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Summary

This work stems from the composition of three separate areas of research under the
goal of deepening the understanding of their interaction. These fields are namely
Quantum Computing, Machine Learning and Fault Injection and Reliability testing.

Quantum Computing is still an emerging technology in constant evolution, day
by day. The true extent of the advancements it will bring to humanity as a whole
are numerous and possibly unpredictable. Despite being historically relegated to
theoretical physicists and mathematicians, this field has seen a recent widespread
surge in research interest among engineers and computer scientists alike thanks to
the development of the first publicly accessible quantum devices over the cloud in
2016. The first chapter of this Thesis is devoted to the introduction of the basic
knowledge needed to get a grasp of understanding of the subject, alongside the main
quantum circuit subroutines and the current status of research and development in
the field.

Fault Injection and Reliability studies laid the foundations for many of hu-
mankind’s most prized recent achievements, namely deep space exploration and
transistor gate miniaturization. It consists of both systematical and statistical
analysis methods aimed at stressing electronic circuitry with the purpose of spotting
out fault behaviours and patterns, eventually leading to the development of devices
able to resist, detect and possibly correct such anomalies.
The second chapter glimpses over the classical fault model of modern transistor-
based devices and provides a definition of the structure of cosmic rays, alongside
relative literature, eventually introducing one of the current models for quantum
faults induced by external radiation on transmon-based devices and the issues
associated with it. A metric for reliability measurement called Quantum Vulnera-
bility Factor is introduced in depth. After that, a purposefully developed software
simulation suite is presented, which will be later used to carry out injections,
execute them in parallel on a number of different simulators or hardware backends
and perform QVF based reliability analyses on quantum circuits.
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Machine Learning is comprised of all the techniques and attempts that aim at
infusing classical computation devices with what could be defined as intelligence.
Given the large plethora of interpretations that can be given to such term, the
branches of Machine Learning are likewise numerous and intertwined. Starting
from the novelties provided by both Quantum Computing and Machine Learning,
it has been tried to merge the two into the broader field of Quantum Machine
Learning, in order to define a possibly more complete and general paradigm.
The third chapter of this work intends to provide the most superficial technicalities
required to understand the main concepts and definitions of these models, starting
from the classical computation domain and moving towards its quantum dual, with
the additional introduction of the main branches of QML, the general methods for
data encoding and gradient computation.

Reached this point, the true heart of this Thesis is unveiled in the fourth chapter,
where the three fields are merged together in the fault reliability analysis of two
modern quantum machine learning models, a Quantum Support Vector Machine
and a Quantum Convolutional Neural Network. The aim is to dissect the interac-
tion of these architectures with the specific radiation-induced quantum fault model
discussed in the second chapter, in order to provide a baseline for further research
in the years to come.
The Quantum Support Vector Machine is one of the current strongest contenders
in the field of Quantum Machine Learning, since it has been proven to boast a clear
quantum advantage over classical methods when dealing with specific features. The
two qubit quantum circuit responsible for performing the inner product between
the elements in the dataset takes advantage of the mathematical properties of the
so called kernel trick, mapping the inputs into a higher dimensional space where
the features become linearly separable. Following that, a QVF study allowed for
the identification of the most critical faults in the circuit, demonstrating that,
despite marginal differences, both qubits in the QSVM’s circuit, called second-order
Pauli-Z evolution circuit, have a similar level of reliability to radiation induced
faults. The highest criticality comes from a subset of the possible phase shifts of the
statevector, whilst the remainder of the fault syndromes add a periodic variation
on the final output. Furthermore, an analysis of the impact of a double fault has
been investigated and compared to the one of the single fault.
After that, a more thorough analysis has been conducted onto a simplified model of
a Quantum Convolutional Neural Network. This time, the quantum circuit featured
four qubits, thus allowing for more complex entanglement states. After glossing
over the base performance capabilities of this architecture, a first QVF study has
been conducted, which gave a description of the circuit’s reliability pattern. Given
the amplitude embedding strategy used for the inputs, it has been proven that an
azimuthal angle based fault is devastating on the network’s output, a behaviour that
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highly different with respect to a polar angle based fault. As such, to support this
hypothesis also from the QNN’s accuracy side, a subset of fault positions has been
studied more thoroughly, highlighting a response pattern which proved the previous
assumption. From this point on, a final, deeper analysis has been carried out at
the dataset level, in order to spot out the input images which either maximised
or minimized the network’s resilience to faults. For each proposed fault position,
the two extreme cases have been presented and analyzed. Despite not being a
thorough top down approach, it allowed to prove that there is a different resilience
pattern depending on which qubit is affected by the fault, while at the same time
showing that the depth of the fault in the circuit has a negligible impact on the final
output. This study provided sufficient information to get a basic understanding
of the circuit’s characteristics, thus paving the way for further research in the future.

At last, in the fifth chapter, a final digression on the Thesis alongside suggestions
for future research are appended, concluding the work.
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Chapter 1

Introduction

1.1 Brief history of quantum computation

Since their original theoretical inception proposed by Benioff [1, 2] and Feynman [3]
during the early 1980s, quantum mechanical computation models have peaked the
interest of the scientific community as a mean to exceed the limitations of classical
computation in tackling exponentially complex problems [4].
In the following decade, Shor [5] and Grover [6] proposed their revolutionary self-
named algorithms, which became the main vectors of public interest and research
funding towards the quantum computing paradigm. They, among others, demon-
strated that algorithmic speedups were possible and paved the way for the following
research. However, at the time the technology was still in its infancy and these
assertions had yet to be tested experimentally, as no physical devices had been built
up to then. Notably, in 1998, Chuang et al.[7], following their implementation of
an NMR based quantum device, executed experimentally for the first time Grover’s
algorithm.
At the verge of the new century, the first edition of the de-facto standard textbook
on quantum information theory, Quantum Computation and Quantum Information
by Nielsen and Young [8] has been published, acting as an entry gate to the topic
for a broader range of students [9, 10] and being positively suggested by the most
renowned names in the field, among which Shor, Grover, Aaronson and DiVincenzo.
Following there on, multiple implementation architectures have been proposed and
built, among which the first entanglement capable photonic device by Jian-Wei et
al.[11], quantum dot based electron spin manipulators by Vandersypen et al.[12]
and superconducting circuits by Plantenberg et al.[13].
The last ten years provided the biggest leaps in research and development, especially
due to the participation of big tech giants of the industry. D-Wave developed in
2011 the first commercially available quantum annealer, the D-Wave One. Multiple
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research teams, among which Maurer et al.[14], Saeedi et al.[15] and Zhong et al.[16]
have improved decoherence times of certain quantum states from mere nanoseconds
to possibly hours. The experimental demonstration of the quantum teleportation
algorithm by Pfaff et al.[17] with zero error rate in 2014 laid the foundation for
quantum based reliable communication. In 2016, IBM revolutionized the concept
of quantum computation by carrying over the paradigm of cloud based classical
computation onto their transmon based superconducting quantum devices with the
launch of Quantum Experience, widening accessibility and giving rise to a plethora
of new research among which the first were Devitt et al.[18] and Alsina et al.[19].
In the last three years especially, development of higher qubit count quantum
devices increased dramatically, as a mean for achieving quantum computational
supremacy over other competitors, with numerous breakthroughs from Google,
IBM, D-Wave, Intel, Rigetti Systems and Xanadu just to name a few.
This sprouting interest among the scientific community and investors alike revolves
around only a small fraction of the computational capabilities of the quantum
paradigm. As of now we are in the NISQ era (Noisy Intermediate Scale Quantum)
[20], so there are still many algorithms to be discovered and challenges to be
overcome, namely noise, decoherence times and qubit counts.

1.2 Quantum information theory
Classical computation’s basic information unit is the bit, a deterministic logical
object with the ability to assume exclusively one of two binary values, commonly
referred to in boolean logic as either a 0 or a 1. It has been mathematically proven
for such object to be the smallest possible unit of information by Abramson and
Hartley [21], and later revised by Shannon.
Quantum computation’s basic information unit is the so called quantum bit, or
qubit for short, formerly named as such by Schumacher [22] as the quantum dual to
the classical bit of information. Unlike its counterpart however, the qubit exhibits
properties that let it overcome the bounds of binary logic.
One major characteristic of the qubit is it’s ability to carry more information with
respect to the classical bit, while still only granting access to the same amount of
information, following the mathematical proof of Holevo’s [23] theorem of 1973.
This required a generalization of Shannon’s information theory, first attempted in
the seminal work of Ingarden of 1975 [24] which laid the foundations of modern
quantum information theory.
The main characteristics of the qubit derive from the fundamental characteristics
of quantum mechanics, which can be summed up into:

• Superposition: qubits can be in an intermediate state which is probabilistically
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both 0 and 1 at the same time.

• Entanglement: two qubits can be coupled into a joint quantum state which
exhibits manipulation causality between one qubit and the other. The two
qubits thus cannot be described indipendently of one another.

• Interference: a qubit is able to cross and interfere with its own state.

At the foundation of quantum mechanics lies the description of the time evolution
of quantum systems, defined by the Schrödinger equation

iℏ
∂

∂t
|ψ(t)⟩ = H |ψ(t)⟩ (1.1)

where ℏ is Planck’s constant and H is the Hamiltonian matrix representing the
quantum system’s total energy. Such equation can be solved as an initial value
problem for time t = 0, defining the state |ψ0⟩ = |ψ(t = 0)⟩, allowing for the
definition of the unitary time evolution operator U(t) [25] as

U(t) = e−i t
ℏH (1.2)

By exploiting such properties, a new paradigm of computation has been created,
commonly referred to as quantum computation.

1.3 Computational basics
The following section will go over the main concepts related to quantum computing
and the relative differences with respect to its classical counterpart.

1.3.1 Quantum bit
As previously introduced, quantum bits, or qubits, are the basic information units of
quantum computational models. They are formally described by a two-dimensional
vector. We can define two basis states which act as a parallel to the classical bits’
0 and 1 states, called |0⟩ (ket-zero) and |1⟩ (ket-one)

|0⟩ =
[
1
0

]
and |1⟩ =

[
0
1

]
(1.3)

following Dirac’s vector notation, also called bra-ket notation [26].
These two states form an orthonormal basis for the two-dimensional vector space,
formally called Z basis. However, it’s important to note that such vector space
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allows for an infinite number of orthonormal bases: the Z basis simply stands out
as the easiest to model and to introduce quantum computation with.
These two objects can be represented graphically as two antipodal points lying
onto the surface of a unitary radius sphere, called Bloch sphere [27][28]:

Figure 1.1: |0⟩ and |1⟩ on the Bloch sphere.

1.3.2 Superposition
While classical bits are forced to exist in a deterministic state, assuming either the
value of 0 or 1, qubits can exist in a superposition state of the basis states. As such
a qubit can be represented by a linear combination of basis states in the vector
space as

|ψ⟩ = α |0⟩ + β |1⟩ (1.4)

where α, β ∈ C are the probability amplitudes of the qubit lying in either the
|0⟩ or |1⟩ state. It follows that these amplitudes must obey the basic rule of sum
from probability theory

|α|2 + |β|2 = 1 (1.5)

with |α|2 and |β|2 representing the probability that a measurement operation in
the Z basis collapses the state of the qubit in either the |0⟩ or |1⟩ state. The qubit
thus exists in a continuum of states before observation and collapses to a single

4



Introduction

state once measured.
As an example, we may consider the superposition state

|ψ⟩ = |+⟩ = 1√
2

(|0⟩ + |1⟩) (1.6)

where through the distributive property of multiplication is easy to see that

|α|2 =
∣∣∣∣∣ 1√

2

∣∣∣∣∣
2

= 1
2 and |β|2 = 1

2 (1.7)

From this it intuitively follows that this state will collapse through measurement
on state |0⟩ half of the times, and on |1⟩ on the other half. It is clear to see this
probabilistic distribution by visualizing the |+⟩ state on the Bloch sphere, as the
point stands exactly on the equator (the x-y plane):

Figure 1.2: |+⟩ on the Bloch sphere.

Moreover, we can define a |−⟩ state which is antipodal to |+⟩: together these two
states represent another possible orthonormal basis for the vector space, the X
basis, as it lies on the X axis. Similarly, we can define another axis oriented basis,
the Y basis, composed of the states |i⟩ and |−i⟩. However, a qubit’s state is not
limited to the axes of the Bloch sphere; in fact, it is not limited to the equator on
the x-y plane either.
A quantum state can lie in any point of the surface of the Bloch sphere.
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Figure 1.3: The standard basis states for the X, Y and Z bases on the Bloch
sphere.

In fact, it’s possible to represent a point on the surface of the Bloch sphere by
means of a change of coordinates, mapping between the triplet (x, y, z) and the
triplet (ρ, θ, ϕ), representing respectively the radial distance, the polar angle and
the azimuthal angle. This mapping lets us reparametrize the α and β probability
amplitudes in terms of θ and ϕ

α = cos
(
θ

2

)
, β = eiϕ sin

(
θ

2

)
(1.8)

where 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. It’s clear to see how α is real valued, whilst
β is complex and the sum squared of the two terms is still normalized. The
reparametrized generic quantum state can be written as

|ψ⟩ = cos
(
θ

2

)
|0⟩ + eiϕ sin

(
θ

2

)
|1⟩ (1.9)

Notably, no term depends on the radial distance ρ, as all the quantum states
represented up to now lie on the surface of the sphere, so have all ρ = 1: such
states are defined pure sates. On the other hand, points internal to the sphere’s
volume represent mixed states [8].
The role of the angles θ and ϕ can be easily visualized onto the Bloch sphere as
the angle between the |0⟩ state on the positive Z axis and the qubit and the angle
between the |+⟩ state on the positive X axis and the qubit respectively.
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Figure 1.4: Spherical coordinates visualization.

1.3.3 Measurements
Even though the properties of quantum mechanics let the qubit exist in a superpo-
sition state, they also require for it to output a single value when measured, either
0 or 1 according to the amplitudes α and β.
The probabilistic nature of the qubit is directly linked to the observer effect [29],
which states that the act of observing a quantum system permanently alters its
state, forcing the wave function representing it to collapse in either of the states
composing the measurement basis [30]. As such, it’s not possible to retrieve
completely the information embedded into a quantum system through a single
measurement. Susbsequent measurements of the same qubit on the same basis in
fact will always yield the same output as the first one with 100% probability.
This unobservability property is notoriously unintuitive as it doesn’t translate well
into the familiar cause-effect world that we are accustomed to experience in our
everyday lives.
However, despite the uncertainty principle linked to quantum measurements, it’s
still possible to trace down the effect of manipulations to the state of a quantum
system onto the measurement output.

Given an unknown quantum state |ψ⟩ and a measurement operator Mm and
its conjugate transpose M †

m, we can compute the probability of obtaining the

7



Introduction

output m through the probability function P : F −→ [0, 1] as

P (m) = ⟨ψ|M †
mMm |ψ⟩ (1.10)

where F represents the collection of possible outcome events. After the mea-
surement, the state of the system will collapse according to the Born rule [31],
conditioned on having effectively measured m, to the form

|ψ⟩ −→ Mm |ψ⟩√
⟨ψ|M †

mMm |ψ⟩
(1.11)

This kind of operators can be seen as projectors onto an orthonormal basis, as such
they obey the property of unitarity P 2 = P , i.e. the inner product of the matrix
representing the measurement operator with itself corresponds to the Identity
matrix.
As an example, we can derive the matrix form of the measurement operators M0
and M1 for the Z basis as the outer product of the basis states with themselves as

M0 = |0⟩ ⟨0| , M1 = |1⟩ ⟨1| (1.12)

From this follows that the probability of measuring the quantum system to be in
state |1⟩ is

⟨ψ|M †
1M1 |ψ⟩ = ⟨ψ|1⟩⟨1|ψ⟩

= (α∗ ⟨0| + β∗ |1⟩)(|1⟩ ⟨1|)(α |0⟩ + β |1⟩)
= |β|2

(1.13)

as expected. By substituting the newfound probability in the measurement collapse
relation conditioned on having measured |1⟩, we obtain that

|ψ⟩ −→ M1 |ψ⟩√
⟨ψ|M †

1M1 |ψ⟩
= 1

|β|
|1⟩ ⟨1| (α |0⟩ + β |1⟩) = β

|β|
|1⟩ ≈ |1⟩ (1.14)

1.3.4 Multiple qubits
Quantum computational systems may be composed of any number of qubits. Due
to the laws of quantum mechanics, such systems may be be described as a set of
disjoint elements, while at other times these elements may be intertwined, by a
process called entanglement.
Adding qubits to a quantum system enlarges its vector space. As such, the Bloch
sphere cannot represent multi-qubit systems: in order to tackle the dimensionality
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increase in the vector space, we must increase the number of computational basis
states by an exponential factor with respect to the number of qubits in the system
N , following the relation N qubits −→ 2N bases.
For example, let’s consider two qubits |ψ0⟩ = α0 |0⟩+β0 |0⟩ and |ψ1⟩ = α1 |0⟩+β1 |0⟩.
The two qubit state |ψ⟩ = |ψ1⟩ ⊗ |ψ0⟩, i.e. with N = 2, is generally represented as

|ψ⟩ = α0α1 |00⟩ + α0β1 |01⟩ + β0α1 |10⟩ + β0β1 |11⟩ (1.15)

where each linear combination of single qubit amplitudes represents the probability
amplitude of observing its relative basis state and can be rewritten as a coefficient γy.
Once again, the rule of sum from probability theory requires that these amplitudes
are normalized, according to the condition

∑
y∈{0,1}N

|γy|2 = 1 (1.16)

Product states, also called simply separable states, are quantum systems composed
of single linearly separable qubits [32]. This means that each γy coefficient can be
rewritten in terms of single qubit amplitudes αy and βy.

1.3.5 Entanglement
The separability property cannot be always satisfied. In 1935, Einstein, Podolsky
and Rosen [33] outlined the existence of non linearly separable two particle (i.e.
qubit) quantum states, called entangled. In fact, such states gave rise to the EPR
paradox, stating that the observation and consequent collapse of one of the two
particles would determine with certainty the state of the other without needing
to act onto it, effectively forcing it to collapse too. This would allow for the
apparent instantaneous transmission of information from one particle to the other,
possibly violating one of the fundamental constraints of the theory of relativity
[34]: information cannot travel at a speed faster than light. The paradox has later
been solved by the postulation of the no-communication theorem[32]: albeit the
collapse of the two qubits is instantaneous, there is no way for such action to carry
information by itself, thus it’s bound by classical communication limits.
These entangled states are called EPR pairs or Bell states [8], one example of which
is the following

∣∣∣Φ+
〉

= 1√
2

(|00⟩ + |11⟩) (1.17)

By measuring one of the two qubits of |Φ+⟩, we will know with 100% probability
that the other will have collapsed to the same basis state.
It’s clear how the pair |Φ+⟩ cannot be written as the linear product of two separate
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qubits |ψ1⟩ |ψ0⟩. Recalling equation (1.15) and matching the coefficients, we would
get this system of equations

α0α1 = 1√
2

, α0β1 = 0 , β0α1 = 0 , β0β1 = 1√
2

(1.18)

where it is easy to demonstrate that no solution exist. In fact, the two middle
equations require for at least one term to be equal to 0, whilst the first and the
last equation require for both to be non-zero.
Relations in (1.18) are directly linked to the proof of the no-cloning theorem,
which states that it is impossible to copy any unknown quantum state without
first performing some measurement, ultimately destroying the original state. It’s
important to note however how basis states |0⟩ and |1⟩ can be copied with a simple
CNOT gate, albeit such application is limited.

1.4 Quantum Logic
The following section will define the main formalisms behind quantum logic gates,
drawing parallels with classical computation.

1.4.1 Single qubit gates
In order to perform transformations onto qubits, we must employ quantum gates,
equivalently to logic gates in classical computing.
Quantum gates are represented by square matrices with size dependent on the
number of qubits they act onto and must obey some fundamental properties, among
which:

• Linearity: a quantum gate must be distributable among a superposition state.

• Normalization: a quantum gate must keep the total sum of probabilities (1.16)
equal to 1.

• Reversibility: for any quantum gate U there must exist a reverse gate U †

which restores the original state, such that UU † = I.

Each single qubit gate is represented by a 2 × 2 matrix and can be interpreted as a
rotation around a specific axis of the Bloch sphere.
The identity gate is the most simple gate, as it acts onto the qubit without altering
its state, and it’s represented by the I matrix
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I =
[
1 0
0 1

]
(1.19)

Rotations about the main X, Y and Z axes by an angle π are called Pauli gates
and assume the matrix forms

X =
[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
(1.20)

where the Pauli-X gate is commonly referred to as the NOT gate.
The most used single qubit gate is the Hadamard gate, also called squared-root not.
It corresponds to a rotation by an angle π about the x+ z axis. It maps the |0⟩
and the |1⟩ states to the |+⟩ and |−⟩ superposition states, effectively performing a
basis change.

H = 1√
2

[
1 1
1 −1

]
(1.21)

It’s important to note that all the quantum gates introduced up to now are

Figure 1.5: Visualization of the basic X, Y, Z and H gates’ rotations.

represented by Hermitian matrices, so they are equal to their complex conjugate
transpose:

XX† = XX = X2 = I , Y 2 = I , Z2 = I , H2 = I (1.22)

From this follows that any even number of consecutive applications of one such
matrix amounts to applying an Identity gate.
The S and T gates are specialized rotations about the Z axis by an angle of π

2 and
π
4 respectively. As such, T 2 = S and S2 = Z. However they are not Hermitian,
since S /= S† and T /= T †:
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S =
[
1 0
0 e

iπ
2

]
, S† =

[
1 0
0 e− iπ

2

]
, T =

[
1 0
0 e

iπ
4

]
, T † =

[
1 0
0 e− iπ

4

]
(1.23)

1.4.2 Multiple qubit gates
The simplest multiple qubit gate is the SWAP gate, which exchanges position
between two qubits. This amounts to no visible change in the probability amplitudes
of the |00⟩ and |11⟩ bases, whilst swapping the ones of the |01⟩ and |10⟩ bases.

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 −→

SWAP |00⟩ = |00⟩
SWAP |01⟩ = |10⟩
SWAP |10⟩ = |01⟩
SWAP |11⟩ = |11⟩

(1.24)

Multiple qubit gates usually involve one or more control qubits and a target qubit.
Given a generic one qubit unitary gate U, we can define the generic two qubit
controlled-U gate as

U =
[
a b
c d

]
, CU =


1 0 0 0
0 1 0 0
0 0 a b
0 0 c d

 −→

CU |00⟩ = |00⟩
CU |01⟩ = |01⟩
CU |10⟩ = |1⟩ ⊗ U |0⟩
CU |11⟩ = |1⟩ ⊗ U |1⟩

(1.25)

One example is the controlled-NOT gate or CNOT for short. It inverts the target
qubit by applying a Pauli-X gate conditioned on the control qubit being 1.

CNOT |a⟩ |b⟩ = |a⟩ |a⊕ b⟩ (1.26)

As such, the CNOT is the quantum dual of the classical XOR gate. Its matrix
form can be derived by substituting the Pauli-X matrix to the U gate in (1.25).

Multiple qubit gates are not limited to a single control and target qubit.
For example, the 3 qubit Toffoli gate, also called controlled-controlled-NOT, applies
a Pauli-X gate to the third qubit if the first two are both 1. Since it acts onto 3
qubits, it is represented by an 8 × 8 square matrix, as there are 2N = 23 = 8 basis
states.
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Toffoli |a⟩ |b⟩ |c⟩ = |a⟩ |b⟩ |ab⊕ c⟩ (1.27)

The Toffoli gate performs the quantum equivalent of the AND operator between
two qubits and stores its result in the third qubit, as per required to be a reversible
gate.
With the Toffoli gate, which is universal for classical computation, we can state
that there exists also a universal gate set for quantum computation [8].

It can be shown that a quantum computer can perform any operation possi-
ble on a classical computer with at most a polynomial overhead, as stated by the
Church-Turing-Deutsch thesis[32, 4].

1.4.3 DiVincenzo’s criteria
There are endless possibilities for the implementation of quantum gates, however
it would not make sense to implement physically all of them in order to build a
working quantum computer. In the year 2000, DiVincenzo [35] proposed a set of
self named criteria which defines the minimum amount of properties necessary for
quantum computation: any device implementing all of them, would thus be able to
perform any quantum algorithm. There are seven criteria, of which the first five
regard how to create a universal set of gates, whilst the last two are relative to
quantum communication.

Scalability with well-characterised qubits

To perform computations and possibly gain an advantage over classical computation,
it must be possible to easily produce quantum devices with an arbitrarily high
number of qubits, by adding at most a constant overhead.

Initialization of qubits to a simple fiducial state

All operations performed on quantum devices are unitary, as such the result of
the computation heavily depends on the starting state. It must be possible to
efficiently initialize any number of qubits in a system with a time overhead which
is fast enough to allow possibly mid circuit re-initialization, to be used especially
in error correction routines. Moreover, the initialization time must be lower than
the decoherence time, else no computation can be possible.

Long relevant decoherence times

Current quantum devices are characterized by T1 and T2 relaxation times. In
order to allow for the execution of deep circuits with high fidelity, the gate operation
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times and the decoherence factor they introduce must be many orders of magnitude
smaller than the qubit’s relaxation time. This can be improved both by producing
better gates and improving T1 and T2 times.

Universal set of quantum gates

There exists a minimum number of one and two qubit gates which allow for the
execution of a specific algorithm. If a set allows for the execution of any possible
algorithm, like in the classical case, it is said universal. There is no specific gate
set which is better than the others, but a device must support at least one of them,
else it cannot effectively manipulate the quantum states to their full extent.

Qubit-specific measurement capability

It must be possible to measure the state of a qubit at the end of a quantum
algorithm in order to access the results of the computation with a high enough
efficiency. Given a lower efficiency, the algorithm needs to be repeated to improve
the success rate.

Interconverting stationary and flying qubits

It must be possible to transfer a qubit from an encoding technology to another,
while preserving the quantum information, and vice versa.

Faithful transmission of flying qubits between specified locations

When transmitting a qubit, it must be possible to do so without incurring in
decoherence, preserving the quantum state from source to destination.

1.5 Quantum circuits
In order to perform computations with the gates just presented, it is necessary to
define a model that regulates the interactions of these objects over time and among
multiple qubits. A circuit’s graphical representation, firstly introduced by Feynman
[3] as an adaptation of the Penrose notation, is implicitly read from left to right as
a temporal sequence of operations. Each qubit is represented by an horizontal line,
whilst classical bits are represented by two parallel horizontal lines, which however
do not represent a physical connection among devices, but rather may be read as a
sequence of events on a control flow graph. Quantum gates are placed onto one
or more wires depending on their number of inputs and are executed in a parallel
fashion among all qubits.
An example for the qubit teleportation circuit is given in Figure 1.6, where the
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unknown state of q0 is transferred to q2. CNOT gates are represented as a filled
dot on the control qubit and as a circle with a plus sign on the target qubit. The
measurement gate with respect to the Z basis is represented by an arrow over a
meter. Operations can also be conditioned on the result of an observation, as per
the Z and X gates towards the end of the circuit.

q0 : • H
q1 : H •
q2 : Z X

crz : /1 0
�� •

0x1

crx : /1 0
�� •

0x1

Figure 1.6: Quantum teleportation circuit.

1.5.1 Shor’s algorithm
Large number factorization is one of mathematics’s most computationally expensive
problems to solve on classical computers. The algorithm, called number field sieve,
in fact, given a n bits number, scales in time as en1/3 , which is a growth faster than
polynomial, thus rendering the factoring inefficient for classical computers. This
is the reason as for why the foundation of modern asymmetric cryptography, the
RSA algorithm, is based on that same mathematical problem, taking advantage
of the fact that a brute force approach would require computation times possibly
longer than the current estimates for the age of the universe.
In 1994 Peter Shor [5] proposed a quantum algorithm able to solve the factorization
problem in polynomial time, which is an optimal scaling factor, despite not achieving
an exponential speedup. The algorithm is made of classical steps and quantum
ones, which will be detailed in the following list. Given a number N = pq, where p
and q are two prime numbers, it is possible to factor out the primes from N as

1. Choose a number 1 < a < N , then compute the gcd(a,N). If gcd(a,N) /= 1,
then p = gcd(a,N), and q = N

p
. Else, continue.

2. Compute the period r of ax mod N through the use of the period finding
quantum algorithm. If r is even and ar/2 mod N /= N − 1, continue, else
restart from point 1 with a new a.

3. Given the period r, it will hold that ar = 1 mod N −→ ar − 1 = 0 mod N =
kN = kpq, since ar − 1 is a multiple of N. Finally, by refactoring the first half
of the equation (ar/2 − 1)(ar/2 + 1) = kpq.
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4. Since step 2 grants that r is even, then the two terms in parentheses must
be even as well. Given two integers c and d such that cd = k, it is possible
to rewrite the equation as (ar/2 − 1)(ar/2 + 1) = (cp)(dq) = kpq as the only
possible combination of c, d, p and q. Thus, it is possible to extract p and q as

p = gcd(ar/2 − 1, N) , q = gcd(ar/2 + 1, N) (1.28)

The second step of the algorithm is responsible for computing the period of the
function f(x) = ax mod N , such that r is the smallest number for which it holds
that ar mod N = 1.
Given a modular multiplication unitary operator U and a factoring target N written
on n bits, a number y on n bits is chosen.

U |y⟩ = |ay mod N⟩ (1.29)

Multiple applications of the U operator produce different powers of a in output,
which is simply the exponentiation of a. Since the modulus gives rise to periodic
functions, after r applications of the U operator, the outputs repeat themselves.
Considering an eigenstate made of the superposition of all the exponentiations of
a, each multiplied by a factor e−2πis(n)/r, where s(n) ∈ N, s(n) ∈ [0, r − 1].

|vs⟩ = 1√
r

r−1∑
k=0

e−2πisk/r
∣∣∣ak mod N

〉
(1.30)

It can be proven that the factor e2πis/r is an eigenvalue of |vs⟩, which is an eigenvector
of U.

U |vs⟩ = e2πis/r |vs⟩ , where 1√
r

r−1∑
s=0

|us⟩ = |1⟩ (1.31)

The factor is dependent on r, as such it is possible to execute the Quantum Phase
Estimation circuit, measuring the phase ϕ = s/r. The circuit works by encoding
the exponentiations of U by different even powers of two each conditioned on the
value of a different qubit in state |+⟩, which will experience a phase kickback. These
control qubits are then processed by performing an IQFT subroutine, measuring
in output the phase. The output is probabilistic, as such multiple estimates of ϕ
might be registered, that must be tested in order to spot out the correct result.
Applying the continued fractions algorithm onto ϕ will then allow to estimate the
value of r up to a certain precision, dependent on the number of available qubits m
for the QPE, where m = O(n).
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|0⟩ H · · · •

QFT−1
2n

... ... ...
|0⟩ H • · · ·

|0⟩ H • · · ·

|1⟩ /n
Ua20

Ua21 · · · Ua22n−1

Figure 1.7: Order finding quantum subroutine for Shor’s algorithm.

1.5.2 Grover’s algorithm
Searching in an unordered database of size N for all the elements fitting a specific
condition is classically ceiled by O(n) comparisons. In 1996 Lov Grover proposed
a quantum subroutine, later called Grover iterate, which would allow for the
amplification of the amplitude associated to a desired output state whilst suppressing
the undesired ones. The algorithm is described in the following list.

1. Starting from a quantum register of size n, where N = 2n is the size of the
database, all qubits are set to the state |+⟩, producing an equal superposition
of all the output states in the quantum register.

|s⟩ = |+⟩⊗n = 1√
N

∑
x∈0,1n

|x⟩ (1.32)

2. The Grover iterate is applied k ≈ π
4

√
N times.

3. The result of the search is measured as the most probable output state after
the circuit’s execution.

The initial state superposition contains the target state, called |w⟩ and all the other
sates, represented by |r⟩. It is possible to represent the state |s⟩ in terms of polar
coordinates by using |w⟩ and |r⟩ as axes.

|s⟩ = 1√
N

|w⟩ +
∑
i /=w

|i⟩

 = 1√
N

|w⟩ + 1√
N

∑
i /=w

|i⟩

= 1√
N

|w⟩ +
√
N − 1
N

1√
N − 1

∑
i /=w

|i⟩ = 1√
N

|w⟩ +
√
N − 1
N

|r⟩

= sin θ |w⟩ + cos θ |r⟩

(1.33)
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The Grover iterate works by exploiting a phase oracle Uf in order to invert and
amplify the probability amplitude associated to |w⟩, all while reducing the ones
associated to the other states in |r⟩. In fact, given that f(x = w) = 1 is the
only case that satisfies the condition, the effect of applying Uf corresponds to the
reflection of |s⟩ with respect to |r⟩. Once this has been done, the new state Uf |s⟩
is reflected with respect to |s⟩, moving the state closer to |w⟩. The overall observed
effect is a rotation of the desired state by 2θ towards |w⟩, as seen in Figure 1.8:
the |U⟩ is brought close and closer to the desired state ketw.

Figure 1.8: Grover iterate visualization.

The process is repeated k times, moving the target state closer and closer to |w⟩.
Any over repetition of the iterate will move the target state away and eventually
return periodically to the initial state.

|0⟩ H

Uω

H

2 |0n⟩ ⟨0n| − In

H · · ·
· · · · · · · · · · · · · · ·
|0⟩ H H H · · ·

Figure 1.9: Grover’s algorithm quantum circuit.

1.5.3 Bernstein-Vazirani’s algorithm
This algorithm refers to the self named problem of finding the n-bit string encoded
in an oracle which computes as output the dot product between the secret string
and the input. In the classical case the solution requires to test n, one for each bit
of s, by passing each time a string of all zeros apart from the current bit we are
trying to determine.
The quantum solution to this problem only requires one execution of the circuit
in Figure 1.10. A quantum register of size n, is initialized to the equiprobable
superposition state, plus an additional ancilla qubit initialized to |−⟩. The qubits
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then undergo the Uf operator, which applies the custom function f(x) = s · x.
At last, measuring the n-qubit register yields the secret string s. By temporarily
ignoring this extra qubit, it is possible to describe the state of the quantum register
before measurement as

∑
z∈{0,1}n

 1
2n

∑
x∈{0,1}n

(−1)f(x)+x·z

 |z⟩ (1.34)

Once collected the common factor x, is possible to rewrite the exponent of (−1) as
f(x) + x · z = s · x+ x · z = (s+ z) · x, where the sum symbol denotes the XOR
operator. If z = s −→ s+ z = 0b0n, which means that the amplitude probability of
all states different from |s⟩ are zero. Measuring the registers will yield the string s
with certainty.

|−⟩

Uf
|0⟩ H H

· · · · · · · · · · · ·
|0⟩ H H

Figure 1.10: Bernstein-Vazirani’s quantum circuit for an n sized bitstring.

1.6 NISQ era

At the time of writing, according to the definition of Preskill [20], quantum
technology is in the Noisy Intermediate Scale Quantum era. This means that
research has reached the advancements necessary to produce quantum devices
which can host up to a little more than a hundred qubits, however they are still
plagued by intrinsic and external device errors, respectively in the form of circuit
level noise and cosmic rays, which will be discussed more in depth in the next
Chapter. Moreover, no complete error correction code has been yet discovered,
so one of the mitigation techniques is the use of surface codes and the usage of
multiple computation iterations, averaging out the effect of noise. On top of this,
the production process is still very prototypical, with gate fidelity metrics which
still need substantial improvements.
Only once those issues will be solved, alongside a dramatic improvement in the
number of qubits available for computation, it will be possible to consider the state
of quantum computation beyond NISQ.
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1.6.1 Qubit hardware implementation
Qubits, much like classical bits, can be encoded in a large number of physical
devices by addressing specific properties. In particular, a qubit can be represented
and controlled by means of any two state quantum mechanical system. The main
qubit architectures used today are detailed in the following paragraphs.

Superconducting Josephson junctions

This technology is currently the best competitor for the realization of qubits. It
exploits the quantum properties associated to an electronic device, called Josephson
junction, made of two superconductors separated by a very thin insulating layer.
Once this device is brought to cryogenic temperatures, it displays a free flow of
supercurrent and the exchange of Cooper pairs across the insulating layer. This
behaviour is modeled as a macroscopic quantum phenomenon, since it is observable
at an ordinary scale. The major drawback comes from the low temperature
requirements, which may hinder scalability and qubit reliability.
They are employed in quantum devices by IBM, Google, D-Wave Systems and
Rigetti.

Photons

The promising paradigm of Linear Optical QC is based on converting the properties
of photons into carriers of information. The main advantage linked to this technol-
ogy is that it can be employed in both the contexts of quantum communication
and quantum information processing. It provides the simplest approach for the
implementation of quantum gates through the use of mirrors, phase shifters and
beam splitters, and the universality of its computation model has been proven. The
major drawback comes from the fact that in order to implement complex circuits
the number of optical elements and operators needed might be resource inefficient,
posing issues with general purpose scalability.
Photonic quantum devices are being developed by Xanadu, ORCA Computing and
PsiQuantum.

Ion traps

This technology involves the usage of electromagnetic fields to suspend and confine
ions in free space, addressing their electronic states to encode quantum information.
Operational gates are applied through the usage of lasers to introduce a coupling
between the qubit states for superposition, or between the qubit and the state of
the external motion to produce entanglement. Despite being able to satisfy all
of DiVincenzo’s criteria (Section 1.4.3) and theoretically easy to scale, they are
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intrinsically hard to implement, as most gates would need to be composed of a large
number of basic CNOT and single qubit rotation gates. Moreover, the decoherence
times, alongside the very short lifetime of these qubits are still a major drawback
over its competitors.
These devices are currently being constructed and tested by IonQ, Alpine Quantum
Technologies and Quantinuum.

Quantum dots

Sometimes referred to as artificial atoms, quantum dots are among the older
technologies for the implementation of qubits. Given their larger size with respect
to real atoms, they are more easy to control and to couple, encoding the qubit
state in the spin of the dot. However, despite their very convenient properties, they
have been superseded by other technologies which allowed simpler scalability and
relatively lower costs.

1.6.2 Main SDKs
Over the years, many libraries and SDKs have been developed to allow for computing
quantum simulations and interfacing programmers with quantum device backends,
of which a short list will be presented hereafter.

Qiskit

The quintessential open-source Python library for quantum computing, it has
allowed since 2016 to interface directly with IBM’s Quantum Experience device
backends over the cloud. It supports multiple simulators, even with realistic noise
models collected daily from real quantum devices.

Pennylane

Xanadu’s cross-platform Python library for quantum circuit simulation and quantum
machine learning. It allows to access IBM, Strawberry Fileds, AWS Braket and
Rigetti Forest, among many others, through the usage of a plethora of purpose-
made plugins. The Strawberry Fields plugin is one of the few that allow for
continuous variable quantum optical circuit simulation, altohugh it grants no access
to Xanadu’s physical devices.

Cirq

Google’s local quantum Python simulation library, allows for the definition of
simple circuits, however it does not yet grant access to any device backend.
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Quantum Development Kit

Under the .NET Q# programming language, this SDK allows for definition and
simulation of statevector based quantum circuits.

AWS Braket

This library, closely connected ot Pennylane, allows on-demand access to quantum
simulators and devices over AWS’s cloud.

D-Wave Ocean

D-Wave’s Pyhton library for writing quantum circuits and runnong them over the
cloud on D-Wave’s quantum annealer devices.

Rigetti Forest

Made up of the pyQuil and the Forest SDK, it allows access to the wavefunction
simulator, the Quantum Virtual Machine and Rigetti’s transmon based devices.
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Chapter 2

Quantum Fault Injection

2.1 Classical fault injection

It has become a common belief at the eyes of the public, especially in recent years,
that computers are always reliable and can never fail. However, as experts in the
field know very well, classic computing devices are in fact not reliable per se, but
rather have been studied and hardened over years of research to make them so in
most scenarios.
The reason as for why classical computers and in general digital circuits are not
intrinsically reliable lies in the fact that the nanoscale components of which they
are made of, CMOS transistors, work by harnessing extremely small electrical
charges. Such charges are so small in fact that they can fluctuate by large amounts
when these nanoscale devices get struck by a charged particle coming from the
outside environment. These variations at the hardware level can force the logical
gates of the CMOS to open or close, thus producing a logical inversion of state,
called Single Event Upsets or simply bit-flips in the classical domain.
Earth is bombarded every second by thousands of cosmic rays per square meter,

with more common and less dangerous particles having energy in the range of
1 − 10 GeV [37], whilst other much rarer particles can amount to up to 1020 eV
[38]. It has been shown that most of these particles possess a high enough energy
to produce a SEU [39].
However, not every CMOS is equally important in the architecture of modern
cyber-physical systems: it is enough to think of the harmless effect of a bit-flip
onto an unused memory area compared to the same bit-flip onto a used one.
In order to understand how a digital circuit may perform under such stress and
correct its behaviour, one needs to simulate the effect of a fault on a real circuit:
as such, in the late 1970s, the first hardware fault injection studies have been made
[40]. This approach led to the creation of Error Detection Codes (EDC) and Error
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Figure 2.1: Cosmic ray collision with Earth’s atmosphere and particle generation,
adapted from [36].

Correction Codes (ECC).
Today, fault injection and reliability is a large field of research, branching from
hardware to software and network protocols.

2.2 Quantum fault injection
NISQ computers are, as their name suggests, prone to the effects of noise in the
circuit, which produces two kinds of retention errors, T1 and T2. The T1 error, or
spin-lattice coherence time, refers to the natural decay time of an excited qubit in
state |1⟩ to the ground state |0⟩. The T2 error, or spin-relaxation process, represents
the minimum time delta before a qubit’s state gets affected by external interference
or by other neighbouring qubits.
Different hardware architectures and topologies boast a diverse range of T1 and T2
values. In the recent years retention times went from the order of a few nanoseconds
to hundreds of microseconds. This is mainly due to new and improved Quantum
Error Correction (QEC) codes, which compensate for the effect of noise at the cost
of adding redundancy in the number of physical qubits needed to represent a fault
tolerant logical qubit [41, 42].
Current quantum devices are susceptible to an even wider range of particles with
respect to classical ones, since even lower energy and more frequent ones like pho-
tons and muons, which leave classical devices unaffected, can have a large impact
onto quantum states [43]. A simulation of a 275 MeV particle striking Silicon,
shown in Figure 2.2, produced a charge deposition in the form of electron-hole
pairs. It can be noticed how the intensity of the charge is heavily dependent on the
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distance from the point of impact, which is on a scale similar to the size of modern
superconducting qubits: thus, being closer to the particle’s leftover trail causes a
rise in the magnitude of the fault. [44].
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Figure 2.2: Deposited charge density due to particle impact on Silicon [44].

Recent studies have shown that such ionizing radiation has a strong effect on the
state of qubits [45, 46, 47], often reducing their fault tolerance by a considerable
margin. Being larger in size, trapped ion qubits have proven to be the most
architecturally resilient to low energy particles [43], even if still extremely sensible
to them. No study for rarer high energy particles has been conducted yet.
Cosmic particle impacts are stochastic in nature and current QEC cannot deal
efficiently with their effects. As such, ionizing radiation is currently being, and will
be in the future, one of the major antagonists in achieving fault resilient quantum
computers.
Taking in consideration the huge financial investments which revolve around quan-
tum computing research, on the order of billions of dollars, it is of foremost
importance to start investigating the fault resilience of current devices in order
to lay the research foundations for developing new and improved quantum error
correcting codes.

2.2.1 Quantum fault model
The works of Vepsalainen et al.[47] and Wilen et al.[48] show the effect of ionizing
radiation on qubits embedded into superconducting materials. The additional
charge which gets deposited by these stray particles produces an excitement which
alters the state of the qubit proportionally to the deposited charge.
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Figure 2.3: The impact of ionizing radiation onto a superconducting Josephson
junction and its logical effect on the qubit’s state [49].

Figure 2.3 gives insight onto the effect of ionizing radiation onto a transmon qubit:
these particles increase the amount of hole-electron pairs in the Al-film on Si
substrate. However, not all particles produce the same kind of fault. In fact, higher
energy particles like γ-rays, β-rays and X-rays gradually contribute to a permanent
phase shift [50], eventually leading to a collapse of the qubit [47]. On the other
hand, lower energy particles, like neutrons and heavy ions, produce a transient
shift whose effect vanishes over time.
Such modification will then be propagated through the quantum ciruit, eventually
making the output diverge from the expected one.
These faults are parametrizable by the polar and azimuthal angles ϕ and θ. As
such, they can be represented at the logical level of a circuit as a U3 quantum gate.

q0 : |0⟩ H •
q1 : |0⟩ U (θ, ϕ, λ)
c : /2 0

��
1
��

Figure 2.4: Logical representation of a fault on the Bell-pair generation circuit.

Although physical shielding of such particles has been attempted, its requirements
are too impractical for building scalable quantum computers in the future. In
particular, although X-rays can be easily blocked by a thin lead foil [51], shielding
heavier ions and neutrons would require various meters of such a lead or concrete
shield and blocking muons would mean placing the quantum device many kilometers
under the Earth’s crust [48]. Consequently, similarly to what has been done with
classical computing devices, the shielding route cannot be the only solution.
Currently, there is no study on the incidence of cosmic ray induced faults in quan-
tum computers, however, similarly to what is done for Architectural Vulnerability
Factors and Program Vulnerability Factors, it will be assumed that a fault has
occurred, regardless of its cause, studying its effects on the output of the quantum
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circuit.
It has also been shown that a cosmic ray can affect more than a single qubit at once.
In particular, it is easy to assume that topologically connected elements in the struc-
ture of a quantum core will be physically closer to the point of impact. As such, the
double fault model accounts for this case by introducing an additional phase shift
onto a secondary qubit, whose magnitude is ceiled by the one of the first phase shift.

2.2.2 Quantum Vulnerability Factor

The first step for being able to evaluate the effect of a fault onto any circuit is to
have a comparison metric to work with.
The outputs of a quantum device are structured as probability distributions of
quantum states.

q0 : |0⟩ I H • Z H
q1 : |0⟩ • •
q2 : |0⟩ H Z •

c : /3

Figure 2.5: The output histogram of a random 3 qubits circuit.

The currently most used metric to perform such evaluation is the Probability of
Successful Trials, which defines the probability of the correct or golden state of the
circuit, as seen in [52, 53, 54, 55]. PST simply considers how probable the correct
output is with respect to the total number of trials, as seen in Equation 2.1. As
such, it does not provide any insight on the separation between the correct output
state and the other incorrect states, because the information needed to spot out a
fault over noise is absent. Moreover, the PST metric requires the definition of a
reliability threshold, which is not known a priori or inferrable from the device or
circuit: this may lead to an improper masking of the effect of some lighter faults,
or on the contrary, render the metric too susceptible to noise.

PST = Number of successful trials
Total number of trials (2.1)
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The recent paper by Oliveira et al.[49] tried to solve this issue by proposing the
Quantum Vulnerability Factor metric, QVF for short, which extends the PST
through the use of the Michelson contrast [56]. This contrast provides a figure for
the discriminability of the correct state with respect to all the others in the output
histogram of a circuit. The contrast computation follows Equation 2.2, where P (A)
represents the percent chance of measuring the correct state and P (B) represents
the same chance for the most probable wrong state.

Contrast = P (A) − P (B)
P (A) + P (B) , P (A) = PST (2.2)

Given the fact that it is possible to measure a value of P (B) > P (A), the contrast’s
range is [−1,+1]. It is furthermore possible to use the QVF with circuits which
provide multiple correct outputs by simply aggregating all the correct states’s
porbabilities into a sum.
To better resemble the current AVF and PVF metrics’s characteristics, the QVF is
thus shifted to the [0,+1] range and is copmputed according to Equation 2.3.

QVF = 1 − Contrast + 1
2 (2.3)

To sum up, the QVF metric is an indicator of the vulnerability of a quantum
circuit ranging from zero to one: values close to zero mean that the circuit is
extremely fault resilient, while values close to one mean that the circuit’s output is
consistently inverted with respect to the desired output. QVF values around 0.5
instead mean that the intelligibility of the output has been lost, as there is not a
clear separation between correct and faulty results anymore.

2.3 QuFI
In another recent paper, Oliveira et al.[57] introduced a framework called QuFI
to test their statements about QVF. This Python based tool takes advantage of
IBM’s Qiskit library [58] to generate single and double fault circuits and later on
simulate them either through the use of the Aer simulators or run them directly
onto real quantum devices.
Part of the work of my thesis amounted to rewriting the QuFI from scratch, using
as a backend the Pennylane library [59] provided by Xanadu. The main objectives
of the work were:

• Making QuFI hardware independent, as Pennylane supports backends from
multiple providers, allowing testing outside of Qiskit.
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• Making computations faster, also through parallelization.

• Accessing better support for QML circuits.

• Refactoring the code as an easily accessible framework for computation and
visualization.

2.3.1 Injection
The injector models both single and double faults, as per demonstrated by recent
papers on the topic of radiation induced effects in quantum devices. Differently from
classic bit-flips, quantum faults are parametrized by magnitude of the impinging
charge on the Josephson junction. This means that a fault injector must account
for all the possible phase shift combinations allowed by the Bloch sphere.
As stated previously in subsection 2.2.1, a phase shift fault can be represented
by the parametrizable U3 gate, which takes as arguments the the polar angle ϕ,
the azimuthal angle θ and the global phase angle λ. Given that the coordinate
space on the Bloch sphere is continuous, a quantization with a step of π

12 has been
performed, totaling 312 angle combinations across θ and ϕ.

U3(θ, ϕ, λ) =
 cos

(
θ
2

)
−eiλ sin

(
θ
2

)
eiϕ sin

(
θ
2

)
ei(ϕ+λ) cos

(
θ
2

) (2.4)

where the parameters of the U gate range as

• ϕ = [0,2π[ with π
12 steps.

• θ = [0, π] with π
12 steps.

• λ = 0

The updated version of QuFI supports input quantum circuits defined either
as Pennylane QNode objects, Qiskit QuantumCircuit objects, or as OpenQASM
strings. Internally, the injector works with QNode objects, so it performs conversions
accordingly.
For each circuit, the first step is deriving all its single fault versions. This is done
by looping over all gates in the tape associated to the QNode and by inserting a
U3 gate after each one of them. Each gate gives rise to a number of output fault
circuits equal to the number of qubits it acts onto. For example, a Hadamard gate
will have a single fault circuit derived from it, whilst a CNOT gate will have two,
one with the fault gate after the control qubit and the other after the controlled
qubit, as seen in Figure 2.6. However, no circuit with a gate after both qubits will
be produced, as it is not contemplated by the single fault model, but rather by the
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q : H −→ q : H U3

q0 : •
q1 : −→

q0 : • U3
q1 :

, q0 : •
q1 : U3

Figure 2.6: The fault insertion on a Hadamard and a CNOT gate.

Figure 2.7: htop of a 28 core machine running QuFI simulations, automatically
load balanced.

double fault one.
The injector then checks for the presence of a coupling map, a dictionary containing
the mapping between the logical to physical qubits and viceversa. If it is not found,
the single fault circuits are immediately run. On the other hand, if a coupling
map is defined, a second insertion pass will be done, by adding another U3 gate
after each qubit physically connected to the main fault. The coupling map can be
custom defined, or it can be retrieved by calling the qufi.get_qiskit_coupling_map
method, which transpiles the circuit on a given Qiskit device and returns its map.

2.3.2 Execution
The execution can then be done sequentially or in parallel, the first suggested for
very small circuits or low performance machines and the latter suggested for large
circuits and high core counting machines.
The sequential version, called with the qufi.execute_over_range function, takes as
input a list of angles for θ0, ϕ0, θ1 and ϕ1, then generates locally all possible angle
combinations and circuits and executes them in sequence.
The parallel version, runs the launch_campaign.py script, which generates all the
angle combinations and splits them into multiple lists of tuples with the form
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(θ0,ϕ0,θ1,ϕ1). Then it spawns multiple shells running the run.py script, taking as
input one of the tuple lists, generating all the circuits and then running them in
batches, in order to reduce as much as possible the computation times.
In both cases, the backends used to run the circuits are Pennylane’s lightning.qubit
for the noiseless executions and the Pennylane-qiskit Aer simulator for the noisy
ones. Other backends can be specified according to Pennylane’s API.

2.3.3 Visualization
Once the simulations have been completed, the results are processed by means
of other QuFI methods, which are responsible for loading the results in memory,
filtering single injections from double injections and producing output histograms,
heatmaps and delta maps.
The function which processes all data is called as qufi.generate_all_statistics.
The histograms represent the distribution of QVF values among all the angle
combinations, and compare the results of single and double fault injections when
present. The heatmaps present the actual QVF average values of all injections
across all angle combinations, using a gradient colour scheme between green (low
QVF) to red (high QVF), with relative thresholds of . The delta maps, available
only for double fault injections, represent the difference between the double and
single fault heatmaps, as ∆QV F = QV FDouble −QV FSingle. An example for each
is shown on Figure 2.8. Additional histograms’ metrics are presented in Table 2.1.

Fault type
Metric Mean Stnd. dev

Single fault 0.46 0.20
Double fault 0.55 0.18

Table 2.1: Bernstein-Vazirani’s Algorithm: histograms statistics.

31



Quantum Fault Injection

0 π
4

π
2

3π
4

π

θ shift

7
π 4

6π 4
5
π 4

π
3π 4

π 2
π 4

0

φ
sh

if
t

0.0

0.2

0.4

0.6

0.8

1.0

Q
V

F

Single Fault QV Fs.

0 π
4

π
2

3π
4

π

θ shift

7
π 4

6π 4
5
π 4

π
3π 4

π 2
π 4

0

φ
sh

if
t

0.0

0.2

0.4

0.6

0.8

1.0

Q
V

F

Double Fault QV Fd.

−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

∆Q
V

F 
=

 D
ou

bl
e 

- 
Si

ng
le

0 π4 π2 3π4 π
θ shift 

7π 4
6π 4

5π 4
π

3π 4
π 2

π 4
0

ϕ sh
ift

T
S

Z

X, Y

∆QVF=QVFd−QVFs.

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

D
en

si
ty

Single (black) and double (red) fault his-
tograms.

Figure 2.8: Bernstein-Vazirani’s Algorithm: Single fault injection heatmap, double
fault injection heatmap, Delta-map and Histogram.

32



Chapter 3

Machine Learning

3.1 Classical Machine Learning
Machine Learning is a specific field of research in the context of Artificial Intelli-
gence which is devoted to the definition of trainable computational models able to
process information and autonomously extract features which let them optimize
their performance on a specific task.
In the last twenty years, model performance and capabilities have improved to the
point where they have permeated into almost every aspect of our lives: self-driving
cars, weather forecasting, voice recognition and synthesis, stocks prediction models,
medical imaging recognition, email spam filters, recommendation algorithms and
many other more.
This trend is only expected to increase, as data availability and computing capabil-
ities continue to rise. In the words of Tom Michael Mitchell [60], the forefather of
ML, such learning approach is defined as

‘A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P if its performance at
tasks in T, as measured by P, improves with experience E.’

The basic elements needed to perform the learning process can thus be listed more
formally as

• Dataset: the aggregation of structured data to be used for training onto a
specific task, usually subdivided into training, validation and test sets.

• Model: the abstract structure of computation layers able to self update its
internal parameters through gradient descent and backpropagation.

• Accuracy metric: the function which provides a numerical value representing
the separation between the current performance and the expected one.
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• Optimizer : the algorithm which allows the model to escape unfavourable
fitness landscapes and speeds up the learning process.

The goal of the procedure is to process the training subset of the dataset to extract
relevant features from it, compare its performance against the expected behaviour
or the previous iteration on the validation set and then repeat until either a certain
accuracy threshold has been reached, the model stops improving or the defined
number of iterations has been completed. It generally follows these steps

1. Data collection: gather the data relative to a specific learning task.

2. Data preprocessing: perform balance checks (all classess are represented with
the same frequency), normalization and possibly data augmentation if not
performed directly internally by the model.

3. Dataset partitioning: split the dataset into training, validation and testing
partitions.

4. Model definition: construct the model for tackling a specific task. This
generally defines also the learning approach (supervised or unsupervised).

5. Training: define a loss function for gradient descent and an optimizer among
other parameters, then train the model through backpropagation.

6. Testing: compute the performance metrics of the new model onto the test
subset and decide whether the model is sufficiently good at completing the
task. If not, either continue the training, change the model’s hyperparameters
or start from scratch with a new architecture.

It is important to state that the hereby proposed structure for training ML models
has been simplified and limited to what is needed for the scope of this thesis,
that being classification, regression and clustering. However, there are many other
branches of ML which follow different paradigms, such as generative adversarial
networks, reinforcement learning networks and natural language processing net-
works, just to name a few.
Since training times tend to be extremely long, especially when dealing with very
large datasets or complex models, it has been shown that it is possible to convert
an already trained model from one field to another, provided that the two domains
share some common features. For example, it could be possible to take a model
trained to recognise handwritten digits and transfer learn it with a dataset of
handwritten characters. The process amounts to simply removing the last layers in
the network and substituting them with new ones, according to the desired output
shape. The model is then trained again, but the time required to do so will be
much smaller with respect to before since a good portion of the weights comes
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from the previous model. As such, computation times are significantly reduced,
whilst converging to accuracy levels in the same order of magnitude as for the same
model trained from scratch.

3.1.1 Neural Networks
One of the first approaches ever proposed for ML, neural networks try to mimic
the structure of the human brain in order to process data. The basic element of
such networks is in fact the artificial neuron, modeled as a mathematical function
able to provide a specific output to a given input. It is composed of a input, a
computation unit, a bias, weights, a threshold and an output. Moreover, the neuron
is characterized by a nonlinear activation function, which defines whether it should
forward an output or not with respect to the given threshold. The most used
activation functions are the sigmoid, the Rectified Linear Unit (or ReLU), the leaky
ReLU and the hyperbolic tangent.

σ(x) = 1
1 + e−x

, ReLU(x) = max(0, x)

Leaky ReLU(x) = max(αx, x) , tanh = ex − e−x

ex + e−x

(3.1)

As seen in Figure 3.1, it is easy to make comparisons among the components of
the two neuron models. In fact the dendrites act as the input receptors (for the xi

values and the bias), the soma is the computation unit (comprised of summation
and activation functions) and the synapse represents connecting the output of the
neuron to all the other subsequent neurons in the network.

 

 

X1

X2

X3

XN

w1

w2

wN

w3 Σ f(x) ŷ

b

Figure 3.1: Brain and artificial neuron models side by side.

A parallel layer of such neurons is defined as a fully connected, or dense, layer. The
inputs of the network are connected to all of the neurons which make up the first
fully connected layer. The outputs of the first layer are connected in the same
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way to all the inputs of the subsequent layer, and so on until the end: this kind of
architecture is defined as feedforward. Since they are not directly addressable, the
layers in the middle of the network’s architecture are called hidden layers. Once
the number of hidden layer increases over a certain threshold, such a network is
said to be a deep neural network.

Input layer Hidden layers Output layer

Figure 3.2: A binary classifier multilayer perceptron neural network architecture.

In the case of logistic regression, the activation of a single neuron is computed
according to Equation 3.2, where N is the number of inputs received by the neuron,
wi is the weight associated to a given input, xi is the input itself and bi is the bias
or minimum threshold associated to that neuron. σ(z) is the activation function,
whose output ŷ determines the state of the neuron.

z =
N∑

i=1
wixi + bi −→ ŷ = σ(z) (3.2)

Once the forward pass has been completed, a cost function is used in order to
compute the distance between the predicted labels and the expected ones in the
case of supervised learning (classification) or to see if the performance improved
(clustering and regression). One of such functions is the mean squared error, which
is none other than the euclidian distance between the predicted and the actual
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label in the feature space.
Finally, a backward propagation step is employed as a mean to update the weights
of each neuron and the iteration is repeated, as seen in Figure 3.3 with a small
binary classifier with MSE cost function.

Input forward
propagation

Error
computation

Error
backpropagation

Weight
update

Repeat

Figure 3.3: Forward and backward propagation steps in a basic neural network.

3.1.2 Support Vector Machines
Support Vector Machines, or SVMs for short, are supervised learning models first
introduced by Cortes et al.[61] which were initially developed to be used as either
regression or classification algorithms. They are amongst the best performing
models for prediction and in their first inception acted as linear classifiers: given a
dataset of n-dimensional vectors they compute the (n-1)-dimensional maximum
margin hyperplane separating two classes. This posed a limit on the shape of the
dataset to classify, as non-linear ones would not be tractable. However, thanks to
the kernel trick (3.3) it is possible to move the dataset to a higher dimensional
space with a mapping function and thus ease the computation of the hyperplane.

k(x, x′) = ⟨ϕ(x)|ϕ(x′)⟩V (3.3)

SVMs have been later adapted to act as unsupervised clustering algorithms [62],
by employing support vector statistics to map common features in the data.
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Figure 3.4: The effect of the mapping function on the dataset of an SVM. By
moving from two to three dimensions, the hyperplane’s complexity goes from
quadratic to linear.

The kernel function k(x, x′), in the space X , expresses the distance between two
datapoints and can be defined in terms of an inner product of elements from another
inner product space V by employing a feature mapping function ϕ(x) as seen in
Equation 3.3. The advantage comes from the fact that there is no need to actually
derive the ϕ(x) function directly before computation, speeding up the process by a
large margin.
Regardless of its definition, the kernel function is then used as a term in the
weighted sum of similarities between the unlabeled datapoint and the labeled
elements as follows.

ŷ = sgn
n∑

i=1
wiyik(x, x′) = sgn

n∑
i=1

wiyi⟨ϕ(x)|ϕ(x′)⟩V (3.4)

The main fields of application for SVMs are classification and segmentation of
images, satellite data processing and biology.

3.1.3 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are learning models specifically developed
to handle tensor-structured data, of which the most common ones are images.
These networks take advantage of the mathematical multi-dimensional convolution
operator, which uses a kernel tensor to filter out specialized features from the input.
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Multiple subsequent applications of this filtering process allow for the extraction
of higher and higher level structures, which eventually get vectorized and fed to a
fully connected layer which performs the classification.
In short, CNNs are simplified feature extractors with respect to the MLP, which
are less prone to overfitting thanks to regularization. Their architectures, in fact,
share many similarities, with the only difference being the fully connected hidden
layers of the MLP being substituted by pairs of convolutional and pooling layers.

251 0 0

241 0 0

154 0 0

0 -1 0

-1 5 -1

0 -1 0

11 20 0 2

28 3 1 4

19 10 2 12

9 15 98 56

28 4

19 98
 

Figure 3.5: Graphical representation of the convolution (top) and pooling (bottom)
operators.

The convolution operation consists of tensorial element by element multiplications
and sums between the kernel, which moves along the input tensor, and the input
tensor itself, as seen in Figure 3.5, followed by a thresholding operation. Historically,
the size of the kernel is odd, varying between 3 × 3 and 7 × 7, however successive
developments also demonstrated the applicability of even sized kernels [63].
Subsequently, the pooling layer is responsible for reducing the size of the tensor in
order to remove lower level features from the inputs of the next layers, lowering
the number of features to be learnt in the successive layers. This can be done with
many approaches, the two most used ones being max pooling, which halves the
spatial resolution of two of the dimensions of the tensor by picking the maximum
value among a subgrid, and average pooling, which intuitively performs the same
dimensionality reduction by computing the mean among the values in the subgrid.
Both these operators are characterized by some not trainable hyperparameters

39



Machine Learning

which are defined at the architectural level, such as:

• Number of filters: the depth of the convolution, not applicable to pooling
layers.

• Filter size: the dimension of the kernel or of the subgrid.

• Stride: the distance in pixels between applications of the filters. Generally it
equals to 1 in convolutions and equals to the filter size in pooling layers.

• Padding: the addition of a contour of pixels with value zero onto the input
tensor to avoid the dimensionality reduction caused by the convolution. Not
applicable to pooling layers.

• Activation function: the function which adds non linearity to the input tensor.

Depending on the size of the input, of the kernel and on the other previously
described hyperparameters, the output of a convolution and pooling layer can be
of almost any shape.
The first, and admittedly most famous CNN model to this day is LeNet, proposed by
LeCun [64] and displayed in Figure 3.6. LeNet was proposed to classify handwritten
digits, but its efficacy quickly gave rise to a plethora of applications in other fields.

Inputs Convolution1 Pooling1 Convolution2 Pooling2

Fully Connected
Fully Connected Softmax

Figure 3.6: The LeNet-5 architecture.

The main idea behind this approach is that the first layer trains its kernels in
order to extract low level features like edges, while the following convolutions
extract higher level features such as connected components or patterns. Once the
highest level features have been extracted, they are flattened and fed to a regular
MLP, which trains its neuron activations in order to associate certain convolutional
features with specific classes.
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3.2 Quantum Machine Learning
As a natural consequence to the rapid advances in both the fields of classical machine
learning and quantum computing, the last five years saw an astonishing increase in
the research and development of techniques to merge these two disciplines into the
framework of Quantum Machine Learning. It is enough to take a look at Google’s
NGram Viewer [65] for that same keyword, as shown in Figure 3.7, which displays
the frequency of a keyword over an extremely large dataset of books and papers.
It is important to take into consideration that the available data only accounts for
the English language and is limited up to 2019.

Figure 3.7: NGram frequency of the phrase Quantum Machine Learning.

QML is nowadays an extremely rich and branching area of research and as such can
embody many different interpretations. As per the words of Wittek and Dunjko
[66] in their non review of the field’s status at the time of writing

‘QML is not one settled and homogeneous field; partly, this is because
machine learning itself is quite diverse.’

It is however possible to separate QML into four main corpora of research [25],
following the combinations of the words classical and quantum over tuples of the
form (data type - processing type), as depicted in Figure 3.8.
Classical-Classical (CC) refers to classical data processed with classical computing
devices. In the context of QML, some techniques have been adapted from the
quantum information domain to build new algorithms which are however completely
classical, such as quantum-inspired networks or evolutionary algorithms [67, 68].
Quantum-Classical (QC) is a branch of research trying to extract information from
quantum data through the usage of classical algorithms. It is particularly used for
purposes such as exploratory research and data mining, paving the way for the
discovery of new patterns or quantum algorithms. Another application for QC is
the computation of the gradient of quantum states, necessary for the development
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Figure 3.8: The four main branches of QML.

of hybrid quantum-classical networks such as VQEs.
Classical-Quantum (CQ) is the direct application of quantum processing to classical
data. In order to do so, it is necessary to define quantum data representations of
classical objects such as images, as discussed in the next subsection 3.2.1. These
networks are either direct translations of their classical counterparts into the
quantum domain, or new architectural paradigms altogether.
Quantum-Quantum (QQ) is, intuitively, the analysis of quantum-generated data
through the use of quantum devices. This may be done either by executing quantum
circuits, measuring their outputs and later encoding such data again into another
quantum device to perform analyses, or by generating the data and performing
the QML computations directly into a single run of a quantum circuit. The first
approach cuts down on the time needed for computation, as the input state is only
computed once, but suffers from the need for measuring and re-encoding. The
second reverses advantages and disadvantages, as the data does not need to be
transferred, possibly granting a speedup, but the initialization must be performed
before each execution.
In the context of this thesis’s work, the main focus will be on CQ architectures, as
it is currently the most prolific branch of QML. The topic of quantum advantage
will however not be investigated, but rather the one of fault resilience, as it will be
discussed in Chapter 4.
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3.2.1 Quantum data representations
In order to work with classical data onto quantum devices it is first necessary to
embed the inputs into an Hilbert space through the aid of a quantum feature map
[69, 70]. This general approach follows the same reasoning behind feature maps
in SVMs, as seen previously in Subsection 3.1.2. In most of the cases this is done
through parametrizable quantum gates. The following paragraphs will focus on
some of the most commonly used representations for images and data points.

Basis Embedding

It is the conceptually simplest embedding possible and amounts to encoding each
classical bit into a separate qubit, according to the following mapping, where
the subscript c refers to classical. As such, the length of the bitstrings directly
determines the necessary amount of qubits to embed a state.

0c
Φ−−−−→ |0⟩ , 1c

Φ−−−−→ |1⟩ (3.5)

Superposition is then exploited in order to account for all possible elements in a
classical dataset D. Given a quantum register of size N and a dataset size M , the
whole embedding process will follow Equation 3.6, assigning to each element the
same probability amplitude α. If M ≪ 2N , then the basis embedding will be sparse.
Algorithms that work with this embedding, like Grover’s search (1.5.2), operate
on the probability associated to each state, trying to separate solution states with
respect to the others and then performing multiple executions, revealing the correct
output through statistics.

D Φ−−−−→ |D⟩ = 1√
M

M∑
m=1

∣∣∣x(m)
〉

(3.6)

Amplitude Embedding

This embedding converts an N-dimensional datapoint x into the probability ampli-
tude of a quantum state composed of n = log2(N) qubits, by associating each i-th
element of x to the i-th computational basis state, as seen in Equation 3.7. This
approach expands the previous encoding capabilities to real numbers and integers.
Since the overall total sum of probabilities must be preserved, it is necessary to
normalize the input vector. If the dataset size is M , the number of amplitudes
to be encoded will be N ×M , as such the total number of qubits required in the
quantum register will be n ≥ log2(NM).

D Φ−−−−→ |D⟩ =
2n∑
i=1

αi |i⟩ (3.7)
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Angle Embedding

The following approach encodes an N-dimensional input feature vector x into the
polar angles associated to each qubit of a quantum register [71]. The choice of
using exponential and sinusoidal functions is not strictly linked to any property, as
such this embedding may well be considered a variant of the amplitude embedding,
among many others. Due to the fact that two input features are encoded at a time,
this embedding is also defined dense.

x
Φ−−−−→

⌈N/2⌉⊗
i=1

cos(πx1) |0⟩ + e2πix2sin(πx1) |1⟩ (3.8)

Flexible Representation of Quantum Images

One of the first encodings ever proposed for images in the quantum domain, FRQI
uses two sets of quantum registers, one for representing the colour and the other for
the pixel’s position in the image [72]. The state formulation in expressed in Equation
3.9, along with an example in Figure 3.9. The θi angles encode in the probability
amplitudes the colour associated to each pixel, whilst the |i⟩ vector encodes the
pixel’s position following a custom addressing method, such as by lexicographical
order or by block. The FRQI state is normalized, as such ∥ |I(θ)⟩ ∥ = 1.

00 01

10 11

|I⟩ =1
2[(cosθ0|0⟩ + sinθ0|1⟩) ⊗ |00⟩

+ (cosθ1|0⟩ + sinθ1|1⟩) ⊗ |01⟩
+ (cosθ2|0⟩ + sinθ2|1⟩) ⊗ |10⟩
+ (cosθ3|0⟩ + sinθ3|1⟩) ⊗ |11⟩]

Figure 3.9: The FRQI encoding of a 2 × 2 image.

|I(θ)⟩ = 1
2n

22n−1∑
i=0

(cos(θi) |0⟩ + sin(θi) |1⟩) ⊗ |i⟩

θi ∈
[
0, π2

]
, i = 0, 1, . . . , 22n − 1

(3.9)

This embedding has been demonstrated to be extremely easy to achieve in current
quantum devices, requiring up to a polynomial number of simple rotation gates,
depending on the size of the image.
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Novel Enhanced Quantum Representation of digital images

As an evolution of FRQI, NEQR improved on many of the critical aspects of the
previous representation [73]. Given a 2q grayscale range in an image, it is possible
to associate through a function f(Y,X) the value of a pixel in an image given its
coordinates as per seen in Equation 3.10, along with an example in Figure 3.10.
The time and gate complexity required for preparing the state has a quadratic
decrease with respect to FRQI, boasting higher compression ratio capabilities.
Moreover, the retrieval of the image from the quantum state is accurate and not
probabilistic as before, making it more reliable and requiring a lower number of
executions.

00 01 

10 11

|I⟩ =1
2[|255d⟩ ⊗ |00⟩ + |100d⟩ ⊗ |01⟩

+ |200d⟩ ⊗ |10⟩ + |0d⟩ ⊗ |11⟩]

Figure 3.10: The NEQR encoding of a 2 × 2 image.

f(Y,X) = C0
Y XC

1
Y X . . . Cq−1

Y X , Ck
Y X ∈ [0,1] f(Y,X) ∈ [0, 2q − 1]

|I⟩ = 1
2n

2n−1∑
Y =0

2n−1∑
X=0

|f(Y,X)⟩ |Y X⟩ = 1
2n

2n−1∑
Y =0

2n−1∑
X=0

q−1⊗
i=0

∣∣∣Ci
Y X

〉
|Y X⟩

(3.10)

3.2.2 Gradient computation
Section 3.1 expressed the need to compute the gradient of a function in order to
descend the fitness landscape associated to the optimization problem. Currently,
it is possible to estimate the expectation of the output of a quantum observable
by taking the average over the probabilistic results coming from measurements, as
such, the gradient of a quantum computation can be formalized as the derivative
of expectations [74].
Given an ansatz quantum routine consisting of a sequence of parametrized set
sequence U(θ) gates repeated K times, where θ is a set of m real gate parameters,
the expectation value of its measurements B̂ can be defined as a variational quantum
circuit. As such, this computation may be reformulated as a function that maps
the gate parameters θ to an expectation.
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f : Rm −→ Rn , f(θ) := ⟨B̂⟩ = ⟨0|U †(θ)B̂U(θ) |0⟩ (3.11)

Equation 3.11 allows for the exact numerical computation of the gradient on a
simulator, however applying it onto a real quantum device would only yield a
estimate of f(θ). By computing the partial derivatives of f(θ) with respect to all
the θ gate parameters, it is possible to assemble the gradient ∇f .
One of the approaches that can be used to do so is numerical differentiation,
which performs an approximation through blackbox evaluations of g according to
Equation 3.12, by exploiting the properties of the parameter shift rule.

∇g(x) ≈ [g(x+ ∆x/2) − g(x− ∆x/2)]/∆x (3.12)

Other approaches can be adopted, such as automatic differentiation an symbolic
differentiation, however they will not be further analyzed.

Figure 3.11: Parameter shift rule and numerical differentiation in an hybrid
quantum-classical framework.

Figure 3.11 shows how the internal processing of each quantum node in an hybrid
network, where G is a gate generated by an Hermitian operator with two unique
eigenvalues of the form

G(µ) = e−iµG
∂

∂µ−−−−→ ∂µG = −iGe−iµG (3.13)

Once all partial derivatives have been computed, it’s just a matter of computing
the overall gradient of the circuit and from there on perform classical gradient
descent operations with the aid of a cost function on a classical coprocessor.
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3.2.3 Quantum Neural Networks
A Quantum Neural Networks is a broad term referring to the direct attempt to
convert the techniques and models which make up modern classical ML into the
quantum realm. For this very reason, the term Quantum Neural Network has been
used more or less appropriately across the literature that spans over the last ten
years to define any learning model which features a quantum device, varying from
actual one-to-one translations of classical models to completely new and unforeseen
architectures.
The classical ML neuron is an object capable of processing an input and transmitting
an output, encoded in a binary fashion as active or resting, which could be translated
easily to the basis states |0⟩ and |1⟩ of a qubit. This would allow these learning
models to exploit quantum features like superposition and entanglement, possibly
providing speedups or new processing approaches in the big data field. A simple
model for the quantum neuron (quron [75]) can be obtained through amplitude
encoding (Subsection 43).

|quron⟩ = rest |0⟩ + active |1⟩ (3.14)

The main classical to quantum translation issue is that, by definition, quantum
computing systems have been theorized to work with unitary and linear operators
only. As such, a new interpretation of the concept of non-linearity linked to
activation functions needs to be investigated, for example through the usage of a
universal set of gates made of Gaussian and non-Gaussian elements [76].
However, as time goes on, the field is diverging more and more from the quron
model, merging together under the same name other approaches which do not
share any characteristic with classical models, like hybrid computation models and
variational circuits applied to QML.

3.2.4 Variational Quantum Eigensolver
A Variational Quantum Eigensolver is an hybrid learning paradigm composed
of a parametrized quantum circuit that can encode the state represented by an
Hamiltonian and a classical optimizer. The role of the quantum circuit is to
approximate through the Ritz method the lowest energy state associated to the
Hamiltonian of the system without needing to explore the whole space of solutions.
The circuit is represented as U(θ), where θ is a vector of features used as parameters
in the internal gates which encode the input state. The circuit is then queried
in order to estimate the energy eigenstate associated to that quantum system,
descending the fitness landscape thanks to a cost function which will allow to reach
the lowest energy Hamiltonian.
Given an observable H, a trial wave function |ψ⟩ is defined, which will be used to
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Figure 3.12: The architecture of a VQE.

compute an estimate of the expectation value Ĥ of the quantum state. Equation
3.15 shows that the |ψ⟩ approximation can reach the ground energy state.

E0 ≤ ⟨ψ|H |ψ⟩
⟨ψ|ψ⟩

(3.15)

Such |ψ⟩ function must respect some boundary conditions, however its exact form
is not know a priori. Consequently, it is represented in the quantum circuit by an
ansatz architecture and optimized through its parameters, the state preparation
process in Figure 3.12. At last, the circuit is measured according to different
bases and an estimate of the expectation is produced. The quantum step is
generally performed on multiple devices at the same time to further parallelize the
computation. The optimization process, carried out onto a classical coprocessor,
tries to minimize the cost function C(θ) with an iterative approach as seen in
Figure 3.12, up until an estimate close enough to the ground state is reached.
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C(θ) = ⟨ψ(θ)|H |ψ(θ)⟩ (3.16)

The quantum device can encode H directly and compute its expectation, however
this is not feasible for large Hamiltonians due to the increasingly higher number of
measurements required. However, it is possible to define H as a weighted sum of
local operators, such that multiple local and partial energy expectations can be
computed separately and later merged into an estimate of the expectation of H.
The VQEs are mainly used in exploratory chemistry research and can be efficiently
executed on current NISQ devices.

3.2.5 Variational Quantum Classifier
The VQEs can be adapted and expanded to build hybrid binary classifiers. Given
a measurement operator, the expectation value ⟨O⟩ of an observable O can be
interpreted as a classical output, since it represents the probability associated
to measuring a quantum state. In the Equations 3.17 the chosen measurement
operator is the Pauli σz, which determines the probability for a quantum state to
be in |1⟩.

f(x; θ) = ⟨ψ(x : θ)|σz |ψ(x : θ)⟩

C(θ) =
M∑

m=1
(y − ⟨ψ(xm : θ)|σj

z |ψ(xm : θ)⟩)2 (3.17)

The cost function C(θ) is modified accordingly, by substituting f(x : θ) as the
predicted output ŷ in the MSE function presented in Subsection 3.1.1. As such,
the VQC cost is a function of the expectation and not the expectation itself as
previously seen in the VQE case.

3.2.6 Quantum Support Vector Machines
Stemming from their standard counterparts, quantum SVMs aim at performing the
binary separation of a dataset through an hyperplane with a consistent speedup
with respect to classical ones.
An SVM can be interpreted as a quadratic programming problem solvable in a
time proportional to O(log(ϵ−1)poly(N,M)), whilst a quantum SVM approach can
be carried out in O(log(NM)), where N is the dimensionality of the dataset, M is
the number of samples in the training partition and ϵ is the classification accuracy
[77]. This quantum speedup is achieved thanks to a reformulation of the SVM as
an approximate least-squares problem and by successively applying the matrix
inversion algorithm on the embedded quantum state. Lastly, matrix exponentiation
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and principal component analysis are performed to extrapolate one of the lower
order approximations of the final kernel matrix. The main limitations of the hereby
proposed approach is that it requires efficient quantum RAMs with a number of
access operations on the order of O(log(MN)) and that the data is encoded as a
coherent superposition, something which is not always attainable when working
with classical datasets.
Another approach would be to use parametrized variational quantum circuits to
either generate the separating hyperplane in the feature space or to estimate the
kernel function in the feature space and use it in a conventional SVM [70]. The
main caveat required to demonstrate quantum advantage is to adopt feature maps
which are classically hard to compute or intractable, like the ZZFeature map in
Figure 3.13. The P gates are parametrized U1 gates: the encoding gates are
P1 = U1(2ϕ(x[n])), while the rotation gates are P2 = U1(2ϕ(x[n], x[n+1])), where
n is the qubit index.

q0 : H P1 • • H P1 • •
q1 : H P1 P2 H P1 P2

• • P1 H • • P1 H
P2 P1 H P2 P1 H

Figure 3.13: The second-order Pauli-Z evolution circuit with two repetitions.

3.2.7 Quanvolutional Neural Networks
Given their astounding performance on most image based ML tasks, CNNs saw a
constant evolution over the last twenty years, maintaining their status as state of
the art architectures. This success is due to the usage of correlated convolution
filters, which abstract features from the inputs, providing probabilistic results on
output. As such, some of the recent QML research tried to adapt this approach on
quantum devices, which provide themselves probabilistic results, whilst also allowing
for massive speedups thanks to the parallelization capabilities of the quantum
computation paradigm [78], of which a simple hybrid architecture example is
proposed in Figure 3.14.
The quantum convolutional layer, shortly also called quanvolutional layer or qLayer,
encodes a convolution kernel in the structure of a BQP-type ansatz circuit and
applies it to local subsections of an input, producing an output of higher level
features. The layer’s application can be then repeated multiple times, as in the
classical case, to heighten the abstraction of the features. The locality in the
application of the layer derives from the fact that each single classical matrix
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multiplication between the kernel and a subgrid of the input tensor is converted to
the execution of a small and shallow parametrized quantum circuit, avoiding the
issues associated with noise propagation and decoherence of current NISQ devices,
whilst still providing a speedup. The output probability distributions are encoded
as expectation values for each qubit in the circuit, repeated with different ansatzes
for each output channel of the same spatial position in the image.

Figure 3.14: The architecture of an hybrid QNN and detail on the quanvolutional
layer.

The quanvolution filter is first composed by an encoding portion, which starting
from the coherent state |0⟩⊗n, embeds the input subgrid uX of size n × n into
the quantum circuit through the usage of a function iX = e(uX). One possible
approach is amplitude embedding through the use of parametrized rotations around
the X axis of the Bloch sphere: in the case of grayscale images, the inputs are
remapped linearly from [0,255] to [0, π].
The central portion contains a random circuit which performs the quantum dual of
the classical element by element multiplication among kernel and input matrices as
the application of a function oX = q(iX) = q(e(uX)).
At last, the outputs are decoded through measurement, and their expectation is
transferred in the output tensor in the form of a scalar ranging from [−1,1]. The
whole quantum processing step can thus be described as the application of nested
functions as seen in Equation 3.18.

fX = Q(uX , e, q, d) = d(q(e(uX))) (3.18)
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An example of the qLayer’s outputs have been presented in Figure 3.15. It is
noticeable how it corresponds a padded convolution with kernel size 2 × 2 and a
number of filters equal to four, thus requiring four different random circuit kernels
[79]. It is notable how the input’s dimensions are reduced from 28 × 28 to 14 × 14,
accounting also for the pooling layer.

Figure 3.15: Output example of the quanvolutional layer on the MNIST dataset.

Images
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Chapter 4

QML Reliability Evaluation

4.1 Motivation
Over the last three years, there has been an astounding rush to interface the world of
quantum computing and machine learning, under the definition of quantum machine
learning. Given the novelty of this emergent field, it is of foremost importance to
tackle the reliability of the basic components which make up QML, in order to
better understand and predict their behaviours at a lower level.
QuFI can provide this kind of insight and as such it has been used to perform
simulations on a few QML related subroutine circuits. However, another point of
research was to study the overall effect of injections onto the accuracy of the neural
networks which use these quantum layers. As such, QuFI has been expanded in order
to allow for the computation of accuracy metrics on some specific architectures.
This work aims to act as a first tentative step into QML reliability evaluation and
by no means must be considered the only possible approach. Rather, it tries to
pave the way for further study on the topic to deepen our knowledge in this field.

4.2 Approaches
At first, for each subroutine circuit, a QVF study has been conducted. This allowed
for a better understanding of the most critical injection phase shift values and
discovering any possible hidden relationships among angle rotations and circuit
output. Then, a subset of the most critical fault points and fault angles has been
selected, in order to provide more detailed information regarding how a specific
fault can affect the inference process of a quantum neural network by computing
the accuracy metrics and prediction confidence deltas for each image in the test
dataset. This allowed for finding patterns in the circuit’s reliability to faults and
for the selection of specific images in the dataset to further investigate the effect of
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injection on the numerical output of the networks. It is important to note that the
main focus of the study is not to detect how the accuracy changes with respect
to the introduced faults, but rather to compare the faulty performance with the
golden one. As such, the outputs used for comparison may well be wrong class
predictions.

Select QML
subroutine

Perform circuit level
injections

Compute QVF
metrics

Select fault point
subset

Perform inference
injections

Compute dataset
accuracy heatmap

Select image subset Extract single image
metrics

Figure 4.1: The process diagram of the proposed case study approach.

4.3 Experiments
Two sets of experiments have been conducted, focusing on a QSVM and on a the
quanvolutional layer of a QNN. The first case has been investigated up to the
QVF metrics step of Figure 4.1, whilst the second case has been investigated more
thoroughly.

4.3.1 QSVM
The QSVM structure is that of a second-order Pauli-Z evolution circuit, repeated
twice, whose architecture has been previously presented in Figure 3.13.
The circuit has been built by invoking Qiskit’s ZZFeatureMap class with a linear
entanglement structure and a feature size of two. This architecture can both be
used for classification and clustering problems. An ad-hoc dataset has been built,
where its features have been remapped purposefully to become hard to compute
on classical devices. The performance in both problems easily saturates to values
close to 1.0, given the small size of the dataset and the advantageous characteristics
of the feature vectors in the quantum domain. In [70], this approach is justified
by the fact that there is no advantage to be gained in using QSVMs on problems
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where the inner product with the kernel function is already simple to compute in
the classical domain.

Classification performance

In Figure 4.2 we can notice the two kernel matrices for the classification problem.
They represent the inner product among different elements. The dataset used
featured 50 training datapoints and 30 testing datapoints.
In the case of the training partition, an evident diagonal line is present, as the
inner product of an element with itself is always going to be equal to 1. The
testing partition instead shows the correlation between the training weights and the
testing dataset: the top left and bottom right portions of the kernel matrix show a
correlation between the two datasets and justify the high classification accuracy
of this QSVM. The first halves of both partitions belong in fact to class A, whilst
the second halves belong to class B. This behaviour is noticeable, albeit to a lesser
extent, also in the training kernel matrix.

Figure 4.2: QSVM classification
dataset and kernel matrices.
Top left: the dataset used for training
and testing, with visualization of the
mapping function used for generation.

Top right: the kernel matrix containing
the result of the inner product between

all elements of the dataset. Bottom
right: the kernel matrix representing the

inner products between the training
weights and the testing datapoints.
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Clustering performance

Similarly, in the clustering dual of the problem depicted in Figure 4.3, the dataset
is split in two halves, according to their class, with a total number of 50 datapoints.
As such, the kernel matrix reflects a high correlation among elements in the top
left and bottom right inner products. The highlighted diagonal in the figure is once
again caused by the computation of the inner product of an element with itself,
yileding the maximum possible value.

Figure 4.3: QSVM clustering dataset and kernel matrix.
Left: the dataset to be clustered, alongside the decision boundaries of the mapping
function used to generate it. Right: the kernel matrix containing the values of the

inner products among all elements in the dataset.

QVF study

The role of the quantum circuit is to compute the inner product between each
element of the dataset. One random input has been chosen as a constant in order
to parametrize the ZZFeatureMap circuit during all the injections needed to extract
the QVF metrics. Following [49], the value range for the injections varied between
[0, π] for ϕ and between [0, 2π] for θ, both with steps of π

12 .
The results of the injections are presented in Figure 4.4. Starting from the top
left, it is noticeable how the circuit is quite resilient to single faults with amplitude
combinations of ϕ ranging between [−π

2 ,
π
2 ], as the polar angle corresponds to the

rotation quantity around the Z-axis and thus it is periodic, given that RZ(6π
4 ) =

RZ(−π
2 ), and of θ ranging between [0, π

2 ]. These two ranges of reliability can be
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Figure 4.4: QSVM: Single and double fault injection heatmaps.

visualized on the Bloch sphere as a spherical dome whose top is centered on the
statevector encoding the quantum state before undergoing the injection.
The double fault behaviour, as seen in the top right heatmap, shows an increase in
the overall QVF metric’s values, especially in faults where θ ranges between [π

2 , π],
in accordance with the fact that higher single fault amplitudes will statisctically
result in a wider number of secondary faults with amplitudes up to the values of
the primary fault and as such potentially more disruptive.
Single qubit double fault heatmaps, in the lower portion of the figure, show that,
generally, the ZZFeatureMap circuit is more resilient to faults onto qubit 0, boasting
an overall lower QVF, whilst a fault on qubit 1 is slightly more likely to cause a
detrimental effect.
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Figure 4.5: QSVM: Delta heatmap and histogram.

Figure 4.5 shows the delta between the double and the single fault injection
heatmaps and the histogram distribution of the QVF values. In the delta heatmap
on the left, red tiles represent a worsening in the performance with the double
fault when compared to the single fault. The largest QVF loss takes place in the
lower left of the heatmap, for faults ranging in the lower values of θ and ϕ. The
histogram on the right depicts in black the single faults and in red the double
faults, over which their respective kernel density estimates have been plotted for
ease of interpretation. These estimated curves show that the double fault increases
the overall QVF of the circuit reducing by a significant margin the entries with
values ranging between 0 and 0.4, as it can be evicted by the shifted and squeezed
red peak when compared to the black one. However, despite the shift towards the
right, no value greater than 0.85 is ever achieved. Detailed statistics on the two
histograms are available in Table 4.1.

Fault type
Metric Mean Stnd. dev

Single fault 0.50 0.20
Double fault 0.57 0.17

Table 4.1: QSVM: histograms statistics.
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4.3.2 QNN
Much like its classical counterpart, a QNN can refer to any network architecture
containing quanvolutional layers. The following analysis will take into consideration
the model previously proposed in Chapter 3, Figure 3.14.
The quanvolutional layer implementation follows the specifications presented by
Henderson et al.[78]. It is composed of a four qubit circuit, subdivided into three
sections: an amplitude embedding section used to encode 2 × 2 grayscale images
through a parametrized Pauli-Y rotation with a linear mapping [0,255] −→ [0, π],
followed by an ansatz which computes the actual convolution, at last followed by a
measure layer which extracts the expectation value of each qubit, mapped onto a
different output channel of the final image and implicitly performing a max pooling
operation.

Classification performance

In order to test the network’s baseline performance, it has been trained on a
classification problem over a subset of the MNIST handwritten digits dataset, with
50 training images and 30 validation images, and compared with a CNN featuring
a similar architecture where the only difference was a classical convolutional
layer with max pooling substituting the qLayer. Figure 4.6 shows that the two
architectures attain similar performances, both during training and validation.
The only noticeable difference is a faster convergence time on the side of the
qLayer. This similarity is easily justifiable, both because the two architectures
share most of the layers and because the quanvolutional and convolutional steps are
performing the same tensor transformation, with a margin of difference dictated
by numerical accuracy and random initialization parameters. In any case, the
training times for both networks vary significantly, with the QNN requiring ∼ 30
seconds instead of the ∼ 6 seconds of the CNN, due to the fact that the qLayer
requires the simulation of a quantum circuit, which is inherently slower than the
tensorflow-based convolution.

QVF study

The quantum circuit is responsible for computing a single convolution block between
the kernel, embodied by the structure of the quantum circuit itself shown in detail
in Figure 4.7, and a subgrid of the input image. In order to run the QVF study,
a fixed 2 × 2 image has been used, where the topmost right and leftmost pixels
represent a white pixel with value 255 and the other two represent a black one with
value 0. This image corresponds to an ecoding where qubits 0 and 3 are encoded
in state |0⟩, whilst qubits 1 and 2 are encoded in state |1⟩. Moreover, to fit the
analysis requirements of QVF, the final measurement section of the circuit has been
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Figure 4.6: Training comparison between a QNN and a CNN.

q0 : RY (0) RX (2.353) RY (4.599) RX (3.761) ⟨q0⟩
q1 : RY (π) ⟨q1⟩
q2 : RY (π) • ⟨q2⟩
q3 : RY (0) RZ (5.974) • ⟨q3⟩

Figure 4.7: Quanvolutional layer circuit.

switched from the Pauli-Z expectancy operator to the distribution of probabilities
for each measured output state.
The results are presented in Figure 4.8. In the left single fault heatmap, qLayer
shows a relatively low variance with respect to the polar angle ϕ, albeit a small
QVF rise between 3π

4 and 5π
4 , whilst it seems to be much more affected by the

azimuthal faults on θ values strictly greater than π
2 . The double fault graph follows

the same description, with heightened values in the right part of the heatmap and
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Figure 4.8: QNN: Circuit level QVF heatmaps.

a more noticeable increase in the QVF in the previously mentioned [3π
4 ,

5π
4 ] range,

other than the overall shift towards the left of the white vertical uncertainty bar
with values around 0.5.
Specific qubit double fault heatmaps are displayed in Figure 4.9 and each of them
shows a different behaviour. Qubit 0 reflects more closely the general circuit
behaviour undergoing a double fault, with a clear dependence on the fault angle θ
and a noticeable increase in the QVF in the ϕ range [3π

4 ,
5π
4 ]. Qubit 1 shows on the

left a very narrow vertical band of values higher than 0.4, whilst the uncertainty
vertical bar is shifted to θ = π

4 : all other values are greater than 0.6. Qubit 2 has a
similar behaviour to qubit 1, albeit a shifted vertical white bar at θ = π

2 . Qubit 3
is instead the more diverse of the four, with an horizontal high QVF bar spanning
the whole heatmap with ϕ ∈ [3π

4 ,
6π
4 ] with a slight downward direction from left to

right.
This more dominant sensitivity to the fault of the azimuthal angle is a clear
consequence of the amplitude embedding used in the qLayer. In fact, rotations
about the polar angle are invariant with respect to the value encoded in the qubits,
albeit such rotations may modify the effect of successive gates.
The impact of the double fault is summarized by both the delta QVF heatmap
and the kernel distribution estimates in the histogram of the QVF values for single
and double faults, shown in Figure 4.10. A general slight increase of the QVF
values is noticeable by both the delta heatmap being almost uniformly made of
values ranging between 0.1 and 0.15, reflected into a shift in the peaks of the KDEs
towards the right. Numerically, it amounts to a 5% shift in the mean between the
two distributions, as it can be seen in Table 4.2. The fact that the histograms show
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Figure 4.9: QNN: Qubit level double fault QVF heatmaps.

a bimodal distribution is a direct measure of the sensitivity of the quanvolutional
layer to faults, as it either resists the negative effects very well or flat out performs
extremely poorly, whilst never settling into a middle ground behaviour.

Fault type
Metric Mean Stnd. dev

Single fault 0.55 0.17
Double fault 0.60 0.19

Table 4.2: QNN: histograms statistics.
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Figure 4.10: QNN: Delta heatmap and histogram.

Accuracy study

The following step was to study the impact of faults during inference from the
accuracy point of view. As such, the trained network has been set up in a similar
fashion to that of the previous QVF study, ranging over all the combinations of
angles for θ ∈ [0, π] and ϕ ∈ [0, 2π]. However, this time, a specific fault position
has been chosen, rather than testing all possible combinations gathered from the
coupling map of the transpiled circuit. This is due to a time and load requirement
on the machine used to perform the computation. In fact, it has been estimated that
attempting to extract the accuracy metrics over all fault positions on a computing
node with 28 vitual cores at 2.22 GHz would have required upwards of 15 days of
continuous computation. As such, the range variation has been preserved, but the
position variation has not. The specific fault configuration is depicted as an orange
operator in Figure 4.12.
The accuracy results over the whole testing dataset has been measured for each of
those fault points and the average over all the fault points has been presented as the
comparison metric for the following results. Figure 4.11 shows the heatmaps of both
single and double fault injections, respectively on the left and on the right. Both of
them show a clear dependence on the azimuthal fault angle θ, whilst being largely
invariant with respect to the value of ϕ. The singe fault injection, being composed
of a lower number of results for each tile, shows clearer low degree variations in the
colour mapping, a characteristic which is instead absent in the double fault case
thanks to the fact that the multiple fault configurations allowed for a wider range
of values to average over, smoothing the final colour map. The accuracy study step
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allowed to prove that it is possible to confidently drop the variation of the polar
angle ϕ in the successive analyses regarding the qLayer. From a computational
standpoint this permitted to reduce computation times by ∼ 99.69%.
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Figure 4.11: QNN: Accuracy heatmaps, fault position 1.

At this point, the interest shifted towards testing specific fault cases in order to
get a more granular view of the sensitivity of each qubit. To do this, four fault
positions have been chosen, according to whether they are placed on the tuple
(qubit0, qubit1) or (qubit2, qubit3) and whether the position of the faults precedes
or succeeds to the two mid-circuit control gates. The names by which they will be
referred to from now onwards are presented in Figure 4.12.

Figure 4.12: QNN: Case study fault positions.
FF represents the first fault, SF the second one.

The p parameters are the input pixel values.

The analysis has been repeated for all the remaining fault positions and a comparable
independence with respect to the polar angle in injected faults has been found.
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Figure 4.13: QNN, fault 1: Dataset azimuthal fault bound accuracy heatmaps.

This fault configuration refers to the orange position in Figure 4.12. The
heatmaps presented in Figure 4.13 plot the ∆Confidence for the single and double
fault cases with respect to the θ azimuthal angle for each image in the test partition.
The ∆Confidence is computed as the difference between the softmax output of the
predicted class in the golden execution of the QNN and the value in predicting
that same class in the injection case.
Most of the images share a common pattern of behaviour, with values mostly
ranging between −0.30 and 0.20, an effect which can be explained by the fact that
the first two qubits are possibly less important in the context of producing the final
prediction. The variations among the images are mainly explained by the noise
in the circuit simulation, to which the injected faults share a similar impact. In
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limited cases associated to images 0, 10 and 24 in the single fault and image 2 in the
double fault, the confidence increases, however this effect is sporadic and justified
by chance rather than systematic. The double fault increases the ∆Confidence
towards the rightmost part of the second heatmap, as to be expected by the greater
number of faults injected in those cases.
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Figure 4.14: QNN, fault 1: Image 4 and 10 ∆Confidence.

Figure 4.14 details the heatmaps of images 4 and 10, the two most extreme settings
in the impact of the fault injection. In the first case there is a shared behaviour
among single and double faults, with the latter providing a worsening in performance
towards the higher values of θ, as the qubits are shifted away more from their
original state. The rightmost bar chart shows the opposite behaviour, where the
prediction performance improves almost across the whole θ range.
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Figure 4.15: QNN, fault 1: Image 4 and 10 softmax outputs.

Figure 4.15 shows the softmax layer outputs of the network with respect to a
specific θ angle value. The impact of the double fault on image 4 is the only case
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that brings the QNN to misclassify class 4 as class 7 in the whole dataset, whilst
the single fault is still small enough to go unnoticed. Image 10 instead shows the
opposite effect, where the accuracy increases with the single fault and drops slightly
with the double fault. A part of the probability amplitudes of classes 2 and 4 get
converted to class 0, whilst all other amplitudes, already close to zero amplitude,
are not affected.

Qubit0 and Qubit1 postcontrol
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Figure 4.16: QNN, fault 2: Dataset azimuthal fault bound accuracy heatmaps.

This second case refers to the blue position in Figure 4.12. The dataset level
heatmaps show a similar behaviour with respect to the pre-control case, with most
of the input images undergoing smaller oscillations in the [0,0.25] range, more often
than not worsening the performance by a negligible amount, thus not affecting
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the final predicted label. Again this lower impact shares the same reasoning as
before, in that the network’s output boasts a lower degree of dependence from the
first two output channel of the quanvolution. Again, there is the presence of a
limited amount of cases in which the performance improves by a marginal amount,
however this is not to be considered a systematic improvement, but rather the
byproduct of chance when associated with simulated circuit noise. The double
fault generally increases the value of the ∆Confidence, but still not to a point able
to cause deviations in the classfication.

0 π
12

π
6

π
4

π
3

5π
12

π
2

7π
12

2π
3

3π
4

5π
6

11π
12

π

θ

−0.125

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

∆
C

on
fi

de
nc

e

Single

Double

Image 6.

0 π
12

π
6

π
4

π
3

5π
12

π
2

7π
12

2π
3

3π
4

5π
6

11π
12

π

θ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

∆
C

on
fi

de
nc

e

Single

Double

Image 14.

Figure 4.17: QNN, fault 2: Image 6 and 14 ∆Confidence.
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Figure 4.18: QNN, fault 2: Image 6 and 14 softmax outputs.

The two most extreme cases are detailed in Figure 4.17. On the left, the bar chart
of image 6 clearly shows its independence with respect to the value of the single
injection angle θ at the cost of a constant positive shift, as the line is almost flat
and in the negative region of the bar chart, whilst with the introduction of the
second fault, the previously induced shift is compensated, producing a small and
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almost unnoticeable worsening towards the high end of the θ amplitudes. Image 14
is instead the worst performing image, where the faults consistently cause a drop
in the confidence varying from 0.3 to up to ∼ 0.65 in the middle of the θ range.
In this second case, the effect of the double fault is less noticeable with respect to
image 6, however the magnitude of the Confidence gains back upwards of 10% over
the whole scale.
By going more in depth with image 6 at the level of the network’s softmax layer
output with a fault amplitude of π

2 , in the leftmost bar chart of Figure 4.18, it
is possible to see that the predicted class 9 is still confidently classified as such,
and that the second highest prediction, class 4, suffers the largest reduction in
confidence, which gets evenly distributed among classes 2, 7 and 9. In the opposite
way, image 14 at a fault amplitude of π

2 sees a dramatic fall in the confidence
associated with class 1, distributing its probability amplitude between almost all
the other available classes, especially with class 9, causing a switch in the prediciton
for the single fault case, but barely resisting it in the double fault one.

Qubit2 and Qubit3 precontrol

The third setting refers to the red position in Figure 4.12. It is noticeable how
most of the images display a worse ∆Confidence with respect to both of the q0_q1
cases. In fact, there is an overall increase which is proportional to the value of the
fault angle θ. The single and double heatmaps share this common behaviour across
the dataset, suggesting that qubit 2 has a higher incidence on the QNN’s output
and as such is more sensible to faults with respect to qubit 3, which however still
manages to provide a negative effect on the more resilient images of the single fault
case. Importantly, no image has an incidental positive gain in the ∆Confidence,
with most values ranging between 0.0 and 0.95.
Figure 4.20 details the comparison between the single and double faults on the
∆Confidence of images 1 and 14, respectively the ones with the lowest and highest
overall shifts. In the bar chart on the left, representing the behaviour of image 1,
it is possible to see that a smooth increase in the measured metric with respect
to the angle θ. The single and double fault cases both share a commonly shaped
curve, however the latter causes a slight decrease in the ∆Confidence values of
0.025 across the whole chart. On the right figure, the impact of the fault is much
more prominent, starting from a minimum value of ∼ 0.30 when θ = 0 and rising
steadily up to ∼ 0.90 and beyond when θ crosses the π

2 threshold.
The softmax output bar charts for images 1 and 14, presented in Figure 4.21, show
more in depth the devastating effects of faults on these specific qubits. Both images
have been considered at θ = π, since it is the point of greatest divergence with
respect to the golden execution. Image 1 shows a very low confidence in the golden
case, as class 1 and class 6 have almost the same value. The single fault causes an
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Figure 4.19: QNN, fault 3: Dataset azimuthal fault bound accuracy heatmaps.
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Figure 4.20: QNN, fault 3: Image 1 and 14 ∆Confidence.
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Figure 4.21: QNN, fault 3: Image 1 and 14 softmax outputs.

abrupt shift in the output towards class 8, which is among the lowest scoring classes
in the golden execution. The introduction of the double fault compensates for this
initial rise and spreads the probability distribution between the other classes. In
both cases, the QNN is forced to produce a classification which is different from the
one in the golden setting. Image 14 is the worst performing case of this setup, with
the golden prediction of class 1 being inverted to become the lowest confidence
predicted class, whilst class 0 and class 8 get elevated to the predicted class for
the double and single fault cases.

Qubit2 and Qubit3 postcontrol

This last setting refers to the purple fault position in Figure 4.12. The dataset
heatmaps are strikingly similar with the ones from the q2_q3_precontrol fault
configuration, with a few exceptions in images 17 and 24. Similarly, most of the
∆Confidence ranges in [0.0,0.95]. The relative effect of the fault occurring after the
controlled Pauli-X gates is thus negligible, as in the case of the q0_q1_postcontrol
when compared with the precontrol configuration. The double fault presents a low
impact on the overall confidence, generally providing a slight increase towards the
higher values of θ.
Once again, as seen in figure 4.23, the best and worst performing images have been
plotted in detail in the single-double comparison bar chart. It is important to note
that for both of them, the ∆Confidence doesn’t improve, apart from a very minor
and almost unnoticeable shift for θ = 0 in images 6 and 24, once again proving
the previously introduced explaination for this phenomenon with random noise.
On the left, image 14 shows a constantly rising ∆Confidence up to θ = π

2 , where
it stabilizes around a value of ∼ 0.95. The double fault provides an extremely
marginal increase in the values located in the middle of the figure. Image 24, on
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Figure 4.22: QNN, fault 4: Dataset azimuthal fault bound accuracy heatmaps.
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Figure 4.23: QNN, fault 4: Image 14 and 24 ∆Confidence.
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the right, features a similar constantly rising bar chart, maxing out at θ = π, which
however ranges over much smaller values of the considered metric. The double
fault is responsible for a more noticeable shift with respect to the single fault one.
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Figure 4.24: QNN, fault 4: Image 14 and 24 softmax outputs.

The softmax output charts in Figure 4.24 show the variations in the confidence
caused by the faults at a numerical level, both considered at θ = π. Image 14
undergoes the most radical change, with the golden predicted class 1 dropping
consistently to ∼ 0.0 in both the single and double fault cases, to the gain of classes
8 and 9 with the single fault and classes 2 and 9 in the double fault. In both
cases, the QNN mislabels the input. Image 24, despite being more resilient to both
kinds of faults, can not manage to preserve the correct output, and once again
lowers the golden class 4 ’s confidence in favour of classes 8 and 9 in the single
fault case and mainly to class 0 in the double fault one.

Final analysis

The overall behaviour of the quanvolutional layer with respect to faults is not
yet fully characterized, however, given the information provided by the previously
presented exploratory analysis it is possible to make some assumptions.
The qLayer’s resilience seems to be very much dependent on which qubit gets
affected. In fact, both the q2_q3 fault positions have shown to be more prone
to hard faults rather than the q0_q1 ones, as suggested by the single qubit QVF
heatmaps provided in Figure 4.9.
The depth of the fault has instead proven to be a less impactful factor, often
amounting to small variations which range around the same order of magnitude as
those caused by quantum noise.
As such, a more thorough analysis could be conducted by considering as fault
positions all the combinations of the four qubits, right after the encoding layer,
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extracting a higher level behaviour, and dropping any additional combination with
the depth position in the circuit. It will be however left to future research.
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Chapter 5

Conclusions

5.1 Digression on the thesis’s work

Towards the end of my Bachelor’s degree I had followed a course in Quantum
Computing, carried out by one of my supervisors, professor Montrucchio, and by
professor Carbone. It opened my mind and I enjoyed it thoroughly, so I set out to
learn more about the subject. However, when starting the Master’s degree, I focused
on other different topics involving computer graphics and machine learning, partly
losing track of this initial drive. When I set out to choose my thesis’ argument in
December of last year, I considered multiple options revolving around the same
fields of my specialization, until I found a proposal in Quantum Computing. It was
literally the only one containing the word quantum among the almost 200 options
available. I knew very well from my past experience that it is a dauntingly complex
subject, but I couldn’t resist my curiosity and thus I set out for it.
Right at the start of the research work, there were endless possibilities for merging
quantum computing and fault injection. Literature on the topic at the time was,
and still is to some extent, quite novel, with open issues such as Error Detection
and Correction. Thus, I devoted the first month of work in getting myself up
to speed with everything quantum, following online lectures by Qiskit, Maria
Schuld and Peter Wittek. I read the whole introductory textbook by Thomas
Wong Introduction to Classical and Quantum Computing in one week. I integrated
some additional knowledge from Nielsen and Young’s Introduction to Quantum
Computing and from the 1998 Lecture Notes for Physics 229: Quantum Information
and Computation by John Preskill (I found extremely funny that those notes are
as old young as me). Lastly, I started reading research papers in the field and to
my utmost surprise, I even partly began to understand what they talking about.
It was time to start working. I knew that the research group I was in contact
with at my university had some ground already in quantum fault injection, but
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since it is a wide topic that can be tackled in multiple ways, under the suggestion
of my supervisors, I jotted down some possible themes of research for expanding
onto their work. Despite discussing a lot with all of them about it, I discovered
that there was really no better or worse option, so I got lucky enough to decide by
myself. Nobody told me what to do, and there was no preconception of what to do.
I adapted the research group’s code of QuFI from the Qiskit backend to Pennylane
and I tried to replicate the results from their papers. Meanwhile, I thought of a way
to merge the subject of machine learning into my work. The natural consequence
was adapting the newly written fault injector to run QML subroutines. A first test
has been conducted with the QSVM, as proving grounds for what came next. It
was promising, as such I tried to investigate a more complex architecture, a QNN.
The model I used is an extremely simplified one, with a reduced version of the
MNIST handwritten digits dataset. Despite cutting those corners, I was not able
to provide a full, top down analysis of this second neural network due to hardware
limitations for quantum simulation, but I have been able to provide some in depth
insight on the inner workings of the quanvolutional layer, spotting out some of the
more sensible qubits in the quantum circuit. Nonetheless, a modular method of
evaluation has been implemented and tested, hopefully paving the way for further
research in the same topic, possibly on other architectures.
All in all, this experience has been extremely complex, stressful, rewarding and
most of all enlightening. I have had the pleasure to work with an exceptional team
of people, always available for sharing ideas with me and striving for understanding.
I have learnt so much, yet there is so much more to learn.
I am unsure whether this work will actually ever become the foundation of something
of greater purpose for humanity, or if it will simply be relegated among the thousands
other documents, scribbles and notes of a distant past nobody will ever look back
to. However, this is not important. What I do know is that, one way or another,
Quantum Computing is going to revolutionise our concept of information and
reality as a whole. Having had the chance to be part of such a great feat of research
is a reward in and of itself.

5.2 Future works
This Thesis left many open ends, more than the ones I thought it would when
I began. They will be listed in no particular order in the following section, as a
remainder and inspiration for further research in the years to come.

• Optimising QuFI, by adding fault gates as parametrizable objects, rather than
generating a new QNode object in memory for each injection. Provide a better
interface for load optimization in the simulations, which is currently governed
by the device’s core count only. Add support for specifying a subset of injection
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targets, instead of using all of the available combinations. Investigating further
parallelization capabilities by exploiting the JAX library.

• Providing a full top down analysis of the accuracy of the QNN with respect
to single and double faults.

• Adding a more complex fault model in QuFI, which takes into consideration
additional factors such as transmons’ physical proximity and possibly circuit
level faults.

• Testing the current fault model onto other backends available with Pennylane,
such as Rigetti Forest, Xanadu Strawberry Fields, Amazon AWS Bracket,
IonQ and Honewell.

• Testing other, possibly more advanced, QML architectures.
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