
POLITECNICO DI TORINO

Master’s Degree
in Mechatronics Engineering

Master’s Degree Thesis

Image Processing for Self-Driving Cars

Supervisor Candidate
prof. Stefano Malan Cristina Chicca

Academic Year 2021-2022

Contents

1 Introduction 5

2 Bosch Future Mobility Challenge 8
2.1 Introduction . 8
2.2 The Competition . 8
2.3 The Car-Kit . 11
2.4 The Project . 12

2.4.1 Competition Documentation and First Steps 12
2.4.2 Brain Project . 13
2.4.3 Embedded Project . 13
2.4.4 GITHUB . 14

2.5 The Structure behind the Algorithms 14

3 Files communication 16
3.1 Parallelism, Thread and Processes 16
3.2 The Main.py file . 19
3.3 Server Communication and UDP . 20

4 Image Processing 24

5 Lane Detection and Follow (LD & LF) 28
5.1 Hough Transform method . 28

5.1.1 Edge Detection . 29
5.1.2 Region Of Interest . 30
5.1.3 Lanes Detection . 31
5.1.4 Calculate and Display Heading Lines 32

5.2 Perspective correction and Histogram statistics method 35
5.2.1 Perspective Correction . 36
5.2.2 Thresholding . 38
5.2.3 Histograms . 39
5.2.4 Sliding Window Method . 39

5.3 Comparison . 42
5.4 Intersection Detection . 43

6 Traffic Sign Recognition 46
6.1 Linear SVM classifier . 47
6.2 Tensorflow-based Neural Network . 51
6.3 Results comparison . 54

7 Traffic Light Detection 55
7.1 Color Detection . 57
7.2 Mask Definition . 59
7.3 Pixel intensities using Histograms . 60
7.4 Algorithm implementation . 61

8 Object Detection 64
8.1 Pedestrian Detection . 66
8.2 Semaphore and Car Detection . 70

1

9 Conclusions 74

2

List of Figures

1 ADAS main features according to sensors placement. 6
2 PoliTron team logo. 8
3 Test Track. 9
4 Bosch Future Mobility Challenge 2022 - Timeline. 10
5 Bosch Future Mobility Challenge 2022 - Best New Participating Team

Award. 11
6 Car with the listed Components. 12
7 BFMC website - Layout of the Shared Documentation. 12
8 Architecture of the completed project. 15
9 Threads parallelism. 17
10 Comparison between TCP and UDP protocols. 21
11 Fundamentals of UDP socket programming. 23
12 PiCamera v2.1 set-up. 24
13 ROIs for some Image Processing algorithm. 26
14 Relationship between Camera, Detection Process and Motor. 27
15 Hough Transform method scheme. 28
16 Steering angle variation according to the value of curvature. 33
17 Representation of x offset and y offset for calculation of steering angle. 34
18 Perspective correction and histogram statistics method scheme. . . . 35
19 Output of the LD algorithms. 42
20 Inclination of the Raspberry Pi Camera. 44
21 Flow Chart for Traffic Sign Detection. 46
22 Traffic Signs to recognize from the BFMC22. 47
23 Linear SVM optimal hyperplane. 48
24 Linear SVM TSD output. 50
25 Simple Neural Network. 51
26 Leaky ReLU and Parametric ReLU. 53
27 Semaphore used in the BFMC22 (left) versus Real Traffic Lights (right). 55
28 HSV color space model. 57
29 Comparison between RGB and HSV color space. 58
30 Color Mask Detection. 59
31 Histogram plots of green, yellow and red channels respectively when

green is in ON condition. 61
32 Basic block diagram of object detection process. 64
33 HOG descriptor applied to the pedestrian utilized in the BFMC22. . 66
34 Pedestrian detector applied on random images from the web. 69
35 Pedestrian detector applied on an image of the competition track of

the BFMC22. 70
36 Approximation function with epsilon equal to 10% (left) and 1%

(right) of the arc length of the curves. 72
37 Approximation function applied to a semaphore: 3 circles detected. . 72
38 Approximation function applied to a car (front and rear views): 1

ellipse detected. 73

3

List of Tables

1 Camera settings. 25
2 Brightness and saturation values for ON/OFF conditions of the traffic

light. 58
3 detectMultiScale parameters in case of correct and wrong pedestrian

detection. 70

4

1 Introduction

Self-driving vehicles are steadily becoming a reality and they could change our world
in unexpected ways. According to the mere definition, self-driving cars incorporate
vehicular automation, meaning a ground vehicle capable of sensing its environment
and moving safely with little or no human input. They incorporate a wide variety of
sensors such as thermographic cameras, radar, lidar, sonar, GPS, odometry, Inertial
Measurements Units (IMU) and advanced control systems interpret this sensory in-
formation to allow a safe journey, respecting the road and traffic signs, identifying
appropriate navigation paths and behaving correctly in presence of obstacles. The
promise of driverless technology has long been enticing due to its potential to take
people out of high-risk working environments, streamline the industries and, most
importantly, transform the experience of traveling assuring more safety. The World
Health Organization estimates that more than 1.3 million people die every year as
a result of road traffic crashes [1]; in fact, human errors cause 90% of car incidents.
Currently, Waymo self-driving vehicles from Google have covered the most kilome-
ters without any incidents and with human intervention needed every 21 to 9000 km
on average. Traffic jams from the big cities can be avoided: IBI Group’s report [2]
mentioned that self-driving cars could enable more efficient, user friendly and low
cost on demand transportation services even in low demand areas. Another ma-
jor impact is derived from the reduction of carbon emissions because personal cars
will not be necessary anymore, paving the way for more sustainable ways of living.
The ultimate vision experts are working towards completely driverless vehicles, both
within industry, wider transport networks and, in case, personal-use cars that can
be deployed and used anywhere and everywhere around the world.

In order to grasp more practical solutions that currently exist, the Society of
Automotive Engineers (SAE) provides six classifications of autonomous vehicles [3],
from Level 1 to Level 5 according to the extension to which a human intervention
is needed to drive and monitor the vehicle and its surrounding environment. More
in details:

• Level 0 (No Driving Automation): the driver is fully responsible for every
decision, including reacting to hazards.

• Level 1 (Driver Assistance): cars which have systems for driver assistance such
as cruise control. Some examples consists in adaptive cruise control where the
vehicle can keep a safe distance behind the next car, and park assist feature
where the driver needs to control the speed of the vehicle while the car controls
the steering. It is the lowest level of automation.

• Level 2 (Partial Driving Automation): this means Advanced Driver Assistance
Systems (ADAS). The car has internal systems that take care of all aspects of
driving and the driver must be able to take control of the car at any time if
any part of the system fails.

• Level 3 (Conditional Driving Automation): if compared to level 2, this level
is more a technological perspective than human perspective and these vehicles
can be truly considered autonomous.

• Level 4 (High Driving Automation): vehicles can take decisions even if things
go wrong or the system fails and they are so capable that the driver is not

5

required to intervene at all. The restriction is that they operate in self-driving
mode only within limited area (geofencing), otherwise the driver must take the
control or the car must be able to get itself to a safety zone.

• Level 5 (Fully Driving Automation): these vehicles will not have steering wheel
or acceleration and braking pedals and will be free from geofencing. There is
no legislative structure for cars of this level.

Although much work is still essential to reach from Level 3 to Level 5 solutions,
most modern cars already have Level 1 to Level 2. Some examples are found in the
BMW iX which comes with Level 2 semi-autonomous driving features that rely on
12 ultrasonic sensors, 5 cameras and 5 radar sensors and the Tesla Model 3 which
comes with autopilot and full-self driving capability that rely on a powerful onboard
computer [3].

The main characteristic of these categories is summarized in what is known as
ADAS, aiming at assisting drivers reducing the number of car accidents. As shown
in Fig. 1, essential safety-critical ADAS applications include [4]:

• Pedestrian detection/avoidance

• Lane departure warning/correction

• Traffic sign recognition

• Automatic emergency braking

• Blind spot detection

Figure 1: ADAS main features according to sensors placement.

The autonomous system needs to sense the environment, to determine the exact
position on the road and needs to decide how it should behave in a given situation:
this is the reason why self-driving cars are highly dependent on software to bridge
the gap between sensor physics and the mechanical actuation of the vehicle. In this
context, the utilization of image processing is crucial: the implementation of cameras
in the vehicle involves a new Artificial Intelligence (AI) function that uses sensor
fusion to identify and process objects. Sensor fusion combines large amounts of data
with the help of image recognition software, ultrasound sensors, lidar and radar;

6

summarizing, this technology can analyze streaming video in real time, recognize
what the video shows and determine how to react to it. More practically, radars
enables the detection of vehicles and other moving objects around the car, front
facing camera helps to detect and recognize objects like cars, trees, driving lane,
humans, traffic signals and other important data.

In this work, the focus will be on the imaging where cars perform object detec-
tion, in particular:

• Lane Detection and Follow

• Intersection Detection

• Traffic Sign Detection

• Traffic Light Detection

• Object Detection

More specifically, image processing has been used on a particular car prototype
granted by Bosch in a special challenge regarding exactly the autonomous drive.
The content of the chapters is therefore briefly explained:

• Chapter 2: Details about Bosch Future Mobility Challenge and the overall
project, including software and hardware components.

• Chapter 3: Explanation of the communication between files, including crucial
Python utilities and communication with LAN and UDP.

• Chapter 4: Introduction to Image processing, details about the utilized camera
and important aspects common to image processing algorithms.

• Chapter 5: Explanation of 2 main Lane Detection algorithms, one using the
Hough Transform method, the other using Histogram Statistics method and
final comparison of the performance. Moreover, a particular attention is given
to Intersection Detection.

• Chapter 6: Description of Traffic Sign Recognition using both a linear SVM
classifier and a Tensorflow-based neural network. At the end, they are com-
pared analysing both advantages and disadvantages.

• Chapter 7: An amateur Traffic Light Detection algorithm is provided, analysing
methods for color detection and calculation of pixel intensities.

• Chapter 8: The analysis of a first Object Detection algorithm is performed,
subdividing the topic into Pedestrian Detection and Semaphore and Car De-
tection, the former exploiting a built-in function in OpenCV, the latter a
shape-based function.

• Chapter 9: Conclusions about the work done and suggestions on further de-
velopments are reported.

7

2 Bosch Future Mobility Challenge

2.1 Introduction

This work has been realized based on the effort and the assignments performed dur-
ing the participation to the so-called Bosch Future Mobility Challenge (BFMC): it
is an international autonomous driving and connectivity competition for bachelor
and master students organized by Bosch Engineering Centre Cluj since 2017. The
competition invites student teams from all over the world every year to develop au-
tonomous driving and connectivity algorithms on 1 : 10 scaled vehicles, provided by
the company, to navigate in a designated environment simulating a miniature smart
city. The students work on their projects in collaboration with Bosch experts and
academic professors for several months to develop the best-performing algorithms.

The author of this work has joined the challenge under the team PoliTron (Fig.
2) composed by 4 other colleagues from the master’s degree program in Mechatronic
Engineering of the Polytechnic of Turin, with the guidance of the supervisor himself,
Professor Stefano Malan.

Figure 2: PoliTron team logo.

The job to carry out during the challenge, which lasts from November to May,
consists in developing the algorithms involved in the realization of the autonomous
car guide and implementing them into the received car, therefore it commits both the
software and the hardware parts. All in all, it is a real and complete accomplishment
of self-driving car.

2.2 The Competition

The competition requires that, in addition to the activities carried out by the teams
to achieve the final objective, participating teams send a monthly periodic status
via the competition website containing the followings to show their progress to the
Bosch representatives:

• A technical report describing the development in the last sprint.

• A project plan alongside with the project architecture.

• A video file emphasizing with visual aid the contributions from the past
month activity (already present in the report and project plan).

In the middle of the competition, on middle March, a first eliminatory phase
takes place, the Mid-Season Quality Gate, in which each team is requested to send
a 3-minutes (at most) long video in which the car must perform the following tasks
in a single autonomous run:

1. Lane keeping.

2. Intersection crossing.

8

3. Complete manoeuvre after the following signs:

3.1. Stop sign – the car must stop for at least 3 s.

3.2. Crosswalk sign - the car must visibly reduce the speed and if a pedestrian
is crossing, the car must stop.

3.3. Priority Road sign - act normal, you are on a priority road and any vehicle
coming from a non-priority road should stop.

3.4. Parking sign - it is found before and after a parking lot and, if empty,
can be used to perform the parking manoeuvre.

These tasks can be demonstrated by means of one of three possible alternatives:

• A video of the car performing the actions on a real-life like map.

• A video of the car in front of a Desktop, taking a video as a simulated input
and acting accordingly.

• A video of the car in front of a Desktop where the simulator is running, taking
as visual input the one from the camera inside the simulator.

The author’s team has chosen the first option, realizing physically the track
shown in Figure 3.

Figure 3: Test Track.

Based on the videos, the jury will decide which teams possess the right skills to
continue the competition and to go to the Bosch Engineering Centre site in Cluj-
Napoca (Romania) for the qualifications and possibly semifinals and finals in May.

During the race period in Romania, the teams will have to face two challenges:
the technical and the speed one. The former requests that the car can correctly
respect most of the road signs, such as traffic signs, traffic lights, lanes, intersections,
ramps, and roundabouts. Moreover, it must detect pedestrians and overtake other
cars present in the same lane. The latter asks the car to complete a determined

9

path in the shortest time possible, this time respecting only the lanes and the road
markings. In addition to this, the teams will make a presentation in front of the
jury.

Only a maximum of 8 teams will be selected to participate to the final race, in
which the first 3 qualified teams will win both a money prize and the car kit, and
another team, not included in the top 3, will be rewarded as the “best newcomer”,
meaning a team which did not take part to the competition in the previous year.
All the phases of the challenge are reported in Figure 4.

Figure 4: Bosch Future Mobility Challenge 2022 - Timeline.

The author’s team managed to reach the finals and competed with other 7 tal-
ented teams from Greece, Romania, Portugal and Italy and won the Best new par-
ticipating team award (Figure 5).

10

Figure 5: Bosch Future Mobility Challenge 2022 - Best New Participating Team
Award.

2.3 The Car-Kit

Going into the details of the car kit provided by Bosch, the following components
are to be found:

• Nucleo F401RE.

• Raspberry Pi 4 Model b.

• VNH5012 H-bridge Motor Driver.

• ATM103 Encoder.

• DC/DC converters.

• Servomotor.

• LiPo Battery.

• Chassis.

• Camera.

• IMU Sensor.

The fundamental components are shown in Figure 6.

11

Figure 6: Car with the listed Components.

In addition to these basic elements, the team decided to furnish the car with
a LiDAR sensor and an Ultrasonic sensor, placed respectively in the front and the
right-hand side of the car.

2.4 The Project

To start working on the project, the teams are provided with a complete documen-
tation necessary to understand better the structure of the project, especially the
hardware side and the base Python/C++ codes for the correct communication of
all the components of the car. The cited documentation is subdivided as shown in
Figure 7.

Figure 7: BFMC website - Layout of the Shared Documentation.

A brief explanation of the content of each section is reported in the following
subchapters.

2.4.1 Competition Documentation and First Steps

It includes:

• Connection diagram and description with official links to the components of
the car.

12

• Racetrack: the description of the provided racetrack and its elements, the
given components, and the diagrams, as well as a starting point and directions
of the knowledge required.

• V2X-Vehicle to everything: it includes localization, semaphore, environmental
server, and vehicle-to-vehicle communication.

• Printed components and circuit boards.

• Hardware improvements: it includes settings for the hardware components.

• Useful links for Raspberry Pi, ROS, and Python.

• Periodic status: project plan and architecture, reports and media.

2.4.2 Brain Project

The Brain Project describes the given code for the RPi platform. It includes the
start-up code and the documentation for the provided API’s, which will help the
interaction with the V2X systems. The project uses concepts of multi-processing
and distributed system, and it implements a basic flexible structure, which can be
extended with new features. This folder contains:

• Introduction: concept and architectures, in particular remote car control and
camera streaming, installation and configuration, IMU displayer.

• Utils layer: camera streamer, remote control.

• Hardware layer: camera, serial handler process and camera spoofer process.

• Data acquisition layer: traffic lights, localization system, environmental server.

The computer project is already implemented on the provided Raspberry Pi,
while the embedded project is already implemented on the Nucleo board. Together,
they give a good starting point for the project, providing a remote keyboard control,
remote camera stream, constant speed control of the given kit and others.

2.4.3 Embedded Project

This documentation describes the low-level application which runs on the micro-
controller Nucleo-F401RE. It aims at controlling the car movement and providing
an interface between higher level controllers and lower-level actuators and sensors.

The project has four parts:

• Tools for development containing the instructions to upload the codes related
to the correct functioning of the Nucleo.

• Brain layer contains the state machine of the Nucleo (speed and steering).

• Hardware package includes the drivers for actuator and sensors.

• Signal, utils and periodics namespace: ‘signal’ includes libraries for processing
signals, ‘utils’ package incorporates some util functionalities and ‘periodics’
layer includes some periodic tasks.

13

2.4.4 GITHUB

Bosch provided their own link of GitHub in which all the Python/C++ codes related
to the topics described above are held. Specifically:

• Brain and Brain ROS: the project includes the software already present on
the development board (Raspberry Pi) for controlling the car remotely, use
the API’s and test the simulated servers, respectively for Raspbian and ROS.

• Startup_C: the project includes some of the scripts transcribed in C++ lan-
guage from the startup project.

• Embedded_Platform: the project includes the software already present on
the Embedded platform (Nucleo board). It describes all the low-level software
for controlling the speed and steering of the car.

• Simulator: the project includes the software for the Gazebo simulator, which
is the official on-line environment of the competition.

• Documentation: the project includes all the general documentation of the
competition environment, guides, diagrams, car components, etc.

2.5 The Structure behind the Algorithms

The tasks to perform by the end of the competition are the following:

• Lane Keeping and Following.

• Intersection Detection and crossing.

• Correct manoeuvres under the detection of the following traffic signs: stop,
priority, crosswalk, parking, roundabout, highway entrance and highway exit,
one-way, no entry.

• Parallel and perpendicular parking.

• Object Detection: pedestrian and overtake of a static and/or moving vehicle.

• Navigation by means of nodes and localization system (GPS).

The brain of the car must be inserted in the Raspberry Pi which, basing on the
tasks to perform, sends the commands to the Nucleo which, in turn, acts on the
motor and on the servo motor to regulate both the speed and steer. More in details,
in order to process the image, the Raspberry takes as input the camera frame and
the IMU data for the position of the vehicle, runs the specific control algorithms and
sends the corresponding output commands to the Nucleo; for example, an increased
speed in presence of a ramp which signs the entrance to the highway, a decreased
speed and a specific steer when traveling along a tight curve and a zero speed when
the traffic light turns red. The correlation between all the project components,
the sensors, the algorithms and the vehicle actuation is represented in the project
architecture shown in Figure 8.

14

Sensing
and input

Perception and
scene
understanding

Behaviour and
motion plan

Vehicle
control

Acutation

Figure 8: Architecture of the completed project.

The project presented in this chapter sinks the roots for the work developed
by three members of team PoliTron: specifically, Cristina Chicca deals with the
image processing part, Gianmarco Picariello’s work consists in the development of
MPC controllers in this context and Claudia Viglietti’s thesis concerns optimization
algorithms for path planning.

15

3 Files communication

Before diving into the algorithms dealing with the paper matter, it is of particular
interest to define appropriately how the files shown in Figure 8 communicate, both
by means of Python3 and using a given server responsible for the car localisation
system.

3.1 Parallelism, Thread and Processes

The whole project is composed by processes and threads which ensure that all the
algorithms present on the Raspberry Pi run correctly and in parallel since the car,
to perform a correct self-drive, needs to execute them concurrently: for example, it
has to always follow the lane while respecting traffic and road signs, checking for
pedestrians crossing the street etc.

Python multiprocessing library offers two ways to implement process-based par-
allelism:

• Process: used when functions-based parallelism is required.

• Pool: offers a convenient means of parallelizing the execution of a function
across multiple input values, distributing the input data across processes (data-
based parallelism).

In this project case, the Process method has been used: when it is run, it has
a specific address on the memory and all the used variables are accessible only by
the same process, so they cannot be read by another process unless a pipe is used.

A Pipe is a method to pass information from one process to another one: it offers
only one-way communication and the passed information is held by the system until
it is read by the receiving process. What is returned from the pipe() function is a
pair of file descriptors (r,w) usable for reading and writing respectively.

In addition to the Process module, the multiprocessing module offers the thread-
ing module. The Thread class represents an activity that is run in a separate thread
of control. This function represents the capability of Python to handle different tasks
at the same moment: to sum up, it is a separate flow of execution in the sense that
Python script appears to have more threads happening at once. Its syntax is the
following:

Thread(group=None, target=None, name=None, args=(), kwargs=, *, dae-
mon=None)

In particular, target is the callable object to be invoked by the run() method,
name is the thread name and args is the argument tuple for the target invocation.
Moreover, the .daemon property ensures that the daemon thread does not block the
main thread from exiting and continues to run in the background.

Multiple threads work in parallel as shown in Figure 9.

16

Figure 9: Threads parallelism.

In order to give an idea of how all these functions are related to one another
inside a working script, an example in the context of autonomous drive follows: it
is necessary to set the commands to send to the STM32 Nucleo microcontroller on
a dedicated process and, by means of a pipe, these commands are sent to the Seri-
alHandlerProcess, which deals with the communication with the Nucleo. It imple-
ments the WriteThread function to send commands to Nucleo and the ReadThread
function to receive data from Nucleo. The commands are generated after having
processed the images which come from the CameraProcess implementing the Rasp-
berry Pi Cam and they are sent to the LaneDetectionProcess, responsible for the
lane detection. This means that LaneDetectionProcess has to receive two pipes, one
for receiving the images and one for sending the commands.

The project contains many processes, each defining a particular algorithm for
the self-driving control: the definitions explained until now are useful to outline a
structure in common with all these processes, which is shown below.

class Name(WorkerProcess):

def __init__(self, inPs, outPs):

""" Process used for sending images over the network to a targeted

IP via UDP protocol (no feedback

required). The image is compressed before sending it.

Used for visualizing your raspicam images on remote PC.

Parameters

inPs : list(Pipe)

List of input pipes, only the first pipe is used to transfer the

captured frames.

outPs : list(Pipe)

List of output pipes

In this section you can also define the variables initialization.

"""

super(MainLaneDetectionProcess, self).__init__(inPs, outPs)

17

def run(self):

""" Apply the initializing methods and start the threads. """

super(MainLaneDetectionProcess, self).run()

def _init_threads(self):

""" Initialize the sending thread. """

Thread for elaborating the received frames:

receiveFrameT = Thread(name=’receiveFrameThread’,

target=self._generate_Output,

args=(self.inPs, self.outPs,))

receiveFrameT.daemon = True

self.threads.append(receiveFrameT)

After creating the class whose name is subjective (in this case it is called Name),
the utilized functions and methods are the following:

• init : takes as input self, inPs and outPs which correspond to the
list of input pipes and the list of output pipes respectively. This function is
called when a class is “instantiated”, meaning when the class is declared and
any argument withing this function will also be the same argument when in-
stantiating the class object. These initial arguments are the data manipulated
throughout the class object. Under this function, some instance attributes are
defined and assigned to self to be manipulated later on with other functions.

• super(): it inherits, uses code from the base (existing) class (i.e., Worker-
Process) to define the structure of the new class (i.e., Name) – it guarantees
the access methods from a parent class within a child class reducing repetitions
in the code.

• run(): function that initializes the sending thread for the processing of re-
ceived frames.

• .append(): adds a single item to the existing list. It does not return a new
list of items, but it will modify the original list by adding the item to the
end of the list. After executing the method append on the list, the list size
increases by one.

All of them send their output to a particular process called MovCarProcess: it is
responsible for setting the correct values of steer and speed of the car according to
the road situation, e.g the value of the lane curve, the detected traffic sign, the inter-
section etc.. These values are integers representative of the manoeuvre: for example,
a value of 999 corresponds to speed equal to 0 in the SpeedThread. Summarizing,
MovCarProcess sets the representative value according to the output received from
the control processes, whereas SpeedThread and SteerThread contain the actual com-
mand sent to the Nucleo for, respectively, speed (action 1) and steer (action 2). An
example is given by the code shown below, in which the MovCarProcess sets the
value by means of which the car stops in presence of a STOP or CROSSWALK sign
and both SpeedThread and SteerThread actually build the physical command.

""" Extract from MovCarProcess """

if STOP or CROSSWALK:

18

value = 999

""" Extract from SpeedThread """

#Stop

if curveVal == 999:

command = {’action’: ’1’, ’speed’: 0.0}

""" Extract from SteerThread """

#Stop

if curveVal == 999:

command = {’action’: ’2’, ’steerAngle’: 0.0}

Similarly, these threads will set speed and steer values different from 0 whenever
the car has to travel along the path, in absence of road and traffic signs that would
impede it.

3.2 The Main.py file

All the processes which have to be run on the Raspberry Pi, including their inputs
and outputs, the way in which they communicate, are described inside the main.py
file. As every main function, it has the job to put together the functions involved in
the autonomous-driving solution, searching them from their specific folder.

ArcShRead, ArcShSend = Pipe(duplex=False) # for serial handler

FrameRead1, FrameSend1 = Pipe(duplex=False) # Frame towards Lane

Detection

FrameRead2, FrameSend2 = Pipe(duplex=False) # Frame towards

Intersection Detection

FrameRead3, FrameSend3 = Pipe(duplex=False) # Frame towards Sign

Detection

FrameRead4, FrameSend4 = Pipe(duplex=False) # Frame towards

Localization Process

######## IMAGE PROCESSING ALGORITHMS ##########

curveValRead, curveValSend = Pipe(duplex=False)

IntersectionRead, IntersectionSend = Pipe(duplex=False)

SignDetRead, SignDetSend = Pipe(duplex=False)

######## LOCALISATION ALGORITHMS ##########

LocalizationRead1, LocalizationSend1 = Pipe(duplex=False)

######## PROCESSES ##########

AshProc = SerialHandlerProcess([ArcShRead], []) #receives the data from

MovCar and sends it to the Nucleo

allProcesses.append(AshProc)

AcamProc = CameraProcess([], [FrameSend1, FrameSend2, FrameSend3,

FrameSend4])

allProcesses.append(AcamProc)

ALaneProc = MainLaneDetectionProcess([FrameRead1], [curveValSend])

allProcesses.append(ALaneProc)

AInterProc = IntersectionDetectionProcess([FrameRead2],

19

[IntersectionSend])

allProcesses.append(AInterProc)

ASignProc = SignDetectionProcess([FrameRead3],[SignDetSend])

allProcesses.append(ASignProc)

AtrajProc = RaceTrajectoryProcessSO([FrameRead4], [LocalizationSend1])

allProcesses.append(AtrajProc)

AEnvProc = EnvironmentalProcessSO([LocalizationRead1], [])

allProcesses.append(AEnvProc)

AcurveValProc = MovCarProcess([curveValRead, IntersectionRead,

SignDetRead, LocalizationRead1],[ArcShSend])

allProcesses.append(AcurveValProc)

The example above shows an extract from the main.py file: a pipe is defined for
every process which has to receive the frame from the camera as input (in this case,
there are 4 processes which require it) and also, a pipe for localisation and serial han-
dler data is defined. Then, every process is declared, in the first brackets the inputs
are listed, whereas in the second brackets the outputs are listed. CameraProcess has
no input but only the frames to send as output, whereas SerialHandlerProcess has
the output of MovCarProcess as input and no output. It is important to highlight
that not all the processes receive as input the camera frames: EnvironmentalPro-
cess, responsible for sending the encountered objects to the server, receives as input
the coordinates of the car from the RaceTrajectoryProcess, whereas MovCarProcess
receives the inputs from the other processes (car localisation and objects detection)
and sends the commands to SerialHandlerProcess.

3.3 Server Communication and UDP

The car has an indoor localisation system which detects and sends by UDP con-
nection the relative position of itself and other cars present on the race track.

The UDP communications describe the programming for the User Datagram
Protocol provided in the TCP/IP to transfer datagrams over a network. Informally,
it is called ”Send and Pray” because it has no handshake, session or reliability,
meaning it does not verify that the protocol has reached the destination before it
sends data. UDP has a 8-byte header that includes source port, destination port,
packet length (header and data) and a simple (and optional) checksum.

The checksum, when utilized, provides limited integrity to the UDP header and
data since it is simply an algorithm-based number created before data is sent to
ensure data is intact once received: this procedure is done by running the same
algorithm in the received data and comparing the number before and after the
reception.

UDP avoids the overhead associated with connections, error checks and retrans-
mission of missing data, it is suitable for real-time or high performance applications
that does not require data verification or correction. In fact, the IP network delivers
datagrams that can be up to 65507 bytes in length but does not guarantee that they
are delivered at the destination and in the same order as they are sent. Moreover,
UDP provides pre-process addressing through ports where IP provides addressing
of a specific host. The process is described as follows:

20

1. These ports are 16-bit values used to distinguish different senders and receivers
at each end point.

2. Each UDP datagram is addressed to a specific port at the end host and in-
coming UDP datagrams are demultiplexed between the recipients.

The advantage of using UDP is the absence of retransmission delay, meaning it
is fast and suitable for broadcast. The disadvantage regards no guarantee of packets
ordering, no verification of the readiness of the receiving computer and no protection
against duplicate packets. Anyway, UDP is often used for streaming-type devices
such as lidar sensors, cameras and radars since there is no reason to resend data if
it is not received. Moreover, due to high data rates, resending past and corrupted
data would slow things down tremendously. A comparison between TCP and UDP
is given by Figure 10.

Figure 10: Comparison between TCP and UDP protocols.

The connection between the car and the server is validated by means of the API
communication, which ensures the reading of the car given ID together with a
certain port responsible for the communication of the coordinates of all the moving
obstacles. An API communication is a type of Application Programming Interface
which adds communication channels to a particular software. It allows two pieces
of software hosted on the cloud to connect to each other and transfer information.

An example of the UDP protocol used inside the project is given by a file re-
sponsible for reading the position of the car in real time (position listener.py).

import sys

sys.path.insert(0,’.’)

import socket

import json

from complexDealer import ComplexDecoder

21

class PositionListener:

"""PositionListener aims to receive all message from the server.

"""

def __init__(self, server_data, streamPipe):

self.__server_data = server_data

self.__streamP_pipe = streamPipe

self.socket_pos = None

self.__running = True

def stop(self):

self.__running = False

try :

self.__server_data.socket.close()

except: pass

def listen(self):

while self.__running:

if self.__server_data.socket != None:

try:

msg = self.__server_data.socket.recv(4096)

msg = msg.decode(’utf-8’)

if(msg == ’’):

print(’Invalid message. Connection can be interrupted.’)

break

coor = json.loads((msg),cls=ComplexDecoder)

self.__streamP_pipe.send(coor)

except socket.timeout:

print("position listener socket_timeout")

the socket was created successfully, but it wasn’t received

any message. Car with id wasn’t detected before.

pass

except Exception as e:

self.__server_data.socket.close()

self.__server_data.socket = None

print("Receiving position data from server " +

str(self.__server_data.serverip) + " failed with error: "

+ str(e))

self.__server_data.serverip = None

break

self.__server_data.is_new_server = False

self.__server_data.socket = None

self.__server_data.serverip = None

Similarly to the Process object, the class PositionListener is composed by
the main functions init , stop and listen. In this case, the variables of
interest are server data, streamPipe and socket.

A network socket is a software structure within a node of a computer network that
serves as an endpoint for sending and receiving data. The structure and properties of
a socket are defined by an API for the networking architecture. Sockets are created

22

only during the lifetime of a process of an application running in the node.
The function listen performs the following steps:

1. After the subscription on the server, it is listening the messages on the previ-
ously initialized socket.

2. It decodes the messages and saves in ’coor’ member parameter.

3. Each new message will update the ’coor’ parameter and the server will send the
result (car coordinates) of last detection. If the car has been detected by the
localization system, the client receives the same coordinates and timestamp.

The UDP socket programming fundamentals are represented by Figure 11.

Figure 11: Fundamentals of UDP socket programming.

23

4 Image Processing

Image Processing is a computer field which deals with processing and extracting
meaningful and useful data from images. Since they are unstructured data, they
are significantly more difficult than processing structured data such as tables and
forms. Image Processing is a large and growing branch currently used in multiple
areas such as Medical, Machine/Robot Vision, Driverless cars, etc.

In particular, much study has been done in the field of image detection for
Autonomous cars: features such as lane detection, traffic sign detection and methods
for implementation were reported by many researchers around the world.

In this paper, some of these methods are proposed, specifically used for the
BFMC2022. The first element to analyze is how the images are received by the car.

The car-kit the team has received was only composed by two main hardware
components which constituted the whole communication between the car and the
surrounding environment: the front-facing camera and the IMU sensors. This is
because, even though the most technological cars rely upon a wide variety and
quantity of sensors, the mass production of autonomous vehicles is not feasible
considering all this expensive equipment. As regarding the camera, not only is
it the cheapest sensor available on the market, but it also is the very first element
utilized by the car to sense the environment and act consequently. The main idea is
due to the fact that if the human can drive using only the eyes, then the autonomous
vehicle can do the same.

This preface gives a hint of the importance involving Image Processing, since
every algorithm explained in this section takes as input the image coming from the
camera.

The camera is shown in Figure 12.

Figure 12: PiCamera v2.1 set-up.

The Raspberry Pi Camera Module v2 is the newest official camera board which
connects to any Raspberry Pi or Computer Module [5]. Its main features are the
following:

• Fixed focus lens on-board.

• Improved resolution - 8 megapixel native resolution sensor-capable of 3280 x
2464 pixel static images.

• Supports 1080p30, 720p60 and 640x480p90 video.

24

• Uses the Sony IMX219PQ image sensor - high-speed video imaging and high
sensitivity.

• Optical size of 1/4”.

As anticipated in chapter 3, in addition to other Python files responsible for the
correct communication between the Raspberry and the camera, the main camera
file is the CameraThread. Similar to the Process structure, the Thread is mainly
composed by the init and run functions: in the former, the camera settings are
reported, such as resolution, framerate, brightness, shutter speed, contrast, iso and
image size, in the latter the frame sequence is captured and recorded. In particular,
the frame rate has been set to 10fps and the image size is the standard one (640x480
pixels). The other settings can be changed according to anyone’s preference but
in this project they have been kept with the default values, as written in Table
1. Another important feature is the color space of the received image: from the

Camera Resolution (2592, 1944)
Camera Brightness 50

Camera Shutter Speed 2000000
Camera Contrast 0 (auto)

Camera ISO 0 (auto)

Table 1: Camera settings.

Thread, it is immediately converted into the RGB format. RGB represents the
three-dimensional colour space in which channel 0 si red, channel 1 is green and
channel 2 is blue.

Once the image is correctly received from the camera at the speed of 10 frames
per second (trade-off between latency of computation and quality of the image), it
is processed by means of Python algorithms. The most utilized Python libraries are,
of course, OpenCV and NumPy: the former is a computer vision and machine
learning library and the latter is a library for array manipulation. The two are
related since an OpenCV image is represented as NumPy array, which is also very
flexible and compatible with many other libraries.

By means of these libraries, it is possible to elaborate the frames, which stands
for:

1. Read the frame.

2. Manipulate the image.

3. Select the Region of Interest (ROI) in order to pick only the image section of
interest according to the algorithm, as shown in Figure 13.

25

Figure 13: ROIs for some Image Processing algorithm.

4. Apply the controls for detecting the specific object present in the image.

The list of Processes used in the project and responsible for the Image Processing
implementation are the following:

• MainLaneDetectionProcess

• IntersectionProcess

• TrafficSignDetectionProcess

• TrafficLightProcess

• ObjectDetectionProcess

Once every Process has returned the corresponding output (e.g. the value of the
curve from the MainLaneDetectionProcess or the recognized traffic sign from the
TrafficSignDetectionProcess), it is sent to the MovCarProcess, responsible for acting
on both steer and speed of the car according to the road situation. A simplifying
scheme is given in Figure 14.

26

Figure 14: Relationship between Camera, Detection Process and Motor.

This procedure is shared by all the Processes involved in the Image Processing
framework and which will be explained in details in the following chapters.

27

5 Lane Detection and Follow (LD & LF)

The lane detection system involves the process of identifying the lane markings
and estimating the position of the vehicle from the centre of the lane. Computer
Vision (CV) technologies have played an important role in lane detection domain:
the latest CV advances represented by deep learning are robust and efficient, but
they are not suitable for embedded platforms where the computing resources are
limited. Traditional structured lane detection algorithms, instead, are extremely
useful and much lighter than deep learning techniques. They are mainly divided
into two paradigms: feature-based methods and model-based methods. The former
are much more flexible in the lane diversity and fit well in real-time processing. For
this reason, the work proposes two feature-based algorithms for lane detection [6]:

• Lane detection based on Hough Transform to detect lines, calculate the
slope of the line and generate the value of the curve accordingly.

• Lane detection based on Perspective correction, Thresholding and His-
togram statistics [7].

It is important to highlight the reason why this section deals with Lane Following
(LF) and Lane Keeping (LK): LK intervenes with the steering precisely when lane
drifting is about to occur, whereas LF constantly attempts to keep the vehicle at the
centre of the lane. The input of the system is, as mentioned previously, the frames
captured from the camera mounted on the car, whereas the output is the steering
angle in degrees. The two techniques will be compared and implemented on the car.

5.1 Hough Transform method

This method is schematized in Figure 15.

Figure 15: Hough Transform method scheme.

More specifically, this algorithm applies filtering, edge detection, lane detection
and offset distance calculation based on the position of the vehicle. After the pro-
cessing is performed, the control system issues commands to the vehicle to adjust its
steering according to the offset so it stays close to the centre of the lane (LF). In the
code, the whole procedure is represented by the generate curveVal function.

28

def _generate_curveVal(self, inPs, outPs):

try:

time.sleep(5)

while True:

stamps, img = inPs.recv() #take images from Camera Thread

edges = self.detect_edges(img)

roi = self.region_of_interest(edges)

line_segments = self.detect_line_segments(roi)

lane_lines = self.average_slope_intercept(img, line_segments)

lane_lines_image = self.display_lines(img, lane_lines)

steering_angle = self.get_steering_angle(img, lane_lines)

heading_image = self.display_heading_line(lane_lines_image,

steering_angle)

cv2.imshow("masked_edges", roi)

cv2.imshow("heading line", heading_image)

steering_angle = steering_angle -90

outPs[0].send(steering_angle) #send the correct steering angle

to MovCarProcess

cv2.waitKey(1)

except Exception as e:

print("\nCould not read the image\n")

print(e)

The libraries utilized for this lane detection code are: math, cv2, numpy,
thread and time.

5.1.1 Edge Detection

Removing noise from the image is very important because the presence of noise
will affect the detection of the edges: the process of smoothening involves removing
noise from the image by using a filter, then an edge operator is applied to generate a
binary edge map. This is followed by the application of the Hough Transform to the
edge map to detect lines: it is a technique responsible for the isolation of features of
a particular shape within an image. Three fundamental steps are performed in edge
detection phase:

1. Smoothening: application of filters for noise reduction.

2. Edge point detection: this operation extracts all the points in the image
that are potential members to become edge points.

3. Edge localization: is a process to select a member from the edge points only,
the points that are truly members of the set of points incorporated in an edge.

In this section, the function detect edges is analyzed:

def detect_edges(self, img):

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

kernel = 5

29

blur = cv2.GaussianBlur(gray, (kernel, kernel), 0)

reduce the noise of the image: if it’s not between the 5-by-5 Kernel

it is deleted

edges = cv2.Canny(gray, 100, 200) #100 and 200 are min and max gradient

intensities

cv2.imshow("Canny",edges)

cv2.waitKey(1)

return edges

First of all, the image is converted from BGR (Blue-Green-Red) into grayscale
via the cv2.cvtColor, which takes as input arguments the image in question and
the color space conversion. Then the filtering technique is applied: among the filters
available in OpenCV, the most common one is the GaussianBlur, attenuating the
intensity of high-frequency signals and for which it is necessary to specify the image,
the kernel size and the standard deviation in x and y directions. Anyway, if one uses
the cv2.Canny function, the Gaussian filter is already applied as default, since it
performs the following steps:

1. Denoise the image with a 5x5 Gaussian filter.

2. Compute the intensity gradients: the smoothened image is then filtered with
a Sobel kernel in both horizontal and vertical direction to get first derivative
in horizontal direction (Gx) and vertical direction (Gy).

Edge gradient(G) =
p
Gx2 +Gy2

3. Apply non-maximum suppression (NMS) on the edges - the algorithm selects
the best edges from a set of overlapping edges.

4. Apply a double threshold to all the detected edges to eliminate any false pos-
itive.

5. Analyse all the edges and their connection to each other to keep the real edges
and discard the weak ones.

With those settings, any edge with intensity gradient greater than 200 is sure to be
an edge, whereas those below 100 are sure to be non-edge: the edges lying between
these thresholds are classified edges or non-edges based on their connectivity. If
they are connected to sure-edge pixels, they are considered part of edges, discarded
otherwise.

5.1.2 Region Of Interest

ComputingRegions of Interest (ROIs) considerably simplifies the interaction with
image data, since a rectangular region in NumPy is easily defined with an array slice.
The aim of ROIs is to keep the car focus on a particular section of the image (in
this case, the lane lines), ignoring anything else in the surrounding environment.

def region_of_interest(self, canny):

height = canny.shape[0] #first dimension value

width = canny.shape[1] #second dimension value

mask = np.zeros_like(canny) #mask initialization

shape = np.array([[(0, height), (width, height), (width, 320), (0,

320)]], np.int32) #polygon

30

cv2.fillPoly(mask, shape, 255) #mask with polygon size

masked_image = cv2.bitwise_and(canny, mask) #final result

cv2.imshow("Canny mainlane", masked_image)

cv2.waitKey(1)

return masked_image

The function region of interest takes the edged frame (output of Canny func-
tion) and draws a polygon with four pre-set points: to perform this task, first the
dimensions of the canny image are extracted, then a mask is initialized using the
np.zeros like function based on the canny image size. Afterwards, the polygon
(shape) is created and the previously created mask is filled with this region using the
cv2.fillPoly function: the last argument represents the color of the fill, white
in this case. It is important to notice that here the mask is selected taking into
consideration only the lower half of the camera video: considering the image size
as 640x480, the first tuple represents the lower left corner, the second tuple is the
upper left corner, the third one is the upper right corner and the final tuple is the
lower right corner. cv2.bitwise and performs the concatenation between two
arrays, the canny image and the mask, which results in a final output containing
the original image and the mask overlapped.

5.1.3 Lanes Detection

Detection of line segments from the edged frame can be performed using the Hough
Transform method [8]: with this transform, straight lines passing through edge
points can be drawn, using a mapping from the Cartesian space to a parameter
space. As known by the reader, a line in the image can be expressed with two
variables, depending on the chosen coordinate system, for example in the Polar
coordinate system a line equation can be written as:

y = (cosθ/sinθ)x+ (r/sinθ)

In general, for each point (x0,y0), a family of lines going through that point can be
defined as

rθ = x0 ∗ cosθ + y0 ∗ sinθ

The family of lines that goes through the given point is a sinusoid; in the plane θ - r,
only the points such that r > 0 and 0 < θ < 2π are considered. The same operation
can be done for all the points in an image: if the curves of two different points
intersect in the plane θ - r, they both belong to the same line. The more curves
intersect, the more points are contained in the line represented by that intersection
so, in general, a threshold for the minimum number of intersections needed to detect
a line is defined.

The advantage of using Hough Transform is that the pixels forming a line need
not to be contiguous with that of other pixels; therefore, it is a useful tool for
detecting lines with short breaks inside them due to noise or partial occlusion by
objects.

OpenCv provides two functions, HoughLines and HoughLinesP. The former uses
the standard Hough Transform and the latter uses the probabilistic version of the
same, which analyses a subset of the image points and estimates the probability that
these points all belong to the same line. Since the latter is an optimized version, it
is implemented in the code in a way that it returns a representation of each line as
a single point and an angle without information about endpoints.

31

def detect_line_segments(self, cropped_edges):

rho = 1

theta = np.pi / 180

min_threshold = 20

line_segments = cv2.HoughLinesP(cropped_edges, rho, theta,

min_threshold, np.array([]), minLineLength=20, maxLineGap=200)

return line_segments

The arguments of the HoughLinesP are:

• cropped edges: output of the edge detector (binary image).

• rho: resolution of the parameter r in pixels (1 as default).

• theta: resolution of the parameter θ in radians (1 degree).

• min threshold: minimum number of intersections to detect line.

• lines: empty array.

• minLineLength: minimum number of points that can form a line.

• maxLineGap: maximum gap between two points to be considered in the same
line.

The final two values have been found after many experimental trials.

5.1.4 Calculate and Display Heading Lines

The heading line is the central line which is responsible for giving the steering
servomotor the direction in which it should rotate and giving the throttling DC
motor the speed at which it should operate. The computation of such a line is a
pure trigonometric operation and the extreme cases in which the car finds only one
or no lane line are studied in the if-elif-else conditions.

def get_steering_angle(self, frame, lane_lines):

height, width, _ = frame.shape

if len(lane_lines) == 2:

left_x1, left_y1, left_x2, left_y2 = lane_lines[0][0]

right_x1, right_y1, right_x2, right_y2 = lane_lines[1][0]

slope_l=math.atan((left_x1-left_x2) / (left_y1-left_y2))

slope_r=math.atan((right_x1-right_x2) / (right_y1-right_y2))

slope_ldeg = int(slope_l * 180.0 / math.pi)

steering_angle_left = slope_ldeg

slope_rdeg = int(slope_r * 180.0 / math.pi)

steering_angle_right = slope_rdeg

if left_x2>right_x2: #horizontal line

if abs(steering_angle_left) <= abs(steering_angle_right):

x_offset = left_x2 - left_x1

32

y_offset = int(height / 2)

elif abs(steering_angle_left) > abs(steering_angle_right):

x_offset = right_x2 - right_x1

y_offset = int(height / 2)

else: #normal left line

mid = int(width / 2)

x_offset = (left_x2 + right_x2) / 2 - mid

y_offset = int(height / 2)

elif len(lane_lines) == 1:

x1, _, x2, _ = lane_lines[0][0]

x_offset = x2 - x1

y_offset = int(height / 2)

elif len(lane_lines) == 0:

x_offset = 0

y_offset = int(height / 2)

#angle_to_mid_radian = math.atan(x_offset / y_offset)

alfa = 0.6

angle_to_mid_radian = alfa*self.angle +(1-alfa)*math.atan(x_offset

/ y_offset)

angle_to_mid_deg = int(angle_to_mid_radian * 180.0 / math.pi)

steering_angle = angle_to_mid_deg +90

self.angle = angle_to_mid_radian

return steering_angle

The get steering angle() function is responsible for steering the car correctly
according to the curvature value. In the most general case in which the steering
angle is not 90°, if it is greater than this quantity the car will steer on the right, on
the left otherwise, being 90° the reference for going straight on, as shown in Figure
16.

Figure 16: Steering angle variation according to the value of curvature.

The function is divided into 3 main parts:

1. lane lines = 2: two cases can happen. In the case the line on the left is, in
reality, an intersection line, the code ignores the steepest one: this happens
when the two lines, left and right, intersect, which means when the right-most
point of the left line is greater than the left-most point of the right line. The
same reasoning is done when the right line is an intersection. Otherwise, the
points of the line are calculated as usual:

• x offset checks how much the average differs from the middle of the
screen.

33

• y offset is always height/2. To better clarify these points, the Figure
17 shows them on the plane.

Figure 17: Representation of x offset and y offset for calculation of steering angle.

2. lane lines = 1: in the case the detected lane is only one, the car will follow
it anyway.

3. lane lines = 0: the car does not perform any lane keeping, consequently the
steering angle is 90°.

Then, the central line is displayed using the display heading line() func-
tion. This function is very similar to the one used to display also the lateral lines.

def display_heading_line(self, frame, steering_angle, line_color=(0, 255,

0), line_width=5):

heading_image = np.zeros_like(frame)

height, width, _ = frame.shape

steering_angle_radian = steering_angle / 180.0 * math.pi

x1 = int(width / 2)

y1 = height

x2 = int(x1 - height / 2 / math.tan(steering_angle_radian))

y2 = int(height / 1.75)

cv2.line(heading_image, (x1, y1), (x2, y2), line_color, line_width)

heading_image = cv2.addWeighted(frame, 0.8, heading_image, 1, 1)

return heading_image

To be noticed that the important parameters of this function are the image in which
the line has to be displayed, the color, the line width and the 4 points defining the
line (the heading line is the green one shown in Figure 19).

34

5.2 Perspective correction and Histogram statistics method

In this chapter, a multi-line detection algorithm based on histogram statistics is
proposed for the track-following application. This method is summarized in Figure
18.

Figure 18: Perspective correction and histogram statistics method scheme.

After the preprocessing of the original image and projecting, the pixel histogram
in the bird eye view space can be obtained and the starting points of the lane
detection are obtained by filtering and clustering the histogram.

Subsequently, the sliding windows are moved to capture the pixels on the lines
and, finally, the quadratic curves are fitted as the model of the lines and are projected
back to the original image space. Theoretically, and based on the work done in [9],
this type of algorithm can deal with multi-curve or cross horizontal lines with better
robustness.

As it can be seen from Figure 18, the last step is coincident with that of the
previously explained method, so the functions display heading line() and
get steering angle() are the same.

def _generate_curveVal(self, inPs, outPs):

try:

self.compute_perspective(1024, 600, [160, 500], [500, 310], [546,

310], [877, 500])

while True:

stamps, img = inPs.recv() #take images from Camera Thread

img = cv2.resize(img,(640,480))

img_warped = self.warp(img)

img_hls = cv2.cvtColor(img_warped,

cv2.COLOR_BGR2HLS).astype(np.float64)

img_edge = self.edge_detection(img_warped[:, :, 1])

(img_binary_combined, img_binary_solo) =

self.threshold(img_hls[:, :, 1], img_edge)

hist = self.histogram(img_binary_combined)

hist_solo = self.histogram(img_binary_solo)

left_lanes = []

right_lanes = []

35

LANES ON HISTOGRAM

if (len(left_lanes) > self.MIN_DETECTIONS):

lanes = self.lanes_partial_histogram(hist, left_lanes,

right_lanes, 30)

else:

lanes = self.lanes_full_histogram(hist)

SLIDING WINDOW

ret, sw = self.slide_window(img_warped, img_binary_combined,

lanes, 15)

if ret:

left_lanes.append(deepcopy(sw.left))

right_lanes.append(deepcopy(sw.right))

else:

In case of problems, use the previous detection

sw.left = left_lanes[len(left_lanes) - 1]

sw.right = right_lanes[len(right_lanes) - 1]

left_lanes.append(sw.left)

right_lanes.append(sw.right)

img_lane = self.show_lanes(sw, img_warped, img)

LANE FOLLOW PART

steering_angle = self.get_steering_angle(img, img_lane)

#cv2.imshow(’result’,img_lane)

heading_image = self.display_heading_line(img_lane,

steering_angle)

cv2.imshow(’result’,heading_image)

steering_angle = steering_angle -90

outPs[0].send(steering_angle) #send the correct steering angle

to MovCarProcess

cv2.waitKey(1)

except Exception as e:

print("\nCould not read the image\n")

print(e)

5.2.1 Perspective Correction

The perspective depends on the focal length of the lens and the position of the
camera. Once the camera is mounted on the car, the perspective is fixed so it can be
taken into consideration to correct the image. To this purpose, there are a couple of
basic OpenCv functions: getPerspectiveTransform and warpPerspective.
The former computes the perspective transformation which takes as inputs 2 arrays
composed by 4 points, one is the source with the original perspective and the other
one is the destination with the desired perspective. The latter is used to obtain the
bird’s eye view from the perspective correction previously calculated. Thanks to
this view, now the road lines are seen as parallel (vertical).

36

pt1, pt2, ptr3, and pt4 are four points defining a trapezoid used for

the perspective correction

def compute_perspective(width, height, pt1, pt2, pt3, pt4):

perspective_trapezoid = [(pt1[0], pt1[1]), (pt2[0], pt2[1]), (pt3[0],

pt3[1]), (pt4[0], pt4[1])]

src = np.float32([pt1, pt2, pt3, pt4])

widest side on the trapezoid

x1 = pt1[0]

x2 = pt4[0]

height of the trapezoid

y1 = pt1[1]

y2 = pt2[1]

h = y1 - y2

The destination is a rectangle with the height of the trapezoid and

the width of the widest side

dst = np.float32([[x1, h], [x1, 0], [x2, 0], [x2, h]])

perspective_dest = [(x1, y1), (x1, y2), (x2, y2), (x2, y1)]

perspective_correction = cv2.getPerspectiveTransform(src, dst)

perspective_correction_inv = cv2.getPerspectiveTransform(dst, src)

warp_size = (width, h)

orig_size = (width, height)

def warp(img, filename):

img_persp = img.copy()

cv2.line(img_persp, perspective_dest[0], perspective_dest[1], (255,

255, 255), 3)

cv2.line(img_persp, perspective_dest[1], perspective_dest[2], (255,

255, 255), 3)

cv2.line(img_persp, perspective_dest[2], perspective_dest[3], (255,

255, 255), 3)

cv2.line(img_persp, perspective_dest[3], perspective_dest[0], (255,

255, 255), 3)

cv2.line(img_persp, perspective_trapezoid[0], perspective_trapezoid[1],

(0, 192, 0), 3)

cv2.line(img_persp, perspective_trapezoid[1], perspective_trapezoid[2],

(0, 192, 0), 3)

cv2.line(img_persp, perspective_trapezoid[2], perspective_trapezoid[3],

(0, 192, 0), 3)

cv2.line(img_persp, perspective_trapezoid[3], perspective_trapezoid[0],

(0, 192, 0), 3)

save_dir(img_persp, "persp_", filename)

return save_dir(cv2.warpPerspective(img, perspective_correction,

warp_size, flags=cv2.INTER_LANCZOS4), "warp_",

filename)

To be noticed that, in addition to the original image, the perspective correction and
the size of the warp, warpPerspective takes as input also the type of interpolation
which in this case is INTER LANCZOS4.

37

5.2.2 Thresholding

This step is almost the same as the Edge Detection one utilized in the Hough Trans-
form Lane Keeping method, the only difference consists in how the final result is
achieved: instead of being converted into grayscale, the original image is converted
into HSL color space (Hue, Saturation, Lightness), since the green channel can be
used for edge detection and the L channel can be used as additional thresholding.

Moreover, instead of using the Gaussian filter, the Scharr method is used, which
computes a derivative detecting the difference in colors in the image.

def edge_detection(channel, filename):

edge_x = cv2.Scharr(channel, cv2.CV_64F, 1, 0) # Edge detection using

the Scharr operator

edge_x = np.absolute(edge_x) #no matter the sign of the derivative

return save_dir(np.uint8(255 * edge_x / np.max(edge_x)), "edge_",

filename)

In order to select the intensity of the pixels to choose, the interpolated threshold
technique is utilized: a higher threshold is applied to the bottom of the image
where there is a better resolution, a sharper image and more noise, whereas a lower
threshold is applied on the top where the pixels are stretched by the perspective
correction.

def threshold(channel_threshold, channel_edge, filename):

Gradient threshold

binary = np.zeros_like(channel_edge)

height = binary.shape[0]

Interpolated threshold

threshold_up = 15

threshold_down = 60

threshold_delta = threshold_down - threshold_up

for y in range(height):

binary_line = binary[y, :]

edge_line = channel_edge[y, :]

threshold_line = threshold_up + threshold_delta * y / height

binary_line[edge_line >= threshold_line] = 255

save_dir(binary, "threshold_edge_only_", filename)

save_dir(channel_threshold, "channel_only_", filename)

binary[(channel_threshold >= 140) & (channel_threshold <= 255)] = 255

binary_threshold = np.zeros_like(channel_threshold)

binary_threshold[(channel_threshold >= 140) & (channel_threshold <=

255)] = 255

return (save_dir(binary, "threshold_", filename),

save_dir(binary_threshold, "threshold_other", filename))

38

5.2.3 Histograms

Since the lines have been found in the image, the histograms are used to know exactly
where the lines are placed. Using vertical lines, one way could be to count the white
pixels on a certain column, but since, in a turn, the lines are not vertical, the bottom
part of the image is selected so that the lines can be considered almost vertical. The
histograms show that there are basically two peaks in correspondence of the pixels
in which the lines are present, so the argmax function is used to calculate such
peaks.

def histogram(img):

partial_img = img[img.shape[0] * 2 // 3:, :] # Select the bottom part

(one third of the image)

hist = np.sum(partial_img, axis=0)

size = len(hist)

Detect the peaks by splitting the array into two halves

max_index_left = np.argmax(hist[0:size // 2])

max_index_right = np.argmax(hist[size // 2:]) + size // 2

return HistLanes(max_index_left, max_index_right, hist[max_index_left],

hist[max_index_right])

At the end, the value hist[index] itself can be considered the confidence of having
identified the lane, since more pixels mean more confidence.

5.2.4 Sliding Window Method

At this point, the reader is only aware of where the line starts, but has no clue
on where it ends: the solution is to focus on the area around the line and proceed
to ”follow” it. This is done using a Sliding Window algorithm: a rectangle is
created representing the window of interest. The functioning principle is explained
as follows:

• The first window on the bottom of each lane is centred on the respective peak
of the histogram.

• The width of each window depends on the selected margin and the height
depends on the chosen number of windows: these two numbers can be changed
to reach a balance between a better detection and the possibility to detect more
difficult turns with a smaller radius.

def slide_window(img, binary_warped, hist, num_windows):

img_height = binary_warped.shape[0]

window_height = np.int(img_height / num_windows)

Indices (e.g. coordinates) of the pixels that are not zero

non_zero = binary_warped.nonzero()

non_zero_y = np.array(non_zero[0])

non_zero_x = np.array(non_zero[1])

Current positions, to be updated while sliding the window; we start

with the ones identified by the histogram

left_x = hist.x_left

right_x = hist.x_right

Movement we are allowing to the lane

39

margin = 80

Set minimum number of pixels found to recenter window

min_pixels = 25

left_lane_indexes = []

right_lane_indexes = []

for idx_window in range(num_windows):

X range where we expect the left lane to land

win_x_left_min = left_x - margin

win_x_left_max = left_x + margin

X range where we expect the right lane to land

win_x_right_min = right_x - margin

win_x_right_max = right_x + margin

Y range that we are analyzing

win_y_top = img_height - idx_window * window_height

win_y_bottom = win_y_top - window_height

Non zero pixels in x and y

non_zero_left = ((non_zero_y >= win_y_bottom) & (non_zero_y <

win_y_top) & (non_zero_x >= win_x_left_min) & (

non_zero_x < win_x_left_max)).nonzero()[0]

non_zero_right = ((non_zero_y >= win_y_bottom) & (non_zero_y <

win_y_top) & (non_zero_x >= win_x_right_min) & (

non_zero_x < win_x_right_max)).nonzero()[0]

left_lane_indexes.append(non_zero_left)

right_lane_indexes.append(non_zero_right)

If you found > min_pixels pixels, recentre next window on the

mean position

if len(non_zero_left) > min_pixels:

left_x = np.int(np.mean(non_zero_x[non_zero_left]))

if len(non_zero_right) > min_pixels:

right_x = np.int(np.mean(non_zero_x[non_zero_right]))

Polynomial fitting

valid, sw = fit_slide_window(binary_warped, hist, left_lane_indexes,

right_lane_indexes, non_zero_x, non_zero_y)

return valid, sw

The reasoning behind this code can be summarized as follows:

1. Choose only the coordinates of the pixels selected by the thresholding.

2. Initialize the current positions with the ones identified by the histogram.

3. Choose a margin (for example, half of the window width of the sliding window)
and the minimum number of pixels to detect to accept a new position for the
sliding window.

4. Update the coordinates of the sliding window by computing the new lateral
and vertical coordinates (x and y).

5. Select only those pixels which are white and constrained in the window.

40

6. Update left and right position with the average of the positions only if there
are enough points.

7. Obtain a line from the selected points using polynomial fitting.

41

5.3 Comparison

As previously mentioned, LD algorithm represents the basis of every autonomously
driving car and, for this reason, it has been the first task the team had to accomplish
during the competition.

The Hough Transform method with Canny Edge Detector is a very sim-
ple and straightforward solution and, with the implementation of a smooth function
responsible for calculating the amount of steepness of a curve, it guarantees a very
good performance [9]. In fact, apart from a couple of adjustments, especially re-
garding the confusion with the intersection line, it showed robustness also with an
overall increase of the speed. As reported in [10], this method is not preferable in
case of more realistic traffic situations such as confusing road textures and uneven
illumination.

Another effective solution consists in the Perspective correction and His-
togram statistics method. Despite the fact that it has a more complex coding
structure, it is more utilised in real life contexts, since in the track-following appli-
cation, multi-curve scenes are common and cross horizontal lines should be filtered
out. Although the Hough Transform method can filter the horizontal line by post-
processing (slope intercept correction), it remains sensitive to ambient noise and
may lead to a large number of abnormal lines.

It is clear that, for the competition purpose, both methods show similar efficiency
and, for both, the output is depicted in Figure 19, where the green line is the heading
line responsible for correctly centering the car on the road and the blue lines are
the recognized lane lines, from which the curvature value (and, consequently, the
steering angle) is calculated.

Figure 19: Output of the LD algorithms.

42

5.4 Intersection Detection

Due to the complex and dynamic character of intersection scenarios, the autonomous
driving strategy at intersections has been a difficult problem and a hot point in the
research of intelligent transportation systems in recent years [11]. In the BFMC con-
text, there were mainly 3 different types of intersections: crossroad, T-intersection
and roundabout. The navigation throughout these intersections has been defined
in the MovCarProcess.py and it consists in turning left, right or going straight
on manoeuvres according to the current intersection. More specifically, for the Mid-
Term Quality Gate, the team implemented the logic of the state machine model,
which divides the states of the vehicle into a limited number of categories. It is
obvious that this classical method is only suitable for simple scenarios rather than
complex dynamic ones where the artificially defined rules cannot adapt to all situa-
tions. In fact, during the semi-finals and finals at the Bosch Engineering Centre, the
team adopted a state machine-based algorithm which was running also according to
the GPS data.

As for LD, the objective of Intersection Detection in the field of Image Processing
regards finding the horizontal line which precedes the intersection on the track. This
step was crucial for the correct functioning of the autonomous drive for this project,
since only the accurate detection of the intersection could assure also the exact
behaviour and decision-making of the car on the track.

Since the logic of individuating the horizontal line is the same as individuating
the lane lines (with the only change in slope), the team implemented almost the
same Hough Transform code for the LD with some crucial differences: in particular,
during the testing phases, the addition of the detected horizontal line often miscon-
fused the LF part, since the car was detecting the horizontal line as if it were one of
the 2 lane lines and wrongly tried to follow it. The correction of this error is taken
into account in the function average slope intercept inside the MainLaneDe-
tectionProcess, similarly to what is done in the get steering angle function:
the former performs the correction for calculating the correct slope of the lines in
order to display the detected lines, the latter does the same but for calculating the
true steering angle. All in all, it is a sort of double check that the detected line is
effectively a lane line or an intersection and act accordingly. The former function is
highlighted in the code below:

def average_slope_intercept(self, frame, line_segments):

....

previous = 0 #previously found line

subsequent = 0 #next line

for line_segment in line_segments:

for x1, y1, x2, y2 in line_segment:

if x1 == x2:

continue

fit = np.polyfit((x1, x2), (y1, y2), 1)

slope = (y2 - y1) / (x2 - x1)

intercept = y1 - (slope * x1)

subsequent = previous

previous = slope

43

#When the two lines are perpendicular

if subsequent*previous<-90:

if abs(previous)<abs(subsequent):

slope=previous

else:

slope=subsequent

....

return lane_lines

To this purpose, the control implemented regards the definition of 2 new variables:
previous and subsequent. They are used to ”remember” the slope of the line which
was detected before the horizontal one, which should be in fact one of the 2 lane
lines. In fact, the subsequent variable is set as the previous one, which is then set to
the calculated slope.

The control on the slope is based on the perpendicularity between the lane line
(which is usually almost vertical) and the horizontal line: if the product between
the 2 lines is greater (in absolute value) than 90°, two cases may happen.

1. The slope of the previous line is less than the slope of the next line, meaning
the next line is in fact a horizontal line and so the slope is kept as the one of
the previously detected line.

2. The slope of the previous line is greater or equal to the slope of the next line,
and so the slope corresponds to the next line, meaning the detected one is
effectively a lane line.

Another important aspect to consider is the ROI, which is moved slightly upward
if compared to the LD one, since the intersection must be detected in advance. It
is crucial to remind that the definition of the ROIs strongly depends on both the
inclination and the height of the camera (Figure 20).

Figure 20: Inclination of the Raspberry Pi Camera.

44

Finally, the output of the IntersectionDetectionProcess is a variable called
self.Intersection which is equal to 1 whenever the intersection is detected,
0 otherwise.

45

6 Traffic Sign Recognition

Traffic Sign Detection (TSD) and Classification (TSC) are among the most chal-
lenging tasks of autonomous vehicles: as for LD, it is based on the usage of vehicle
cameras to capture real-time road images and then on detecting and identifying the
traffic signs encountered on the road, thus providing accurate information to the
driving system.

However, the road conditions in the actual environment are very complicated.
Nowadays, there exists a wide variety of computer vision methods to detect traffic
signage but further research and improvement are still needed.

In the context of traffic sign recognition, there are two tasks to accomplish: find-
ing the locations and sizes of traffic signs in natural images (TSD) and classifying the
detected traffic signs into their specific sub-classes (TSC). Traffic signs are designed
in such a way to attract human drivers’ attention but, for computer algorithms,
there are many difficulties due to illumination changes, color deterioration, motion
blur, partial occlusion, etc. These problems are more easily dealt by deep learning
techniques [12] because, unlike traditional machine learning methods, they provide
neural networks which can be trained automatically and extract image features in-
creasing significantly the accuracy of detection. The main drawback of such methods
is the heavy computational effort, in most cases not suitable for low-cost hardware
packages such as Raspberry Pi.

In this work, for the sake of completeness, two main techniques have been im-
plemented and, finally, compared:

• Pre-trained linear Support Vector Machine (SVM) model with Histogram
of Oriented Gradients (HOG) features descriptor.

• Deep learning model using Tensorflow.

Both methods rely upon common characteristics of machine learning algorithms,
which are shown in Figure 21.

Figure 21: Flow Chart for Traffic Sign Detection.

To summarize the functioning of such algorithms, they both count on a dataset
containing many complex images of the traffic signs to be recognized, such as sign

46

tilt, uneven lightning, traffic sign distortion, occlusion and similar background colors
so that, ideally, the classification model is capable of recognizing the objects in every
situation. For both models, the dataset has been created using images of the traffic
signs in question, shown in Figure 22, taken both from the Raspberry Pi Camera
and other devices.

Figure 22: Traffic Signs to recognize from the BFMC22.

Despite their differences, which will be explained better in the next subchapters,
both the linear SVM and the neural network are trained by means of the dataset and,
according to this training, should be capable of detecting the traffic signs coming
from the car camera. It is quite evident that, the more images are contained in
the dataset, the better the performance of the models will be: in fact, the dataset
created in this work is composed by a total of approximately 2000 images.

6.1 Linear SVM classifier

Before diving into the code structure, it is important to understand what a linear
SVM is and how it works: the algorithm creates a line or a hyperplane which
separates the data into classes. Practically, SVM takes the data as an input and
outputs a line that separates those classes if possible but, since there exist infinite
lines that can separate the classes, SVM finds the one which is the farthest from the
points of each class in order to decrease the misclassified points, as it is displayed in
Figure 23. The optimization problem which this algorithm solves is the maximization
of the so-called margin, the distance between the line and the support vectors.

47

Figure 23: Linear SVM optimal hyperplane.

The algorithm is divided into two main phases: detection and classification.
The detection phase uses image processing techniques that create contours on each
video frame and find ellipses or circles among those contours: they are marked as
candidates for traffic signs. The detection strategy involves the following steps:

1. Increase the contrast and dynamic range of the video frame.

2. Remove unnecessary colors with HSV Color Range.

3. Use Laplacian of Gaussian to display border of the objects.

4. Make contours using Binarization.

5. Detect ellipse-like and circle-like contours.

In the classification phase, instead, a list of images is created by cropping the original
frame based on candidates’ coordinate. The pre-trained SVM model will classify
these images to find out which type of traffic sign they correspond to. If a traffic
sign is detected, it will be tracked until it disappears or there is another bigger sign
in the frame.

The dataset contains 13 folders, each corresponding to a specific object to
detect: in addition to the traffic signs shown in Figure 22, there is a ”OTHER”
folder for anything that is not classified as one of the classes and other 2 folders for
”PEDESTRIAN” and ”SEMAPHORE”, even though these last 2 objects are better
classified using other object detection methods (Chapter 8).

The algorithm is mainly composed by 3 files: SignDetectionProcess.py,
classification.py and common.py. Apart from the classical Process present
in every algorithm, the common.py file contains functions used in the classification.py
file, whereas the classification.py file is recalled by the Process. More specifi-
cally, the classification.py file is responsible for training and saving the SVM
model, so it performs the following tasks:

• Loads the traffic sign dataset from the correct directory.

• Finds and calculate the HoG parameters using the cv2.HOGDescriptor
function

48

• Trains and saves the model after splitting the dataset into training (90%) and
validation (10%).

Inside the Process, the main steps are reported in the code below.

#ROI definition

frame = frame[0:300, 320:640]

#Finds the sign in the frame, returning the coordinates, the original

image, the type of sign (with the corresponding text in the image)

coordinate, image, sign_type, text = self.localization(frame,

args.min_size_components, args.similitary_contour_with_circle, model,

count,current_sign)

#Draw a rectangle based on the coordinates

if coordinate is not None:

cv2.rectangle(image, coordinate[0], coordinate[1], (255, 255, 255), 1)

if NEW SIGN FOUND:

current_sign = sign_type #update of the current sign

top = int(coordinate[0][1] * 1.05)

left = int(coordinate[0][0] * 1.05)

bottom = int(coordinate[1][1] * 0.95)

right = int(coordinate[1][0] * 0.95)

#New size

tl = [left, top]

br = [right, bottom]

#Grab the ROI for the bounding box and convert it to the HSV color space

roi = frame[tl[1]:br[1], tl[0]:br[0]]

roi2 = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)

#Compute a HSV histogram for the ROI and store the bounding box

roiHist = cv2.calcHist([roi2], [0], None, [16], [0, 180])

roiHist = cv2.normalize(roiHist, roiHist, 0, 255, cv2.NORM_MINMAX)

roiBox = (tl[0], tl[1], br[0], br[1])

elif SAME SIGN:

hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

backProj = cv2.calcBackProject([hsv], [0], roiHist, [0, 180], 1)

#Apply cam shift to the back projection, convert the points to a

bounding box, and then draw them

(r, roiBox) = cv2.CamShift(backProj, roiBox, termination)

pts = np.int0(cv2.boxPoints(r))

s = pts.sum(axis=1)

tl = pts[np.argmin(s)]

br = pts[np.argmax(s)]

In this case, the ROI is defined in the half right-hand side of the frame. Then, the
main function localization.py is called: it is responsible for preprocessing and
binarization of the image, finding the contours of the binary image and evaluating
the correspondence between the contours and one of the traffic signs. Finally, the rest
of the code writes on the original image both the rectangle and the text identifying

49

the sign according to which sign is detected: all the identifications are updated, if
the detected sign is different from the current sign, then the roi and the roiBOX
are calculated on the basis of the new coordinates and the HSV histograms, whereas
if the detected sign is equal to the current sign, they are updated using only a
CamShift method to track the shift of the sign in the frame. The output of this
code is shown in Figure 24.

Figure 24: Linear SVM TSD output.

During the experiments on the real track, the team found out that for some
signs such as Parking, Crosswalk and Stop the detection was really good, whereas
for others signs like Highway and Priority, the detection was worse. In order to
improve the performance of the algorithm, the team tried to insert as many images
as possible in the dataset. Still, this type of algorithm has some disadvantages:

• Static image processing since the parameters must be updated for each video
with different lightning conditions.

• Low accuracy of detection due to miss signs or wrong areas detection.

• Retraining of the model when running the program.

A better accuracy is obtained for the Neural Network explained in the next sub-
chapter.

50

6.2 Tensorflow-based Neural Network

Neural networks and deep learning currently provide the best solutions to many
problems in image recognition. Unlike common classifiers, deep learning techniques
manipulate the training data. In fact, what really matters is the data fed to the
algorithm rather than the algorithm itself: this is totally different from normal pro-
gramming, where different tasks usually require different code, even though difficult
tasks require more advanced neural networks to perform well. Deep learning can
be considered a subset of machine learning where the computation is performed
by several computation layers and, from a practical point of view, deep learning is
achieved using neural networks, represented in Figure 25.

Figure 25: Simple Neural Network.

A neuron is a computation node that produces an output given some input: this
computation can be divided into 2 parts.

• The transfer function computes the sum of every input multiplied by its weight
(a number): this is a linear operation defining the dependence of the current
neuron with its input neurons.

• An activation function is applied to the result of the previous operation and
it should be a non-linear operation. A common one is the Rectified Linear Unit
(ReLU). Introducing a non-linear operation in the activation allows a network
to compute non-linear functions that become more and more complex as the
number of layers grows.

During the training phase, the parameters of the neuron (bias and weights) are
tuned: the whole purpose of training is to find the best possible value for these
parameters for the task in question. This implies that the same neural network
with different parameters can solve different problems. Compared to the past, deep
learning techniques have been improved thanks to some critical advances:

• Many datasets are available on the internet to train the neural network.

• Architectures have become better and more efficient.

• There are several good open source libraries for neural networks.

51

Regarding the last point, the implemented neural network is in fact based on Ten-
sorflow. TensorFlow is an open source library for fast numerical computing created
by Google and it was designed for both research and development in production
systems. It can run on single CPU systems, GPUs as well as mobile devices. The
main code is shown below.

images, label = self.load_traffic_dataset()

Create a graph to hold the model:

graph = tf.Graph()

Create model in the graph:

with graph.as_default():

Placeholders for inputs and labels.

images_ph = tf.placeholder(tf.float32, [None, 32, 32])

labels_ph = tf.placeholder(tf.int32, [None])

flatten_layer = tf.keras.layers.Flatten() # instantiate the layer

images_flat = flatten_layer(images_ph) # call it on the given tensor

Fully connected layer.

logits = tf.compat.v1.layers.dense(images_flat, 62, self.lrelu)

#tf.nn.relu for model of type 1 (only 70% accuracy)

Convert logits to label indexes (int).

predicted_labels = tf.argmax(logits, 1)

Define the loss function.

loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits

(logits=logits, labels=labels_ph))

Create training op.

optimizer = tf.train.AdamOptimizer(learning_rate=0.001)

train = optimizer.minimize(loss)

And, finally, an initialization op to execute before training.

init = tf.global_variables_initializer()

Create a session to run the graph we created:

session = tf.Session(graph=graph)

First step is always to initialize all variables.

_ = session.run([init])

Run the "predicted_labels" op.

sign_type = session.run([predicted_labels], feed_dict={images_ph:

frame})[0]

First of all, the traffic sign dataset is loaded, in particular each read image is resized
to 32x32 pixels. Then, a graph from the Tensorflow is created to hold the neural
network so that the learning will be done on the graph and not on the code: the
graph will be run on a low-level code (GPU). Inside the model, 2 placeholders are
created, one for images and one for labels: a placeholder is simply a variable to
which data will be assigned later in the code. A flatten layer is instantiated and
associated to the images placeholder and then the functional interface of the layer

52

is defined: in addition to the layer itself, tf.compat.v1.layers.dense takes as
input the dimensionality of the output space (62) and the activation function. The
latter, in particular, has been chosen to be both the classical ReLU function and
the LeakyReLU (lrelu).

A ReLU function has output 0 if the input is less than 0 and raw output other-
wise; it has the advantage of not having any backpropagation errors and the speed
of building models based on ReLU is very fast opposed to other solutions such as
sigmoids. The main drawback of this function is that is non differentiable at 0,
and this is why the accuracy of the model will be only around 70%. To avoid this
problem, the Leaky RelU is used instead:

TensorFlow doesn’t have a native implementation of Leaky-ReLu

def lrelu(x):

return tf.maximum(0.01 * x, x) # giving a bit of gradient also for

negative values

The graph for this function is shown in Figure 26.

Figure 26: Leaky ReLU and Parametric ReLU.

As the name and the figure suggest, the slope is changed left of x=0 causing
a leak and extending the range of the ReLU: instead of not firing at all for large
gradients, the neurons do output some values and that makes the layer much more
optimized too. In fact, the accuracy is increased up to 90%.

The tf.compat.v1.layers.dense outputs the logits of the fully connected
layer, which stands for the predicted labels (then converted into 1D vector). In
order to train the neural network, an appropriate optimization process must be
used that requires a loss function to calculate the model error. Cross-entropy and
mean squared error are the two main types of loss functions to use when training
neural network models and this operation is done in the tf.reduce mean function.
The optimizer consists in the Adam Algorithm, an optimization algorithm that
can be used instead of the classical stochastic gradient descent procedure to update
network weights iterative based in training data. The only parameter to be defined
is the learning rate which is set as default value.

Finally, the model is run taking as input the logits of the neural network and the
camera frame as the images placeholder. According to the output of the session.run,
the detected traffic sign is derived.

53

6.3 Results comparison

Both the algorithms were run together with all the other Processes involved in the
autonomous driving project in order to test both the accuracy of the detection and
the speed of computation. From a first implementation of the Tensorflow-based
Neural Network, the detected traffic sign printed in the terminal of the Raspberry
Pi corresponded to the actual traffic sign present in the track with an accuracy of
90%, the only problem regarded the significantly reduced speed of computation,
meaning that the detected traffic sign was printed with a consistent delay.

On the other hand, the linear SVM model did not lower the speed of computation
but demonstrated a much lower accuracy, specifically it performed several miss signs
in presence of determinate traffic signs such as priority and highway. The increase
of the dataset did not show particular improvements.

It is clear that, both from state-of-the-art research and from the results obtained
during the testing phase on track, the optimal solution for traffic sign detection is
represented by the Neural Network. Nevertheless, in order to be effectively utilized,
the hardware must be upgraded and this can be done inserting a Neural Stick in the
Raspberry Pi or replacing the Raspberry with a more powerful on-board computer.

For the purpose of the BFMC project, the team opted for keeping the linear SVM
model to detect traffic signs, otherwise the usage of such a heavy neural network-
based algorithm would have lowered the performance of the other algorithms.

54

7 Traffic Light Detection

Traffic signal light is one of the most important information guidance of traffic
signals: accurate identification of traffic signal light in advance is conducive to the
pre-planning of the path of intelligent networked vehicles. Therefore, the study
of traffic signal light identification technology has important significance and good
application prospects.

The existing traffic signal lamp detection methods mainly include color feature-
based and shape feature-based detection methods. For the identification of traffic
lights, the functions have to be:

• Image acquisition and preprocessing of the collected images.

• Canny operator for Edge Detection.

• Method for extracting pixel points to identify the color of traffic lights.

Other more optimized algorithms consist again in training and classification phases
typical of a neural network.

For the BFMC purpose, one of the basic requirements for the correct functioning
of the autonomous driving regarded the detection of the traffic light. This mainly
meant detecting the object itself rather than the color of the semaphore, since the
latter was given directly by the Bosch server and communicated to the car by means
of a dedicated process, which is part of the V2X communication. To this aim, during
the competition, all the cars’ Raspberry Pi’s are connected to the LAN and API’s
were given in the brain project for the interaction with all the systems (Chapter 2 and
3). In the traffic light case, each semaphore on the track broadcasts messages with a
determined frequency including ID and STATE: ID corresponds to the identification
number of the semaphore (from 1 to 4) and STATE is the turned-on color.

However, the team decided to try implementing an algorithm which was capable
of detecting also the semaphore colors in order to submit the work done in the last
Project Status before the on-site competition.

The semaphore used is shown in Figure 27.

Figure 27: Semaphore used in the BFMC22 (left) versus Real Traffic Lights (right).

As it is noticeable from Figure 27, this semaphore does not show a high contrast
for all the colors: in presence of high light conditions, the lighten-up color is not so

55

distinguishable and this represents the main difficulty for the detection algorithm.
All the examples found on the web are applicable to real traffic lights among which
the majority of them does have high contrast between the 3 colors, since a driver
must be immediately captured by the ON color and act consequently: a confusion
may cause great damage to the driver and all the other vehicles involved in the
crossroad.

The algorithm proposed in this chapter has the main purpose of acquiring knowl-
edge and getting used to manipulating the image in a context in which the color
itself, not the contours of a binary/grey image, matter, more than showing an im-
mediately applicable solution to real autonomous driving problems. Nevertheless,
it is a solid basis for developing a working algorithm to detect colors of real traffic
lights in which the turned on color is highly visible [13].

56

7.1 Color Detection

It is clear that the objective of the algorithm is finding a way to detect 3 colors: red,
yellow and green [14]. This can be done by using Color Thresholding, whose idea
is to limit the image to where determinate colors are present. Anywhere in the image
that does not correspond to one of these colors is set to zero and shown as black. To
effectively isolate the colors of interest, there are a few considerations to cover: the
color space, the threshold cutoff and variations to illumination. Typically images
are represented in the RGB color space which mixes color and intensity information
throughout its channels and this makes the RGB format sensitive to changes in light.
This is the reason why it is preferable to convert the image into HSV or HSL color
space. As previously mentioned, HSV stands for:

• HUE: modeled as an angular dimension that encodes color information.

• SATURATION: encodes the intensity of the color.

• VALUE (brightness): represents the amount at which that respective color is
mixed with black.

HSV color space uses the Angle to measure the color: 0° represents red, counter-
clockwise calculation. Saturation refers to the purity of the color, and the value of
this channel is defined by percentages in the range [0,1]: a better representation is
given in Figure 28.

Figure 28: HSV color space model.

Compared to the RGB color space, HSV is not suitable for the display system
but more in line with the visual characteristics of human eyes. An example of this
conversion is given in Figure 29.

57

Figure 29: Comparison between RGB and HSV color space.

In the specific case of the traffic light detection algorithm, the utilized function is
find hsv, which takes as input the RGB image, computes the HSV correspondent
image and finds an average both for brightness and saturation, since these are the
main parameters to account for when distinguishing a color from the others.

def find_hsv(self,rgb_image):

img_float = np.float32(rgb_image)

hsv = cv2.cvtColor(img_float, cv2.COLOR_RGB2HSV)

h = hsv[:, :, 0]

s = hsv[:, :, 1]

v = hsv[:, :, 2]

sum_brightness = np.sum(hsv[:, :, 2])

area = 32 * 32

avg_brightness = sum_brightness / area # Find the average

sum_saturation = np.sum(hsv[:, :, 1])

avg_saturation = sum_saturation / area # Find the average

return avg_brightness, avg_saturation

This function is applied to the whole traffic light dataset, which contains both ON
and OFF conditions for every color. According to the averaged values obtained from
the function output, the range of approximated values for brightness and saturation
is shown in Table 2. Also from these results, it is possible to confirm the very slight

CHARACTERISTIC CONDITION GREEN RED YELLOW

SATURATION ON 0.62 0.60 0.62
OFF 0.58 0.52 0.56

BRIGHTNESS ON 0.45 0.48 0.48
OFF 0.29 0.33 0.40

Table 2: Brightness and saturation values for ON/OFF conditions of the traffic light.

difference between the intensity of the colors in the utilized semaphore, especially
when the colors are turned ON and for which the faint light is weak against the light
of the environment. These values are then used in a specific function to define the
masks in which the 3 colors are contained.

58

7.2 Mask Definition

The mask definition has the main role of segmenting the colored region from the
image. In the code below, only the part relative to the green color is reported.

def color_mask(self,rgb_image, brightness, saturation, hue):

img_float = np.float32(rgb_image)

hsv = cv2.cvtColor(img_float, cv2.COLOR_RGB2HSV)

...

lower bound and upper bound for Green color

lower_bound = np.array([50, saturation_off, brightness_off])

upper_bound = np.array([100, 255, 255])

find the colors within the boundaries

mask = cv2.inRange(hsv, lower_bound, upper_bound)

Segment only the detected region

segmented_img = cv2.bitwise_and(img, img, mask=mask)

Find contours from the mask

contours, hierarchy = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)

output = cv2.drawContours(segmented_img, contours, -1, (0, 0, 255), 3)

...

return output_red, output_yellow, output_green, red_mask, yellow_mask,

green_mask

The lower and upper bounds are the boundaries of the color: the first element in
the array is the HUE value and it is set according to the HSV palette color space,
whereas SATURATION and BRIGHTNESS are set according to the values obtained
from the find hsv function. Afterwards, the inRange() function returns a binary
mask of the frame where the green color is present: wherever the green is detected,
the mask shows that as white and the rest of the region is black. By means of the
cv2.bitwise and() function, the mask is applied on the frame in only the region
where the mask is true. Finally, the boundaries over the detected regions are drawn.

The output of this function is shown in Figure 30, where the images for green,
red and yellow masks have been inserted side-by-side.

Figure 30: Color Mask Detection.

It is clear that in this function what plays a crucial role is the lower and upper
bound arrays: according to the specific situation (the colors intensity), these values

59

have to be tuned to increase the accuracy of the color detection and this operation
requires many trials. In Figure 30, where the image to process is a semaphore with
green ON, the green mask is almost perfectly defined, whereas the red and yellow
one are more confused, especially for the red color since it is the darkest one among
the others.

7.3 Pixel intensities using Histograms

As already studied in Chapter 5, histogram is considered as a graph or plot which is
related to frequency pixels in an image. If applied to grayscale images, the shades of
gray determine a variation from black at the weakest intensity (pixel value equal to
0) to white (pixel value equal to 255) at the strongest. The histogram plot reports
the number of pixels present for a certain value of pixels: this means that left region
of histogram shows the amount of darker pixels in the image, whereas right region
shows the amount of brighter pixels.

A similar logic can also be applied to a RGB image.

def histogram_values(self,image,mask,color):

histg = cv2.calcHist([image],[color],mask,[256],[0,256])

plt.plot(histg)

plt.show()

avg=sum(histg)/len(histg)

return avg, histg

To this purpose, the function cv2.calcHist is used and the inputs are:

1. The source image.

2. The index of the channel for which the histogram must be calculated: for a
color image, the index is [0], [1] or [2] to calculate histogram of blue, green or
red channel respectively; in this project, same channel of [1] has been selected
for both green and yellow due to the similarity of tonality.

3. The mask image, None if no mask is given.

4. Histogram size: for full scale, it is [256].

5. Range of colors: [0,256].

In order to evaluate the pixel intensities in each case of the ON semaphore conditions,
it is of interest to calculate the average of the histogram values: this value will then
be used to detect the ON color.

Since the histogram has to be calculated for every color, the function is applied
3 times and different inputs for color and mask are given. An example of plotted
histograms is given in Figure 31, where the histogram function has been applied to
an image in which the semaphore is green.

60

Figure 31: Histogram plots of green, yellow and red channels respectively when
green is in ON condition.

Both from a first glance to the graphs and from the numerical calculation of the
average value of the pixel intensities in the region of interest (in this case around
150-250 in the x-axis), it is possible to observe that the highest value is reached in
the green channel, as expected. The peaks around 0 and 256 are due to black and
white regions in the image, not to be considered for this analysis.

7.4 Algorithm implementation

The summary of the procedure involved in the Traffic Light detection developed for
the project is:

1. Load and resize the image.

2. Calculate the HSV of the dataset to find the correct mask for each color.

61

3. Find the mask and select the area of the specific color.

4. Plot the histogram of the image relative to each mask and calculate the average,
to be compared with the other colors to detect the correct one.

The first step is done only in the pre-elaborating part, in which the focus is on
calculating the lower and upper bound arrays for each color: once these values are
obtained, they are inserted manually in the code and given as input to the function.
An extract of the TrafficLightsMain function inside the TrafficLightProcess is
given in the code below.

#Vectors of a-priori values (using the find_hsv function) of brightness,

saturation and hue (red,yellow,green)

brightness_on = [0.48,0.30,0.45]

saturation_on = [0.62,0.40,0.58]

hue_on = [0,0.6,12]

#ROI selection

frame = frame[100:480, 320:680]

#Color mask and histogram calculation

red_out, yellow_out, green_out, mask_red, mask_yellow, mask_green =

self.color_mask(frame, brightness_on, saturation_on,hue_on)

avg_red,histg_red = self.histogram_values(red_out,mask_red,2)

avg_green,histg_green = self.histogram_values(green_out,mask_green,1)

avg_yellow,histg_yellow = self.histogram_values(yellow_out,mask_yellow,1)

#Color detection based on pixels average

if not(avg_red == 0 and avg_green == 0 and avg_yellow == 0):

if avg_green >= 30:

estimated_color = avg_green

print("GREEN DETECTED" +str(estimated_color))

elif avg_yellow >= 17:

estimated_color = avg_yellow

print("YELLOW DETECTED" +str(estimated_color))

elif avg_yellow < 17 and avg_green <30 and avg_red<=12 and avg_red>=11:

estimated_color = avg_red

print("RED DETECTED:" +str(estimated_color))

for out in outPs:

out.send(estimated_color)

The reasoning behind the color detection is choosing some threshold values of pixel
intensities for each color when it is in ON condition: these values are found after
many trials when running the code on the Raspberry Pi, however they are not
unique, but they strongly depend on the light condition, e.g. the time of the day in
which the experiment is carried out.

Obviously, it is possible to implement an auto-exclusion logic since only one color
is in the ON condition each time; in the code reported above, it was not needed since
the histogram values for each color covered very different ranges from one another.
Anyway, the values in the if conditions only have an exemplary function and were
true exclusively for a specific light and environment condition.

This is in fact the main drawback of this algorithm: it is not possible to find
a fixed histogram value to detect the color in every situation. It is clear that a

62

better implementation can be found again in the neural network, but it has the
disadvantage of the too heavy computational effort.

Anyway, if tested on a particular light condition together with the corresponding
histogram values, the detection works well for green and yellow, whereas the code
shows difficulties in detecting the red mask, which means strong variation in the
resulting thresholds; this is probably due to the poor intensity of the color in the
utilized semaphore.

63

8 Object Detection

Object detection mainly deals with identification of real-world objects such as people,
animals, and objects of suspense or threatening [15]. Object detection algorithms
use a wide range of image processing applications for extracting the object’s desired
portion. A basic block diagram of object detection process is shown in Figure 32.

Figure 32: Basic block diagram of object detection process.

From Figure 32, frames are extracted from image or video, then objects are
detected based on user’s desired choice such as face, skin, colour and shape. Further
various features of object detection are extracted for video surveillance applications,
but for this work purpose it will be applied to the autonomous driving context,
in which it is fundamental to detect other objects present on the road such as
pedestrians, semaphores and cars. Specifically, the requirements for object detection
(V2X) requested by the BFMC regard detection of a pedestrian crossing the street
both in presence of the crosswalk sign and in a random point of the track, detection
of the traffic light and detection of both static and moving cars.

In the case of intelligent video surveillance, both in a private context and in
the highway for detecting the speed of the vehicles, the camera which extracts the
object features is fixed and so these applications rely on differencing on every pair of
consecutive frames to detect the objects which are moving: in particular, a specific
area of the frame is selected as the one to compare to the previous frame and, in the
case of the highway surveillance, only the cars are present and detected. It is clear
that such a method cannot be exploited for an application in which the camera itself
is always moving, and consequently also the stationary objects are seen in motion.

Due to the limitation imposed by the implementation of the neural network,
again the team had to look for other applicable and similarly efficient solutions.
The pedestrian detection exploits an algorithm based on the Histogram of Oriented
Gradients (HOG) introduced by OpenCV, whereas semaphore and car detection
utilizes a function which detects the shape of the object based on the number of short
segments that can describe the shape itself. All these functions are implemented
inside the same ObjectDetectionProcess, whose main is reported in the code below.

def object_classification(self,inPs,outPs):

64

fps = 10

frame_sem = []

frame_car = []

frame_ped = []

approxs = 0

Define the codec and create VideoWriter object

fourcc = cv2.VideoWriter_fourcc(*’XVID’)

out = cv2.VideoWriter(’output.avi’, fourcc, fps, (640, 480))

try:

while True:

stamps, img = inPs.recv() #take images from Camera Thread

frame = cv2.resize(img, (640, 480))

#Define 3 different ROIs

frame_sem = frame[0:200, 350:500] #semaphore ROI

frame_car = frame[180:300, 200:640] #car ROI

frame_ped = frame[0:340, 0:420] #pedestrian ROI

self.ped, imagep = self.pedestrian_detector(frame_ped)

self.sem, _, images, approxs = self.shape_detector(frame_sem)

#detection of semaphore and car

_, self.car, imagec, approxc = self.shape_detector(frame_car)

#Whole control (they cannot happen at the same time)

if self.ped >= 1 and not(2<=self.sem<=3) and not(1<=self.car<=2):

self.count_ped = self.count_ped + 1

if self.count_ped >= 2:

self.object = 1

cv2.putText(frame, "Pedestrian", (50, 50),

cv2.FONT_HERSHEY_COMPLEX, 1, (255,0,0), 2)

self.count_ped = 0

else:

self.object = 0

...

outPs[0].send(self.object) #send which object: 1 for pedestrian,

2 for semaphore and 3 for car

Similarly to the other image processing algorithms, 3 different ROIs are specified
according to the object to detect and in which position it is supposed to be found
on the track in order to decrease the false detections due to noise and other objects
present in the environment. Another implemented control to achieve good detection
results consists in utilizing counters: if the object to detect is the correct one, it
is present in the frames continuously for a fixed period of time which is usually
longer than the time in which other unwanted objects are subject to the detection
algorithm. The values of the counters (one for each object) are set thanks to different
experiments on the track.

Moreover, MovCarProcess performs a double check between the inputs coming
from the detection algorithm and what is sensed by the Ultrasonic and Lidar sen-
sors. More specifically, the Lidar is used to detect frontal objects (such as cars and
pedestrians), whereas the Ultrasonic is used to detect side objects such as other cars
during parking and overtake manoeuvres.

65

8.1 Pedestrian Detection

Pedestrian detection using OpenCV can be accomplished by leveraging the built-in
HOG and Linear SVM detector that OpenCV ships with, allowing to detect
people in images [16]. The feature descriptor is a simplified representation of the im-
age that contains only the most important information about the image to recognize
its content. The main characteristics of this method are the following:

• The HOG descriptor focuses on the structure or the shape of an object: the
difference from a simple edge feature relies on providing both gradient and
orientation (magnitude and direction) of the edge (not only its gradient).

• These orientations are calculated in ’localized’ portions: the complete image
is broken down into smaller regions and, for each region, the gradients and
orientation are calculated.

• Finally, the HOG generates a histogram for each of these regions separately.

All in all, the HOG feature descriptor counts the occurrences of gradient orientation
in localized portions of an image. An example of the output of this method is given
in Figure 33.

Figure 33: HOG descriptor applied to the pedestrian utilized in the BFMC22.

The HOG pedestrian detector in OpenCV is trained with a model that is 48x96
pixels and therefore it detects objects with a box of the same size.

def pedestrian_detector(self, image):

#function to detect pedestrians only

construct the argument parse and parse the arguments

ap = argparse.ArgumentParser()

ap.add_argument("-w", "--win-stride", type=str, default="(8,

8)",help="window stride")

ap.add_argument("-p", "--padding", type=str, default="(16,

16)",help="object padding")

ap.add_argument("-s", "--scale", type=float, default=1.05,help="image

pyramid scale")

66

ap.add_argument("-m", "--mean-shift", type=int,

default=-1,help="whether or not mean shift grouping should be used")

args = vars(ap.parse_args())

evaluate the command line arguments (using the eval function like

this is not good form, but let’s tolerate it for the example)

winStride = eval(args["win_stride"])

padding = eval(args["padding"])

meanShift = True if args["mean_shift"] > 0 else False

initialize the HOG descriptor/person detector

hog = cv2.HOGDescriptor()

hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())

load the image and resize it

#image = cv2.imread(image)

image = imutils.resize(image, width=min(400, image.shape[1]))

detect people in the image

start = datetime.datetime.now()

(rects, weights) = hog.detectMultiScale(image,

winStride=winStride,padding=padding, scale=args["scale"],

useMeanshiftGrouping=meanShift)

print("[INFO] detection took: {}s".format((datetime.datetime.now() -

start).total_seconds()))

draw the original bounding boxes

for (x, y, w, h) in rects:

cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)

cv2.putText(image, "Pedestrian", (x, y), cv2.FONT_HERSHEY_COMPLEX,

1, (255,0,0), 2)

cv2.imshow("Pedestrian detection",image)

return len(rects) #return the number of rectangles (number of

pedestrians detected)

The argparse module of Python makes it easy to write user-friendly command-line
interfaces, and by means of the same, the parameters for the detectMultiScale
function are defined. In fact, since the HOG descriptor for pedestrian is already
built by default, the only parameters to modify are exactly those which are parsed,
because they can increase the number of false-positive detections and dramatically
affect the speed of the detection process. It is very important to find the trade-off
between speed and accuracy, especially when this detector has to be run in real-time
on resource constrained devices such as the Raspberry Pi. These parameters are:

• Img (required): can be either color or grayscale.

• hitThresold (optional): changes the max Euclidean distance between the in-
put HOG features and the classifying plane of the SVM and a higher threshold
means the classifier is confident with the result.

• winStride (optional): 2-tuple that dictates the “step-size” in both x and y
location of the sliding window. In the context of object detection, a sliding
window is a rectangular region of fixed width and height that “slides” across an
image: at each stop of the sliding window, the HOG features are extracted and
passed on to the Linear SVM. Since this procedure is expensive, it is preferable
to evaluate as little windows as possible if the intention is to run out Python
scripts in real-time, but also the smaller it gets, the more windows need to be

67

evaluated. Good custom is to start with (4,4) and increase the value until a
reasonable trade-off between speed and detection accuracy is obtained.

• Padding (optional): tuple which indicates the number of pixels in both the
x and y direction in which the sliding window ROI is “padded” prior to HOG
feature extraction. Adding a bit of padding surrounding the image ROI prior
to HOG feature extraction and classification can increase the accuracy of the
detector. Typical values include multiples of (8,8).

• Scale (optional): it controls the factor in which the image is resized at each
layer of the image pyramid, ultimately influencing the number of levels (the
smaller it is, the more is the time taken to process the image). Typical values
for scale are normally in the range [1.01, 1.5] and if it is run in real-time, this
value should be as large as possible without significantly sacrificing detection
accuracy.

• finalThreshold (optional): apply a “final threshold” to the potential hits
weeding out potential false positives.

• useMeanShiftGrouping (optional): Boolean variable indicating whether or
not it should handle potential overlapping bounding boxes, but to obtain better
results it is more advisable to use non-maxima suppression, therefore this
parameter has to be set to False.

Such parameters have to be tuned according to the application and the best sugges-
tions include:

1. Resizing the image or frame to be as small as possible in order to reduce the
width and height of the image in order to have less data to process meaning a
faster detection.

2. Tune especially the Scale and winStride parameters because they have a
tremendous impact on the object detector speed and performance.

The values shown in the code above have been tuned once in the competition track
since the type of pedestrian to detect is unique, anyway this algorithm works for
every kind of pedestrian, as shown in Figure 34.

68

Figure 34: Pedestrian detector applied on random images from the web.

Instead, Figure 35 shows an image from the real competition track with the
pedestrians to detect. The shown results are due to different values of the parameters
to tune: winStride, padding and Scale. In particular, the values are reported
in Table 3. The correct detection corresponds to the pink-dressed pedestrian on the
bicycle, whereas the wrong one corresponds to a person who is standing in the
background of the image. The values shown in the ”Wrong Detection” column
are the ones suggested in [17] and are useful to detect real pedestrians, but since
in the BFMC the pedestrian to detect is fictitious, these parameters have been
changed and written in the ”Correct Detection” column. In particular, the following
considerations can be made:

• winStride of (4,4) already represents a reasonable trade-off between speed and
detection accuracy since the time elapsed is 0.08s (not considering the delays
of running contemporary all the processes on the Raspberry).

• The scale factor of 1.02 has been chosen to speed up the detection time (1.01
is also correct but it is slower).

69

Figure 35: Pedestrian detector applied on an image of the competition track of the
BFMC22.

Parameter Correct Detection Wrong Detection

winStride (4,4) (16,16)

Padding (4,4) (32,32)

Scale 1.02 1.05

Table 3: detectMultiScale parameters in case of correct and wrong pedestrian de-
tection.

To sum up, this algorithm has good accuracy and it is quite simple to understand
and develop, but the main drawback is the very low possibility of manipulation since
it is an already built-in code. Still, for the project purpose, it is a good starting
point.

8.2 Semaphore and Car Detection

A simple and low-computational effort method for detecting these objects is based
on contour-based approximations of shapes: this process consists in lessening the
number of vertices in such a way that the distance between the contours of shapes
is equal to or less than the specified precision. A built-in function in OpenCV
is used to approximate the shape of polygon curves to the specified precision:
approxPolyDP(). It returns the approximated contour whose shape is the same
as the input curve.

The idea of detection based on this method is that the semaphore is composed by
3 almost perfect circles, so in the code there is a variable which counts the number of

70

circles present in the ROI of the semaphore and if this value is between 2 and 3, then
the semaphore is detected. The car is a little bit more complex to be approximated
to basic shapes, in fact the detected circles are more elliptical than those present in
the semaphore: for this reason, the shape which is representative of the car is an
ellipse. The variables are then set to 0 once the object has been detected and to
start again the count for the next object.

def shape_detector(self,image):

#function to detect semaphores and static cars

imagegray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

blurred = cv2.GaussianBlur(imagegray, (5, 5), 0)

#using threshold() function to convert the grayscale image to binary

image

imagethreshold = cv2.threshold(blurred, 60, 255, cv2.THRESH_BINARY)[1]

#finding the contours in the given image using findContours() function

imagecontours, _ = cv2.findContours(imagethreshold, cv2.RETR_TREE,

cv2.CHAIN_APPROX_SIMPLE)

#for each of the contours detected, the shape of the contours is

approximated using approxPolyDP() function and the contours are

drawn in the image using drawContours() function

for count in imagecontours:

epsilon = 0.01 * cv2.arcLength(count, True)

approximations = cv2.approxPolyDP(count, epsilon, True)

cv2.drawContours(image, [approximations], 0, (0,255,0), 3)

i, j = approximations[0][0]

if 9 <= len(approximations) < 16:

self.circle = self.circle + 1

if self.circle == 3:

self.circle = 0

elif len(approximations) >= 16:

self.ellipse = self.ellipse + 1

if self.ellipse == 2:

self.ellipse = 0

else:

pass

return self.circle, self.ellipse, imagethreshold, len(approximations)

The image is re-elaborated using the usual grayscale and Gaussian blur technique
to lower the weight of the data to process, it is then thresholded to individuate
the contrast between the object and the environment, the contours of every object
in the image are drawn and the approximate function is applied. This function
takes as input the curve array (in this case, the contours), epsilon which is the
parameter specifying the approximation accuracy (maximum distance between the
original curve and its approximation) and a boolean variable that, if true, means
that the approximated curve is closed. In order to guarantee a high approximation
accuracy, an epsilon equal to 1% of the arc length has been chosen. The difference
between an epsilon equal to 10% and another equal to 1% is shown in Figure 36.

71

Figure 36: Approximation function with epsilon equal to 10% (left) and 1% (right)
of the arc length of the curves.

The length of the approximations is useful to understand which shape it corre-
sponds to and, given general criteria [17], it has to be set according to the particular
shape of the object to detect. In fact, the type of circles detected in the semaphore
are of length 11-12, whereas the ones detected on the car are between 15 and 19. For
this reason, the length of the curves in the range 9-16 are chosen as circles, whereas
those greater or equal to 16 are associated to ellipses.

The output of the process when an image of the semaphore is provided as input
is shown in Figure 37.

Figure 37: Approximation function applied to a semaphore: 3 circles detected.

The output of the process for an image of the car as input is illustrated in Figure
38.

72

Figure 38: Approximation function applied to a car (front and rear views): 1 ellipse
detected.

The simplicity of this algorithm is, on one hand, positive since it allows wide
range of manipulation, on the other hand it is not so robust since it is often subject
to false detections due to other objects present in the environment: the technique
of using counters decreases this phenomenon but it does not completely cancel it.
This is why the usage of neural networks would be more reliable for this task.

In any case, the fusion between these algorithms and the sensors represents a
good choice: both cars and pedestrian are sensed by means of Lidar and Ultra-
sonic and can be distinguished thanks to the algorithm differentiation, whereas the
semaphore can be detected using both the object detection and the traffic light de-
tection (Chapter 7), so the circles of the semaphore can be associated to green, yellow
and red colors. All the ”data fusion” has to be performed inside the MovCarProcess.

73

9 Conclusions

The whole work was born from the idea of getting to know a nowadays challenge
and reality that many engineers are facing all over the world: autonomous driv-
ing. The introduced benefits are countless: from a mere comfort of the driver to
the security for everyone present in the road. To this aim, Bosch Romania has de-
cided to challenge students internationally to join and participate in the quest for
optimally functioning autonomous driving algorithms. The author, together with
her colleagues, has been really excited to be part of this event and, although many
difficulties arised, gained a once in a lifetime experience.

This is the reason why this thesis has been developed, to report such hard work,
especially for those willing to continue the challenge in the next years. Although
many of the explained algorithms are not immediately applicable to real autonomous
driving cars, which have to perform traffic sign and object detection in the most
efficient way, they can solve the problem of hardware insufficiency whenever the
components are low-cost and not so computationally powerful.

LD & LF algorithms are proved to be effective, both using Hough Transform
method and Perspective Correction and Histogram Statistics one, even if the latter
is more useful in presence of road defects and more pronounced curves. They both
belong to the feature based models category, in which local visual characteristics of
interest are used to detect the road shapes. Other approaches consists in model-
based and learning-based methods.

The Traffic Sign Recognition algorithm implemented for the BFMC22 is com-
posed by a linear SVM which demonstrated very good capability in recognizing
certain traffic signs and poor accuracy when recognizing other traffic signs. This
gap can be compensated by increasing the dataset, capturing images of the traffic
signs in every light and environment condition. In any case, the implementation of
a simple neural network based on the Tensorflow Python library proved that, as a
deep learning method, it has a higher accuracy (90% when using the Leaky ReLU
activation function) but requires a more powerful computational board (for example,
a graphic card) or a Neural Stick to connect to the Raspberry Pi, which offers the
access to all the neural network functionalities since it incorporates computer vision
and artificial intelligence services.

Traffic Light Detection using color masks is based on the idea of detecting dif-
ferent colors inside an image: the implemented algorithm has the aim of studying a
way of using image processing to detect colors more than being a directly applicable
solution to detect semaphores.

Finally, the Object Detection algorithms represent a more realistic and consis-
tent solution to detect objects present in the road. Despite the fact of not relying on
neural networks, the pedestrian detector based on the Python built-in HOG features
descriptor has good accuracy, which can be improved just by changing few param-
eters inside the utilized function, whereas the semaphore and car detector relies on
a shape approximation function and makes use of counters to decrease the number
of false detections.

All in all, these Image Processing algorithms, especially Lane and Intersection de-
tection, have demonstrated good performance during the competition and it has been
also thanks to them and to the MovCarProcess structure that the team PoliTron
successfully gained a position as finalist and winner in the BFMC22. Nevertheless,
the author recognizes that further improvements can be made, principally regarding

74

Object Detection (both of traffic signs and objects in general), since for autonomous
driving it is almost mandatory to use deep-learning techniques.

Moreover, a more robust control usually requires the fusion between the algo-
rithm output and the sensors: this is why, for object detection, Ultrasonic and
LiDAR sensors are used. The team opted for using an Ultrasonic sensor to detect
side objects (parked cars) and LiDAR sensor to detect frontal ones (pedestrians).
In particular, not only does the LiDAR sense the distance between two objects, but
it is also sensible to the angle between the LiDAR unit and the angle on which the
pulse to detect the object was fired: since in reality the roads are not completely
smooth, the laser pulse may not be fired horizontally with respect to the road.

An alternative to increase the detection accuracy may be represented by a moving
camera, which is capable of detecting objects in every direction, for example by
attaching a DC motor to the Raspberry Pi camera or using directly a camera with
a higher optical range.

75

References

[1] J. Cusack, “How driverless cars will change our
world,” Available at https://www.bbc.com/future/article/
20211126-how-driverless-cars-will-change-our-world (11/2021).

[2] S. Coicheci and I. Filip, “Self-driving vehicles: current status of development
and technical challenges to overcome,” in 2020 IEEE 14th International Sym-
posium on Applied Computational Intelligence and Informatics (SACI), 2020,
pp. 000 255–000 260.

[3] S. Kim, “These are the 10 best family cars with self-driving
features in 2022,” Available at https://www.hotcars.com/
best-family-cars-with-self-driving-features/ (01/2022).

[4] Synopsys, “What is adas?” Available at https://www.synopsys.com/
automotive/what-is-adas.html.

[5] A. K. Jain, “Working model of self-driving car using convolutional neural net-
work, raspberry pi and arduino,” in 2018 Second International Conference on
Electronics, Communication and Aerospace Technology (ICECA), 2018, pp.
1630–1635.

[6] L. Venturi and K. Korda, Hands-on: Vision and Behaviour for Self-Driving
Cars, 1st ed. Packt Publishing, 2020.

[7] J. He, S. Sun, D. Zhang, G. Wang, and C. Zhang, “Lane detection for track-
following based on histogram statistics,” in 2019 IEEE International Conference
on Electron Devices and Solid-State Circuits (EDSSC), 2019, pp. 1–2.

[8] OpenCV, “Hough line transform,” Available at https://docs.opencv.org/3.4/
d9/db0/tutorial hough lines.html.

[9] P. Maya and C. Tharini, “Performance analysis of lane detection algorithm
using partial hough transform,” in 2020 21st International Arab Conference on
Information Technology (ACIT), 2020, pp. 1–4.

[10] A. Kumar and P. Simon, “Review of lane detection and tracking algorithms in
advanced driver assistance system,” International Journal of Computer Science
and Information Technology, vol. 7, pp. 65–78, 08 2015.

[11] L. Wei, Z. Li, J. Gong, C. Gong, and J. Li, “Autonomous driving strategies at
intersections: Scenarios, state-of-the-art, and future outlooks,” in 2021 IEEE
International Intelligent Transportation Systems Conference (ITSC), 2021, pp.
44–51.

[12] C. Wang, “Research and application of traffic sign detection and recognition
based on deep learning,” in 2018 International Conference on Robots Intelligent
System (ICRIS), 2018, pp. 150–152.

[13] TechVidvan, “Detect objects of similar color using opencv
in python,” Available at https://techvidvan.com/tutorials/
detect-objects-of-similar-color-using-opencv-in-python/?msclkid=
9ef10edbb00911ec9c807f7092cdb0af.

76

https://www.bbc.com/future/article/20211126-how-driverless-cars-will-change-our-world
https://www.bbc.com/future/article/20211126-how-driverless-cars-will-change-our-world
https://www.hotcars.com/best-family-cars-with-self-driving-features/
https://www.hotcars.com/best-family-cars-with-self-driving-features/
https://www.synopsys.com/automotive/what-is-adas.html
https://www.synopsys.com/automotive/what-is-adas.html
https://docs.opencv.org/3.4/d9/db0/tutorial_hough_lines.html
https://docs.opencv.org/3.4/d9/db0/tutorial_hough_lines.html
https://techvidvan.com/tutorials/detect-objects-of-similar-color-using-opencv-in-python/?msclkid=9ef10edbb00911ec9c807f7092cdb0af
https://techvidvan.com/tutorials/detect-objects-of-similar-color-using-opencv-in-python/?msclkid=9ef10edbb00911ec9c807f7092cdb0af
https://techvidvan.com/tutorials/detect-objects-of-similar-color-using-opencv-in-python/?msclkid=9ef10edbb00911ec9c807f7092cdb0af

[14] G. Shuqing and L. Yuming, “Traffic signal light detection and recognition
based on canny operator,” Journal of Measurements in Engineering,
vol. 9, no. 3, pp. 167–180, aug 2021. [Online]. Available: https:
//doi.org/10.21595/jme.2021.22024

[15] A. Raghunandan, Mohana, P. Raghav, and H. V. R. Aradhya, “Object detection
algorithms for video surveillance applications,” in 2018 International Confer-
ence on Communication and Signal Processing (ICCSP), 2018, pp. 0563–0568.

[16] Z. Yi and H. Xiaoyong, “Research on pedestrian detection system based on
tripartite fusion of ”hog+svm+median filter”,” in 2020 International Confer-
ence on Artificial Intelligence and Computer Engineering (ICAICE), 2020, pp.
484–488.

[17] A. Rosebrock, “Hog detectmultiscale parameters ex-
plained,” Available at https://pyimagesearch.com/2015/11/16/
hog-detectmultiscale-parameters-explained/ (11/2015).

77

https://doi.org/10.21595/jme.2021.22024
https://doi.org/10.21595/jme.2021.22024
https://pyimagesearch.com/2015/11/16/hog-detectmultiscale-parameters-explained/
https://pyimagesearch.com/2015/11/16/hog-detectmultiscale-parameters-explained/

Ringraziamenti

In primis vorrei ringraziare la mia famiglia per avermi sostenuta sia
psicologicamente che economicamente in ogni decisione presa durante la mia

carriera universitaria.

In secundis vorrei ringraziare l’Università, il mio relatore e i miei colleghi del Team
PoliTron, senza i quali questa tesi e l’esperienza fatta durante la BFMC22 non

sarebbero stati possibili.

Infine vorrei ringraziare il mio ragazzo Massimiliano per avermi accompagnata
durante questo ultimo anno di magistrale, per avermi sopportata durante le

sessioni più dure della mia vita e per essermi sempre vicino.

78

	Introduction
	Bosch Future Mobility Challenge
	Introduction
	The Competition
	The Car-Kit
	The Project
	Competition Documentation and First Steps
	Brain Project
	Embedded Project
	GITHUB

	The Structure behind the Algorithms

	Files communication
	Parallelism, Thread and Processes
	The Main.py file
	Server Communication and UDP

	Image Processing
	Lane Detection and Follow (LD & LF)
	Hough Transform method
	Edge Detection
	Region Of Interest
	Lanes Detection
	Calculate and Display Heading Lines

	Perspective correction and Histogram statistics method
	Perspective Correction
	Thresholding
	Histograms
	Sliding Window Method

	Comparison
	Intersection Detection

	Traffic Sign Recognition
	Linear SVM classifier
	Tensorflow-based Neural Network
	Results comparison

	Traffic Light Detection
	Color Detection
	Mask Definition
	Pixel intensities using Histograms
	Algorithm implementation

	Object Detection
	Pedestrian Detection
	Semaphore and Car Detection

	Conclusions

