager is able to request additional budget from project sponsor, if he has certain user
permission. For additional funds he may send POST request to /projects/project-
charter/budget/additional-budget/request/ by inserting additional amount in request.

 "actual_activity": [4, 5, 3, 4, 5, 7, 6, 3]
}

Forecasting response

{

 "planned_work_percentage": [0.125, 0.25, ..., 1.0],

 "budget_work": [8, 16, ..., 64],

 "actual_work_percentage": [0.0625, 0.140625, ..., 0.578125],

 "budgeted_cost_of_work_scheduled": [800.0, 1600.0, ..., 6400.0],

 "actual_cost_of_work_performed": [800.0, 1600.0, ..., 6400.0],

 "budgeted_cost_of_work_performed": [400.0, 900.0, ..., 3700.0],

 "earned_value": [400.0, 900.0, ..., 3700.0],

 "schedule_performance_index": [0.5, 0.5625, ..., 0.578125],

 "schedule_variance": [-400.0, -700.0, ..., -2700.0],

 "schedule_variance_percentage": [-0.5, -0.4375, ..., -0.421875],

 "cost_variance": [-400.0, -700.0, ..., -2700.0],

 "cost_performance_index": [0.5, 0.5625, ..., 0.578125],

 "cost_variance_percentage": [-1.0, -0.7777777777777778, ..., -0.7297297297297297],

 "estimate_to_complete": [800.0, 1244.4444444444443, ..., 4670.27027027027],

 "estimate_at_complete": [1600.0, 2844.4444444444443, ..., 11070.27027027027],

 "cost_variance_at_completion": [-800.0,-1244.4444444444443, ...,-4670.27027027027],

 "time_variance": [-4.0, -7.0, ..., -27.0],

 "time_variance_percentage": [-0.04, -0.07, ..., -0.27],

 "earned_schedule": [4.0, 9.0, ..., 37.0],

 "time_performance_index": [0.5, 0.5625, ..., 0.578125],

 "estimated_accomplishment_rate": [50.0, 56.25, ..., 57.8125],

 "time_estimate_at_completion": [16.0, 28.444444444444443, ..., 110.70270270270271],

 "time_variance_at_completion": [8.0, 12.444444444444443, ..., 46.70270270270271]
}

Request body

{

 "project": 2,

 "budget": 7,

 "amount": 2000.00
}

40

When additional budget request is placed in the system, its status becomes waiting until it is
confirmed by project sponsor.

Project sponsor may accept or reject additional funds request, if he has change_additional_budget
permission to change status of the request. He needs to address PATCH request to
/projects/project-charter/budget/additional-budget/example-request/update-status/ by defining
decision in request body.

The endpoint returns additional fund request instance with details after updating its status.

Request response

{

 "detail": "Additional budget request placed successfully.",

 "additional-budget": {

 "id": 7,

 "budget": 7,

 "amount": 2000.0,

 "date": "2022-06-20T19:25:24.768122Z",

 "status": "waiting"

 }
}

Request body

{

 "status": "approved"
}

Request body

{

 "id": 7,

 "budget": 7,

 "amount": 2000.0,

 "date": "2022-06-20T19:25:24.768122Z",

 "status": "approved"
}

41

Testing

What is Testing
 Testing is the process of determining how well something performs. Software testing is a method
for assessing whether produced software product meets the expected requirements and ensuring
that it doesn’t have defect.

Software testing may be performed using a couple of types of testing, for instance, system testing,
unit testing or integration testing which each of them have various purposes. So, testing of thesis
software is carried out using integration testing.

What is Integration Testing
 Integration testing (sometimes called integration and testing, abbreviated I&T) is the phase
in software testing in which individual software modules are combined and tested as a group [5].

The target is to test API endpoints that they work as a group without errors. API testing covers
testing the APIs directly and as part of integration testing to see if they meet functionality,
reliability, performance, and security requirements.

Testing of Backend API’s
 API tests are realized by using APITestCase module of DRF. Moreover, tests are accomplished
with 100% test coverage. A test case example is described below.

/projects/tests.py

def test_post_create_project(self):

 """

 Ensure we can create a project as Project Management Office

 """

 user = self.generate_pmo_user_data()

 reg_response = self.post_user_registration(user)

 self.define_user_role(reg_response, 'PMO')

 response = self.post_user_login(user)
 assert response.status_code == status.HTTP_200_OK

42

Figure 1. Test case for project creation

The test case checks that register, login and create project API’s works as expected together.

Authorized Project Management Office can create a new project

 author = response.data['user']['id']

 auth_token = response.data['auth_token']

 project = self.generate_project_data(author=author)

 response = self.post_create_project(project=project)

 assert response.status_code == status.HTTP_401_UNAUTHORIZED

 response = self.post_create_project(project=project, token=auth_token)

 assert response.status_code == status.HTTP_201_CREATED
 assert response.data.get('project').get('project_name') == project.get('project_name')

43

Conclusion

The goal of this thesis was to demonstrate a platform that enables digital project management. The
digital environment was developed to provide as much as sufficient API endpoints to cover project
management, mainly project finance. Moreover, Integration tests has been written to ensure that
API endpoints work without problem as a group. A Jupyter notebook document has also been
developed to have a clear represent with table, graphs as frontend side of the platform.

44

References

[1] K. R. Chandrashekar. Object-Oriented Project Management. Project Management

Institute, 2010.

[2] Object-Oriented Management.
https://en.wikipedia.org/wiki/Object_Oriented_Management

[3] Object-Oriented Programming. https://en.wikipedia.org/wiki/Object-
oriented_programming

[4] Django Documentation. Django apps.
https://docs.djangoproject.com/en/4.0/intro/reusable-apps

[5] Wikipedia. Integration Testing. https://en.wikipedia.org/wiki/Integration_testing

