
POLITECNICO DI TORINO
Computer Engineering

Master Degree Thesis

Data-driven Model and Trajectory
Tracking SMC for a UGV system

Supervisors
Prof. Elisa Capello
Dr. Davide Carminati
Dr. Iris David Du Mutel

Candidate
Esmeraldi Xuna

July 2022

To my family,
Ardian, Mimoza and
Romina

Summary

One of the most relevant features for the design of control algorithms is to show their
robustness. For this reason, the main objective of this thesis has been the design of a
robust controller for the target Unmanned Ground Vehicle (UGV) by means of Sliding
Mode Control (SMC) technique, a well-known control strategy that provides this desired
feature. To reach such objective, a new firmware for the UGV has been designed and a
data-driven model has been built.
The classical controller design procedure requires an initial characterization of a model
which should be quite realistic but light, in order to make fast and reliable simulations.
In this case, the provided model is a data-driven one, making possible the use of a kine-
matic model only of the UGV, keeping out dynamical modeling. A System Identification
(SI) procedure has been necessary and has involved the collection of data, pre-processing,
and finally model construction and validation; this phase confirmed the effectiveness of SI
techniques and models, and was essential to refine the nonlinear auto regressive exogenous
(NARX) model used for controller design and simulations purposes.
In the second phase of this thesis, a new firmware for the UGV has been implemented,
introducing system states through a finite state machine (FSM); its structure is inspired
from some well-known frameworks related to UAVs. The firmware provides also Ethernet
communications with another board, where some ROS nodes run. Those ROS nodes are
the designed controller (Trajectory Tracking SMC), the reference generator (Artificial Po-
tential Fields technique, APF), and the navigation one (Extended Kalman Filter, EKF).
An important result of such firmware structure is the modularity: it makes possible to test
different control algorithms just by substituting the ROS node, but also the APF and EKF
node could be substituted to test different navigation and reference generator algorithms.
This modularity feature makes also easier the replacement of sensing and/or actuation
components.
Finally, the new desired controller has been designed and tested in MATLAB/Simulink
environment, where good performances have been observed in simulations, confirming the
reaching of a robust control law (compared to the previous Proportional-Integral-Derivative
controllers). Some tuning of the controller gains has been made and the block diagram of
the controller subsystem has been translated into Python code manually, implementing a
new ROS node.
At last, the goal was to test the physical effectiveness of the controller through laboratory
experiments in different scenarios; results proved good performance in the proposed sce-
narios, where the time of target goal reaching has been reduced and the overall behavior
of the UGV during experiments has been considered satisfying.

4

Contents

List of Tables 7

List of Figures 8

1 Introduction 11
1.1 Mobile robotics overview . 12

2 Mathematical model 15
2.1 Basic concepts . 15
2.2 Kinematic model . 18
2.3 System identification . 21

2.3.1 Least squares LTI system identification 22
2.3.2 NARX . 23

2.4 Target UGV model derivation . 24

3 System architecture 29
3.1 Hardware level . 30
3.2 Software level . 31

3.2.1 Guidance . 31
3.2.2 Navigation . 33
3.2.3 Control . 33

3.3 Freedom K64F firmware . 33
3.3.1 Finite state machine . 34
3.3.2 Commander . 36
3.3.3 Command-Line Interface . 36
3.3.4 Communications . 37
3.3.5 Synchronized data access . 38

4 Sliding mode controller 39
4.1 General sliding mode control concepts . 39
4.2 Trajectory tracking sliding mode controller 41
4.3 SMC design and simulations . 43

4.3.1 Obstacle free path . 43
4.3.2 Environment with obstacles . 47

5

5 Experimental simulations 51
5.1 ROS basics . 51
5.2 Real mission results . 52

A Appendix A 57

Bibliography 61

6

List of Tables

4.1 Controller’s parameter values . 43

7

List of Figures

1.1 Control loop . 11
1.2 Mobile robots classification . 13
2.1 Reference frame O − xyz . 15
2.2 An elementary rotation around z axis . 17
2.3 A configuration example during a simulation 19
2.4 NARX model block diagram . 23
2.5 Constant PWMs output example . 24
2.6 Constant PWMs input example . 25
2.7 Joystick command output example . 25
2.8 Joystick command input example . 26
2.9 Concatenation of all examples outputs . 26
2.10 Concatenation of all examples inputs . 27
2.11 New samples fit . 28
3.1 Devastator’s structure [9] . 29
3.2 Block diagram of the hardware architecture 30
3.3 FSM of the new firmware . 35
3.4 Command Line Interface . 37
4.1 Ideal sliding mode evolution . 39
4.2 Chattering phenomenon . 40
4.3 Trajectory tracking problem set-up . 42
4.4 Obstacle free Trajectory . 44
4.5 X and Y positions . 44
4.6 APF output tracking . 45
4.7 Input/output data . 45
4.8 Controller error variables . 46
4.9 Sliding surfaces . 46
4.10 Controllers comparison . 46
4.11 Trajectory with obstacles . 47
4.12 X and Y positions . 48
4.13 Plant input/output data . 48
4.14 APF output tracking . 49
4.15 Controller error variables . 49
4.16 Sliding surfaces . 49
4.17 Controllers comparison . 50
5.1 Real UGV Trajectory . 52

8

5.2 X and Y positions . 53
5.3 Real UGV orientation . 53
5.4 Simulated and Real trajectories comparison 54

9

10

Chapter 1

Introduction

Unmanned Ground Vehicles (UGVs) are essentially a category of mobile robots, which can
move autonomously to perform the desired task, and this last could be potentially ev-
erything spanning a wide range of opportunities for researchers, industries, and technical
experts of various kind (e.g., mechanical, electronic, and computer engineers).
Extensive use of industrial manipulators has been already applied, but in the last years,
companies are exploiting UGVs for logistics. Therefore, among the other applications of
mobile robots, we can find handling military missions in a secure way and exploration of
hazardous places. Related to the last one, we can find also space applications, like the
Mars 2020 mission [15].
Every robot can be seen as a system, so a modeling phase of such a system is always
required. This is the first of different transversal disciplines that we can find in robotics
systems. Indeed, after system modeling, suitable control logic is necessary to actuate the
robot to perform a task, opening wide opportunities for control engineers and also re-
searchers in automatic controls field.

GUIDANCE CONTROLLER PLANT

NAVIGATION

Figure 1.1: Control loop

The controller needs various kinds of inputs, and typically the logic behind it is the
tracking of a reference signal satisfying some requirements. Hence, in order to track a sig-
nal, the knowledge of a system state is needed, leading to the use of navigation algorithms
(i.e. algorithms able to estimate the configuration of the mobile robot). Instead, the "un-
manned" side of a UGV is handled through guidance algorithms. To perform navigation

11

1 – Introduction

tasks, different sensors can be used depending on the application, while, for actuation pur-
poses, actuators should be used. An example of the resulting structure of the so-called
"control loop" implemented for UGVs is reported in figure 1.1.
After the overall design of the guidance, navigation, and control subsystems in a simulation
environment, everything shall be deployed into a real system, which means microcontrollers
placed in the chassis of the UGV. Generally speaking, such deployment requires an accu-
rate firmware design in order to take advantage of the hardware resources provided by
microcontrollers, since they are not as powerful as usual computers.
In this chapter, an overview of mobile robotics will be shown in the next section. Then:

• In chapter 2 the kinematic model used for the target UGV and the system identifica-
tion procedure applied will be shown, after a brief re-cap on some basic mathematical
tools (i.e. reference frames and rotation matrices).

• In chapter 3 will be presented the overall system architecture, and in particular the
software one, since a new firmware has been implemented, as a re-adaptation of an
already existing one developed for a drone.

• In chapter 4 is reported the sliding mode control technique with a focus on the
adopted law. After that, some simulation results are reported, including a comparison
with the previous controllers designed for the UGV.

• In chapter 5 some basic concepts of ROS are presented, and results of a simple
mission without obstacles are described together with the results expected by means
of simulation.

1.1 Mobile robotics overview
Unlike stationary ones (manipulators), mobile robots are equipped with a moving basis,
leading to the possibility of motion in the working environment, which could be indoor or
outdoor. In this thesis, an indoor application is planned, and basically, it consists of an
autonomous motion toward a destination point, assuming known the initial configuration.
Different types of mobile robots are available [13]:

• land-based: they can be also divided in different sub-categories, like the wheeled ones,
tracked ones or legged ones. This thesis concerns the wheeled category, even if the
UGV is a tracked one.

• air-based: also known as drones, or even unmanned aerial vehicles (UAVs).

• wather-based.

In [13] are shown advantages of wheeled mobile robots, mainly: easy to design, cheap, and
there are no balancing problems of the structure. However, wheels present also disadvan-
tages in environments that are not flat and where good friction is not available.
The target UGV has been considered equivalent to one equipped with two fixed standard
wheels, allowing only the rotation over the contact point.
Another classification of mobile robots is based on drive systems [2]:

12

1.1 – Mobile robotics overview

• differential drive: consists of a structure with two fixed wheels, each one autonomously
actuated. Allows forward and backward motion, but also the rotation at the same
point is allowed applying opposite commands to the wheels.

• synchro drive: all the fixed wheels are commanded by two inputs, one driving the
orientation of the robot and the other one driving the longitudinal motion. It permits
the same mobility of differential drive ones.

• car-type: two wheels are fixed and two are steerable, leading to the same structure of
cars.

In figure 1.2 a basic representation of those 3 mentioned type of mobile robots is shown.

Fixed wheel

Orientable wheel

Differential drive Synchro drive Car-type

Figure 1.2: Mobile robots classification

As anticipated before, to operate autonomously appropriate sensors shall be placed into
the chassis of the robot. These sensors can be classified in proprioceptive/exteroceptive and
passive-active. Therefore, "it is important to characterize the sensor’s performance using
basic variables such as the dynamic range, power, resolution, linearity and bandwidth or
frequency, sensitivity, error, accuracy, systematic errors, random errors, precision, and so
on"[13]. Among the used sensors, we have [14]:

• encoders: they belong to the proprioceptive group, and are used to estimate angular
velocities of wheels. Different technologies of optical encoders exists (e.g. incremental
encoder, absolute encoder), but are also available based on Hall effect.

• accelerometers: used to measure accelerations along three axes. Measurements inte-
gration allows an estimate of velocities. Typically they are micro electro-mechanical
systems (MEMS) and combined with other sensors (e.g. gyroscope) to form an inertial
measurement unit (IMU).

• gyroscope: useful to measure angular velocities and orientation. They are based on a
rotating or vibrating structure, but there are available kinds of gyroscope based on
optical fibers, exploiting Sagnac effect.

• magnetometer : it is used to measure the magnetic field, exploited for heading evalu-
ation of the robot.

• RGB-D camera: they provide coloured images featured with depth information, al-
lowing further tasks (e.g. obstacle/object localization).

13

1 – Introduction

Therefore, the navigation task could include also a mapping task, which consists in deter-
mining a representation of the environment (i.e. a map) where the mobile robot operates.
However, in this thesis, the map has been considered known and even the position of ob-
stacles, when they are included in missions.
To perform the guidance task, a safe trajectory should be designed for the UGV. In [13],
a classification of trajectory generation algorithms is available and the main groups are:

• classical methods: like cell decomposition and potential fields methods, characterized
by high memory requirement and local minima drawbacks respectively.

• probabilistic methods: the so-called "probabilistic roadmap planner" belongs to this
group.

• heuristic planners: known also as informed search strategies, the A* algorithm belongs
to this group (it based on graph search theory).

14

Chapter 2

Mathematical model

In this chapter, the mathematical modelization of the target UGV will be presented, after
a re-cap regarding some basic concepts about reference frames.
Typically, in standard control problem formulations, a set of kinematic and dynamic differ-
ential equations are exploited to formulate the control law. However, in this thesis project,
only the kinematic equations were necessary, since the controller presented in chapter 4
involves only the kinematic model.
Therefore, the dynamical model has not been necessary since the plant used for controller
development and simulations has been a black box one (i.e., a nonlinear auto-regressive
with exogenous input model, NARX). Thus, after an illustration of System Identification
concepts focused on the NARX model, the Devastator’s model derivation is shown.

2.1 Basic concepts
In order to represent the position of the target UGV, a reference frame must be defined,
or better to say, two: a local and a global one. One possible and common representation
of reference frames is the Cartesian one, which has been used during simulations. The
following concepts and notations about reference frames and rotation matrices are taken
from [2].

To define such kind of reference frame, three unitary and mutually orthogonal vectors

z

y

x

O

Figure 2.1: Reference frame O − xyz

15

2 – Mathematical model

shall be defined and it is common to denote them with x, y, and z; they represent the x,
y, and z-axis respectively of the O-xyz reference system, as shown in figure 2.1.
Once the reference frame is defined, any point can be represented with respect to it as a
vector:

v = vxx + vyy + vzz

which could be also denoted as:

v =

vx

vy

vz

 (2.1)

Given another reference frame O′ − x′y′z′, with different orientation in R3, x′, y′, and z′

can be derived as:

x′ = x′
xx + x′

yy + x′
zz

y′ = y′
xx + y′

yy + y′
zz

z′ = z′
xx + z′

yy + z′
zz

and they represent the orientation of x′, y′, and z′ with respect to O − xyz.
A more compact notation is the following one with rotation matrices:

R =

x′ y′ z′

 =

x
′
x y

′
x z

′
x

x
′
y y

′
y z

′
y

x
′
z y

′
z z

′
z

 =

x
′Tx y

′Tx z
′Tx

x
′Ty y

′Ty z
′Ty

x
′Tz y

′Tz z
′Tz


In this matrix, the elements are the direction cosines of the new reference frame’s axes, i.e.
O’-x’y’z’ in this case. The column vectors of a rotation matrix represent a new reference
frame, and some important features can be noticed:

• Mutual orthogonality between x′, y′, and z′.

• Unitary magnitude of x′, y′, and z′.

R is thus an orthonormal matrix, so the following two relationships hold:

RTR = I3 RT = R−1

Another relevant feature of R is that det(R) = 1 in case of right-handed reference frame,
while in case of left-handed holds det(R) = −1.
Given the structure of R, three special matrices could be easily evaluated, which are the
so-called elementary rotation matrices (i.e. the case where a rotation occurs with respect
to a single axis). So, considering the previous case, the elementary rotation matrices of

16

2.1 – Basic concepts

O′ − x′y′z′ with respect to O − xyz are expressed as:

Rz(α) =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1


Ry(β) =

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)


Rx(γ) =

1 0) 0
0 cos(γ) − sin(γ)
0 sin(γ) cos(γ)



Those elementary rotations give an important meaning to rotation matrices: they encode
the angle of rotation around an axis in order to overlap the axis of O − xyz into the ones
of O′ − x′y′z′, as it can be seen in figure 2.2.

x′y′

y

x

O = O′

z = z′

γ

Figure 2.2: An elementary rotation around z axis

A generic vector in O − xyz can be represent as stated in equation 2.1, but it can also be
represented in O′ − x′y′z′ as:

v′ =

v′
x

v′
y

v′
z


this means that the following relationship holds:

v = v′
xx′ + v′

yy′ + v′
zz′ =

x′ y′ z′

 v′

and thus leading to:

v = Rv′ (2.2)

17

2 – Mathematical model

which is a really relevant relationship, since it let to immediately convert any vector from
O′ − x′y′z′ coordinates to O − xyz coordinates.
Remembering that RT = R−1, we can also derive the inverse transformation from equation
2.2:

v′ = RTv

About rotation matrices, the last key concept is the derivation of R from the ones repre-
senting elementary rotations. A rotation matrix is a redundant representation since the
needed parameters to represent the orientation in R3 are only three: in literature can be
found the Euler angles, which are an effective way to represent an orientation with only
three needed parameters, and one example is the roll-pitch-yaw attitude representation,
obtained with the following ordered steps:

• Rotation of ψ around x

• Rotation of θ around y

• Rotation of ϕ around z

Since the elementary rotations occurs with respect to a fixed frame, the overall rotation
matrix will be obtained as:

R = Rz(ϕ)Ry(θ)Rx(ψ) (2.3)

It is important to notice that in equation 2.3 the order of multiplication between elementary
rotation matrices is not casual, since every elementary rotation is expressed with respect
to initial fixed frames (in the case of representation with respect to moving axes the order
changes, like in the ZYZ representation, which is not reported here).
Basic concepts reported above are the only necessary ones used in this thesis to represent
UGV’s position during simulations. More precisely, during simulations the fixed frame and
the local frame will be coincident at start time: in particular, the x′ axis will be oriented
in the forward motion direction, the y′ axis will be perpendicular to the x one and will be
oriented on the left side with respect to the forward motion, and the z′ axis will complete
the right-handed reference frame. The reference frame O′ − x′y′z′ will be the local one,
while O − xyz the fixed one, as in figure 2.3.
The next section contains the kinematic model and assumptions used to derive the objective
control law.

2.2 Kinematic model
In the mobile robotics context, some well-known and quite realistic but approximated
kinematic models are exploited for simulation purposes. The first model presented in
Robotics courses to approach kinematic modeling is usually the unicycle model, and from
this one, more complex robots can be modeled, like the two wheels differential drive one
(i. e., the kind of mobile robot which is equivalent to the Devastator platform).
The following discussion about kinematic modeling considers the motion in a 2D plane only.
Thus, about the topics presented in the previous section of this chapter, only rotations

18

2.2 – Kinematic model

around z-axis will be relevant. Again, the reference for topics and notations presented in
this section is still [2].
The configuration of a mobile robot in a 2D plane can be represented by its position and
orientation with respect to the fixed-reference through a vector q, as illustrated in the
following equation:

q =

xy
ψ


The size of q will be denoted with n.
It is assumed that the position coordinates coincide with the center of mass of the UGV
(i.e., the origin of the local reference frame), and it will be considered as a rigid body (some
approximations are thus occurring). Figure 2.3 provides an example of a snapshot during
a simulation: O−xyz is the fixed reference frame, while O′ −x′y′z′ is the moving one (i.e.,
local). So it is now clear the meaning of the vector q: the first two coordinates indicates
the position of the center of mass of the UGV, while the last one is the orientation of x′

with respect to x (counter-clockwise).

y

x

x′

y′

O

Figure 2.3: A configuration example during a simulation

Given a mobile robot, an important concept while threatening kinematic modeling is the
accounting for nonholonomic constraints, which involves the generalized coordinates q and
velocities q̇. Their general formulation is the following:

ai(q, q̇) = 0 i = 1, ..., k < n

nonholonomic constraints can be expressed in a linear way with respect to q̇:

aT
i (q)q̇ = 0

then, considering all nonholonomic constraints together, we obtain:

AT (q)q̇ = 0

19

2 – Mathematical model

A simple and classical example of nonholonomic constraint is the pure rolling motion of
an ideal disk, which could be an initial approximated model of a wheel. This constraint is
useful to keep out the lateral slippage from the model (i. e., vy′ = 0), and it is expressed
by:

ẋ sinψ − ẏ cosψ =
#
sinψ − cosψ 0

$
q̇

The possible trajectories which accounts for the nonholonomic constraints can then be
derived solving the dynamical nonlinear system:

q̇ =
mØ

j=1
gj(q)uj = G(q)u m = n− k (2.4)

Where G(q) is a basis (thus not unique) of the nullspace of matrix AT (q). The vector
u ∈ Rm represents the inputs, and the equation 2.4 is the kinematic model of the mobile
robot subject to the nonholomic constraints expressed in A(q).
For instance, in the case of a unicycle, the kinematic model obtained through solution of
equation 2.4 could be: ẋẏ

ψ̇

 =

cosψ
sinψ

0

 v +

0
0
1

ω (2.5)

where v is the signed longitudinal velocity and ω the angular velocity of the wheel.
However, the target UGV is not an unicycle but a tracked mobile robot equivalent to a
two wheeled differential drive one. In [4] it is shown that a two wheeled differential robot
can be modeled as an unicycle applying the following relationships:

v = r(ωL + ωR)
2 (2.6)

ω = r(ωR − ωL)
B

(2.7)

which are obtained taking into account nonholonomic constraints of pure rolling and no
lateral slipping. In equations 2.7, r indicates the radius of wheels, B the distance between
them, and ωi, i = {L,R} the angular velocities of the two wheels.
The outputs of the plant used in simulations are the wheels angular velocities, so the
kinematic model of the UGV is now fully available and exploitable.
To get the position and heading of the robot with respect to the fixed frame, a rotation
matrix could be used and it is simply a rotation around z axis, in fact the following
equation: vx

vy

ψ̇

 =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


vx′

vy′

ψ̇


is equivalent to 2.5, since vy′ = 0 when the nonholonomic constraints are satisfied. Perform-
ing an integration, it is possible to derive the configuration of the target UGV expressed
in the fixed reference frame (i.e. x and y coordinates plus the orientation ψ).

20

2.3 – System identification

2.3 System identification
"System identification is a methodology for building mathematical models of dynamic sys-
tems using measurements of the input and output signals of the system"[3].
Deriving a model of a system can be done exploiting physical insights or collected experi-
mental data, leading to two main approaches [6]:

• First-principle modeling: making some assumptions (leading to approximations)
and applying fundamental principles of Physics, a set of equations modeling the sys-
tem is then available. Obviously, these equations requires some physical parameters,
which should be known a-priori or derived through experimental procedures; this is
the critical point of such approach, it is not easy sometimes to estimate the mentioned
parameters. In literature, this kind of model is named white-box.

• System identification: conversely from the previous approach, this one is named
black-box. In this modeling technique, mathematical algorithms are applied in order to
derive an input-output model from input-output data experimentally collected. The
output of this procedure is not a set of equations, instead a set of some parameters
(which, in general, have not physical meaning).
Such approach is extremely powerful when the interest is only about an input-output
model, however requires experimental data collection, processing of such data and
finally the number of resulting parameters could be potentially large.

• Mixed approach: modeling is approached through Physics equations, whose pa-
rameters are then estimated with system identification procedures. It is a complex
approach, and the resulting models are named as gray-box.

Since in classic control problem formulations, the first step has been the distinction of the
system/model between linear time invariant and nonlinear ones. This initial step is still
relevant in system identification modeling approach, because the model structure changes.
In [7], four fundamental ingredients are reported:

• Observed data: they shall be unbiased and persistently exciting for the system. There-
fore, some pre-processing before model constructions could be necessary.

• Candidate models: different models can be built from the already available and tested
in literature. The choice of the model requires an initial classification of the system
(i.e., linear or nonlinear).

• Fit criterion: this feature does not depend from the structure of the model selected.
In general, given observed data and predicted one, an error is computed and the norm
of such error should be minimized in order to have the best choice of parameters.

• Validation: fitting is measured on observed data, in order to measure the model
accuracy.

In the following subsections, an example of linear model is provided. Then, the next
subsection focuses on the NARX model, which has been the right choice to model the
target UGV.

21

2 – Mathematical model

2.3.1 Least squares LTI system identification
Given a single-input single-output (SISO) system, and denoting by u(t) the input at time
t, and with y(t) the output, a basic relationship between them is the linear difference
equation [6]:

y(t) + a1y(t− 1) + ...+ any(t− n) = b1u(t− 1) + ...+ bmu(t−m), m ≤ n (2.8)
Linear difference equations are implemented for discrete models, a choice which makes
sense since the collected data are sampled ones. A-priori assumptions should be made on
m and n, whose meaning is the number of previous inputs/outputs useful to determine the
current prediction y(t).
Equation 2.8 can be rewritten as:

y(t) = ŷ(t|θ) = ϕT (t)θ
where ϕ is the vector of past input/output data and θ the vector of parameters:

ϕ = [−y(t− 1), ..,−y(t− n), u(t− 1), ..., u(t−m)]T

θ = [a1, ..., an, b1, ..., bm]T

From these vectors, mathematical algorithms could be exploited to determine parameters.
The following parameters estimation approach showed is the Least Squares (LS) method
[6].
For instance, givenN observations, withN compatible with n andm such that the following
system of linear equations is solvable through inversion of A:

y = Aθ

where A is constructed by rows defined with ϕ at different time instants:
y(n) ... y(1) u(m+ 1) ... u(1)

y(n+ 1) ... y(2) u(m+ 2) ... u(2)
...

y(N − 1) ... y(N − n) u(N) ... u(N −m)


So, for A compatible with θ, the parameters are simply estimated as:

θ̂ = A−1y

where θ̂ indicates the estimation of the true parameters θ.
However, this is not a realistic case, since only N measures where provided. Due to the
noise always present in measurement procedures, N should be much more higher than the
number of parameters, leading to a "thin" matrix A.
So, taking enough samples to neglect measurement noise, e.g. with N >> 2n + 1, the
parameters are estimated through the pseudo-inverse of A (it is not anymore a square
matrix):

θ̂ = (ATA
−1)AT y

Under some assumption, the so called consistency property holds, satisfying limN→∞ θ̂ = θ.
However, this subsection was necessary only to make an introduction on LTI system iden-
tification showing briefly the LS method, but in this thesis any LTI model have been
identified, since they were not effective for the UGV.

22

2.3 – System identification

2.3.2 NARX
About nonlinear system identification, a focus is made in this subsection about nonlinear
autoregressive with exogeneous input models (NARX), since has been the effective model to
get a data-driven plant. NARX is the nonlinear version of autoregressive with exogeneous
input models (ARX).
An ARX(na, nb) model with delay nk is described by the difference equation [7]:

y(t) + a1y(t− 1) + ...+ any(t− na) = b1u(t− nk) + ...+ bmu(t− nk − nb) + e(t)
then, exploiting backward shift operator q−1x(t) = x(t − 1), is then trivial to prove that
the noise filter has the same poles of the system:

y(t) = B(q−1)
A(q−1)u(t) + 1

A(q−1)e(t)

leading to the block diagram in figure 2.4.

B(q−1) A(q−1)

e(t)

u(t) y(t)

Figure 2.4: NARX model block diagram

However, when a linear model provides scarce fitting due to embedded nonlinearities of the
system, a NARX structure should be exploited.
A SISO NARX model is described by:

y(t) = F (y(t− 1), ..., y(t− na), u(t− nk), ..., u(t− nk − nb)) + e(t)
In equation 2.3.2 can be noticed that a function F has been introduced: it is used to map
the regressors in order to fit the output data. This is the key difference between ARX and
NARX: in the latter a nonlinear map occurs in order to model nonlinear systems. This
concept is the same on which foundations of neural networks have been built.
Different nonlinear function F structures are available, e.g., wavelet expansions, and sig-
moidnet.
However, since the built model of the UGV has been a multiple-input multiple-output
(MIMO) one, the difference equations of a MIMO NARX with m outputs and r inputs can
be written as [4]:

y(t) = F (y(t),u(t), e(t)) + e(t)
with:

y(t) = [y1(t) ... ym(t)]T

u(t) = [u1(t) ... ur(t)]T

e(t) = [e1(t) ... em(t)]T

23

2 – Mathematical model

so F (·) is a matrix of nonlinear mappings.
Concluding, the predictions of the NARX model will then be computed as:

ŷ(t|θ) = f(ϕ(t), θ)

where f(·) is the nonlinear function that maps the regressors to the output.

2.4 Target UGV model derivation
In order to derive a data-driven plant model some data is needed, and following the ap-
proach presented in [8, 4], they are the input pulse-width modulation signals (PWMs)
applied to the motors and the output angular velocities of the wheels (i.e., the driving
wheels of tracks).
Practically, the already existing firmware has been used to apply constant PWMs and the
input applied together with the output of encoders have been registered through PuTTY
into a CSV file. Such file has been then processed through MATLAB script to get the
vectors of input/output data, as required by the MATLAB System Identification Toolbox
(used for model construction). However, this approach already used in [4] was not sufficient
to capture well the dynamics of the system, so those constant-input data were integrated
with new samples where the input has been generated through joystick. In fact, applying
joystick command and trying random commands was useful to refine the already existing
model, obtaining a more precise one.
In figure 2.6 is reported an example of input data collected keeping constant PWMs, while
in figure 2.5 the respective output data applying the shown input.

-20

-10

0

10

20

L
e
ft

0 2 4 6 8 10 12
-20

-10

0

10

20

R
ig

h
t

Angular velocities

Time (seconds)

 (
ra

d
/s

)

Figure 2.5: Constant PWMs output example

Similarly, in figure 2.8 an example of input data collected with random joystick command
activity is reported, and in figure 2.7 the respective collected output.

24

2.4 – Target UGV model derivation

-1.5

-1

-0.5

0

0.5

1

1.5

L
e
ft

104

0 2 4 6 8 10 12

-1.5

-1

-0.5

0

0.5

1

1.5

R
ig

h
t

104

PWMs

Time (seconds)

P
W

M
 (

s
)

Figure 2.6: Constant PWMs input example

-5

0

5

10

15

20

L
e
ft

0 10 20 30 40 50 60 70 80 90
-10

-5

0

5

10

15

20

R
ig

h
t

Angular velocities

Time (seconds)

 (
ra

d
/s

)

Figure 2.7: Joystick command output example

To build the model, all experiments through joystick and constant PWMs where concate-
nated into single vectors, preparing them for model building through the toolbox mentioned
above. So, in figure 2.9 is shown the overall output data used for model construction, and
in figure 2.10 the overall input one.

After this data collection phase, the choice of a model structure was the next step. Linear
ones were already excluded in [4], leading to the conclusion that the MIMO NARX already
choosed was the most suitable one for the UGV. Additionally, an attempt to decouple the
model into two single-input single-output (SISO) NARX (i.e., one for each wheel)has been
made but fitting was poor already in the training set, so this modeling approach has been

25

2 – Mathematical model

-5000

0

5000

10000

L
e
ft

0 10 20 30 40 50 60 70 80 90
-5000

0

5000

10000

R
ig

h
t

PWMs

Time (seconds)

P
W

M
 (

s
)

Figure 2.8: Joystick command input example

-20

-10

0

10

20

L
e
ft

0 200 400 600 800 1000 1200
-20

-10

0

10

20

R
ig

h
t

Angular velocities

Time (seconds)

 (
ra

d
/s

)

Figure 2.9: Concatenation of all examples outputs

26

2.4 – Target UGV model derivation

-2

-1

0

1

2

L
e
ft

104

0 200 400 600 800 1000 1200
-2

-1

0

1

2

R
ig

h
t

104

PWMs

Time (seconds)

P
W

M
 (

s
)

Figure 2.10: Concatenation of all examples inputs

also excluded.
The resulting MIMO NARX (generated through nlarx MATLAB command) is character-
ized by the orders:

na =
51 0
0 1

6
nb =

52 2
2 2

6
na =

51 0
0 1

6
and the nonlinear mappings are two wavenets (77 units for the left wheel and 87 units for
the right one). The orders na,nb and nc where tuned by trial and error to best fit the data,
while for the nonlinear mappings, the wavenet chosen automatically by MATLAB was the
most suitable one.
Therefore, the resulting FitPercent and Final Prediction Error were [90.09; 90.87]% and
0.304 respectively.
Finally, the model has been tested on some new data to test its effectiveness, which is a
smaller dataset but with the same features of the training one (i.e., constant PWMs data

27

2 – Mathematical model

and joystick data). In figure 2.11 are reported the resulting fit of the generated model on
some new samples (i.e., not seen at model construction phase).

-20

-10

0

10

20

L
 (

ra
d
/s

)

Measured data

Predicted data: 76.28%

50 100 150 200 250
-20

-10

0

10

20

30

R
 (

ra
d
/s

)

Measured data

Predicted data: 66.39%

Fitting to new data

Time [s] (seconds)

Figure 2.11: New samples fit

Compared to the already existing model developed in [4], the percentage fitting seems
lesser. It is necessary to remark that this is due to the new joystick samples. In fact, if we
consider the experiments with constant PWMs the two models have similar fitting on the
new data, while considering joystick data, the new model has better performances since it
is trained with more exciting inputs for the dynamics of the system.
Another relevant observation can be done about the relative fitting between the two wheels:
the right one is less precise, and this behavior is consistent with the observed one during
data collection, as a matter of fact, applying equal constant PWMs, the right track moved
always slower than the left one, showing an asymmetric dynamic. For this reason, even if
the results on the wheels are different, they have been accepted. Therefore, this proves the
efficacy of NARX modeling: it caught well the actual behavior of the UGV.

28

Chapter 3

System architecture

Every robot is a multidisciplinary system since it involves four main areas:

• Mechanics.

• Electronics.

• Software.

• Control.

Mechanical modeling and electronic component selection were not dealt with in this the-
sis. However, in the next section, some information about the electronics (i.e., hardware)
components mounted on the UGV will be shown, given their significance for guidance,
navigation, and control (GNC) purposes.
Regarding the mechanical structure, figure 3.1 shows the target UGV within a detailed
mechanical vision.

Figure 3.1: Devastator’s structure [9]

As anticipated in chapter 2, the Devastator is a tracked mobile robot, but it is analogous
to a two-wheeled differential drive one. The DC brushed motors actuate on one driving
wheel per side, assimilating thus the behavior to a more straightforward mobile robot. So
every track is actuated by one wheel, and the other four are used to support tracks (as

29

3 – System architecture

shown in figure 3.1).
As mentioned above, the actuation mechanism is handled through DC brushed motors
commanded through pulse-width modulation (PWM) signals, which produce the desired
voltage. PWMs are characterized by a signal duration on (i.e., pulse width), and by a pe-
riod of signal duration (whose inverse corresponds to the frequency). The period of PWMs
in this thesis was set to 20000µs, as already done in [4].
DC brushed motor converts the input electric energy into output mechanical energy, rotat-
ing the wheel. This kind of DC motor is based on the Lorentz law F = iL×B, where L is
a vector with the wire length, i the current flowing and B the magnetic field vector. This
is just a simplified model with one coil passing through a space between two permanent
magnets with opposite polarization. Every DC motor is then characterized by an electro-
magnetic dynamic equation and a mechanical one, but in this thesis those relationships
were not exploited to control the UGV.
Follows here a section of the hardware used to do physical experiments, while in section
3.2 will be shown the software.

3.1 Hardware level
The most clear representation of the hardware architecture is through the block diagram
in figure 3.2

Freedom K64F

Manual switch

LiPo battery

DC-DC module

DoubleH bridge

Left actuator

Right actuator

LattePanda

Figure 3.2: Block diagram of the hardware architecture

In more details:

• LiPo battery: this module is the power supply, connected by wiring to a manual
switch and a DC-DC module; for security reasons, it is possible to switch off the
power supply thanks to the manual switch.

• Manual switch: permits to stop the actuation at a hardware level in order to deal
with situations where physical experiments fail.

• DC-DC module: handles the correct voltage supply for the double H bridge module.

30

3.2 – Software level

• Double H bridge: the solution for motor driving. A double H bridge allows to control
both motors independently.

• Left/Right actuator : DC brushed motors mentioned above.

• LattePanda: a computer whit Ubuntu installed. It runs some ROS nodes and com-
municates through Ethernet with the Freedom K64F for sensing and actuation data
exchange.

• Freedom K64F : this microcontroller performs sensing and actuation with the com-
mands received from LattePanda. Among the sensors, we also have the encoders (the
other ones are indicated in the firmware section).

A RealSense depth detection camera is also available, and it is used by LattePanda through
ROS. Therefore, another external IMU is connected to the Freedom K64F, making redun-
dancy possible for accelerometers.
However, the hardware set-up was already given, and any kind of hardware architecture
design has been performed in this thesis. A more interesting focus is made in the next
section at software level, where more interesting details are given about GNC, while in the
last section of the current chapter, the new firmware architecture designed and coded for
the Freedom K64F will be shown.

3.2 Software level
In order to make simulations and physical experiments, some GNC details shall be pre-
sented. Will be provided the GNC algorithms used in Simulink and in ROS, during simu-
lations and laboratory experiments respectively.

3.2.1 Guidance
This software module is responsible for path planning. In the scenarios considered, the
space where the motion occurs is well known: it could be without obstacles or with obstacles
with a known position (encoded into the guidance algorithm). The position of the UGV is
known at every simulation step (through odometry or extended Kalman filter, as will be
shown in the Navigation subsection).
A simple way to provide a guidance algorithm could be an a-priori known trajectory that
shall be followed (i.e., trajectory tracking) during simulation steps. However, this approach
always requires the set-up of the motion trajectory, so it is not so comfortable. A more
interesting guidance algorithm is the artificial potential fields one, which provides the
feature of autonomous motion planning.
The three main components in this algorithm are:

• Robot position: it must be determined at every simulation step (i.e. estimated
through navigation algorithms).

• Goal position: shall be set when starting missions.

• Obstacle position: shall be set when starting missions.

31

3 – System architecture

The motion of the robot is guided by the influence of an artificial potential field U, which
is evaluated as a sum of two ones, an attractive one and a repulsive one:

U(q) = Uatt(q) + Urep(q)

Mathematically, path planning through U means to set its global minimum to the goal
point and to reach such minimum from the starting configuration. A method to reach this
objective is the gradient descent one:

F (q) = −∇U(q) = −∇Uatt(q) − ∇Urep(q)

Gradient descent algorithm has a side effect: the potential fields shall be carefully chosen
in order to have an unique global minima (i.e., this algorithm could suffer global minima
effects, leading to stationary points).
The APF configuration is the same of [4], so the attractive field and the resulting force are
defined as:

Uatt(q) =
I

1
2Kρf (q)2 ρf (q)2 ≤ d

dKρf (q) − 1
2Kd

2 ρf (q)2 > d

Fatt(q) =
I

−K(q − qg) ρf (q)2 ≤ d
−dK(q−qg)

ρf (q) ρf (q)2 > d

where K is a parameter for field intensity, q the robot position, qg the goal position, ρf (q)
the distance between the actual position and the goal, and d a distance useful to change
field in order to have a suitable attraction to the goal.
The repulsive field and force are instead defined as:

Urep(q) =
I1

2η(1
ρ(q) − 1

ρ0
)2 ρf (q)2 ≤ ρ0

0 ρf (q)2 > ρ0

Frep(q) =
I
η(1

ρ(q) − 1
ρ0

) 1
ρ(q)2 ∇ρ(q) ρf (q)2 ≤ ρ0

0 ρf (q)2 > ρ0

where ρ0 is the influence area of each obstacle, ρ(q) the shortest distance from the obstacle
space and η a gain used to regulate the magnitude of the repulsive field. Therefore, ∇ρ(q)
is equal to q−qobs

||q−qobs|| .
From the total attractive and repulsive forces, the resulting one is then evaluated as:

F (q) = Fatt(q) + Frep(q)

and it can be expressend in components, i.e. Fx(q), and Fy(q).
Then, the reference signals are generated as:

ψd = arctan Fy(q)
Fx(q)

Vd = Vxmaxθ
h

θh + ∆h(q)
The parameters of the APF has been kept the same of [4], in order to make a proper
comparison between the old PID controllers and the new sliding mode one designed.

32

3.3 – Freedom K64F firmware

3.2.2 Navigation
This topic concerns the localization of the UGV during missions.
The initial position and orientation of the UGV is always assumed to be known. Then,
during the next simulation steps, it must be determined with algorithms that exploits sen-
sors data.
For the simulations run in MATLAB/Simulink, only odometry is used to derive the con-
figuration of the Devastator. Recalling that the plant outputs the angular velocities of the
wheel, it is possible to evaluate the longitudinal velocity and the angular velocity of the
UGV with respect to the local frame. So, performing the matrix multiplication showed in
chapter 2: vx

vy

ψ̇

 =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


vx′

vy′

ψ̇


and integrating vx, vy, and ψ, the pose of the robot is known. However, exploiting only
odometry relationships to obtain robot’s position is not really effective for physical exper-
iments, where an extended Kalman filter (EKF) is more suitable.
An EKF is an ideal algorithm for nonlinear models (even if it does not guarantee the
optimal solution, conversely to the F applied to linear systems). The EKF used during
physical testing of the controller is a ROS node provided by the navigation packages, so it
has not been implemented.

3.2.3 Control
This module handles the controller (i.e., the command activity evaluation in order to follow
the reference generated by the guidance block). During controller implementation, some
requirements are considered, e.g., time of target reaching, robustness to model uncertain-
ties or noise, and tracking performance.
In [4] two PID controllers were designed, however they were not so robust in simulations,
even if they produced satisfying results.
In this thesis a sliding mode control approach is exploited in order to gain the desired
robustness during simulations. However, the full discussion about the implemented con-
troller will be handled in chapter 4. The outputs of the controller (i.e., vc, and ψc) are
then used for PWM signals evaluations:

PWML = (vc − ψc)20000
PWMR = (vc + ψc)20000

3.3 Freedom K64F firmware
In [5], an interesting firmware structure based on PX4 Autopilot and ArduPilot has been
implemented, providing fewer and simpler functionalities. In the conclusions section of
[5], the possibility of adapting the designed firmware to the Devastator platform has been
mentioned, and in this thesis it has been tackled.

33

3 – System architecture

The development of the firmware for the K64F board has been handled through Visual
Studio Code and its extension PlatformIO. The next phase was the selection of an operat-
ing system, and it was the updated version of the one already used in the existing firmware,
i.e., MbedOS 6. The latter operating system provides real-time functionalities, so it is a
suitable one for GNC purposes.
So, once the tools were configured and the OS selected, the firmware design and imple-
mentation started, taking the code structure of [5] as a reference. Some changes has been
made: GNC modules have been completely removed and hosted in the LattePanda as ROS
nodes, leading to a lighter executable for the K64F board. This means that the software re-
quirements for the K64F firmware concerned only sensing/actuation/communication func-
tionalities.
The firmware is coded in C/C++ language and between the MbedOS APIs we can find
support for:

• Threads: a part from the main thread, other ones can be instantiated allowing a
classical divide et impera approach for software design (i.e., the main functionalities
are divided among different threads, allowing an easier implementation). The old
and the new firmware are both multi-thread, and threads synchronization is basically
handled through priorities, and concurrent access to shared variables is also safe.

• Events: crucial to handle thread activities, since they operate on events (i.e., func-
tions that are called back when an event is triggered). MbedOS APIs allow posting
events to EventQueue objects periodically, but also cancel/stop functionalities are
available.

• File system: the K64F board has an SD slot, which is useful to log some data or
to save other important files, like the calibration ones. Luckily, MbedOS APIs allow
storage device handling and mounting of the file system of the SD card (which is a
FAT one).

• Synchronization primitives: different ones are provided by the OS, but the unique
relevant for this firmware is the mutex one. It has been used to protect shared
variables from concurrent read/write access.

The main components described in the following subsections are the finite state machine,
the commander, the command-line interface, the communications, and the synchronized
data access.
As a remark, this firmware does not include any GNC function. It simply allows sens-
ing/actuating to the microcontroller (able to communicate with LattePanda).

3.3.1 Finite state machine
It is an abstraction useful to provide a software system state at every time instant. The
FSM implemented is a deterministic one, so the state changes only with some determined
inputs and conditions.
The FSM structure is almost the same of [5], but the two states handling failures are now
unreachable code, since they were not implemented (so when a failure occurs, the UGV
must be set again to the initial mission starting point and the firmware started again).

34

3.3 – Freedom K64F firmware

SYS INIT

SYS STARTUP

SYS RUN AUTO SYS RUN MANUAL

ENTRY POINT

SYS SAFE

Figure 3.3: FSM of the new firmware

Figure 3.3 reports the new FSM structure:
In the FSM two states are gold coloured indicating that they handle the initialization
part, while the gray coloured ones indicate states where the UGV is operative (through
command-line interface, mission tackling or joystick command run).
The main activities carried in each state are:

• SYS_INIT: here the check for the SD card presence is performed, and, if present, the
file system is mounted. After that, the presence of sensors is also checked, registering
a status about them (online or not and calibrated or not). The commander module
also puts the system in a disarmed condition, including a safety functionality for the
PWM commands.
Then, if the option is set, the thread which handles the log files into the SD is
launched. After all those first initialization steps, the states change to the next one
(i.e., SYS_STARTUP).

• SYS_STARTUP: here the actuation thread which handles PWM command signals
is launched, making it theoretically possible to actuate motors (but it is not actually
possible due to the fact that the UGV is still in a disarmed condition). Therefore the
Ethernet interface is configured, launching the receiver and sender thread which han-
dle communications with the LattePanda. In practice, sensor’s data is sent (packed
into Mavlink messages), and actuation command is received (also this quantity is han-
dled through Mavlink messages, for both the joystick case and APF guidance case).
At this point, the system is ready to work, so the state moves into the SYS_SAFE
one, where the user can interact with the system through the command-line interface.

• SYS_SAFE: at this point, the command-line interface developed in [5] is available
for interaction. The same commands are still available, with some small additions
(e.g., the cat and ls commands, which are similar to the respective commands available
in Unix terminals). Therefore, the user can choose where to start manual command
through a joystick or to start a mission where the execution is automatic through
GNC nodes running in the LattePanda.

35

3 – System architecture

• SYS_RUN_AUTO: in this state it is started and handled the mission specified
in the APF ROS node. Practically is an autonomous driving mode in order to reach
the goal point.

• SYS_RUN_MANUAL: here the user can perform a manual driving mode through
a joystick. The joystick input is handled through a Python script over the LattePanda
(which sends the command to the K64F).

3.3.2 Commander
This module cooperates with the FSM in order to perform checks about the system state,
and eventually set/get some flags concerning system state (e.g., sensors state, PWM inter-
face activation, and consequently motor arming/disarming).
The implementation is basically the same of [5]: a C++ class that stores the system flags
and provides functions to get/set such variables (i.e., getters and setters). A mutex em-
bedded into the Read_Write_Lock class is necessary, since different threads interact at
same time with the commander.
In some states, the commander performs some checks in order to ensure safety through
those flags.
For the sensor components, the flag structures have been modified since different sensors
are used in the UGV; therefore, communication channel states have been removed, since
the Mavlink Heartbeat messages are not exploited in this firmware (an indoor UGV is not
critical like a UAV, that is why heartbeat mechanism has been removed).

3.3.3 Command-Line Interface
It is still the one developed in [5], since there were already available the main functionalities
necessary to interface also with the UGV. However, just for convenience in the earlier
testing phases of the firmware, further commands have been added as anticipated in the
previous subsection (i.e., cat, and ls commands).
One difference from the previous work, is that the CLI is always displayed in this firmware
version, since it has been decided to make always available to the user to decide whether
to start an automatic mission or to move the UGV through joystick. Figure 3.4 reports a
screenshot of the CLI, while follows here a brief description of available commands:

• top: periodic display of real time CPU usage.

• info: shows hardware informations, OS version and available RAM.

• thread: lists the active threads.

• clear: clears the CLI window.

• help: shows the list of CLI commands and their respective brief description.

• display: prints once the sensors data.

• display_r:prints repeatetly the sensors data until a key is pressed.

• arm: an attempt to perform arming is made.

36

3.3 – Freedom K64F firmware

Figure 3.4: Command Line Interface

• calibration: the magnetometer calibration function is started.

• ls: displays all filenames present in the SD.

• cat <file>: shows the content of the file passed as argument.

• reset: the firmware start-ups again.

• auto: enters in the automatic guide (i.e. guidance generated by APF algorithm).

• manual: enters in the manual mode (i.e. joystick command activity to move the
UGV).

3.3.4 Communications

Sensors are connected to the K64F board through I2C communication protocol. The K64F
provides an internal IMU, which provides an accelerometer and a magnetometer; an exter-
nal IMU is also mounted, providing a gyroscope, and a redundant accelerometer.
IMUs and encoders data is sent to the LattePanda in order to localize the robot, generate
the desired trajectory and evaluate the control action to perform the mission. The Lat-
tePanda then sends back to the K64F the control input. All those communications are
handled through Mavlink v2 Messagges, which is a suitable library for GNC purposes.
In addition, those Mavlink messages are transmitted through Ethernet cable over UDP/IP.
The packing of those UDP packets and their transmission is handled in the same way of
the old firmware.

37

3 – System architecture

3.3.5 Synchronized data access
The GlobalData class implemented in [5] has been re-adapted: the attributes of such class
have been changed according to the sensors and actuation components used by the UGV.
Since the firmware is multi-thread, concurrent read/write actions on shared variables like
the global_data one could occur, leading to the need of some synchronization patterns.
In this case, the synchronization needed is the most basic one: a mutex variable which
guarantees mutual exclusion during read/write operations. In fact, it is sufficient to protect
the access on this shared variable just by calling some available functions and types provided
by MbedOS.

38

Chapter 4

Sliding mode controller

This chapter will provide a general introduction to the sliding mode control technique in
the first section. After that, the trajectory tracking problem formulation is provided and a
control law is designed. In the last section, some simulation results will be shown, proving
the robustness of this control strategy.

4.1 General sliding mode control concepts

"Control in the presence of uncertainty is one of the main topics of modern control theory.
In the formulation of any control problem there is always a discrepancy between the actual
plant dynamics and its mathematical model used for the controller design"[1]. In order
to deal also with disturbances and uncertainties, robust control strategies have become
relevant, and the sliding mode control technique is one of the most famous among them.
Basically, in order to design a sliding mode controller, the so-called sliding surface shall be
designed and then two laws are needed: the reaching law and the control law.

s(x1, x2) = 0

x1

x2

reaching phase

sliding phase

Figure 4.1: Ideal sliding mode evolution

39

4 – Sliding mode controller

The sliding surface is defined in the state space of the system and it is exploited to bring
the system states towards the origin. The first step is thus bringing the system states
into the sliding surface (i.e., the reaching phase) through a reaching law. Once the system
states lie in the sliding surface, the sliding phase starts, moving system states toward the
origin (i.e., the control law).
In [1] different formulations of sliding surfaces can be found. In practice, given a system
described as:

ẋ(t) = f(x) + B(x)u(t) + ϕ(x, t)

where x is the state vector, u the control input, and ϕ a generic term which takes into
account for disturbances. It is supposed that n states and m inputs characterize the system.
In general, sliding surfaces are denoted as:

s(t) = {x : σ(x) = 0}

however, in this thesis it has been used a special sliding surface already developed in
[10, 12], since with MIMO systems sliding surface design is more difficult. Details about
this definition will be given in the next section.
Therefore, for both the reaching law and the control law it has been used the Gao’s ap-
proach, like in [10, 12]. Among the the most relevant reaching functions it is possible
to mention the direct switching function approach and the Lyapunov function approach.
Instead, about the control law, a common approach is the equivalent control one.

s(x1, x2) = 0

x1

x2

Figure 4.2: Chattering phenomenon

However, even if a good controller is designed through the sliding mode technique, a rele-
vant and well-known problem arises during simulations: the chattering phenomenon. This
drawback is caused by the control law based on the switching principle: in fact, in simula-
tions and in the real world, the sliding function can not be reached perfectly (it is required
an infinite frequency), and thus, due to the discontinuity of the control law, a "zigzag"
behavior along the sliding surfaces arises, as shown in figure 4.2. In [1], the concept of

40

4.2 – Trajectory tracking sliding mode controller

quasi-sliding mode has been introduced: in this approach, the chattering is smoothed ex-
ploiting a sigmoid function instead of a discontinuous one, leading to an approximation of
the sliding mode behaviour.

4.2 Trajectory tracking sliding mode controller
An interesting and effective trajectory tracking sliding mode controller is implemented
based on a control law designed in [10, 11, 12].
It is first necessary to introduce the trajectory tracking problem. As suggested by its name,
it consist into tracking a provided and desired reference (i.e. a trajectory), which is the
output of the APF algorithm in this work.
The actual position of the robot is represented by:

qr =

xr

yr

ψr


while the desired trajectory is:

qd =

xd

yd

ψd


The objective of such trajectory tracking problem is to evaluate the error between them,
which is defined as e(t) = xd(t) − xr(t), and to get:

lim
t→∞

||e(t)|| = 0

The APF algorithm presented in chapter 3, provides as output two reference signals, the
longitudinal velocity and the orientation. However, in the trajectory tracking problem just
presented we need the coordinates xd and yd. It is trivial to obtain them performing:

xd(k) = xr(k) + TsVref (k) cosψd(k)
yd(k) = yr(k) + TsVref (k) sinψd(k)

where Ts is the step-size used in simulation and k the discrete time. Through this simple
manipulation of outputs provided by the guidance algorithm, the problem is now well
formulated and figure 4.3 gives a graphical representation of such problem.
Therefore, exploiting rotation matrices and reference frames, the error signal e can be
rewritten as:

e =

xe

ye

ψe

 =

 cosψr sinψr 0
− sinψr cos(ψr 0

0 0 1

 xd − xr

yd − yr

ψd − ψr


whose dynamics can be computed obtaining:

ẋe = −vr + vd cosψe + yeωr

ẏe = vd sinψe − xeωr (4.1)
ψ̇e = ωd − ωr

41

4 – Sliding mode controller

y

x
O

ψdψe

(xd, yd)

(xr, yr)

ψr

xe

ye

y′

x′

Figure 4.3: Trajectory tracking problem set-up

In order to perform trajectory tracking, an adequate control input shall be designed and
in this thesis is based on SMC technique.
As anticipated previously, the first step is the definition of sliding surfaces. An interesting
definition can be found in [12]:

s =
5
s1
s2

6
=

5
ẋe + kxe

ψe + arctan(vdye)

6
however, these has not been the sliding surfaces used, instead they have been:

s =
5
s1
s2

6
=

5
xe

ψe + arctan(vdye)

6
(4.2)

Can be noticed that the switching functions are two, since the dynamic system in equation
4.2 has two inputs.
Reachability conditions of s are satisfied [10]: for s1 is easy to see that if it converges to
zero then xe = 0. About s2 is not so obvious, but taking as Lyapunov candidate:

V = 1
2y

2
e

Since:

V̇ = yeẏe = ye(vd sinψe − xeωr)

And considering that ψe = − arctan(vdye) if s → 0, we obtain:

V̇ = yexeωr − yevd sin(arctan(vdye))

Remarking therefore that for any x ∈ R and |x| < ∞ exists a function x sin(arctan x) ≥ 0,
and remembering xe = 0, reachability conditions are satisfied also for s2, since we got V̇ ≤ 0.
This concludes that if s → 0 we have xe → 0, which leads also to ψe = − arctan(vdye)
implying that ye → 0 and ψe → 0 [12].
In [12, 10] the reaching law and the control law of the sliding mode are based on Gao’s
approach. So, the following reaching law has been applied:

ṡi = −qisi − pi
si

|si| + ϵi
, i = 1,2 (4.3)

42

4.3 – SMC design and simulations

with qi > 0, pi > 0 and 0 < ϵ < 1.
Reaching law 4.3 is a constant plus proportional rate one, and it already accounts for the
chattering phenomenon thanks to the multiplier of pi, which shoul be theoretically sign(si).
The control law is derived from the reaching law 4.3, through analytical determination of
ṡi, exploiting 4.2:

ṡ1 = −vr + vd cosψe + yeωr

ṡ2 = ωd − ωr + yev̇d + vd(vd sinψe − xeωr)
1 + (yevd)2

Then, recalling 4.3 and solving for u =
#
vr, ωr

$
we obtain the control input:

u =
C
vr=c

ψ̇r=c

D
=

q1s1 + p1
s1

|s1|+ϵ1
+ ωrye + vd cosψe

q2s2+p2
s2

|s2|+ϵ2
+ωd+ yev̇d+vdvd sinψe

1+(yevd)2

1+ xevd
1+(yevd)2

 (4.4)

In order to obtain PWMs as stated in chapter 3, an integration should be performed on
ψ̇c.
Finally, the SMC control law is thus designed for the target UGV, and in the next section
suitable values of controller parameters pi, qi and ϵi will be provided, showing their effec-
tiveness through some simulation scenarios run on MATLAB/Simulink.

4.3 SMC design and simulations
In MATLAB/Simulink two missions have been simulated, which are the same ones on
which testing of already existing PID controllers has been performed in [4].
By trial and error, the following parameters in equation 4.4 has been set and used in all
the reported simulations:

Parameter Value
q1 0.90
p1 0.77
ϵ1 0.30
q2 0.01
p2 0.50
ϵ2 0.90

Table 4.1: Controller’s parameter values

Therefore, in the control input u a saturation of 0.45 has been set on first component,
while 0.10 has been set for the second one.

4.3.1 Obstacle free path
In this first mission, the robot has a starting configuration q0 =

#
0 0 0

$
and should

reach the final one qg =
#
1 0 −

$
. The last component of the goal vector is not relevant,

43

4 – Sliding mode controller

since it is only required to reach the specified coordinates x and y with a tolerance of 0.1
metres.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X [m]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Y
 [
m

]

Goal

Start point

End point

Reference trajectory

Robot trajectory

Figure 4.4: Obstacle free Trajectory

Figure 4.4 shows the resulting route performed in this first simulation. It can be noticed
that the behaviour is really good, since the robot performs an almost straight line as
desired. In more details, figure 4.5 explains what is meant with "good behaviour": the x
coordinate is increasing almost linearly while the y one is almost zero, with a maximum
error less than 0.05 metres. Are also so interesting to analyze the results of the longitudinal
velocity and orientation signals, reported in figure 4.6.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X
 [

m
]

(a) X position

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time [s]

-0.15

-0.1

-0.05

0

0.05

0.1

Y
 [

m
]

(b) Y position

Figure 4.5: X and Y positions

The reference orientation signal is tracked faithfully, however, the longitudinal speed is not
tracked in a really good manner, even if the mission is performed correctly. Qualitatively,
the reference velocity signal is tracked but not with the same accuracy of the orientation.
The input/output data of the NARX block recorded in this simulation are instead reported
in figure 4.7. It is interesting to notice here the asymmetry of those signals: the SMC is able

44

4.3 – SMC design and simulations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time [s]

0

0.05

0.1

0.15

0.2

0.25

V

[m
/s

]

V
d

V
r

(a) Longitudinal speed

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time [s]

-150

-100

-50

0

50

100

150

[d

e
g

]

d

r

(b) Orientation

Figure 4.6: APF output tracking

to compensate strong nonlinearities and also the asymmetric behaviour observed during
data collection phase in the system identification process.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time [s]

2000

2500

3000

3500

4000

4500

5000

5500

6000

P
W

M

[
s
]

PWM
L

PWM
R

(a) PWM signals

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time [s]

0

2

4

6

8

10

12

[r

a
d

/s
]

L

R

(b) Wheels angular velocities

Figure 4.7: Input/output data

In addition, about the controller, is interesting to observe the evolution of the state
variables used to design the controller (i.e. xe, ye and ψe). Figure 4.8 reports those vari-
ables: the coordinates are tracked in a really accurate way and so the error of x and y are
almost zero, but also the heading has an overall good accuracy (some oscillations occur,
but they are negligible).
Therefore, the last interesting observation can be made on the plot of the sliding surfaces,

reported in figure 4.9: the first one, since is defined as the error on x coordinate, is almost
zero. On the other side, the second sliding surface shows more inaccuracy, and this is due
to the oscillations on ψr signal.

45

4 – Sliding mode controller

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time [s]

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

C
o

o
rd

in
a

te
 e

rr
o

rs

[m
]

x
e

y
e

(a) X and Y coordinate errors

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time [s]

-150

-100

-50

0

50

100

150

e

[d
e

g
]

e

(b) Orientation error

Figure 4.8: Controller error variables

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

S
lid

in
g
 s

u
rf

a
c
e
s

s
1

s
2

Figure 4.9: Sliding surfaces

0 0.2 0.4 0.6 0.8 1

X [m]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Y
 [
m

]

Goal

Start point

End point

PID trajectory

SMC trajectory

Figure 4.10: Controllers comparison

46

4.3 – SMC design and simulations

Concluding, we can say that this mission was successful, except the longitudinal velocity
tracking. Therefore, the chattering phenomenon is not so visible in those simulations (but
present, as proved by ψr).
It is interesting to notice the robustness reached with this control law: in figure 4.10 the
trajectory performed with the old plant model and old PID controllers is reported against
the new controller and plant: it is undoubtedly evident that the robust feature has been
achieved. The simulation time to perform such mission is almost the same for both them,
but the sliding mode controller has a more regular pathway toward destination.

4.3.2 Environment with obstacles
In this mission, the robot has once more the starting configuration q0 =

#
0 0 0

$
and

should reach the target one qg =
#
6 3 −

$
. The last component of the goal vector

is again not relevant, since mission requirements are still the same. However, in this
scenario 4 obstacles have been introduced, which have coordinates x =

#
2 3 4 5

$
and

y =
#
3.5 1 2.5 3

$
. In this case, we can observe in figure 4.11 that the UGV successfully

0 1 2 3 4 5 6

X [m]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Y
 [
m

]

Goal

Start point

End point

Reference trajectory

Robot trajectory

Obstacles area

Figure 4.11: Trajectory with obstacles

goes into goal’s direction and overcome obstacles with good results. More in details, the
coordinates behaviour are shown in 4.12: they are both almost linearly increasing, which
indicate a path that should be approximately straight. Again, referencing to figure 4.14,
the longitudinal velocity tracking performance is not as good as the orientation tracking
one, which has an overall acceptable behaviour even if not accurate as the first mission.
About input/output signals, in this case we can still notice the presence of asymmetry
in figure 4.13, which means again that real uncertainties and nonlinearities are taken into
account succesfully, since the tracking performances on x and y coordinates are exceptional.

Is now interesting to observe the behaviour of the state variables xe, ye and ψe. Figure
4.15 shows that the errors are almost zero, so the coordinates are tracked again in an
excellent way. The heading has also an overall good accuracy, except the instances where
an obstacle avoidance manoeuvre occurs.

At last, the plot of the sliding surfaces in figure 4.16: for the first one still holds the
previous considerations (i.e., since is defined as the error on x coordinate, s1 is almost

47

4 – Sliding mode controller

0 5 10 15 20 25 30 35

Time [s]

0

1

2

3

4

5

6

X
 [

m
]

(a) X position

0 5 10 15 20 25 30 35

Time [s]

0

0.5

1

1.5

2

2.5

3

Y
 [

m
]

(b) Y position

Figure 4.12: X and Y positions

0 5 10 15 20 25 30 35

Time [s]

0

1000

2000

3000

4000

5000

6000

7000

P
W

M

[
s
]

PWM
L

PWM
R

(a) PWM signals

0 5 10 15 20 25 30 35

Time [s]

0

2

4

6

8

10

12

14

[r

a
d

/s
]

L

R

(b) Wheels angular velocities

Figure 4.13: Plant input/output data

zero). On the other side, the second sliding surface shows more inaccuracy, according to
ψe signal.

Ending, this mission was success too, a part from the longitudinal velocity and the
orientation signal during obstacle avoidance manoeuvres. It is also interesting to compare
again the performances with the old system: in figure 4.17 such comparison is reported.
It is clear that the SMC tends to point toward the goal point in a more robust way with
respect to the PID controllers, and this feature could lead to lesser time taken to tackle
missions (in particular obstacle configurations, with the shown simulations the time to
complete missions was really similar).

48

4.3 – SMC design and simulations

0 5 10 15 20 25 30 35

Time [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

V

[m
/s

]

V
d

V
r

(a) Longitudinal speed

0 5 10 15 20 25 30 35

Time [s]

-150

-100

-50

0

50

100

150

[d

e
g

]

d

r

(b) Orientation

Figure 4.14: APF output tracking

0 5 10 15 20 25 30 35

Time [s]

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

C
o

o
rd

in
a

te
 e

rr
o

rs

[m
]

x
e

y
e

(a) X and Y coordinate errors

0 5 10 15 20 25 30 35

Time [s]

-150

-100

-50

0

50

100

150

e

[d
e

g
]

e

(b) Orientation error

Figure 4.15: Controller error variables

0 5 10 15 20 25 30 35

Time [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

S
lid

in
g
 s

u
rf

a
c
e
s

s
1

s
2

Figure 4.16: Sliding surfaces

49

4 – Sliding mode controller

0 1 2 3 4 5 6

X [m]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Y
 [
m

]

Goal

Start point

End point

PID trajectory

SMC trajectory

Obstacles area

Figure 4.17: Controllers comparison

50

Chapter 5

Experimental simulations

In order to make laboratory simulations with the designed controller, ROS framework has
been used. Some basic concepts about ROS are illustrated here in next section, and in
appendix A the controller code (i.e., a ROS node written in Python).

5.1 ROS basics
"ROS is an open-source, meta-operating system for your robot. It provides the services
you would expect from an operating system, including hardware abstraction, low-level
device control, implementation of commonly-used functionality, message-passing between
processes, and package management."[16]
First basic functionalities reported on ROS documentation are about the filesystem level:
some useful functions are provided in order to organize in a professional and convenient way
the source code. In fact, ROS projects are organized in packages and filesystem functions
permit to find packages, navigate and of course create them. A further advantage, is that
those functions are quite similar to the ones in Unix environment, so it is really easy to
learn basic functionalities for someone which is familiar with Unix environments.
For example, among the most relevant filesystem functions we can find:

• rospack find <package_name>: used to find the location of the package passed as
argument.

• roscd <package>: used to enter into the directory of the package passed as argument.

• rosls <package>: list the files of the package provided as argument.

A workspace can be created through catkin_create_pkg command, and then it can be
build with suitable commands; every package has also some dependencies, and the rospack
depends1 <pkg_name> command is used to show them.
After the setup and the first build of a package, the development of ROS nodes can start.
Basically, the ROS node concept is quite similar to the one of executable programs: indeed,
it contains C++/Python code which is written in order to perform some operations, and
suitable tools are provided in order to enable communication between nodes (i.e. topics).
Development through nodes allow an easy design of the overall system, since tasks can be

51

5 – Experimental simulations

divided into simpler ones, and in case of failures troubleshooting activity becomes more
immediate and intuitive. Before running a developed ROS node, the ROS master node
shall be launched (using roscore command). After that, the desired nodes can be launched
in order to perform desired computations.
Each node can publish the computed data into special communication channels provided
by ROS, i.e., the topics. On the other side, other nodes could subscribe to them in order
to receive some data. The data written into topics are called messages, and they can be
personalized in in the workspace (some basic ones are already provided).
Given this structure, an intuitive way to have a representation of the system architecture is
using graphs. In effect, the rosrun rqt_graph command is able to plot a graph containing
running nodes and the communications occurring between them, specifying also the topics
names.
Therefore, during simulations, can be useful the rosbag record <topic_names> command
to save the data sent over topics. Then, saved data can be processed for plots/reports, but
also a virtual representation of the simulation can be shown through Rviz.
The ones showed above, are the basic concepts used to perform real world simulations
through ROS. However, this was just a very brief and basic introduction on ROS.
Finally, in appendix A, the source code of the implemented SMC node is reported.

5.2 Real mission results
As in [4], a simple mission without obstacles with the real UGV has been performed. How-
ever, this time the mission differs and consists in reaching the coordinates x = 1, y = −1
starting with the usual initial configuration q0 =

#
0 0 0

$
.

0 0.2 0.4 0.6 0.8 1 1.2

X [m]

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

Y
 [
m

]

UGV trajectory

Goal

Start point

End point

Figure 5.1: Real UGV Trajectory

In this case the mission is again completed, however the results are not so good with re-
spect to the ones expected in simulation environments. In fact, comparing the simulation
trajectory with real trajectory in figure 5.4 we can immediately notice that the real one
has a worse behaviour.

52

5.2 – Real mission results

0 1 2 3 4 5 6 7 8 9

Time [s]

0

0.2

0.4

0.6

0.8

1

1.2

X
 [

m
]

(a) X position

0 1 2 3 4 5 6 7 8 9

Time [s]

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Y
 [

m
]

(b) Y position

Figure 5.2: X and Y positions

0 1 2 3 4 5 6 7 8 9

Time [s]

-150

-100

-50

0

50

100

150

[d

e
g
]

Figure 5.3: Real UGV orientation

Probably, a new parameters set for the controller should be determined by trial and error
tuning (they were the same of the simulations). Another motivation could be the cali-
bration of sensors, probably it should be repeated in a more precise way to increase the
performances of the EKF; however this is not the most relevant cause of those perfor-
mances, in fact the orientation signal has a coherent shape with the plotted trajectory.
Therefore, also the APF could need some tuning for the real world experiments (it had
the same parameters of simulations). On the other hand, in simulation environment the
UGV showed as usual a behaviour where it goes straight to the goal, which is another
experiment confirming good performances. Therefore, the simulation time was about 7 s,
while in the real experiment it was slightly higher, 9.1 s.

53

5 – Experimental simulations

0 0.2 0.4 0.6 0.8 1 1.2

X [m]

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Y
 [
m

]

Goal

Start point

End point

Real UGV trajectory

Simulation trajectory

Figure 5.4: Simulated and Real trajectories comparison

54

Conclusions

This thesis began as a further work of [4], with the main objective of a robust controller
design. However, a re-fine of the previous model has been necessary and a new firmware
structure implemented.
About the NARX model, even if the results were generally acceptable, it is clear that
a modeling approach based only on kinematics is a quite limiting one. This approach,
excluding the longitudinal velocity tracking, provided really interesting simulations results,
but the real experiment conducted proved that a dynamical modeling could be necessary
to reduce the differences between simulations environment and the real one. It may also
be necessary a tuning of the APF algorithm parameters, and also trying to change the
controller’s ones used on the physical UGV: using the same of simulations is rarely the right
choice, it is common to change those parameter but an attempt to keep the same on physical
simulations has been made after the good results on MATLAB/Simulink simulations.
Regarding the controller, it is proven by simulation results that the desired feature of
robustness has been reached in an excellent manner, and the tracking of the errors used
to generate the control input is really good. However, it is quite problematic the tracking
of the longitudinal velocity provided by APF algorithm: this controller is worse than
the previous one on this, but on the other hand it is really better on heading tracking.
Therefore, as proven in all simulations shown, the robot tends to go through the goal with
a straight motion in obstacle free environment, which is the main result of this thesis.
Sadly, the features of simulations provided by this sliding mode control approach were not
reached in the real experimentation. It would be necessary to tune togheter controller’s
and APF’s parameters; as a further work, could be also interesting the adoption of this
proposed controller with a plant modelled through dynamical equations and not only an
identified one.
Instead, the implementation of the new firmware structure has been really successful. As
anticipated in previous chapters, it has the main advantage of allowing modularity of every
part, it is much more easy to interpret thanks to states introduction and it is light for the
K64F. However, as a drawback, there is for sure the absence of error handling, which
corresponding states have not been used. Error handling is really tricky, but since the
main goal was the robust controller design and the target UGV has not safety requirements,
the development of error recovery functionalities has been left incomplete and it could be
another further work.
Concluding, methodologies shown in this thesis can be considered an interesting approach
for prototyping mobile robots and algorithms: the identified plant model can handle strong
nonlinearities as proven in this thesis, the new firmware and ROS nodes structures makes

55

5 – Experimental simulations

the software architecture really modular which leads to the possibility of testing different
algorithms for the guidance, navigation and control subsystems.

56

Appendix A

Appendix A

Is reported here the ROS node which implements the sliding mode controller. It has been
translated manually into this code and tested in Simulink through Python function call
inside a MATLAB function block. The output of this code and the block diagram of the
controller subsystem were the same for different simulations, proving that any bug should
not be present in this node.
Code generation could be a good alternative but it has been excluded for this thesis project.

1 from numpy import linalg as LA
2 import numpy as np
3 import math
4 import queue
5 import rospy
6 import message_filters
7 from nav_msgs.msg import Odometry
8 from geometry_msgs.msg import Pose
9 from sensor_msgs.msg import Imu

10 from visual_odometry.msg import PWM_cmd,APF_cmd
11 from scipy.spatial.transform import Rotation as R
12

13

14

15 class SMC():
16

17

18 def __init__(self):
19 rospy.init_node('SMC',anonymous=True)
20 self.rate = rospy.Rate(10) # 10hz
21 sub_APFout = message_filters.Subscriber("/APF_output", APF_cmd,

queue_size = 10)ñ→

22 sub_goal = message_filters.Subscriber("/goal", Pose, queue_size = 10)
23 sub_odometry = message_filters.Subscriber("/odometry/filtered", Odometry,

queue_size = 10)ñ→

24 self.PIDpub = rospy.Publisher('SMC_cmd', PWM_cmd, queue_size=10)
25 self.msg = PWM_cmd()
26 self.psid_prec = 0

57

A – Appendix A

27 self.vd_prec = 0
28 ts = message_filters.ApproximateTimeSynchronizer([sub_APFout,

sub_odometry, sub_goal], queue_size=10, slop=0.5,
allow_headerless=True)

ñ→

ñ→

29 ts.registerCallback(self.ctr_step)
30 rospy.spin()
31

32 def get_rotation(self,Odom):
33 orientation_q = Odom.pose.pose.orientation
34 orientation_list = [orientation_q.x, orientation_q.y, orientation_q.z,

orientation_q.w]ñ→

35 r = R.from_quat(orientation_list)
36 EuAn = r.as_euler('zyx', degrees=False)
37 return EuAn
38

39

40 def ctr_step(self,sub_APFout, sub_odometry, sub_goal):
41

42

43 xd_dot = sub_odometry.twist.twist.linear.x
44 v_y = sub_odometry.twist.twist.linear.y
45 xr = sub_odometry.pose.pose.position.x
46 yr = sub_odometry.pose.pose.position.y
47 wr = sub_odometry.twist.twist.angular.z
48 vd = sub_APFout.Vref
49

50 psid = sub_APFout.Psiref
51 wd = (psid-self.psid_prec)/0.1
52 vd_dot = (vd-self.vd_prec)/0.1
53 xd = xr + vd*0.1*math.cos(psid)
54 yd = yr + vd*0.1*math.sin(psid)
55 [psir, _, _] = self.get_rotation(sub_odometry)
56 vr = (xd_dot+v_y)/(math.cos(psir)+math.sin(psir))
57

58

59 #errors definition
60 xe=math.cos(psir)*(xd-xr)+math.sin(psir)*(yd-yr)
61 ye=-math.sin(psir)*(xd-xr)+math.cos(psir)*(yd-yr)
62 psie=psid-psir
63 if math.fabs(psie) > math.pi:
64 psie=psie-2*math.pi*np.sign(psie)
65

66 # smc - surfaces
67 s1=xe
68 s2=psie+math.atan(vd*ye)
69

70 # smc - command evaluation
71 eps1 = 0.3
72 eps2 = 0.9
73 u1=0.9*s1+0.7*s1/(np.abs(s1)+eps1)+wr*ye+vd*math.cos(psie)

58

A – Appendix A

74 u2=(0.01*s2+0.5*s1/(np.abs(s2)+eps2)+wd+(ye*vd_dot+
vd*vd*math.sin(psie))/(1+(ye*vd)*(ye*vd)))/(1+xe*vd/(1+(ye*vd)*
(ye*vd)))

ñ→

ñ→

75

76 if u1>0.45:
77 u1 = 0.45
78

79 if u1<0:
80 u1=0
81

82 if u2 > 0.1:
83 u2 = 0.1
84

85 if u2 < -0.1:
86 u2 = -0.1
87

88 PWM_R = 20000*(u1+u2)
89 PWM_L = 20000*(u1-u2)
90

91 if PWM_R>20000:
92 PWM_R = 20000
93

94 if PWM_R<-20000:
95 PWM_R = -20000
96

97 if PWM_L>20000:
98 PWM_L = 20000
99

100 if PWM_L<-20000:
101 PWM_L = -20000
102

103 self.psid_prec = psid
104 self.vd_prec= vd
105

106 self.msg.PWM_left = PWM_L
107 self.msg.PWM_right = PWM_R
108 self.PIDpub.publish(self.msg)
109

110

111 if __name__ == '__main__':
112 try:
113 SMC()
114 except rospy.ROSInterruptException:
115 pass

59

60

Bibliography

[1] Shtessel Y., Edwards C., Fridman L., Levant A., Sliding Mode Control and Observa-
tion, 2013.

[2] Siciliano B., Sciavicco L., Villani L., Robotica. Modellistica, pianificazione e controllo,
2008.

[3] MathWorks,https://it.mathworks.com/help/ident/gs/
about-system-identification.html.

[4] Incoronata Trombetta E., Identification Methodsand Simulation Modeling of a small
UGV for Indoor Applications, Politecnico di Torino, 2021.

[5] Sala Y., Firmware Design and Implementation for a Quadrotor UAV, Politecnico di
Torino, 2021.

[6] Regruto Tomalino D., Modeling and control of cyberphysical systems, Course Notes,
Politecnico di Torino, 2021.

[7] Lennart L., System Identification, Wiley Encyclopedia of Electrical and Electronics
Enginnering, 2017.

[8] B. Raafiu, P. A. Darwito, Identification of Four Wheel Mobile Robot based on Paramet-
ric Modelling, International Seminar on Intelligent Technology and Its Apllications,
2018.

[9] DFRobot, https://www.dfrobot.com/product-1477.html.
[10] Lu Yang and Shenghui Pan,A Sliding mode control method for trajectory tracking

control of wheeled mobile robot, J. Phys.: Conf. Ser. 1074 012059, 2018.
[11] Capello E., Locardi D., Arbinolo F., Sartori D., Ermacora G., Guglieri G., Yu

W.,Modelling and control of a skid-steering mobile robot for indoor trajectory tracking
applications, submitted.

[12] Locardi D., Modelling and Control of a Skid-Steering Mobile Robot for Indoor Trajec-
tory Tracking Applications, Politecnico di Torino, 2020.

[13] Francisco Rubio, Francisco Valero, and Carlos Llopis-Albert, A review of mobile robots:
Concepts, methods, theoretical framework, and applications, International Journal of
Advanced Robotic Systems 16.2 (2019).

[14] Henrik Andreasson, Giorgio Grisetti, Todor Stoyanov, Alberto Pretto, Sensors for
Mobile Robots, 2022

[15] Mars 2020 https://mars.nasa.gov/mars2020/
[16] ROS, http://wiki.ros.org/ROS/Introduction

61

https://it.mathworks.com/help/ident/gs/about-system-identification.html
https://it.mathworks.com/help/ident/gs/about-system-identification.html
https://www.dfrobot.com/product-1477.html
https://mars.nasa.gov/mars2020/
http://wiki.ros.org/ROS/Introduction

	List of Tables
	List of Figures
	Introduction
	Mobile robotics overview

	Mathematical model
	Basic concepts
	Kinematic model
	System identification
	Least squares LTI system identification
	NARX

	Target UGV model derivation

	System architecture
	Hardware level
	Software level
	Guidance
	Navigation
	Control

	Freedom K64F firmware
	Finite state machine
	Commander
	Command-Line Interface
	Communications
	Synchronized data access

	Sliding mode controller
	General sliding mode control concepts
	Trajectory tracking sliding mode controller
	SMC design and simulations
	Obstacle free path
	Environment with obstacles

	Experimental simulations
	ROS basics
	Real mission results

	Appendix A
	Bibliography

