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Summary

As part of the midterm evaluation of the 2022-2025 Light-Duty Vehicle Greenhouse
Gas (GHG) Standards, the U.S. Environmental Protection Agency (EPA) developed
simulation models for studying the effectiveness of 48V mild hybrid electric vehicle
(MHEV) technology for reducing CO2 emissions from light-duty vehicles. Simulation
and modeling of this technology requires a suitable model of the battery.

The goal of this thesis work is to define an equivalent model of a lithium-ion
battery (LiFePO4) 48V for mild hybrid applications, which is able to correctly
simulate its behavior. The battery model is a standard equivalent circuit model
with the two-time constant resistance-capacitance (RC) blocks. Resistances and
capacitances were modeled using lookup tables, allowing flexibility for the model, to
closely match measured data. Pulse discharge curves and charge curves are collected
experimentally to characterize the battery performance at various operating points
depending on state of charge and temperature. It can be extremely difficult to
fit the simulation model to the experimental data using optimization algorithms,
due to the number of values in the lookup tables. This challenge is addressed
using a layered approach to break the parameter estimation problem into smaller
tasks. The size of each estimation task is reduced to a small subset of data and
parameter values, so that the optimizer can better focus on a specific problem. The
layered approach was successful in fitting an equivalent circuit model a data set.
Moreover the model has been validated with different currents profiles such as RW
and WLTP, which simulate the behaviour on road: urban, suburban roads and
highway.
Furthermore, the model would be the starting point for building state of charge
and health estimators of a battery by means of an Unscented Kalman filter (UKF).
These estimators are essential for the correct management of the battery system
during its operation. In fact, depending on the operating conditions, the battery
could give or absorb certain quantities of energy according to certain power profiles.
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Chapter 1

Introduction

This chapter provides an introduction to the research conducted; including an
overview on transports emissions problems and HEV, an organization of the thesis,
and the problem statement.

1.1 Overview

Hazardous emissions and greenhouse gases (GHGs) are inevitable consequences
of burning fossil fuels for energy. GHG emissions are the primary cause of rapid
climate change, such as global warming and polar ice melting.
CO2, NOx, CO, and methane are the most common GHGs.
Figure ?? shows GHG emissions from various usage sectors, with transportation
accounting for nearly 27%. The worldwide development and expansion of numerous
urban areas have resulted in a significant increase in the number of vehicles on the
road.
This high percentage of transportation GHG is, of course, due to the vehicle’s
internal combustion engine (ICE). As a result, decarburization of transportation
will eliminate the transportation sector’s CO2 emissions. This has motivated
modern efforts to replace ICE-powered vehicles with alternative, sustainable, and
clean power motors. Electrifying transportation is one promising approach to
addressing the aforementioned health and environmental issues [1]. As a result,
electric vehicles (EVs) have been viewed as a replacement for ICE vehicles. The
EV has the potential for zero vehicle emissions, lower lifetime costs, and the use of
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renewable energy. However, current EV technology is associated with issues such
as limited range, high initial cost, and longer recharge time when compared to ICE
vehicles. In many metropolitan areas and developing countries, the limited range
of EVs may not be an issue. However, even in these suitable areas, the current lack
of required fast-charging stations poses a barrier to entry.
Hybrid EVs are one option for overcoming the disadvantages of EVs (HEVs). HEV
technology can be developed to address the shortcomings of both ICE vehicles
and EVs. The HEV combines the advantages of the ICE and a battery-powered
electric motor (EM) for transportation. When compared to ICE or EVs, these
benefits include low emissions, high reliability, high fuel efficiency, and long range.[2]

Figure 1.1: Sector responsible for emissions

In particular, the introduction of 48-Volt (48V) mild hybrid electric vehicles
(MHEVs) has stimulated development of 48V battery systems capable of provid-
ing enhanced driving performance, higher energy density battery packs, and the
improved life cycle durability required by consumers and necessary for full-useful-
life compliance with emissions standards. Much of this activity has involved the
development of advanced lithium chemistries and in some cases development of
variations of deep-cycle lead-acid chemistries such as LiFePO4 formulation.
Mild hybrid vehicles with 48V systems have appeared, few years ago, in the Euro-
pean light-duty vehicle market due to high fuel prices and stringent new European
CO2 car emissions standards.[3]
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Within MHEV applications, an analysis of the battery pack performance, state-
of-charge (SOC) optimization, is of importance since the overall efficiency of the
vehicle is closely tied to the efficiency of the battery pack and the energy flows
through the hybrid drive system. Mild hybrid vehicles employing 48V systems are
expected to achieve significant growth in most major automotive markets in the
near future. A 48V architecture brings a number of significant technical benefits to
the vehicle and the battery itself will be much smaller, lighter and lower cost than
high voltage alternatives.

1.2 Organization of the thesis

This thesis presents a combination of analytical and experimental research used
to propose advancements in battery modeling, state of charge, and state of health
estimation. The thesis is organized as follows:

• The second chapter provides a literature review on Lithium-ion batteries,
first laying the foundations of how this works and introducing their main
characteristics, then focusing on the state of art of different types of battery
equivalent circuit models and explaining how battery’s behaviour can be
modeled.

• The third chapter proposes a state of charge parameterization strategy for
identifying the parameters of a second order equivalent circuit model for the
battery. Initially, the instrumentation used has been described (test bench
and battery) with the related test procedure: Pulse test, Hybrid Pulse Power
Characterization Test (HPPC), Random Walk (RW), Worldwide Harmonised
Light Vehicle Test Procedure (WLTP). Furthermore, a parameter estimation
problem is presented: the goal is to find the best estimate parameters in order
to fit the data with the smallest possible error between the real data and
the model, by means of the Simulink design optimization toolbox. Finally, a
verification of the model is proposed through a WLTP driving cycle.

• The fourth chapter focuses on the SOC and SOH estimation through the use
of an Unscented Kalman Filter and a Kalman Filter respectively. Moreover a
complete analysis and testing of the model is proposed.
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• The fifth chapter is about conclusions and future development of this thesis
work.

1.3 Problem Statement
The four main focuses are:

1. Modeling: deriving mathematical expressions that describe how battery works.
After several stages of development, the final models will include coupled sets
of discrete-time ordinary difference equations that are functions of unknown
but measurable or identifiable parameter values. The input to the models
is the battery current; the output are the battery voltage and the battery
internal states as well.

2. Simulation: using computer tools to predict how a battery will respond to
an input stimulus. The equations of the battery model are used to predict
voltage and possibly internal battery states. Will be presented simulations
involving different current profile and will be given tips to implement the
battery models in Matlab and Simulink enviroment.

3. Identification: determining the values of model parameters, using data obtained
via laboratory tests, in order to let the model simulated predictions to match
measured performance as closely as possible.

4. Validation: once the parameters of the model are identified, the model is
tested with other types of input in order to verify if it works as expected.

4



Chapter 2

Lithium-ion Batteries: main
characteristics and
equivalent circuit modelling
methods

2.1 Battery terminology and function

2.1.1 Preliminaries: cells and batteries

The National Electrical Code [4], defines a cell as “The basic electrochemical unit,
characterized by an anode (i.e., negative electrode) and a cathode (i.e., positive
electrode), used to receive, store, and deliver electrical energy.” Batteries are made
of groups of cell; IEEE standard 446 [5] defines a battery as “Two or more cells
electrically connected for producing electric energy.”

These cells can be electrically connected to each other both in series and in
parallel to achieve the desired characteristics in terms of voltage, maximum current
and capacity.

5
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Figure 2.1: Schematic symbols for a cell and a battery

Figure 2.2: Cell LiFePO4 Figure 2.3: Battery pack LiFePO4

2.1.2 Voltage

Cell or battery voltage depends on a number of factors.
The manufacturer-specified nominal voltage is the value assigned to a cell or battery
of a given voltage class for the purpose of convenient designation. The operating
voltage of the cell or battery may vary above or below this value. Typically the
voltage values of the individual cells range from 1.2V for Nickel-based chemistry
cells to over 4V for Lithium-based cells but, usually, most Lithium-based cells have
nominal voltages over 3V.
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2.1.3 Capacity and Charge/Discharge rate

Cells store and deliver electrical charge to power a load circuit. The cell nom-
inal charge capacity specifies the quantity of charge, in Ampere-hours (Ah) or
milliAmpere-hours (mAh), that a cell is rated to hold. Note that the SI unit for
charge is the coulomb (C) and that 1 Ah = 3600 C.
The cell’s nominal energy (see below) is a different quantity. Both definitions of
capacity have merit and can be computed from one another. However, as our focus
in this thesis is on creating models that relate a battery’s input current (i.e., rate of
change of charge) to its internal state and output voltage, charge capacity turns out
to be the more relevant concept. Unless otherwise mentioned, the term capacity
will refer to charge capacity and not to energy capacity.
Related to the cell’s charge capacity, the C rate is a relative measure of battery
current. It is the constant-current charge or discharge rate that the cell can sustain
for 1 hour. It is simply the nominal Ampere hour rating of the cell multiplied by
1h−1.
For example, a fully charged 25 Ah cell should be able to deliver 25A (i.e “1C”
rate) for 1 h or 2.5 A (i.e “C/10” rate) for about 10 h before the cell is completely
discharged. If the cell is discharged at a 10C rate, it will be completely discharged
in about 6 minutes.
The capacity can be expressed by the equation 2.1:

Q = I∆t (2.1)

Where Q is the capacity and and its unit of measurement is the coulomb (C), I

is the current (Ampere), ∆t is the time (s) . Note that the relationship between
C rate and discharge time is not strictly linear, primarily because of the internal
resistance of the battery cell and incomplete utilization of the active materials when
the cell is exercised at high rates. In fact, a cell discharged at a 10C rate will reach
a minimum operational voltage before 6 minutes has elapsed, but a cell discharged
at a C/10 rate may be operated somewhat more than 10 h before reaching the
minimum voltage.

2.1.4 Energy and power

A cell stores energy in electrochemical form, which can be later released to produce
energy or power. The cell nominal energy capacity is the quantity of electrical

7



Lithium-ion Batteries: main characteristics and equivalent circuit modelling methods

energy in Watt hours (Wh) or kiloWatt hours (kWh) that the cell is rated to hold
and is computed as the cell’s nominal voltage multiplied by its nominal charge
capacity. For example, a 2V, 10Ah lead-acid cell has an energy storage capacity of
roughly 20 Wh.
It is important to note that energy and power are different quantities for a particular
rate of discharge.
Power power is the amount of energy transferred or converted per unit time. Power
is measured in watts (W) or kilowatts (kW). The maximum power that a cell
can deliver is limited by the cell’s internal resistance and is not an easy value to
quantify. Power is usually regulated by enforcing minimum and maximum limits
on cell terminal voltage.

2.1.5 Series and parallel connections

When cells are connected in series, the battery voltage is the sum of the individual
cell voltages, by Kirchhoff’s voltage law qN

k=1 Vk = 0. However, by Kirchhoff’s
current law qN

k=1 Ik = 0, the charge capacity of the series connected battery is the
same as the charge capacity of an individual cell since the same current passes
through all of the cells.
As an example, consider the battery in Fig 2.4, which is constructed from three 2 V,
20-Ah cells connected in series. The battery voltage will be 6 V, the battery charge
capacity will be 20 Ah, and the battery energy capacity will be 120 Wh. When
cells are connected in parallel, the battery voltage is equal to the cells’ voltage, by
Kirchhoff’s voltage law. However, by Kirchhoff’s current law, the charge capacity
is the sum of the cells’ charge capacities since the battery current is the sum of all
the cell currents. For example, consider the battery in Fig 2.5, which is constructed
from five 2V, 20-Ah cells connected in parallel. The battery will have a voltage of
2V, a charge capacity of 100 Ah, and energy capacity of 200 Wh.

2.1.6 State of Charge and State of Health

To define the state of charge (SoC), consider a completely discharged battery.
Where I(τ) is the charging current, the charge delivered to the battery is

s t
t0

I(τ)dτ .
With Q0 =

s∞
t0

I(τ)dτ the total charge the battery can hold.
The state of charge (SoC) of the battery is simply given by:
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Figure 2.4: Series Figure 2.5: Parallel

SOC(t) =
s t

t0
I(τ)dτ

Q0
100 (2.2)

Typically, it is desired that the state of charge of the battery be kept within
appropriate limits, for example 20% < SOC(%) < 95%. As a consequence, it is
essential to be able to estimate the state of charge of the battery to maintain the
state of charge within safe limits. Estimating the battery state of charge (SoC) is
not an easy task because the SOC depends on many factors such as temperature,
battery capacitance and internal resistance as we will see later on[6].

Before introducing the SOH, it’s necessary to give a definition of battery
capacity fading: capacity loss or capacity fading is a phenomenon observed in
rechargeable battery usage where the amount of charge that a battery can deliver
decreases with use, this phenomenon is also called aging of the battery [7]. The
same applies to battery’s power: the more the battery ages the less the power
available is.

The SOH of a battery could be expressed as the ratio of maximum available
capacity in the present condition to the nominal capacity of the battery in a fresh
condition. This can be stated as follows:

SOH(%) = Qpresent

Qfresh

100 (2.3)

where, QP resent denotes present available capacity of the battery and QF resh

indicates the capacity of the battery in the fresh condition (at beginning of life).
In general, if battery capacity goes below 80% of its original capacity then the
battery is considered as non-usable. This is due to exponential degradation of the
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battery capacity exhibited below 80% cut-off. There are numerous internal and
external factors influencing the health of the Li-ion battery and its performance
degradation over a period of time. Some of the internal factors include battery
material, calendar ageing and increase in internal resistance. The external factors
are operating temperature, uncertain driving condition, overcharging/discharging,
high charge/discharge rate and improper charge/discharge cycling. Due to many
unknown and unpredictable factors influencing the health of the battery, estimating
battery SOH becomes quite challenging [8].

2.1.7 How cells work
Cells are built from a number of principal components. These include a negative
electrode, a positive electrode, the electrolyte, and a separator. Certain types of
cells also have current collectors that are distinct from the electrodes themselves.
Figure 2.6 shows a schematic of a Lithium-ion cell, but the basic idea applies
generally. The negative electrode in an electrochemical cell is often a pure metal,
or an alloy, or even hydrogen. The positive electrode in an electrochemical cell is
often a metallic oxide, sulfide, or oxygen.
During discharge, the negative electrode gives up electrons to the external circuit,
a process by which the electrode is oxidized: oxidation of a species involves the loss
of electrons or, equivalently, an increase in the oxidation state of the species (it
becomes more positively charged). During charge, the negative electrode accepts
electrons from the external circuit and is reduced: reduction of a species involves the
gain of electrons or, equivalently, a decrease in its oxidation state (it becomes more
negatively charged). Thus, the chemical processes that occur in an electrochemical
cell are sometimes called reduction–oxidation or redox reactions.
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Figure 2.6: Li-ion cell

The table shows the main characteristics of the cells based on multiple technolo-
gies:

Characteristics of different cell types
Cathode material Nominal Volt-

age (V)
Energy Den-
sity (Wh/Kg)

Thermal sta-
bility

Cobalt Oxide 3.7 195 Poor
Nichel Cobalt Alu-
minium Oxide (NCA)

3.6 220 Fair

Nickel Cobalt Man-
ganese Oxide (NCM)

3.6 205 Fair

Manganese Oxide
(Spinel)

3.9 150 Good

Lithium Iron Phos-
phate (LFP)

3.2 130 Very Good

Table 2.1: Nominal voltage and energy specifications for different cell’s chemistries
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2.2 Battery models: state of the art

With the increased research in the fields of hybrid electric vehicle dynamic simulation
as introduced in chapter 1, energy distribution and power control strategy, as well
as the estimation of batteries’ state of charge (SoC) and state of health (SoH)
nowadays improving the accuracy of the charging and discharging model of power
batteries, especially Lithium-ion batteries, is a significant objective.

Since the battery is a nonlinear system, the models usually used in mild hy-
brid electric vehicles (MHEVs) can be divided into three kinds: the simplified
electrochemical model was proposed based on the electrochemical theory, and
could fully describe the characteristics of the power battery by using mathematics
to describe the inner action of the battery. For example, the Peukert equation
can simply associate the power battery to an invariant linear system, however, it
cannot handle its nonlinear characteristics and it can hardly simulate its dynamic
performance. In order to overcome the drawbacks of the mathematical models, the
neural network model was put forward, which took the weights of neurons into
account instead of the state variables. The accuracy of this model could reach
3% under certain conditions. However, the accuracy and calculation burden of
the model were influenced by the choices and quantity of input variables of the
neural network. Also, a neural network trained by data can only be used within
the original scope of that data. Based on the dynamic characteristics and working
principles of the battery, the equivalent circuit model that are presented in this
section are developed by using resistors, capacitors and voltage sources to form a
circuit network. The circuit simulated the battery’s internal resistance and dynamic
effects such as terminal voltage relaxation. On a basis of the OCV estimate, SoC
could be inferred via a lookup table, but this will be the argument of the next
chapter. The equivalent circuit model has been widely used in various types of
modeling and simulation for battery management systems. Evidently high dynamic
simulation with high accuracy is one of the key technologies. [9]

In MHEV studies, various equivalent circuit models such as the Rint model, the
RC model, the Thevenin model, and the PNGV model are now widely used. An
improved Thevenin circuit model named DP (for dual polarization) is proposed to
refine the polarization characteristics of a battery.
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2.2.1 Internal resistance model

The internal resistance (Rint) model, as shown in Figure 2.7 and Equation 2.4,
implements an ideal voltage source UOC to define the battery open-circuit voltage.
Both resistance R0 ( which is Rint) and open-circuit voltage UOC are functions of
SoC, SoH and temperature. IL is load current with a positive value at discharging
and a negative value at charging, UL is the terminal voltage.

Figure 2.7: Rint equivalent circuit

UL = UOC − ILRo (2.4)

2.2.2 RC model

The RC model, as shown in Figure 2.8, it consists of two capacitors (Cc, Cb)
and three resistors (Rt, Re, Rc). The capacitor Cc, which has a small capacitance
and mostly represents the surface effects of a battery, is named surface capacitor.
The capacitor Cb, which has a very large capacitance and represents the ample
capability of a battery to store energy chemically, is named bulk capacitor. SoC
can be determined by the voltage across the bulk capacitor. Resistors Rt, Re, Rc

are named terminal resistor, end resistor and capacitor resistor, respectively. Ub

and Uc are the voltages across Cb and Cc, respectively. The electrical behaviour of
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Figure 2.8: RC equivalent circuit

the circuit can be expressed by Equations 2.5 and 2.6.

A
U̇b

U̇c

B
=
 −1

Cb(Re+Rc)
1

Cb(Re+Rc)
1

Cc(Re+Rc)
−1

Cc(Re+Rc)

AUb

Uc

B
+
 −Re

Cb(Re+Rc)
−Re

Cc(Re+Rc)

 (IL) (2.5)

(UL) =
1

Rc

Re+Rc

Re

Re+Rc

2AUb

Uc

B
+
1

−Rt − ReRc

Re+Rc

2
(IL) (2.6)

2.2.3 Thevenin model

The Thevenin model connects a parallel RC network in series based on the Rint

model, describing the dynamic characteristics of the battery. As shown in Figure
2.9, it is mainly composed of three parts including open-circuit voltage Uoc, internal
resistances and equivalent capacitances. The internal resistances include the ohmic
resistance R0 and the polarization resistance RT h. The equivalent capacitance CT h

is used to describe the transient response during charging and discharging. UT h is
the voltages across CT h. IT h is the outflow current of CT h. The electrical behavior
of the Thevenin model can be expressed by Equation 2.7 .

U̇T h = − UT h

RT hCT h
+ IL

CT h

UL = UT h − UOC − ILRo

(2.7)

2.2.4 Partnership for New Generation of Vehicle model

The PNGV (Partnership for New Generation of Vehicle) model as shown in
Figure 2.10 can be obtained by adding a capacitor 1

UOC
in series based on the

Thevenin model to describe the changing of open circuit voltage generated in the
time accumulation of load current. Ud and UP N are the voltages across 1

UOC
and
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Figure 2.9: Thevenin equivalent circuit

CP N respectively. IP N is the outflow current of CP N .

Figure 2.10: PNGV model

The electrical behavior of the PNGV model can be expressed by Equation 2.8:

U̇d = UOCILU̇P N = UP N

RP N CP N
+ IL

CP N

UL = UOC − UP N − Ud − ILRo

(2.8)
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2.2.5 Dual Polarization model
Based on the test analysis of the characteristics of a lithium-ion power battery,

an obvious polarization can be observed. The polarization characteristic could be
simulated by the Thevenin model to some extent, however, the difference between
concentration polarization and electrochemical polarization leads to an inaccurate
simulation in the moments at the end of charge or discharge. An improved circuit
model is presented in Figure 5, which is defined as Dual Polarization (DP) model, to
refine the description of polarization characteristics and simulate the concentration
polarization and the electrochemical polarization separately. The DP model the
composed of five parts:

1. Open-circuit voltage UOC ;

2. Internal resistances such as the ohmic resistance R0 and the polarization
resistances, which include Rpa to represent the effective resistance characteriz-
ing electrochemical polarization and Rpc to represent the effective resistance
characterizing concentration polarization;

3. the effective capacitances like Cpa and Cpc, which are used to characterize
the transient response during transfer of power to/from the battery and to
describe the electrochemical polarization and the concentration polarization
separately.

4. Upa and Upc are the voltages across Cpa and Cpc respectively.

5. Ipa and Ipc are the outflow currents of Cpa and Cpc respectively.

The electrical behavior of the circuit can be expressed by Equation 2.13:
U̇pa = − Upa

RpaCpa
+ IL

Cpa

U̇pc = Upc

RpcCpc
+ IL

Cpc

UL = UOC − Upa − UpcILRo

(2.9)
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Figure 2.11: Dual Polarization model
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2.3 Physical behaviour of a Li-ion battery model’s
component

Based on what has been introduced, the first step to create a battery model is
to determine the final application in order to select the type that best suits the
modeling needs. The applications examined in this study are those that provide
energy and power to electric motor of a mild hybrid electric vehicle. The dynamics
of interest therefore range from a few seconds to several hours. The model can be
used as a foundation for developing SOC and SOH estimators. In fact, using the
measured current and temperature data and running the model in simulated mode,
it would be possible to analyze and understand the behavior of the storage system
during operation. As a result, the battery pack , whose data are given by the
manufacturer’s datasheet in table 3.1, has no purpose to characterize the parameter
of an equivalent circuit model of the battery, it only describes the operating range
conditions and it’s main specifications (voltage, current, temperature) at which
the battery can work safely. Therefore, the circuit models are chosen because they
provide the voltage and current information required to simulate the behavior of
the battery pack.

Before defining the modalities on which the circuit model will be built, as shown
in 2.11, the following assumptions must be made:
First and foremost, it is necessary to depict, the peculiar characteristics that a
battery has at its terminals in order to determine which measurable factors can
influence its behavior. Moreover, identifying the peculiar aspects that a battery has
at its terminals, during charge/discharge process, is useful in establishing how the
model will be built and the meaning of the various circuit elements that compose
in, and their dependence on SoC and temperature.

2.3.1 Non Linear OCV characteristics

Let’s start by explaining the most fundamental observed behavior of a battery: the
voltage at its terminals. If a voltmeter across the terminals of a battery is placed, it
will register some value. So, the first model we build represents the battery simply
as an ideal voltage source. The schematic for this model is drawn in Fig. 2.12. In
the model, battery terminal voltage v(t) is not a function of load current i(t), nor
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is it a function of past battery usage. In fact, voltage is constant. This is a pretty
poor model of a battery because terminal voltage of a real battery is dependent on
load current, recent usage, and other factors as mentioned in [10].
However, this model provides a starting point for the battery development. Battery
pack supplies a voltage to a load. And, when the battery is unloaded and in
complete equilibrium (a condition that is termed open circuit), the voltage of the
cell is fairly predictable. Hence, the voltage source in the model is labeled “OCV”.
Will be shown that an ideal voltage source will remain a component of our final
equivalent-circuit model.

Figure 2.12: Battery with a constant output voltage

2.3.2 State of charge dependence

The first improvement to do is a result of recognizing that the voltage of a fully
charged battery is generally higher than the voltage of a discharged battery. This is
not, in fact, always the case, since the terminal voltage of the battery also depends
on dynamic factors relating to how the battery has been used in the recent past.
We can state, however, that the equilibrium unloaded rest voltage or open-circuit
voltage of a fully charged battery is higher than that of a discharged battery. So,
we can improve our model by including a relationship between the open-circuit
voltage and the state of charge (SOC) . As said in 2.1.6, if the battery is at an
intermediate state between being fully charged and fully discharged, its state of
charge is somewhere between 0 % and 100 %. From now on,SOC will be denoted
by the symbol z. To quantify state of charge, it’s important to know how much
charge a cell holds when it is fully charged versus how much charge remains when it
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is fully discharged. So, we define the total charge capacity or more simply the total
capacity of a cell to be the total amount of charge removed when discharging a cell
from z = 100 % to z = 0 %. (This is different from the cell’s total energy capacity,
as is discussed in section 2.1.3) Total capacity is usually measured in ampere-hours
(Ah), and is denoted by the symbol Q. The value of total capacity is a parameter
of the battery model. Total capacity is not a function of temperature or current,
although the total capacity of a cell does tend to decrease very gradually as the cì
ages due to undesired parasitic chemical side reactions and structural breakdown
of the cell’s electrode materials (as anticipated in 2.1.6). We can model changes to
state of charge using an ordinary differential equation as:

ż(t) = −η(t)i(t)
Q

(2.10)

The term η(t) is the Coulombic efficiency or charge efficiency of the battery.
Creating an accurate model of Coulombic efficiency is a very challenging task,
as its value depends on state of charge, charging rate, temperature, and the
internal electrochemical state of the battery. However, due to the high Coulombic
efficiencies of lithium-ion batteries, assuming that η is always equal to unity often
gives reasonable overall model fidelity. It is possible to integrate the instantaneous
relationship of 2.10 to obtain an aggregate equation for a change in SOC over some
time interval. Given known state of charge at initial time t0 < t, and known current
between times t0 and t, we get:

z(t) = z0(t) − 1
Q

Ú t

t0
η(τ)i(τ)dτ (2.11)

In this equation, we use τ as a placeholder for the time variable inside the
integral so that we do not confuse the dummy variable of integration (which should
disappear from the final result when the integral is performed) with the upper
limit of integration (which should be retained in the final result). Many times,
we are more interested in a discrete-time model than a continuous-time model.
Discrete-time models assume that the cell inputs and outputs are measured or
sampled at a regular rate with period ∆t seconds and frequency 1

∆t
hertz. Such

models are ready to be used inside inexpensive microcontrollers directly for battery
management systems. To convert Eq. 2.11 to discrete time, let t0 = k∆t and
t = (k + 1)∆t. Then, if we assume that the cell’s input current is constant over the
sampling interval ∆t, we define:
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z[k + 1] = z[k] − ∆t

Q
η[k]i[k] (2.12)

Having a mathematical model for state of charge, we are now ready to revise our
circuit model. We first recognize that a battery’s open circuit voltage is a function
of its state of charge. Some examples taken from literature [11] are drawn in Figure
2.13. There is some temperature dependence to this relationship these curves are
drawn for room temperature (25°C). Also, while these curves are drawn as functions
of the battery’s state of charge, it is also common to see them expressed in terms
of the cell’s depth of discharge (DOD): DOD = 1 − z(t). The improved battery
model, including open-circuit-voltage dependence on the cell’s state of charge is
depicted in figure 2.14. The ideal voltage source is replaced by a controlled voltage
source having value equal to OCV (z(t)). If temperature dependence is required, we
instead use OCV (z(t), T (t)), where T (t) is the cell’s internal temperature at time
t. The OCV values for a battery are determined empirically at numerous SOC
points via laboratory procedures described in the next chapter. These values can be
stored in a lookup table, such that the OCV function is evaluated via interpolation
between table entries.

Figure 2.13: OCV(SOC) Figure 2.14: Battery simplified model
with OCV depending on SOC

2.3.3 Internal resistance
Up until this point, the model that we have developed is essentially static. It
describes the rest behavior of the battery. Now, we begin to add dynamic features to
the model to describe what happens when the battery is subjected to a time-varying
input current i(t). The first observation that we would like the model to describe is
that the battery’s terminal voltage drops below the open-circuit voltage when the

21



Lithium-ion Batteries: main characteristics and equivalent circuit modelling methods

battery is subjected to a load, and the terminal voltage rises above the open-circuit
voltage when the battery is being charged. This phenomenon can be explained
in part by placing a resistance in series with the controlled voltage source. The
revised model is drawn in figure 2.15:

Figure 2.15: Battery model, with SOC-dependent voltage and equivalent series
resistance R0

The added circuit component represents the so-called equivalent series resistance
(ESR) of the battery. In the revised model, the state of charge equation remains
unchanged. However, we add a second equation to the model to describe how to
compute the terminal voltage:

z[k + 1] = z[k] − ∆t
Q

η[k]i[k]
v[k] = OCV (z[k]) − i[k]R0

(2.13)

Note that the presence of this series resistance in the model also implies that
power is dissipated by the cell internal resistance as heat (Joule effect), and
therefore the energy efficiency of the cell is not perfect. The power dissipated by
the equivalent series resistance can be expressed as:

Pjoule = i2(t)R0

Finally, we note that the battery’s resistance is often a function of the battery’s
state of charge and is always a function of the battery’s internal temperature. The
fidelity of the model’s predictions will be enhanced if these dependencies are taken
into account in R0. This model of a battery is sufficient for many simple electronic-
circuit designs. However, it is not yet adequate for applications in large-scale
battery packs, such as for electric-drive vehicles or mild hybrid electric vehicles.
There are other dynamic features that must be considered as the transient between
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working and rest condition of the battery.

2.3.4 Diffusion Voltages

Polarization refers to any departure of the battery’s terminal voltage away from
open-circuit voltage due to a passage of current through the cells. In the equivalent-
circuit model that we have developed so far, we have modeled instantaneous
polarization via the i(t)R0 term. Real batteries have more complex behavior, where
the voltage polarization slowly develops over time as current is demanded from
the battery and then slowly decays over time when the battery is allowed to rest.
Figure 2.16 illustrates this behavior:

Figure 2.16: Polarization evident when a battery is subjected to a discharge pulse
followed by a rest

The voltage plotted in 2.16 corresponds to the following scenario:

1. the battery is at rest for the first 5 min, and the voltage is constant;

2. the battery is then subjected to a discharge current pulse of constant magnitude
from t = 5 min until t = 20 min;

3. the load is removed, and the battery is allowed to rest for the remainder of
the test.

The model developed so far explains the battery behavior during the initial
rest. It also explains the immediate voltage drop when current is applied and the
immediate voltage recovery when the current is removed. It is difficult to predict,
without further analysis, whether the battery model accurately predicts the voltage
during the discharge interval, since we know that state of charge is decreasing, and
so too the open-circuit voltage is decreasing. But we know for certain that the third
section of the test is not being well modeled. In this section, we see that voltage

23



Lithium-ion Batteries: main characteristics and equivalent circuit modelling methods

is constantly changing, but we also know that the battery state of charge is not
changing since the battery current is zero. There is something going on here that is
not yet part of our model. If you have ever played with a flashlight, you are certain
to have seen this phenomenon in action. What happens when your battery is just
about empty? The light produced by the flashlight grows dimmer and dimmer
and becomes indiscernible. But turn the flashlight off and wait a minute or two.
Then turn the flashlight back on—the bulb is brighter again! Did the battery
magically recharge? No, but its voltage recovered somewhat from the slow decay in
polarization that we observed in Figure 2.16, and we are able to get (a little) more
light from the flashlight with nearly empty batteries. We will find out later that
this phenomenon is caused by slow diffusion processes of lithium in a lithium-ion
cell, so we will refer to this slowly changing voltage as a diffusion voltage. Its
effect can be approximated closely in a circuit using one or more parallel resistor–
capacitor subcircuits. In figure 2.17, the combination of R1 and C1 perform this
function. In the model, the state-of-charge equation remains the same as before,
but the voltage equation changes to:

z[k + 1] = z[k] − ∆t
Q

η[k]i[k]
v[k] = OCV (z[k]) − i[k]R0 − R1iR1 [k]

(2.14)

or in countinuos time:ż(t) = z(t) − ∆t
Q

η(t)i(t)
v(t) = OCV (z(t)) − i(t)R0 − R1iR1(t)

(2.15)

Where the expression for the resistor current iR1(t) by the Kirchoff current law
is: i(t) = iR1(t) + iC1(t), where iC1(t) is the current that flows through C1.
Further, we have that iC1(t) = C1v̇C1(t), which gives: iR1(t) + C1v̇C1(t) = i(t)
Then, since vC1(t) = R1iR1(t), we have:

diR1(t)
dt

= − 1
R1C1

iR1(t) + 1
R1C1

i(t) (2.16)

Summarizing to date, the continuous-time model that describes the circuit in
Figure 2.17 is:
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Figure 2.17: Circuit that now models diffusion voltages


ż(t) = z(t) − ∆t

Q
η(t)i(t)

v(t) = OCV (z(t)) − i(t)R0 − R1iR1(t)
diR1 (t)

dt
= − 1

R1C1
iR1(t) + 1

R1C1
i(t)

(2.17)

Finally, if we transform the equations in discrete time we have:
z[k + 1] = z[k] − ∆t

Q
η[k]i[k]

v[k] = OCV (z[k]) − i[k]R0 − R1iR1 [k]
iR1 [k + 1] = exp(− ∆t

R1C1
)iR1 [k] + (1 − exp(− ∆t

R1C1
))i[k]

(2.18)

2.4 Proposed model
At different temperatures, the battery’s characteristics change dramatically. Tem-
perature variation factors should be considered in the battery modeling process to
improve the battery model’s temperature adaptability. The electrical characteristics
of Lithium-ion batteries at various ambient temperatures are first discussed in this
section. Then, taking into account the effects of ambient temperature variations, a
temperature-dependent second-order RC (Dual Polarization) model is established.
[12].

As said before in 2.3.2 the OCV is closely related to the battery SOC and the
ambient temperature, and it is crucial for Lithium-ion battery modeling and SOC
estimation. As shown in Figure 2.13, the OCV of the Lithium-ion battery gradually
decreases as the ambient temperature rises. On the basis of the influence of ambient
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temperature on Lithium-ion batteries just introduced, a temperature-dependent
second-order RC equivalent circuit model is established in this section, taking into
account both model accuracy and model complexity. This model is composed of
three modules:

1. the OCV module

2. the internal resistance module R0.

3. the RC network module.

The structure of the proposed model is shown in figure 2.18, where Vt represents
the battery terminal voltage, VOCV indicates the OCV, V1 and V2 denote the voltages
generated by the polarization phenomenon, I stands for the current (positive for
charging and negative for discharging), T represents the ambient temperature, R0

is the ohmic internal resistance, R1 and R2 are the polarization internal resistances,
and C1 and C2 are the polarization capacitances. It must be pointed out that the
effects of SOC, temperature, and current direction changes on the above parameters
have been taken into account in the battery modeling, as we will explain in the
next paragraph.

Figure 2.18: SOC and temperature dependent second-order RC equivalent circuit
model.

According to Kirchhoff’s laws of voltage and current, the polarization voltages
V , V1 and V2 satisfy the following rules:
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

ż(t) = z(t) − ∆t
Q

η(t)I(t)
V = VOCV + V1 + V2 + R0I

V̇1 = − V1
R1C1

+ I
C1

V̇2 = − V2
R2C2

+ I
C2

(2.19)

Transforming the equations from continuos to discrete time we have:

z[k + 1] = z[k] − ∆t
Q

η[k]I[k]
V [k] = VOCV − i[k]R0 − R1iR1 [k] − R2iR2 [k]
V1[k + 1] = exp( −∆t

R1C1
)V1[k] + R1I[k](1 − exp( −∆t

R1C1
))

V2[k + 1] = exp( −∆t
R2C2

)V2[k] + R2I[k](1 − exp( −∆t
R2C2

))

(2.20)

Equations 2.19 and 2.20 constitute the mathematical representation of the
proposed temperature-dependent second-order RC model for lithium-ion batteries.
These equations describe the dynamic characteristics of lithium-ion batteries at
different temperatures, in a simple mathematical form with limited number of
parameters. Some parameters in this proposed battery model are not known a
priori and need to be determined for model implementation. The parameters to
be identified are R1, R2, C1, C2, R0,and VOCV . In the following chapter, we shall
explain in detail how these unknown parameters can be identified.
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Chapter 3

Parameters characterization

The following section is intended to illustrate the technical specifications of the
battery and the instrumentation used in the course of the experimental activity.
The various test procedures followed for the determination of the different battery
parameters, necessary for the subsequent construction of an equivalent model, are
then illustrated.
The activity involves the use of a cycler, consisting in an electronic load and a
power supply. The procedure is divided into several parts. The first consists of the
general aspects concerning the charge and discharge of the battery.The seconds
concerns the determination, again by means of the simulink design optimization
toolbox, of the electrical parameters of the circuit model previously introduced.

3.1 Laboratory instrumentation

3.1.1 Test bench

In figure 3.1 is presented the instrumentation used to perform the tests on our
battery. Here follows a detalied list of the instruments used for testing the battery

• The IT5100 battery tester is a series of battery internal resistance testers
with high precision, high resolution and high speed. IT5100 adopts AC 4-
terminal sensing, that means the tester can test internal resistance and voltage
simultaneously with high precision. Resistance resolution is down to 0.1 µΩ,
voltage resolution is 10 µV . Combined with external USB disk, IT5100 is
available for long-term statistics calculation. Built-in comparator function,
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IT5100 can automatically determine whether the battery parameters meet
the standards and count pass rate, which is suitable for a variety of battery‘s
test and pick. Built-in USB / LAN communication interface to support SCPI
communication protocol. Single unit of IT5102 support 16 channels batteries
measurement, master- slave connection up to maximum 17 sets and extension
channels quantity up to 272, that greatly improves testing efficiency. Built-in
LAN / RS232 communication interface, IT5100 series can be widely applied
in cellphone lithium batteries,electric vehicle batteries and other batteries
inspection and sorting.

• The bi-directional programmable DC power supply of IT6000C series (Cycler
in figure 3.1) combines two functions in one: source and sink with energy
regeneration. Based on these functions, IT6000C offers the functionality of two-
quadrant operation. The regenerative capability enables the energy consumed
to be fed back to the grid cleanly, saving costs from energy consumption
and cooling, while not interfering with the grid. IT6000C series provides 5
voltage grades with a maximum output voltage of 2250V. It supports master-
slave paralleling with averaging current distribution, maximum output power
up to 1.152MW. Built-in waveform generator supports generating arbitrary
waveforms, and import LIST files for waveforms via front panel USB port.
IT6000C is the combination of high reliability, high efficient setting, safe and
multiple measurement functions.

• ITS5601 is ITECH multi-channel temperature logger used for temperature
monitoring. ITECH multi-channel temperature logger is available for mon-
itoring temperature via 24 channels at a time. The specifications of the
temperature logger are as follows: measurement range -200°C - 2000°C, mea-
surement accuracy 0.5°C and resolution 0.01°C. The superior performance
of temperature logger makes it possible for ITECH Test System to acquire
temperature data effectively and accurately and for wide application of the
system in testing of batteries of all kinds.

• ITS5000 Test System software (figure 3.2) is equipped with a user-friendly
interface. The simple and compact edit interface allows you to execute com-
plex test program without mastery of any programming language, making
programming as easy as filling out documents.
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Moreover ITS5000 Test System provides the users with an array of charge/dis-
charge modes such as CC/CP/CR discharge mode and it can simulate constant
voltage charge and constant current charge modes. Various end-of-discharge
conditions contribute to improvement of testing safety and prevention of over-
discharge and overcharge of battery. The “AND” + “OR” logical relation may
be established among time, capacity and voltage end-of-discharge conditions
to cater to more complex testing requirements.

Figure 3.1: Test bench

Figure 3.2: Software
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3.1.2 Battery’s techincal specification
Here follows a table of technical specications of the battery used to conduct
laboratory tests:

Electrical specifications
Nominal voltage 51.2 V
Nominal Capacity 25 Ah
Stored energy 1280 Wh
Internal resistance < 50 mΩ
Cycles > 3000 cycles (see chart)
Self discharge < 3% per month
Energy efficiency >98%

Standard Charge specifications
Charge Voltage 57.6 ± 0.8 V
Charge mode CC/CV : Constant Current / Con-

stant Voltage
Continuous charge current 12.5 A
Maximum charge current 25 A
BMS charge cut-off voltage 59.2 V ± 0.4V

Standard Discharge specifications
Continuous discharge current 50 A (2.56 kW)
Maximum discharge current 100 A (5.12kW)
BMS discharge cut-off voltage 40V

Environment specifications
Charge temperature range 0°C to +50°C
Discharge temperature range -20°C to +60°C
Storage temperature 0°C to +50°C with 60±25 % rela-

tive humidity
IP protection level IP 66

Mechanical specifications
Cell assembly 26650 - 16S8P
Casing material ABS
Dimensions L:260mm x P:168mm x H:212 mm
Weight 12.6 kg
Terminal M8

Table 3.1: Battery technical specifications
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Furthermore, the battery presents the following characteristics:

• High Service Life: 3000 cycles and more (see chart 3.3).

• Deep discharge allowed up to 100 %.

• Ultra safe Lithium Iron Phosphate chemistry (no thermal run-away, no fire or
explosion risks).

• Embedded BMS (Battery Management System) : improve lifespan and secure
the battery.

• Calendar life > 10 years.

• Excellent temperature robustness (-20 °C up to +60 °C).

• Flexible deployment : up to 10 packs in parallel and 2 in serial.

• Constant power during discharge (very low internal resistance).

• Very low Peukert’s losses (energy efficiency >98 %).

• Very low self discharge (<3 % per month).

• No memory effect.

• About 50 % lighter and 40% smaller than equivalent Lead-AGM battery with
same usable energy.

• Certification : CE, RoHS, UN 38.3, UL and CB.
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Figure 3.3: Battery’s chart and curves

Figure 3.4: Temperature measurement points
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3.2 Test Procedure
For the construction of the lithium-ion cell model, the following test procedure was
defined, useful for determining the different parameters of interest. The section is
divided into different parts, one of which concerns the general test aspects from
literature, one concerning the basic tests, one for the determination of the model
parameters, and one for the validation of the model, generally a WLTP. This
procedure has been defined referring to valid for the analysis of a battery.

3.2.1 Static capacity test
The static capacity test is used to verify the manufacturer rated capacity, and it is
performed as follows:

• Start: battery is fully charged (Vmax100%)

• Discharge: constant current 1C

• End: battery fully discharged (Vmin0)

• Then: default-rest at OCV (Open Circuit Voltage) is performed.

This test is to be performed until three consecutive discharge capacities are
stable within ±2% up to a maximum of 10 discharges. This test can also be
repeated using Vmaxop as the fully charged condition to ensure stable operating
capacity as well.

3.2.2 Constant Power Discharge and Charge Tests
This test measures device capacity in ampere-hours and energy in watt-hours at a
constant power discharge rate. The constant power value will be a scaled power
that is 5 times the Available Energy at the Beginning of Life (BOL).
This test is divided in the following phases:

• battery fully charged (Vmaxop)

• 1h rest (but it depends on the needs of the battery’s chemistry)

• discharge down to voltage limit (Vmin0)

• 1h rest at open circuit voltage (OCV)
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• Charge at constant power

This test can also be performed using the HPPC-Current rate between the top of
the operating window and Vmin0 for comparison with the constant power discharge.
The HPPC-Current is calculated using the formula below:

IHP P C = PCP D

Vnominal ∗ BSF

Where: PCP D is th Constant Power Discharge target (Wh), Vnominal is average
electrochemical voltage between Vmax100 and Vmin0 (i.e., total energy divided by
capacity) and BSF is the battery scaling factor.

3.2.3 Hybrid Pulse Power Characterization Test
The Hybrid Pulse Power Characterization (HPPC) Test is intended to determine
the 30-sec discharge-pulse and the 10-sec regen-pulse power capabilities at each
10% increment relative to the Beginning of Life (BOL) operating capacity for the
HEV Targets (e.g., for a 25 Ah battery, power capabilities are assessed at 2.5 Ah
increments between Vmaxop and Vmin0).

Time increment (s) Cumulative time (s) Relative Current
30 30 1
40 70 0
10 80 -0.75

Table 3.2: HPPC test procedure

• Full Discharge at 1C

• 1h rest

• Battery full recharged to Vmaxop

• 1h rest

• HPPC profile

• Discharge to the next 10 % increment of the rated capacity at 1C
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• rest 1h

• Repeat the phases from 5 to 7 till the 90 % of the rated capacity is removed
(10 % SOC)

• Discharge to Vmin0 at 1C

• Final rest

Figure 3.5: HPPC current profile vs time

Rest periods allow the battery to return to an electrochemical and thermal
equilibrium condition. The primary purpose of the HPPC test is to periodically
verify how the 1s Discharge Pulse, 10s Discharge Pulse, 5s Regen Pulse, and
Available Energy for a given test article compare to the appropriate targets identified
in Table 3.7. To achieve this purpose the data need to be captured during the
HPPC test for successful comparison with the targets:

• Temperature of the test article during the HPPC test.

• Cumulative capacity (Ah) removed at the end of each 10 % increment based
on rated capacity, defined at beginning of life and fixed throughout life testing.

• Cumulative capacity (Ah) removed at the end of each discharge pulse within
the HPPC profile.
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Figure 3.6: HPPC complete procedure

• Measured voltages at the start, at 1 s, at 10 s for the discharge pulse and at
the start, at 5 s during the regen pulse with the HPPC profile.

• Measured currents at the start, at 1 s, at 10 s for the discharge pulse and at
the start, at 5 s during the regen pulse with the HPPC profile.

From these data, the analysis methodology described here in can be used to to
determine the BSF-scaled values that are to be compared with targets in table.

To achieve this purpose the data need to be captured during the HPPC test for
successful comparison with the targets:

• Temperature of the test article during the HPPC test. Cumulative capacity
(Ah) removed at the end of each 10 % increment based on rated capacity,
defined at beginning of life and fixed throughout life testing. Cumulative
capacity (Ah) removed at the end of each discharge pulse within the HPPC
profile.

3.2.4 Peak power test
The test consists of:

• Discharge at a given Base Current

• Periodic discharge pulses at a High test Current starting from Vmaxop.

37



Parameters characterization

Figure 3.7: USABC Energy Storage system Performance Targets for 48V Mild
Hybrid Electric vehicles

• No rest periods.

Objective: determine the 30-sec discharge-pulse power capabilities at each 10 %
increment relative to the BOL operating capacity (as HPPC but with a different
profile).

The Base Current is established based on the equation:

IbaseCurrent = [(12Coperating) − IHghT estCurrent]
35

Where Coperating is the device’s operating capacity between Vmaxop and Vmin0.
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The High test Current should be the maximum rated pulse current for the device
(Imax).

Figure 3.8: Peak power test: current profile vs time

Figure 3.9: Peak power test complete procedure
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3.2.5 WLTP
WLTP stands for Worldwide Harmonised Light Vehicle Test Procedure and is a
global harmonized standard for determining the levels of pollutants, CO2 emissions
and fuel consumption of traditional and hybrid cars, as well as the range of
fully electric vehicles. The procedure works over a longer test cycle and with
more acceleration and braking events, higher speeds and shorter times spent at
standstill, this means that there are short current peaks of different module with a
frequency depending on the accelerating or braking events. Tipically the events are
grouped into average velocity bands, likewise those of the WLTP database (which
is originally based on peak velocities between two stops), and these are divided in
three road-types (urban, rural and motorway) as shown in figure 3.10, where are
illustrated three different average speed: low, medium and high and their respective
power values [13].

Figure 3.10: WLTP cycle

This type of profile will be used to verify the battery model in the next section.

3.2.6 RW
The Random Walk profile is a test that give as input a random current profile
between 2 limits ( 50 A and -50A). A randomly selected charging or discharging
current is applied to a battery for every five-minute which is specified as a step in
the dataset. Negative currents are associated with discharging and positive currents
indicate charging operation. For every five-minute duration a new current is chosen
randomly and applied to the battery. To ensure battery safety operation, battery
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voltage is charged to its maximum threshold voltage and discharged to its minimum
threshold voltage. Whenever a battery runs beyond its voltage range during its
step operation, then the current step operation stops and new step operation is
initiated by choosing a new value from the current set. After every step, a small
amount of delay of approximately 1 s is permitted to choose a new current value
which is described as rest (random walk) in the dataset and repeated for every step.
Even though the exact driving pattern of the MHEV is not imitated by the RW
profile, it makes best attempt to capture the dynamic operating condition of the
MHEV with the help of a random current set, and it has been used for aging the
battery we tested.

Figure 3.11: Random walk cycle
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3.3 Parameters characterization

3.3.1 Primal electrical parameters characterization

We give a more general procedure later on, but at this point we can introduce
a simple method that helps us understand how the parameters of the equations
describe battery responses. In this section, we assume a model type of the sort
developed to this point, having a double parallel resistor–capacitor subcircuit
exactly as drawn in figure 2.18.
To identify the model parameters we subject the battery to a constant current
discharge pulse and then we allow it to rest while recording the cell voltage response
shown in Figure 3.12. At the instant when the discharge current pulse is removed,
at time 300s, and considering eq. 2.20, the instantaneous change in voltage must be
equal to the instantaneous change in current multiplied by the series resistance R0

because the capacitor voltage cannot change instantly, and state of charge is not
changing when current is zero. This gives us ∆V0 = R0∆i (with signs computed
such that R0 is positive). We know the change in current ∆i = 25A, because
we controlled its value during the test, and we measure the change in voltage;
therefore, we can compute the value R0 = |∆V0

∆i
|. Then, we look at the steady-state

change in voltage, which we can approximate by the value around time 600 seconds.
The overall steady-state voltage change can be found from equation 2.20 to be
∆V∞ = (R0 + R1 + R2)∆i, again with signs computed so that R0, R1 and R2 are
both positive, knowing that the capacitor voltage will converge to zero in steady
state. Since we know ∆i (it’s the same as when we were computing R0), we measure
this new value of ∆V , and as we have already computed R0, we can compute
R1 + R2 = |∆V∞

∆i
| − R0. For the cell test conducted to gather the data plotted in

figure 3.12, ∆i = 25A, the change in voltage at time 300 seconds was ∆V = 2.12V ,
and the change in voltage at time 600 seconds was ∆V = 0.375V .
From these values, we compute R0 = 0.085Ω and R1 + R2 = 0.015Ω.
Finally, the pulse response converges to a value close to steady state in about 4
time constants of the R–C circuit, where the time constants of the exponential
decay is τ1 = R1C1 and τ2 = R2C2. In our case, the time to convergence is about
600s - 300s = 300s. So, for this example, we might estimate 4τ = 1200s where τ

accounts the effects of both R1C1 and R2C2. Later on, a model based procedure
developed in the matlab and simulink environment will be propose for a more
accurate characterization of the parameters. This method is designed to give

42



Parameters characterization

rough estimates of the parameter, and the results obtained for each parameter
(VOCV , R0, R1, R2, C1, C2) will be used as starting point for the estimation through
an optimization algorithm. Fine-tuning can be done using the approach described
in the next subsection.

Figure 3.12: Measuring Parameters values from a pulse response

3.3.2 Electrical parameters characterization

The goal here is to parameterize the equivalent circuit values as function of environ-
mental condition (temperature °C) and state of charge (SoC) based on measurement
data. We will use an optimization technique in order to fit the model’s output
to experimental data. The method by which the parameters will be obtained is
illustrated very simply in the flow chart in figure 3.13.

Charge curves as shown in figure 3.14, or mixed discharge/charge pulses some-
times referred to as highperformance pulse characterization (HPPC) data curves
introduced in 3.2.3. Parameter estimation using this data involves repetitive
computer simulation of the equivalent circuit model with the use of a numerical
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Figure 3.13: parameters estimation flow chart

optimization algorithm. The optimization adjusts parameters to minimize error
between each experimental battery data set and the corresponding simulated re-
sults, given identical input signals [14]. Pulse curves help to provide a high-fidelity
representation of battery performance, including the transient response, at multiple
state-of-charge (SOC) and temperature values. To incorporate this high-fidelity
representation into equivalent circuit model the operating conditions and states of
the battery cell. Lookup tables are frequently used to provide this flexibility.

Previous work has shown lookup tables present unique challenges when using
numerical optimization routines to determine the parameters for a specific battery.
Fitting the entire set of lookup tables in a single estimation task worked well with
a simpler model for lithium nickel manganese cobalt (NMC) cells, but it did not
yield acceptable results for LiFePO4 cells. The LiFePO4 cells tested exhibited
more complex transient dynamics including notable hysteresis. It was found that
having too little flexibility in the model for LiFePO4 data caused the optimization
routine to get stuck. In this case, the simulated result would not converge toward
the measured cell data. To correct this problem, we added more flexibility by
placing additional R-C branches in the equivalent circuit as mentioned in 2.4, but
this also made the parameter estimation significantly more complex compared to
a first-order equivalent circuit model. A common approach to solve a complex
estimation is to break up the problem into multiple smaller tasks, before scaling
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Figure 3.14: Discharge/Charge Pulse Test for electrical parameters characteriza-
tion

up to a larger estimation problem, i.e. separate the discharge and the charge
cycle. This way, each optimization problem is simpler, and will be more likely to
converge on a desired solution. Independent variables that can be held relatively
constant, such as temperature, can be easily split into separate estimation tasks.
However, SOC changes dynamically during the test conditions. There is not a
straightforward way to break up the pulse discharge curves to estimate parameters
at each individual SOC breakpoint in the lookup tables. The proposed approach
involves layering optimization tasks to estimate the parameters along the SOC
breakpoints of a lookup table. The estimation tasks must be defined in a way
that the data sufficiently exercises the “free” parameters that are being tuned
during that task. However, the task must also have enough free parameters that
the optimization routine can achieve a good fit to the measured data. Layering
estimation tasks significantly increases the number of estimation steps that are
needed. However, it reduces the complexity of each task by greatly reducing the
number of free parameters in each task. In the sections that follow, we discuss:

• The experimental data we collected.

• The parameter estimation problem, and the proposed layered approach.

• How we implemented and automated the parameter estimation.
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• The final results of the estimation process

3.3.3 Experimental data collected: Pulse discharge test

To populate the lookup tables, it was necessary to acquire data that exercise each
of the parameters in those tables. Pulse type tests such as in Figure 3.15 provided
necessary data about the performance of the battery cell at different points of SOC.
The number of pulses taken and their width had an effect on the resolution of
the data content, since each pulse provided content at specific SOC breakpoints.
We chose a discharge test with uneven SOC breakpoints, as shown in Figure
3.15. The discharge test included pulses of 10% discharge amounts. The high and
low SOC pulses were taken while discharging 10% of cell capacity. This way, we
had more data at high and low SOC to better characterize those regions where
performance may change dramatically. Figure shows just one example dataset.
To fully parameterize the lookup tables, additional datasets would be needed to
cover the desired operating range of the cell, including different temperatures and
currents.

Figure 3.15: Discharge Pulse Test on LiFePO4 48V Battery
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3.3.4 Choice of a 2nd order equivalent circuit model

In the analysis of the relaxation voltage, conducted in [15], the voltage’s curve
is generally based on the time constants, which is used to represent the recovery
speed of the terminal voltage. Figure 3.16 shows a typical relaxation curve and the
fitting curves with different orders of ECM. It can be seen from Figure 3.16 that
fitting the relaxation voltage curve with a single RC link is inferior, and as the
amount of RC link increases, that is, with more time constants, the fitting curve
tends to be more accurate. In another research conducted by [14] is shown that
having too little or too much flexibility in the model could cause the optimization
to get stuck. In this case, the simulated result would not converge at all toward
the measured battery voltage data. To determine the number of R-C branches to
use, data are examined during the relaxation phase. When the pulse current was
removed, the transient response was dictated by the R0 and the R-C branches from
the equivalent circuit from Figure 3.17. The first sample after the pulse is ignored,
making the assumption that the instantaneous voltage change was described by
the R0 parameter. Then one or more exponential equations is fit to the data using
Curve Fitting Toolbox. Regardless of the number of exponentials that are used in
this example, they predominantly focused on the slow time constant.

Figure 3.16: Fitting curves with differ-
ent orders of ECM

Figure 3.17: Fitting curves to deter-
mine number of RC branches

For what concerns our battery, the data and the model output obtained for just
one pulse relaxation phase at 50% SOC are represented in figure 3.18.

The exponential cost function used for curve fitting is:

F = R1(1 − e
−t
τ1 )∆i + R2(1 − e

−t
τ2 )∆i (3.1)

Where R1 and R2 are the 2 resistors of the 2 RC branches, while τ1 and τ2 are
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Figure 3.18: experimental Data vs model exponential function

the fast and the low time constant respectively, from which is possible to compute
the values of the capacitance C1 = τ1/R1 and C2 = τ2/R2.

From this results,we determined that having just one exponential time constant
terms did not produce a satisfactory match to the data. While the curve fit with
four exponentials had the lowest residual error but high complexity, we chose a 2
time constants as a compromise between accuracy and computational cost. The
equivalent circuit model with 2 R-C branches, and neglecting parasitic losses, is
shown in figure 3.19

Figure 3.19: 2RC equivalent circuit model
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The model based on the 2 R-C branches circuit shown in figure 3.19 has been
developed in Simulink, in particular in the Simscape environment that allows to
create custom circuit elements containing lookup tables. This model was needed to
generate the simulation results to optimize the parameter values, and is shown in
figure 3.20

Figure 3.20: Equivalent circuit model for LiFePO4 battery with two parallel
R-C branches

3.3.5 Parameters estimation problem

The equivalent circuit with two R-C branches had six variable electrical circuit
elements that are a function of the operating conditions. These circuit elements were
represented by lookup tables. If considering multiple operating conditions, these
tables would become quite large. In this thesis, we considered just 3 temperatures
and one discharge current. However, additional independent operating conditions
would simply require repeating the estimation process for each condition, and
populating additional dimensions of the tables. Based on the data in Figure
3.15 containing 10 pulses, we calculated the corresponding 10 values of SOC that
occurred before and after each pulse. We represented the values of each circuit
element with lookup table versus the 10 points of SOC and the 3 of temperature.
Because of the 2 R-C branches, the 10 number of SOC breakpoints and the 3
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different temperatures (25, 35, 45 °C), given the data in Figure 3.15, we had 30
parameters for each lookup table, thus, a total of 180 electrical parameters to
estimate, which are quite a lot parameters.

For this reasons, the problem has been divided in different steps.
If you have more than one RC branch in the model, then initial conditions (i.e

initial guesses) for the parameters are very important. In fact, starting from good
initial condition of the parameter makes a big difference in avoiding local minima
and finding the best overall result. So we used an rough parameter estimation as
mentioned in 3.3.1 technique to measure approximate values for the parameters
before starting this estimation process by means of an optimization algorithm. Of
course the analytical solution makes some assumptions that are only approximately
true so it didn’t give a perfect result.

Moreover, during the first estimation process with the use of Simulink optimiza-
tion toolbox, the temperature has been neglected at this first step. In this way the
lookup tables where composed only by 10 entries, each entry corresponding to a
SOC value. Thus, in this step the total number of parameters to estimate was 60.
The first estimation procedure is shown in figure 3.21

Figure 3.21: Parameter estimation procedure using simulink design optimization

The results of this estimation problem are represented in the plot in figure 3.22:
And the parameters value obtained for this estimation are shown in figure 3.23.
Before continuing with the characterization of the parameters I would like to
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Figure 3.22: Pulse test results

Figure 3.23: parameters values vs State of Charge

make a digression on how the Simulink Design optimization works to characterize
the parameters.

3.3.6 Optimization problem formulation
When you perform parameter estimation, the software formulates an optimization
problem. The optimization problem solution is the estimated parameter values set
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[16]. This optimization problem consists of:

• x design variables: The model parameters and initial states to be estimated.

• F(x) objective function: A function that calculates a measure of the difference
between the simulated and measured responses. Also called cost function or
estimation error.

• Bounds: Limits on the estimated parameter values.

The optimization solver tunes the values of the design variables to satisfy the
specified objectives and constraints. The exact formulation of the optimization
depends on the optimization method that you use.

The software tunes the model parameters to obtain a simulated response (ysim)
that tracks the measured response or reference signal (yref ). To do so, the solver
minimizes the cost function or estimation error e(t) = yref (t) − ysim(t), a measure
of the difference between the simulated and measured responses.

The optimization method chosen in this thesis is the Nonlinear Least Squares,
which minimizes the squares of the residuals and it’s the recommended method for
parameter estimation. This method requires a vector of error residuals, computed
using a fixed time base. Do not use this approach if you have a scalar cost function
or if the number of error residuals can change from one iteration to another.
The Optimization problem formulation is:

minx||F (x)||22 = minx(f1(x)2 + f2(x)2 + ... + fn(x)2)
s.t. x < x < x

(3.2)

3.3.7 Thermal model and its parameters estimation
In this thesis, the battery is considered as a single homogeneous layer and the heat
is generated in the centre of the battery and flows towards the surface, where it can
be measured by the thermocouples shown in figure 3.4. For this modelling purpose,
reversible and irreversible heat in the cell is considered. Irreversible heat consists
of the Joule heating effect due to internal resistance of the cell, for instance these
values are then calculated with sufficient electrical battery model and evaluated
both offline and in real time calculation. Reversible heat is a result of entropy effect
which can be negative or a positive value depending on the direction of current
flow during charging and discharging process of the battery. Other heat transfer
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mechanism such as conductive heat transfer and convective heat transfer are also
included into the model.

Heat generation mechanism: As written above, the irreversible heat con-
sists of the Joule effect due to the internal resistances in the cell. Based on the
electric model approach of the cell as shown in figure 3.19, three main resistances
are considered in this work: the polarization resistances (R1, R2) and the Ohmic
resistance (R0).

The equation for the heat generated at a central point in the cell is:

Qjoule = R0i
2 + R1i

2 + R2i
2 (3.3)

As demonstrated in [17]. The reversible heat generation mechanism consists of
the entropy effect can be negative or positive depending on charging or discharging
process. Based on measurement of a 25 Ah cell the initial model parameters have
been optimized with Recursive Least Square (RLS) method. The obtained results
show that the estimated values of internal resistance, capacity, OCV and others
provide valuable information about battery internal/external temperature and
terminal voltages even if the physical sensors become faulty and go out of operation
for any reason. The heat generated by the entropy variation depends strongly
on the OCV and therefore the SOC. The equation for the reversible heat can be
written as:

Qrev = −T∆S
i

nF
(3.4)

Thus the total heat is given by:

Qtot = Qjoule + Qrev (3.5)

Heat Transfer Effects

• Conductive heat transfer:

Qcond = kA

d
(Ti − Tbattery) (3.6)

Where k is the thermal conductivity, A is the cross section area of the battery,
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d is the battery thickness, Ti the battery estimated internal temperature and
Tbattery Temperature on the surface of the battery.

• Convective heat transfer:

Qconv = hA(Tbattery − Tamb) (3.7)

h is the Heat transfer coefficient and Tamb is the ambient temperature.

The Mathematical formulation of the battery thermal model is given by:

cpm
dTi

dt
= Qtot − kA

d
(Ti − Tbattery) (3.8)

Considering that the amount of heat flow absorbed by conduction effect is the
same as the one absorbed by convection. We can write: Qcond = Qconv. From this
equation, we can derive the relation between Tamb and Ti:

Tbattery = kTi + hdTamb

hd + k
(3.9)

Parameters k, h and Cp will be identified by training the data with real mea-
surements. All necessary heat coefficients are brought in table ??.

The mathematical model has been designed in Simscape as represented in figure:

Figure 3.24: Thermal model developed in Simscape
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Test for thermal parameters estimation This test is used to experimentally
determine the values of k, h and Cp. It consists in going charge and discharge
the battery, at the nominal current of 1 C, equal to 25 A. When the cut-off is
reached, the discharge is interrupted and the battery is rest. During the test the
battery temperature is measured and in particular the battery’s temperature trend
is observed since the current step ceases. The test is carried out at the ambient
temperature which is constant for the whole test. The basic idea is to heat the
battery internally and then observe how it releases the heat to the outside, supposed
to be an ideal heat sink, and obtain the values of its parameters that come into
play in the thermal equation 3.9 in which the environment is assumed to be at a
constant temperature and the thermal power produced internally zero.

Figure 3.25: Current and Voltage profile for thermal parameters estimation

using the same optimization procedure, by means of simulink design optimization
software, seen for the electrical parameters in 3.3.5 we obtained:

The battery thermal parameters obtained are shown in table ??

3.3.8 Final parameter estimation

Taking up what was introduced in the section 3.3.5, now we pose the problem of char-
acterizing the entire look up table, thus for the 10 values of SOC and for the 3 values
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Figure 3.26: Temperature measured vs simulated

Estimated heat coefficient of the battery
Parameter Thermal resis-

tance
Heat transfer co-
efficient

Specific heat ca-
pacity

Sign k ( K
W

) h ( W
m2K

) Cp ( J
kg/K

)
Value 0.279 15.841 1166.5

Table 3.3: Thermal parameters

of working temperature of the battery, for all parameters: Em, R0, R1, C1, R2, C2.
In order to make the optimization algorithm work better and not get trapped in
local minimums we take as starting point for the parameters the values obtained
from the previous estimate depending only on SOC. The estimation procedure for
the lookup tables is shown in figure 3.27

And the parameters obtained are represented in the following plots, each with
its corresponding lookup table:
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Figure 3.27: Final parameter estimation with simulink design optimization

Figure 3.28: Open circuit voltage lookup table
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Figure 3.29: Internal resistance lookup table

Figure 3.30: R1 resistance lookup table
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Figure 3.31: R1 capacitance lookup table

Figure 3.32: R2 resistance lookup table
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Figure 3.33: C2 capacitance lookup table
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From the data obtained it can be deduced that the OCV characteristic is an
increasing monotonic function of a non-linear nature of the state of charge. The
next parameter that is analyzed is the resistor R0 which takes care of representing
the phenomenon of the ohmic jump. The figure 3.29 shows the experimental results
for one of the tested cells. As can be seen, the trend as a function of the state of
charge is non-linear in nature, especially at low temperatures, and in general the
resistance, with the same state of charge, decreases with increasing temperature.
This behavior can be explained physically by referring again to the concept of
ionic conductivity. In fact, there are various conduction mechanisms, and it is
reasonable to think that the overall resistance is largely due to the electrolyte,
essentially ionic conductor, rather than to the electrodes, characterized by a mainly
electronic conductivity. The conductivity of the electrolyte is therefore mainly
dependent on the mobility of the ions, which increases with increasing temperature,
and decreases with decreasing temperature, linked to the electronic mobility, of the
electrodes. It is also noted that for low values of the relative state of charge there
is a marked increase in the resistance R0. This increase may be due to the fact
that in this situation most of the charge carriers have now migrated from the anode
to the cathode and therefore there are no more carriers available, which precisely
leads to an increase in resistance. Furthermore, it is noted that this increase in
resistance R0 at low temperatures begins to manifest itself even for not particularly
low values of the relative state of charge, while at high temperatures this happens
when the cell is already almost discharged. This may be due to the fact that at low
temperatures, due to the reduced ionic mobility, the number of carriers is lower and
therefore runs out earlier than in the case of operating at high temperatures. From
the behavior shown by R0 as the temperature varies, it is therefore now possible
to understand the trend of the OCV in Figure 3.28. In fact, as the temperature
decreases, R= increases and therefore the consequent associated ohmic jump. With
the same no-load voltage and current, the limit voltage is thus reached earlier than
occurs at high temperatures, resulting in a lower discharge capacity. The trend of
the remaining resistive parameters will also exhibit similar behaviors.

The experimental results obtained for the parallel RC groups, placed in series
with R0, of the model are illustrated in the following figures: 3.30, 3.31, 3.32, 3.39.
These groups are responsible for representing the phenomenon of the recovery effect.
The trend of the time constant associated with these RC groups presents a very
particular behaviour. Globally, however, it can be stated that the time constants
associated with these RC group tend to decrease with increasing temperature. It
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can be assumed that this is due to the greater ionic mobility at high temperatures,
which allows for faster internal dynamics. The fact of having such irregular trends
of the time constant may be due to the fact that it cannot be attributed a precise
physical meaning, as is the case for R1 or R2 (which follow the same trend as R0),
but only to associate the idea of dynamic speed with which the recovery effect
occurs. In fact, its value has been calculated as the value that minimizes the
squared error between the voltage transient described by the RC groups and the
observed one, which will have a trend that can deviate even significantly from one
of the exponential type such as that of the objective function.

3.3.9 Model verification
In this section, the accuracy of the proposed temperature-dependent second-order
RC equivalent circuit model is verified. The identified parameters obtained from
section 3.3.8 are employed in the proposed model in figure 3.19, and the model
accuracy is evaluated in terms of the difference (error) between the measured
terminal voltage and that resulting from the proposed model. For verification
purposes, the model has undergone the discharging test, charging test, RW and
WLTP, under varying internal temperature conditions but with a constant ambient
temperature. The voltages resulting from the model as well as the voltage errors
are plotted in Figure 3.36 and 3.37, under a constant ambient temperature of 23
°C. It is shown that for the discharging test, the model output voltages are very
close to the measured terminal voltages, and the voltage errors are maintained
within ±20 mV. As for the WLTP, the model output voltage follows the measured
voltage very well, with a slightly increased error magnitude compared with the first
two cases. Note that the error is still maintained within a very small range and
the moving average of the error is very close to 0.

From the data obtained it can be deduced that the Em characteristic is an
increasing monotonic function of a non-linear nature of the state of charge. The
next parameter that is analyzed is the resistor R0 which takes care of representing
the phenomenon of the ohmic jump. The figure shows the experimental results for
one of the tested cells.
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Figure 3.34: Voltage model output vs
experimental data

Figure 3.35: Temperature model out-
put vs data

Figure 3.36: Voltage’s error Figure 3.37: Temperature’s error

Figure 3.38: Model tested on a WLTP profile
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Figure 3.39: Model tested on a RW profile
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Chapter 4

Complete model and SOC
estimation by means of UKF

The performance of battery determine the performance of the mild hybrid electric
vehicle in terms of driving consumption. And the accuracy of the estimated State of
charge (SOC) is the most important key technique to ensure the normal application
of the battery pack. People are increasingly demanding on the accuracy of the
estimated SOC on the MHEV power battery. AS described in chapter 3, the battery
itself has highly nonlinear characteristics and this characteristic can be intensified
in the working environment of unstable current and unstable temperature, which
will make it difficult to estimate SOC accurately.

A number of methods are used to estimate the battery SOC, such as ampere-
hour, integral method, open circuit voltage method, the internal impedance method,
neural network, Kalman filter algorithm, unscented Kalman filter, particle filter, and
other nonlinear observers. Compared with the Ah integral method or open circuit
voltage method, a closed-loop SOC estimation method based filter is attracting
more attentions, Kalman filtering algorithm can be used for various state estimation
of the battery. And the algorithm is only applicable to linear system, but the Li-ion
battery model is nonlinear; Unscented Kalman filter (Unscented Kalman Filtering,
UKF) as a kind of special estimation method is proposed for nonlinear systems,
and it has obtained the rapid development in recent years [18].
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4.1 UKF

4.1.1 What is an Unscented Kalman Filter?

The Unscendent Kalman Filter (UKF) is an algorithm, that has an alternative
way to estimate the state of a nonlinear system, doesn’t use the first order Taylor
expansion. The UKF addresses the approximation problem of the EKF (Extended
Kalman filter [19]) by introducing the concept of weighted sigma points, which
are deterministically selected from the a Gaussian approximation [20]. The sigma
points are chosen so that their mean and covariance are exactly xa

k−1 and Pk−1 .
Each sigma point is then propagated through the system state function to yield new
sigma points. The newly estimated mean and covariance are then computed based
on their statistics. This process is called the unscented transformation. Consider
the system that demonstrates how a Markov process works 4.1

xk = f(xk−1, uk) + vk

zk = h(xk, uk) + wk

(4.1)

where xk is the system state vector; uk is the known input vector; and zk is
the measurement vector at time step k. Correspondingly, f() and h() are the
state function and the measurement function, respectively, and they can be either
linear or nonlinear; vk and wk are the process Gaussian noise and the measurement
Gaussian noise with zero-means and covariances Q and S , respectively. Specifically,
vk ∼ N(0, Q), and wk ∼ N(0, S). Let n be the dimension of the state vector. To
apply the UKF, 2n + 1 sigma points with weights xi

k, Wi , i = 1 : 2n + 1 are
generated according to 4.2


x0

k−1 = xa
k−1,

xi
k−1 = xa

k−1 +
√

n + λ[
√

Pk−1]i,
xi+n

k−1 = xa
k−1 +

√
n + λ[

√
Pk−1]i, i = 1 : n

(4.2)

Each sigma point is then propagated trough the non linear state function 4.3

xi,f
k = f(xi

k−1, uk), i = 0, ...,2n, (4.3)

The mean and the covariance of xf
k is then computed via equations 4.4 and 4.5
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xf
k =

2nØ
i=0

W m
i xi,f

k (4.4)

P f
k =

2nØ
i=0

W c
i (xi,f

k − xf
k)(xi,f

k − xf
k)T + Q (4.5)

where W m
i and W c

i are respectively defined as:


W m
0 = λ

λ+n

W c
0 = λ

λ+n
+ (1 − α2 + β)

W m
i = 1

2(λ+n) , i = 1, ..., 2n

W c
i = 1

2(λ+n) , i = 1, ..., 2n

(4.6)

where β controls the prior information of xk−1. α and β are empirically set to
default values 1 and 0, respectively; In other words, the spread of the the sigma
points xa

k−1 is far from the mean vector xa
k−1

Similarly the sigma points are propagated trough the measurement function:

zi,f
k = h(xi,f

k , uk), i = 0, ..., 2n (4.7)

The mean and the covariance of the zf
k are then computed:

zf
k =

2nØ
i=0

W m
i zi,f

k (4.8)

The cross-covariance of the state and measurement is:

cov(xf
k , zf

k ) =
2nØ
i=0

Wi(xi,f
k − xf

k)(xi,f
k − zf

k )T (4.9)

The kalman gain is computed as:

Kk = cov(xf
k , zf

k )cov(zf
k )−1 (4.10)

Thus, the state estimation can be obtained by:

xa
k = xf

k + Kk(zk − zf
k ) (4.11)

and the covariance can be updated by:
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Pk = P f
k − Kkcov(zf

k )KT
k (4.12)

4.1.2 UKF for SOC estimation
As said before, an accurate estimation of the SOC is of crucial importance in a
Battery management system (BMS) for a variety of reasons, and an advanced
approach in estimating the SOC is the use of an observer, typically a UKF which
receives the input and output signals from the battery and computes the internal
states using the model of the battery, presented in 3.3.5, and a recursive algorithm.

Figure 4.1: SOC estimation scheme Figure 4.2: Observer

Thus, the UKF block from the simulink control system toolbox has been im-
plemented in the model for SOC estimation. The UKF requires a minimum of 2
functions as arguments: a state transition function and a measurements function.
These functions has been implemented as simulink bloks shown in figure 4.3.

The state Transition Function calculates the evolution of the states based on the
current input, these calculations require the previous computation of the equivalent
circuit parameters, using the temperature and current signals, that go through
the non-linear lookup tables that characterize the battery (estimated using an
optimization algorithm as described in chapter 3). While the measurement Function
computes the terminal voltage as the difference between OCV and sum of individual
voltage drops across of the rest of the equivalent circuit elements (2RC branches).
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Figure 4.3: State transition function and measurement function
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In our model the State vector of the battery is given by:

x(t) =


SOC(t)

U1(t)
U2(t)

 (4.13)

And the state transition equation and measurement equation for the battery
are:

d

dt


SOC

U1(t)
U2(t)

 =


0

− 1
R1(SOC,T )C1(SOC,T )U1

− 1
R2(SOC,T )C2(SOC,T )U2

+


− 1

3600 ∗ Cq

1
C1(SOC,T )

1
C2(SOC,T )

 I + W (4.14)

E = Em(SOC, T ) − U1 − U2 − IR0(SOC, T ) + V (4.15)

Since the UKF is a Discrete time filter (DT) we have to apply the Euler
discretization. Let the sampling time be Ts. For a general nonlinear system
ẋ = f(x, u), the system can be discretized as:

xT +1 = xT + f(xT , uT ) ∗ Ts

The state vector of the nonlinear battery system in DT is:

xT =


SOCT

U1T

U2T


.

Applying Euler discretization to 4.14 we have:


SOC(t + 1)

U1(t + 1)
U2(t + 2)

 =


SOC(t)

U1(t)
U2(t)

+


− 1

3600∗Cq∗I
1

C1(SOC,T ) ∗ I − 1
R1(SOC,T )C1(SOC,T )U1

1
C2(SOC,T )I − 1

R2(SOC,T )C2(SOC,T )U2

TS + W

(4.16)
The discretized state transition equation is implemented in the Simulink function

named batteryStateFcn. The function input xT is the state vector, and the function
output xNext is the state vector at the next step, calculated using the discretized
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state transition equations. In the function, you need to specify the signal dimensions
and data type of xT and xNext. In this example, the signal dimension for xT and
xNext is 3, and the data type is double. Additional inputs to batteryStateFcn are
the temperature, estimated capacity, and current. Note that the additional inputs
are inputs to the state transition equations and are not required by the Unscented
Kalman Filter block as shown in figure 4.4

Figure 4.4: Complete model developed in Simulink

Finally, for the UKF the following parameters are specified:

• Time invariant covariance:


2e − 8 0 0

0 3e − 7 0
0 0 3e − 7



• Initial covariance:


0.01 0 0

0 1 0
0 0 1


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• Initial state:


1
0
0

 The initial value for SOC is assumed to be 100 % (fully

charged battery) while initial value for U1 and U2 is set to be 0, as we do not
have any prior information of U1 and U2.

• Unscented transformation parameters: α = 1 determines the spread of sigma
points around x. Set α to be 1 for larger spread; β = 2 is used to incorporate
prior knowledge of the distribution. The nominal value for Beta is 2; k = 0, k
is a secondary scaling parameter, its the nominal value is 0.

Figure 4.5: UKF parameters set up

4.1.3 SOC estimator validation

The model in figure 4.4 equipped with the UKF for the SOC estimation has been
tested with a pulse and a WLTP profile in order to check it’s correct behaviour.
The results obtained with the relative errors are shown in the following plots: 4.7,
4.9
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Figure 4.6: Pulse test current and voltage profile

Figure 4.7: Pulse test real SOC vs UKF estimate

After an initial estimation error, the SOC converges quickly to the real SOC.
The final estimation error is within 0.5% error. Thus, the Unscented Kalman Filter
gives an accurate estimation of SOC.
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Figure 4.8: WLTP current and voltage profile

Figure 4.9: WLTP real SOC vs UKF estimate
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4.1.4 SOH estimation

As introduced in 2.1.6 the state of health estimation (SOH) is a quite challenging
task due many unknown and unpredictable factors influencing the health of the
battery such as: operating temperature, uncertain driving condition, overcharg-
ing/discharging, high charge/discharge rate and improper charge/discharge cycles.
In this model the battery degradation is simulated by decreasing the battery ca-
pacity Cq every charge/discharge cycle, using a threshold logic implemented in
stateflow, (a simulink toolbox).

Since the degradation rate of capacity is not known in advance, set the state
equation of Cq to a random walk:

Cqk+1 = Cqk + WCq

where k is the number of discharge-charge cycles, and WCq is the process noise.
The battery is configured to automatically charge when the capacity is at

30% and switch to discharging when the capacity is 90%. Use this information to
measure the battery capacity by integrating the current I over a charge or discharge
cycle (coloumb counting).

The measurement equation for Cq is :

Cmeasured
qk

= Cqk
+ VCq =

s tk
tk−1

Idt

∆SOCnominal

=
s tk

tk−1
Idt

|0.9 − 0.3|
=
s tk

tk−1
Idt

0.6 (4.17)

where VCq is the measurement noise. The state transition and measurement
equations of battery degradation can be put into the following state-space form:

Cqk+1 = ACqCqk
+ WCq

CMeasured
qk

= CCqCqk
+ VCq

where ACq and CCq are equal to 1.
For the above linear system, use a Kalman Filter to estimate battery capacity.

The estimated Cq from the linear Kalman Filter is used to improve SOC estimation.
In this work, an event-based linear Kalman filter is used to estimate Cq. Since
Cq is measured once over a charge or discharge cycle, the linear Kalman Filter is
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enabled only when charging or discharging ends.
At every discharge-charge transition, the battery capacity is estimated to improve

the SOC estimation. The battery system outputs indicator signals to inform what
process the battery is in. Discharging process is represented by -1 in the indicator
signals while charging process is represented by 1. In this example, changes in the
indicator signals are used to determine when to enable or disable Kalman Filter
for capacity estimation.

Figure 4.10: SOH estimation simulink scheme

In general, the Kalman Filter is able to track the real capacity. There is half
cycle delay between estimated capacity and real capacity. This is because the
battery capacity degradation happens when one full discharge-charge cycle ends.
While the coulomb counting gives a capacity measurement of the last discharge or
charge cycle.
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Chapter 5

Conclusions and future
development

The battery electrical characteristics are dependent on the ambient temperature;
however, most existing battery equivalent circuit models have not taken into account
the influences of ambient temperature.
In this thesis work, a temperature-dependent second-order RC equivalent circuit
model is established, based on the electrical characteristics of lithium-ion batteries
at different ambient temperatures (25, 35, 45 °C). The activity was carried out
according to the closed box approach, through which has been built an equivalent
model starting from measurements made exclusively at the external terminals of the
battery by means of a cycler, a data logger, a battery tester and a specific software.
The unknown model parameters were firstly obtained in using a physical approach
that describes how the battery responds to current stimuli, in particular to a pulse.
These parameters have been then used as starting point for the optimization of the
model through a data fitting method by means of the simulink design optimization
toolbox. Through this toolbox, that works as optimization solver which tunes the
parameters to reduce the estimation error, it has been possible to find the best
model parameters in order to have a behaviour as close as possible to the real
battery, taking into account the working conditions (Temperature and SOC).

From the results obtained it has been possible to notice that the temperature
is a determining factor in the functioning of a lithium-ion battery. In fact, the
discharged capacity, given a certain current profile, does not depend only on this
profile, but also on the temperature at which one is operating. Note that the
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resistive parameters decrease in value as the temperature increases. The state of
charge of the battery also influences these parameters, especially when it assumes
low values, resulting in a sudden increase in resistance. These results therefore
show that the main conduction mechanism that takes place in the battery is ionic
in nature, although it is not the only one present. The trend of the capacitive
parameters, on the other hand, does not have an equally unique behavior. This is
due to the fact that it is not possible to associate a precise physical meaning to the
capacities. However, in general it is observed that the internal dynamics become
more rapid as the temperature rises.

Furthermore, the parameters obtained were subsequently used in the model
during the verification phase, where it has been possible to evaluate the margin of
error between the model and the real data. It has been shown that for both the
discharging and charging tests, the model errors are maintained within ±30mV .
As for the WLTP, the accuracy of the model is reduced, but the error is still
maintained within a very small range, that is,±50mV . These verification results
indicate that the proposed model provides not only accurate output voltage, but
also good behaviour for temperature variations.

Moreover, the obtained model has been equipped with an UKF for SOC estima-
tion, in order to have an internal feedback loop to update parameter values based
on charge status.

The results obtained have shown an error within 0.5% in estimating SOC, thus,
the UKF is able to track to the real SOC quite accurately.

Finally, as far as concern the SOH estimation the proposed method consisted in
the implementation of an event-based KF to estimate the capacity Cq and so to
improve the SOC estimation by tracking the real capacity.

Future research developments on the subject will first have to analyze how the
parameters vary as battery ages. Furthermore, it would be useful to establish if and
in which way the deterioration of the cells is a function of the ambient temperature,
as well as of the sustained work profiles. Another aspect to be addressed concerns
the SOH estimator. The estimator based on a KF was approached only as a
preliminary, without implementing a rigorous theoretical analysis, and further
studies could identify how this estimator can be optimized according to the battery
temperature and SOC. Furthermore, in the case of a battery, the estimator should
also consider the thermal inhomogeneity between the cells, which implies the use
in the model of a more complex thermal network than that presented in this work.
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Finally, in the present work KF-based estimators of the state of charge have always
been used. It would therefore be very useful to develop a state of charge estimator
aimed at the user, which immediately communicates how much residual capacity is
actually left through data driven approaches such as: Fuzzy Logic, Artificial Neural
Networks and Support Vector Machine.
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