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Abstract

Unmanned aerial vehicles (UAVs) are active research topics, especially the nano and
micro subclass. They are centimeter-size drones with minimal onboard computational
capabilities. These light-weights platforms provide good agility and movement freedom
in indoor environments(i.g. GPS-denied environments). However, it is still a significant
challenge due to the limited onboard computational capabilities to enable autonomous
navigation (or even primary obstacle avoidance abilities) using standard image sensors.
Vision-based perception algorithms used routinely on standard-size drones prevent their
use with state-of-the-art nano-UAVs.
This work demonstrates the possibility of using a new multi-zone Time of Flight (ToF)
sensor to enhance autonomous navigation with a significantly lower computational load
rather than most common vision-based solutions. In particular, the novel integrated ToF
sensor is characterized for the first time in literature in-field using an ad hoc light-weight
PCB and the Crazyflie nano-UAV.

Furthermore, an optimized approach to calculate collision probability from each ToF
sensor frame has been proposed relying on empirical data. The main goal is to develop
a new methodology capable of obstacle avoidance fusing only one 8*8 ToF on the front.
The final system proved reliable (>95%) in-field obstacle avoidance capabilities when
flying in indoor environments with dynamic obstacles.
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Chapter 1
Introduction

Nano and micro quadcopters, characterized by an overall payload of a few tens of grams,
are becoming particularly interesting in many fields, including search and rescue, aerial in-
spection, first aid, and indoor surveillance [1]. However, applied research on autonomous
nano-drones has revealed great challenging problems. Miniaturized hardware leads to ex-
tremely low onboard computational resources, making it challenging to enable complex
navigation missions and more basic tasks, e.g., obstacle avoidance [2]. Considering the
recent advancements of embedded microcontrollers, such as AI-focused mW processors,
now it is possible to deploy real-time image processing algorithms even onboard of the
nano-drones. However, the amount of random access memory (RAM) usually available
onboard is insufficient to keep high-resolution images [3]. Even the latest [4] research
on insect-sized robots can only stream images to a local gateway without any onboard
processing. As a result, common vision-based navigation using cameras still shows limita-
tions when exploring unknown environments or at flight speeds higher than 0.5m/ s [5].
Compared to standard image sensors, optical distance sensors extract the context-depth
of the frontal view, operating at hundreds of Hz and with reduced computational com-
plexity [6]. This work presents an obstacle avoidance system designed for nano-drones.
Our demonstrator is based on the Crazyflie platform from Bitcraze 1. Furthermore, it
exploits a novel, miniaturized, and light-weight 64-pixel time-of-flight (ToF) sensor from
STMicroelectronics (i.e., VL53L5CX).
The in-field demo proves the potential of our work to enable safe collision avoidance
and path-planning at a negligible computational demand compared to vision-based ap-
proaches.

1www.bitcraze.io

1

www.bitcraze.io


1. Introduction

1.1. Contribution

The main contribution is adding indoor navigation capability to nano-UAVs using a
front-facing ST ToF sensor.

At first, this novel sensor was deployed on a Crazyflie platform.

Secondly, as no previous data was available regarding multi-zone ToF sensors on nano-
drones, a data-logger has been implemented to collect valuable data. Later, this data
would be used to calibrate and characterize the sensor.

Thirdly, after preliminary tests, a light-weight solution has been proposed to fuse sensor
data for obstacle avoidance and indoor navigation.
The work is structured into three phases; refer to Appendix A for the detailed task
description.

2



Chapter 2
Related Work

Recent works presented alternative solutions to the typical vision-based perception ap-
proach in the way of autonomous nano-drones.

• PULP DroNet single-camera CNN: In this approach, the drone uses a new paral-
lel ultra-low-power (PULP) system-on-chip (SoC). It uses a camera and CNN to
process images. The final result shows it is unreliable, and the behavior is data-set
dependent [5].

• Camera with radar detector: In this approach, another radar will be added to
the camera for indoor purposes; however, fusing radar data increases complexity.
Moreover, blur obstacles due to dust or low light increase error probability [7].

• LASER ranger: Using LASERs for obstacle avoidance is a needed reinforcement
learning methodology. This approach is unreliable, especially in high-density ob-
stacle environments [8].

• Ultra wide band (UWB): To use this approach, it is necessary to have an environ-
ment map in advance, to be aware of the obstacles and their size. In the case of
other drones with UWB, the number of drones would be limited due to increasing
latency [9].

• Millimeter waves: This methodology enables the drone to measure obstacle velocity
and distance while light condition has a minimal effect on the measurements. More-
over, it works in long ranges. However, it can not give the outline of the obstacle;
besides, there is an accuracy issue with relatively stationary targets [10] [11].

• Single point ToF: Using this approach can give distance to the object, but it is
impossible to understand context as it only gives the distance to the single point
obstacle.

However, many challenges have remained to achieve a reliable methodology.

3



Chapter 3
Background

3.1. ToF Sensor

A time-of-flight camera (ToF camera) is a range imaging camera system deploying time-
of-flight techniques to determine the distance between the camera and the object. This
procedure would be done for each point of the image. The distance would be figured out
by measuring the round trip time of an artificial light signal provided by a LASER or an
LED. The procedure is described at Fig. 3.1.

3.1.1. ST ToF Sensor

"STMicroelectronics’s 4th generation of FlightSense™ sensors offers a multi-zone ranging
sensor to create a 64-zone mini depth map up to 4m. ST ToF sensors are an all-in-one
(emitter, receiver, and processor) system for an easy, cost-effective, and small footprint
integration" . 1

• Accurate and high-speed

• All-in-one

• Low power

• Using 940nm wave

• Measure distance independent to the targets surface features

1https://www.st.com/en/imaging-and-photonics-solutions/time-of-flight-sensors.html

4
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3. Background

Figure 3.1.: ToF of a light pulse reflecting off an obstacle, the distance would be the
result of multiplication of the light speed and round trip time of the signal.

The VL53L5CX2 is a ToF multi-zone ranging sensor produced by STMicroelectronics.
It is possible to achieve a millimeter accuracy in various ambient lighting conditions and
a wide range of cover glass materials. The most important feature of the VL53L5CX is
the multi-zone capability, which can be configured as an 8x8 (max 15Hz) or 4x4 (max
60Hz) matrix with the field of view (FoV) of 61°; however, the real FoV can slightly
change due to different environmental conditions and sensor configurations.

An error flag is reported in case of ToF miss-calculation or interference at 940 nm light-
wave. In this way, noise and errors can be easily filtered out.

3.2. Crazyflie Platform

This project was done on Crazyflie open hardware/software platform Fig. 3.3a. The
drone itself is small and weighs about 27 grams. There is also an additional payload
that weighs 15 grams. It has many features that makes it suitable for this project.
It has low latency, long-range radio, and low Bluetooth energy. The main application
microcontroller unit is from STMicroelectronics, STM32F405. The platform supports an
expansion deck and has real-time logging capability. The drone’s power is 7.6W without
considering the additional payload.

The drone would be equipped with ToF deck as shown in Fig. 3.4.

CrazyFlie software programming overview:

• Python for the Crazyflie PC API and client

• C for the Crazyflie firmware

2www.st.com/en/imaging-and-photonics-solutions/vl53l5cx.html

5
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3. Background

Figure 3.2.: ToF sensor 8x8 multi-zone ranging sensor with a wide field of view

3.2.1. Crazyflie Libraries

3.2.1.1. Crazyflie Firmware

Project 3 contains the source code for the firmware used in the Crazyflie range of plat-
forms, including the Crazyflie 2.X 4.

3.2.1.2. Crazyflie Clients Python

Using the Crazyflie PC client 5, makes it possible to flash and control the Crazyflie. It
implements the user interface and high-level control. This project is mainly based on
cflib Python library. The Crazyflie PC client Fig. 3.3a supports connecting one Crazyflie

3https://github.com/bitcraze/crazyflie-firmware
4GitHub commit used for this project: 0f36a866955074c7a267deec0d69399e8dcc11be
5https://www.bitcraze.io/2018/03/crazyflie-clients/

6
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3. Background

(a) Crazyflie 2.1 platform

(b) Hardware design of the VL53L5CX on the
Crazyflie 2.1.

Figure 3.3.: Hardware platform

using the Crazyradio 6 dongle or direct USB connection to Crazyflie 2.X. It is capable
of telemetry and parameter updating even during the flight. The Crazyflie PC client is
using the crazyflie-lib-python to communicate with the Crazyflie.7

3.2.1.3. Crazyflie Python Library

cflib is an API written in Python used to communicate with the Crazyflie and Crazyflie
2.X quadcopters. It is intended to be used by client software to communicate with and
control a Crazyflie quadcopter. For instance, our custom Crazyflie PC client uses the
cflib.8

3.2.1.4. Crazyflie AI-deck Examples

From this library, only "wifi_jpeg_streamer" example is loaded to processor for stream
images from camera to the custom client 9.

6https://www.bitcraze.io/products/crazyradio-pa/
7https://github.com/bitcraze/crazyflie-lib-python GitHub commit used for this project:

bd904fa89df7c0813edd8fff8979a01a59f56455
8https://github.com/bitcraze/crazyflie-lib-python GitHub commit used for this project:

358de04be72c2cdfadfcc47589d1ff20e9629f03
9https://github.com/bitcraze/AIdeck_examples GitHub commit used for this project:

7d4c182fe9d2f8d9b75a063e8d824058b133a443

7
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3. Background

Figure 3.4.: CrazyFlie PC client
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3. Background

3.3. STM32 Cortex-M4

STM32F4 is a series of high-performance MCUs with DSP and FPU instructions. These
processors are based on Arm® Cortex®-M4 and currently used the processor for this
project, in particular, is: "STM32F405: 168 MHz CPU/210 DMIPS, up to 1 Mbyte of
flash memory"

3.4. Visual Studio Code

Visual studio code is a source-code editor made by Microsoft. It is mainly used for
editing/interpreting our Python and editing/compiling C projects.
Used version: 9.1.0

3.5. Python

Python is a high-level, general-purpose programming language. Here, the Python client
side of our application is mainly based on cflib and other Python libraries.
Used version: Python 3.10.0

3.6. Vicon System

It is a camera-based solution for position and angle estimation. It uses multiple cameras
pre-installed around the field. It uses the infrared camera for ranging and could reach
very accurate (mm-range) distance measurements. It uses a very precise camera Fig. 3.5a.
There is a room at ETH with eight Vicon cameras capable of positioning objects with
very accurate precision Fig. 3.5b.

9



3. Background

(a) Vicon camera

(b) Vicon room platform

Figure 3.5.: Vicon

10



Chapter 4
Hardware / Firmware / Algorithm
Implementation

4.1. Hardware

4.1.1. Overview

The full system consists of:

• Main CrazyFlie drone: Fig. 4.1a.

• AI-deck: To collect camera images Fig. 4.1b.

• Flow-deck: Necessary for flight control Fig. 4.1c.

• ToF-deck: Fig. 4.1d.

4.1.2. Requirements

There are specific requirements the board has to fulfill. Since this board is an expansion
deck for the Crazyflie, the interface to the drone and the connector placement have to be
the same. Moreover, it should also be compatible with the other decks used, including
flow-deck and AI-deck. The main board has to be small to fit onto the drone, and the
height should not be too high to touch the ground. Otherwise, the deck is easily damaged
during landing or crashes. In addition, all decks have to weigh less than 15 g for the drone
to lift them.

11



4. Hardware / Firmware / Algorithm Implementation

(a) CrazyFlie drone

(b) AI-deck

(c) Flow-deck (d) ToF-deck

Figure 4.1.: ToF development platform

4.1.3. ToF Deck

It is a custom design deck connected to the Crazyflie and supports two sensor boards on
it. Its 3D platform is shown in Fig. 4.2.

4.1.3.1. ToF Deck Main Board

This board consists of four main parts. The first part is "power". The power sec-
tion converts volatile li-ion battery voltage (3.0-4.2V) to a stable voltage of 3V using
TPS62233DRYR DC to DC regulator. This voltage is used for all digital circuits.
The second part is the "voltage filter". VL53L5cx needs two voltages, one for the analog
part and one for the digital. This filter separates these two powers. In this way, voltage
noises do not decrease ToF’s measurement accuracy. So, I put this filter to avoid the
digital noise interference on the analog circuits.
The third part is "GPIO management". The Crazyflie has a limited number of free I/Os
in its interconnection. Each ToF sensor needs two I/Os, one for control power mode and
another for handling interrupts. Using TCA6408ARSVR IC, I solved this problem. It is
an IC that is controlled by I2C and it handles some of GPIOs (inputs, outputs, and also
input changes). Using only I2C, this is possible to manage output ports and read input
pins’ status. Moreover, It could sense changes in inputs and make interrupt. Conse-
quently, the ToF deck only uses one GPIO pin to trigger microcontroller’s interrupt, and
GPIO expander IC would control other GPIOs. The board has some configuration 0Ω
resistors to change board configuration. The tested configuration among jumpers (0Ω
Resistors) R9-R11-R12-R2-R8 should not be soldered. The board also includes some
LEDs connected to the GPIO expander for debugging purposes.

12



4. Hardware / Firmware / Algorithm Implementation

Figure 4.2.: The ToF deck, design and interconnection overview

The last part is "Pin Headers". There are four series of pin headers. Two of them are
mapped to Crazyflie interconnection, connected to the Crazyflie board. From this inter-
connection, on the left side, I2C pins (SDA, SCL), I/O (pin N.7) and Ground (GND) are
connected. Only VCOM, the battery power line, is connected on the right side. Other
pins are left float. The other two pin headers are located in the front and back of the
ToF deck, connecting the two sensor boards to the ToF deck board. It includes an I2C
connection, analog and digital circuits power (both working with 3v), reset, low power
control and interrupt pins. The final board is shown in Fig. 4.3.

4.1.3.2. ToF Sensor Board

There are two sensor boards, one in the front and one in the back of the drone. The
sensor boards consist of pull-up resistors for configuring pins and three capacitors. The
capacitors are used for analog and digital inputs of ToF, which makes the input voltage
of ToF more stable and lowers the noises. The final board is shown in Fig. 4.4.

4.2. Software

4.2.1. Firmware

The main code is an application implemented over the CrazyFlie main firmware. The
main code includes initialization, interrupt handling, and the main loop. In the loop,

13



4. Hardware / Firmware / Algorithm Implementation

(a) ToF deck PCB top view (b) ToF deck PCB bottom view

Figure 4.3.: ToF deck PCB

(a) Sensor PCB top view (b) Sensor PCB bottom view

Figure 4.4.: Sensor PCB

14



4. Hardware / Firmware / Algorithm Implementation

ToF data would be collected and processed. Then based on the process result, the flight
plan would be updated. Top-level flowchart is described in Fig. 4.5.

4.2.1.1. Initialize and Configure VL53L5cx

Before configuring the sensors, as all VL53L5cx sensors have similar I2C addresses (0x52),
changing the sensors’ default address is necessary. Other sensors connected to the same
I2C line should be set to low power mode to do this change. Then, the enabled sensor
address would be updated using proper commands. It should be done for all sensors.

In the next step, sensors would be configured in this way:

• Resolution: 8X8

• Targets order: Closest target

• Ranging mode: Continuous

• Ranging frequency: 15 Hz (max rate with this resolution)

Now, after configuration is done successfully, sensors ranging would be enabled. In
this configuration, sensors would do ranging automatically and generate interrupts when
ranging is finished, and data is ready to be collected. Data collection has been done via
the I2C protocol like other communication to the sensors. There is a capability to have
more than one sensor onboard, so it can have more than one interrupt. So, to manage
these sensors, interrupts have been connected to GPIO expander; when any of them
are triggered, GPIO expander triggers microcontroller. Later, the microcontroller checks
which sensor caused this interrupt and will collect data.

4.2.1.2. Process ToF Data

Only the front sensor is enabled, and the process would be done using its data. After
successfully collecting sensor data, it is time to process it. Each sensor frame could
include different data, such as:

• Ambient noise in KCPS/SPADS

• Number of valid target detected for one zone

• The number of spades enabled for this ranging

• Signal returned to the sensor in KCPS/SPADS

• Sigma of the current distance in mm

• Measured distance in mm

• Estimated reflectance in percent
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Figure 4.5.: ToF application flowchart
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• Status indicating the measurement validity (five & nine means ranging OK)

• Motion detector results

However, for our purposes, only three arrays would be collected from the sensor: number
of valid targets detected for one zone and status indicating the measurement validity for
pixel validity check, and measured distance.

In the first step of the process, using validity values and the number of targets, invalid
pixels could be indicated and removed. The measurement validity of each pixel should be
five or nine. Other numbers are considered invalid. The maximum number of targets to
detect in each pixel has been set to one using this configuration. So, the number of valid
targets is either one or zero. Zero means no target found in the pixel area. As a result,
valid pixels are pixels with the status "five or nine" and "one" as the number detected
targets.

In the next step, distances of valid pixels would be binarized, with the threshold
MAX_DISTANCE_TO_PROCESS. It has been set 2000 (in mm) for now. This means
obstacles further than 2m would be ignored.

Using binarized images, an optimized algorithm could detect all objects in the picture
and their corresponding pixels. For now, the algorithm is capable of at most four targets.
This boundary has been set to the limit of processor stack (ram) usage.

After object detection, it is possible to do feature extraction on all objects. Most impor-
tant features include:

• Target minimum distance

• Target middle position

• Number of target pixels

• Target borders

These features are used in a complex decision tree to avoid the object in front of the
drone. At first, targets made of pixels less than MIN_PIXEL_NUMBER would be
ignored. Other targets would be prioritized based on their distances to the drone. Then
closest target would be selected to be avoided first.

Here is some predefined value and regions (shown in Fig. 4.6) which would be used in
the decision-making process:

• DRONE ZONE: Described with a top-left point(x,y) and bottom-right point(x,y).
This zone is the most critical zone to be avoided. It means that if a drone goes
forward and a static obstacle is in this zone, the drone will indeed crash with it;
hence any object in this zone should be avoided fast, and the speed decrease should
be considered too.
Optimized points: top-left point(3, 3) and bottom-right point(5, 4).

17
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• CARE ZONE: Described with a top-left point(x,y) and bottom-right point(x,y). It
means that if a drone goes forward and an obstacle is in this zone, the drone may
crash with; but as the objects may move in the future, it is better to slightly avoid
the object in advance. Another purpose of this, is that if quadcopters get too close
to an object or a wall they may lose their stability. Hence, any object in this zone
should be avoided but smoothly, and the speed decrease should be smaller than
the drone zone.
Optimized points: top-left point(2, 2) and bottom-right point(5, 5).

• MIDDLE POS: This is the position of the drone’s point of gravity concerning the
sensor. As in this configuration, the sensor board is under the drone; the middle
position of the image is not precisely in the middle of the sensor but a bit higher.
Optimized points: Middle point(3, 3.5).

• GROUND BORDER: It corresponds to the objects in the bottom part of the image
(i.g. ground). The drone could avoid objects in this zone by increasing altitude
and rotation. It is described using a horizontal border(X).
Optimized ground border(6)

• CEILING BORDER: It is the same as the ground zone but at the top of the image
(i.g. ceiling). The drone should avoid these objects by decreasing altitude. It
described using a horizontal border(X).
Optimized ceiling border(2)

Here is some volatile value that would be used in the decision-making process:

• Forward Reaction Distance: The maximum distance that the drone will care about
to avoid, and further obstacles will be ignored. This value should be set based on the
drone speed. At higher speeds, it should be increased up to the MAX_DISTANCE_TO_PROCESS.
It should be decreased for narrow tunnels to make the flight smoother and give the
drone the ability to move through them (and not rotate and go back). This value
could be updated before or during the flight using CrazyFlie Client.

Figure 4.6.: ToF matrix zones
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• Forward Slow Distance: This value should be set based on the drone speed and
acceleration. If the distances to the obstacle in the drone zone get lower than this
value, the drone decreases the speed and rotates to have safe avoidance. This value
could be updated before or during the flight using the CrazyFlie client.

• Forward Stop Distance: For obstacles in the drone zone closer than this value, the
drone will stop entirely and rotate in its position to the free area. If the drone gets
closer than this distance to the obstacle, it may lose stability. This value could be
updated before or during the flight using the CrazyFlie client.

Based on the described parameters, the most dangerous object’s zone would be deter-
mined between these zones:

• Upper left

• Upper right

• Lower left

• Lower right

Based on the obstacle’s distance, position and size, a flight command will be gener-
ated. Each flight command consists of move-command and danger-severity. Danger-
severity is a float number between 0.0 to 1.0. Zero corresponds to the most severe collision
condition and one demonstrates safe condition.
Move-command will be one of these:

• Command Error

• Stop

• Fast_Right

• Right

• Care_Forward_and_Slow_Right

• Slow_Forward_and_Right

• Fast_Left

• Left

• Care_Forward_and_Slow_Left

• Slow_Forward_and_Left

• Increase_Altitude

• Decrease_Altitude

• Care_Forward

• Slow_Forward
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• Forward

• Take_off

• Land

The decision tree would generate flight commands. Based on the most dangerous object’s
position and distance to the drone, the decision would be taken compared with the
described parameter. For example, for the object on the top right side of the drone, in
the care zone in the distance between the stop and slow distance, the decision would be
slow_forward_and_left, and the danger-severity would be calculated in this way:

DangerSeverity = (
target_min_distance − forward_slow_distance

forward_slow_distance − forward_stop_distance
) (4.1)

Moreover, a short history of decisions would be kept in memory to avoid dead-ends stuck.
In case of the convex obstacle at the stop distance in front, the drone will rotate to avoid
the closer border of the convex. For example (in case the right border is closer), it turns
left to avoid a closer object, but while it rotates, the left object gets closer and comes
into the drone zone, while the right border of the convex gets further and gets out of
the drone zone. The left object gets more dangerous at some point, so the drone rotates
right to avoid it. This loop continues, and the drone gets stuck there. To avoid this
condition, by utilizing commands history, the drone generates a fast-rotate (Fast_Left or
Fast_Right) command until getting out of the convex. In the case of other specific nav-
igation procedures, it could be added to the function Handle_Exception_Commands(),
to be considered. The final process flowchart is shown in Fig. 4.7.

4.2.1.3. Drone Flight Control

This part of the firmware is responsible for deploying flight commands described at
Fig. 4.8. It has some critical parameters, including:

• MAX_VX: This is the maximum velocity the drone will go, in case of no obstacles
in front of the drone to care about them. Otherwise, based on the collision proba-
bility, a value between "0.0" to "MAX VX" would be assigned to the drone velocity.
This value could be updated before or during the flight using the CrazyFlie client.

• MAX_AX: This value will limit the drone’s forward acceleration during the flight.
So, it limits the sudden pitch of the quadcopter. Too much pitch will cause the ToF
front to rotate toward the ground, so its front view would be disturbed. Moreover,
it is also a safety consideration. Too high acceleration may cause losing the drone
stability.

• MANEUVER_RATE: This is the coefficient to control drone agility in rotations.
Any value over "1.0" make the drone more agile, and a value below "1.0" makes the
drone more careful in rotation. It is better for high speeds to increase this value.
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Figure 4.7.: ToF process flowchart
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However, a lower maneuver rate for narrow holes and lower speeds will help move
through them more precisely. In case of high rotation coefficient, the drone may
not pass narrow corridors and escape maneuver and come back.

• START_TAKE_OFF_HEIGHT: This is the default drone altitude. The drone
first sets the height to this value at takeoff then starts flying forward. In the case
of objects in the ground zone or ceiling zone, the drone will update the altitude;
after a while, when the object is avoided, the drone will change the height to the
default value again.

By considering those parameters, flight command deployment will be done. The first
part of the flight command is the move command, which is the direction of the drone’s
future move. Each move command uses predefined values which are optimized based on
the tests. These coefficients are used in the calculation of the maneuvers: for example,
for objects in the care zone, coefficients are in the way that the drone decreases the speed
a bit and rotate with a low yaw rate; however, for a close object in drone collision zone,
decrease in speed is higher, and drone uses higher yaw rate to avoid it.

There are also some restrictions like maximum, and minimum altitude included.

Flight control also saves some status of the drone to avoid sudden movements. It keeps
flight time and drone status (landed or already took off). A "To_Fly" parameter could
be set before or during the flight, setting the flight time in seconds.

The first command that flight control should receive is "takeoff"; other commands would
be discarded. The drone should not be connected to the charger; otherwise, the command
would be discarded. After the drone successfully takes off, now other commands would
be considered. At this point, the drone will land in one of these cases:

• Land command: The flight control receives a command to land

• Low battery: In case of a low battery, flight control discards all commands and will
land immediately.

• Reach To_Fly value: Drone will land when the drone has been flying reaches the
To_Fly value in seconds.

The second part of each flight command is danger-severity. The drone will set its speed
considering this value and max speed. The forward speed control policy is described in
Fig. 4.9.
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Figure 4.8.: Flight control flowchart
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Figure 4.9.: Forward velocity adjustment policy

4.2.2. Python Client

The customized client is a Python application based on cflib1 from bitcraze2. Mainly, it
is made of different synchronized processes:

4.2.2.1. Main Process

This process is a bridge for other processes to connect , synchronize their data and
communicate.

• Update CrazyFlie position: CrazyFlie has an estimator for position and orientation.
This estimator works well but has small drifts, especially on rotations. As a result,
after some minutes of flight, the estimation errors accumulate up to some point
that is not accurate enough. There exists a feature in the primary process to
continuously update CrazyFlie inner estimation with accurate Vicon positioning
data.

• There is a particular function to do the process on ToF and generate a command
for drone flight control. It was first used to test angle calculation algorithms and

1https://github.com/bitcraze/crazyflie-lib-python
2https://www.bitcraze.io/documentation/repository/crazyflie-clients-python/2021.1/
installation/run_from_source/

24

https://github.com/bitcraze/crazyflie-lib-python
https://www.bitcraze.io/documentation/repository/crazyflie-clients-python/2021.1/installation/run_from_source/
https://www.bitcraze.io/documentation/repository/crazyflie-clients-python/2021.1/installation/run_from_source/


4. Hardware / Firmware / Algorithm Implementation

Figure 4.10.: Custom client graphic user interface (GUI)

later for autonomous navigation. However, after validating the proposed obstacle
avoidance algorithm, the algorithm moved on to the drone board. At last, this
feature has been depreciated but could be used for testing new algorithms.

4.2.2.2. GUI

The GUI shown at Fig. 4.10 is capable of updating plots in real-time. plots are:

• ToF 8*8 distances

• ToF 8*8 pixel status

• Camera images

• CrazyFlie parameters graph

There is also a configuration part for the WiFi connection to AI_Deck, communication
to CrazyFlie via Crazyradio, and joystick.

The joystick configuration would be saved at control_config.json file. Furthermore, set-
tings related to the CrazyFlie logger are saved at log_config.json.
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4.2.2.3. Vicon Communicator

This is one of the processors of the custom CrazyFlie client. It is responsible for communi-
cating with the Vicon system and collecting data. It has some configuration parameters,
including:

• IP: Default Ethernet IP to connect is 192.168.10.1

• Period: The rate to collect data from the Vicon system

• Subjects: List of the object’s name to collect its data from the Vicon system. The
Vicon application makes it possible to define some objects with different names.
Here, this list should include all the objects we are interested in.

• Address to save: Address to save the data file in

• Time stamp: Synchronized time with CrazyFlie, updating during the process. It
would be included in the data log together with the position and orientation of the
object at that time.

4.2.2.4. CrazyFlie Communicator

This process will manage all communication with CrazyFlie, including sending commands
to the drone and collecting data. It also collects ToF data from the drone, then decodes
and saves it. To do logging, it uses the configuration in log_config.json file. There is a
list of parameters requested from the drone in this file. The content of the file could be
updated using GUI. This process uses cflib.crazyflie library.

4.2.2.5. CrazyFlie Controller

This process will handle flight control. It generates a command for Crazyflie based on
joystick commands. Joystick control map is available at control_config.json file. There
is a list of buttons to be mapped to a flight command in this file. the content of the file
could be updated using GUI.

4.2.2.6. CrazyFlie Camera Streamer

This process handles communication with AI_deck via WiFi. It has some parameters
consisting of:

• Deck IP: IP of the deck to connect it via WiFi

• Address to save: Directory to save the images
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Figure 4.11.: Flight visualizer sample frame

• Time stamp: Synchronized time with CrazyFlie, updating during the process. It
would be set to the image names.

4.2.3. Flight Visualizer

This is a Python application used for data validation and flight simulation. It is an
optimized multi-process application that can make videos and do post-processes on them.
At first, the directory address would be set. Then all data-set in this directory would be
read from binary *.dat files (data-set structure described in detail at Appendix D).

At the next step, all data would be decoded. Then it validates each data-set and prints
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out analyze report on the terminal. The report includes different data-set parts, frame
rate, duration of the test, etc. The data has now been read and decoded; in the last step,
the data are synchronized together using their time stamps and then packed.

The next step is to process decoded data and visualize it. Four different data would be
visualized shown in Fig. 4.1a:

• Vicon: This data includes the ordination and position of different objects. Each
object would be mapped to a three-axis arrow.

• ToF matrix: This data includes the pixel distance and also pixel validity. This is
mapped to an 8*8 matrix with heat-map colors. Invalid pixels would be ignored,
and valid pixels are colored based on their distance to the obstacle.

• CrazyFlie parameters: This includes parameters from CrazyFlie like estimated
position, orientation, velocity in different axis, battery level, etc. The most useful
data was orientation, position, and velocity in our case. The estimated position
would plot a 3D map like Vicon data. The velocity would be printed out on the
top right part of the image.

• Camera images: This data would be plotted. The plotted image is the synced one
with the CrazyFlie time stamp.

All other post-process algorithms could be easily implemented and tested at the next
step. Here, for example, I tested two algorithms. One is to calculate the angle to the
object, and the other one is the primary version of obstacle avoidance. After validation
of the algorithm, it was implemented onboard.

Some more valuable functions are developed to simplify visualization and post-processing.

• Euler_to_rotMat(): It will make a 3D rotation matrix from Euler angular param-
eters.

• Euler_from_quaternion(): This function convert quaternion values to Euler angles.
(Values correspond to orientation from Vicon data is in quaternion)

• Arrow3d(): This function will plot a 3D arrow with set parameters in Python’s 3D
plot. This is an ad-hoc function developed by me.

• Is_intersect(): This function would return the intersection of the two Python lists.
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Chapter 5
Results

5.1. Time-of-Flight Characterization and Calibration

This section presents a performance evaluation of the ToF ranging sensor in terms of ac-
curacy, pixel error rate, and maximum range. The open-source project has been released
on GitHub1.

5.1.1. Distance Measurement Setup

In our experimental setup, we place the ToF ranging sensor on a tripod at the height
of 1m. The drone would be put upside down to be fixed with adhesive to the camera
stand shown in Fig. 5.1. The drone would be put on a known distance parallel with
the wall to the big objects (large enough to span the whole sensor field of view) for the
primary tests. The test has been done with a smooth wall and a big wooden plate, as a
big obstacle, both in a different light situation.

During our experiments, we sweep the distance between the sensor and the wall in the
range 20 cm – 3m with a step of 0.2m. We acquire at least 1000 frames in the 8x8 con-
figuration at the maximum rate of 15Hz for each step, which we save for post-processing
purposes. The whole acquisition process described above is performed for four situa-
tions:

• White wall /ambient light

• Wooden plate /ambient light

• White wall /darkness

1github.com/ETH-PBL/Matrix_ToF_Drones
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(a) Setup front view (b) Setup top view

Figure 5.1.: Setup for distance measurement with VL53L5CX

• Wooden plate /darkness

Since both the ambient light and the background color (which influences the amount
of reflected light) influence the sensor performance, we chose these four scenarios to
maximize the generalization of this characterization.

5.1.2. Distance Measurement Results

We start our evaluation by analyzing the distance error for each pixel at a given distance.
Fig. 5.2 shows the mean error and standard deviation of the distance, calculated based
on the >1000 acquired frames when the sensor is placed at 1m in front of the white
wall with normal ambient light. There is a visible gradient in the distance mean error
from left to right because of the non-perfect alignment between the sensor and the wall.
Another consideration is that the corners do not respect this pattern, and lead to mean
errors about 25% − 60% higher than the neighbor pixels. Overall, the mean error is in
the range of 19.3mm – 42mm. About 90% of the pixels have a standard deviation in
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Figure 5.2.: VL53L5CX pixel-per-pixel characterization at 1m and β = 0◦. Values are
in mm. Each pixel includes the offset on the top and the variance on the
bottom, computed over 1000 successive samples in a fixed position.
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the range 3.4mm – 5mm, while the maximum value is 7.31mm. Once more, the corners
lead to relatively larger values compared to the other pixels.

In proceeding, the statistics of the distance error for one single pixel of the sensor would be
investigated. Fig. 5.3 shows the results for the distance error as a function of the reference
distance within the range 20 cm – 300 cm and a step of 40 cm. In this experiment, we
provide the results for all four scenarios. On one hand, there is a similarity between the
two experiments corresponds to the white wall, where for each reference distance values,
the median difference is mostly less than 0.5 cm. In addition, there is a similarity between
the two brown wall experiments, which proves that the ambient light has a weak impact
on the accuracy of the distance measurements. On the other hand, the more substantial
impact is caused by the background color the sensor points to because the difference in
accuracy is over 2 cm when comparing the different walls cases; However, it looks more
like a constant bias (offset in distances) rather than noise. Moreover, in terms of the min-
max and inter-quartile difference, the results are about the same for all four scenarios,
given a certain reference distance. While for a reference distance equal to 20 cm, the
min-max difference is below 1 cm, a reference distance of 300 cm leads to a min-max of
over 8 cm and an inter-quartile difference of about 2 cm.

Finally, Fig. 5.4 shows the relation between the invalid pixels and the reference distance.
In particular, specific environmental factors, such as solid ambient lighting, large dis-
tances, or poorly reflective objects, can influence the number of successful measurements
in a frame. The experiments with a white background scenario lead to a loss lower than
1% for a sensor-wall distance of 200 cm. This is a better result than the brown back-
ground scenario, which achieves losses of 2% and 5% for the cases with ambient light and
darkness. In conclusion, regardless of the scenario, the pixel validity is higher than 95%
for distances up to 200 cm and about 50% for 260 cm.

5.1.3. Angle Calculation Setup

Here, nano-drone is fixed in specified distance to a wide, flat obstacle (i.e., a wall), with
a surface more extensive than the sensor FoV and a predefined angle.

Fig. 5.5 shows the drone facing the obstacle with an angle β and a distance d. Each pixel
is addressed as pm,n, see Fig. 5.6. The 45° FoV is described by the θ angle, while dn
represents the projected planar distance of the Cn column, where n,m ∈ [0, 7], n,m ∈
N. To compute the steering angle, proportional to the drone’s yaw angle, the average
distance along each column would be computed, considering only the valid pixels (dn =
(1/m)

∑7
m=0 pm,n | pm,n is valid). If Nn is the number of invalid pixels for the column n,

then the whole column is discarded if Nn is higher than a threshold Nmax and the column
is considered invalid. The probability of having an invalid column Cn is proportional to
the dependency between invalid pixels and distance is given in Fig. 5.4.

Concerning Fig. 5.5, the obstacle’s approach angle (β) is estimated from a single frame.
r and l are the indexes of the first valid columns starting from the left side and right side,
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Figure 5.3.: The measurement error is a function of the absolute distance. The variance
and offset characterization is performed for the distance range 20 cm – 3m
with a step of 40 cm. The characterization is performed for the four different
scenarios are mentioned in the legend.

Figure 5.4.: The pixel validity is a function of the distance. The figure shows how the
average percentage of valid pixels per frame decreases when the absolute
distance increases. Tests are performed for a distance range of 20 cm – 3m
with a step of 20 cm.
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Figure 5.5.: The drone faces an obstacle with an angle β. Cx is the corresponding column
associated with the 8x8 matrix, while dx is the project’s planner distance.
The term hx is calculated using the ToF sensor FoV and the measured dx.

respectively. If the number of valid columns is smaller than 2, the frame is considered
void and thus discarded. Considering the listed physical and mathematical conditions
and taking Fig. 5.5 as a reference, angle β can be estimated, as expressed in Eq. 5.1. In
consideration of the relative FoV, which differs from the nominal specification due to a
variable number of valid columns, Eq. 5.2 calculates the new sensor scope. Note that in
Fig. 5.5, hn = tan(αn) · dn.

β = arctan

(
tan(αl) · dl − tan(αr) · dr

dr − dl

)
, (5.1)

αn = arctan

(
7− 2n

7
tan

(
θ

2

))
. (5.2)
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(a) The drone faces an obstacle at exactly β =
60◦ angle. The center of the matrix lies at
64 cm from the obstacle surface. All the
pixels are valid.

(b) The drone faces an obstacle at exactly β =
45◦ angle. The center of the matrix lies at
161 cm from the obstacle surface. 25% of
the pixels are invalid.

Figure 5.6.: Two examples of the drone facing an obstacle at different distances and
angles. Gray pixels point out invalid pixels. The distance is provided in
centimeters and is not calibrated.

5.1.4. Angle Calculation Results

Figures 5.6a and 5.6b show an insight into a particular flying test, in which the nano-
drone is approaching a wall with different distances and β angles. In Fig. 5.6a, the
obstacle is found at a distance of 64 cm from the drone with a β angle of 60°, while in
Fig. 5.6b the obstacle is located at 161 cm and an angle of 45°. The latter shows an invalid
pixel rate of 25%. Despite the reduced number of valid pixels in Fig. 5.6b, the β angle
can still be computed using Eq. 5.1 due to the sufficient number of valid columns. An
initial calibration is considered, which uses the pixel-by-pixel characterization presented
in Fig. 5.2 to perform offset compensation.

Considering Fig. 5.6a and Eq. 5.1, β can be extracted from any pair of dl and dr. For
example, the angle extracted from d0 - d7 is 59°, while considering d1 - d3, β is estimated at
58°. In total, 28 combinations are possible; the statistics result for more than 1000 frames
corresponds to angle calculation algorithm using 8*8 ToF has been described at Fig.5.7.
The first seven columns of boxplots are related respectively to seven combinations of
neighbors columns. The following six columns correspond to the combination of columns
with one column distance in between. This procedure continues until the last boxplot
corresponds to the first and last column combination. As in 45◦ image some columns set
as invalid due to excessive invalid pixels, their corresponding contributing to box plots
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(a) 28 combinations results for the drone faces an obstacle at exactly β = 60◦ angle. The center
of the matrix lies at 64 cm from the obstacle surface. All the pixels are valid.

(b) 28 combinations results for the drone faces an obstacle at exactly β = 45◦ angle. The center
of the matrix lies at 161 cm from the obstacle surface. 25% of the pixels are invalid.

Figure 5.7.: Two examples of the drone facing an obstacle at different distances and
angles. Gray pixels point out invalid pixels. The distance is provided in
centimeters and is not calibrated.

have been missed Fig.5.7b. All in all, It is estimated a precision of ±4° for the cases of
dl and dr lower than 160 cm (i.e., no invalid pixels).

In Fig. 5.6b, the noise presence is indicated by void gray pixels. Indeed, columns
4 − 7 point to distances above 160 cm with a non-zero probability to have invalid pix-
els/columns, according to Fig. 5.4. However, also, in this case, the approaching angle
can be computed. By imposing Nmax equal to 4 (i.e., a 50% error tolerance) then d5 is
the first considered column (Nn > Nmax) when starting from the right. In this case, we
calculated β = 46°, with an average precision of ±6°.

The proposed approach can also be used to consider rows for vertical movements and can
be applied for all the obstacles wider than two columns/rows. In the case of a small object
close to the UAV, background pixels can be discarded by invalidating pixels outside the
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view of interest. Moreover, the sensor automatically labels the pixels associated with out-
of-range distances as invalid. Our case study also demonstrated the system robustness,
which can work in scenarios where up to 75% of the pixels are invalid.

5.2. Obstacle Avoidance Using One Front ToF

At this section, We see the proposed obstacle avoidance algorithm results.

5.2.1. Complexity

The algorithm is implemented on STM32F405 MCU (168MHz, 196kB RAM). It is made
of two main parts: The first is the process ToF image and takes 17010 cycles. The second
part is flight control, which takes 133 cycles. All these values are the mean value while
disabling all drone interrupts. The drone has lots of low-level processes to do, so by
disabling the interrupts, the drone will stop working soon. Consequently, to simulate
the actual test, cycles are also measured in case of all interrupts on, and both processes
take together 68080 cycles which correspond to 450 µs. As the frame rate of the sensor
is 15Hz, there is 66ms available between each frame. So the whole process, including
interrupts, takes 0.7% of available time.

5.2.2. Reliability

Our system proved reliable (>95%) in-field obstacle avoidance capabilities when flying in
indoor environments with dynamic obstacles. Mostly, the cause of the failures are among
these two situations:

• Drone drift and state estimator error: Intrinsic quad-copters drift which moves
drone too close to the wall in sides or back (out of ToF field-of-view)

• The drone flies too close to the wall, especially in the sides: This causes the drone
to lose its stability and crashes

• Large glass surfaces perpendicular to the drone trajectory: It is invisible for the
VL53L5CX sensor

5.2.3. Ratings

The CrazyFlie weighs 27 g and can fly up to seven minutes without any extra payload
using a fully charged 350mAh.

Any additional weight decreases the flight time, and any payload heavier than 15 g pre-
vents the drone from taking off. To maximize the drone’s flight time, the designed PCB
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weights only 2.2 g(1.86 g deck + 2*0.21 g sensor board), increasing the total mass by only
5%.

Depending on the configuration, the acquisition rate is 15Hz (8x8 pixels) or 60Hz (4x4
pixels) with a horizontal and vertical field of view (FoV) of 45° and a power envelope of
286mW.

The actual FoV can slightly change; its detection volume depends on the environment
and sensor configuration and target distance, reflectance, ambient light level, sensor
resolution, sharpener, ranging mode, and integration time.
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Chapter 6
Discussion

6.1. ToF Sensor Suitability

We were unsure if the sensor would work because it was a new sensor (even not com-
mercialized) when I started this project (August 2021). No one had tried this sensor
on drones; as a result, no data-set was available. The first step is to deploy the sensor
on the open SW/HW platform, which is reliable enough to handle all low-level tasks.
The next step is to characterize the sensor and check whether it is proper for drone
applications or not. As the preliminary test results seem good accuracy and reliability
in different environments, the next test had proposed. Secondary tests are in the case
of drone flying. It includes some simple maneuvers like taking-off/Landing and rotating
around. The sensor also seems reliable in this test.

ToF data is much easier to be used in algorithms as it has much fewer data concerning
vision-based methodologies. Also, it is more simple to do feature extraction on ToF data
rather than camera images.

6.2. Obstacle Avoidance Reliability

The proposed methodology shows outstanding reliability even with complex objects and
narrow tunnels. In the project repository, all tests have been done using firmware at git
commit "test MODE": 4e4ece61.

1. In this scenario, the drone easily passes the first test at the maximum speed of
2m/s.
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2. This scenario has been tried with different speeds. Results have shown no crash
in all tests. The pathwidth is between 1.3-1.4 m, and the corners should be good
enough without a hole, so the ToF sensor does not get confused.

3. This scenario was replaced with the test with two rotations, one 30 and another
150, with no crash in different configurations, at maximum speed and acceleration.

4. In this scenario, the drone goes through a narrow 1m tunnel with one 10 cm width
obstacle in the middle. This is the minimum width that the drone could pass
without a crash. The tunnel width decreased until the tunnel’s wall impeded the
drone’s airflow, and the drone could not keep height and stability anymore.

5. Most crashes in this scenario happen to avoid objects with small heights. In this
case, the drone could go over and crash due to Optical Flow (on flow-deck) sensor
limitation. Otherwise, the drone passes the test with a more than 95% successful
rate.

6. The drone is can fly non-stop up to 7min until its flight time is finished or the
battery is drained.

6.3. Compare to Related Works

Here, the proposed system could reach very high reliability using a miniaturized light-
weight ToF sensor to utilize an optimized algorithm. Both software and hardware have
requirements to be deployed on conventional nano-drone. This approach outperforms
state of the art solution on nano-drones, with its reliability shown in the table 6.2.

Other methodologies also have more complexity and stricter limitation like Ultra Wide-
Band (UWB) distance measurement. UWB’s approach needs that the obstacles be de-
fined in advance. This means the flight map is necessary for navigating through obstacles.
In the case of avoiding other drones in swarms, the number of drones would be limited
by the UWB latency.
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Table 6.1.: Algorithm test scenarios

Scenario # Name Description Obs.

1 Dynamic
obstacle
avoidance vs.
speed

The drone is flying straight. When the
drone is located at 1.5m from a reference
point, the user steps in the front of the
drone (in that reference point). The idea
is to evaluate the maximum speed of the
drone at which it can still brake in time.

Vicon should be
used.

2 drone steering
in a 90deg
pipe

The idea is to have the drone flying in a
small tunnel with a 90deg angle and check
at which speed the drone can still succeed
the steer. The width of the pipe should
be big enough, around 1.3 - 1.5m.

Vicon should be
used.

3 drone steering
in a 45deg
pipe

The same as previous, but with a 45deg
angle

Vicon should be
used.

4 drone flying in
a narrow pipe

The idea is to have the drone flying
straight in a narrow tunnel without obsta-
cles and check the minimum width of the
tunnel at which it can still successfully fly
through it without a crash. The length of
the tunnel should be about 4m. The same
experiment can be repeated with an ob-
stacle in the middle of the tunnel.

5 Flying in envi-
ronments with
people

Have the drone fly indoors, at a constant
speed, not necessarily very fast (maybe
0.5-0.7m/s). The idea is to have static
and dynamic people in the room and
prove that the drone can avoid them while
flying for a minimum time: let us say one,
two, or three minutes, depending on the
performance of the avoidance algorithm.

6 Evaluate the
maximum
indoor flight
time

The idea is to place the drone in a room
with multiple static and dynamic obsta-
cles and evaluate the maximum flight
time - ideally until the battery runs out.
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Table 6.2.: Reliability compare to state of the art
One front 8*8 ToF 4 LASER rangers Camera+radar UWB avoid drones

No obstacle 99% 100% 100% 100%
Low obstacle density 99% 85% 95% 98%
High obstacle density 98% 75% 80% 80%
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Chapter 7
Conclusion and Future Work

Starting from the ST’s pre-commercialized multi-zone ToF sensor, we reached a reliable
obstacle avoidance system on nano-drones at the end. At first, the main problem was to
find out that, in any way, this new sensor is suitable for the nano-drones use case. In the
first step, a new customized development PCB should have been designed to integrate the
sensor in the Crazyflie prototype nano-drone. One of the challenges was strict constraints
on the PCBs; The sensor’s vertical PCB should have a very short height, not touching
the ground to avoid damage to the board. Also, the main board uses the variable voltage
of the drone battery to provide filtered analog and digital voltages. Moreover, Crazyflie
supports many different decks with different capabilities and as a result, different pin
configurations. In our case, the flow-deck and AI-deck, in addition to the customized ToF
deck, are connected to the main board via the shared connector. As a result, the ToF deck
should be compatible with all of this and no other previous working boards are available.
In the next step, a complex logger system has been designed to collect synchronized
data from different sensors including, the VICON system, WIFI camera, and drone
parameters. Having access to a rich dataset collected in many different conditions allows
performing different post-processing analyses to calibrate and characterize the sensor. In
the end, the results show that the characterization of the sensor is suitable for nano-drone
navigation and obstacle avoidance. In the last step, an innovative algorithm has been
proposed to control the drone speed and direction using only the ToF sensor’s data for
the first time. The first version of the algorithm has been tested offline on a dataset that
includes camera images and precise drone position from the VICON system as the ground
truth. After showing the good result on offline tests, the algorithm was implemented in
the computer control system in python to refine more and also do the in-flight test.
Thereafter, the final algorithm is optimized and implemented in the drone’s firmware to
do the final in-flight test exploiting only the on-board processing capability of the nano-
drone. Subsequently, a large number of tests have been done in many different in-door
situations to debug the algorithm and calibrate algorithm parameters more precisely to

43



7. Conclusion and Future Work

have a faster and more reliable control system, and to test the new control system’s
capability. As discussed before, the proposed system provides reliable and lightweight
navigation and obstacle avoidance capability to be used as a state-of-the-art method on
nano-drones.

As the platform works fine, the work could be continued by :

• First, to optimize and make current obstacle avoidance better, faster, and more
reliable. As it is possible to run simple neural networks on AI-deck, AI approaches
also could be considered as an alternative.

• Second, to add an autonomous navigation approach along with obstacle avoidance.
Currently, the drone will go forward and avoid an obstacle in its way. Adding a
smart navigation algorithm would be the next big step in this project.

• Third, provide a system that uses this new sensor on the nano-drones swarm to
reach higher reliability.
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1 Project Goals (14 weeks) 

Nowadays, the industry is pushing the evolution of autonomous flying vehicles (UAV) 

toward rapidly decreasing form factors and increasing of computational capabilities. 

Usually, the development is either in the one direction (adding intelligence, 

computational and sensing capabilities) or the other (miniaturization). This means 

that on nano-sized aerial vehicles flight control, navigation, and planning capabilities 

are either absent or based on monocular low-resolution cameras. In contrast, 

relatively big-sized drones (i.e., DJI or Matek) have been proven capable of impressive 

autonomous sense-and-act capabilities, running in real-time complex and 

computationally intensive multi-sensor and vision-based control systems. 

Therefore, this project focuses on this challenging class of Unmanned Autonomous 

Vehicles, characterized by few centimeters in diameter, tens of grams in weight, and 

a few Watts total power consumption, of which 85% is to be dedicated to the 

propellers, leaving a total power budget for onboard sensing, computation, control 

actuation of only a few hundred mW. Thus, thesis focuses on enabling the nano-drone 

navigation without the support of BN or RGB camera by adding additional sensing 

capabilities through state-of-the-art off-the-shelf ICs. Through the usage of multi-

zone ranging sensors (VL53L5CX) and mm-waves radars for obstacle avoidance and 

UWB ranging for indoor localization, the student will design, develop and, finally, test 

a working demo with a flying nano-drone (Crazyflie). 

 

Tasks (6 months) 

The project will be split into four phases, as described below: 

Phase 1 (1 Month) 

1. Investigate and study the state-of-the-art technology of nano-drones, UWB 

ranging and ToF sensors.  

2. Introduction to PCB design, Altium: schematics and layout; 

3. Getting started with the Crazyflie environment, IDE, SDK, DEKS, and cross 

compilation/programming; 

4. Hardware design, ToF deck for the Crazyflie (1 or 2 VL53L5CX supported) 
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Phase 2 (2 Months) 

1. Real-time data logger using the Bitcraze Crazyradio. The following data must 

be collected: drone attitude, control commands, VL53L5CX ToF data, UWB 

relative localization, absolute localization (VICON). 

2. Dataset collection in different environments: indoor, outdoor, with static and 

dynamic obstacles, narrow corridors/pipes, etc. 

3. Dataset classification and labelling.  

Phase 3 (2 Months) 

1. Exploration of autonomous navigation algorithms (e.g., CNN) capable of 

obstacle avoidance and steering using one (or more) VL53L5CX and the UWB 

relative localization. 

2. (Optional)Exploration of path planning through Model Predictive Control. 

3. Implementation of the algorithm on the Crazyflie platform. 

4. Flying demo 

Phase 4 (1 Months) 

1. Finalizing the tests. 

2. Write the final report and prepare the presentation. 

3. Journal/Conference paper publication 
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Milestones 

By the end of Phase 1 the following should be completed: 

• Crazyflie deck. 

• Good understanding of the Crazyflie platform.  

By the end of Phase 2 the following should be completed: 

• Real-time data logger over the Crazyradio.  

• Dataset collection. 

         By the end of Phase 3 the following should be completed: 

• Flying demo with obstacle avoidance capabilities. 

 
By the end of Phase 4 the following should be completed: 

• Project documentation. 

• Final presentation. 

• Final report, including final results. 

 

Thesis Organization 

The Master's degree program concludes with a Master's thesis that lasts six months. 

The project includes an oral presentation and a written report (the Master's thesis), 

and it is graded. Before starting the project, the Master thesis must be registered in 

mystudies ("Projects/papers/theses"). You will be admitted to the Master thesis only 

if both semester projects are successfully completed. During the thesis, students will 

gain initial experience in the independent solution of a technical-scientific problem 

by applying the acquired specialist and social skills. The grade is based on the 

following: (i) Difficulty of the project; (ii) Student effort and learning curve; (iii) 

Results in terms of quality and quantity; (iv) final presentation; (v) documentation. 
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Before starting, the project must be registered in myStudies 

("Projects/papers/theses"). 

Weekly Report 

There will be a weekly report sent by the candidate at the end of every week. The 
main purpose of this report is to document the project’s progress and should be 
used by the student as a way to communicate any problems that arise during the 
week.   
Weekly meetings will be held between the student and the assistants. The exact time 
and location of these meetings will be determined within the first week of the 
project in order to fit the students and the assistants schedule. These meetings will 
be used to evaluate the status and progress of the project. Beside these regular 
meetings, additional meetings can be organized to address urgent issues as well. The 
report, along with all other relevant documents (source code, datasheets, papers, 
etc), should be uploaded to a clouding service. 

Final Report and paper 

Documentation is an important and often overlooked aspect of engineering. One final 

report has to be completed within this project. The common language of engineering 

is de facto English. Therefore, the final report of the work is preferred to be written in 

English. Any form of word processing software is allowed for writing the reports, 

nevertheless the use of LaTeX or any other vector drawing software (for block 

diagrams) is strongly encouraged by the IIS staff. 

 

PDF copies of the report are to be turned in.  
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Appendix C
File Structure

Documents/
AI-deck 1.1 .............................................AI-deck documents
Crazyflie .......................CrazyFlie main board HW & SW documents
DC2DC .............................DC to DC convector TPS62230 documents
flow V2 Deck ..........................................Flow-deck documents
Loco Positioning deck .....................Loco-positioning-deck documents
miscellaneous ......... tca6408a gpio expander and power filtering techniques
Papers .............................Useful papers and previous project reports
Report .................................Master thesis report and presentation
TOF sensor .................................VL53L5cx SW & HW documents
Vicon Sdk .............................VICON platform software requirement
intilize Vicomroom.sh ............................VICON platform installer

Hardware/
manufactured_version ...................Latest board send for manufacturer
MultiBoard_Project ........................Latest all boards together project
Old Projects .......................................Preivious useful projects
Rules .......................................Design rules used for PCB design
SensorBoard .....................................Latest Sensor board project
TofDeck .............................................Latest ToF-deck project

Software/
app_tof_matrix .................ToF application based on CrazyFlie firmware
CrazyFlieProjects .......All Crazyflie project repository (external repository)
dataset-building-framework ..Logger Client, flight visualizer, & other python
projects
dev ......................................... test codes used for developments
Sample Codes ...........Sample codes used in both firmware and python client
ViconRoom ..................VICON room sample project (external repository)

Data Log/
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Angle validator .......Data-log related to the test of angle calculator formula
first flight test ...................................Preliminary flight tests
Flight DataSet .................................The main Data-set directory
LogResults ......................................Visualized of some data-sets
object movement _ for camera sync ....Data-log related to the Camera-ToF
synchronization
Stationary Test .......................Data-log related to the on-ground test
ToF Distance Test ................Data-log related to the accuracy validation
vicon test .........................Data-log related to the VICON validation
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Appendix D
Data-set

Flight data-set folders and the test scenario have been completely described at Data
Log/Flight DataSet/Flight Dataset Description.xlsx. List of folders described at TABLE
D.1.

Each folder consists of :

• state_Crazyflie_group00.csv : This file is a text-based table including CrazyFlie’s
primary state estimations like:

– 3D position (X, Y, Z)

– Velocity in all 3D axis (VX, VY, VZ)

All in a row with their corresponding time stamp.

• state_Crazyflie_group00.dat : Same content with the previous file, but as a binary
file. It is encoded with Pickle (a Python library).

• state_Crazyflie_group01.csv : This file is a text-based table including CrazyFlie’s
secondary state estimations like:

– 3D Euler orientation (roll, pitch, yaw)

– In some cases, other parameters like battery voltage

All in a row with their corresponding time stamp.

• state_Crazyflie_group01.dat : Same content with the previous file, but as a binary
file. It is encoded with Pickle (a Python library).

• state_ToF.csv : This file is a text-based table including ToF data. Each 65 row is
a different frame. First row, first column element is time stamp. other 64 rows, are
made of (in order):
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– Distance

– Number of targets

– Pixel status

Each corresponds to ToF 64 pixels.

• state_ToF.dat : Same content with previous file, but as a binary file. It is encoded
with Pickle (a Python library).

• state_Vicon.csv : This file is a text-based table includes Vicon positioning data.
Each row consists of:

– Object name

– Time stamp

– 3D position (posX, posY, posZ)

– 3D quaternions orientation (qW, qX, qY, qZ)

• state_Vicon.dat : Same content with previous file, but as a binary file. It is encoded
with Pickle (a Python library).
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Table D.1.: ToF data-set content in detail
Approach

foward backward .75
Move forward and crash
move forward_backward vx = .5
move forward, rotate, backward vx =.75
vx .75 forward
vx 1 forward backward not good
vx 1 forw back
vx 1 forw back 2
vx = .75
vx = .75 forward backward not good

Rotate
rotate yawr 50
rotate yawr 70
rotate yawr 90

Object movement
Human Movement
apppreoach narrow hole
avoid big object stable
Avoid Object
Avoid Object 2
Avoid Object 3
Avoid Object_not complete3
Avoid Object_not complete10
Corridor test
cross hole
cross hole 2
cross hole 3
cross hole with narrow bands
cross narrow door
cross the open door
Height increase with object in front
Height increase with object in front 2
Human Movement
lab room survay
move in y direction to see 2 object
move through two object
object avoid angle
object avoid surface
object avoid two object
object avoid with vicon
route and object avoid on top
route with obstacle
route 1
route 2
simple take off and land
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