

POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

VOCAL CONTROL OVER AN INDUSTRIAL

CARTESIAN ROBOT

Supervisor: Candidate:

Prof. Alessandro RIZZO Riccardo TANONI

Corporate Tutor:

Ing. Tommaso ANTINORI

2021-2022

II

ABSTRACT

Nowadays, vocal control features are widely diffused in our everyday life.

The aim of this thesis is to implement a simple vocal control interface to pilot an

industrial top-entry cartesian Robot throughout its simplest actions.

This specific treatise is divided in the following main parts:

1. Introduction, problem declaration and proposed solution

2. Brief notes on industrial Robots’ typologies, with particular emphasis on

cartesian ones (used for this project)

3. Modifications made on the Robot’ main code and relative working test on real

Robot simulator

4. Modbus protocol migration on Microcontroller (Arduino board) and vocal

control adaptation for the chosen hardware

5. Real circuit building and final code assembling

6. Final working tests on both software and hardware

7. Conclusions and potential future applications

The final results showed that, with the right customization, it is possible to let an

industrial Robot perform some basic actions through simple vocal commands: precise

range movements, entering in specific modes, Stop and Reset actions performing.

 Even if the subject topic was treated in an academic way, the possible future

applications are many and the possibility to connect such machines to A.I. vocal

assistants is very concrete.

III

INDEX

ABSTRACT ... II

ACKNOWLEDGMENTS .. IV

INTRODUCTION .. 1

1.1 SMART INDUSTRY 4.0 ..1

1.2 PROBLEM DECLARATION AND PROPOSED SOLUTION ..2

INDUSTRIAL ROBOTS .. 5

2.1 TYPOLOGIES OF INDUSTRIAL ROBOTS ...5

2.2 CARTESIAN ROBOTS ..11

2.3 “CAMPETELLA” RHEA PRIME ROBOT ..14

DEVELOPED PROJECT .. 16

3.1 TASK MODIFICATION FOR ROBOT AXIAL CONTROL ..16

3.2 WORKING TEST ON REAL ROBOT SIMULATOR ..19

3.3 MODBUS PROTOCOL ...23

3.4 MODBUS PROTOCOL ON MICROCONTROLLER ...25

3.5 VOCAL CONTROL SETTINGS ON MICROCONTROLLER ...32

3.6 VOCAL CONTROL MOBILE APP BUILD ...34

REAL IMPLEMENTATION ... 37

4.1 REAL CONFIGURATION BUILDING ...37

4.2 FINAL CODE ASSEMBLING ...40

FINAL TESTS .. 47

5.1 FINAL CODE WORKING TEST ...47

5.2 CIRCUIT AND MOBILE APP WORKING TEST ...51

5.3 FINAL TESTS AND RESULTS WITH REAL ROBOT ...53

CONCLUSIONS AND POSSIBLE APPLICATIONS ... 55

BIBLIOGRAPHY .. 57

APPENDIX ... 59

IV

ACKNOWLEDGMENTS

Heartfelt thanks to:

• “Campetella Robotic Center S.R.L.” for the opportunity to have seen
and lived such a complex industrial environment, as well as all the
material and instruments granted me to carry out this project

• My corporate tutor: Tommaso Antinori, for the big help and the

precious cooperation

• My thesis supervisor: Prof. Alessandro Rizzo, for having accepted
and helped me

1

Chapter 1

INTRODUCTION

1.1 SMART INDUSTRY 4.0

The past few decades were characterized by the improvement of the so called “Smart

Industry” (or Industry 4.0) that brought rapid changes to technological sectors and

industrial environments, due to the large amount of inter-connectivity and

smart features that characterized the 21st century. The most touched aspects were

surely A.I. (artificial intelligence) and Robotics, through which A.I. can interact with the

real world. The automation of traditional manufacture has undergone many changes,

with the introduction of smart-technology, Machine-to-Machine (M2M) connections

and Internet-of-Things (IoT), but one of the most diffused aspects was the

implementation of vocal control (vocal assistants A.I.) over almost every feature of

modern technology. The “Fourth Industrial Revolution” favored the development of

the Smart Factory based on technical aspects, such as cyber-physical systems

communicating within each-other using the IoT and many other services. [1]

With the increase of these modern technologies, the need of developing more up-to-

date solutions accordingly grew and affected every aspect of our everyday life:

correlated studying fields were integrated to create new solutions, with their utmost

expression in A.I. and Robotics. In particular, modern Robots played a crucial role

regarding our technological development, mostly for their ability to perform

“unhuman” tasks in terms of safety, fast response and accuracy. [2]

For this reason, many modern industries’ employees had to adapt their skills, not

anymore to manufacture, but to tasks such as Robots programming, management and

adaptation to the production process: from one side, the information flow is carried

out within machines; from the other, such information support company management

systems, in increasing the efficiency of production. It is therefore important to develop

a flexible arrangement for the production system that will adapt to customer needs in

continuous changing with the chance of the system future use anticipation. In a close

1 – INTRODUCTION

2

future, specific systems which are already been used for years in industrial

environments may lead to an industrial Robot programming developing, to simplify the

cooperation within workstation operators and machines, with the possibility of

creating flexible programs that allow the interaction between operator and Robots,

using natural solutions like movements or voice: these tools are already used in

different fields, not just like industrial applications, but also in transportations and

home automation. [3]

1.2 PROBLEM DECLARATION AND PROPOSED SOLUTION

This thesis has the goal to investigate the developing, implementing and finally

controlling of an industrial Top-Entry Cartesian Robot using an Android Vocal App and

an Arduino microcontroller: very cheap and with a simple open-source

programmability. Taking in consideration the Cartesian Robot characteristics, for an

industrial application it is important to respect:

• Safety

In an industrial environment, workers’ safety is the most important aspect. In

general, modern industrial Robots must respect very restrictive safety rules,

however the latter are at-times not enough to prevent a possible dangerous

situation. Vocal commands can therefore add a higher level of safety, avoiding

human personnel to physically interact with those systems, using a more

immediate method like the voice.

• Fast Response

Vocal control in industries environments needs a very fast response. For this

implementation, the Google Assistant already included in Android OS devices is

chosen and the time required from the App to acquire the pronounced word,

interpretate it, convert it and send it to the Robot is unfortunately not

instantaneous.

1 – INTRODUCTION

3

• Accuracy

To substitute the manual work performed by a man, high accuracy is required:

cartesian Robots are the most accurate Robots in industrial environments and

the implemented solution will maintain this feature, acting directly on

brushless motors (and therefore on drivers) that can perform very precise

millimetric movements. To make this configuration adaptable to different

industrial settlements, a common open-source microcontroller was selected to

connect the voice-interpreting device to the main Robot Control Unit.

Tests results and Robot behaviors will be discussed at the end of this treatise.

To implement a proper hardware solution, the Open-Source Arduino Mega Board were

selected, because it is very easy to find and widely diffused in every ambit.

The use of an Ethernet Shield and of a Bluetooth Transmitter/Receiver was necessary

to connect the control board to the Robot Control Unit and to ensure the correct data

exchange between Client (microcontroller) and Server (Robot).

For this specific solution, the Robot can be controlled through the following

commands:

• Movements. The selected basic movement actions were chosen as follow:

– "Upwards" and "Downwards" = movements along y-axis

– "Leftwards" and "Rightwards" = movements along z-axis

– "Frontwards" and "Backwards" = movements along x-axis

these are the six possible moving actions that the Robot (via brushless motors)

can perform along x, y, z coordinates.

• Modes. The selected Modes, in which the Robot can enter, were chosen as follow:

– "STOP" = the Robot performs a Stop action, ending any movements or

previous commands

– "JOG" = the Robot enters in Jog Mode, free to move in every direction

1 – INTRODUCTION

4

– "TEACH" = the Robot enters in Teach Mode, ready to memorize informations

about the new aim-point to reach

– "STEP" = the Robot enters in Step Mode, performing one-by-one movements

– "AUTO" = the Robot enters in Automatic Mode, performing the entire cycle

by itself

The chosen circuit configuration is the sequent:

Figure 1.1: Final Circuit Configuration

Figure 1.2: Arduino Mega Schematic

5

Chapter 2

INDUSTRIAL ROBOTS

2.1 TYPOLOGIES OF INDUSTRIAL ROBOTS

Nowadays Robots are widely diffused in almost every technological field: the most

common are industries, space investigation, military applications and medical

assistance. They are used for different tasks such as: welding, painting,

assembling/disassembling, pick-and-place (PCB), products inspection, and different

testing. [4] In this thesis, only Industrial Robots will be treated, with particular

emphasis on the typology used to develop the project: Cartesian Robots. Industrial

Robots are developed, assembled and controlled by algorithms and programs installed

in computers or controlling devices: they are classified depending on artificial

intelligence complexity, structural characteristics, applications and operating skills. The

rigid structures able to move are called links and the joints can be divided in two

groups: revolute joints (or hinges) and prismatic joints (or sliding joints). [5]

It is possible to divide industrial Robots in six main typologies:

• Cartesian Coordinate Robots: better treated in the next paragraph.

Figure 2.1: Cartesian Robot

2 – INDUSTRIAL ROBOTS

6

• Articulated (or Anthropomorphic) Robots: they consist of three fixed axes

linked to a revolving base. Configuring links and joints in specific ways, almost

every point of the workspace can be reached: considering distances and angles,

it is possible to characterize each of these reachable points.

Figure 2.2: Articulated Robot Scheme

The most diffused example of articulated Robot is surly the Robotic Arm

(Anthropomorphic) configuration: having more joints (normally six), its

workspace dimension is wider but, due to different payloads and non-linear

behaviors, the operating speed is quite limited. [6]

Figure 2.3: Articulated Robot

2 – INDUSTRIAL ROBOTS

7

• Cylindrical Coordinate Robots: they consist of two prismatic joints and a

rotatory one, forming a cylindrical workspace. A horizontal arm is mounted on

a vertically moving cartage and both are connected to a revolving base: so, each

reachable point can be represented by a cylindrical coordinates system. [7]

Figure 2.4: Cylindrical Robot Scheme

In this configuration, the Robot is able to move frontward and backwards along

𝑧 axis, upwards and downwards along 𝑦 axis and to rotate according to 𝜃 angle.

[8]

Figure 2.5: Cylindrical Robot

2 – INDUSTRIAL ROBOTS

8

• Spherical (or Polar) Coordinate Robots: they consist of two moving joints (at

least) and a fixed one: their size is very big and they present a telescopic arm,

to perform movements such as base rotation, arm angular inclination and end-

effector slide. [9]

Figure 2.6: Polar Robot Scheme

They are commonly used for welding, die-casting, plastic injection and

extrusion due to their specific orientation in the spherical sector workspace,

including two concentric hemispheres: an inner one, reachable when the arm

is completely retracted and an outer one, reachable when the arm is

completely extended. [10]

Figure 2.7: Polar Robot

2 – INDUSTRIAL ROBOTS

9

• SCARA Robots: acronym of “Selective Compliance Assembly Robot Arm”, they

consist of two parallel rotatory joints and a prismatic one: the first ones

performing movements along the horizontal plane and the second one along

the vertical plane. [7]

Figure 2.8: SCARA Robot Scheme

They are widely used for high-speed applications, with a cycle characterized by

repetitive movements (point-to-point) such as assembling operations: a

peculiar characteristic is that they are weaker about 𝑥 and 𝑦 axes and stronger

about the z axis. [11]

Figure 2.9: SCARA Robot

2 – INDUSTRIAL ROBOTS

10

• Delta (Parallel Link) Robots: they consist of a fixed basement connected to its

parallelogram linkage systems (4 bars): the end-effector must be composed by

at least two chains, each one having a minimum of one actuator (one per each

end-effector degree of freedom). [12]

Figure 2.10: Delta Robot

Due to their highest configurations, such industrial Robots can move objects up

to 6 degrees of freedom (DoF), determined by 3 translational (3T) and 3

rotational (3R) coordinates for a complete 3T-3R mobility. Anyway, in many

cases, manipulation tasks require less than 6 degrees of freedom: it is so

possible to use lower mobility manipulators that may bring advantages in terms

of architecture, control, motions and costs. [4]

Figure 2.11: Six Degrees of Freedom 3-D Schematic

2 – INDUSTRIAL ROBOTS

11

2.2 CARTESIAN ROBOTS

• What Cartesian Robots are?

Cartesian coordinate geometry is an optimal method to map 3-Dimensional space

in a simple, understandable numerical system composed by three coordinate axes

(perpendicular to each other) that cross in the so-called “origin”: any point in the

3-Dimensional space is characterized by three numbers (x, y, z).

Mechatronic Robots that use linear axes to move along are called Cartesian Robots,

Linear Robots, or Gantry Robots: they have an overall part that controls the motion

along the horizontal plane and a Robotic Arm that performs vertical motions. They

can move along x-y plane or x-y-z plane. The Robotic Arm presents an end-effector

(generally a mechanical tool) attached on its end, depending on the function they

are used for. [13]

• Characteristics and Functionalities

Cartesian Robots can only move through linear motions, controlled by servomotor

drives. The drive system can be:

• Belt driven

• Cable driven

• Screw driven

• Pneumatic driven

• rack-and-pinion driven

• linear-motor driven

The very big advantage of Cartesian Robots is that they are very easy to program,

having only linear motions to be controlled: due to that, complex arrays of PLCs

and microchips are not necessary.

Compared to other typologies, Cartesian Robots have a higher payload carrying

capacity that, combined with lower costs and simple programming, makes them

suitable for a large variety of industrial applications. The linear Robots’ movements

range can also be extended by adding compatible modules, making them longer in

an industrial life and much more versatile.

2 – INDUSTRIAL ROBOTS

12

Having no need to arrange rotary motion, they are also characterized by a high level

of accuracy and precision (with respect of other typologies): their tolerances are in

the range of micrometers (μm), while others normally are in the range of

millimeters (mm). [13]

Figure 2.12: Cartesian Robot Scheme

The linear movements performed by the Cartesian Robot can be expressed by the

following expression:

Where 𝑞𝜖ℝ𝑛×1 is the joints vector. The movements performable by the end-

effector to reach a specific point can be expressed by the following expression:

Where 𝑞𝑑 is the joints vector of this reachable point and �̃� i = 𝑞𝑑i – 𝑞I is the

end-effector final positions vector. [14]

2 – INDUSTRIAL ROBOTS

13

• Most Common Applications

Cartesian Robots are suitable for many applications in the industrial sector.

The most diffused are:

o PICK AND PLACE: The Robotic arm can identify different components

through a vision device and pick these objects, then sorting them into

different bins.

o PROCESS-TO-PROCESS TRANSFER: Using Dual-Drive linear Robots it is

possible to transfer goods from a place to another: for that, time-

synchronization systems can be used, depending on the process.

o ASSEMBLING SYSTEM: Assembling a product’s parts, when same steps

must be repeated many times, Cartesian Robots can be widely used to

automate such tasks.

o PRECISION SPOT WELDING: In specific manufacturing processes a

precise welding is often required: with their welding arms modules

Cartesian Robots can accurately achieve it among microscopic (μm)

locations on the work plane.

o PALLETAZING AND DEPALLETAZING: Cartesian Robots are also useful to

automatically both placing and taking products on and from pallets to

easily transport goods throughout all the process chain.

o CNC MACHINE TOOLING: Computerized numerical control-based

machines are widely used to make specific products, depending on the

designs made through engineering software. [13]

2 – INDUSTRIAL ROBOTS

14

2.3 “CAMPETELLA” RHEA PRIME ROBOT

For the development and testing of the project, we used the model “RHEA PRIME”

from “Campetella Robotic Center S.R.L”, that is equipped with three servo-guided

electric axes:

Figure 2.13: “Campetella” Rhea Prime Robot

It is characterized by:

• Conf igurable vert ical ax is of the A -type

• Z axis st roke f rom 1200 to 1500 mm

• X axis st roke about 300 mm

• Y axis st roke about 800 mm

• Payload that the end ef fector can ef fort up to 2 kg

• Dry Cycle of 5”

2 – INDUSTRIAL ROBOTS

15

Table 1: Rhea Prime Robot Specific

Figure 2.14: Rhea Prime Robot Internal Details

16

Chapter 3

DEVELOPED PROJECT

3.1 TASK MODIFICATION FOR ROBOT AXIAL CONTROL

The implementation of this project started with considering the chosen industrial

Robot native code, written in CodeSys Structured Text (ST) language and property of

“Campetella Robotic Center S.R.L.” that kindly conceded to publish it into this treatise:

it is possible to entirely view it in the ‘Appendix’. The first aim is to properly modify it,

so that to ensure the Robot to achieve the wanted behaviors.

In particular, the following tasks were chosen:

• Performing movements along the three axes: Rightwards (z+), Leftwards (z-),

Downwards (y+), Upwards (y-), Frontwards (x+), backwards (x-)

• Entering JOG Mode

• Entering TEACH Mode

• Entering STEP & AUTO Mode

• Performing STOP & RESET Emergency Commands

According to such choice, the native code was modified in the following way:

//**
//-- Axial JOG Vocal commands ---
// When vocal command is received:
// 1) selection of the axis to move
// 2) raised up the front "startPIU" or "startMENO"
// 3) calculation of arrival range
//

3 – DEVELOPED PROJECT

17

IF difuCmdVocale THEN // Axis selection in Teach Mode
 IF codiceComando = CMD_DX THEN
 AsseInTeach := 1;
 startPIU := TRUE;
 PIUinCorso := TRUE;
 apppoTargetPos:= QuotaReale[1] + deltaQuotaTeachVocale;
 ELSIF codiceComando = CMD_SX THEN
 AsseInTeach := 1;
 startMENO := TRUE;
 MENOinCorso := TRUE;
 apppoTargetPos:= QuotaReale[1] - deltaQuotaTeachVocale;

Starting with the “z” axis, if the received command from the vocal control is a
Rightwards Movement (CMD_DX) then the axis associated with 1 (z) is selected and the
new coordinate to reach in positive sense is the previous one (QuotaReale[1]) + the
given one (deltaQuotaTeachVocale).
Otherwise, if the received command from the vocal control is a Leftwards Movement
(CMD_SX) then the axis associated with 1 (z) is selected and the new coordinate to
reach in negative sense is the previous one (QuotaReale[1]) - the given one
(deltaQuotaTeachVocale).

 ELSIF codiceComando = CMD_AVANTI THEN
 AsseInTeach := 2;
 startPIU := TRUE;
 PIUinCorso := TRUE;
 apppoTargetPos:= QuotaReale[2] + deltaQuotaTeachVocale;
 ELSIF codiceComando = CMD_INDIETRO THEN
 AsseInTeach := 2;
 startMENO := TRUE;
 MENOinCorso := TRUE;
 apppoTargetPos:= QuotaReale[2] - deltaQuotaTeachVocale;

Going on with the “x” axis, if the received command from the vocal control is a
Frontwards Movement (CMD_AVANTI) then the axis associated with 2 (x) is selected
and the new coordinate to reach in positive sense is the previous one (QuotaReale[2]) +
the given one (deltaQuotaTeachVocale).
Otherwise, if the received command from the vocal control is a Backwards Movement
(CMD_INDIETRO) then the axis associated with 2 (x) is selected and the new coordinate
to reach in negative sense is the previous one (QuotaReale[2]) - the given one
(deltaQuotaTeachVocale).

3 – DEVELOPED PROJECT

18

ELSIF codiceComando = CMD_BASSO THEN
 AsseInTeach := 3;
 startPIU := TRUE;
 PIUinCorso := TRUE;
 apppoTargetPos:= QuotaReale[3] + deltaQuotaTeachVocale;
 ELSIF codiceComando = CMD_ALTO THEN
 AsseInTeach := 3;
 startMENO := TRUE;
 MENOinCorso := TRUE;
 apppoTargetPos:= QuotaReale[3] - deltaQuotaTeachVocale;

Ending with the “y” axis, if the received command from the vocal control is a
Downwards Movement (CMD_BASSO) then the axis associated with 3 (y) is selected
and the new coordinate to reach in positive sense is the previous one (QuotaReale[3]) +
the given one (deltaQuotaTeachVocale).
Otherwise, if the received command from the vocal control is an Upwards Movement
(CMD_ALTO) then the axis associated with 3 (y) is selected and the new coordinate to
reach in negative sense is the previous one (QuotaReale[3]) - the given one
(deltaQuotaTeachVocale).

 ELSIF codiceComando = CMD_STOP THEN
 PIUinCorso := FALSE;
 MENOinCorso := FALSE;

If a STOP Command is given (CMD_STOP), then the variables related to positive
(PIUinCorso) and negative (MENOinCorso) movements are reset and the Robot stops

 ELSIF codiceComando = CMD_JOG THEN
 PIUinCorso := FALSE;
 MENOinCorso := FALSE;
 JogTeach := deltaQuotaTeachVocale;
 END_IF
 difuCmdVocale :=0;
END_IF

If the JOG Mode Command is given, the Robot enters in JOG Mode and the new
coordinate to reach is just the given one (deltaQuotaTeachVocale), independently from
the starting point

3 – DEVELOPED PROJECT

19

//to simulate button releasing condition since the axis is in target range
 IF asseInMovimento[AsseInTeach] AND PIUinCorso AND
QuotaReale[AsseInTeach]>= apppoTargetPos-1 THEN
 PIUinCorso := FALSE;
 END_IF

 IF asseInMovimento[AsseInTeach] AND MENOinCorso AND
QuotaReale[AsseInTeach]<= apppoTargetPos+1 THEN
 MENOinCorso := FALSE;
 END_IF

 IF asseInMovimento[AsseInTeach] AND (NOT(PIUinCorso) AND
(NOT(MENOinCorso))) THEN
 Assiif[AsseInTeach].Input.CmdStop:=TRUE;

The referring to a specific axis is given by: ‘AsseInTeach=1’ for z-axis, ‘AsseInTeach=2’
for x-axis and ‘AsseInTeach=3’ for y-axis. If one them is moving (asseInMovimento) in
positive sense (PIUinCorso) and the actual range value (QuotaReale) reaches the chosen
value (apppoTargetPos-1), then the positive moving stops (PIUinCorso := FALSE) and the
same is happening when one axis is moving in negative sense (MENOinCorso); if both
values (PIUinCorso & MENOinCorso) are absent, then the moving according to that
specific axis stops (Assiif[AsseInTeach].Input.CmdStop:=TRUE).

3.2 WORKING TEST ON REAL ROBOT SIMULATOR

After having properly modified the Robot internal code to achieve the required tasks,
it was necessary to test the efficiency of the new code during every single behavior to
be sure that no problems or errors were performed. So, to do that, a simulator of the
real Robot was assembled and connected to the Robot Opus A3 CPU (where the code
was uploaded). This Control Unit has the characteristic to be unpluggable and re-
pluggable in every Robot that supports it: the Robot itself, in fact, is an empty machine
(hardware) unable to move without the connection of the CPU, containing the main
code (software) to be executed.

3 – DEVELOPED PROJECT

20

The assembled simulator is composed by:

• 1x Opus A3 Central Control Unit (Robot Prime)

• 1x Power Supply 95 W 220 V (IN) – 24 V (OUT)

• 3x Driver Micro Eco EWDU (Selema)

• 3x COM RIO Digital I/O EWDU (Esa Automation)

• 3x Brushless Motors (24 V)

A schematic picture of the simulator is shown ahead:

Figure 3.1: Robot Simulator Scheme

To build it up, we started from choosing the three brushless motors used in the real
Robot configuration that were useful to emulate the real ones connected to the three
Robotic Axes (x, y, z). Such motors require three specific Drivers (one each) to be
piloted and they are connected through three control signal wires (u, v, w) that, with
combinations of two of the three signals make the brushless motor windings to
energize and perform a progressive angular rotation.

3 – DEVELOPED PROJECT

21

Figure 3.2: Brushless Motor Working Scheme

The Opus A3 Controller, trough the CANOpen field bus, is commanding the Drivers
making the brushless motors to move and, at the same time, is reading the physical
inputs coming to the COM RIOs from all the sensors placed in the Robot.
Furthermore, it is activating the transistor outputs, relays and electro-valves that
compose the Robot electropneumatic circuit.
The CANOpen bus requires a line impedance of 60 Ohm, present within the CAN-H
cable and the CAN-L cable: inside the simulator this impedance is obtained through a
120 Ohm resistor, applied upstream of the first COM RIO and combining with the one
present inside the Controller.
This is a necessary configuration due to the impossibility of putting a termination
resistor into the last driver (final part of the bus), used as an access point for the
programming and monitoring cable of the individual motors’ drivers.
During the simulations, COM RIOs are not used because they should acquiring
informations from the Robot sensors, not present in the simulator; moreover,
brushless motors require resetting signals (coming back to position zero) that are
simulating during these tests.
The Ethernet cable is connected to the Control Unit USB port (via USB-to-Ethernet
converter), used to connect the Robot to the factory network in a Smart Industrial
optics.
To work properly, all components are supplied by a 95 Watt Power Supply, that
converts the 220 V of Input into the 24 V of output required by Drivers and COM RIOs.

3 – DEVELOPED PROJECT

22

A picture of the real Robot simulator is shown below:

Figure 3.3: Robot Simulator

After having completed the assembling process, the modified CodeSys code was
uploaded; due to the Modbus protocol communication, it was essential to declare the
Modbus holding registers required to store the vocal commands data: by manually
writing them, it was possible to test the chosen tasks.

IF HoldingRegister[R_CH_CMD] > 0 THEN // vocal input

 codiceComando := WORD_TO_INT(HoldingRegister[R_CH_CMD]);

 deltaQuotaTeachVocale := WORD_TO_REAL(HoldingRegister[R_QUOTA]);

// rising up axial JOG command front and put the register value to zero

 HoldingRegister[R_CH_CMD]:=0;

 difuCmdVocale := TRUE;

END_IF

R_QUOTA : INT := 27; // Holding Register acquiring the range value of the reaching point

 deltaQuotaTeachVocale : REAL;

 apppoTargetPos : REAL;

 R_CH_CMD : INT:= 26; // Holding Register acquiring the movement direction command

3 – DEVELOPED PROJECT

23

As we can see in the previous lines, if a numerical value is received ([R_CH_CMD] > 0)

the word is converted into an integer number (WORD_TO_ INT) and stored in the

holding register #27 (R_QUOTA : INT := 27); otherwise if a command word is received

([R_CH_CMD] > 0) it is converted into a real number (WORD_TO_REAL) and stored in

the holding register #26 (R_CH_CMD : INT:= 26).

3.3 MODBUS PROTOCOL

With the name “Modbus” we refer to a Communications Protocol born in 1979 to be
used with PLCs. Though the past years, it became a standard communication protocol
to connect industrial electronic devices.

Regarding industrial applications, it is very easy to be compared to other protocol
standards and it is characterized by many restrictions about transmitted data format.

Besides, Modbus can handle multiple communications within devices connected to the
same Ethernet network. [17]

Object Types provided from a Server to a Client (Modbus devices):

Table 2: Modbus Protocol Object Types

3 – DEVELOPED PROJECT

24

There are different versions of Modbus protocols that support the Internet Protocol

Suite: RTU, ASCII, UDP, RTU-IP, TCP-IP.

Modbus commands can be used to:

• modify the value of a register, written into Coils and Holding registers

• read an I/O port: data read from an Input or a Coil

• command to receive back values contained in Coils and Holding registers

Those commands contain the Modbus addresses of the device (1 to 247) and checksum
information to help the recipient to find transmission errors. [17]

In this project we decided to use the TCP-IP standard (the most used on Ethernet

networks) and the frame format is the sequent:

Table 3: Modbus Frame Format

Functions and commands:

• Coils: readable and writable, 1 bit (on/off)

• Discrete Inputs: read only, 1 bit (on/off)

• Input Registers: read only measurements and status, 16 bits (0 – 65,535)

• Holding Registers: readable and writeable values, 16 bits (0 – 65,535)

[17]

3 – DEVELOPED PROJECT

25

Table 4: Modbus Function Codes

3.4 MODBUS PROTOCOL ON MICROCONTROLLER

The next goal to achieve is the software’s development to be uploaded into the
microcontroller: for that, the widely diffused Arduino Open-Source board was chosen
to guarantee the easily finding of the required hardware modules to implement, just
like software material to compare to.
The Modbus protocol requires communications via Ethernet Cable and to guarantee

such connection, it was mandatory to add an Ethernet Shield board to the Arduino

main board: a figure of both components is following

3 – DEVELOPED PROJECT

26

Figure 3.4: Arduino Uno (left) & Ethernet Shield (right)

To check the correct working of both devices, once joined together and connected via
USB to the Computer, a basic TCP-IP communication setting was compiled and
uploaded into the Microcontroller. This specific code is imposing a MAC address for
the Ethernet Shield, then declaring the Client (Shield) and Server (Computer) TCP-IP
addresses and finally print them on the Arduino’s serial port. Due to some technical
issues, the Ethernet Shield boards didn’t work correctly and showed a specific error:
setting the Client address always to 0.0.0.0

After some researches, a simple DIY solution was found welding two 100 Ohm resistors
within pins 3-6 and 1-2 of the Ethernet connector, as shown below:

Figure 3.5: Ethernet Shield Connector Fixing

3 – DEVELOPED PROJECT

27

The adopted solution seemed to work properly: after that, the Client address was

correctly set on the chosen value (192.168.1.2)

As we can see, the previous code is characterized by the following steps:

• Including the required libraries SPI (Serial Peripheral Interface) and Ethernet
(standard TCP-IP communication protocol)

• declaring a standard MAC address for the Ethernet Shield (0xDE, 0xAD, 0xBE,
0xEF, 0xFE, 0xE8) because it doesn’t have its own printed on the board

• declaring dnServer, gateway and subnet addresses for the TCP-IP Server
(Computer) and just the IP address for the TCP-IP Client (Shield).

3 – DEVELOPED PROJECT

28

The aim of this code is just to ensure that the Ethernet Shield is setting on the chosen
address and properly communicating through the TCP-IP Client/Server Standard
Protocol, therefore there is no VOID LOOP (Main) developed.

The next step is to introduce the Modbus TCP-IP Client/Server Protocol, adapted for
Arduino boards: ahead is reported a list of all the useful commands [18]

#include <ArduinoModbus.h> (this library depends on the ArduinoRS485 library)

Modbus Client

• client.coilRead() int coilRead(int address)

• client.holdingRegisterRead() holdingRegisterRead(int address)

• client.coilWrite() coilWrite(int address)

• client.holdingRegisterWrite() holdingRegisterWrite(int address)

ModbusTCPClient Class

• ModbusTCPClient() ModbusTCPClient(client)

• modbusTCPClient.begin() modbusTCPClient.begin(ip, port)

• modbusTCPClient.connected() modbusTCPClient.connected()

• modbusTCPClient.stop() modbusTCPClient.stop()

ModbusTCPServer

• ModbusTCPServer() ModbusTCPServer()

• modbusTCPServer.begin() modbusTCPserver.begin()

• modbusTCPServer.accept() modbusTCPserver.accept(client)

https://www.arduino.cc/reference/en/libraries/arduinomodbus/client.coilread
https://www.arduino.cc/reference/en/libraries/arduinomodbus/client.coilwrite
https://www.arduino.cc/reference/en/libraries/arduinomodbus/client.holdingregisterwrite
https://www.arduino.cc/reference/en/libraries/arduinomodbus/modbustcpclient
https://www.arduino.cc/reference/en/libraries/arduinomodbus/modbustcpclient.begin
https://www.arduino.cc/reference/en/libraries/arduinomodbus/modbustcpclient.connected
https://www.arduino.cc/reference/en/libraries/arduinomodbus/modbustcpclient.stop
https://www.arduino.cc/reference/en/libraries/arduinomodbus/modbustcpserver
https://www.arduino.cc/reference/en/libraries/arduinomodbus/modbustcpserver.begin
https://www.arduino.cc/reference/en/libraries/arduinomodbus/modbustcpserver.accept

3 – DEVELOPED PROJECT

29

The real Robot is working through reading/writing holding registers, according to the
Modbus communication protocol; therefore, the most useful commands are the
holding register reading (holdingRegisterRead) and the holding register writing
(holdingRegisterWrite).
To implement and test these commands line, the following code was assembled and
checked through a free downloadable Modbus TCP-IP server simulator: the goal is to
have a digital software simulating the real Robot holding registers behaviors on the
computer, avoiding being every time connected with the simulator (heavy and bulky).

3 – DEVELOPED PROJECT

30

In this first part of the code, the following steps are performed:

• Including the required libraries Ethernet (standard TCP-IP communication
protocol) and Arduino Modbus

• Setting a go-to line, when calling the Reset function by the program
• declaring a standard MAC address, Client and Server IP Addresses
• Initializing Serial Monitor and Ethernet Protocol, trying to connect via DHCP

(Dynamic Host Configuration Protocol)

In the second part of the code, the following steps are performed:

• If the connection is failed: printing “connection failed” on serial monitor (above

it is possible to see the real output) and resetting the program

• If the connection is reached: writing the holding register #3 with “147”, writing

the holding register #5 with “65530” (after two seconds), writing the holding

register #7 with “xf” (after two seconds) and finally resetting them back to zero

and resetting the program

3 – DEVELOPED PROJECT

31

Figure 3.6: Modbus TCP-IP Server Simulator Interface

In the previous picture is shown the Modbus TCP-IP server simulator, composed by Coil
Outputs (000000 – 099999), Digital Inputs (100000 – 299999), Analog Inputs (300000
– 399999) and Holding Registers (400000 – 465536).

The Holding Registers Screen is selected to check if the assembled code is properly
working and writing the correct numbers inside the selected registers:

1 modbusTCPClient.holdingRegisterWrite(3, 147) command line wrote correctly a

“147” integer in Register #3

2 modbusTCPClient.holdingRegisterWrite(5, 65530) command line wrote incorrectly

a “-6” integer in Register #5, because the number “65530” exceeded the maximum
value of 32768 (15 bits + 1 for the sign)

3 modbusTCPClient.holdingRegisterWrite(7, 'xf') command line wrote incorrectly a
“30822” integer in Register #7, that’s because the digits “xf” are not numbers

3 – DEVELOPED PROJECT

32

3.5 VOCAL CONTROL SETTINGS ON MICROCONTROLLER

The next goal is implementing a possible design of a vocal control for Arduino Board:

due to Flash Memory problems, leading to a slowing down of the program

computation, it has been necessary to choose a different board with more Flash

Memory. For that, Arduino Mega was chosen:

Figure 3.7: Arduino Uno (left) & Arduino Mega (right)

To perform a proper communication between Mobile Phone and Microcontroller,

Bluetooth is indeed the fastest and most reliable solution: therefore, a HC-05

Bluetooth Transmitter/Receiver module compatible with Arduino was chosen for this

aim. Furthermore, to avoid checking every time the serial monitor, a Liquid Crystal

Display (LCD) with I2C interface was added to the main circuit.

Figure 3.8: Liquid Crystal Display (left) & HC-05 Bluetooth Tx/Rx (right)

3 – DEVELOPED PROJECT

33

To connect all the previously listed modules with the main board, the following circuit

configuration was developed:

Figure 3.9: Starting Circuit Scheme

This scheme is characterized by the following connections:

1 Ethernet Shield mounted on the Arduino Mega board

2 5V coming from Arduino’s supply pins linked to one of the four breadboard supply

lines (positive and negative pins)

3 HC-05 and LCD modules linked to the same breadboard 5V line to be supplied

(positive and negative pins)

4 HC-05 transmitter pin connected to A8 pin (receiver) of Arduino board

5 LCD Data Signal pin connected to Pin 20 (SDA Port)
6 LCD Clock Signal pin is connected to Pin 21 (SCL Port).

3 – DEVELOPED PROJECT

34

3.6 VOCAL CONTROL MOBILE APP BUILD

For simplicity reasons, to send vocal commands to the Bluetooth receiver, an Android

mobile phone was selected; for this aim, a mobile phone vocal control App required to

be implemented: one of the most direct and intuitive ways is indeed a block-structured

free Android App editor (Open-Source) called “App Inventor”. [19]

The revolution brought from this editor is that, instead of writing and compiling

standard programming code, it provides a logical and faster way to compile

instructions and functions blocks, showing a specific App screen in the connected

device. The blocks configuration built is the sequent:

Figure 3.10: Mobile App Blocks Configuration

3 – DEVELOPED PROJECT

35

As we can see in the previous figure, it is composed by four main blocks:

1 The first block is creating a list of all possible Bluetooth devices to connect to:

before selecting one device (.BeforePicking), the block is setting the list

(ListPicker1) with all the elements (.AdressesAndNames) coming from the mobile

phone Bluetooth searching component (BluetoothClient1) implemented in it

2 The second block is performing a connection to the selected Bluetooth module:

after have selected one device (.AfterPicking), the block calls a connection function

(.Connect) linking to the chosen device address (.Selection) and, if the device is

connected (.IsConnected), then set the text “Connected” into the label

(ListPicker1); otherwise set the text “Not Connected” into it

3 The third block is converting pronounced words into text: when the SPEAK button

is pressed, the block is calling the SpeechReconizer1 component by directly linking

to the Android Google Vocal Assist and, through it, converting words in a text string

4 The fourth block is sending the acquired text via Bluetooth: after having gotten the

text string (.AfterGettingText), if the Bluetooth device is still connected

(.IsConnected) then send (.SendText) the text string (result) via Bluetooth and print

the same text into the Label1

Figure 3.11: Vocal App Screen

3 – DEVELOPED PROJECT

36

The related App screen is composed by:

• “List Picker 1” to choose the Bluetooth device to connect to

• “SPEAK button” to start listening from the Vocal Assistant

• “Label 1” to check that the vocal input is correctly interpretated into a string

By touching “ListPicker1” button, a list of Bluetooth connectible devices appears

(Addresses & Names), and it is possible to select the required one (HC-05). After having

picked it up, the App (“BluetoothClient1”) connects to the selected address (Selection)

and changes the text of the “ListPicker1” button in “Connected” or “Not Connected”,

depending on the outcome of the connecting transition. When the “SPEAK” button is

clicked, “SpeechReconizer1” component links to mobile phone vocal assistant and

converts words in a text string (result). After that, the resulted text is sent via Bluetooth

to the HC-05 receiver and to the “Text for Label1” label to check the correct

interpretation of the words. By downloading the free “AI2 Companion” App on the

Mobile device, it is possible to upload and compile the program to obtain such

screenshot configurations (before and after):

Figure 3.12: Vocal App Mobile Phone Screenshots

Starting from the initial screen, the following steps are performed:

1 Click on “Text for ListPicker1” label and select the HC-05 module

2 Waiting for connection (“Text for ListPicker1” will turn into “Connected”)

3 Click on SPEAK button and pronounce the wanted command

4 Waiting for the Vocal Assistant to convert words in text and send it via Bluetooth

(“Text for Label1” will turn into the command word, in this case “avanti”)

37

Chapter 4

REAL IMPLEMENTATION

4.1 REAL CONFIGURATION BUILDING

We pass now to the real circuit (and relative code) building: once checked that the

Mobile phone App is interpretating and sending words correctly via Bluetooth to the

HC-05 receiver, the next step is to implement a 9V battery and an ON/OFF switch, to

let the circuit be self-supplied and free from the USB cable (required just to upload the

code): in this way it is possible to connect the complete circuit directly to the Robot

Control Cabinet just with an Ethernet Cable.

Figure 4.1: Final Circuit Scheme

4 – REAL IMPLEMENTATION

38

As we can see on the picture above, a 9V battery holder was added and connected to
the secondary supply line of the breadboard, then connected to the switch and in the
end, through a proper round connector, strictly linked to the Arduino 9V-12V supply
port. The other part of the circuit staid the same as before, with the primary supply line
of the breadboard connected to the 5V Arduino Supply Output and to the two modules
(HC-05 and I2C LCD).
On Arduino Board, A8 Pin (Receiver Port) is connected to the HC-05 Tx Pin (Transmitter
Port) and for the I2C LCD, the Data Signal Pin is connected to the Pin 20 (SDA Port) and
the Clock Signal is connected to the Pin 21 (SCL Port).
In the next picture, it is possible to see the real circuit assembled and perfectly working:

Figure 4.2: Final Circuit Configuration

To be able to connect via Ethernet all the devices together, it was necessary the usage

of an Ethernet Switch, automatically acquiring all the addresses and letting the

communication within each other.

4 – REAL IMPLEMENTATION

39

The Ethernet Switch is connecting:

• the Opus A3 Robot Control Unit (via USB-to-Ethernet converter)

• the Notebook, where it is possible to supervise both Arduino’s Serial Monitor

and the Robot Control Unit (RCU) monitor (not mandatory connection)

• the implementation of Arduino board circuit (via Ethernet Shield)

The USB cable is connecting:

• the Notebook, to upload the assembled code

• Arduino board circuit

The Bluetooth is connecting:

• The mobile phone vocal control App (to perform voice recognition)

• HC-05 receiver, mounted on the Arduino board circuit

A scheme of these connections is shown in the next figure:

Figure 4.3: Connections Scheme

4 – REAL IMPLEMENTATION

40

4.2 FINAL CODE ASSEMBLING

Regarding the up-loadable code, considering the previous codes developing, a final

version is implemented in this way:

The final code is performing the following steps:

• Including of all the required libraries: Ethernet protocol (“Ethernet.h”), Modbus

protocol (“ArduinoModbus.h”), Bluetooth Transmitting/Receiving serial

protocol (“SoftwareSerial.h”), I2C LCD Display (“LiquidCrystal_I2C.h”), Serial

Peripheral Interface (“SPI.h”)

• A Reset function is declared so that, when called, the code will restart from this

line on

4 – REAL IMPLEMENTATION

41

• Declaring a standard MAC address, Client and Server IP Addresses
• Initializing Serial Monitor and Ethernet Protocol, trying to connect via DHCP

(Dynamic Host Configuration Protocol)
• Setting up HC-05 Transmitting and Receiving Serial Ports and serial function

• Declaring variables (“data” as a string and “num” as an integer)

• Declaring LCD with I2C (0x27) interface (16 columns and 2 rows)

• Initialing LCD, serial monitor and data receiving serial function

4 – REAL IMPLEMENTATION

42

Continuing with:

• Initializing the Ethernet TCP-IP protocol

• Modbus Client (Arduino) trying to establish a connection with the Modbus

Server (Robot Control Unit)

• Depending on the result, printing on both serial monitor and LCD the current

status (Connected or not)

• Reached the connection, Ethernet communication and TCP Client are set and

ready for the main part (void loop) to start

Inside the Void Loop, every time a new word is pronounced, the “data” variable must

be reset (data = "";) and get ready to read a new string (words or numbers) coming

from the Bluetooth transmitter (data = mySerial.readString();).

If the first digit of the string is a number, “data” variable (string) will be converted into

“num” variable (integer) and written into holding register #27 (this register can contain

specific instruction or axial range in the form of positive numbers).

In this case, the Robot Control Unit is going to wait for a specific request (such as an

axial movements) and, after having received it, both Serial monitor and LCD will print

the text “Direction?”, to let the user know that after a specific range (in millimeters) it

is required a direction and a sense to be performed.

4 – REAL IMPLEMENTATION

43

Regarding basic movements, once given the range (converted into a number), it is

possible to choose a direction along the three axes:

• Rightward direction: after having pronounced the word “destra” (right), the

Robot will move along z axis (positive sense), by the writing of the holding

register #26 with “1” (related to a rightward movement) and of the holding

register #27 with the specific range

• Leftward direction: after having pronounced the word “sinistra” (left), the

Robot will move along z axis (negative sense), by the writing of the holding

register #26 with “2” (related to a leftward movement) and of the holding

register #27 with the specific range

4 – REAL IMPLEMENTATION

44

• Frontward direction: after having pronounced the word “avanti” (ahead), the

Robot will move along x axis (positive sense), by the writing of the holding

register #26 with “3” (related to a frontward movement) and of the holding

register #27 with the specific range

• Backward direction: after having pronounced the word “indietro” (back), the

Robot will move along x axis (negative sense), by the writing of the holding

register #26 with “4” (related to a backward movement) and of the holding

register #27 with the specific range

• Downward direction: after having pronounced the word “basso” (down), the

Robot will move along y axis (positive sense), by the writing of the holding

register #26 with “5” (related to a downward movement) and of the holding

register #27 with the specific range

• Upward direction: after having pronounced the word “alto” (up), the Robot will

move along y axis (negative sense), by the writing of the holding register #26

with “6” (related to an upward movement) and of the holding register #27 with

the specific range

4 – REAL IMPLEMENTATION

45

Regarding main modes entering, once given an instruction (converted into a number),

one of the following possibilities can be performed:

• STOP Command: in any case, after having pronounced the word “Stop”, the

Robot will strictly stop, independently from the performing action, by the

writing of the holding register #26 with “7”

• JOG Mode: after having pronounced the word “Jog”, the Robot will enter in the

so-called JOG Mode, in which it is moving according to the selected coordinate

system, by the writing of the holding register #26 with “8”

• TEACH Mode: after having pronounced the words “Modalità Teach” (Teach

Mode), the Robot will enter in the so-called TEACH Mode, in which it is

instructed in its specific motions and trajectories, by the writing of the holding

register #26 with “9”

4 – REAL IMPLEMENTATION

46

• STEP Mode: after having pronounced the word “Step”, the Robot will enter in

the so-called STEP Mode, in which it is moving in a step-by-step way, performing

the selected path, by the writing of the holding register #26 with “12”

• AUTO Mode: after having pronounced the word “Auto”, the Robot will enter in

the so-called AUTO Mode, in which it is moving automatically, performing the

selected trajectories, by the writing of the holding register #26 with “13”

• RESET Function: after having pronounced the word “reset”, the entire program

will restart from the very beginning, simulating a manual reset (by pressing the

dedicated button).

47

Chapter 5

FINAL TESTS

5.1 FINAL CODE WORKING TEST

The aim of this part is performing the final working tests, starting from the built code:

by receiving some commands, the serial monitor must print the correct words and in

the TCP Modbus simulator the specific holding registers must be written.

• Movement to the rightward direction about 76 mm

Figure 5.1: Modbus TCP-IP Server Simulator (Rightward Movement)

5 – FINAL TESTS

48

After having successfully connected to the server simulator (192.168.1.4), it was first

pronounced the word “76”, that the program recognized as a number and wrote it on

the Holding Register #27; after that it was pronounced the word “destra” (right) that

the program recognized as a rightward movement command and wrote the Holding

Register #26 with the number 1.

• Movement to the downward direction about 34 mm

Figure 5.2: Modbus TCP-IP Server Simulator (Downward Movement)

This time it was first pronounced the word “34”, that the program recognized as a

number and wrote it on the Holding Register #27; then it was pronounced the word

“basso” (down) that the program recognized as a downward movement command and

wrote the Holding Register #26 with the number 5.

5 – FINAL TESTS

49

• Movement to the frontward direction about 52 mm

Figure 5.3: Modbus TCP-IP Server Simulator (Frontward Movement)

Just as before, Holding Register #27 was written with the range number (52) and

Holding Register #26 with the number 3 (associated to a frontward movement).

• STOP Command

Figure 5.4: Modbus TCP-IP Server Simulator (STOP Command)

5 – FINAL TESTS

50

Safety word “STOP” must work properly: after having pronounced it, the Holding

Register #26 is written with the number 7 (associated to a stopping action).

• TEACH Mode Command

Figure 5.5: Modbus TCP-IP Server Simulator (TEACH Mode Command)

The Teach Mode is useful to choose a specific point in the cartesian plane to reach by

the Robot’s end-effector: after having pronounced the word “Modalità Teach” (Teach

Mode) the program write the Holding Register #26 with the number 9, waiting for a

new range value (in millimeters).

5 – FINAL TESTS

51

5.2 CIRCUIT AND MOBILE APP WORKING TEST

The same already done tests must now be performed on the circuit implementation

and the uploaded mobile app.

• Movement to the rightward direction about 76 mm

Figure 5.6: Microcontroller (Rightward Movement 1)

Figure 5.7: Microcontroller (Rightward Movement 2)

Figure 5.8: Microcontroller (Rightward Movement 3)

The program starts and the Microcontroller tries to establish a connection with the

Modbus TCP server (virtual or real simulator): when correctly connected, the word

“Connesso” (Connected) will be printed on the LCD. Now, to perform a movement, it

is firstly required to specify the precise range value (in millimeters): such value will

appear and, after a bit, the word “Direzione?” (Direction?) will be printed on the LCD.

Finally, it must be declared the direction and a pair of letters (Dx = right) will appear on

the LCD.

5 – FINAL TESTS

52

• STOP Command

Figure 5.9: Microcontroller (STOP Command)

To perform a Stopping action, after having pronounced the related word, the word

“STOP” will be printed on the LCD.

• TEACH Mode Command

Figure 5.10: Microcontroller (TEACH Mode Command)

To enter in TEACH Mode, after having pronounced the related word, the words

“Modalità Teach” (Teach Mode) will be printed on the LCD.

• RESET Command

Figure 5.11: Microcontroller (RESET Command)

To perform a RESET action, after having pronounced the related word, the words

“Reset in” will appear on the LCD, followed by a countdown from 3 to 0.

At the end of the count, the microcontroller will self-reset from the very begging, trying

again to connect to the server.

5 – FINAL TESTS

53

5.3 FINAL TESTS AND RESULTS WITH REAL ROBOT

To perform the last and most important tests, the real Rhea Prime Cartesian Robot was

settled down on a fixed structure surrounded by empty space to be easily controlled,

avoiding accidental crashes with possible adjacent surfaces.

The same main tasks already performed with the TCP Modbus simulator and the circuit

implementation are now tested on this real Robot settlement:

• Movement to the rightward direction about 600 mm

Figure 5.12: Real Robot (Rightward Movement)

• Movement to the downward direction about 200 mm

Figure 5.13: Real Robot (Downward Movement)

5 – FINAL TESTS

54

By directly performing movements, the starting point of the Robotic Cycle (the origin

by default) will change according to the new chosen coordinates: once putted in Auto

Mode in fact, the Robot will perform the cycle reaching the arrival point and coming

back to the new starting point.

• TEACH Mode Command

Due to Robot internal safety reasons, once entered in Teach Mode, it is possible to give

the Teach confirmation command just manually on the Control Unit Pad, after having

inserted and turned a specific key: this command was therefore vocally avoided and

every time given manually.

Figure 5.14: Real Robot (Manual TEACH Command Confirmation)

By giving movements commands in Teach Mode, the arrival point of the Robotic Cycle

will change according to the new chosen coordinates: once putted in Auto Mode in

fact, the Robot will perform the cycle reaching the new arrival point and coming back

to the previous starting point.

• STOP Command

Eventually, the last tested task was the ability of the vocal control to promptly perform

a STOP Emergency Command: unfortunately, after having pronounced the command

word, the vocal App requires approximately 2 seconds to call the vocal assistant,

convert the word into text and send it; furthermore, the microcontroller requires

approximately 1 second to interpretate the command and write the related holding

register. In total, a 3 seconds delay is required to effectively see the Robot stopping,

after the given command: this is not conformed with the readiness which should

characterized such an Emergency Command (maybe given in a dangerous situation).

55

CONCLUSIONS AND POSSIBLE

APPLICATIONS

In this treatise, a vocal control developing, implementing and building procedure for
an industrial cartesian Robot was discussed. It consisted in:

1. Vocal control settings on microcontroller and respective Robot programming
modification to establish a proper Modbus communications protocol

2. Real configuration building (code, circuit and connections)

3. Final Tests on code, circuit and real Robot

To maintain the typical Cartesian Robot characteristics, the following main aspects

should have been respected:

• Safety

In industrial installations, Cartesian Robots are always working in safety
conditions: the workspace is settled to be far from human presence (often due
to physical barriers), with possibility of Stop and Emergency safety Commands
to block the Robot in case of necessity.
For the final tests on the real Robot, the same safety conditions were respected,
with the addition of a further safer and faster way to block the Robot: human
voice.

• Fast Response

Cartesian Robots are characterized by a very fast response to a given command
(centesimals of seconds); final tests showed that the built architecture requires
around three seconds to perform a Stop Command action: this amount can be
accepted to send movement commands but can’t be accepted for Emergency
ones where immediacy is essential.
This result is mainly due to the Android integrated Google assistant, that
requires around two seconds to understand that the user ended to speak, then
interpretate the pronounced words and finally send them to the

CONCLUSIONS AND POSSIBLE APPLICATIONS

56

microcontroller (very fast to elaborate received commands). The choice of a
faster vocal assistant can speed up the acquiring process and therefore, the
total interpretation speed.

• Accuracy

Regarding industrial Robots, Cartesian Ones are certainly the most precise with
a tolerance in the range of micrometers (μm); for convenience reasons, the
Robot programming modifications were made to receive and perform
movements in the order of millimeters (mm) but, acting directly on holding
registers, the Robot would have anyway respected the same accuracy, even
with micrometric movements commands.

A Man-Robot voice interaction proved to be a promising method for Industrial Robots

trajectory planning in the next future. From a human point of view, this communicating

typology is the most natural and intuitive: as we can see in many other fields

(automotive for example), this type of vocal functionality is already available. In an

industrial settlement, this solution can provide to operators an easier, faster and closer

communication with machines (just like in every other application where Man-Robot

cooperation is essential).

In conclusion, the proposed project showed that, even with a not so complex software

and hardware implementation, it is practically possible to interact through voice

commands with an industrial Robot that is normally configured as an automatic

machine (fixed cycle): these results, open to the possibility of switching from the typical

Robot Control Override (via Digital Control Unit) to a vocal interface that allows the

user to be free handed and use just short words to give direct commands, such as the

Emergency ones (Stop/Reset) that, in a situation of danger for example, are required

with a certain readiness.

Furthermore, for what concerns the Smart Industry, the possibility of linking together
all the machines present in an industrial settlement can make communications even
faster, with the chance of vocally controlling not just a single Robot, but all the entire
automatic production, further narrowing the boundary between humans and
machines.

57

BIBLIOGRAPHY

[1] https://en.wikipedia.org/wiki/Fourth_Industrial_Revolution

[2] Lin, I. H., Liu, C. Y., Chen, L. C., "Evaluation of Human-Robot Arm Movement
 Imitation", Proceedings of 8th Asian Control Conference (ASCC), pp.287-292,
2011

[3] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664672

[4] https://en.wikipedia.org/wiki/Industrial_robot

[5] International federation of robotics (IFR), “World Robotics”, Switzerland: United
Nation, 2005

[6] Kabuka, R. M., Glaskowsky, N. P., Miranda, J., "Microcontroller-Based
 Architecture for Control of a Six Joints Robot Arm”, IEEE Transactions on
 Industrial Electronics, Issue 2, Vol. 35, pp.217-221, 1988

[7] Kuttan, A., “Robotics”, India: I.K. International publishing house, 2007

[8] Saha, S. K., “Introduction to Robotics”, India: Tata McGraw-Hill publishing

company Ltd., 2008

[9] Bagad, V. S., “Mechatronics” India: Technical Publication Pune, 2008

[10] Roa, P. N., “CAD/CAM Principles and Applications 3rd Edition”, India: Tata
McGraw Hill Education private Ltd., 2010

[11] Nof, Y. S., “Handbook of industrial robotics, volume 1”, Canada: John Wiley &

Sons, 1999

[12] Merlet, J. P., “Parallel Robots: Second Edition”, Netherlands: Springer, 2006

[13] https://control.com/technical-articles/what-are-cartesian-robots

https://en.wikipedia.org/wiki/Fourth_Industrial_Revolution
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664672
https://en.wikipedia.org/wiki/Industrial_robot
https://control.com/technical-articles/what-are-cartesian-robots/

BIBLIOGRAPHY

58

[14] Sanchez, S. P., Cortes, R. F., “Cartesian Control for Robot Manipulators, Robot
Manipulators Trends and Development”, 2010

[15] Arian Faravar, “Design, Implementation and Control of a Robotic Arm Using

PIC 16F877A Microcontroller”, 2014

[16] https://www.campetella.com/en/cartesian-top-entry-robots/rhea-prime

[17] https://en.wikipedia.org/wiki/Modbus

[18] https://www.arduino.cc/reference/en/libraries/arduinomodbus

[19] https://appinventor.mit.edu

https://www.campetella.com/en/cartesian-top-entry-robots/rhea-prime/
https://en.wikipedia.org/wiki/Modbus
https://www.arduino.cc/reference/en/libraries/arduinomodbus
https://appinventor.mit.edu/

59

APPENDIX

FINAL BUILT CODE

APPENDIX

60

APPENDIX

61

APPENDIX

62

UNMODIFIED ROBOT NATIVE CODE (STANDARD AXIAL JOG)

[Property of “Campetella Robotic Center S.R.L.”]

// **
// -------------------------------- Axial JOG movements through “AbsExecute comand --------------------
// **

 IF AsseInTeach >0 AND NOT GoingToTRJT THEN
 IF Assiif[AsseInTeach].Input.AbsExecute THEN
 Assiif[AsseInTeach].Input.AbsExecute:=FALSE;

 // Self-held to avoid reset if more than one axis moves

 Z_Axis_Moved:=Z_Axis_Moved OR (AsseInTeach.0 AND
(NOT(AsseInTeach.1)));
 X_Axis_Moved:=X_Axis_Moved OR (AsseInTeach.1 AND
(NOT(AsseInTeach.0)));
 Y_Axis_Moved:=Y_Axis_Moved OR (AsseInTeach.0 AND
AsseInTeach.1);
 END_IF

 IF asseInMovimento[AsseInTeach] AND (NOT(common.KeysF[6].clk))
AND (NOT(common.KeysF[7].clk)) THEN
 //assiif[AsseInTeach].Par.StopDec :=
assiif[AsseInTeach].Par.AbsDec*10;
 Assiif[AsseInTeach].Input.CmdStop:=TRUE;
 IF tomdelay > DERATA_MIN_STEP then //30 THEN 7ms
 OK_NuovoStart := TRUE;
 ELSE
 OK_NuovoStart := FALSE;
 tomdelay := tomdelay +1;
 END_IF
 END_IF

 IF common.KeysR[6].Q AND OK_NuovoStart THEN //premuto PIU
 Assiif[AsseInTeach].Input.CmdStop:= FALSE;
 Assiif[AsseInTeach].Par.AbsVel:=
AssiIf[AsseInTeach].Par.Vel_Max * ((UINT_TO_REAL(assiPar[
AX_VELMAN].valPar[AsseInTeach]) / 100)) *(JogTeach /100);

m
a

 IF tipoMeccanica = EVO_ROBOT THEN
 Assiif[AsseInTeach].Par.AbsAcc:=
AssiIf[AsseInTeach].Par.Acc_Max * (JogTeach /100) * 10;
 ELSE

APPENDIX

63

 Assiif[AsseInTeach].Par.AbsAcc:=
AssiIf[AsseInTeach].Par.Acc_Max * (JogTeach /100);
 END_IF

 Assiif[AsseInTeach].Par.AbsPos:=
assiPar[AX_CORSAMAX].valPar[asseInTeach]/10;
 Assiif[AsseInTeach].Input.AbsExecute:=common.KeysR[6].Q;
 tomdelay := 1;
asseInMovimento[AsseInTeach] := TRUE;
 END_IF

 IF common.KeysR[7].Q AND OK_NuovoStart THEN//premuto
MENO
 Assiif[AsseInTeach].Input.CmdStop:= false;
 Assiif[AsseInTeach].Par.AbsVel:=
AssiIf[AsseInTeach].Par.Vel_Max * ((UINT_TO_REAL(assiPar[
AX_VELMAN].valPar[AsseInTeach]) / 100)) *(JogTeach /100);

/

à

 IF tipoMeccanica = EVO_ROBOT THEN
 Assiif[AsseInTeach].Par.AbsAcc:=
AssiIf[AsseInTeach].Par.Acc_Max * (JogTeach /100) * 10;
 ELSE
 Assiif[AsseInTeach].Par.AbsAcc:=
AssiIf[AsseInTeach].Par.Acc_Max * (JogTeach /100);
 END_IF
 IF RobotStatus = def.MANUAL THEN // can’t go under 0
 Assiif[AsseInTeach].Par.AbsPos:= 0;
 ELSE
 Assiif[AsseInTeach].Par.AbsPos:= -
(UINT_TO_INT(assiPar[AX_CORSAMAX].valPar[asseInTeach]/10));
 END_IF
 Assiif[AsseInTeach].Input.AbsExecute:=common.KeysR[7].Q;

 tomdelay := 1;
 asseInMovimento[AsseInTeach] := TRUE;
 END_IF

 END_IF

END_IF

