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Abstract 
The accomplishment of a space mission depends on numerous aspects. Regarding spacecraft 
systems, the characteristic that makes the mission more difficult is that they must operate 
autonomously, or with few humans’ assistance, in real time. Thus, an optimal management of 

the fuel consumption is necessary to ensure a longer mission’s life. 

Nowadays nanosatellites, such as CubeSat, are often used due to their limited cost, versatility, 
and capability to be assembled in a module which makes them perfectly suitable for various 
kind of space missions. The reduced size leads to a drawback: the impossibility to store a large 
amount of fuel. Especially, when the fuel consumption management becomes a crucial feature, 
a control allocation algorithm is used for this purpose since it can allocate the thrust force 
needed to accomplish a specific maneuver giving the best distribution of the command activity 
over the thrusters that are mounted on the spacecraft and this leads directly to a more efficient 
fuel usage. 

Using a real thruster configuration, the goal of this thesis is to develop a control allocation 
algorithm and to implement it in a way to reduce the computational effort, and so to be adopted 
in a real-time scenario. After the implementation of the proposed algorithm, due to the ON/OFF 
nature of the thrusters, a modulator is developed to simulate real case scenarios. The modulator 
is tuned to improve the fuel usage as well as the number of thruster firings accordingly to the 
constraints imposed by the cluster of thrusters. 

The whole system is then tested in MATLAB/Simulink environment for a couple of different 
missions and analyzed its robustness and the effectiveness of the proposed allocation by 
comparing the results with a system without any control allocation and modulator. Extensive 
simulations are performed to test both the systems. 
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Chapter 1 

Introduction 

1.1 Motivation and objective 
The goal of this thesis is to design and test different algorithms for a control allocator to be 
applied in a space mission involving a 3U CubeSat. The criticality behind the use of a 
nanosatellite is the impossibility to store a large amount of fuel so the management of the fuel 
consumption becomes one of the most important aspects to consider. The control allocation 
allows to reduce the fuel consumption, being an algorithm that optimizes the redistribution of 
the command forces over the thrusters. The efficiency of the tested control allocators is 
demonstrated in a rendezvous maneuver of two 3U CubeSats that have different thrusters’ 
configurations, one involving an ideal 6-thrusters cluster and the other one a more realistic 
arrangement of seven thrusters. 

The rendezvous approach is divided into more phases: launch, phasing, far range rendezvous, 
close range rendezvous and mating. This thesis will cover only the far range rendezvous and 
the close-range rendezvous. Due to the rotation of the Earth and the intrinsic limitations of the 
launching site, there is only one opportunity per day to launch a spacecraft into the desired orbit 
plane. The launch window depends on how much the spacecraft is capable to correct the plane 
differences right after the lift-off deriving from a deviation from the nominal launch time. The 
remaining differences are then corrected during the phasing and the rendezvous. After the 
launch, the chaser is ejected into the target orbital plane, usually in a lower orbit. During the 
phasing, the chaser should reduce the phase angle, i.e., the angle between the chaser and the 
target. The phasing is followed by the rendezvous. During these phases it is used a target 
centered frame and the motion of the chaser is described with respect to the target, instead of 
using an Earth centered frame like in the previous phases. The rendezvous marks a switching 
from absolute to relative navigation measurement of the states. During the far range rendezvous, 
the chaser reaches the target orbit. There may be a constraint on the final position that the chaser 
can occupy at the end of this maneuver. The purpose of the close-range rendezvous is to bring 
the chaser in a suitable position, with an acceptable velocity, attitude and angular rates for the 
mating respecting the constraint imposed by the safety approach corridor. If the mating axis is 
not along the V-bar direction, during the closing phase there is a fly-around maneuver that 
allows the acquisition of the approach axis [1]. In this thesis the far range rendezvous is 
accomplished by a Hohmann transfer which brings the chaser to a closer orbit reducing also the 
distance between the two satellites along the V-bar and stabilizing the chaser in a station-
keeping point behind the target, making then possible the start of the close-range rendezvous, 
which in this presentation is implemented with a series of radial boosts. 
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1.2 Literature Review 

1.2.1 CubeSat 
CubeSat is a small satellite, specifically, due to its dimensions, it belongs to the category of the 
nanosatellite. It consists in a cube of size 10 cm x 10 cm x 10 cm which is also referred to as 
unit and a satellite composed by only one unit is called 1U CubeSat. These units can be 
assembled to create satellite different in size according to the purpose of the mission. So far, 
the biggest one is a 27U CubeSat which size is 34 cm x 35 cm x 36 cm [2]. The most used type 
is the 3U CubeSat which is also the smallest one that can fit a good amount of technology 
payloads to be tested or used for a total weight of 3-4 kg.  

 

Figure 1.1 - PICASSO 3U CubeSat [3] 

For instance, there are several ESA funded missions that involved the use of a 3U CubeSat to 
test different technologies and equipment, such as: GOMX-3, to demonstrate the reception of 
ADS-B signal and the quality of geostationary telecommunication satellite based on spot beam 
signal; QARMAN, to demonstrate re-entry technology such as new heatshield materials, the 
transmission of telemetry data during this phase of the mission and the deployment of a new 
passive aerodynamic drag stabilization system; SIMBA, to measure the Total Solar Irradiance 
and Earth Radiation Budget and to demonstrate the efficiency of a new precise pointing system; 
Picasso, to measure Stratospheric Ozone distribution, Mesospheric Temperature profile and the 
density of electron in the ionosphere; RadCube, to measure the space radiation and magnetic 
field in LEO [3]. The importance of these missions is that all of them have demonstrated the 
use of miniaturized technologies since the availability of payload is reduced due to the small 
size of the CubeSat. 

This flexibility and adaptability are making CubeSat attractive not only to university purpose 
as it was in principle, but also to space agencies and most of all to companies. Most of the 
CubeSats nowadays deployed are used for Earth observation and communications since their 
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reduced dimension allows the placement of a large number of satellites on the same vector 
making possible the creation of a dense constellation. An example was a 2017 Indian mission, 
PSLV-C37, which made the record of 104 satellites on the same launch vehicle, 101 of them 
were commercial international satellites. 103 out of 104 were CubeSats: 88 owned by Planet 
Labs, an American public Earth imaging company, 8 by Spire Global for vessel tracking and 
weather measurement services [4].  

 

Figure 1.2 - Number of nanosatellites launched per year and (a) organization or (b) form 
factor [3] 

Since most of the CubeSat are 10 cm x 10 cm regardless of length, they are allocated into a 
deployment system called Poly-PicoSatellite Orbital Deployer (P-POD). For CubeSat bigger 
than the 3U type, instead of using the standard P-POD, the satellite is placed in a special canister 
during launch so it can dispense the payload in the desired orbit. The developer of CubeSat and 
P-POD is the Cal Poly that through the CubeSat Program provides specifications and standards 
to all the users who are intended to use this technology giving also mandatory tests and 
validations to be done. The CubeSat Project started in 1999 with the purpose of making more 
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accessible the satellite’s technology. The reduction of the cost and the time needed for the 
production have make more attainable frequent launches and so easier to reach the space. The 
standardization regards the design of the CubeSat, ranging from the 1U form to the 12U one, 
and the relative dispenser and interfaces in order to ensure a successful detachment of the 
canister from the launch vehicle without damaging it or the primary payload. The two main 
dispensers are: the already mentioned P-POD, which utilizes a rail-based design to deploy the 
CubeSat contained in it, and another one developed by Planetary Systems Corporation based 
on a tab design. Both of them have a spring inside that shoves a pusher plate responsible for the 
deployment force, the CubeSat glides along the rails (or the tabs) and reaches the orbit [5]. 

 

Figure 1.3 - P-POD representation and a cross section of it [4] 

The deployment of the P-PODs in a launch vehicle (LV) is usually done as a secondary space 
mission’s objective. An example is the NASA mission InSight in which from the vector Atlas 
V 401 two 6U CubeSat where deployed. 

This secondary mission, known as Mars Cube One (MarCO), is the first that has used CubeSat 
for interplanetary operation and its results have proven the capability of the CubeSat to operate 
in the deep space. The main goal of MarCO was to create a bent pipe communications for 
InSight during the EDL (entry, descent, landing) sequence on Mars, thus the two CubeSats, 
known as MarCO-A and MarCO-B, had to operate at a distance of ~1.4 AU demonstrating the 
capability of these small spacecraft to communicate and to correct their attitude, orientation and 
trajectory [6].  
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Figure 1.4 – Representation of a MarCo 6U CubeSat [7] 

Until this mission, CubeSats were only deployed in low Earth orbit (LEO). The two small 
satellites flew independently, each of them was guided by a different team. They were identical 
to ensure redundancy in case of failure of one of them. They were equipped with two solar 
panels, a high-gain X-band antenna to transmit data to Earth and an ultra-high frequency (UHF) 
radio receiver in charge of receiving data from InSight during its descent to Mars. During the 
landing phase the antenna was pointing back to Earth while the receiver towards the lander. 
This system permitted the reception, the formatting and the relaying of the data stream almost 
in real-time [7].  
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Figure 1.5 – Bent pipe communications created by MarCo-A and MarCo-B for the lander 
InSight [6] 

1.2.2 Control Allocation 
The control allocation’s principle allows to separate the design of the controller from the design 

of the control allocator. Designing a controller means to find a suitable control law that 
represents the total control effort to be produced while the task of the control allocator is 
mapping the total control demand onto each actuator in such way that the total thrust forces 
generated by the cluster of thrusters is equal to the control demand. Depending on what is the 
purpose and most of all the resources in terms of on-board computer, it is possible to choose 
different control allocation algorithm.  

Satellites are over actuated systems, it means that there are more actuators, i.e., the n-thrusters 
on the satellite, than controlled variables, i.e., the m-thrust forces generated along the three 
cartesian body axes of the satellite (m = 3), in order to ensure reliability. The control allocation 
is a mapping from the control vector u∈Rn to the desired one vd∈Rm with n>m:  

𝑣𝑑 = 𝐵 𝑢  

(1.1) 

where u is bounded by its upper and lower limits 𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤  𝑢𝑚𝑎𝑥 and B is a matrix in which 
each column represents how the associated thruster is oriented in space with respect to the body 
frame of the satellite. The upper and lower limits came from the physical constraints of the 
thruster. Usually there is more than one solution due to redundancy, control allocation is 
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necessary since it finds the best distribution of the command activity over the actuators. In 
literature can be found a wide variety of control allocation algorithms that are used in aerospace 
and naval applications, for which it is used the same approach like in [8].  

The simplest and widely used algorithm is based on the Moore-Penrose pseudo-inverse since, 
due to redundancy, the configuration matrix B is not square. Thus, the problem is: 

𝑢 = [𝐵𝑇(𝐵𝐵𝑇)−1]𝑣𝑑 

(1.2) 

This method is the fastest, but it does not allow to handle directly the saturation of the thrusters. 
There are some methods based on the pseudo-inverse which can be used to handle the 
saturation. Some examples can be found in [8], [9], [10], [11], [12]. In [9] is proposed a dynamic 
weight pseudo-inverse control allocation to allocates the desired control torque onto four 
reaction wheels. The weight coefficients are dynamic in the sense that they depend on the states 
of the reaction wheels, if they are far or near to saturate. The higher is the rotational speed the 
lower will be the weight factor meaning that a smaller control torque will be allocated to the 
corresponding reaction wheel. This will make harder for the actuator to reach the saturation. In 
[8], [10]-[12] is shown a technique called redistributed pseudo-inverse or cascading generalized 
inverses, which, in case of saturation, redistributes among the other actuators the commanded 
forces. It is an iterative process that stops when the commanded forces are entirely distributed, 
it means when no saturation occurs, or the number of iterations reaches its admissible maximum 
(n-m). For example, if the i-component of the control vector u exceeds its limit its forced to its 
maximum value (or minimum), its contribution is removed from the matrix B by removing the 
i-column and a new pseudo-inverse P’ is calculated with the new reduced B matrix, called B’. 
A new desired vector 𝑣𝑑

′  is calculated by subtracting the contribution of the saturated actuator: 

𝑣𝑑
′ = 𝑣𝑑 − 𝐵𝑖 𝑢𝑖,𝑚𝑎𝑥 

(1.3) 

A new control vector u’ is computed: 

𝑢′ = 𝑃′𝑣𝑑
′  

(1.4) 

The iterations go on until the conditions exposed before are reached. For cases when in the end 
there are fewer than m actuators that do not saturate, this method results not effective and an 
approximation of it is used in which the saturated thruster that exceeds the limit with a close 
value it is not clipped and it is taken as good. Being an iterative procedure is more expensive in 
terms of computational cost than the normal pseudo-inverse or the dynamic weight pseudo-
inverse. It is worth to notice that the dynamic weight pseudo-inverse can not be applied to 
thrusters that work in an ON/OFF manner since they can only assume 0 or 𝑢𝑚𝑎𝑥 as working 
values. In [10] is also proposed an optimization using the quadratic programming (QP) as a 
quite effective way to handle the constraints with the advantage of being numerically simple. 

A more efficient algorithm but also more expensive in terms of computational effort that 
considers the upper and lower limits is the linear programming (LP) optimization. The problem 
can be formulated as a minimization one: 
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min
𝑢

𝑓𝑇𝑢 

𝑠. 𝑡.     {
𝐵 𝑢 = 𝑣𝑑

𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥
 

(1.5) 

where the vector f is a column vector of dimension n.  

In [13] and [14] the limit of LP, i.e. the performance CPU needed to run the optimization which 
make difficult the application in a real-time scenario, is overcome by using a sub-optimal 
thruster allocation [12] or computing an off line optimal thruster combinations table [13]. Since 
the LP is based on two phases, the first consists in finding a basic feasible solution and the 
second an optimal one, in [12] the basic feasible solution is found using the grouping method 
as starting point for the second phase. In [13], using the simplex method applied to an LP 
optimization, an optimal thruster combinations table for all the obtainable moment is 
precompiled and then uploaded on the on-board computer. In real-time applications, according 
to the control command u and the table, the fire duration is calculated in the selected 
combination and the feasible one is the one with a non-negative duration. The feasible condition 
of the simplex method grants that if a solution is feasible is also optimal. 

1.3 Overview of the thesis 
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Chapter 2 

Modelling 

This chapter covers the description of the satellite itself and its position and orientation inside 
different reference frames as well as the description of the mathematical models used to 
delineate the missions that the chaser must accomplish. 

2.1 Reference Frames 
The very first thing to do is to introduce the reference frames that describe, in a complete way, 
the motion and orientation of a satellite that is travelling in the proximity of the Earth. 

2.1.1 Geocentric Equatorial (GE) Frame 
It is an inertial frame in which its origin coincides with the geometric center of the Earth. Some 
assumptions and simplifications are made: the Earth is a perfect sphere with a homogeneous 
distribution of mass, this implies that the center of mass is the same of the geometrical center; 
the relative motions of the Earth such as the axial precession and the astronomical nutation are 
neglectable since we are dealing with small objects in orbits close to Earth and with short period 
of time. The axes of the frame, usually called �̂�, �̂�,�̂�, follow the right-hand rule and are fixed. �̂� 
is the direction that goes from the center of the Earth to the center the Sun when the Earth passes 
through the vernal equinox, the first day of spring. �̂� coincides with the polar rotation axis and  
�̂� =  �̂� x �̂�. Both �̂� and  �̂� lie on the equatorial plane. In this frame are represented the position 
of both the target and the chaser, useful to the describe maneuver such as the Hohmann transfer 
as it will be explained later. 

 

Figure 2.1 – GE frame [1] 

In Figure 2.1 the 𝒂1 axis coincides with what it was previous called �̂�, 𝒂2 with �̂� and 𝒂3 with 
�̂�. 
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2.1.2 Local Vertical Local Horizontal (LVLH) Frame 
It is a non-inertial reference frame. This frame is used for orbiting objects and for relative 
motion between different orbiting objects. In our case it is centered in the center of mass the 
target spacecraft which is flying in a circular orbit around the Earth. The l3 axis (local vertical) 
lies on the orbit plane and it is defined along the direction that goes from the target to the Earth. 
The local horizontal axis l1 is perpendicular to l3, lies on the orbit plane and it has sign 
concordant with the orbital velocity. In our case, since the orbit is circular and the Earth is 
located at the center of it, the local horizontal axis is tangent to the orbit. The orbit pole axis 
𝒍2 = 𝒍3 × 𝒍1 is perpendicular to the orbit plane. 

 

Figure 2.2 – LVLH frame [1] 

In Figure 2.2 the 𝒂1 axis coincides with what it was previous called 𝒍1, 𝒂2 with 𝒍2  and 𝒂3 with 
𝒍3 . 

2.1.3 Body Frame 
It is fixed in the body center of mass. The center of mass is considered unchanging over time 
even if in a real scenario this is not true due to several reasons, for example the mass reduction 
due to the fuel consumption or the deployment of instruments that will affect the inertia of the 
spacecraft. In this thesis these effects are not considered. Since there is no convention over the 
body frame axes it is reasonable to consider them as principal axes of inertia. The x axis is 
aligned with l1 while y and z lie on the same plane perpendicular to x.  

 

Figure 2.3 – Body frame [1]  
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2.2 Rotation Matrix 
Once that the needed reference frames are defined, it is appropriate to introduce a 
transformation matrix that describes the rotation between two different frames. In this thesis’s 

particular case, the motion of the body that represents the chaser satellite must be also expressed 
in the target satellite centered frame (LVLH frame). To fully describe a rotation between two 
objects or reference frames, three elemental rotations are needed. Using the Euler’s angles 

representation, in particular the set of Tait-Bryan 321 Euler’s angles, it is possible to reconstruct 

the orientation of the chaser’s reference frame into the target’s one. It is worth to mention that 
the order in which each rotation is executed is important since a different order will give a 
different resulting final rotation. Denoting the angles φ, θ and ψ (they represent respectively the 
yaw, the pitch and the roll), the rotation matrix will be: 

𝑀𝐵
𝐿𝑉𝐿𝐻 = [

𝑐𝑜𝑠 𝜓 −𝑠𝑖𝑛 𝜓 0
𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜓 0

0 0 1

] [
𝑐𝑜𝑠 𝜃 0 𝑠𝑖𝑛 𝜃

0 1 0
−𝑠𝑖𝑛 𝜃 0 𝑐𝑜𝑠 𝜃

] [
1 0 0
0 𝑐𝑜𝑠 𝜑 −𝑠𝑖𝑛 𝜑
0 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑

] 

(2.1) 

The typology of rotation used is an extrinsic yaw-pitch-roll rotation. It means that each rotation 
is around the original axes of the system. 

 

Figure 2.4 – Euler angles 

The relation between the two reference frames is expressed by the following equation: 

[

𝑥𝐵

𝑦𝐵

𝑧𝐵

] =  𝑀𝐵
𝐿𝑉𝐿𝐻  [

𝑥𝐿𝑉𝐿𝐻

𝑦𝐿𝑉𝐿𝐻

𝑧𝐿𝑉𝐿𝐻

] 

(2.2) 

The use of Euler’s angles gives a direct and intuitive representation of what is the orientation 

of the object since it is easy to imagine, but this will also lead to a problem known as gimbal 
lock. Gimbal lock, in this representation, happens when the pitch angle θ reaches a value of 
±

𝜋

2
.  
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Figure 2.5 – a) normal situation [15] and b) gimbal lock in which one degree of freedom is 
lost [16] 

Solving the matrix multiplications in (2.1): 

𝑀𝐵
𝐿𝑉𝐿𝐻 =

= [

𝑐𝑜𝑠 𝜓 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝜃 − 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝜓 + 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜃
𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜓 + 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜃 − 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜑

−𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜃
] 

(2.3) 

Solving (2.3) for θ =
𝜋

2
 and doing some math: 

𝑀𝐵
𝐿𝑉𝐿𝐻 = [

0 𝑠𝑖𝑛(𝜑 − 𝜓) 𝑐𝑜𝑠(𝜑 − 𝜓)
0 𝑐𝑜𝑠(𝜑 − 𝜓) −𝑠𝑖𝑛(𝜑 − 𝜓)

−1 0 0

] 

(2.4) 

From the matrix (2.4), it can be noticed that when 𝜃 = ±
𝜋

2
, φ and ψ lead to the same 

transformation so it is not possible to determine individually each angle but only their sum or 
difference. This situation of singularity leads to a loss of a degree of freedom.  

Quaternions are used to overcome the problem given by the gimbal lock. A quaternion is a 
column vector composed of four elements, the first one is a scalar while the other three 
constitute the vectorial part of it: 

𝑞 =  [

𝑞0

𝑞1

𝑞2

𝑞3

] =  [
𝑞0

𝑞𝑣
] 

(2.5) 

The elements of a quaternion are such that: 

a) b) 
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𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2 = 1 

(2.6) 

The new rotation matrix, expressed in quaternion, is the following: 

𝑀𝐵
𝐿𝑉𝐿𝐻 = [

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2 (𝑞1𝑞2 − 𝑞0𝑞3) 2 (𝑞1𝑞3 + 𝑞0𝑞2)

2 (𝑞1𝑞2 + 𝑞0𝑞3) 𝑞0
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2 2 (𝑞2𝑞3 − 𝑞0𝑞1)

2 (𝑞1𝑞3 − 𝑞0𝑞2) 2 (𝑞2𝑞3 + 𝑞0𝑞1) 𝑞0
2 − 𝑞1

2 − 𝑞2
2 − 𝑞3

2

] 

(2.7) 

Later in this thesis it is shown that the quaternion can be taken directly from the attitude 
kinematics of the spacecraft. 

Since the quaternion does not give an immediate visualization and human-friendly 
representation of the attitude of an object, it is convenient to convert them into Euler’s angles 

using the following formula: 

[

𝜑
𝜃
𝜓

] =  [

𝑎𝑡𝑎𝑛2(2 (𝑞0𝑞1 + 𝑞2𝑞3), 1 − 2 (𝑞1
2 + 𝑞2

2))

𝑎𝑠𝑖𝑛 (2 (𝑞0𝑞2 − 𝑞3𝑞1))

𝑎𝑡𝑎𝑛2(2 (𝑞0𝑞3 + 𝑞1𝑞2), 1 − 2 (𝑞2
2 + 𝑞3

2))

] 

(2.8) 

2.3 Spacecraft Model 
For simplicity, the spacecraft can be approximately considered as a rigid body in which its 
center of mass is located in its geometric center throughout the entire duration of the simulation, 
this means that the distribution of the mass remains uniform and constant without considering 
the loss of fuel mass consumption. Without loss of generality, it is convenient to say that the 
three axes of inertia coincide with the three axes of symmetry of the rigid body. The satellites 
used in this thesis are two 3U CubeSats. This type of spacecraft is a parallelepiped of dimension 
10 cm × 10 cm × 30 cm. 

2.3.1 Attitude Dynamics 

 

Figure 2.6 – The dynamic equations are a relationship between the moment acting on a body 
and its angular velocity 

The dynamic of the spacecraft is given by its rotational motion. Due to the assumption of rigid 
body made before, the satellite can be considered as a continuous body in which each i-element 
of it maintains constant its distance 𝑟𝑖 with respect to the center of mass. 

The angular momentum that this kind of body that rotates at an angular velocity 𝜔, is so defined: 
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𝐻 = ∫𝑟 × (
𝐵

 𝜔 × 𝑟) 𝑑𝑚 

(2.9)  

The same formula can be written using a more convenient matrix notation using the inertia 
matrix. 

𝐼 =  [

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧

𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧

𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

] 

(2.10) 

For the simplification stated before, the axes of inertia are also principal so only the principal 
moments of inertia along the diagonal of the tensor exist. 

𝐼 =  [

𝐼𝑥 0 0
0 𝐼𝑦 0

0 0 𝐼𝑧

] 

(2.11) 

The final matrix form of the angular momentum is 

𝐻 = 𝐼 𝜔 =  [

𝐼𝑥 0 0
0 𝐼𝑦 0

0 0 𝐼𝑧

] [

𝜔𝑥

𝜔𝑦

𝜔𝑧

] 

(2.12) 

From the second law of dynamics for a rotating body it is know that the overall moment acting 
on a body is 

𝑀 = �̇� 

(2.13) 

Being  

�̇� = 𝐼 �̇� +  𝜔 × 𝐼 𝜔 

(2.14) 

The Euler moment equation is so obtained 

𝑀 = 𝐼 �̇� +  𝜔 × 𝐼 𝜔 

(2.15)3 

The purpose is to obtain 𝜔 as output having as input the moment M so it can be used later in 
describing the kinematic. Being the inertia tensor invertible, it is possible to rewrite the previous 
formula 
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�̇� = 𝐼−1 (𝑀 − 𝜔 × 𝐼 𝜔) 

(2.16) 

Through an integration in time is finally reached the solution. 

 

Figure 2.7 – Schematic block of the Euler equation 

2.3.2 Attitude Kinematics 

 

Figure 2.8 – The kinematic equations are a relationship between the angular velocity of the 
body and its attitude 

The movement of the spacecraft is a roto translational movement composed by translations of 
the center of mass and rotations of the body around an axis passing through the center of mass. 
The kinematic equations establish a relationship between the angular velocity of the body ω 
and the Euler angles, or the corresponding quaternion. 

For the reason expressed above, the use of quaternion is a more convenient option, considering 
also that the computational effort of computing its integration is less. 

The evolution of the quaternion in time is so described: 

�̇� =  
1

2
 𝑞 ⊗ 𝜔𝑞 

(2.17) 

The vector 𝜔𝑞 represent the extension in four dimensions of the vector ω. 

𝜔𝑞 = [

0
𝜔1

𝜔2

𝜔3

] 

(2.18) 

The quaternion product 𝑞 ⊗ can be described as a 4 × 4 matrix: 
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𝑞 ⊗ =  [

𝑞0 −𝑞1 −𝑞2 −𝑞3

𝑞1 𝑞0 −𝑞3 𝑞2

𝑞2 𝑞3 𝑞0 −𝑞1

𝑞3 −𝑞2 𝑞1 𝑞0

]  

(2.19) 

Since the first element of the vector 𝜔𝑞 is equal to 0, the kinematic equation is rewritten as: 

�̇� =  
1

2
 𝑄 𝝎 

(2.20) 

Where Q is a modified version of the matrix 𝑞 ⊗: 

𝑄 =  [

−𝑞1 −𝑞2 −𝑞3

𝑞0 −𝑞3 𝑞2

𝑞3 𝑞0 −𝑞1

−𝑞2 𝑞1 𝑞0

] 

(2.21) 

By integrating �̇� is possible to obtain the attitude of the spacecraft. 

 

Figure 2.9 – Schematic blocks on the kinematic equation 

2.4 Motion Dynamics 
The scenario of the mission simulation involves two 3U CubeSats, a chaser and a target at two 
different low Earth orbits. The chaser starts from a lower orbit and after a rendezvous maneuver 
it approaches the target reaching a closer orbit to it. In doing so a relative motion between the 
two orbiting spacecrafts must be described. Since the distance between the two satellites can be 
considered small with respect to the distance of the chaser and the center of mass of the Earth, 
both the orbits are circular and the target is only subjected to the gravitational force, it is 
possible, among other describing formulations, to use the so-called Hill’s equations. 

The two bodies, considered as point masses, are immerged in the Earth’s gravitational field so 
the force acting on them is a central force. Under these circumstances the Newton’s law of 

gravitation can be applied: 
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𝐹𝑔⃗⃗  ⃗ (𝑟 ) =  −𝐺 𝑀
𝑚

𝑟2
 
𝑟 

𝑟
=  −𝜇 

𝑚

𝑟3
 𝑟  

(2.22) 

In which G is the gravitation universal constant, M is the mass of the central object responsible 
for the gravitational field, in this case the Earth and so 𝜇 is the standard gravitational parameter 
associated with the Earth, m is the mass of the orbiting object, 𝑟  represents the position vector 
of the object in the inertial frame. 

 

Figure 2.10 – Position vectors of the chaser and the target in the inertial frame [1] 

In order to obtain the motion of both the satellites, the force is divided by the mass of the chaser 
𝑚𝑐 and the target 𝑚𝑡, which in this case are the same. Remembering that the target is only 
affected by the gravitational force and the chaser is affected also by the forces derived by the 
thrusters’ action:   

𝑟𝑡⃗⃗  ̈ =  −𝜇 
𝑟 𝑡

𝑟𝑡
3 = 𝑓𝑔⃗⃗  ⃗ (𝑟𝑡⃗⃗ ) 

𝑟𝑐⃗⃗  ̈ =  −𝜇 
𝑟 𝑐

𝑟𝑐
3 + 

𝐹 

𝑚𝑐
= 𝑓𝑔⃗⃗  ⃗ (𝑟𝑐⃗⃗ ) +

𝐹 

𝑚𝑐
 

(2.23) 

The relative motion between the two satellites will be: 

𝑠 ̈ =  𝑟𝑐⃗⃗  ̈ −  𝑟𝑡⃗⃗  ̈ 

(2.24) 

Since the purpose is to represent the roto-translational motion of the chaser in the rotating target 
local frame, linearizing 𝑓𝑔⃗⃗  ⃗ (𝑟𝑐⃗⃗ ) around 𝑟𝑡⃗⃗  using the Taylor expansion to first order one can obtain 
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the general linear equations for the relative motion known as Hill’s equation (for further 
information regarding the mathematical calculation see Appendix A in reference [1]): 

�̈� − 2 𝜔 �̇� =  
𝐹𝑥

𝑚𝑐
 

                   �̈� + 𝜔2 𝑦 =  
𝐹𝑦

𝑚𝑐
 

 �̈� + 2 𝜔 �̇� − 3 𝜔2 𝑧 =  
𝐹𝑧

𝑚𝑐
 

(2.25) 

The term 𝜔 defines the target orbit angular velocity, 𝜔 = 
2 𝜋

𝑇
 where T is the period of such orbit 

which in this case is constant since the orbit is circular. 

The same system of equations can be written in a state space representation so it can be used 
later for simulation purposes inside the MATLAB/Simulink environment. The general form is: 

�̇� = 𝑨 𝒙 + 𝑩 𝒖 

(2.26) 

The state vector x contains the position vector 𝒓 = [ 𝑥, 𝑦, 𝑧 ]𝑇 and the velocity vector  
�̇� = [ �̇�, �̇�, �̇� ]𝑇, A is the state matrix, u is the input vector and B is the input matrix. 

[
 
 
 
 
 
�̇�
�̇�
�̇�
�̈�
�̈�
�̈�]
 
 
 
 
 

=  

[
 
 
 
 
 
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 2 𝜔
0 −𝜔2 0 0 0 0
0 0 3 𝜔2 −2 𝜔 0 0 ]

 
 
 
 
 

 

[
 
 
 
 
 
𝑥
𝑦
𝑧
�̇�
�̇�
�̇�]
 
 
 
 
 

+ 

[
 
 
 
 
 
 
 
 
 
0 0 0
0 0 0
0 0 0
1

𝑚𝑐
0 0

0
1

𝑚𝑐
0

0 0
1

𝑚𝑐]
 
 
 
 
 
 
 
 
 

 [

𝐹𝑥

𝐹𝑦

𝐹𝑧

] 

(2.27) 
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2.5 Rendezvous Maneuvers 
This section will explain the maneuvers utilized during the two rendezvous’ phases, the far 

range and the close one, that will be later used during the simulations. As said in the introduction 
chapter, these maneuvers are modelled in a relative motion using the Hill’s equations, so they 
are true in the limitations imposed by the validity condition of such equations.  

2.5.1 Long Range Rendezvous 
When this phase of the mission starts, the chaser is located into a lower orbit and still behind 
the target. One possibility to make it move forwards, towards the target, while also reaching a 
higher orbit, is to apply a tangential boost. Applying a tangential impulsive thrust leads to an 
impulsive starting velocity 𝛥𝑉𝑥1 along the V-bar. After one target’s orbital period T the 
spacecraft will cover a distance of 

𝛥𝑥 =  
6 𝜋

𝜔
 𝛥𝑉𝑥1  

(2.28) 

With 𝜔 = 
2 𝜋

𝑇
. In order to stop the satellite a new ΔV but in the opposite direction must be 

applied: 

|𝛥𝑉𝑥1| =  |𝛥𝑉𝑥2| =  
𝜔

6 𝜋
 𝛥𝑥 =  𝛥𝑉 

(2.29) 

The total impulse needed for is: 

𝛥𝑉𝑡𝑜𝑡𝑎𝑙 = 
𝜔

3 𝜋
 𝛥𝑥  

(2.30) 

 

Figure 2.11 – Transfer along the V-bar with a tangential impulse [1] 

The maximum high reached by this maneuver is 
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𝛥𝑧 =  
4

𝜔
 𝛥𝑉 

(2.31) 

If one needs to reach a higher orbit using a tangential boost it is possible using the same 
maneuver described before but stopping it at 𝑡 =  

𝑇

2
 thus applying the same impulse equal in 

size and direction. The new reached orbit will be also circular. During the transfer, the chaser 
moves along an eccentric orbit and when the second impulse is fired, the orbit returns circular. 
In this new orbit the satellite moves in a free drift motion. This maneuver is known as Hohmann 
transfer. At the instant 𝑡 =  

𝑇

2
, the chaser travels for  

𝛥𝑥 =  
3 𝜋

𝜔
 𝛥𝑉 

(2.32) 

 

Figure 2.12 – Hohmann transfer [1] 

Being the purpose of the Hohmann transfer the orbit change, it is convenient to express the total 
needed impulse with respect to the 𝛥𝑧 desired. From (2.31) it is possible to obtain the amount 
of one impulse, so the total one is 

𝛥𝑉𝑡𝑜𝑡𝑎𝑙 = 
𝜔

2
 𝛥𝑧  

(2.33) 

The total amount of impulse is not sustainable by a small spacecraft like a CubeSat which is 
not able to attain such a high impulsive boost. In cases like this it is used a continuous thrust 
instead. The maneuver is now performed by the application of a constant acceleration during 
the whole duration of it. In this case the only acceleration needed is along the V-bar, 𝛾𝑥. After 
a generic amount of time t, the amount of 𝛥𝑉 applied considering an acceleration 𝛾𝑥 

𝛥𝑉 = 𝛾𝑥 𝑡 
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(2.34) 

The drawback of using a continuous V-bar thrust transfer is that it takes the double of time than 
its impulsive counterpart, so 𝑡 = 𝑇 =  

2 𝜋

𝜔
. Substituting this value in (2.34) and then substituting 

the obtained value of 𝛥𝑉 in (2.33) it is possible to obtain the acceleration needed to transfer the 
satellite in the desired orbit 

𝛾𝑥 = 
𝜔2

4 𝜋
 𝛥𝑧 

(2.35) 

 

Figure 2.13 – Orbit change with a continuous thrust [1] 

It is worth noting that the total amount of 𝛥𝑉 is the same in both cases, the only difference is 
the time that the two maneuvers require [1]. 

2.5.2 Short Range Rendezvous 
During this phase, the chaser must accomplish some maneuvers close to the target, to shorten 
its distance and eventually starting the mating phase. In order to perform these maneuvers with 
a certain safety, a radial boost is chosen.  

 

Figure 2.14 – Transfer along the V-bar with a radial impulse [1] 
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The time needed to transfer the satellite from the position 𝑥1 to the position 𝑥2 is half the period 
of the orbit. A first impulse is fired to start the maneuver and after 𝑇

2
 a second one, with the 

same intensity and direction along the R-bar, is shot to stop the satellite. The impulse in the R-
bar that must be applied is 

𝛥𝑉𝑧 = 
𝜔

4
 𝛥𝑥 

(2.36) 

The overall 𝛥𝑉 required will be 

𝛥𝑉𝑡𝑜𝑡𝑎𝑙 = 
𝜔

2
 𝛥𝑥 

(2.37) 

For the same reason shown before, a high impulse is not achievable by a CubeSat, thus also in 
this case a continuous thrust is needed. The time needed is doubled so 

𝛥𝑉 =  𝛾𝑧  
2 𝜋

𝜔
 

(2.38) 

 

Figure 2.15 -Transfer along the V-bar with a continuous radial thrust [1] 

Substituting (2.38) in (2.37) one can obtain the acceleration along the R-bar requested to 
accomplish the V-bar transfer with a continuous radial thrust 

𝛾𝑧 = 
𝜔2

4 𝜋
 𝛥𝑥 

(2.39) 

In this case also the 𝛥𝑉𝑡𝑜𝑡𝑎𝑙 are equal, the difference lies in the time that has elapsed. 

Comparing (2.37) and (2.30) one can notice that the radial impulse maneuver needs a total 𝛥𝑉 
bigger than the tangential one, by a factor of  3 𝜋

2
. This results in a higher fuel consumption. 
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What makes this maneuver more attractive in this particular phase of the mission is its intrinsic 
safety aspect. If for any reason the second impulse may not occur, in absence of other 
disturbances, the satellite continues its circular motion returning to its initial position after one 
orbital revolution without reaching a position farther than 𝑥2. This means that if one wants to 
retry the maneuver this happens with no extra 𝛥𝑉 to reposition the chaser. This does not happen 
in the presence of a tangential boost in which, without the second impulse, the satellite 
continues to advances in the V-bar direction, putting at risk the mission with an hypothetical 
collision between the chaser and the target [1]. 

2.6 Control System 
Control theory aims to control a dynamic system by developing an algorithm capable to drive 
it to a desired state. In doing so a closed-loop system is used since it allows, by means of a 
feedback branch, to compare the actual state of the system with the desired one. The objective 
is to reduce the resulting error given by this difference. The modern approach is based on the 
state-space representation of the system to control, which in this application is the one reported 
in (2.27). 

2.6.1 Attitude Control 
The chaser is modelled as a rigid body with a shape of a parallelepiped having dimension 𝑙𝑥 =
30 cm, 𝑙𝑦 = 𝑙𝑧 = 10 cm and a mass 𝑚𝑐 = 4 kg. From (2.11), the inertia matrix of the satellite 
is 

𝐼 =  𝑚𝑐

[
 
 
 
 
 
 𝑙𝑦

2 + 𝑙𝑧
2

12
0 0

0
𝑙𝑥

2 + 𝑙𝑧
2

12
0

0 0
𝑙𝑥

2 + 𝑙𝑦
2

12 ]
 
 
 
 
 
 

=  [

0.00667 𝑘𝑔 𝑚2 0 0

0 0.03333 𝑘𝑔 𝑚2 0

0 0 0.03333 𝑘𝑔 𝑚2

] 

(2.40) 

This body has its own state 𝒙 = (𝒒,𝝎) that depends on its orientation 𝒒 and its angular velocity 
𝝎, expressed in its body frame. Recalling the quaternion kinematic equation and the Euler 
dynamic equation: 

�̇� =  
1

2
 𝑄 𝝎 

�̇� =  −𝐼−1 𝝎 × 𝐼 𝝎 + 𝐼−1 𝒖 

(2.41) 

Where the matrix Q is already defined in (2.21), u is the output of the controller, which in this 
case represent a moment and the operation 𝝎 × can be described as follow 
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𝝎 × =  [

0 − 𝜔3  𝜔2

𝜔3 0 − 𝜔1

− 𝜔2 𝜔1 0
] 

(2.42) 

To goal of the controller is to reduce the difference between the actual state and a reference 
vector (𝒒𝒓, 𝝎𝒓). The error that exists between these quantities is 

�̃� =  𝝎𝒓 −  𝝎 
�̃� =  𝒒−1  ⊗ 𝒒𝒓 = 𝒒∗  ⊗ 𝒒𝒓 

(2.43) 

Where 𝒒∗ = [
𝑞0

−𝒒𝒗
] represents the quaternion conjugate [17]. 

It is possible now to define the control law. In this thesis two different methodologies for the 
attitude controller are tested: Sliding Mode Control (SMC) for the long range rendezvous and 
Linear Quadratic Regulator (LQR). 

2.6.1.1 Sliding Mode Controller 
The Sliding Mode Control is a methodology widely used for non-linear system. It has a solid 
mathematical base which permits to be robust against disturbances, noises, and uncertainties. It 
is based on two fundamental steps: the definition of what is called sliding surface and the design 
of the control law capable to bring the state of the system on this surface. The principle affirms 
that if the trajectory to track is confined to the sliding surface, then the error tends to be zero 
exponentially [17], so the sliding surface must present two important characteristic. It must be: 
invariant, which implies that if the trajectory is on the surface, it remains on it; attractive, if the 
trajectory is outside the surface then the surface forces the trajectory to move on it. A complete 
mathematical dissertation can be found in [17] and [18]. 

A common way to define the surface is 

𝑠 =  �̃� + 𝑘2 𝑠𝑖𝑔𝑛(𝑞0̃) 𝒒�̃� 

(2.44) 

Since the surface must be invariant, its derivate should be zero 

�̇� =  𝝎𝑟̇ +  𝐼−1 𝝎 × 𝐼 𝝎 − 𝐼−1 𝒖 + 
𝑘2

2
 ( |𝑞0̃| �̃� + 𝑠𝑖𝑔𝑛(𝑞0̃)𝒒�̃� × (𝝎𝑟 +  𝝎)) = 0 

(2.45) 

Solving with respect to u, it is possible to find the control law that makes the surface invariant 

𝒖𝒔 = 𝐼 (𝝎𝑟̇ +  
𝑘2

2
 ( |𝑞0̃| �̃� + 𝑠𝑖𝑔𝑛(𝑞0̃)𝒒�̃� × (𝝎𝑟 +  𝝎))) +  𝝎 × 𝐼 𝝎 

(2.46) 

A discontinuous term is added to make it also attractive. Usually is used a sigmoid function 
which attenuates the chattering problem. The final control law will be 
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𝒖 =  𝒖𝒔 + 𝑘1 𝐼 tanh (𝜂 𝑠) 

(2.47) 

2.6.1.2 Linear Quadratic Regulator 
  

2.6.2 Position Controller 
 

2.7 Control allocation 
 

2.8 Modulator 
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Chapter 3 

Simulation and results 

The simulations involve the use of two different thrusters configurations, an ideal one and a 
more realistic one. 

The ideal configuration is based on a cluster composed by six thrusters, arranged along the 
principal axes of inertia of the chaser, each thruster is responsible for the motion along one 
direction of the axis. 

 

Figure 3.1 – Ideal six thrusters configuration 

The real configuration presents a cluster composed by seven thrusters, in which the actuators 
can also change the orientation of the satellite. 
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Figure 3.2 – Real seven thrusters configuration 

The motion of the chaser is described with respect to the target centered frame since during the 
rendezvous maneuvers a relative navigation measurement of the states is used. 

3.1 Long Range Rendezvous 
During the far range rendezvous, the chaser tracks the reference trajectory given by the 
Hohmann transfer orbit. It starts its maneuver in a lower orbit, 2 km under the target and 6.7 
km behind it. At the beginning of the maneuver, it presents an angular velocity. The attitude 
controller must stop its rotation bringing its attitude to the desired one.  

The chaser applies a tangential continuous thrust to raise its orbit while shorten its distance 
from the target, reaching the final position in a station keeping point 300 m behind the target 
and 50 m under. This point will be the starting position for the close-range rendezvous. 

The system is tested with three different control allocation algorithms and without it to make a 
comparison of the fuel expense during the maneuver. The modeling of thrusters is made more 
real by means the design of a modulator to simulate the ON/OFF nature of the actuators. The 
fuel expense is evaluated indirectly analyzing the total ΔV requested to accomplish the orbit 
transfer since it is strictly related to the fuel consumption by the Tsiolkovsky rocket equation. 
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Figure 3.3 – Far range rendezvous 

The two configurations, has expected, have shown different performances. Due to the peculiar 
configuration of the 7-thrusters chaser, the coupling effect of the thrusters, made more difficult 
to stabilize the satellite, resulting in more firing shoot. 

Algorithms and thruster configuration 
used 

Total ΔV [m/s] 

No control allocation 0.74415 
6-thrusters Pseudo Inverse 0.73535 
6-thrusters Linear Programming 0.73535 
6-thrusters Quadratic Programming 0.73425 
7-thrusters Pseudo Inverse 0.94105 
7-thrusters Linear Programming 0.94160 
7-thrusters Quadratic Programming 0.93858 

Table 1 – ΔV expense for the Hohmann transfer  

From Table 1 it is possible to see that, in the ideal case, there is an improvement in the 
management of the fuel. 

Both the thruster managed to accomplish the maneuver and to stabilize the chaser in the desired 
orientation. 
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Figure 3.4 – Quaternion stabilization 

The stabilization occurred with different moments application between the two satellites, that 
is because of the coupling effect mentioned before. 

 

Figure 3.5 – Resulting torques of the six thrusters satellite 
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Figure 3.6 – Resulting torques of the seven thrusters satellite 

From Figure 3.5 it can be seen that, except for the initial torques needed to bring the satellite to 
the desired attitude, there are no longer interventions by the attitude controller. On the other 
hand, in the seven thrusters satellite, due to the coupling effect, the controller must intervene 
whenever one of the four thrusters on the vertices of the satellite is fired since to correct the 
position along the z axes they must be fired in pairs, resulting in a moment along the y axes. 

3.2 Short-range Rendezvous 
During the short-range maneuver, the chaser, by means of a series of radial continuous thrusts, 
reaches several station keeping points and eventually, in case the final position does not respects 
the safety constraints for starting the mating with the target, it flies back to a previous station 
keeping point. 

 

 

 

 

 

Table 2 – Station keeping point 

 

 

 

 

Station keeping 
point 

Relative distance 
from the target 

[m] 
S0 (-300 0 -50) 
S1 (-64,38 0 0) 
S2 (-50 0 0) 
S3 (-15 0 0) 
S4 (-3 0 0) 
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Figure 3.7 – Short-range rendezvous 

During this phase only the six thrusters satellite is tested with no PWPF modulator and only 
two of the three studied control allocator managed to accomplish the maneuver, PI and LP. The 
use of the seven thrusters configuration, or the modulator, or the QP allocator, resulted in 
instability inside the system. 

Algorithms and thruster configuration 
used 

Total ΔV [m/s] 

No control allocation 0,41470 
6-thrusters Pseudo Inverse 0,41460 
6-thrusters Linear Programming 0,41372 

Table 3 – ΔV expense for the short-range rendezvous 

In this case, the difference of the fuel consumption, is very small. This can be attributed to the 
lack of the modulator which, that regulating the number of shoots, is able to lower the activation 
of the thrusters as it can be seen in Figure 3.8. 
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Figure 3.8 – Example of thrust’s modulation 

In this case the orientation, since the chaser was already stabilized in the desired orientation 
and, in lack of external disturbances and deriving torques from thrusters’ activation, remains 
the same throughout the duration of the mission. 
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Chapter 4 

Conclusion and future work 

Although the 7-thrusters configuration shows a worst performance, one must consider that it 
presents an almost real disposition of the actuators. Its configuration allows to reorient the 
satellite using the thrusters along with the reaction wheels responsible for the attitude and more 
important to desaturate them. The limit of the 6-thrusters configuration is that the satellite can 
only move along the principal axis of inertia. A combination of control allocation algorithm 
and controllers can improve the performance in terms of fuel consumption, due to the reduction 
of ΔV. The tested algorithms have shown the capability to map the command control onto the 
actuators. They present pros and cons, and the choice of the right allocator depends on the 
configuration of the thruster, the type of the thruster (if it is unidirectional or no) and on the 
resource at disposition. Among the three different control allocators, the one based on the QP 
optimization has shown better results. It must be said though that it needed more time to run 
with respect to the PI, but, on the other hand, with PI it is not possible to handle the physical 
constraints of the thrusters. In fact, when a negative value of the force is given as output from 
the allocator, by means of a redirection system of SIMULINK blocks designed by hand and 
tailored for the two different configurations, it is redistributed to the thruster in charge of such 
thrust’s direction. 

Future works may involve development of better and faster optimization algorithms, especially 
talking about LP optimization, which also present a more relaxed way to deal with the 
constraints imposed by the thruster. Other implementations to improve the performance may 
regard an automatic optimization algorithm to better model the modulator responsible for the 
ON/OFF of the thrusters. A Particle Swarm Optimization (PSO) algorithm was first used but 
the attempt failed because of the high demand of memory that the simulation and the iterative 
procedure of PSO needed. 
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