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Summary

Quantum computing is an alternative type of computation that has the potential of
outperforming classical computation in some specific problems. While shown to be
theoretically possible, currently there are several technical challenges that prevent
the construction of a quantum computer big enough to be useful. Among these,
there is the fact that qubits, the fundamental elements of quantum computation,
are highly susceptible to external sources of faults, such as ionizing radiation. These
faults are also called transient faults, due to their temporary nature.

The work done in this thesis aims to better understand how transient faults
propagate and corrupt the execution of quantum circuits, through the simulation of
faults impacting the quantum circuits. In order to simulate the fault, we use a fault
injector built on the Qiskit framework, one of the most widely used frameworks for
quantum computing. The injector simulates the fault by inserting into the tested
quantum circuit a parametrized quantum gate, a U-gate, in a specific location in
the circuit in order to arbitrarily change the state of the qubit at that point of
the execution. By inserting arbitrary faults in arbitrary locations of the tested
quantum circuit, we can study its different vulnerabilities.

We perform three fault injection analyses: in the single fault injection, we in-
ject one fault at a time in three different circuits; we learned that indeed different
circuits can have different fault vulnerabilities: the same fault can be well tolerated
by some circuits while being critical for others. In the double fault injection, we
simulate a particle hitting two neighboring qubits instead of just one, by adding
a second fault; as expected, we found that adding a second fault worsens the
quality of the output in all cases. Lastly, in the injection on quantum circuit cuts,
we apply our single fault injection analysis on a novel technique in the field of
quantum computing research, which is quantum circuit cutting, a process that
allows splitting a large quantum circuit into multiple, smaller subcircuits, which
can then be independently executed in order to reconstruct the full output of the
circuit. Here, by cutting a circuit and injecting faults in one of its subcircuits, we
can study how faults propagate from a subcircuit to the final reconstructed output;
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we found that given a circuit, its subcircuits can have different vulnerabilities to
faults, and some of them can be much more critical than the others.

The work done in this thesis is an attempt to better understand fault propa-
gation in quantum circuits. We believe some of these results can be used as first
steps towards future work regarding, for example, the physical protection of quan-
tum devices, by helping to concentrate the protection efforts to the more critical
parts of the circuits.
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Chapter 1

Introduction

1.1 Context

The 20th century brought with it a new way of understanding and modeling the
world around us: quantum mechanics. Physicists gradually realized that matter, at
its most fundamental level, behaves very differently from what you would expect
based on our everyday, human-scale world.

This bizarre behavior is so removed from everyday life that still today, a cen-
tury later, physicists limit themselves in studying how quantum systems behave
and evolve, and the question of why is in the realm of speculation and philosophy.
In fact, there are several different interpretations of quantum mechanics, but no
consensus has been reached [1].

In the 1980s, ideas started circulating about designing systems to exploit these weird
rules of nature, extracting computations from them. The theoretical feasibility of
this was shown by physicist Paul Benioff [2], and soon after it was suggested that
it had the potential of outperforming classical computation in some tasks [3].

Nowadays, quantum computing is in its infancy. While it stands on solid theoretical
ground, there are several technical challenges standing in the way of building an
actually useful quantum computer.

One of them, arguably the hardest one, is maintaining the quantum properties
of the qubits long enough to perform the computation. These qubits, which are
the basic elements that hold the information, are highly sensitive to noise and
interference.
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Introduction

1.2 Thesis work
The work done in this thesis aims to perform simulations of errors occurring in
quantum computation in order to better understand and model the propagation
and impact of these faults.

In order to do this, a quantum fault injector is used that arbitrarily modifies
a qubit during a computation and observes the result. This way, data is gathered
on all possible faults and it is better understood which are the most critical, causing
the wrong output, and which are the less impactful that can be ignored.
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Chapter 2

Quantum computing
fundamentals

2.1 A new type of computation

Let’s start at the beginning. Why quantum computation? Can’t we do everything
with our already powerful classical computers? Well yes, technically we can. Any
classical computer can simulate any quantum computer. The key point is how
many resources it would use to perform the same task. As we will soon show, quan-
tum computers can perform some calculations exponentially faster than classical
ones. Note the use of the word exponentially: in practical terms, this implies that
yes, a classical computer can simulate a quantum computer. But if in order to
do that, it has to store more information then there are atoms in the universe,
it would be completely useless. That is the order of magnitude we are talking about.

How can a quantum computer be so efficient then? It is built to directly ex-
ploit some fundamental properties of matter. Instead of forcing matter into discrete
1s and 0s, like classical computation, it lets subatomic particles freely interact
as they do in nature, following the rules of quantum mechanics, exploiting the
full range of their (almost) real-valued properties. A quantum algorithm can be
thought of as a careful way of setting up this interaction such as when we observe
the result at the end, the state of the particles can be interpreted as the answer to
our problem.
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2.2 Concepts from quantum mechanics
2.2.1 Wave-particle duality and interference
What are these quantum properties that we are exploiting through a quantum
computer? Historically, the first experiment that showed some quantum properties
of matter was the double-slit experiment. In it, particles (like photons or electrons)
are beamed to a screen that can detect their arrival, but before hitting the screen,
they have to pass through a double slit, like in figure 2.1. If you were to predict
what would happen with no knowledge of quantum mechanics, you would expect
the particles to hit the screen in two bands, corresponding to the two slits like
in figure 2.1. What instead really happens is that on the screen, an interference

Figure 2.1: Double slit experiment as you would expect it from classical physics.
This is NOT what happens! Source: superquantumphysics website [4]

patterns shows up, like in figure 2.2. What does this tell us about the particles
that we sent then? It tells us that they are behaving like waves. More specifically,
that they are exhibiting a specific property of waves: interference.

Imagine the whole experiment taking place on the surface of a small pond. Instead
of the particle source that sends out particles, you throw a rock in its place, sending
out waves. The waves pass through the slits: on the other side of the slits, there

4



Quantum computing fundamentals

Figure 2.2: Double slit experiment. Source: Nature Noon article [5]

are now two sources of waves (the two slits). These two waves propagating from
the two slits now interfere with each other: when two crests or troughs meet, you
have constructive interference: the resulting wave is higher at the crests and lower
at the troughs, corresponding to a higher amplitude wave; when a crest meets a
trough, you have destructive interference: the two waves cancel out, and the water
neither rises nor sinks, equivalent to a zero-amplitude wave.

Moreover, this interference pattern on the screen shows up even if we beam
out one particle at a time. Meaning: send out a particle and wait for it to show
up on the screen. Record where it landed, and then send out another parti-
cle. Repeat this to collect enough data, and slowly the same interference pattern
shows up again! This seems to suggest that a single particle can interfere with itself.

How do we interpret this? Hard to say. What we can say is that particles
appear to intrinsically posses some wave-like properties, like interference, and this
is one of the properties that quantum computers will exploit.

2.2.2 Quantum superposition and quantum states
Let’s first understand the classical counterpart of quantum superposition: wave
superposition. When two (or more) waves are traversing the same space, the
resulting wave at each point in space will be the sum of the amplitudes of the
individual waves at that point.
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Figure 2.3: Wave superposition. Source: Wikipedia [6]

This means that any classical wave can be thought of as the resulting sum of
other waves. This has a corresponding principle in the quantum world, but first:
why do we even need the concept of quantum superposition? What is the phe-
nomenon that it helps to describe?

Take the example of the double slit experiment. Like described in the previ-
ous section, even when shooting one electron at a time through the double slit, the
interference pattern still appears. If you think classically, the electron should either
go through the first slit, or through the second. So there are two possible states:
"electron goes through slit 1" and "electron goes through slit 2". And there should
be no interference pattern on the screen. In reality, after enough electrons, the
interference patter does show up, and the only way to explain this is that while
going through the slits, the electron is in neither one of the two classical states: it
is in a quantum state that is the superposition of the two classical states.

This quantum state is different from classical states: after being observed, it
collapses into one of the two classical states. But before being observed, it is in
neither of them. The observation actually changes the quantum state, collapsing it
into one of the classical states. Why this happens is still not exactly known: it is
called the measurement problem. "Measurement" here is apparently anything that
interacts with the quantum system to be measured: it does not involve explicitly
consciousness.

This can be further experimentally confirmed by placing a detector, hence perform-
ing a measurement, just before the double slit. In this case, the quantum state of
the electron is collapsed just before going through the double slit, and the electron
actually goes through only one of the slits producing the 2 bands like in figure 2.1
instead of the interference pattern.

Quantum superposition then describes this quantum state that particles find
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themselves in before being measured.

Let’s introduce the notation for quantum states that will be essential later on. We
need a simple quantum state: for example, take an electron and its spin property;
it can either be up or down. Let’s define the "spin down" state as | ↓⟩ and the "spin
up" state as | ↑⟩. Then, the most general state of the electron would be

|ψ⟩ = c0| ↓⟩+ c1| ↑⟩

c0 and c1 being the amplitudes, complex numbers that encode the probability of
observing their respective state. More specifically, |ci|2 gives the probability of
observing state i.

2.2.3 Quantum entanglement
Entanglement is iron to the classical world’s bronze age.

Michael Nielsen and Isaac Chuang

We have seen now that particles at subatomic scales possess some fuzzy behav-
iors, like interference and superposition. We have then described that until they are
measured, they don’t have definite properties: they are defined by a superposition
of possible states, but before observation they aren’t in any of those states.

There is another principle the we will add: the uncertainty principle. It asserts
that there is an intrinsic amount of uncertainty in some properties of quantum
objects. This uncertainty does not correspond to our lack of knowledge of those
properties; instead, the mathematical description of quantum mechanics does not
support some pairs of well defined properties for quantum objects. For example,
the original formulation of the uncertainty principle states that the more precisely
the position of some particle is defined, the less precisely its momentum is.

Now, with these concepts at our disposal, we can follow the same reasoning
that gave rise to the famous EPR thought experiment, from which later the concept
of entanglement emerged. In this experiment, a pair of particles is prepared in such
a way so that the values of their positions and momenta depend on each other.
For example, if after preparing them you measured the position of particle A, you
would also be able to know the position of particle B, and the same thing applies
to their momenta. The two particles prepared in this way will be later defined as
being in an entangled state.

The paradox now is revealed when you realize that you can separate the two
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particles while not observing them, so maintaining their quantum state, and then
you can choose to measure one of them, say particle A. If you choose to measure
its position, then you would be able to predict also the position of particle B,
and so particle B would have a definite position. If you instead chose to measure
the momentum, then particle B would have a definite momentum (and not a
definite position). But particle B is now light years away: what is the reality
of particle B? Definite position or momentum? It can’t depend on your choice
of which measurement to perform on A, because the two particles are separated
and that would imply an instantaneous message being transmitted between the two.

The EPR thought experiment has been experimentally verified several times:
when you measure particle A and collapse its quantum state, the quantum state
of particle B also collapses, even when the two particles are separated by a large
distance.

This showed that quantum mechanics violates the principle of locality, and so
is a nonlocal theory. Even though this is really counterintuitive, it does not lead
to any physics-breaking conclusions: while entanglement shows events affecting
one another in a faster-than-light way, it has been demonstrated that you cannot
use this phenomenon to transmit information faster than light, because of the
probabilistic nature of quantum states. Maybe locality was a wrong assumption
that we made about the universe.

In conclusion, quantum entanglement is a phenomenon that occurs when a group
of particles interact in such a way as to have some of their properties, like position
or momentum, correlated with one another. This, together with the quantum
description of reality, means that the quantum state of each particle cannot be
described independently of the state of the others.

2.3 Quantum computation
2.3.1 The qubit
The quantum bit, or qubit, is the fundamental concept of quantum computation,
analogous to the classical bit. The classical bit can be realized by any device that
can be in one of two possible distinct states: for example, an electrical circuit that
can have two voltage levels. The qubit, on the other hand, is a two-state quantum
system, one of the simplest quantum systems that can exhibit quantum properties.
For example, take the electron and its spin property: it can either be in the spin up
state or spin down state but before being measured, and this is the main difference
with a classical bit, it is in a superposition of the two.
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If we define the spin up state as |0⟩ and the spin down state as |1⟩, the gen-
eral state of the qubit is:

|ψ⟩ = α|0⟩+ β|1⟩

where α and β are the probability amplitudes, and are complex numbers. When
this qubit is measured, it will be in state |0⟩ with probability |α|2 and in state |1⟩
with probability |β|2. Since α and β are used to derive the probabilities, there is a
further constraint:

|α|2 + |β|2 = 1

It turns out that the amount of information contained in a single qubit is equivalent
to the information needed to specify a point on the surface of a sphere. So a natural
visual representation of a single qubit is the so called bloch sphere, as seen in figure
2.4.

x
 

y

z

φ

θ

 

1

0

ψ

Figure 2.4: Bloch sphere representation of a single qubit. Source: Ketterer
Andreas [7]

It might seem as though a qubit possesses an infinite amount of information,
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given that there is an infinite amount of points on the surface of a sphere. While
that may be true, that information is fundamentally not accessible, because the
only way to get something "out" of a qubit is to measure it, and that only gives you
a 0 or a 1, so 1 bit of information; furthermore, once you measure it you collpase
its quantum state and all that information is lost. In other words, given a qubit, in
order to get the full decimal expansion of its α and β amplitudes, you would need
to perform an infinite amount of measurements on an infinite amount of identical
qubits.

What happens when you have multiple qubits together? Just like two classi-
cal bits can be in 4 possible states, 00, 01, 10 and 11, two qubits are defined by
four states: |00⟩, |01⟩, |10⟩ and |11⟩, and they can be in a superposition of these
four states.

Multiple qubits can also be in an entangled state; for example, the Bell state
defined like this:

|00⟩+ |11⟩√
2

indicates that the two qubits always assume the same value: 50% of the time being
in |00⟩ and 50% of the time being in |11⟩.

2.3.2 Quantum gates
How do we make the qubits perform calculations for us? We need to be able to
change their state. We can do that by applying quantum gates to them. Classical
bits are also manipulated by gates, more specifically logical gates. One of these
gates is, for example, the NOT gate: it flips the classical bit, transforming a 0 in a
1 and vice versa. What would be the quantum equivalent of the NOT gate?

Firstly, it would need to transform a qubit in state |0⟩ in a qubit in state |1⟩
and vice versa. But that is not enough: what about all the other states described
by the superposition α|0⟩+ β|1⟩? The quantum NOT gate, it turns out, exchanges
the position of α and β, transforming the state

α|0⟩+ β|1⟩

into
β|0⟩+ α|1⟩

Interestingly, it corresponds to a rotation of π radians around the x axis of the
Bloch sphere.
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A single-qubit gate can be represented by a 2x2 matrix; for example, the quantum
NOT gate just described is represented by the matrix

X ≡
C
0 1
1 0

D

This makes it easy to calculate its effect on a given qubit. The state of the qubit

can be written in vector form as
C
α
β

D
, with the two entries corresponding to the

amplitudes for |0⟩ and |1⟩ respectively. Then, the state of the qubit after the NOT
gate has been applied to it will be

X

C
α
β

D
=

C
0 1
1 0

D C
α
β

D
=

C
β
α

D

We have seen that single-qubit gates can be described by 2x2 matrices. What
about multi-qubit gates? In general, a gate affecting n qubits is described by a 2n

square matrix.

2.3.3 Quantum circuits

To obtain a complete model of quantum computation, quantum gates alone aren’t
enough. A full model is represented by a quantum circuit: it contains quantum
gates, wires, measurements, initializations of qubits and possibly other operations.

Let’s see a visual representation of a quantum circuit to describe its notation.
In figure 2.5 is represented a quantum circuit representing a famous quantum
algorithm, the Deutsch-Jozsa algorithm.

First, we can see that there are four wires corresponding to the four qubits of
our hypothetical quantum device, labeled from q0 to q3. There is also a notation
indicating the presence of three classical wires (holding classical bits) that will
store the measurements at the end (the wire at the bottom labeled c). Next, there
is a series of quantum gates: H and X modify the state of the single qubit they
are applied to, while the three CNOT gates, the vertical lines with the + at the
bottom, are two-qubit gates. Lastly, the qubits q0 to q2 are measured, and the
outcome of each measurement (either 0 or 1) is put in one of the classical wires
and will be the output of the quantum circuit.
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Figure 2.5: Deutsch-Jozsa algorithm. Source: Qiskit code

2.3.4 Quantum annealing

The previous description of quantum computation, the one involving quantum gates
and quantum circuits, is not the only model of quantum computation available;
though it is the most common, the most familiar (given its use of gates similar
in some ways to classical gates) and it is also universal. Quantum annealing is
another model of quantum computation that is applicable only to a certain subset
of problems; more specifically, optimization problems that aim to find the global
minimum of a given objective function. That is why we defined the gate array
model as universal and not the quantum annealing one. Examples of such problems
may be traffic flow solutions and molecular interactions.

In a quantum annealer device, quantum properties such as superposition, en-
tanglement and quantum tunneling allow the qubits to simultaneously explore the
landscape of the given objective function to optimize, making it possible to quickly
discover local and global minima.

While the term quantum annealing exists in academia since 1988, current im-
plementations of quantum annealing computers are being developed by D-Wave
Systems, with customers such as Google and NASA.

2.4 Quantum algorithms

What problems can a quantum computer solve? Let’s take a look at some important
quantum algorithms that have been developed.

12
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2.4.1 Deutsch-Jozsa algorithm
The Deutsch-Jozsa (DJ) algorithm was the forst example of a quantum algorithm
being more efficient than the best classical algorithm.

The problem

The input of this algorithm is a hidden (thus, treated as a black box) function f.
This is a function that takes as input a string of bits, and returns either 0 or 1:

f({x0, x1, x2, ...}) −→ 0 or 1, where xn is either 0 or 1

This function f is guaranteed to be either balanced or constant. A constant function
returns all 0’s or all 1’s for any input, while a balanced function returns 0’s for
exactly half of all inputs and 1’s for the other half. The problem then is to determine
whether f is balanced or constant.

The classical solution

Classically, in the worst case the problem can be solved by checking half of all
possible inputs to f plus one: in that case, if we see all 0’s or all 1’s we know for
sure that it is constant. Otherwise, we can stop at the first different output that
we get. Since the total number of possible inputs is 2n, we need 2n−1 + 1 iterations
to be certain of the result.

The quantum solution

A quantum computer can solve this problem after only one call to the function
f, provided that we also have implemented such function f as a quantum oracle
(thus, in a quantum circuit). In Figure 2.6 there is a conceptualized schema of
the algorithm. There are two quantum registers: the first one composed of n
qubits, and the second one containing 1 qubit. To these two registers is applied
a Hadamard gate (H). Then, the quantum oracle is applied, which contains the
function f. After the oracle, Hadamard gates are again applied and then the first
register can be measured. At this point, if the qubits in the first register are all
in the state |0⟩ we know that the function f is constant; otherwise, it is balanced.
This works because if the oracle is constant, it has no effect on the input qubits;
hence, the qubits at the end are in the same state they started with, because the
second Hadamard gate reverses the effect of the first one (the Hadamrd gate is its
own inverse: two Hadamard gates in sequence have no effect). On the other hand,
if the oracle is balanced, it affects the qubit and the second Hadamard gate doesn’t
reverse the first one, ending up in a state different than the all-zero one.
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Figure 2.6: Steps of the Deutsch-Jozsa algorithm. Source: Qiskit Textbook [8]

2.4.2 Grover’s algorithm

Grover’s algorithm allows a quantum computer to search unstructured data quadrat-
ically faster than any classical computer. Suppose you have a list of N items, and
you want to locate a specific one that has some unique property: this the marked
item. To find it using classical computation, you would need to check, in the worst
case, all N items. A quantum computer, with Grover, can find the marked item in√
N steps. In Figure 2.7 is shown a possible implementation of a 3-qubit Grover

circuit. Similar to Deutsch-Jozsa, Grover’s algorithm also makes use of an oracle.
In this case, the oracle is a function (implemented in the quantum circuit) that
given the full search space, is able to mark the item that we want to find. Marking
in this case means adding a negative phase to it, while leaving all the other items
unchanged. For example, in the Figure 2.7 case, the algorithms searches for a
specific state in the possible 8 (2n where n = 3, the number of qubits) states.
The oracle marks the state ω = 101, adding a negative phase to it; the matrix
representation of the oracle is like this:

Uω =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

← ω = 101

14



Quantum computing fundamentals

The algorithm is composed of three main steps: the first is an initialization phase,
where an Hadamrd gate is applied to the qubits. Then, the oracle is applied
which marks the wanted item with a negative phase. Lastly, there is the amplitude
amplification step, which makes use of the marked item’s negative phase to increase
its amplitude (so the probability of being measured) while reducing the amplitude
of the other non-marked states. After this step there is a near-certainty to end up
measuring the marked state, successfully finding the wanted item.

Figure 2.7: Example of a 3-qubit Grover implementation. Source: Qiskit Textbook
[8]

2.4.3 Quantum Fourier transform
The Quantum Fourier transform (QFT) is the quantum analogue to the discrete
Fourier transform over the amplitudes of a wavefunction. It is a very important
quantum algorithm, being part of many other quantum algorithms, such as Shor’s
algorithm and quantum phase estimation.

The quantum Fourier transform acts on the qubits by transforming their state
between two bases, the computational (Z) basis, and the Fourier basis. In fact,
all multi-qubit states in the computational basis have corresponding states in the
Fourier basis, and the QFT simply translates between these two bases.

|State in Computational Basis⟩ QFT−−→ |State in Fourier Basis⟩

The H-gate is actually a single-qubit QFT, transforming the |0⟩ and |1⟩ states
(Z-basis) to the |+⟩ and |−⟩ states (X-basis). Working with qubits in the Fourier
basis is useful because their value is encoded in them through fractional phases,
and this makes some operations easier, like addition and multiplication. In Figure
2.8 is shown a general N-qubit implementation of a QFT algorithm, with H being
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Figure 2.8: N-qubit QFT implementation. Source: Qiskit Textbook [8]

the Hadamard gate and UROT being a 2-qubit rotation defined as follows:

UROTk =
C
1 0
0 exp

1
2πi
2k

2D
At the end of this circuit the final state is the QFT of the input state, but with
the order of the qubits reversed.

2.4.4 Shor’s algorithm
Shor’s algorithm is a famous quantum algorithm for finding the prime factors of
an integer. This is an extremely important problem, since current cryptographic
algorithms, like RSA, are based on the assumption that factoring large integers
is computationally expensive. This is true for classical algorithms, since the best
known classical algorithm for factoring integers runs in sub-exponential time, more
precisely:

O
1
e1.9(log N)1/3(log log N)2/32

which is quite expensive. Shor’s algorithm, on the other hand, is able to factor
integers in polynomial time, more specifically it runs in:

O
1
(logN)2(log logN)(log log logN)

2
which is almost exponentially faster than the classical one. Once we are able to
construct quantum computers big enough to run Shor’s algorithm for large integers,
everyone will have to switch from using current cryptographic algorithms like RSA
to new algorithms collectively known as post-quantum cryptography, which are
resistant to quantum algorithms as well as classical ones.

The strength of Shor’s algorithm is that it turns the integer factoring problem into
a period finding problem. Period finding means given a periodic function, find its
period: the smallest integer after which the function starts repeating itself. This
problem can be efficiently solved, in polynomial time, by using the quantum phase
estimation algorithm (based on the quantum Fourier transform). Thus, Shor’s
algorithm can use the quantum phase estimation algorithm to efficiently solve the
factoring problem as well.
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Chapter 3

Quantum noise

Quantum devices, like classical ones, are affected by different sources of noise. We
can divide them in two main categories: intrinsic noise and stochastic noise.

3.1 Intrinsic noise
Intrinsic noise relates to noise that depends on the physical realization of the qubit
in question. It is always present, even in the absence of external noise sources.
Usually, two main metrics are used to quantify intrinsic noise: T1, or relaxation
time, is the amount of time that it takes for a qubit in an excited state (i.e. |1⟩)
to naturally decay to a lower energy state (i.e. |0⟩). The other metric is T2, or
dephasing time, which is the time that it takes for a qubit in a superposition state
(i.e. |+⟩ or |−⟩) to dephase to a state in which the phase cannot be accurately
predicted; this happens because of the loss of quantum coherence. In fact, T2 can
be thought of as the loss of quantum coherence over time.

3.2 Stochastic noise: ionizing radiation
Stochastic noise is instead the noise caused by external sources. These are, for
example, cosmic rays. The Earth, end everything on its surface, is constantly
bombarded by high-energy particles. The sources of these particles are various as-
trophysical processes, and originate in different parts of space: from solar eruptions
of our own Sun, to astronomical objects in our galaxy and even in distant galaxies.

When these particles hit computers, they can cause errors. In classical com-
puters for example, a particle hit can cause data corruption on memory or a wrong
execution on a CPU. These errors are called transient faults or soft errors, because
they are one-time events, not permanent damage. Classical computers deal with
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Figure 3.1: Cosmic rays visualization. Source: CERN [9]

this by using error corrected memory (ECC memory, which uses redundant bits to
detect and correct errors) or repeating instructions on CPUs.

In quantum computers, it has been shown in recent studies that ionizing ra-
diation can cause the decoherence of the computer’s qubits [10, 11], leading to a
wrong calculation. This suggests that mitigating the effect of ionizing radiation on
quantum computers will be a critical component of achieving fault-tolerant quantum
computers. Figure 3.2 shows a plot from one of these recent studies, specifically
McEwen et al, 2022 [11]. The experiment consisted in preparing the qubits in the
excited state |1⟩, then allowing them to idle for 1 µs and then measuring them,
repeating this process multiple times. The objective was to collect data on qubit
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Figure 3.2: Plot showing the impact of a cosmic ray hitting a quantum device:
the number of qubit errors (y-axis) suddenly spikes, before returning to normal
levels. Source: McEwen et al, 2022 [11]

errors in the event of a particle strike. The Figure shows one particle strike and its
effect on a 26 qubit subset of a Google Sycamore processor: we can see that the
quantum processor has a baseline of around 4 errors, but when the particle hits
the error rate suddenly spikes to around 23-24, thus effectively saturating the chip.
Then, the error rate gradually returns to the baseline. They counted as errors any
measurement where a qubit was in the |0⟩ state, since that implies that it had
decayed from the prepared |1⟩ state.

This study clearly shows how critical transient faults, and ionizing radiation in
particular, can be for a quantum computer.
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Chapter 4

Fault injection in quantum
computation

4.1 Modeling the fault
When a particle hits a quantum computer, what actually happens? How can
we model it? In classical computers, it is relatively easy: a particle hitting a
memory cell could change a 0 into a 1, or vice versa, and there are no other
options. If a particle hits a qubit, on the other hand, it can change its value
in any way: since the value of a qubit corresponds to a point on the surface of
a sphere, we can imagine the particle changing this point to any other point,
equivalent to a rotation around some axis. Mathematically, this means that the
way a particle changes a qubit can be described by two real numbers, which we
will call θ and ϕ, as shown in figure 4.1. The qubit state |ψ⟩ (green) is shifted to
|ψ∗⟩ (red), and this shift can be described by how much their θ and ϕ have changed.

This way, we can model any shift of any intensity of a single qubit.

4.2 Fault injection
Now that we know how to model an impact of a particle, how do we go about
using it to learn more about faults in quantum computers? The idea is to simulate
the effect of a particle hitting a given quantum circuit, and then observe how the
output of the circuit is impacted.

A particle would change the state of a qubit in a random way. In order to
simulate that, we need to arbitrarily change the state of a qubit in a given position
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Figure 4.1: Modeling of the impact of ionizing radiation on a single qubit. The
qubit state is changed from |ψ⟩ to |ψ∗⟩. Source: Oliveira et al., 2021 [12]

in the circuit. In Qiskit, the quantum computing framework that we are using,
there is a gate that allows us to do just that: the U gate. It is the most general

Figure 4.2: Qiskit’s U-gate. Its parameters are θ, ϕ and λ

gate available in Qiskit. By defining a U gate with a specific θ and ϕ and inserting
it into a circuit, we can change a qubit in any way we want.

Let’s take a circuit as an example: an implementation of Grover’s algorithm.
This is an algorithm used to search an unordered list. A 2-qubit implementation is
shown in figure 4.3. Since we want to simulate all possible faults, we will inject the
U gate in each possible position in the circuit. Not only that, but for each of those
positions we will inject a range of possible values of θ and ϕ. Usually, these will be
from 0 to 2π with increments of π

12 . For example, in figure 4.4 there is a possible
injection in the Grover circuit: the qubit q0 is injected after the first gate, with a
ϕ shift of π

4 .
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Figure 4.3: 2-qubit version of Grover’s algorithm.

Figure 4.4: Example of injected Grover circuit. Source: Oliveira et al., 2021 [12]

4.3 QVF metric

4.3.1 The output of a quantum circuit
We now have a way of simulating a fault in a quantum circuit. How do we charac-
terize its effect on the output of the circuit? First, let’s see how the output of a
quantum circuit looks like. In order to extract information from the qubits, they
need to be measured. This step can be seen as the rightmost operations on the
Grover circuit example, in figure 4.3. The result of each measurement operation
is either |0⟩ or |1⟩, since the complex quantum state of the qubit is collapsed by
the measurement. Actually, for the sake of precision, this is not generally true:
the result of the measurement depends on which measurement basis is used. The
computational basis, the one that results in |0⟩ or |1⟩, is the most common one.

If we measure N qubits then, we expect to get a string of N bits. In addition,
quantum computation has an intrinsic probabilistic component, hence the same
computation is performed several times, and our final result will be a distribution
of these N bit strings.

For example, in figure 4.5 is the output of the Grover circuit shown in figure
4.3. Here we can see that the string 11 has a 81.6% probability of being measured,
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much more than all the others, so we can easily define it as the output of the circuit.
Though we can begin to see here how it can be tricky to judge the quality of the
output of a quantum circuit. What if there are two strings with equal probability,
one correct and one incorrect? Is that better or worse than the case in which the
most probable one is an incorrect one? And, most importantly, how can we define a
metric that, while considering all these factors, decides on a number that represents
the quality of a circuit output?

Figure 4.5: Example of the output of the Grover circuit.

4.3.2 The QVF metric
As hinted at in the previous section, determining the correctness of the output of a
quantum circuit is not a binary correct/incorrect problem. There is some nuance to
it: for example, the best case scenario is when the correct state is the one with the
most probability of appearing by a large margin, like in figure 4.5. On the other
hand, if there is ambiguity when choosing the most probable state, it is not an
ideal situation, even if in that case the correct state might be the most probable one.

We want then to define a metric that, given the probability distribution of the
states of a circuit, outputs a number between 0 and 1 that reflects how wrong the
output of the circuit is. For example, if the most probable state is an incorrect one
by a large margin, the metric should be close to 1. When there is ambiguity when
choosing a state, maybe the correct state is tied in probability with an incorrect
one, the metric should be around 0.5. In the best case scenario, when it is easy to
select the correct state, it should be close to 0.
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We can define such a metric starting with the Michelson Contrast, which is used
in graphical processing, and applying it to quantum computing outputs. This
equation helps us to define how confidently we can select the correct state among
all the states in the output:

Contrast = P (A)− P (B)
P (A) + P (B)

where P (A) is the probability of the correct state and P (B) is the highest probability
among the incorrect states. The contrast calculated as such is in the range [−1, 1],
since it is possible to have P (A) < P (B), especially when considering fault injected
circuits. Also, we want a metric where a lower value means a more correct output,
and this is the opposite. In order to fix this and shift the range to [0, 1], we can
define the metric as:

QV F = 1− (Contrast + 1)/2

The QVF (Quantum Vulnerability Factor) defined like this possesses the desired
properties discussed previously: values close to zero indicate that the correct state
is the most probable and there is no ambiguity when selecting it. QVF values close
to 0.5 indicate that the correct state and some other incorrect state have similar
probabilities, making it hard to confidently select the correct one. Lastly, QVF
values close to 1 imply that some incorrect state has even higher probability than
the correct one, which is a worst case scenario. In figure 4.6 there is an example of
QVF values for three different faults injected in the 2 qubit Grover circuit, showing
some of these properties.
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Figure 4.6: Example of QVF on 3 different outputs of the 2 qubit Grover circuit.
Source: Oliveira et al., 2021 [12]
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Chapter 5

Quantum circuit cutting

Part of this thesis involves studying the propagation of faults when a novel technique,
quantum circuit cutting, is applied to quantum circuits. This chapter will serve as
a brief introduction to circuit cutting.

5.1 Basic idea
Quantum circuit cutting is a novel technique that consists in splitting a quantum
circuit into multiple and smaller sub-circuits (or cuts). These subcircuits can
then be run independently from one another and their individual outputs can be
recombined to reconstruct the final output, which is demonstrated to be equivalent
to the output of the full (uncut) original circuit [13, 14]. This recombination is
a classical computation, and is sometimes defined as the classical postprocessing
step. The advantage that circuit cutting offers is that you can effectively execute
N -qubits quantum circuits on M -qubits quantum computers, where M < N . For
example, in Figure 5.1 is shown how a 4-qubit implementation of the Quantum
Fourier Transform algorithm is cut into three 3-qubit subcircuits. We can see how
each of the three subcircuits is smaller than the original circuit, both in number
of operations and in number of qubits, effectively allowing the execution of the
original 4-qubit circuit with a device with potentially only 3 qubits.

5.2 Circuit cutting process
The process of circuit cutting involves, first and foremost, selecting the cut lo-
cations. This can be done manually or automatically. In this work, we used a
recently published framework that automatically selects the cut locations; this will
be detailed in section 6.3. For now, let’s take the cutting of the QFT circuit in
Figure 5.1 as an example. Each qubit wire has been cut in one or more locations;
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(a) subcircuit 0 (b) subcircuit 1 (c) subcircuit 2

QFT circuit

Figure 5.1: Original 4-qubit QFT circuit (top) and the three subcircuits of 3 qubits
each (bottom) obtained from circuit cutting. The three cuts output combination
provides the original circuit output, allowing the cuts to be executed on quantum
computers with fewer qubits. Source: [15]

q0, for example, has been cut between its third and fourth operation and between
its sixth and seventh. The set of all cuts on all qubit wires defines a cut solution,
from which the smaller subcircuits to be executed can be extracted.

After obtaining a cut solution, the subcircuits are executed just as you would
execute any quantum circuit. The reconstruction of the original circuit’s final
output is done by performing a series of Kronecker products between the relevant
outputs of the subcircuits, and finally summing them together. This process relies
on measuring each (relevant) qubit of each subcircuit on a set of orthonormal matrix
bases, for example the set of Pauli matrices I, X, Y, Z. For this reason multiple
measurements are required, and the executions of the circuits should be performed
several times in order to better capture its probabilistic nature. Note that this
is not a problematic overhead, since even in standard quantum computing it is
expected to perform the experiments multiple times, given the general probabilistic
properties of quantum computers.
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Chapter 6

Experimental setup

In this Chapter, we’ll describe more in detail the experiments performed, after
having given a general introduction to the methodology in the previous Chapter 4.
In the following Chapter, Chapter 7, we’ll present the results. The experiments are
divided in three parts: single fault injection, where we inject one fault at a time
on a given quantum circuit; double fault injection, where we inject two faults at
a time. And lastly, injection on quantum circuit cuts, where we perform (single)
fault injection on a recent innovation in quantum computing, circuit cutting, which
aims to split large quantum circuits in smaller, independent portions to be more
easily executed. This will be better explained in its own section.

6.1 Single fault injection
This experiment involves taking a circuit and injecting faults one at a time over all
possible positions in the circuit, over a defined range of (θ, ϕ) values. The tested
circuits are: Bernstein–Vazirani, Deutsch–Jozsa and Quantum Fourier Transform,
shown in Figure 6.1.

Deutsch–Jozsa (DJ, Figure 6.1b), while of limited practical use, was the first
algorithm that showed that Quantum Computer could be faster than classical
computers and is a circuit that, given a function executed, is able to identify if
the function is constant or balanced. Bernstein-Vazirani (BV) algorithm is an
extension of Deutsch-Josza that identifies a string encoded in a function. Lastly,
Quantum Fourier Transform (QFT) is the quantum analogue of the discrete Fourier
transform. It is particularly interesting as it is a fundamental part of many quan-
tum algorithms, such as Quantum Phase Estimation (QFE) and Shor’s factoring
algorithm.

28



Experimental setup

H

H

H

H

Z

I

H

H

H

0 1 2

q0

q1

q2

q3

3c

(a) Bernstein–Vazirani circuit (4 qubits) used in the injection
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(c) Quantum Fourier Transform circuit (4 qubits) used in the injection

Figure 6.1: Quantum circuits used for single fault injection.

First, the considered circuit is executed as is, without faults, to extract the gold
output, i.e. the output of the fault-less execution, that will be used as reference.
Then, faults are injected in each possible position in the circuit. More in detail,
this means that a U-gate that rotates the qubit by a specific (θ, ϕ) combination is
inserted before each gate in the circuit, one at a time. This is done for all possible
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combinations of (θ, ϕ) over a range of θ = [0, π] and ϕ = [0, 2π[, each with a step
of π

12 . This configuration results in 312 possible injections for each position in the
quantum circuit. Each injected circuit generated as such is then executed just as
one would execute any quantum circuit, and its output compared with the gold
output to compute the specific QVF value for that injection.

6.2 Double fault injection

Since it has been shown that a single particle strike can impact multiple qubits [16],
the next step is to try and inject multiple faults at the same time. Here, we inject a
maximum of two faults simultaneously. We will denote the first fault as (θ0, ϕ0) and
the second one as (θ1, ϕ1). It is still unknown how to exactly model a particle strike
affecting multiple qubits; thus, we proceed as following: the first fault, (θ0, ϕ0),
is injected exactly the same way as for the single fault injection, so considering
all possible positions in the circuit and all (θ, ϕ) combinations in a certain range.
Then, once we select a location for the first fault and a specific (θ0, ϕ0) shift, we
inject a set of possible second faults, considering all the neighboring qubits and all
lower phase shifts with respect to the first one, i.e. θ1 ≤ θ0 and ϕ1 ≤ ϕ0.

An important information to specify is what exactly we mean by neighboring
qubits. Circuits representations like those in Figure 6.1 are logical circuits. They
denote the sequence of operations that are specified by the programmer who de-
signed it. This is not the exact sequence of operations that are executed in a
given physical quantum computer. This may be because a quantum computer may
not have those specific operations available, and so it has to execute a different
sequence of operations that is mathematically equivalent to the logical one, but
different in order to remain within the constraints of its hardware. This process of
rewriting a logical quantum circuit to match the topology of a specific quantum
device is called transpilation. Coming back to the location of the second fault then,
when talking about neighboring qubits, we first take a physical quantum computer
as reference. Then, looking at its topology, we identify the qubits that are actually
physically close to each other. Lastly, when choosing the location of the second
fault, we consider all those qubits physically adjacent to the qubit of the first fault.
For example, in Figure 6.2 there is an example of a quantum computer’s coupling
map, more specifically IBM’s Vigo. This depicts the qubit couples that permit
CNOT gates between them, which are 2-qubit gates, indicating physical adjacency.
In this study, a fault in qubit 1, for example, is going to generate (smaller) faults
on qubits 0, 2, 3 ; while a fault in qubit 4 is only going to produce faults in qubit
3.
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Figure 6.2: IBM’s Vigo coupling map, indicating its topology. In this work this is
used to select where the second fault propagates.

6.3 Injection on quantum circuit cuts
As introduced in Chapter 5, circuit cutting is a novel technique that allows splitting
large quantum circuits into several smaller and independent subcircuits (or circuit
cuts). In this thesis we want to study how transient faults impact the execution of
these subcircuits, with a possible goal, for example, of selective hardening. If, in
fact, we find that some subcircuits are more vulnerable to transient faults than
others, an eventual future hardening technique can be used more efficiently for
protecting the most vulnerable subcircuits.

6.3.1 Tested quantum circuits and their cuts
We performed this injection on three quantum circuits: Quantum Fourier Transform
(4-qubits), Bernstein–Vazirani (4-qubits) and Deutsch–Jozsa (4-qubits). The QFT
circuit and its cut solution are represented in Figure 5.1. The original circuit of 4
qubits is split into three subcircuits of 3 qubits each. We can describe the reduces
size of the subcircuits using the number of operations and the circuit depth, with
the latter being defined as the highest number of operations on a single qubit
wire that can be found on the quantum circuit in consideration. In QFT’s case,
the subcircuits reduce the uncut circuit’s depth of 7 to a depth of 6, 4, and 3,
respectively, while the number of operations is reduced from 20 to 11, 6, and 3. The
tested cut solutions of the BV and DJ circuits are shown respectively in Figures
6.3 and 6.4. They are both 4-qubit circuits with an additional ancilla qubit. They
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are split into two subcircuits of 4 (3 + 1 ancilla) and 2 (1 + 1 ancilla) qubits each.
For BV, the original circuit has a circuit depth of 6, reduced to 5 and 3 respectively
in the subcircuits. The number of operations, 14, is split in 11 and 3. For DJ, the
number of operations, 22, is divided into 17 and 5 respectively, while the circuit
depth goes from 6 of the uncut circuit to 5 for both subcircuits. Thus, we can say
that for both BV and DJ the first subcircuit is considerably larger than the second.
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Figure 6.3: (a) The uncut BV circuit. Through the technique of circuit cutting,
this circuit is split into two subcircuits, shown below it in (b) and (c).
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Figure 6.4: (a) The uncut DJ circuit. As with BV, this circuit is split into two
subcircuits, shown below it in (b) and (c).

6.3.2 Methodology and frameworks used
To select a cut solution and thus extract the subcircuit from the original circuit, we
use a recently developed framework called CutQC [14]. CutQC is an implementa-
tion of the circuit cutting technique that given a quantum circuit to cut and some
constraints, automatically finds a cut solution within those constraints. In addition,
CutQC also optimizes for the cut solution with minimal classical overhead needed
to reconstruct the final result in the classical postprocessing step.
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Once the cut solution has been found and the subcircuits extracted, we perform
our fault injection on each subcircuit. This is done exactly the same way as for the
single fault injection, as described in section 4.2. Faults are simulated by inserting a
parametrized U-gate in all possible positions of the subcircuit. The additional step
that is required here is the recombination part: since we aim to study the impact
that faults have on the final output of the circuit, each time we inject a fault on
one subcircuit we then recombine its corrupt output with the output of the other,
faultless, subcircuits. We can then measure the impact (i.e. compute the QVF
value) of that specific fault in that specifc subcircuit on the final output of the circuit.

To recombine the subcircuits outputs we use MLFT’s implementation (Maxi-
mum Likelihood Fragment Tomography) of circuit cutting [17], a technique that
aims to reconstruct the “most likely” probability distribution defined by a quantum
circuit, given the measurement data obtained from its subcircuits.
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Chapter 7

Experimental results

Having explained the process by which we inject the faults and the metric used to
judge the outputs, we can in this section show the results of some injections.

7.1 Single fault injection
First, here we discuss the single fault injection results, which means injecting one
fault at a time exactly as described in section 4.2. In Figures 7.1, 7.2 and 7.3 there
are the results for the three considered circuits, respectively: Bernstein-Vazirani,
Deutsch-Josza and Quantum Fourier Transform. These take the form of a QVF
heatmap (a) and a QVF distribution histogram; in the heatmap, as described in
section 4.2, each combination of angles (θ, ϕ) is injected in each possible position
of the circuit and a QVF value is calculated in each of those cases. The heatmap
displays for each combination of (θ, ϕ) the QVF for that angle combination averaged
over all positions in the circuit. The value of QVF is represented by color, with
green indicating when it’s close to zero, white when it’s around 0.5 and red close
to 1. We injected faults with values for θ = [0, π] and ϕ = [0, 2π], with steps of
π
12 . As expected, we can see in all circuits that the QVF for angles close to (0, 0)
is green, indicating that the output is similar to the faultless execution, which
makes sense when injecting faults with very small angles. In the histograms, (b),
we plot the distribution of QVF values for injections on circuits with increasing
circuit sizes, from 4 to 7 qubits. This is both another way of visualizing the same
information of the heatmaps (in the 4-qubit case), and also a way to compare differ-
ent behaviours that may emerge when increasing the number of qubits of the circuit.

Looking at the whole heatmaps, we notice how there are green regions, red regions
and white regions. We can then deduce that if a fault occurs with angles that
fall in a green region (QV F < 0.45), on average, it will have no impact on the
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(a) 4-qubit Bernstein-Vazirani single
fault injection heatmap
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Figure 7.1: Results of single fault injection on BV circuit. (a) Shows the QVF
heatmap for the 4-qubit circuit, (b) shows the QVF distribution histograms for
increasing circuit sizes.

correctness of the output (the circuit will still produce the correct state as the most
probable one). Otherwise if the angles fall in a white region (0.45 < QV F < 0.55),
the output will be ambiguous and the correct state cannot be confidently selected.
Lastly, if the angles fall in a red region (QV F > 0.55), the circuit will output a
wrong state as the most probable one.

Figures 7.1 and 7.2 present the results for the single fault injection on the BV and
DJ circuits respectively. The two circuits behave similarly, and the two heatmaps
(a) show clearly defined red and green regions. To better analyze these results,
let’s consider shifting only one variable. For example, by keeping θ fixed at 0 and
increasing ϕ (equivalent to going vertically up in the θ = 0 column) we can learn
that ϕ shifts are critical when they are around the value of π. The same can be said
of θ values (going horizontally from left to right at ϕ = 0). Interestingly though,
when both θ and ϕ are around π, the QVF turns green; this seems to suggest
that the combination of these angle shifts has a compensating effect resulting
in a correct output. Looking instead at the histograms (b), they show that the
vulnerability to faults in these two circuits does not change when you increase the
size (number of qubits) of the circuit. These histograms plot the distribution of
QVF values starting at 4 qubits (hence, the same data as the heatmaps) going
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Figure 7.2: Results of single fault injection on DJ circuit. (a) Shows the QVF
heatmap for the 4-qubit circuit, (b) shows the QVF distribution histograms for
increasing circuit sizes.

to 7 qubits, and they all have the same distribution. In Figure 7.3 there are the
results of the same analysis on the QFT circuit. On the left (7.3a) we can see the
QVF heatmap for the 4-qubit QFT circuit. Unlike the heatmaps for BV and DJ,
this one is not symmetric over ϕ, but presents a diagonal area with lower QVF.
Lastly, considering 7.3b, this too shows a different behaviour than BV and DJ:
QFT circuits of different sizes actually have different QVF distributions. In fact,
when increasing the number of qubits the QVF tends to the average value (lower
standard deviation, thus higher peak around 0.5). We can then say that, as QFT
circuit scales up, the number of harmless faults is reducing and the probability to
have a dubious output (0.45 < QV F < 0.55) increases.

7.2 Double fault injection
In this section we will show the results of the double injection experiment. This is
where, after injecting the first fault, we also inject a second fault on a neighboring
qubit with a smaller magnitude. The process is explained more in detail in section
6.2.

In Figure 7.4 there are the results for the Bernstein–Vazirani circuit. In (a)
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Figure 7.3: Results of single fault injection on QFT circuit. (a) Shows the QVF
heatmap for the 4-qubit circuit, (b) shows the QVF distribution histograms for
increasing circuit sizes.

is repeated, for reference, the QVF heatmap of the single fault injection of the BV
circuit (it is a portion of Figure 7.1a). In (b) is figured the heatmap of the double
fault injection. It is to be interpreted in a slightly different way than the heatmap
of the single injection: since this time, for each (θ, ϕ) combination there isn’t a
single QVF value, but a series of QVF values, one for each different second fault
(θ1, ϕ1). Thus, in order to still be able to construct the heatmap, we averaged all
the QVF values of the second faults and put that average in the heatmap. This
means that in Figure 7.4b, each (θ, ϕ) spot is the average QVF of all the possible
configurations of first fault ((θ, ϕ), fixed) plus second fault ((θ1, ϕ1), ranging θ1 ≤ θ
and ϕ1 ≤ ϕ). Since just performing an average doesn’t give the full picture, we
also added Figure 7.4c that depicts all the second faults (θ1, ϕ1) individually for a
specific first fault (θ = π, ϕ = π). This 3D graph has on the XY plane the angles
of the second fault (θ1, ϕ1). The height of the points (Z axis) is the QVF for that
specific second fault. As reference, it is also plotted as a grey XY plane the height
of the QVF with only the first fault. As we can see, the plane is at the same height
as the (0, 0) point, which correspond to a non-existing second fault.

As expected, the second injection worsens (increases) the average QVF in all
cases. Specifically, the area around (π, π) was green in the single fault injection,
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but turns white/red in the double fault injection. These seem to be the angles most
affected by the insertion of the second fault. This is better visually represented in
Figure 7.5, where we show, for each (θ, ϕ) spot, the difference in QVF values be-
tween the single and the double fault injection. As we can see, there is no blue in the
graph; meaning that the insertion of the second fault always increases the QVF. Ad-
ditionally, we notice how the biggest increase in QVF is in the region around (π, π).

Additionally, Figure 7.4c shows the QVF for the Bernstein-Vazirani circuit obtained
by fixing the phase shift in the first fault to (π, π) and injecting a series of second
faults of θ1 ≤ π and ϕ1 ≤ π. It can be interpreted as a depiction with increased
granularity of the highlighted square in Figure 7.4b. It is interesting to observe a
behavior that results in a lower QVF of the second injection when both θ1 and ϕ1
assume values closer to π, while the worst QVF values are found when only one of
the two shifts is close to π and the other tends to 0.

Lastly, Figure 7.6 shows the distribution of QVF values for single (black) and
double (red) fault injection on the Bernstein-Vazirani circuit. We can generally see
how the QVF values for the double fault injection tend toward the right side of the
graph, indicating a higher mean QVF; this is confirmed by computing the average:
0.46 for the single injection and 0.53 for the double injection. Additionally, the
distribution for the double injection is also more concentrated at higher QVF values,
with a standard deviation of 0.1839 against 0.1818 of the single fault injection. This
data confirms the conclusion that a double fault has a worse effect on the output.

7.3 Injection on quantum circuit cuts

In this section we present the results of the injection on quantum circuit cuts. A
description of circuit cutting can be found in Chapter 5, while the details of how
we performed the injection are explained in 6.3. Briefly, quantum circuit cutting
is a novel technique that allows to split a large quantum circuit into multiple
smaller subcircuits. These subcircuits can be independently executed and their
outputs recombined to reconstruct the final output of the original circuit. Here, we
performed a fault injection on these subcircuits, aiming to better understand how a
fault in one subcircuit propagates to the final reconstructed result of the full circuit.
In addition, we also found how some subcircuits have different vulnerabilities to
transient faults than other subcircuits, opening up possibilities for future selective
hardening techniques.
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7.3.1 Fault injection

We tested three quantum circuits of 4-qubits each: Deutsch–Jozsa (DJ), Bern-
stein–Vazirani (BV) and Quantum Fourier Transform (QFT). We show our results
through a series of heatmaps, similar to the single and double fault injection. In
the subcircuit heatmaps (for example (b), (c), (d) in Figure 7.7), each (θ, ϕ) spot
represents how critical a fault of those angles occuring in that subcircuit is, when
considering how much it corrupts the final reconstructed output. More specifically,
to each (θ, ϕ) spot is assigned a QVF value (green-red spectrum), that is the average
QVF for faults of those angles in that subcircuit (average over all position in the
subcircuit).

In Figure 7.7 there are the results for the QFT circuit. In 7.7a is reported,
for reference and easier comparison, the single fault injection on the full QFT
circuit (with no circuit cutting). We can see here how the general trend is that the
only harmless faults (green values) are when the θ shift is lower than π

2 . This result
is reasonable if you consider that a θ shift changes the qubit |0⟩ − |1⟩ probabilty,
and a shift of π

2 rotates the qubit vertically by half of a Bloch Sphere, which is
enough to start inverting the |0⟩ − |1⟩ probabilty. We can then say that a shift in
θ is more crticial than a shift in ϕ. Instead, the criticality of a shift of both θ and
ϕ simultaneously cannot be easily estimated. In Figures 7.7a, 7.7b, 7.7c are shown
the heatmaps for the injection on QFT’s subcircuits. At a glance, we can already
see how the three subcircuits all have different vulnerabilities to different faults.
For example, a phase shift of (π, π) leads to an ambiguous or incorrect output if
injected in subcircuits 0 or 2, while being non-critical for subcircuit 1. Another
interesting behaviour that we can observe is that subcircuit 2 seems to be more
influenced by θ shifts rather than ϕ shifts, as we can see by its heatmap having a
more vertical pattern: faults characterized by θ ≤ π

2 tend toward being non-critical,
those with θ ≈ π

2 produce an ambiguous output and those with θ > π
2 result in an

incorrect state.

In Figures 7.8 and 7.9 are shown the heatmaps for the injection on BV and
DJ circuits respectively. We can immediately see that they are similar; this is to
be expected since BV is an extension of DJ and the circuits are similar. The first
heatmap (a) is, as before, the single fault injection on the full circuit (no circuit cut-
ting), added for reference. It is easy to notice that in both algorithms, subcircuit #0
(b) is very similar to the full circuit injection (a). This makes sense when you con-
sider that for these circuits, subcircuit #0 is significantly larger than subcircuit #1,
thus it has the biggest impact on the overall vulnerability to faults. This can be seen
in the circuits drawings in Figures 6.3 and 6.4 respectively for BV and DJ. Another
thing to notice in both cases is that subcircuit #1 is slightly less critical, in general,
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to transient faults. In fact, although maintaining the same general pattern in the
heatmap, the red regions are less intense while the green ones are sometimes larger.

In Figure 7.10 are plotted the distribution histograms of QVF values for the
injection on all three considered circuits (and their subcircuits). This is the same
data as for the previous heatmaps in Figures 7.7, 7.8 and 7.9, but it is another way
of displaying it. We can have a more general view of the distribution of QVF values
over the full fault injection, while also providing the mean (X̄) and the standard
deviation (σ). For instance in the histogram for the QFT circuit, in 7.10a, we can
see that the uncut circuit has a QVF distribution more concentrated around the
middle, with a mean of 0.44 and a low standard deviation (0.17), which translates
to a higher number of white values in the heatmap with respect to its subcircuits.
Subcircuit #0 instead reduces the height of the peak and shifts some values to
a lower QVF, meaning that its heatmap is overall more green, as can be seen in
Figure 7.7b. Subcircuits #1 and #2 both further lower the height of the peak,
meaning a more spread out distribution of values, with subcircuit #2 having the
highest mean QVF, 0.5, indicating a higher sensitivity to faults. Figures 7.10b
and 7.10c show the histograms for BV and DJ circuits respectively. Both circuits
perform similarly, with subcircuit #0 being the more critical one in both cases.

7.3.2 Selective hardening
While an effective hardening technique does not yet exist for quantum circuits, we
can use this data to estimate the impact of an eventual selective hardening tech-
nique. For example, here we assume that we can completely protect one subcircuit
from all faults, and we estimate how that would impact the final output of the full
circuit. We do this by replacing the QVF value of injections on that subcircuit
with a QVF equal to its QVF in (θ = 0, ϕ = 0). We choose this approach instead
of just assuming its QVF to be always zero in order to preserve any intrinsic noise
in the computation. We show these results again through heatmaps and histograms.

In Figure 7.11 are shown the results of this selective hardening estimation for
the QFT subcircuits. Figures 7.11a, 7.11b and 7.11c correspond to the QVF value
heatmaps for the full circuit assuming one specific subcircuit to be completely
shielded from faults, like described before. They represent subcircuit #0, #1 and
#2 respectively. This result, for example, shows that if we are able to completely
protect subcircuit #0 from transient faults, it would have the biggest positive
impact on the vulnerability of the full circuit execution with respect to the other
subcircuits. This result might seem at first counter-intuitive, since subcircuit #0 is
not the most critical one: it is in fact the subcircuit with the lowest mean QVF
(Figure 7.10a). But this is explained by the fact that subcircuit #0 is the biggest
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one, as shown in 5.1, and so has the largest impact when shielded. Figure 7.11d
shows the same data as the previous three figures, but in histogram form for easier
comparison, and we can clearly confirm here that protecting subcircuit #0 offers
the lowest mean QVF. Figures 7.12 and 7.13 present the results of the selective
hardening estimate on BV and DJ respectively. The two circuits and subcircuits
behave similarly; in both cases, subcircuit #0 is overwhelmingly the most important
one to protect. As before, this is due to its bigger size, as shown in Figures 6.3 and
6.4.

This selective hardening analysis helps to identify which subcircuit is the most
important one to protect from radiation. Although no such protection technique
exists today, recent studies [10] have shown that ionizing radiation is a problem for
quantum computers, and thus some hardening technique may be necessary.

42



Experimental results

0
º 4

º 2
3º 4

º

µ
sh

if
t

0
º
4

º
2

3º
4º

¡shift

¡
1

sh
if
t

0

º 4

º 2

3
º 4

º

µ1
sh
ift

0

º 4

º 2

3
º 4

º

QVF

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

QVF

(a
) s

in
gl

e 
fa

ul
t i

nj
ec

tio
n

(b
) d

ou
bl

e 
fa

ul
t i

nj
ec

tio
n

(c
) d

et
ai

le
d 

do
ub

le
 fa

ul
t i

nj
ec

tio
n 

¡
1

sh
if
t

0

º 4

º 2

3
º 4

º

µ1
sh
ift

0

º 4

º 2

3
º 4

º

QVF

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

QVF

0
º 4

º 2
3º 4

º

µ
sh

if
t

0
º
4

º
2

3º
4º

¡shift

F
ig

ur
e

7.
4:

Q
V

F
fo

rB
er

ns
te

in
-V

az
ira

ni
fo

r(
a)

Si
ng

le
an

d
(b

)D
ou

bl
e

fa
ul

ti
nj

ec
tio

n.
(c

)D
et

ai
ls

of
th

e
Q

V
Fs

fo
ra

ll
th

e
po

ss
ib

le
do

ub
le

fa
ul

ts
in

je
ct

io
ns

,w
ith

th
e

fir
st

fa
ul

t
in

je
ct

io
n

fix
ed

to
(π
,π

).

43



Experimental results

0 π
4

π
2

3π
4

π

θ shift

0
π 4

π 2
3
π 4

π

φ
sh

if
t

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

∆
Q

V
F

=
D

ou
bl

e
-

S
in

gl
e

Figure 7.5: Difference of the QVFs for Bernstein-Vazirani between single and
double fault injection.
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(b) Subcircuit 0
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(c) Subcircuit 1
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(d) Subcircuit 2

Figure 7.7: QVF heatmaps for the QFT circuit and the subcircuits. The green
color indicates a low QVF (the correct state can be confidently selected), the red
color indicates a higher QVF (an incorrect output is more likely to be selected),
and the white color indicates a dubious output (i.e., correct and incorrect states
have about the same probability).
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Figure 7.11: Heatmaps assuming complete protection from faults for each of the
QFT subcircuit, and the histogram showing their distributions.
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Figure 7.12: Heatmaps assuming complete protection from faults for each of the
BV subcircuit, and the histogram showing their distributions.
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DJ subcircuit, and the histogram showing their distributions.

50



Chapter 8

Conclusions

The work done in this thesis is an attempt to better understand fault propagation
in quantum circuits. Recent studies have shown how critical transient faults can be
to quantum devices [11], and we believe that studying the sensitivity of quantum
circuits to these faults can be a first step towards mitigating their impact. We
learned that each quantum circuit can have different fault propagation characteris-
tics, helping us to identify which faults and which qubits are more critical. We also
looked at quantum circuit cutting and found that the various subcircuits into which
a circuit is cut can have significantly different vulnerabilities to faults between one
another.

These results lead us to suggest how this work could be used for helping fu-
ture hardening techniques. Indeed, if each circuit has its own sensitivity to faults,
these hardening efforts can be more efficiently spent by concentrating them on the
more critical portions of the quantum device.
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