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Abstract

Automated decision-making systems (ADM) may significantly affect our everyday
life. They can assist us in a number of tasks when used as a reference, or even
substitute humans entirely, and they are as much an opportunity to challenge our
decision-making processes as they are a mean of reinforcing pre-existing biases.
Because the data used to train the algorithms could (and usually do) encode social
biases.

For this reason, one of the main approaches to mitigate bias in such a frame-
work is to work on data quality. To assess how the quality of the data affects the
outcome of a classification, we made use of two different set of indices, balance
measures and fairness measures, relating to different stages of a machine learning
pipeline. Balance measures assess the proportions of classes of a given sensitive
attribute (training set), while fairness measures evaluate the fairness of the outcome,
in our case a classification (test set), with respect to the same attribute. In our
study we take into account both binary and multiclass attributes.

The aim of the study was to evaluate the feasability of thresholds for both balance
and fairness measures, such that if the balance is over its threshold, then we can
be assume that also the fairness is over its threshold (in our case we compute the
unfairness, so we want it to be under a certain value). In other words, we want to
anticipate an incoming bias, estimating the fairness of the classification looking at
the balance of the data. To obtain a sufficient amount of instances, we created a
large amount of synthetic versions of numerous datasets, with different levels of
balance to see how it would affect the fairness of the outcome. To further generalize
the study, we included different algorithms.

We created thresholds separately for each combination of balance-fairness-algorithm,
taking into account not only the point of view on how balance and fairness should
be evaluated (different measures encode different points of view), but also the
specific way data are processed. To measure the goodness of the thesholds, we
selected a variety of sensitivity measures.

Keywords: Automated decision making, Data ethics, Data quality, Data bias,
Algorithm fairness
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Chapter 1

Introduction

The process of automating the decision process is becoming more and more promi-
nent as algorithms are developed and data become increasingly available in our
society [1]. From support to human decision-making to fully automated systems,
today technology supposedly permits us to rationalize our thinking on the basis of
the evidence we possess.

This is a great opportunity, because we can decide how to process data so that
the decisional process is mostly clear and understandable, unlike the processes
that happen in our minds that may lead to uncomprehensible decisions. Unfortu-
nately, the data on which algorithms are trained could encode all kind of biases,
leading to decisions no different than those of biased individuals [2]. However,
if an automated decision system make biased decisions it could be even worse,
because the use of an algorithm can lead to the illusion that everything is fair and
square: from this understanding comes the focus on data quality, knowing that data
should not mindlessly be taken as evidence but processed in such a way that assures
a fair outcome, which is supposedly why we want to use algorithms in the first place.

From the perspective of data engineering, a biased dataset is an unbalanced
dataset [3], i.e. a dataset with an unequal distribution of some attributes that are
considered protected (gender, ethnicity, etc.). This is problematic because even if
we don’t use such attributes as predictors , an unbalanced dataset can still lead
to significant discrimination. The reason is that if the sensitive attribute is even
slightly correlated to a number of features (which is often the case), the compound
effect is comparable to that of a highly correlated feature, making easy for the
algorithm to infer the sensitive attribute even if it is removed. In conclusion, it is
not possible to achieve fairness through unawareness but rather it is necessary to
accurately evaluate the quality of the data we use.



Introduction

In our study, we tried to determine thresholds that would help us predict the
fairness of the classification starting from the balance of the data used to train the
algorithms . This would be helpful in order to anticipate the bias, detecting it in
the data we use to train our ADMs rather than searching for it in the outcomes of
the decision-making process.



Chapter 2
Background

Here we outline the underlying concept supporting our approach: data imbalance as
a risk factor for systematic discrimination caused by ADM systems. This approach
stems from software quality and risk management ISO standards, which constitute
the two guiding principles.

The first principle originates from the series of standards ISO/IEC 25000:2014
Software Engineering — Software Product Quality Requirements and Evalua-
tion (SQuaRE) [4], which describes quality models and measurements of software
products, data and services. In this family of standards, quality is composed
of quantifiable characteristics and sub-characteristics. Especially, data quality is
modeled in ISO/IEC 25012:2008 with 15 characteristics (e.g., accuracy, reliability,
completeness), all quantifiable through measures defined in ISO/IEC 25024:2015.

Although data balance is not a characteristic of data quality in ISO/TEC 25012:2008
it can be seen as a possible extension, being a key element in the chain of effects
and dependencies described in SQuaRE: according to it, data quality has an ef-
fect on the quality of the system in use and, consequently, on the users of the
system. In the context of ADM systems, imbalanced datasets may lead to imbal-
anced software outputs, i.e. differentiation of products, information and services
based on personal and protected characteristics, and thus discrimination. Then,
data imbalance can be considered as a risk factor in all those ADM systems that
rely on historical data and that automate decision on aspects that concern the ex-
ercise of rights and freedoms, such as the ones employed in the public sector services.

The second principle is derived from the ISO 31000:2018 standard on risk manage-
ment [5]. This standard provides the guiding principles for risk management, a
framework for integrating it into organizational contexts, and a process for manag-
ing risks at “strategic, operational, program or project levels”. Our assumption is

3



Background

that we can assess the risk of bias in the output of ADM systems by measuring the
level of balance of protected attributes in the data processed by the algorithms [6].



Chapter 3

Experimental design

The goal of our study was to understand how the balance of protected attributes in
the training data can be used to predict the impact of a classification, considering as
impact un unfair treatment with respect to those protected attributes. In particular,
we wanted to answer the following research question:

Is it possible to build two thresholds s and f, respectively for balance and un-
fairness measures, such that if the balance of the training dataset is over s, than
the unfairness of the classification on the test set is assured to be under f?

As a starting point, we selected a number of datasets, algorithms and measures to
use in the study. Specifically we got:

o 7 Datasets from domains in which the impact of biased ADMs can be par-
ticularly high. For each dataset, we identified two protected attributes, one
binary and one multiclass;

A set of indexes that are able to measure the balance of a dataset , and the
unfairness of a classification task: 4 for the balance and 5 for the unfairness;

2 mutation techniques, one for the binary attributes and one for the multiclass
attributes, used to create synthetic versions of the datasets;

4 classification algorithms to run a binary classification;

5 sensitivity measures to assess the goodness of the thresholds built
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Then, to build the aforementioned thresholds, we adopted the following procedure,
separately for the binary and multiclass case:

1. Using a specific mutation technique and given seeds, generate a large number of
synthetic datasets with different levels of balance with respect to the protected
attribute;

2. For each algorithm and for each synthetic dataset, perform a binary classi-
fication with a training-test split of 70%-30%, computing the the balance
measures of the training set and the unfairness measures of the classification
(see Figure 3.1), thus obtaining a collection of data in which each instance is
a classification

3. Repeat step 1-2 with new seeds to obtain a new collection of data;

4. Using the first collection of data, build the thresholds; using the second
collection of data, gauge their goodness with the chosen sensitivity measures.

Incidentally, we also examined the relationship between balance measures and
fairness criteria, expecting to find a negative correaltion between them: in other
words, that a lower level of balance leads to a higher level of unfairness.

The result of step 1-2 is a large collection in which we record, for each classi-
fication, the dataset processed, the algorithm used, the specific mutation that has
occurred, the balance measures of the training set, and the unfairness measures
of the classification. In other words, each row is one of the several thousands of
classifications performed. When we implement the second run, the different seeds
ensure that the results are different, and we obtain a second collection of other
several thousands of classifications on which to test the thresholds built on the first
collection.

The study was performed with the R software.
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Dataset

Balance measures

Algorithms ~ ——{ Classification |———{ Unfairness measures

Figure 3.1: Balance and Unfairness measures.

3.1 Balance Measures

The first set of measures is known as balance measures; they are used to evaluate
how balanced a dataset is with respect to a sensitive attribute. In particular, in our
study, we limited our attention to categorical attributes and the measures respect
the following conditions:

« values are in the range [0:100]
o the higher the balance of the data, the higher the value of the measure

o deal with empty classes, i.e. classes that exist (potentially there could be
occurrences) but are not represented. The reason for this choice is that, in
our view, a dataset that contains no instances of a given class is imbalanced

There are numerous ways to define the balance of a dataset and we selected four
different criteria, namely Gini, Shannon, Simpson, and Imbalance Ratio.

Gini Index It is a measure of heterogeneity, which reflects how many types
of a particular group are represented. It is used in a number of fields, such as
political polarization or market competition, and often with different designations.
In statistics, the heterogeneity of a discrete random variable which assumes m
categories with frequency fi (with i = 1, ..., m) can vary between a degenerate case
(minimum value of heterogeneity) and an equiprobable case (maximum value of
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heterogeneity, since categories are all equally represented). More similar frequencies
equals a higher value of the index, which is computed as follows:

G= " (1-3fi%) 100
=1

m—1

Where —# is the normalizing factor.

Shannon Index It is a diversity measure, useful to assess the balance of a com-
munity taking into consideration both its composition and the number of different
species, a widely employed concept in biology and ecology. It is computed as follows:

G=— m Zlenf@ 100

ln

Where () is the normalizing factor. Since In (0) tends to —oco, when dealing
with empty classes we resort to the notable limit lim, ,oxInz =0

Simpson Index [t is another index of diversity: it measures the probability that
two individuals randomly selected from a sample belong to the same species. It
is employed in social and economic sciences for measuring wealth, uniformity and
equity, as well as in ecology for measuring the diversity of living beings in a given
location. It is computed as follows:

1 1
G — .
ST

—1)-100
m—1 )

Where —L- is the normalizing factor.

Imbalance Ratio It is a widely used measure made of the ratio between the
highest and the lowest frequency (of classes). We take the inverse to normalize it
in the chosen range. It is particularly sensitive to class imbalance, given that even
if just one class is unrepresented (and the other are evenly distributed), the value
goes to the minimum.

_ min {f1..m}
max {f1...m}
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3.2 Unfairness Measures

Unfairness measures are useful when evaluating the outcome of an automated
decision system, to assure that it is fair with respect to the sensitive attribute.
As for the balance measures, we will consider only categorical attributes, and in
particular the unfairness measures respect the following conditions:

« values are in the range [0:100]

o the higher the fairness of the outcome, the lower the value of the measure
(opposite behavior with respect to the balance measures)

« if the conditions for the specific criterion are not satisfied, we get an "NA'"

Here we selected 3 different criteria, formalized in [7], each of them encoding
a different point of view on what constitutes a fair classification. In general, to
evaluate the fairness we consider a sensitive categorical attribute A, a target vari-
able Y and the predicted class R: the fairness criteria proposed in this study are
properties of the joint distribution (A,Y,R), and fall in one of three different cat-
egories: Independence, Separation, or Sufficiency, as summarized in the table below.

Independence Separation Sufficiency
RLA RLAY YLAIR

Table 3.1: Non discrimination criteria.

Independence This criterion simply requires the sensitive characteristic to be
statistically independent of the score. In the case of a binary classification, it
simplifies to the condition:

P{R=1|A=a} =P{R=1]|A=b}

In other words, it assumes that there is no correlation between the sensitive at-
tribute and the target variable. If we think of a CV evaluation, it would mean that
traits relevant for a job are indipendent of certain attributes. However, because
this criterion does not take into account the accuracy of the classifier (Y is not
considered) it can have undesirable properties. Imagine that the company hires

9
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people from both groups with the same probability and, among those who are
hired, there are less qualified members in one of the two group: it would set a
negative record for such a group. This can easily happen even if the two groups,
in general, are equally qualified: for instance, the company does not have enough
data on a given group, leading to higher error rates.

Separation The second criterion, instead, acknowledges that the sensitive at-
tribute may be correlated with the target variable. For instance, a bank might
argue that it is a business necessity to give different lending rates for two groups
which have different default rates. Put it simply, the separation criterion allows
correlation between the score and the sensitive attribute only to the extent that is
justified by the target variable. Statistically speaking, this translates to R being
statistically indipendent of A given Y, as illustrated in the graphical model in
Figure 3.2.

Figure 3.2: Graphical representation of the Separation criteria.

In the case where R is a binary classifier, separation is equivalent to requiring
for all groups a, b the two constraints constraints:

P{R=1]Y =1,A=a} =P{R=1]Y =1, A =1b}
P{R=1]Y =0,A=a} =P{R=1|Y =0, A = b}

P{R = 1|Y = 1} is called true positive rate, the rate at which the classifier rec-
ognizes positive instances, while P{R = 1]Y = 0} is called false positive rate, the
rate at which the classifier mistakenly assign positive labels to negative instances.
Thus, separation requires this two rates to be equal among the different classes,
which can be called parity of odds.

Sufficiency The third criterion requires that individual of the same class are
treated equally. It is a change of perspective, now accepting the score variable to
be as correlated to the sensitive attribute as it needs to assure that the predictive

10
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quality is the same among the different classes. It can also be represented as
a graphical model, in which the target variable is independent of the sensitive
attribute given the score.

Figure 3.3: Graphical representation of the Sufficiency criterion.

When R has only two values we recognize this condition as requiring a parity of
positive predictive values (PPV) and negative predictive values (NPV) across all
groups:

P{Y =1R=1,A=a} =P{Y =1|R=1,A=1b}

P{Y =1|[R=0,A=a}=P{Y =1|R=0,4 =b}

Sufficiency is often satisfied by default as a consequence of standard machine
learning practices. The flip side is that imposing sufficiency as a constraint on a
classification system may not be much of an intervention.

In conclusion, we have 3 different criteria, but two of them have 2 condition,
totaling 5 different conditions; each of them constitutes a measure in our study.
From now on, for the purpose of disambiguation, we will refer to the conditions as
measures, while Independence, Separation, and Sufficiency will be referred to as
criteria.

3.3 Datasets

Now we examine the datasets processed, which are related to three different do-
mains: Financial, Social and Health. We usually choose these fields when discussing
the application of ADM systems because of the potential impact of unfair decisions,
which could significantly affects people’s lives. We selected 7 different datasets, but
one of them was used in two different classification tasks.

All datasets were retrieved from the UCI machine learning repository, and their
relevant features are summarized in Table 3.2. They contain informations about

11
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individuals: some variables are related to the given context and used for the classi-
fication, others are considered sensitive or protected, such as gender or age. Among
these, we chose the sensitive attributes on which to base our analysis, one binary
and one multiclass for each dataset. The list of predictors and target variable for
each dataset are reported in Appendix A.

Dataset Domain Binary attribute Multiclass attribute Target
Credit card default Financial Sex Education Default payment next month
Statlog Financial Sex Age Creditworthiness
Student performance (Math) Social Sex Father Education Final grade
Student performance (Portuguese) Social Sex Father Job Final grade
Census income Financial Sex Race Income bracket
Drug consumption (Cannabis) Social Sex Ethnicity Cannabis consumption
Drug consumption (Impulsive) Social Sex Ethnicity Impulsiveness
Heart disease Health Sex Age Diagnosis

Table 3.2: Datasets relevant features.

Credit card default This dataset contains informations about default payments
of credit card clients in Taiwan from April 2005 to September 2005 [8]. It includes
credit data, history of payment, bill statements, together with demographic infor-
mations. The dataset is composed of 30000 instances with 25 variables, mostly
categorical. For the purpose of having results within reasonable time with limited
computing resources, we sampled 30% of the original dataset; even so, it has still a
considerable amount of instances (9000), more than most of the dataset considered
here.

We chose Sex and Education as sensitive attributes, and default. payment.next.month
as target variable, which clarifies if the default has happened or not. The prediction
of the default is based on the different credit data available, and could have a high
impact on the individual, determining if the loan is granted or not.

Statlog This German credit dataset has been provided by the German professor
Hans Hofmann as part of a collection of datasets from an European project called
“Statlog” [9]. The data are a stratified sample of 1000 credits (700 good ones and
300 bad ones) and have been collected between 1973 and 1975 from a large regional
bank in southern Germany, which had about 500 branches, both urban and rural
ones. Bad credits have been heavily over-sampled, in order to acquire sufficient
data for discriminating them from good ones. Specifically, the dataset contains 20
categorical attributes: each entry represents a person who takes a credit by a bank
and is classified as good or bad credit risk.

12
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We chose Sex and Age as sensitive attributes, and costMatriz as a target variable,
which specifies the class of the customer (good or bad). The attribute Age ranges
from 19 to 75, and we divided it into 5 ranges (classes) of 15 year. As for the
previous dataset, a misclassification could result in excluding an individual from
the loan service.

Student performance. This is a set of two datasets containing information
on students achievements in secondary education of two Portuguese schools; they
have been built by using school reports and questionnaires in 2014 [10]. There
are a total of 624 instances, and the attributes include student grades, as well as
demographic, social and school related features. The set of features are the same
for the two dataset, including the target variable, which represents the final grade
for Math or Portuegese (each dataset is about one of the two subjects); the final
grade was divided into two classes by taking 9/20 as a threshold (<=9, > 9).

We chose Sex and Age as sensitive attributes, and G3 _target as target variable,
which is nothing but the final grade for the given subject. Here, a biased evaluation
of a student could significantly affect his academic and/or social life onward in
unpredictable ways.

Census income. These data were extracted by Barry Becker from the 1994
Census database and is also known as “Census Income” dataset [11]; the associated
prediction task is to determine whether a person makes over $50, 000 a year based
on a set of reasonably clean records (the two classes to predict are then high or
low income). It counts over 48000 instances and 15 variables: again, to avoid
unnecessarily long training time, we took a sample of 30% of the original dataset.

We chose Sexr and Race as sensitive attributes, and test.income as target vari-
able, which can assume the two values <=50K or > 50K. If the income of a person
is related to its demographics, it could be the reflection of some societal biases.

Drug consumption. It contains records for 1885 respondents; for each of them,
personality measurements are known, together with some demographic data [12].
In addition, participants were questioned concerning their use of 18 legal and illegal

13
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drugs: for each drug they have to select one of the answers: never used, used it
over a decade ago, or in the last decade, year, month, week, or day. There is also
one fictitious drug (Semeron) which was introduced to identify over-claimers. All
variables are quantified, with fixed values representing specific categories. This
dataset was used for two different classification tasks:

1. Predict the consumption of a drug given the personality data. The problem
was transformed to binary classification by union of part of classes into one
new class: in particular, "Never Used", "Used over a Decade Ago" form class
"Non-user" and all other classes form class "User". We chose Cannabis, but
it could be done for any drug in the same manner. Over or underestimate
the consumption of drugs of individuals could lead to worse treatments in a
certain group.

2. Predict a personality trait given the consumption of drugs. The problem was
transformed to a binary classification by dividing the personality trait into
two classes, taking the mean value as a threshold. We chose Impulsiveness,
but it could be done for any personality trait in the same manner. As for the
consumption of drug, a biased judgment of the personality could induce an
improper treatment.

For both the classification tasks, the sensitive attributes are Sex and Ethnicity.

Heart disease. This dataset describes a range of conditions that could affect
the heart [13].These include blood vessel diseases, such as coronary artery disease,
heart rhythm problems and congenital heart defects, as well as others. It consists
of 303 instances and 14 variables, mostly clinical data. The original dataset contain
76 variables, but all published experiments refer to the subset considered in our
study.

We chose Sex and Age, and diagnosis_target as target variable. The attribute Age
ranges from 29 to 77, and we divided it into 5 ranges (classes) of 10 year (except
for the last one). It is usually difficult to identify an heart disease, so it would be
incredibly helpful to be able to predict an incoming disease thanks to the data.
In the case the data were biased, the results would favor a group with respect to
others in preventing the insurgence of the disease.

14
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3.4 Algorithms

In our analysis, we used different algorithms, in order to process the data in a
variety of ways. We wanted to verify if there are significant differences among
them when establishing the thresholds, to better generalize our study, but we
were not interested in their particular performances. For this reason, we did not
perform hyper-parameters tuning, keeping the default parameters. These are the 4
algorithms used in the study:

 Logistic Regression - function glm, with attribute family=binomial(link="logit),
from the package stat [14]

 Support Vector machine - function sum from the package e1071 [15]
« Random Forest - function randomForest from the package randomForest [16]

« K-nearest neighbors - function knn from the package class [17]

3.5 Mutation techniques

We can distinguish between the binary and the multiclass case, for which we used
two different mutation techniques.

For the binary attributes, we used the function ovun.sample from the package
ROSE [18]. The parameter relevant for the mutations is p, which determines the
probability to sample from the minority class. We selected 9 values for p, ranging
from 0.01 (high imbalance) to 0.5 (perfect balance)

« p ={0.01, 0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5}

If we factor in 8 datasets, and 50 seeds, we obtain 8 x 50 x 9 = 3600 synthetic
datasets. Considering that each dataset is processed by 4 differerent algorithms,
we have a total of 3600 x 4 = 14400 classifications.

For the multiclass attributes, we created several distributions of occurrences for
the classes of the protected attributes and then generated datasets reflecting those
distributions. To this end, we used the function SmoteClassif from the pack-
age UBL [19]. The parameter relevant for the mutations is c.perc, a named list
containing the percentages of under-sampling or/and over-sampling to apply to
each class of the sensitive attributes. We examined five different configurations
for the parameter C.perc: first, the default configuration “balance” (namely, the
perfect uniform distribution, with all the occurrences equally distributed among
the different classes) together with four additional configurations, corresponding to
the exemplar distributions “Power2”, “HalfHigh”, “OneOftf” and “QuasiBalance”.

15
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o Power 2: occurrences are distributed according to a power-law with base 2,
i.e., distributions among the classes increase like the powers of 2 (for instance,
considering 3 classes, 1:7, 2;7, 4:7);

o Half High: occurrences are distributed mostly among half of the classes while
the remaining ones have a very low frequency (in particular, a ratio of 1:9 has
been chosen for the frequencies of the two halves);

o One Off: occurrences are distributed among all classes but one (which has 0
occurrences);

e Quasi Balance: half of the classes are 10% higher w.r.t. max balance and the
other half is 10% lower.

In addition, for each exemplar distribution we considered 4 permutations of the per-
centages assigned to the different classes. For instance, in the One Off configurations
the four different permutations have each a different class with zero occurrences. If
we factor in 8 datasets , and 50 seeds, we obtain 8 x 50 x (4 x 4+ 1) = 6800 synthetic
datasets. Considering that each dataset is processed by 4 different algorithms, we
have a total of 6800 x 4 = 27200 classifications.

3.6 Sensitivity measures

Sensitivity measures are used to assess the reliability of the thresholds. As stated
before, we have a threshold for the balance measure "s" and a threshold for the
unfairness measure "f'. When we the balance of the training set is over "s', we
expect the unfairness of the classification to be under "f": if this actually happens,

we have a positive instance, otherwise we have a negative instance.

In our two collections we have as many instances as classifications; in other
words, the evaluation of the thresholds can be considered as a binary classification,
verifying if a classification (instance of the new collection) respects the conditions
(on the balance and unfairness measures) or not. The first collection can be seen as
the training set, used to build the thresholds, the second as the test set, used to test
them. Binary classifications performance measures are best introduced by showing
a confusion matrix, in which each row represents the instances in the actual class
while each column represents the instances in the predicted class:

16
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0 1
0 TN FP
1 FN TP

Figure 3.4: Confusion matrix [20].

P: the number of actual positive instances in the data
N: the number of actual negative instances in the data

TP: the number of instances predicted as positive that belong to the positive
class

TN: the number of instances predicted as negative that belong to the negative
class

FP: the number of istanced predicted as positive but belong to the negative
class

FN: the number of istanced predicted as negative but belong to the positive
class

PPV: the fraction of positive instances correctly predicted to be in the positive

class out of all predicted positive instances = TPT+7PFP

TPR: the fraction of positive instances correctly predicted to be in the positive

o . o TP
class out of all actual positive instances = 75755

In our case we have:

TP — balance < s & unfairness > f
TN — balance > s & unfairness < f
FP — balance < s & unfairness < f

FN — balance > s & unfairness > f

17
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And these are the 5 sensitivity measures used in our study, with their respective
formulas:

TP+TN
P+N

1. Accuracy =

2. Sensitivity = TPZ% = TPR

3. Specificity = % = TNR

.. o TP
4. Precision = TP+FP

5. F1 = frveren

Accuracy and precision are pretty straight-forward, evaluating how many in-
stances are correctly classified: accuracy with respect to the total instances, precision
with respect the positive predicted instances. Sensitivity, also called recall, examines
instead how many of the actual positive instances are retrieved (or "recalled"), and
specificity is its opposite, considering how many of the actual negative instances
are retrieved. F1 is the harmonic mean between sensitivity and specificity.

18



Chapter 4
Correlation analysis

Once we obtained all the balance and unfairness measures from the thousands
of classifications, we assessed the correlation between the two sets of measures,
separately for the binary and the multiclass case. To illustrate the results, we
report a smoothplot and a correlation table. The smoothplot shows the trend of the
unfairness (y axes) as a function of balance (x axes), and each dataset is represented
with a different color, so that we can follow the individual trends together with
the general trend (the color legend is reported at the bottom of the figures). The
correlation table just shows the value of the correlation for any given combination
of balance-unfairness measure.

As previously mentioned, we have 3 distinct unfairness criteria, which then trans-
lates to 5 different conditions/measures, with the following meanings:

 Indipendence:
— Diff.Ind
o Separation:

— Diff. TP - Equality of True Positives
— Diff.FP - Equality of False Positives

 Sufficiency:

— Diff. PP - Equality of positive predictive values
— Diff PN - Equality of negative predictive values

Factoring in the 4 balance measures, we obtain 20 different combinations.
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Correlation analysis

4.1 Binary attributes
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Figure 4.2: Correlation table Balance-Unfairness, binary case.
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Correlation analysis

Looking at the smoothplot, we notice that the trend isn’t the same for every
combination of balance-fairness, with some plots showing almost no variation for
the unfairness as a function of the balance, while others show a clear decrease of
the unfairness with the increase of the balance. There doesn’t seem to be any
significant difference in the trend among the different dataset, although we find
different values at both ends of the spectrum.

Moving to the correlation table, we easily notice the difference among the various
combinations, distinguishing between cases with almost no correlation (around
0) and cases with a moderate correlation (around 0.4). If we look at the specific
combinations that return a negative correlation, we notice that it happens for 3
different unfairness conditions: Diff. PN, Diff. PP, and Diff. TP. Referring to the
criteria, Diff. PN and Diff. PP together form the Sufficiency criterion, while Diff. TP
is one of the two conditions for the Separation criterion; the other condition for
Separation doesn’t give significant correlation with the balance measures.

Apparently, the negative correlation seems to depend only on the unfairness crite-
rion, rather than on the specific combination of balance-unfairness, because there’s
no significant difference in the correlation with the different balance measures,
once the unfairness measure is fixed. In other words, unfairness conditions seem
to correlate in the same way with every balance measure indiscriminately. This
can be easily visualized in the correlation table observing that the values of the
correlation are very similar along the horizontal axis.
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Correlation analysis

4.2 Multiclass attributes
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Correlation analysis

Here, the situation is quite different starting from the smoothplot, in which we see
a lot of missing values, causing incomplete plots. The function used to compute
the unfairness can return an "NA" when the conditions for the given measure are
not respected, which in the multiclass case happens quite often. Specifically, this
happens for low values of balance and especially for the balance measures Gini and
Shannon.

Other than this, the trend is difficult to interpret even when we have a com-
plete graph, with the correlation being close to 0 or even slightly positive in some
cases, as visible in the correlation table. In conclusion, the negative correlation
doesn’t seem to hold in the multiclass case.
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Chapter 5
Sensitivity analysis

We proceed to explain how we built the threshold on balance and unfairness mea-
sures. In our procedure, we first determine the threshold for the unfairness, and
then retrieve the corresponding threshold for the balance, so as a starting point we
looked at the distribution of the unfairness to see where the unfairness thresholds
should be reasonably placed. We did it with violin plots, which are similar to
boxplots, except that they show the probability density of the data at different
values.

Then, we created different configurations of the threshold in a given range and
selected the one that gave the best accuracy, separately for each combination of
balance-fairness-algorithm. Each configuration consists in a different value for the
fairness threshold, expressed in terms relative to the distribution of the fairness;
the balance threshold is then retrieved accordingly.

5.1 Unfairness analysis

The violin plots for all the unfairness measures in both the binary and multiclass
case are shown in Figure 5.1 and 5.2. We observe the same pattern for both the
binary and the multiclass case: the values of the unfairness measures are relatively
low, with the most density at the bottom of the distribution. This is true for
every unfairness measure indiscriminately. From this finding we supposed that
the thresholds should be also low, and took the first quartile of the distribution
as a reference (we work with one distribution at a time, because we build the
thresholds separately for each combination balance-unfairness-algorithm), building
5 configurations of thresholds around it.

24



Sensitivity analysis
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Figure 5.1: Unfairness measures distribution, binary case.
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Figure 5.2: Unfairness measures distribution, multiclass case.

5.2 Method

We have two procedures, or better two variations: in the first case, the threshold
for the unfairness is retrieved as an average between two values, so it’s not possible
to predict exactly where it falls, while in the second case it falls in a specific point
relatively to the distribution. We created this two cases in order to distribute the
thresholds for the unfairness evenly in the desired range.
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Sensitivity analysis

Case A

1. Determine 2 values of the unfairness, f1_base and f2_base that conceptually
create the following brackets:

o unfairness < f1_base(low)
o f1_base < unfairness < f2_base(medium)

o unfairness > f2_base(high)

2. Identify in the first collection the values of unfairness nearest to f1_ base and
f2_ base, and define them as f1 and 2

3. Retrieve in the first collection the two values of the balance corresponding to
f1 and f2, i.e. the values found in correspondence of f1 and 2 in the collection,
and define them as s1 and s2. If more than one balance value is found, we
take their mean.

4. Define f as the mean between fl1 and {2, s as the mean between sl and s2

So, the first step is to identify the values of the unfairness that mark what should
be considered a low/medium/high unfairness, and then put the threshold f in the
middle. Then, we proceed to establish the corresponding threshold s for the balance.
Here by collection we mean not the complete collection, but the collection filtered
by the specific combination of balance-fairness-algorithm considered at the moment.

The unfairness thresholds could also be fixed arbitrarily, for instance in reference
to case studies where we assume that an unfair treatment has occurred: if in some
datasets that are knowingly biased the unfairness measures of a straight-forward
classification are around 20, then we could assume 20 as threshold delimiting high
values of unfairness. However, having a sufficient amount of data to generalize
the results, we chose to refer to the actual distribution of the unfairness in the
collection that we simulated, placing the unfairness thresholds in relative terms to
the distributions.

Case B

1. Determine 1 value of the unfairness, f base that create the following brackets:
o unfairness < f_base(low)
o unfairness > f_base(high)
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Sensitivity analysis

2. Identify in the collection the value of unfairness nearest to f base and define
itasf

3. Retrieve the value of the balance corresponding to f, i.e. the values found in
correspondence of f in the large collection, and define it as s. If more than one
balance value corresponds to f we take their mean as s.

5.3 Configurations

Here, we introduce the 5 different configurations of thresholds created: for each
combination of balance-unfairness-algorithm we select the one that returns the
best accuracy. To show their placement, we take as a reference the distribution of
Diff. TP in the binary case, coloring f1_base and f2 base with gray and f with red
(or f_base, if we are following case B). The configurations have no specific reasoning
behind them outside of placing the thresholds almost evenly in the desired range
(around the first quartile); notice that configurations 1, 2 and 4 belong to Case A,
whereas configurations 3 and 5 belong to Case B.

Configuration 1

o f1_base: 1st quartile

e {2 base: mean

Irness

DIff.TP- e

Unfa

0 25 50 75 100
Value

Figure 5.3: Thresholds configuration 1, unfairness values.

27



Sensitivity analysis

Configuration 2
o f1_base: mean (minimum, 1st quartile)

o 2 base: mean (1st quartile, mean)

Diff.TP- ¥—

Unfairness

50 75
Value

Figure 5.4: Thresholds configuration 2.
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Figure 5.5: Thresholds configuration 3.
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Sensitivity analysis

Configuration 4

o f1_base: mean (minimum, 1st quartile)

o f2 base: 1st quartile
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S R
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Figure 5.6: Thresholds configuration 4.

Configuration 5

o f base: mean (minimum, 1st quartile)
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Figure 5.7: Thresholds configuration 5.
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Chapter 6
Results and discussion

After establishing the thresholds, we obtain a dataset reporting, for each com-
bination of balance-fairness-algorithm, the best thresholds selected by accuracy,
the configuration they correspond to (among the 5 options enumerated in chapter
5.3), and all the sensitivity measures related to those thresholds (computed as
described in chapter 3.6). The complete results are reported in appendix B as
tables, ordered by balance measure (Gini, Shannon, Simpson, and IR), for both
the binary and multiclass case. Here, instead, we show the aggregated results, the
sensitivity measures and the thresholds, both displayed through boxplots.

Also, wanting to understand what factors could determine the goodness of the
outcome, we investigated the correlation of the accuracy with respect to unfairness
measures, balance measures, and algorithm, using again some boxplots.

Regarding the choice of the accuracy as a discriminant for the choice of the best
configuration, other than it being the simplest measure, it also strongly correlates

with the other measures, as clear from the following figures. Similar correlation
values are found in both the binary and the multiclass case.

Sensitivity Specificity Precision F1

1
08
06
04
02

Accuracy 0.62 o
-02
-04
-06
08
-1

Figure 6.1: Correlation between accuracy and the other sensitivity measures,
binary case.
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Results and discussion

Sensitivity Specificity Precision F1
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Accuracy
0.2
-04
-0.6

Figure 6.2: Correlation between accuracy and the other sensitivity measures,
multiclass case.

6.1 Binary attributes

6.1.1 Sensitivity measures
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Figure 6.3: Sensitivity measures boxplot, binary case.

Almost all the sensitivity measures are high, except for specificity; being it
equal to 1-sensitivity, if one of the two measure is high the other one is inevitably
low. Sensitivity is also called recall, and it’s the capacity of retrieving the positive
instances, while specificity is the correspondent for negative instances. In our case,
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Results and discussion

a positive instance is a classification with high impact (high unfairness); in other
words, this thresholds are extremely responsive to risk (low balance), being able to
anticipate the impact most of the times, but they also over-estimate it, causing all
those false positives that reduce the specificity.

6.1.2 Thresholds

100
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Value
@
3

25

f s
Metric

Figure 6.4: Thresholds distribution, binary case.

The thresholds for the balance are really high (around 80), explaining thus the
high responsivity to risk, and the corresponding thresholds for unfairness are really
low (around 5). The strict requirements on the balance probably lead to misjudge
a lot of low-impact classification and reduce sensitivity, as already mentioned.
Incidentally, in chapter4d we observed that the correlation between balance and
unfairness isn’t necessarily strong, having situations in which although the balance
is low, the unfairness is still low (a sort of false alarm).

As for the configurations, shown in Figure 6.5, there is a clear tendency toward the
ones positioned lower in the distribution, which correspond to the higher numbers
(3 to 5). These are the configurations with a lower f (and usually an higher s) in
accordance with the distribution of the thresholds just mentioned.
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Results and discussion
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Figure 6.5: Configurations frequency, binary case.

6.1.3 Accuracy correlation
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Figure 6.6: Balance measures - Accuracy boxplots, binary case.
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Figure 6.7: Unfairness measures - Accuracy boxplots, binary case.
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Figure 6.8: Algorithm - Accuracy boxplots, binary case.
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Results and discussion

Now we look at the possible correlation between the accuracy and the different
factors involved in the process, namely the balance measures, the unfairness measure,
and the algorithm, investigating the matter through some boxplots. This is an easy
visual method to examine the correlation between a numerical and a categorical
variable: if the correlation holds, we expect the boxplots relative to some categories
to be different (higher or lower) with respect to the others. We comment on the
results following the same order in which the boxplots are displayed.

Balance There is no significant correlation between the accuracy and the balance
measures.

Unfairness There is a correlation between the accuracy and the unfairness mea-
sures involved. Specifically, the three measures on the right, Diff. PN, Diff. PP, and
Diff. TP are at a higher level than the two on the left, Diff. FP and Diff.Ind: it
means that the combinations that include those three measures return,on average,
an higher accuracy. This is not entirely surprising; going back to chapter 4, we
noticed that those three measures are the one that negatively correlates with the
balance measures. Because our aim is to predict the values of the unfairness starting
from the balance (in terms of ranges, not individual values), it is clear that this
procedure becomes more accurate the more the two set of measures correlate.

Converting the measures to criteria, we can affirm that the thresholds are better
when adopting the sufficiency criteria (Diff. PN and Diff. PP) and partly Separation
(only for the true positives equality condition, while for the false positive equal-
ity condition we get the worst results). It is also evident that, among the three
highlighted measures, Diff. TP has a much larger variance in terms of accuracy.

Algorithm There seems to be a slight correlation between the accuracy and
the algorithm used, although not as high as with the unfairness measures. The
algorithm most apt for establishing this thresholds is K-nearest neighbors by a
slight margin. Random Forest also reaches high values but it has much more
variance and its median is relatively low.
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Results and discussion

6.2 Multiclass attributes

6.2.1 Sensitivity measures
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Figure 6.9: Sensitivity measures, multiclass case.

In the multiclass case the measures are quite lower then in binary case. We can
interpret this results in light of the poor correlation between the balance measures
and the unfairness measures in the multiclass case. Going back to chapter 4, we
noticed that the negative correlation between balance measures and unfairness mea-
sures doesn’t hold in the multiclass case; then, discussing the correlation between
unfairness measures and accuracy in the binary case, we noticed that the higher
the correlation of the unfairness measure with the balance measures, the higher
the accuracy.

For the multiclass attributes there is not much correlation between the two set of
measures, which then leads to the poor performances of the thresholds. Also, there
is much more variability than in the binary case.
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6.2.2 Thresholds
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Figure 6.10: Thresholds distribution, multiclass case.
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Figure 6.11: Configurations frequency, multiclass case.
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Results and discussion

As for the binary case, the thresholds for the balance tend to be very high and the
thresholds for the unfairness very low, although not as extreme; the first ones are
slightly lower and the second ones are slightly higher.

Looking at the configurations, we see that they are more evenly distributed in the

range, suggesting that the multiclass case benefits from higher f thresholds (and
lower s thresholds), even if the overall values are not so different.

6.2.3 Accuracy correlation

0.8-

0.7-

o
o

Accuracy

0.5-

Gini IR Shannon Simbson
Balance

0.4-

Figure 6.12: Balance measures - Accuracy boxplots, multiclass case.
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Figure 6.13: Unfairness measures - Accuracy boxplots , multiclass case.
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Figure 6.14: Algorithm - Accuracy boxplots, multiclass case.
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Results and discussion

Balance In this case the balance presents a correlation with the accuracy, with
IR achieving better results. The reason could be that, in the multiclass case, IR
is significantly more responsive to imbalance, thus leading to a better ability to
predict the impact of the classification. The more classes are present, the less the
impact of a single class being under-represented on the values of the other measures,
because they consider a weighted sum over the classes, while the IR consider always
two classes, the most represented and the less represented.

Unfairness We observe the same pattern found in the binary case, with the
difference that now all measures present a rather high variance in terms of accuracy.

Algorithm Here we notice a difference with the binary case, with the best
performing algorithms being Random Forest and Support Vector Machine.
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Chapter 7
Conclusions and future work

In our study we evaluated imbalance in the data as a predictor for discriminatory
output of ADM systems, combining aspects of data quality and risk management
from the ISO standards. In order to do so, we selected four widely used indexes
(Gini, Simpson, Shannon, and Imbalance Ratio), and three Fairness criteria (Inde-
pendence, Separation, and Sufficiency), testing the reliability of thresholds used
to infer the value of the fairness starting from the the value of the balance, i.e.
anticipating the impact of a classification with respect to some sensitive attribute
considering its distribution in the data fed to the algorithms.

Overall, the results indicate that the approach is suitable for the goal, but there is
a significant variance between binary and multiclass cases; further work ought to
be devoted to finding a procedure and/or measures that perform comparatively
well in both cases. The range chosen for the thresholds (f around the first quartile
of the distribution of a given unfairness measure) was effective in finding relatively
high performing thresholds in both cases, even if in the binary case we notice a
bias toward lower f thresholds (and higher s thresholds), while the multiclass case
benefits from a more extensive range, with an even distribution of configurations.
The accuracy as a criterion to choose the best configuration seems appropriate, also
given the high correlation that it shows with a variety of commonly used sensitivity
measures.

This leads to another consideration, namely that the values of the thresholds
that produce the best results are rather strict. With respect to the full range of
values (0-100) the f thresholds are all located in the range 0-15; as mentioned in
chapter 5.2, values over the threshold f are to be considered medium/high unfair-
ness. This is coherent with the values that unfairness measures reach in knowingly
biased datasets when performing a straight-forward classification: for instance, the
COMPAS dataset, well known in the scientific communities that study measures of
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Conclusions and future work

algorithmic bias [21], presents values of different unfairness measures slightly above
20 (specifically, those measures correspond to Diff.Ind, Diff. TP, and Diff.FP in our
study). The corresponding values of the balance thresholds show a much larger
variance, but in general we could say that both thresholds present some extreme
cases, with values near to 0 and 100, respectively for f and s.

Regarding the different factors involved, namely the specific balance measure,
unfairness measure, and algorithm used, we found that there are significant differ-
ences when it comes to the performance of the thresholds. Regarding the balance,
all measures are comparable in the binary case, while in the multiclass case IR
gives the best performance; as mentioned in chapter 6.2.3, this could be related to
the high responsivity to imbalance that distinguishes this measure from the others,
especially when there a lot of classes. Considering the unfairness in both the binary
and multiclass case, the criterion that, in its entirety, is clearly above the others is
Sufficiency (Diff. PP, Diff. PN.); however, the condition on equality of true positives
of the Separation criterion (Diff. TP) gets even better results (the condition on
the equality of false positives has, on the contrary, very low performances). In an
application in which the only concern is about the equality of true positive rate
among different classes, then this criterion is even more suitable than Sufficiency.
Finally, the algorithms show a slightly different behavior, with K-nearest neighbors
outperforming the others in the binary case, and Random Forest and Support
Vector Machine being better in the multiclass case. Further work could be done in
testing other algorithms and/or trying a different approach by fine-tuning them
and seeing if there are any noticeable differences as the algorithm best fits the data.

We hope that these findings will lead researchers and policy-makers toward assessing
the risk of discrimination by measuring the imbalance of the protected attributes
in the training set: we deem that the adoption and improvement of this approach
would help in developing socially sustainable ADM systems.
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Appendix A

Predictors and targets

A.1 Credit card default

Predictors:
o LIMIT BAL: Amount of given credit

o PAY_ 0: Repayment status in September, 2005 payment delay for eight months,
9=payment delay for nine months and above)

o BILL ATM1: Amount of bill statement in September, 2005
« PAY AMT1: Amount of previous payment in September, 2005
Target:

o default.payment.next.month_ f: Default payment (1=yes, 0=no)

A.2 Statlog

Predictors:
« Purpose: purpose of the credit (car, furniture, business, etc.)

Duration: duration in month

Credit_ history: credit history

Credit__amount: credit amount

Savings: Savings account/bonds

Employment_since: present employment since
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Predictors and targets

o Installment_ rate: installment rate in percentage of disposable income
o Other Debtors Guarantors: other debtors / guarantors

» Property: type of properties

« Housing: type of housing

e Residence_ since: present residence since

o Other installment plans

« Existing credits: number of existing credits in this bank

« Job: type of job

e People liable to provide maintenance for: number of people being liable
to provide maintenance for

o Telephone: present or not
Target:

« costMatrix (good customer:0 , bad customer:1)

A.3 Student (Math and Portugese)

Predictors:
 school:student’s school
o address: student’s home address type
o famsize: family size
o Pstatus: parent’s cohabitation status
e reason: reason to choose this school
e nursery: attended nursery school
 internet: Internet access at home
o studytime: weekly study time
o failures: number of past class failures

e paid: extra paid classes within the course subject
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Predictors and targets

o activities: extra-curricular activities

o nursery: attended nursery school

o higher: wants to take higher education
o freetime: free time after school

e goout: going out with friends

e Dalc: workday alcohol consumption

o Walc: weekend alcohol consumption

e health: current health status

« absences: number of school absences

o guardian: student’s guardian

o traveltime: home to school travel time
o famsup: family educational support

e romantic: with a romantic relationship

o famrel: quality of family relationships
Target:
o G3_target: final grade (Less than or equal to 9:0, higher than 9:1 )

A.4 Drug consumption (Cannabis)

Predictors:

e Nscore: NEO-FFI-R Neuroticism

o Escore: NEO-FFI-R Extraversion

e Oscore: NEO-FFI-R Openness to experience
o Ascore: NEO-FFI-R Agreeableness

e Cscore: NEO-FFI-R Conscientiousness

o SS: sensation seeing measured by ImpSS
Target:

« Cannabis_target: cannabis consumption (Never Used/Used over a decade
ago:0 , Used less than a decade ago:1)
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Predictors and targets

A.5 Drug consumption (Impulsive)
Predictors:

e Alcohol: consumption of alcohol

o Amphet: consumption of amphetamines

o Amyl: consumption of amyl nitrite

e Benzos: consumption of benzodiazepine

o Caff: consumption of caffeine

o Cannabis: consumption of cannabis

e Choc: consumption of chocolate

o Coke: consumption of cocaine

o Crank: consumption of crack

o Ecstasy: consumption of ecstasy

o Heroin: consumption of heroine

o Ketamine: nconsumption of ketamine

o Legalh: consumption of legal highs

e LSD: consumption of lsd

e Meth: consumption of methadone

o Mushrooms: consumption of magic mushrooms

e Nicotine: consumption of nicotine

e VSA: consumption of volatile substances

e Semer: consumption of the fictious drug "Semeron"
Target:

 Impulsive: impulsivess rating (Less than or equal to average:0 , Higher:1)
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Predictors and targets

A.6 Heart disease

Predictors:
e cp: chest pain type
o trestbps: resting blood pressure
e chol: serum cholestoral
o fbs: fasting blood sugar
o restecg: relieved after rest
o thalach: maximum heart rate achieved
» exang: exercise induced angina
o oldpeak: ST depression induced by exercise relative to rest
« slope: the slope of the peak exercise ST segment
o ca: number of major vessels colored by flourosopy
o thal: state of blood disorder called thalassemia
Target:

 Diagnosis: (absence of disease:0 presence:1)
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Appendix B
Thresholds tables

B.1 Binary attributes

B.1.1 Gini

Fairness Balance algorithm configuration f S Accuracy Sensitivity Specificity Precision F1

DifftInd  Gini logit 3 3,2 97,62 0,68 0,84 0,21 0,75 0,79
Diff.Ind  Gini svm 5 1,66 9549 0,68 0,75 0,30 0,86 0,80
DiffInd  Gini rf 3 4,01 80,59 0,54 0,58 0,41 0,76 0,66
DiffInd  Gini knn 3 2,33 96,18 0,65 0,78 0,21 0,77 0,77

Table B.1: Thresholds and sensitivity measures for the couple Gini-Diff.Ind,
Binary case.

Fairness Balance algorithm configuration f ] Accuracy  Sensitivity Specificity Precision F1

Difft TP Gini logit 3 4,72 94,55 0,67 0,76 0,33 0,80 0,78
Difft TP Gini svm 3 3,99 79,29 0,63 0,64 0,56 0,86 0,73
Diff TP Gini if 5 3,31 99,99 0,85 0,96 0,07 0,88 0,92
Dift TP Gini knn 5 2,06 99,96 0,80 0,93 0,11 0,85 0,89

Table B.2: Thresholds and sensitivity measures for the couple Gini-Diff. TP,
Binary case.

Fairness Balance algorithm configuration f S Accuracy Sensitivity Specificity Precision F1

Diff FP Gini logit 3 2,89 84,68 0,61 0,68 0,42 0,76 0,72
Diff FP  Gini svm 1 6,77 38,44 049 0,40 0,58 0,48 0,44
Diff FP  Gini rf 1 7,875 54,58 0,61 0,59 0,64 0,55 0,57
Diff FP  Gini knn 5 091 915 0,69 0,74 0,35 0,90 0,81

Table B.3: Thresholds and sensitivity measures for the couple Gini-Diff.FP, Binary
case.
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Thresholds tables

Fairness Balance algorithm configuration f s Accuracy  Sensitivity Specificity Precision F1

Dift PP Gini logit bt 25 72,02 0,58 0,59 0,50 0,89 0,71
Diff. PP Gini svm 5 2,16 8 0,67 0,70 0,46 0,91 0,79
Diff. PP Gini rf 4 4,46 96,53 0,74 0,86 0,29 0,82 0,84
Dift PP Gini knn 3 6,1 96,27 0,66 0,85 0,26 0,71 0,77

Table B.4: Thresholds and sensitivity measures for the couple Gini-Diff. PP, Binary

case.
Fairness Balance algorithm configuration f S Accuracy Sensitivity Specificity Precision F1
Diff PN Gini logit 5 2,17 95,77 0,71 0,78 0,21 0,88 0,82
Diff PN  Gini svm 5 1,92 95,80 0,72 0,79 0,25 0,88 0,83
Diff PN Gini if 1 7,835 67,60 0,62 0,71 0,53 0,60 0,65
Difft PN Gini knn 5 247 9641 0,73 0,82 0,25 0,85 0,84

Table B.5: Thresholds and sensitivity measures for the couple Gini-Diff. PN,

Binary case.

B.1.2 Shannon

Fairness Balance algorithm configuration f s Accuracy Sensitivity Specificity Precision F1

DiffInd  Shannon logit 3 3,2 9828 0,68 0,84 0,21 0,75 0,79
DiffInd Shannon svm 5 1,66 96,72 0,68 0,75 0,30 0,86 0,80
Diff.Ind Shannon rf 3 401 8551 0,54 0,58 0,41 0,76 0,66
DiffInd Shannon knn 3 2,33 97,23 0,65 0,78 0,21 0,77 0,77

Table B.6: Thresholds

Binary case

and sensitivity measures for the couple Shannon-Diff.Ind,

Fairness Balance algorithm configuration f s Accuracy Sensitivity Specificity Precision F1

Difft TP Shannon logit 3 4,72 96,03 0,67 0,76 0,33 0,80 0,78
Difft TP Shannon svm 3 3,99 83,03 0,62 0,63 0,58 0,87 0,73
Diff TP Shannon rf 5 3,31 99,99 0,85 0,95 0,08 0,88 0,92
Diff TP Shannon knn 5 2,06 99,97 0,80 0,93 0,12 0,85 0,89

Table B.7: Thresholds and sensitivity measures for the couple Shannon-Diff. TP,
Binary case
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Thresholds tables

Fairness Balance algorithm configuration f ] Accuracy Sensitivity Specificity Precision F1
DIt FP  Shannon logit 3 289 8865 0,61 0,68 0,41 0,76 0,72
DiffFP  Shannon svm 1 6,77 46,58 0,49 0,36 0,63 0,49 0,41
Diff FP  Shannon rf 1 7,88 63,19 0,61 0,58 0,64 0,55 0,57
Diff FP  Shannon knn 5 0,91 93,68 0,69 0,74 0,35 0,90 0,81

Table B.8: Thresholds and sensitivity measures for the couple Shannon-Diff. FP,
Binary case

Fairness Balance algorithm configuration f ] Accuracy Sensitivity Specificity Precision F1

Diff PP Shannon logit 5 250 77,06 0,57 0,58 0,50 0,89 0,70
Diff. PP Shannon svm 5 2,16 88,89 0,67 0,69 0,45 0,91 0,79
Diff PP Shannon rf 4 446 9748 0,74 0,36 0,29 0,82 0,84
Diff PP Shannon knn 3 6,10 97,30 0,66 0,84 0,26 0,71 0,77

Table B.9: Thresholds and sensitivity measures for the couple Shannon-Diff. PP,
Binary case

Fairness Balance algorithm configuration f ] Accuracy Sensitivity Specificity Precision F1

Difft PN Shannon logit 5 2,17 96,93 0,71 0,78 0,21 0,88 0,82
Dift PN Shannon svm 5 1,92 96,90 0,72 0,78 0,25 0,88 0,83
Diff PN Shannon rf 1 7,84 73,07 0,62 0,68 0,56 0,61 0,64
Diff PN Shannon knn 5 247 9739 0,73 0,82 0,25 0,85 0,84

Table B.10: Thresholds and sensitivity measures for the couple Shannon-Diff. PN,
Binary case

B.1.3 Simpson

Fairness Balance algorithm configuration f ] Accuracy Sensitivity Specificity Precision F1

Diff.Ind  Simpson logit 3 3,20 9535 0,68 0,84 0,21 0,75 0,79
Diff.Ind  Simpson svm 5 1,66 91,37 0,68 0,75 0,30 0,86 0,80
DiffInd Simpson rf 3 401 67,50 0,54 0,58 0,41 0,76 0,66
Diff.Ind Simpson knn 3 2,33 92,65 0,65 0,78 0,21 0,77 0,77

Table B.11: Thresholds and sensitivity measures for the couple Simpson-Diff.Ind,
Binary case

Fairness Balance algorithm configuration f ] Accuracy Sensitivity Specificity Precision F1

Difft TP Simpson logit 3 4,72 89,66 0,67 0,76 0,33 0,80 0,78
Difft TP Simpson svm 3 3,99 73,11 0,65 0,70 0,47 0,85 0,77
Difft TP Simpson rf 5 3,31 99,99 0,85 0,96 0,04 0,88 0,92
Diff TP Simpson knn 5 2,06 99,93 0,80 0,93 0,11 0,85 0,89

Table B.12: Thresholds and sensitivity measures for the couple Simpson-Diff. TP,
Binary case
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Thresholds tables

Fairness Balance algorithm configuration f s Accuracy Sensitivity Specificity Precision F1
DIff.FP  Simpson logit 3 989 7343 0,61 0,68 0,41 0,76 0,72
Diff FP  Simpson svm 1 6,77 29,43 0,49 0,43 0,56 0,49 0,46
Diff FP  Simpson rf 1 7,88 40,32 0,61 0,59 0,63 0,55 0,57
Diff FP  Simpson knn 5 0,91 8547 0,70 0,74 0,35 0,90 0,81

Table B.13: Thresholds and sensitivity measures for the couple Simpson-Diff.FP,
Binary case

Fairness Balance algorithm configuration f s Accuracy Sensitivity Specificity Precision F1
DIff.PP Simpson logit 5 250 6382 0,58 0,60 0,48 0,89 0,72
DIl PP Simpson svimn 5 216 7391 0,67 0,69 0,45 0,91 0,79
Dift PP Simpson rf 4 446 93,36 0,74 0,36 0,29 0,82 0,84
Diff PP Simpson knn 3 6,10 92,82 0,66 0,84 0,26 0,71 0,77

Table B.14: Thresholds and sensitivity measures for the couple Simpson-Diff.PP,
Binary case

Fairness Balance algorithm configuration f s Accuracy Sensitivity Specificity Precision F1

Diff PN Simpson logit 5 2,17 91,88 0,71 0,78 0,21 0,38 0,82
Dift PN Simpson svm 5 1,92 9254 0,74 0,81 0,23 0,88 0,84
Diff PN Simpson rf 1 7,84 60,61 0,63 0,74 0,52 0,61 0,67
Diff PN Simpson knn 5 2,47 93,07 0,73 0,82 0,25 0,85 0,84

Table B.15: Thresholds and sensitivity measures for the couple Simpson-Diff. PN,
Binary case

B.1.4 IR
Fairness Balance algorithm configuration f ] Accuracy  Sensitivity Specificity Precision F1
DiffInd IR logit 3 320 73,27 0,68 0,84 0,21 0,75 0,79
DiffInd IR svm 5 1,66 64,96 0,68 0,75 0,30 0,86 0,80
DiffInd IR if 3 4,01 3884 0,54 0,58 0,41 0,76 0,66
DiffInd IR knn 3 2,33 67,32 0,65 0,78 0,21 0,77 0,77

Table B.16: Thresholds and sensitivity measures for the couple IR-Diff.Ind, Binary
case
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Thresholds tables

Fairness Balance algorithm configuration f s Accuracy  Sensitivity Specificity Precision F1

DIt TP IR Togit 3 172 6214 067 0,76 0,33 0,80 0,78
Diff TP IR svm 4 3,00 51,20 0,70 0,74 0,43 0,89 0,81
Diff TP IR rf 5 3,31 98,29 0,85 0,96 0,04 0,88 0,92
Dift TP IR knn 5 2,06 96,28 0,80 0,93 0,11 0,85 0,89

Table B.17: Thresholds and sensitivity measures for the couple IR-Diff. TP, Binary
case

Fairness Balance algorithm configuration f ] Accuracy Sensitivity Specificity Precision F1

Dift FP IR logit 3 2,89 43,74 0,61 0,68 0,41 0,76 0,72
Diff FP IR svm 1 6,77 19,31 0,49 0,43 0,56 0,49 0,46
Diff FP IR if 1 788 22,13 0,62 0,60 0,63 0,55 0,57
Diff FP IR knn 5 0,91 70,24 0,76 0,84 0,19 0,89 0,86

Table B.18: Thresholds and sensitivity measures for the couple IR-Diff. FP, Binary
case

Fairness Balance algorithm configuration f ] Accuracy  Sensitivity Specificity Precision F1

Dift PP IR logit 5 2,50 43,87 0,65 0,68 0,43 0,89 0,77
Diff PP IR svm 5 2,16 44,16 0,67 0,69 0,45 0,91 0,79
Diff PP IR rf 4 4,46 70,25 0,74 0,87 0,26 0,82 0,84
Diff PP IR knn 3 6,10 67,64 0,66 0,84 0,26 0,71 0,77

Table B.19: Thresholds and sensitivity measures for the couple IR-Diff. PP, Binary
Case

Fairness Balance algorithm configuration f S Accuracy  Sensitivity Specificity Precision F1

Dit PN IR logit 5 2,17 6588 0,71 0,78 0,21 0,88 0,82
Diff PN IR svm 5 1,92 8240 0,78 0,87 0,16 0,88 0,88
Diff PN IR rf 1 7,84 52,13 0,58 0,81 0,35 0,55 0,66
Diff PN IR knn 5 2,47 68,13 0,73 0,82 0,25 0,85 0,84

Table B.20: Thresholds and sensitivity measures for the couple IR-Diff. PN, Binary
case
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Thresholds tables

B.2 Multiclass attributes

B.2.1 Gini

Fairness Balance algorithm configuration f s Accuracy Sensitivity Specificity Precision F1

Diff Ind  Gini logit 1 845 8854 0,44 0,33 0,55 0,43 0,38
Diff.Ind  Gini svm 1 10,08 93,73 0,42 0,47 0,37 0,40 0,43
DiffInd  Gini rf 5 3,61 91,09 047 0,47 0,50 0,92 0,62
DiffInd  Gini knn 5 1,69 93,71 0,52 0,55 0,38 0,86 0,67

Table B.21: Thresholds and sensitivity measures for the couple Gini-Diff.Ind,
Multiclass case

Fairness Balance algorithm configuration f s Accuracy Sensitivity Specificity Precision F1

Diff TP Gini logit 1 10,04 92,23 0,51 0,49 0,54 0,65 0,56
Diff TP Gini svm 2 821 94,64 0,56 0,59 0,44 0,80 0,68
Dift TP Gini rf 5 4,55 99,83 0,77 0,84 0,14 0,89 0,87
Dift TP Gini knn 1 9,98 93,50 0,53 0,52 0,55 0,64 0,57

Table B.22: Thresholds and sensitivity measures for the couple Gini-Diff. TP,
Multiclass case

Fairness Balance algorithm configuration f ] Accuracy  Sensitivity Specificity Precision F1

Dift FP  Gini logit 1,00 8,32 87,58 0,43 0,34 0,56 0,53 0,41
Dift FP  Gini svm 5,00 146 92,02 048 0,48 0,51 0,96 0,63
Diff FP  Gini rf 1,00 9,55 91,96 0,48 0,47 0,50 0,55 0,51
Dift FP  Gini knn 1,00 8,79 94,10 047 0,58 0,35 0,49 0,53

Table B.23: Thresholds and sensitivity measures for the couple Gini-Diff.FP,
Multiclass case

Fairness Balance algorithm configuration f s Accuracy Sensitivity Specificity Precision F1

Difft PP Gini logit 1 13,29 87,96 0,48 0,40 0,59 0,56 0,46
Dift PP Gini svm 1 11,99 89,61 047 0,41 0,56 0,57 0,47
Dift PP Gini rf 5 485 95,16 0,59 0,61 0,34 0,93 0,73
Dift PP Gini knn 1 12,88 86,83 0,55 0,39 0,72 0,60 0,47

Table B.24: Thresholds and sensitivity measures for the couple Gini-Diff.PP,
Multiclass case
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Thresholds tables

Fairness Balance algorithm configuration f S Accuracy Sensitivity Specificity Precision F1

Difft PN Gini logit 1 12,04 86,67 0,48 0,30 0,69 0,53 0,38
Diff PN Gini svm 3 7,60 98,92 0,59 0,66 0,31 0,80 0,72
Diff PN Gini if 2 7,72 94,68 0,52 0,57 0,35 0,76 0,65
Difft PN Gini knn 2 8,58 93,056 0,53 0,51 0,62 0,87 0,64

Table B.25: Thresholds and sensitivity measures for the couple Gini-Diff. PN,
Multiclass case

B.2.2 Shannon

Fairness Balance algorithm configuration f ] Accuracy Sensitivity Specificity Precision F1

DiffInd  Shannon logit 3 5,19 84,89 0,48 0,46 0,54 0,76 0,57
Diff.Ind Shannon svm 3 6,04 8552 0,43 0,44 0,42 0,68 0,53
DiffInd ~ Shannon rf 5 3,61 87,27 0,55 0,58 0,27 0,90 0,70
Diff.Ind Shannon knn 5 1,69 86,10 0,53 0,55 0,36 0,86 0,67

Table B.26: Thresholds and sensitivity measures for the couple Shannon-Diff.Ind,
Multiclass case.

Fairness Balance algorithm configuration f s Accuracy Sensitivity Specificity Precision F1
DI, TP Shannon logit 1 514 8750 057 0,60 0,41 0,82 0,69
Diff TP Shannon svm 2 8,21 93,80 0,60 0,66 0,35 0,79 0,72
Difft TP Shannon rf 5 455 99,79 0,79 0,87 0,14 0,89 0,88
Difft TP Shannon knn 1 9,98 92,80 0,54 0,67 0,33 0,61 0,64

Table B.27: Thresholds and sensitivity measures for the couple Shannon-Diff. TP,
Multiclass case.

Fairness Balance algorithm configuration f ] Accuracy Sensitivity Specificity Precision F1

Difft FP Shannon logit 1 8,32 8397 047 0,44 0,51 0,57 0,49
Difft FP  Shannon svm 5 1,46 89,82 0,58 0,60 0,23 0,95 0,73
Difft FP  Shannon rf 3 436 86,44 0,52 0,58 0,33 0,74 0,65
Diff FP  Shannon knn 3 423 8754 0,52 0,59 0,31 0,71 0,64

Table B.28: Thresholds and sensitivity measures for the couple Shannon-Diff.FP,
Multiclass case.
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Thresholds tables

Fairness Balance algorithm configuration f s Accuracy Sensitivity Specificity Precision F1
Diff.PP  Shannon logit 1 1329 8493 053 0,50 0,57 0,61 0,55
Diff PP Shannon svm 2 820 84,67 0,52 0,50 0,58 0,81 0,62
Dift PP Shannon rf 2 8,72 9324 0,61 0,68 0,34 0,80 0,74
Dift. PP Shannon knn 1 12,88 82,46 0,56 0,48 0,65 0,60 0,53

Table B.29: Thresholds and sensitivity measures for the couple Shannon-Diff. PP,
Multiclass case.

Fairness Balance algorithm configuration f S Accuracy Sensitivity Specificity Precision F1
Diff.PN_ Shannon logit 1 12,04 81,04 046 0,31 0,64 0,50 0,38
Diff PN  Shannon svm 3 7,60 97,16 0,59 0,66 0,31 0,80 0,72
Diff PN Shannon rf 2 7,72 94,02 0,59 0,66 0,34 0,79 0,72
Diff PN Shannon knn 2 858 89,19 0,59 0,61 0,46 0,85 0,71

Table B.30: Thresholds and sensitivity measures for the couple Shannon-Diff. PN,
Multiclass case.

B.2.3 Simpson

Fairness Balance algorithm configuration f S Accuracy Sensitivity Specificity Precision F1

DiffInd  Simpson logit 1 8,45 62,19 0,50 0,47 0,54 0,51 0,49
DiffInd Simpson svm 3 6,04 66,97 0,43 0,44 0,42 0,68 0,53
DiffInd  Simpson rf 4 542 66,00 0,47 0,47 0,50 0,85 0,60
DiffInd Simpson knn 5 1,69 74,88 0,53 0,55 0,36 0,86 0,67

Table B.31: Thresholds and sensitivity measures for the couple Simpson-Diff.Ind,
Multiclass case.

Fairness Balance algorithm configuration f s Accuracy Sensitivity Specificity Precision F1
DIff. TP Simpson logit 3 6385 77,24 055 0,60 0,39 0,76 0,67
DI, TP Simpson svin 2 821 8492 0,60 0,66 0,35 0,79 0,72
Difft TP Simpson rf 5 4,55 99,14 0,79 0,87 0,15 0,89 0,88
Difft TP Simpson knn 1 9,98 83,05 0,54 0,63 0,40 0,62 0,62

Table B.32: Thresholds and sensitivity measures for the couple Simpson-Diff. TP,
Multiclass case.
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Thresholds tables

Fairness Balance algorithm configuration f ] Accuracy Sensitivity Specificity Precision F1

Diff FP Shannon logit 1 8,32 8397 0,47 0,44 0,51 0,57 0,49
DiffFP  Shannon svm 5 1,46 89,82 0,58 0,60 0,23 0,95 0,73
Diff FP  Shannon rf 3 4,36 86,44 0,52 0,58 0,33 0,74 0,65
DiffFP  Shannon knn 3 423 8754 0,52 0,59 0,31 0,71 0,64

Table B.33: Thresholds and sensitivity measures for the couple Simpson-Diff.FP,
Multiclass case.

Fairness Balance algorithm configuration f S Accuracy Sensitivity Specificity Precision F1

Difft PP Simpson logit 1 13,29 64,35 0,53 0,51 0,57 0,61 0,55
Diff PP Simpson svm 3 884 66,23 0,52 0,50 0,57 0,78 0,61
Diff PP Simpson rf 2 8,72 8744 0,61 0,68 0,34 0,80 0,74
Diff PP Simpson knn 1 12,88 60,97 0,56 0,55 0,57 0,58 0,56

Table B.34: Thresholds and sensitivity measures for the couple Simpson-Diff. PP,
Multiclass case.

Fairness Balance algorithm configuration f s Accuracy Sensitivity Specificity Precision F1

Diff PN Simpson logit 1 12,04 53,71 047 0,27 0,71 0,51 0,35
Dift PN Simpson svm 4 570 84,02 0,64 0,66 0,28 0,94 0,77
Dift PN Simpson rf 2 7,72 8530 0,59 0,66 0,34 0,79 0,72
Diff PN  Simpson knn 3 954 68,87 0,53 0,51 0,59 0,81 0,63

Table B.35: Thresholds and sensitivity measures for the couple Simpson-Diff. PN,
Multiclass case.

B.2.4 IR
Fairness Balance algorithm configuration f s Accuracy Sensitivity Specificity Precision F1
Diffind IR Togit 3 519 1861 0,59 0,67 0,35 0,76 0,71
DiffInd IR svm 4 491 10,92 0,56 0,61 0,27 0,83 0,70
DiffInd IR rf 5 3,61 32,69 0,63 0,66 0,27 0,91 0,77
DiffInd IR knn 4 2,54 12,08 0,57 0,64 0,30 0,77 0,70

Table B.36: Thresholds and sensitivity measures for the couple IR-Diff.Ind,
Multiclass case.

Fairness Balance algorithm configuration f ] Accuracy  Sensitivity Specificity Precision F1

DIt TP IR logit 5 342 2412 0,65 0,68 0,41 0,89 0,77
Diff TP IR svm 5 4,44 42,71 0,64 0,66 0,36 0,91 0,77
Dift TP IR rf 5 4,55 80,85 0,80 0,88 0,13 0,89 0,89
Dift TP IR knn 4 4,86 2247 0,61 0,67 0,34 0,82 0,74

Table B.37: Thresholds and sensitivity measures for the couple IR-Diff. TP,
Multiclass case.
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Thresholds tables

Fairness Balance algorithm configuration f s Accuracy  Sensitivity Specificity Precision F1

DIt FP IR Togit P 183 16,07 0,56 0,67 0,32 0,68 0,67
Diff FP IR svm 5 1,46 56,18 0,65 0,67 0,23 0,95 0,78
Diff FP IR rf 4 327 20,81 0,64 0,68 0,34 0,88 0,77
Diff FP IR knn 4 3,17 18,33 0,59 0,66 0,28 0,79 0,72

Table B.38: Thresholds and sensitivity measures for the couple IR-Diff.FP,
Multiclass case.

Fairness Balance algorithm configuration f s Accuracy Sensitivity Specificity Precision F1

Diff PP IR logit 1 13,29 30,65 0,54 0,68 0,35 0,58 0,63
Dift PP IR svm 4 6,63 15,57 0,63 0,68 0,35 0,86 0,76
Dift PP IR rf 5 485 18,36 0,66 0,68 0,34 0,94 0,79
Dift PP IR knn 3 9,40 16,39 0,58 0,68 0,34 0,72 0,70

Table B.39: Thresholds and sensitivity measures for the couple IR-Diff.PP,
Multiclass case.

Fairness Balance algorithm configuration f ] Accuracy  Sensitivity Specificity Precision F1

Diff PN IR logit 2 811 17,71 0,59 0,66 0,30 0,79 0,72
Diff PN IR svm 4 5,70 25,90 0,64 0,66 0,28 0,94 0,77
Diff PN IR if 5 4,11 46,74 0,65 0,66 0,31 0,95 0,78
Difft PN IR knn 4 7,16 19,22 0,63 0,67 0,35 0,88 0,76

Table B.40: Thresholds and sensitivity measures for the couple IR-Diff. PN,
Multiclass case.
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