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Abstract 
 
Over the last few decades, unmanned aerial vehicles (UAVs) have made great strides through the 

development of electronics, mechanics, aerodynamics, sensors, and control theories. UAVs are now 

increasingly attracting the attention of researchers and are becoming more common in everyday life. 

To increase the precision and autonomy of UAVs in outdoor activities, precise outdoor positioning 

technology is required. Many UAVs require the use of the Global Navigation Satellite System 

(GNSS) to provide accurate position information for applications like mapping, surveying, precision 

agriculture, and search and rescue. 
This thesis focuses on autonomous flight controls and GNSS integration of the quadcopter. The 

quadcopter is a type of UAV lifted and propelled by four motor propellers. In this work, a cascade 

inner-outer loop flight controller is designed taking into consideration the under-actuated property 

of the quadcopter. Furthermore, an open-source quadcopter based on STM32, including different 

sensors such as IMU, compass, barometer, and GNSS receiver, with remote communication and 

data storage functions, is designed. The flight controller is deployed on this quadcopter to perform 

functions such as manual flight, autonomous flight, GNSS/GPS position hold, waypoint flight, and 

so on. 
First, the non-linear mathematical model of the quadcopter is derived according to the translational 

and rotational dynamics of the quadcopter. A linearized mathematical model of the quadcopter is 

obtained by linearizing the nonlinear model around an equilibrium point. Then, based on the linear 

mathematical model, the quadcopter autonomous flight controller is designed with the Linear 

Quadratic Regular (LQR) control strategy. The controller parameters are tuned in a 

MATLAB/Simulink simulation environment, taking into account the time and material consumption.  

Finally, a quadcopter platform is developed and an STM32 development board is used as the 

microcontroller of this quadcopter. To measure the attitude of the quadcopter, an Inertia 

Measurement Unit (IMU) is used, and the method based on Euler angles & rotation matrix is 

adopted to compute the attitude with IMU measurements. A complementary filter is implemented 

to avoid the noise and drift of the IMU. To measure the heading to the North, a tilt-compensated 

compass is developed and integrated into the quadcopter. A GNSS receiver and a barometer are 

integrated into the quadcopter to measure its horizontal position and attitude during flight. To deploy 

the designed LQR controller on the quadcopter, the flight control program is developed based on 

the Arduino STM32. The programming language is C/C++. The quadcopter is programmed to fly 

in manual flight mode or autonomous flight mode. Experiments were conducted to test the manual 

flight performance of the quadcopter, and excellent results were achieved. 
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Chapter 1: Introduction 
An Unmanned Aerial Vehicle (UVA), also known as a drone, is an aircraft that can fly remotely 

without any human pilot on board or fly autonomously with an onboard flight controller that works 

in conjunction with sensors and a Global Navigation Satellite System (GNSS) module. Over the 

past years have witnessed great technological advances in electronics, mechanics, sensors, 

embedded control systems, aerodynamics, and control theories, which make unmanned aerial 

vehicles (UVAs) more widespread in people’s daily life and gaining more and more attention in the 

field of science and technology.  
A variety of UAVs have been developed and according to their configurations, they are grouped into 

three categories: fixed-wing UAVs, multi-rotor UAVs, and fixed-wing hybrid VTOL UAVs. Fixed-

wing UAVs generate lift through the wings themselves due to the forward airspeed provided by 

engines or electric motor propellers. They can cover very long distances, map very large areas, and 

perform long-time monitoring because they are energy efficient. But the fixed-wing UAVs can’t 

take off vertically or hover in the air. Multi-rotor UAVs generate lift by multiple electronic motor 

propellers, they are very maneuverable, can take off and land vertically, can hover in the air, and 

achieve great control performance during flight. According to the number of motors, multi-rotor 

UAVs can be categorized into Tricopters (3 motors), Quadcopters (4 motors), Hexacopters (6 

motors), and Octocopters (8 rotors). By far, quadcopters are the most popular multi-rotor UAVs all 

over the world. Fixed-wing hybrid VTOL UAVs merge the benefits of both fixed-wing and rotor-

based designs. These types of UAVs have rotors attached to the fixed wings, allowing them to hover 

during flight and take off and land vertically, while at the same time retaining all the advantages of 

the fixed-wing type. Only a handful of fixed-wing hybrid VTOLs are currently on the market, and 

the technology used in these UAV types is still in the nascent stage. 
This work pays attention to the quadcopter, which is one type of helicopter lifted and propelled by 

four motors placed in a square format with an equal distance from the center of mass. The two arms 

of the quadcopter are in cross configuration and linked to its central body where the sensors, 

microcontrollers, and other electronic components are located. The quadcopter is an under-actuated 

system since only four motors are utilized to control its 6 degrees of freedom (6DoF) motion in 

space (four control inputs, six control outputs). This means the quadcopter’s translational and 

rotational motions are coupled, leading to highly nonlinear dynamics in the system. Furthermore, 

quadcopters are inherently unstable and require constant corrections from the onboard 

microcontroller hundreds of times a second to maintain stability. Despite these disadvantages, 

quadcopters feature various advantages such as cheap, lightweight, strong maneuverability, vertical 

take off and landing, and the capability of hovering. 
This work focuses on the design of an autonomous flight controller for the quadcopter based on the 

GNSS positioning. It is difficult for a quadcopter without a GNSS module to achieve a stable flight 

outdoors. When the quadcopter performs outdoor flight tasks such as fixed-point hovering, some 

unpredictable interference in the surrounding environment might cause the quadcopter to deviate 

from its hovering position. It is difficult for the quadcopter to return to its original position only by 
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the pilot’s remote control on the ground. Also, due to the interference of the surrounding 

environment, the pilot has to spend a lot of effort to make the quadcopter fly along a specific flight 

path in the air. Therefore, it is particularly important to add a GNSS module to the quadcopter to 

enable it to achieve self-positioning and autonomous flight. Adding a GNSS module to a quadcopter 

can not only make it fly more stable but also add more advanced features such as position hold, 

autonomous flight, return to home, and waypoint navigation. In this paper, a quadcopter autonomous 

flight controller based on the LQR control strategy is developed. The controller is first tuned and 

validated in a simulation environment. Then an open-source quadcopter platform based on STM32 

is developed. This quadcopter platform consists of an IMU to estimate its attitude in three-

dimensional space, a compass to estimate its heading, a barometer to estimate its altitude, as well as 

a GNSS module to position itself. The designed LQR controller will be tested on this quadcopter 

platform and the control performance will be evaluated. 
 

1.1 History of Quadcopter 

The history of quadcopters can date back to the early 19th century. In 1898, Nikola Tesla tested his 

radio-controlled boat for the first time in a New York Pond in Madison Square Garden, which is the 

beginning of every radio-controlled aircraft as we know it today [1]. Around 1907, the world’s first 

quadcopter was created by inventor brothers Jacques and Louis Bréguet. But it had big limitations 

and its design was proved to be very unstable. 
It was until 1924 that the world’s first working quadcopter, the Ominichen 2 (Figure 1.1), was 

invented by French engineer Etienne Omnichen. The Ominichen 2 had a cross-shaped structure built 

of metal tubing and lifted by four two-bladed, counter-rotating main rotors. The pitch angle of these 

blades was controlled by warping. The quadcopter also had another five rotors positioned in the 

horizontal plane to provide lateral control, one of which at the front was used to steer the quadcopter 

[2]. In 1924, Ominichen flew this quadcopter a distance of 360 meters and in the same year, he flew 

a one kilometer closed circle in 7m and 40s, which established a record for helicopters. Around the 

same time, George de Bothezat built and tested his quadcopter for the US army, completing a 

number of flight tests before the program was scrapped [3]. The de Bothezat quadcopter (Figure 1.2) 

had an X-shaped structure supported by four six-blade rotors at each end of the arms, and at the 

ends of the lateral arms, two small propellers with variable pitch were used for thrusting and yaw 

control [4]. This quadcopter made its first flight in October 1922, and about 100 flights were made 

by the end of 1923. 
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Figure 1.1 Ominichen 2 [3] 

 

Figure 1.2 de Bothezat quadcopter [3] 
 
In the middle of the 1950s, Convertawings Model A Quadcopter was intended. The four rotors of 

this quadcopter were mounted laterally on outriggers in two tandem pairs. The control mechanism 

was extremely simple and obtained by differential change of thrust between the rotors [4]. It was 

one of the first quadcopters to use the varying thrusts of the four rotors to achieve control in flight. 

But it was very hard for the pilot to maneuver during flight because of the workload of trying to 

control the thrusts of all four rotors at once. Despite successful testing and development, military 

support for this quadcopter ceased after cutbacks in defense spending [4]. However, the design, 

particularly its control mechanism, was a forerunner of the modern quadcopters. 
 

 
Figure 1.3 Convertawings model A quadcopter [4] 

 
By the end of the 20th century, with the development of electric motors, microelectronics, and 

micromechanical devices, it became possible to build small size, lightweight, reliable, and cheap 

modern quadcopters. The modern quadcopter first emerged in the late 1990s and early 2000s as 

hobbyist kits. In 2006, the first industrial and commercial uses of quadcopters and other UAVs had 

their infancy with the first commercial drone permit released by the FAA (Federal Aviation 

Administration), and in the same year, Frank Wang found DJI, whose idea was to revolutionize the 

use of quadcopters to the mainstream population [1]. Up to now, DJI has released a series of 

quadcopter products and achieved great achievements in civilian consumer-grade quadcopters and 

aerial photography. Later in 2010, the French drone manufacturer Parrot unveiled its AR Drone 

(Figure 1.4 (a)), the first commercially successful ready-to-fly consumer drone, and the first able to 
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be controlled solely by a Wi-Fi connection [1]. In 2013, Amazon and other delivery companies 

declared their intention to use quadcopters for delivering their products in record times through 

airborne means [1]. In 2016, DJI released the Phantom 4 (Figure 1.4 (c)), which had computer vision 

and machine learning ability to track a person or an object on the ground without simply following 

a GPS track. In 2018, DJI and its competitors, like Autel and Parrot continued to release new models 

and grew both in the hobby sector as well as the professional sector [1]. 
 

 
(a) Parrot AR drone 

 
(b) Amazon delivery drone 

 
(c) DJI Phantom 4 

 
(d) DJI Mavic Mini 

Figure 1.4 Modern quadcopters 
 

1.2 Modern quadcopters applications 

As one of the most popular UAVs nowadays, modern quadcopters feature the advantages of less 

power consumption, less risk to human life, ease of operation, simple structure, vertical take off and 

landing (VTOL), strong maneuverability, and stable hovering performance, which makes them more 

and more concerned and their applications more and more extensive. The potential application fields 

of modern quadcopters include civil, environmental, and defense sectors [5]. 
The civil application of modern quadcopters includes photography, construction, mining, delivery, 

agriculture, disaster management, surveillance, and so on. Modern quadcopters make aerial 

photography become very easy, cheap, and no longer just for professional photographers. Without 

the need for helicopters or crews on the ground or on board, only with a quadcopter pilot and a 

cameraman, it is possible to obtain affordable aerial photographs for ordinary people (Figure 1.5 

(a)). One of the quadcopter’s applications in agriculture is precision farming. Precision farming is 

based on data collection and variability mapping of agricultural lands, and data analysis. Then 

farming management such as pesticide spray, irrigation, and fertilizer can be implemented based on 

the results of the collected and analyzed data. The traditional satellite-based mapping technology is 

costly, and the data collection can be easily influenced by weather conditions [5]. Using a 

quadcopter equipped with special devices such as thermal sensors, RGB cameras, and LIDAR 

systems, the mapping can be implemented more accurately and cheaply. Also, a quadcopter can be 
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equipped with a sprayer, fertilizer, or irrigation devices to perform more precise crop spraying, 

fertilizing, and irrigating (Figure 1.5 (b)). In the field of aerial surveillance, quadcopters with high-

resolution cameras and various security equipment can be widely used in the security system of 

families and companies. This can not only realize a wide range of real-time monitoring from 

multiple precepts but also make security work safer and easier. As for the application of quadcopters 

in delivery (Figure 1.5 (d)), it will greatly reduce the delivery time by skipping roads, traffic lights, 

and buildings, and lower the human cost. But the power supply limitation due to the battery capacity 

will limit the delivery range and working time, and the load capacity of the quadcopter will also 

limit the delivery capacity. The quadcopter delivery is still in development, researchers are working 

to overcome issues associated with the delivery scope limitation. 
 

 
(a) Aerial photography  

 
(b) Agriculture application 

 
(c) Aerial surveillance 

 
(d) quadcopter used for delivery 

Figure 1.5 Modern quadcopter applications in the civil sector 
 
In the environmental field, applications of quadcopters include air quality monitoring, soil 

monitoring, mountain inspection, mapping & surveying, and so on. Future air quality monitoring 

can be implemented by using a remotely controlled quadcopter equipped with a telemetric device 

(Figure 1.6 (a)). And the measurements can be implemented almost in real time and in different 

geometries – vertical and horizontal. The applications of quadcopters to mountain inspection can 

effectively implement forest patrol, fire prevention, and wildlife protection. As for mapping & 

surveying, the quadcopter-based mapping technique can overcome the shortcomings of traditional 

aircraft mapping operations. The remotely controlled quadcopters are the most powerful tools for 

safely capturing accurate aerial data quickly. Importantly, they can also create aerial maps in real-

time, even before they have landed (Figure 1.6 (b)). 
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(a) Micro station in UAV Air Quality 

Monitoring 

 
(b) image of drone mapping for the smart 

city 
Figure 1.6 Quadcopter applications in the environmental sector 

 
As for the applications in defense, quadcopters can be utilized for anti-terror, border security 

monitoring, aerial reconnaissance, bomb-dropping, and so on. USA, UK, Russia, India, and Israel 

are the leading countries in the development and deployment of military drones. The growing 

application of drones in the military and defense sector will propel the growth of the global drone 

market by 2027. 
 

1.3 State-of-the-art control strategy 

As mentioned above, the quadcopter is inherently unstable and under-actuated, this brings nonlinear 

dynamics to the system that make the control very difficult. Hence, the control strategy of the 

quadcopter is of crucial importance to achieve safe operation, reliable stabilization, autonomous 

flight, trajectory tracking, and robustness to unpredictable changes in the environment. Over the 

past years, various quadcopter control approaches have been proposed by researchers. These control 

methods can be categorized into three categories: linear control method, nonlinear control method, 

and learning-based control method.  
Even though the quadcopter is a nonlinear system, linear control strategies are still useful and good 

control performance has been achieved now. To control the quadcopter with linear control strategies, 

the non-linear quadcopter mathematical model should be first linearized around an equilibrium point. 

The most used linear control strategies are the Proportional – Integrative – Derivative (PID) control, 

the Linear Quadratic Regulator (LQR) control, the H-infinity control, and the gain schedule. In [6], 

a classic PID controller is implemented to control the attitude of the quadcopter and good control 

performance is achieved. In [7, 8], a cascade PID feedback controller is proposed to stabilize the 

attitude of the quadcopter, and the cascade PID controller is proved to be more effective and robust 

compared to the classic one. [9, 10] exploits the cascade PID controller to track the given trajectory, 

simulations considering the disturbances are implemented and the results are very satisfactory. The 

LQR-based control methods are also showing very good control performance. In [11], the author 

utilizes an LQR controller to implement the attitude, position, and altitude control of the quadcopter. 

[12, 13] proposed two LQR controllers with integration action to control the position and yaw 

orientation of the quadcopter, the integration term is used to improve the quadcopter tracking 

performance. In [12] the controller is in an inner-outer loop structure and the testing results on a real 

quadcopter platform show that the controller can achieve good performance in trajectory tracking 

and is very robust to perturbations. In general, linear control methods can achieve the stability of 
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the quadcopter around the chosen operating point, usually the hovering state, but when the 

quadcopter’s state is far from the equilibrium, the control performance will be poor, leading to the 

instability of the quadcopter. To overcome this limitation, a group of linear controllers is designed 

based on several operating points, this is the known gain schedule approach. The gain schedule 

method can incorporate both linear and nonlinear controllers [14, 15, 16] to improve the control 

performance. In [17], a gain scheduled LQR controller is exploited taking into consideration the 

different yaw angles of the quadcopter during flight and the linearization is performed based on the 

current yaw angle, the designed control eliminates the limitation of the quadcopter during the 

trajectory tracking and improves the tracking performance. As for the H-infinity control, [18, 19] 

have shown great control performance of implementing this approach to the quadcopter.  
Liner control methods are not able to handle all the system behaviors since the controller is designed 

based on the linearization of the model around an equilibrium point. Better control performances 

can be achieved by using nonlinear control methods that consider more general quadcopter 

dynamics. Nonlinear control methods like backstepping, sliding mode (SMC), feedback 

linearization (FL), adaptive control, and model predictive control (MPC) have been proved to be 

very effective in quadcopter control. The state feedback linearization approach is implemented in 

[20, 21, 22, 23, 24] to get a linear model of the quadcopter, the linearized system can be controlled 

with a linear control approach like PID, LQR, MPC, etc., and works of literature show that this 

configuration achieves very good performance in quadcopter trajectory tracking. [25, 26, 27] present 

several cases where simple sliding mode control (SMC) has been successfully implemented. Even 

though the SMC has shown acceptable performance, it is often accompanied by the chattering issue. 

In [28, 29], the author attempts to avoid the undesired chattering effect by using 2-order sliding 

mode control (2-SMC), which acts directly on the second-derivative of the sliding surface, and the 

results demonstrate that the 2-SMC is superior in comparison with the simple SMC. Model 

predictive control shows the capability of working with constraints and disturbances. In [30, 31], 

researchers have implemented a linear MPC to the quadcopter trajectory tracking under disturbances 

in a simulation environment. In [31], the linear MPC is used in combination with the feedback 

linearization approach, and the simulation results demonstrate that the designed controller can 

effectively ensure trajectory tracking under constraints and continuous disturbances. Despite the 

linear MPC features above advantages, it can’t handle the nonlinearity of the quadcopter, leading to 

a degree of performance degradation. In [32, 33], researchers have implemented the nonlinear MPC 

for quadcopter trajectory tracking. The proposed controller can not only handle the nonlinearity of 

the quadcopter but also make use of the inherent capabilities of MPC. As for the adaptive control, 

it’s usually coupled with other controllers like PID, LQR, back-stepping, and SMC. This kind of 

controller usually includes two loops where one is the normal feedback loop, and another one is 

used for parameter adjustment [34]. 
learning-based control methods include fuzzy logic control and neural network control. The fuzzy 

logic control has achieved popularity on quadcopter platforms both in standalone approach or 

combined with other control approaches [34]. In [35], the author proposes a Fuzzy-PID controller 

to study the roll and pitch angles stability on a circular trajectory, simulations with both the Fuzzy-

PID controller and the PID controller are implemented, and the Fuzzy-PID controller has relatively 

smaller errors and better robustness than the PID one. In [36] the Fuzzy-PID controller is 

implemented in the quadcopter trajectory tracking and shows better performance than the PID 

controller. Also, neural network control has been extensively used in quadcopter control. In [37], 
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the author proposes to use the neural network to continually adjust the PID parameters for 

minimizing the tracking error. Furthermore, in [38] the reinforcement learning approach is 

implemented in the quadcopter’s automatic landing.  
 

1.4 Outline 

The rest of this thesis is organized as follows: 
 
Chapter 2. This chapter first describes the flight mechanism of a quadcopter and introduces its four 

basic movements. Then, the NED coordinate frame and body coordinate frame that are required for 

describing the quadcopter’s position and attitude are introduced. The concept of Euler angles is 

introduced to describe the attitude of the quadcopter. Finally, two nonlinear quadcopter 

mathematical models are derived based on Newton’s law and the Euler equation, and the nonlinear 

mathematical model is linearized around the equilibrium point. 
 
Chapter 3. This chapter demonstrates an autonomous flight controller with an LQR control strategy. 

The flight controller structure is firstly introduced. Then the altitude, attitude, and position controller 

are designed with the LQR control strategy. Finally, a simulation is performed to tune and validate 

the parameters of the designed controller. The performance of the designed controller is evaluated 

considering the step signal response and trajectory tracking performance. 
 
Chapter 4. This chapter demonstrates the navigation module of the real quadcopter platform which 

includes an IMU, an electronic compass, a barometer, and a GNSS module. This chapter elaborates 

on how to use these sensors to estimate the quadcopter’s attitude, heading, altitude, and position 

during flight. 
 
Chapter 5. The hardware components for developing a real quadcopter platform as well as their 

specifications and characteristics are first introduced. Then the quadcopter schematic and the 

flowchart of the flight controller program are presented. 
 
Chapter 6. In this chapter, the designed quadcopter is first introduced. Then, the experimental 

results are analyzed and presented. 
 
Chapter 7. In this chapter, conclusions and possible future works are presented. 
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Chapter 2: Mathematical model 
To analyze the translational and rotational dynamics of the quadcopter and design an autonomous 

flight controller for it, the mathematical model of the quadcopter needs to be firstly derived. In this 

section, the preliminary quadcopter flight mechanism and its mathematical model are presented. 

Firstly, the configuration structure and flight mechanism of the quadcopter are expounded, then the 

nonlinear mathematical model of the quadcopter is derived and represented in the state-space format, 

and finally, the nonlinear mathematical model is linearized in order to the subsequent flight 

controller design. 
 

2.1 Quadcopter flight mechanism 

The quadcopter is a multi-rotor helicopter that is lifted and propelled by four motors which are 

driven by electronic speed controllers. Four motors with the same structure and radius are 

symmetrically located on the four edges of a cross formed frame. The four motors are located on a 

plane at the same height. According to the direction of the nose, the quadcopter has two 

configurations: the X (cross) configuration and the + (plus) configuration (Figure 2.1). The X (cross) 

configuration is mostly used, this type of configuration maximizes the moments generated by the 

motor propellers and is more flexible compared to the + (plus) configuration. Due to the above 

advantages, the X (cross) configuration is adopted in this project. 
 

 
Figure 2.1 Two types of quadcopter configuration 

 
To fly in three-dimensional space, the quadcopter must be capable of three different types of 

movement: vertical movement, lateral movement, and rotational movement. Based on Newton’s 

third law, each of these can be achieved using the quadcopter’s four propellers. The basic motions 

of a quadcopter are demonstrated in Figure 2.3 below. 
The vertical movement is achieved by thrust generated by the four motors, when the propellers spin, 

each of the propellers will create a thrust, and the total thrust will be the sum of the four propeller's 

thrusts. As Figure 2.3 (c) shows, when the power of each motor is increased at the same time, the 
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increase of the rotor speed increases the total thrust. When the total thrust is enough to overcome 

the gravity, the quadrotor will take off vertically from the ground; otherwise, the power of each 

motor will be reduced at the same time, and the quadrotor will descend vertically. The quadcopter 

can hover in space with no vertical movement by having the thrust and gravity equal. The key to 

vertical movement is to ensure that the rotational speed of the four motors increases or decreases 

synchronously.  
The rotational movements include roll motion, pitch motion, and yaw motion, both can be controlled 

to desired values by changing the speeds of the four motors. The rotational movements are shown 

in Figure 2.3(a) (b). The pitch motion and roll motion are caused by the unevenness of the motors’ 

thrusts on the quadcopter’s two sides, the aerodynamic torque effect, and the gyroscopic effect. The 

unbalanced thrusts on the quadcopter’s two sides generate a moment, which pitches or rolls the 

quadcopter. The gyroscopic effect is due to the rotation of the rotors and is only taken into 

consideration in the lightweight construction quadcopter. The yaw motion is performed by the 

reactive torque produced by the motor. When a motor propeller spins, it produces a torque, according 

to Newton’s third law of motion, an equal and opposite torque is acting on the quadcopter, which is 

the reactive torque. The sum of reactive torques generated by the four motors is the yaw moment, 

which causes the yaw motion of the quadcopter. As is shown in Figure 2.3 (d), to control the yaw 

motion, two motors locate on the same arm rotate in a clockwise direction, while the left ones rotate 

in a counterclockwise direction to cancel out the reactive torque. The yaw motion control can be 

achieved by increasing the speeds of the motors in one direction and/or decreasing the speeds of the 

motors in opposite direction. Even though having pairs of motors rotating in opposite directions 

effectively controls the yaw moment acting on the quadcopter, it causes a new problem. If motors 

spin in opposite directions, two of the propellers push air upward while two push air downward. 

When combining these forces, the total lift is zero and the quadcopter cannot take off. To overcome 

this issue, two different types of propellers are used. In Figure 2.2, the leftmost propeller has the left 

edge higher in the front while the other has the right edge higher. This design eventually makes sure 

that all the propellers push the air in the same direction. 
 

 
Figure 2.2 Two propellers with different blade angles 

 
As discussed in chapter 1, the quadcopter is an under-actuated system. The lateral movement is 

strictly coupled with the rotational motion. This means that for the quadcopter to move forward or 

to move sideways, it has to tilt forward or sideways first. When the quadcopter tilts, the total thrust 

acts at an angle, in this case, part of the force of the thrust is upward and part of it is to the side, 

resulting in lateral movement that can be from side to side or forward and backward. As is shown 

in Figure 2.3 (a) (b), lateral movement occurs by varying the speed of the propellers, increasing the 

speed of the two propellers on one side, and/or decreasing the speed of the two propellers on the 

other side creating uneven amounts of lift on the two sides, the lift created on the side with the faster 
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spinning propellers is greater than the lift created on the opposite side. The result is that the 

quadcopter moves in the direction of the side where less lift is created. 
The quadcopter is an inherently unstable system, when a disturbance occurs, it will lose its stability 

quickly. Hence, a flight controller is required to continuously control and adjust the four motors’ 

speeds to maintain stability. Thanks to the quadcopter’s configuration, the propeller's design, and 

the motor’s spinning direction, each basic motion can be performed separately from the others. 

Engineers can design a corresponding controller for one basic motion individually, which makes the 

design and tuning of the flight controller simple. 
 

 
(a) Pitch motion and forward movement 

 
(b) Roll motion and lateral movement 

 
(c) Vertical movement 

 
(d) Yaw motion 

Figure 2.3 Basic maneuvers of a quadcopter 
 

2.2 Quadcopter mathematical model 

Considering a quadcopter as a rigid body aircraft, its dynamics can be divided into two parts: 

translational movement and rotational movement. The movement of the body's center of mass is 

related to translational dynamics and the rotational movement of the body is related to the rotational 

dynamics. In this project, Newton’s second law and Euler moment equation are used to derive the 

translational and rotational dynamics, respectively. To describe the position and attitude of the 

quadcopter in 3D space and the torque and thrust acting on it, an appropriate coordinate system 

should be defined firstly, then kinematics equations and dynamic equations are implemented based 

on the coordinate system. Finally, the mathematical model of the quadcopter kinematics and 

dynamics is derived, represented in the State-Space format and a linearization of the model is 

performed. The State-Space representation of the linearized model plays a key role in designing the 

autonomous flight controller. 
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2.2.1 Assumptions 

Some assumptions must be done before developing the mathematical model: 
1. The quadcopter and all its components are assumed to be a rigid body thus vibrations and 

deformations during the flight are neglected. 
2. The quadcopter is supposed to be perfectly symmetric and the four motors are located on the 

same plane and perfectly equally spaced from the quadcopter’s geometric center. 
3. The Center of Gravity of the quadcopter coincides with its geometric center. 
4. Forces and torques generated by the wind are neglected 
5. The thrust provided by motors is supposed to be constant concerning the environmental 

conditions (air density, temperature, and altitude). 
6. The Earth is considered as flat, and its rotation is negligible concerning body angular speeds. 

2.2.2 Coordinate frames 

Given an aircraft, the positive 𝑥 direction in the body coordinate frame is usually defined as the 

moving direction, the positive 𝑦 direction as the right side of the moving direction, and the positive 

𝑧  direction as the vertically downward direction; this is also termed forward-right-downward 

coordinate frame. The body coordinate frame follows the movement of the aircraft, and the origin 

coincides with the aircraft’s center of mass. 
To facilitate navigation and waypoint tracking, the axis directions of the inertial coordinate frame 

are chosen as North-East-Down (NED) navigation frame directions. As is shown in Figure 2.4: the 

inertial coordinate frame is identified by 𝑥 − 𝑦 − 𝑧 axes, where the 𝑧 axis is perpendicular to the 

ground and points toward the center of the earth, the 𝑥 axis points toward the geometric north, and 

the 𝑦 axis points toward the East, �̂�𝑥 , �̂�𝑦 , �̂�𝑦 are three unit vectors used to identify the direction of 

the three axes. The origin of the body coordinate frame coincides with the quadcopter’s Center of 

Gravity and is identified by 𝑥𝑏 − 𝑦𝑏 − 𝑧𝑏  axes, �̂�1, �̂�2, �̂�3  are three the unit vectors used to 

describe the direction of the three axes. 
 

 
Figure 2.4 NED coordinate frame and body coordinate frame 

 
 



  

 
 

13 

2.2.3 Rotation and Euler angles 

Euler angles and Quaternion are mostly used to describe the rotation and orientation of a plane in 

three-dimensional space. The quaternion uses four parameters to stand for a rotation, it’s a very 

efficient rotation operator and is mostly used in cases when the aircraft needs to do a full rotation. 

The Euler angles are simpler and more intuitive compared to the quaternion, but they are limited by 

a phenomenon called “Gimbal Lock”. In this work, Euler angles are chosen to represent the rotation 

of the quadcopter since the quadcopter’s pitch and roll motions are limited and the “Gimbal Lock” 

issue can be avoided. 
Euler angles are three angles introduced by Leonhard Euler to describe the rotation of a rigid body 

in three-dimensional space [39]. Any three-dimensional rotation can be decomposed by a sequence 

of three elementary rotations around three axes (consecutive rotation must be performed around two 

different axes), and the rotation angles around three axes are Euler angles. Without considering the 

possibility of using two different conventions for the definition of the rotation axes (intrinsic or 

extrinsic), there exist twelve possible sequences of rotation axes, divided into two groups: Proper 

Euler angles and Tait-Bryan angles [39]. The three elemental rotations may occur either about the 

axes of the original coordinate system (extrinsic rotations) or about the axes of the rotating 

coordinate system (intrinsic rotation). Tait-Bryan 321 angles Figure 2.5, following 𝑧 − 𝑦′ − 𝑥′′ 

(intrinsic rotation) or 𝑥 − 𝑦 − 𝑧 (extrinsic rotation) convention, are also known as yaw, pitch, and 

roll angles, and are mostly used in aviation to describe the orientation of a ship or aircraft. In this 

work, Tait-Bryan 321 angles are used to describe the rotation of the quadcopter body coordinate 

frame relative to the inertial coordinate frame. The rotation matrix of the quadcopter body 

coordinate frame can be derived by multiplying three elementary matrixes. 
The roll pitch and yaw angles of an aircraft are demonstrated in Figure 2.6. The roll angle values 

range from −90°  to 90°  where zero means horizontal, 90°  means full roll right and −90° 

means full roll left. The pitch angle values also range from −90°  to 90°  where zero means 

horizontal, 90° means straight up and −90° means straight down. The yaw angle values range 

from 0 to 360°, which gives information about the quadcopter’s direction in space. In the attitude 

and heading reference system (AHRS), the yaw angle represents the direction of the aircraft to the 

north, where 0°  means the aircraft pointing North, 90°  means pointing East, 180°  means 

pointing South, and 270° means pointing West. 
 
 

 
(a) Intrinsic rotation axes in order 𝑧 − 𝑦′ − 𝑥′′ 



  

 
 

14 

 
(b) Extrinsic rotation axes in order 𝑥 − 𝑦 − 𝑧 

Figure 2.5 Tait-Bryan angles 
 
For convenience, the following notation is introduced: 
 cos(∗) =  𝑐(∗)  sin(∗) =  𝑠(∗)  tan(∗) =  𝑡(∗) 
The basic elementary rotations around 𝑥, 𝑦, and 𝑧 axes can be described as: 

 𝑅𝑥 = [

1 0 0
0 𝑐𝜙 −𝑠𝜙
0 𝑠𝜙 𝑐𝜙

] 𝑅𝑦 = [

𝑐𝜃 0 𝑠𝜃
0 1 0
−𝑠𝜃 0 𝑐𝜃

] 𝑅𝑧 = [

𝑐𝜓 −𝑠𝜓 0

𝑠𝜓 𝑐𝜓 0

0 0 1

] (2-1) 

The notation 𝜙 , 𝜃 , 𝜓  represents roll pitch and yaw angle around three axes respectively. By 

multiplying the three matrixes, the rotation matrix from the body coordinate frame to the inertial 

coordinate frame can be described as: 

 𝑅𝑏𝑜𝑑𝑦
𝑁𝐸𝐷 = 𝑅𝑧𝑅𝑦𝑅𝑥 = [

𝑐𝜃𝑐𝜓 𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓 𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓
𝑐𝜃𝑠𝜓 𝑠𝜙𝑠𝜃𝑠𝜓 + 𝑐𝜙𝑐𝜓 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓
−𝑠𝜃 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃

] (2-2) 

The rotation matrix 𝑅𝑏𝑜𝑑𝑦
𝑁𝐸𝐷   is orthogonal, thus 𝑅𝑏𝑜𝑑𝑦

𝑁𝐸𝐷 −1
= 𝑅𝑏𝑜𝑑𝑦

𝑁𝐸𝐷 𝑇
 , which is the rotation matrix 

from the inertial coordinate frame to the body coordinate frame. 
 

 
Figure 2.6 Roll pitch and yaw angles of an aircraft 

 

2.2.4 Kinematics equations 

Kinematics describes the motion of the quadcopter without considering the forces that cause it to 

move. Defining 𝑉 = [�̇� �̇� �̇�]𝑇 the velocity of the quadcopter in the inertial coordinate frame 

and 𝑉𝑏 = [𝑢 𝑣 𝑤]𝑇 the velocity of it represented in the body frame, the rotation matrix transfers 

the velocity represented in the body coordinate frame to the inertial coordinate frame: 
 𝑉 = 𝑅𝑏𝑜𝑑𝑦

𝑁𝐸𝐷 · 𝑉𝑏 (2-3) 
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Denoting the angular velocity of the quadcopter represented in the inertial coordinate frame as 𝜔 =

[�̇� �̇� �̇�]𝑇  and the angular velocity represented in the body coordinate frame as 𝜔𝑏 =

[𝑝 𝑞 𝑟]𝑇, it’s possible to find these two angular velocities are linked by the following relations: 
 𝜔𝑏 = 𝑇 · 𝜔 (2-4) 
Where 𝑇  denotes the transformation matrix for angular velocities from the inertial coordinate 

frame to the body coordinate frame: 

 𝑇 = [

1 0 −𝑠𝜃
0 𝑐𝜙 𝑠𝜙𝑐𝜃
0 −𝑠𝜙 𝑐𝜙𝑐𝜃

] (2-5) 

In the case of 𝜃 ≠ (2𝑘 − 1)𝜋/2, (𝑘 ∈ 𝑍), 𝑇 is invertible and 𝑇−1 denotes transformation matrix 

of angular velocities from the body coordinate frame to the inertial coordinate frame: 
 𝜔 = 𝑇−1 · 𝜔𝑏 (2-6) 

 𝑇−1 = [

1 𝑠𝜙𝑡𝜃 𝑐𝜙𝑡𝜃
0 𝑐𝜙 −𝑠𝜙

0
𝑠𝜙

𝑐𝜃

𝑐𝜙

𝑐𝜃

] (2-7) 

Combining Equation 2-3 and Equation 2-6, the kinematic equation of the quadcopter can be written 

as: 

 

{
  
 

  
  [
�̇�
�̇�
�̇�
] = 𝑅𝑏𝑜𝑑𝑦

𝑁𝐸𝐷 · [
𝑢
𝑣
𝑤
]

 �̇� = 𝑝 + 𝑟[cos(ϕ) tan(θ)] + q[sin(ϕ) tan(θ)]

 �̇� = 𝑞[cos(𝜙)] − 𝑟[sin(𝜙)]

 �̇� = 𝑟
cos (𝜙)

cos (𝜃)
+ 𝑞

sin (𝜙)

cos (𝜃)

 (2-8) 

 

2.2.5 Dynamics equations 

Dynamics equations describe the movement of the quadcopter under the action of external forces 

and torques. The solution of these equations supplies a description of the position, the motion, and 

the acceleration of the quadcopter as a function of time. In this section, Newton’s second law and 

the Euler moment equation are used to derive the translational and rotational dynamics equations of 

the quadcopter, respectively. The two equations are written as follows: 
 𝐹𝑏 = 𝑚(𝜔𝑏 ∧ 𝑉𝑏 + 𝑉�̇�) (2-9) 
 𝑀𝑏 = 𝐼 · 𝜔�̇� +𝜔𝑏 ∧ (𝐼 · 𝜔𝑏) (2-10) 
In the work, 𝐹𝑏 is the vector containing the total force applied to the quadcopter in the body frame, 

𝑚 is the total mass of the quadcopter, 𝜔𝑏 ∧ 𝑉𝑏 represents the centrifugal acceleration, 𝐼 is the 

inertial matrix of the quadcopter and 𝑀𝑏 = [𝑀𝑥 𝑀𝑦 𝑀𝑧]𝑇  is the vector containing the total 

torques applied to the quadcopter in the body frame. Notation ∧  represents cross-product. The 

inertial matrix 𝐼 is defined as follows: 

 𝐼 = [

𝐼𝑥 0 0
0 𝐼𝑦 0

0 0 𝐼𝑧

] 
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Where 𝐼𝑥 , 𝐼𝑦 and 𝐼𝑧 are the moment of inertia along the axes of the body coordinate frame, the 

inertia matrix is assumed to be diagonal due to the quadcopter being assumed to be perfect symmetry 

to the body coordinate frame.  
The dynamics equations of the quadcopter can be described as: 

 

{
  
 

  
 
 𝐹𝑥 = 𝑚(�̇� + 𝑞𝑤 − 𝑟𝑣)
 𝐹𝑦 = 𝑚(�̇� + 𝑟𝑢 − 𝑝𝑤)

 𝐹𝑧 = 𝑚(�̇� + 𝑝𝑣 − 𝑞𝑢)

 𝑀𝑥 = 𝐼𝑥�̇� + (𝐼𝑧 − 𝐼𝑦)𝑞𝑟

 𝑀𝑦 = 𝐼𝑦�̇� + (𝐼𝑥 − 𝐼𝑧)𝑝𝑟

 𝑀𝑧 = 𝐼𝑧�̇� + (𝐼𝑦 − 𝐼𝑥)𝑝𝑞

 (2-11) 

It should be noted that all quantities in dynamics equations are expressed in the body coordinate 

frame, and kinematics equations in Equation 2-8 must be used to derive the position and attitude of 

the quadcopter in the inertial coordinate frame. 
The total force applied to the quadcopter is made up of two components: the gravity and the thrust 

generated by the four motors. The total force represented in the body coordinate frame can be given 

by: 

 𝐹𝑏 = 𝑚𝑔𝑅𝑏𝑜𝑑𝑦
𝑁𝐸𝐷 𝑇

· �̂�𝑧 + 𝐹𝑡 (2-12) 

Where �̂�𝑧 is the unit vector of the 𝑧 axis of the inertial coordinate frame, 𝑔 is the gravitational 

acceleration, and 𝐹𝑡 is the total thrust provided by the four motors in the body coordinate frame. 

Note that in this work the forces due by the wind and other disturbances are neglected. The total 

thrust generated by the four motors can be written as: 

 𝐹𝑡 = [
0
0
−𝐹𝑡

] = [
0
0

−(𝑇1 + 𝑇2 + 𝑇3 + 𝑇4)
] (2-13) 

Where 𝑇1, 𝑇2, 𝑇3, 𝑇4 are thrusts generated by the four motors, respectively. It should be noted that 

the four motors are assumed to produce force only in the 𝑧 axis direction of the body coordinate 

frame. 
Grouping Equation 2-11, Equation 2-12, Equation 2-13 and isolating �̇�, �̇�, �̇� on the left side of the 

equation, the result is: 

 𝑉�̇� = [
�̇�
�̇�
�̇�
] = [

𝑟𝑣 − 𝑞𝑤 − 𝑔𝑠𝑖𝑛(𝜃)

𝑝𝑤 − 𝑟𝑢 + 𝑔𝑠𝑖𝑛(𝜙) cos(𝜃)

𝑞𝑢 − 𝑝𝑣 + 𝑔𝑐𝑜𝑠(𝜙) cos(𝜃) −
𝐹𝑡

𝑚

] (2-14) 

Lastly, isolating �̇�, �̇�, �̇� on the left side of Equation 2-11, we can obtain: 

 [
�̇�
�̇�
�̇�
] =

[
 
 
 
 
𝐼𝑦−𝐼𝑧

𝐼𝑥
𝑞𝑟 +

𝑀𝑥

𝐼𝑥
𝐼𝑧−𝐼𝑥

𝐼𝑦
𝑝𝑟 +

𝑀𝑥

𝐼𝑦
𝐼𝑥−𝐼𝑦

𝐼𝑧
𝑝𝑞 +

𝑀𝑧

𝐼𝑧 ]
 
 
 
 

 (2-15) 

The total torque 𝑀𝑏 = [𝑀𝑥 𝑀𝑦 𝑀𝑧]𝑇 applied to the quadcopter in the body coordinate frame is 

given by: 
 𝑀𝑏 = 𝜏𝑏 + 𝑔𝑚 (2-16) 
Where 𝜏𝑏 = [𝜏𝑥 𝜏𝑦 𝜏𝑧]𝑇  is the vector containing the control torques provided by the 

quadcopter’s four motors, and 𝑔𝑚 = [𝑔𝑚𝑥 𝑔𝑚𝑦 𝑔𝑚𝑧]𝑇 is the vector containing the gyroscopic 
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torque caused by the combined rotation of the four motors and the quadcopter body. The vector 𝜏𝑏 

can be calculated using the following equation referring to Figure 2.7: 

 [

𝜏𝑥
𝜏𝑦
𝜏𝑧
] = [

(𝑇1 − 𝑇2 − 𝑇3 + 𝑇4)𝐿𝑠𝑖𝑛(𝛼)
(𝑇1 + 𝑇2 − 𝑇3 − 𝑇4)𝐿𝑐𝑜𝑠(𝛼)

−𝐶1 + 𝐶2 − 𝐶3 + 𝐶4

] (2-17) 

Where 𝐿 is the distance between the quadcopter’s center of gravity and the motor, 𝛼 is defined as 

in Figure 2.7, and 𝐶1, 𝐶2, 𝐶3, 𝐶4 are the reactive torques generated by the four motors in 𝑧 axis 

direction of the body coordinate frame, respectively. The gyroscopic torque 𝑔𝑚 is given by the 

following relation: 
 𝑔𝑚 = ∑ 𝐽𝑝(𝜔𝑏 ∧ �̂�3)(−1)

𝑖+1𝛺𝑖
4
𝑖=1  (2-18) 

Where 𝐽𝑝 is the moment of inertia of the propellers, �̂�3 is the unit vector in 𝑧 axis of the body 

coordinate frame, and 𝛺𝑖 is the angular velocity of the 𝑖𝑡ℎ motor. The gyroscopic effect is only 

taken into consideration in the lightweight construction quadcopter. In this project, the torques due 

to the wind or any other disturbances and the gyroscopic effect are not taken into consideration, as 

a result, the total torque [𝑀𝑥 𝑀𝑦 𝑀𝑧]𝑇 is equal to the control torques generated by the motor 

[𝜏𝑥 𝜏𝑦 𝜏𝑧]𝑇. 
 

 
Figure 2.7 Motors configuration of the quadcopter in this project 

 

2.2.6 State-space representation and linearization  

Organizing all the equations presented in the previous section, the state-space representation of the 

quadcopter mathematical model can be written as a nonlinear differential equation of this form: 
 �̇� = 𝑓(𝑥, 𝑢) = 𝑓(𝑥) + 𝑔(𝑥) · 𝑢 (2-19) 
This kind of representation is convenient when dealing with control theories like feedback 

linearization (FL) and sliding mode control (SMC). 𝑥 and 𝑢 are the state variable and input of the 

system, respectively. Defining 𝑥 and 𝑢 as: 
 𝑥 = [𝑥 𝑦 𝑧 𝜙 𝜃 𝜓 𝑢 𝑣 𝑤 𝑝 𝑞 𝑟]𝑇 ∈ ℝ12 
 𝑢 = [−𝐹𝑡 𝑀𝑥 𝑀𝑦 𝑀𝑧]𝑇 ∈ ℝ4 (2-20) 
Grouping Equation 2-8, Equation 2-14, and Equation 2-15 together and rewriting the result 

following Equation 2-19, it is possible to express the dynamical model in the state-space format like 

this: 
 �̇� = 𝑓(𝑥) + 𝑔(𝑥) · 𝑢 
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 𝑓(𝑥) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑅𝑏𝑜𝑑𝑦

𝑁𝐸𝐷 [
𝑢
𝑣
𝑤
]

𝑝 + tan(𝜃) [𝑞𝑠𝑖𝑛(𝜙) + 𝑟𝑐𝑜𝑠(𝜙)]

𝑞𝑐𝑜𝑠(𝜙) − 𝑟𝑠𝑖𝑛(𝜙)
1

cos(𝜃)
[𝑞𝑠𝑖𝑛(𝜙) + 𝑟𝑐𝑜𝑠(𝜙)]

𝑟𝑣 − 𝑞𝑤 − 𝑔𝑠𝑖𝑛(𝜃)

𝑝𝑤 − 𝑟𝑢 + 𝑔𝑠𝑖𝑛(𝜙)cos (𝜃)

𝑞𝑢 − 𝑝𝑣 + 𝑔𝑐𝑜𝑠(𝜙)cos (𝜃)
𝐼𝑦−𝐼𝑧

𝐼𝑥
𝑟𝑞

𝐼𝑧−𝐼𝑥

𝐼𝑦
𝑝𝑟

𝐼𝑥−𝐼𝑦

𝐼𝑧
𝑝𝑞 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     𝑔(𝑥) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1

𝑚
0 0 0

0
1

𝐼𝑥
0 0

0 0
1

𝐼𝑦
0

0 0 0
1

𝐼𝑧]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (2-21) 

 
Another kind of mathematical model of the quadcopter is presented below. The procedure of the 

Newton-Euler formalism modeling is to project thrust forces acting on the quadcopter to the inertial 

coordinate frame and analyze the translational dynamics in the inertial coordinate system and the 

rotational dynamics in the body coordinate systems. In the inertial coordinate frame, the centrifugal 

force is nullified, only the gravitational force and the thrust are contributing to the acceleration of 

the quadcopter. The translational dynamics equations can be written as: 
 𝑚�̈� = 𝑚𝑔 + 𝑅𝑏𝑜𝑑𝑦

𝑁𝐸𝐷 𝐹𝑡 

 [
�̈�
�̈�
�̈�
] = 𝑔 [

0
0
1
] −

𝐹𝑡

𝑚
[

cos(𝜙) sin(𝜃) cos(𝜓) + sin (𝜙)sin (𝜓)

cos(𝜙) sin(𝜃) sin(𝜓) − sin(𝜙) cos (𝜓)

cos(𝜙) cos (𝜃)

] (2-22) 

Grouping Equation 2-8, Equation 2-15, and Equation 2-22 together, the dynamics equations can be 

written as: 

 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

  

�̈� = −
𝐹𝑡

𝑚
[𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜓) + 𝑠𝑖 𝑛(𝜙) 𝑠𝑖 𝑛(𝜓)]

�̈� = −
𝐹𝑡

𝑚
[𝑐𝑜𝑠(𝜙)𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝜓) − 𝑠𝑖𝑛(𝜙) 𝑐𝑜 𝑠(𝜓)]

�̈� = 𝑔 −
𝐹𝑡

𝑚
𝑐𝑜𝑠(𝜙) 𝑐𝑜𝑠 (𝜃)

�̇� = 𝑝 + 𝑟[𝑐𝑜𝑠(𝜙) 𝑡𝑎𝑛(𝜃)] + 𝑞[𝑠𝑖𝑛(𝜙) 𝑡𝑎𝑛(𝜃)]

�̇� = 𝑞[𝑐𝑜𝑠(𝜙)] − 𝑟[𝑠𝑖𝑛(𝜙)]

�̇� = 𝑟
𝑐𝑜𝑠 (𝜙)

𝑐𝑜𝑠 (𝜃)
+ 𝑞

𝑠𝑖𝑛 (𝜙)

𝑐𝑜𝑠 (𝜃)

�̇� =
𝐼𝑦−𝐼𝑧

𝐼𝑥
𝑞𝑟 +

𝑀𝑥

𝐼𝑥

�̇� =
𝐼𝑧−𝐼𝑥

𝐼𝑦
𝑝𝑟 +

𝑀𝑥

𝐼𝑦

�̇� =
𝐼𝑥−𝐼𝑦

𝐼𝑧
𝑝𝑞 +

𝑀𝑧

𝐼𝑧

 (2-23) 

Defining the state vector and input as: 
𝑥 = [𝑥 𝑦 𝑧 𝜙 𝜃 𝜓 �̇� �̇� �̇� 𝑝 𝑞 𝑟]𝑇 ∈ ℝ12 

 𝑢 = [−𝐹𝑡 𝑀𝑥 𝑀𝑦 𝑀𝑧]𝑇 ∈ ℝ4 
It is possible to write the equations in state-space form: 
 �̇� = 𝑓(𝑥) + 𝑔(𝑥) · 𝑢 
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 𝑓(𝑥) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

�̇�
�̇�
�̇�

𝑝 + 𝑡𝑎𝑛(𝜃) [𝑞𝑠𝑖𝑛(𝜙) + 𝑟𝑐𝑜𝑠(𝜙)]

𝑞𝑐𝑜𝑠(𝜙) − 𝑟𝑠𝑖𝑛(𝜙)
1

𝑐𝑜𝑠(𝜃)
[𝑞𝑠𝑖𝑛(𝜙) + 𝑟𝑐𝑜𝑠(𝜙)]

0
0
𝑔

𝐼𝑦−𝐼𝑧

𝐼𝑥
𝑞𝑟

𝐼𝑧−𝐼𝑥

𝐼𝑦
𝑝𝑟

𝐼𝑥−𝐼𝑦

𝐼𝑧
𝑝𝑞 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     𝑔(𝑥) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
𝑈𝑥 0 0 0
𝑈𝑦 0 0 0

𝑈𝑧 0 0 0

0
1

𝐼𝑥
0 0

0 0
1

𝐼𝑦
0

0 0 0
1

𝐼𝑧]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (2-24) 

Where: 

 𝑈𝑥 =
1

𝑚
[𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜓) + 𝑠𝑖 𝑛(𝜙) 𝑠𝑖 𝑛(𝜓)] 

 𝑈𝑦 =
1

𝑚
[𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝜓) − 𝑠𝑖𝑛(𝜙)𝑐𝑜 𝑠(𝜓)] 

 𝑈𝑧 =
1

𝑚
[𝑐𝑜𝑠(𝜙) 𝑐𝑜 𝑠(𝜃)] 

 
The mathematical model of the quadcopter is a quite complex system due to its nonlinearity, which 

makes it difficult to gain an accurate insight into the quadcopter’s behavior and to troubleshoot 

control systems in simulation. To develop basic control strategies like linear control, several 

assumptions that reduce the complexity of the non-linear equations are required. Based on these 

assumptions, the linearized mathematical model of the quadcopter is derived, and then its control 

strategy can be formulated. In this project, the Linear Quadratic Regulator (LQR) control strategy 

is adopted, and the controller parameters are tuned based on the linearized model. The designed 

controller can achieve acceptable control performance to some extent when deployed on the 

nonlinear model. In future works, the complexity of the system model can be increased, and then 

more advanced nonlinear control strategies such as Feedback Linearization Control, Sliding Mode 

Control (SMC), and Nonlinear Model Predictive Control (NMPC) can be deployed to implement 

much more precise control of the quadcopter. 
The assumption made to simplify the model is that the quadcopter will be operated around a stable 

hover condition with small attitude angles and minimal rotational and translational velocities and 

accelerations. These assumptions are described by the mathematically functions below: 
�̇� = �̇� = �̇� = 0 

 �̇� = �̇� = �̇� = 0 
 𝜙 = 𝜃 = 0 
 𝜓 = 0 (2-25) 
The linearization is made by approximating the sine function with its argument and the cosine 

function with unity. The resulting simplified and linearized equations are: 

 [
𝑝
𝑞
𝑟
] ≈ [

1 0 0
0 1 0
0 0 1

] ≈ [
�̇�

�̇�
�̇�

] (2-26) 
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 [
�̈�
�̈�
�̈�
] =

[
 
 
 
 −

𝐹𝑡

𝑚
[𝜃 cos(𝜓) + 𝜙 sin(𝜓)]

−
𝐹𝑡

𝑚
[𝜃 sin(𝜓) − 𝜙 cos(𝜓)]

𝑔 −
𝐹𝑡

𝑚 ]
 
 
 
 

=

[
 
 
 
 −

𝐹𝑡

𝑚
𝜃

𝐹𝑡

𝑚
𝜙

𝑔 −
𝐹𝑡

𝑚]
 
 
 
 

≈ [

−𝑔𝜃
𝑔𝜙

𝑔 −
𝐹𝑡

𝑚

] (2-27) 

 [
�̇�
�̇�
�̇�
] =

[
 
 
 
 
1

𝐼𝑥
𝑀𝑥

1

𝐼𝑦
𝑀𝑦

1

𝐼𝑧
𝑀𝑧 ]
 
 
 
 

 (2-28) 

It should be noted that in Equation 2-27 the translational movement has been decoupled from the 

attitude assuming the yaw angle remains around zero degrees. With this assumption, movement 

along the global 𝑥 and 𝑦 axis can be controlled by independently controlling the pitch and roll 

angles, respectively. Also, the total thrust 𝐹𝑡  is almost equal to the gravity for a quadcopter to 

maintain a stable altitude during hovering. The simplified equations of the quadcopter model by 

linearization are: 

 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

  

�̇� = �̇�
�̇� = �̇�
�̇� = �̇�
�̇� = 𝑝

�̇� = 𝑞

�̇� = 𝑟
�̈� = −𝑔𝜃
�̈� = 𝑔𝜙

�̈� = 𝑔 −
𝐹𝑡

𝑚

�̇� =
𝑀𝑥

𝐼𝑥

�̇� =
𝑀𝑦

𝐼𝑦

�̇� =
𝑀𝑧

𝐼𝑧

 (2-29) 

Once a linear model of the quadcopter dynamics is obtained, and letting matrix 𝐶 = 𝐼12 be the 

output matrix, the model can be written in the state-space form as follows: 

 { 
�̇� = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥

 (2-30) 

The matrices associated with the linear model are given by relations: 

 𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −𝑔 0 0 0 0 0 0 0
0 0 0 𝑔 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0]
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 𝐵 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1

𝑚
0 0 0

0
1

𝐼𝑥
0 0

0 0
1

𝐼𝑦
0

0 0 0
1

𝐼𝑧]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (2-31) 

It should be noted that the input vector 𝑢 for Equation 2-30 should be defined as: 
 𝑢 = [𝑚𝑔 − 𝐹𝑡 𝑀𝑥 𝑀𝑦 𝑀𝑧]𝑇 ∈ ℝ4 
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Chapter 3: Controller design and simulation 
In this chapter, the flight controller structure and the control strategy are discussed. The control 

strategy utilized to design the flight controller is the Linear Quadratic Regular (LQR) control. The 

linearized mathematical model derived above is used in the LQR controller design. From the 

mathematical model derived above, the rotational motions of the quadcopter are independent of 

translational motions and full actuated, while translational motions are underactuated and depend 

heavily on the rotational motions. Therefore, the cascade controller with an inner-outer loop 

structure can better control the quadcopter. The inner loop is related to the fast dynamics of the 

quadcopter, which generates control signals to control the attitude and altitude, while the outer loop 

is related to the slow dynamics of it, which controls the position in the 𝑋 − 𝑌 horizontal plane. The 

structure of this cascade controller is shown in Figure 3.1 below.  
 

 
Figure 3.1 Structure of the flight controller 

 

3.1 Linear Quadratic Regulator Control 

The Linear Quadratic Regular (LQR) control, in the context of optimal control, uses full state 

feedback to determine the control signal to bring the system’s state 𝑥(𝑡) to the desired reference 

𝑟(𝑡) while at the same time minimizing some cost index. Furthermore, LQR control can minimize 

the control inputs, thus reducing the use of actuators. For the Linear Time-Invariant system 

described in the state-space representation: 

�̂�,𝑊 

Throttle 

Torque 

𝜙, 𝜃, 𝜓, 𝑝, 𝑞, 𝑟 𝑥ො, 𝑦ො, 𝜓, 𝑈, 𝑉 

PWM 

𝑧𝑟𝑒𝑓 

𝜓𝑟𝑒𝑓 

𝜙𝑑𝑒𝑠, 𝜃𝑑𝑒𝑠 

𝑦𝑟𝑒𝑓 

𝑥𝑟𝑒𝑓 

Quadcopter 
Motor 

mixer 

Attitude 

controller 

Position 

Controller 

Altitude controller 
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 {
 �̇� = 𝐴𝑥 + 𝐵𝑢
 𝑦 = 𝐶𝑥

 (3-1) 

The cost index is a function of the state variable 𝑥(𝑡) and controller signal 𝑢(𝑡). 

 𝐽(𝑥, 𝑢) =
1

2
∫ (𝑥(𝑡)𝑇𝑄𝑥(𝑡) + 𝑢(𝑡)𝑇𝑅𝑢(𝑡))𝑑𝑡
∞

0
 (3-2) 

Where matrix 𝑄 weights the cost of the system state and matrix 𝑅 weights the cost of actuators. 

These weighting matrices determine the relative importance of the existing state error as well as the 

energy expenditure of the system. 
The full state feedback control law 𝑢(𝑡) which minimizes the cost index function is: 
 𝑢(𝑡) = −𝐾𝑥(𝑡) (3-3) 
The computation of the optimal gains is performed through the function: 
 𝐾 = 𝑅−1𝐵𝑇𝑃 (3-4) 
Where the positive-definite matrix 𝑃 results from the steady-state Riccati equation: 
 𝐴𝑇𝑃 + 𝑃𝐴 + 𝑄 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 = 0 (3-5) 
The closed-loop system represented as �̇� = (𝐴 − 𝐵𝐾)𝑥 is asymptotically stable with the optimal 

gain computed by Equation 3-4. Under MATLAB, the algebraic Riccatic equation can be solved by 

the lqr function: 
 𝐾 = 𝑙𝑞𝑟(𝐴, 𝐵, 𝑄, 𝑅) (3-6) 
LQR requires a linear model to get an adequately controlled system, and it can handle multiple 

inputs and outputs simultaneously and offer a fast response, but unlike PID control, LQR control 

often provides static error during tracking due to the lack of an integral part. To overcome this 

problem, an integrator can be included in the control structure to eliminate the static error and 

stabilize the system.  
 

 
Figure 3.2 LQR control scheme 

 
One of the key questions in LQR controller design is how to choose the weighting matrices 𝑄 and 

𝑅. 𝑄 ∈ ℝ𝑛×𝑛 is a positive semi-definite matrix that penalizes the state variables and 𝑅 ∈ ℝ𝑚×𝑚 

is a positive definite matrix that penalizes the control signals. A simple choice is to use a diagonal 

weighting matrix: 

 𝑄 = [
𝑞1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑞𝑛

]     𝑅 = [
𝜌1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜌𝑚

] (3-7) 

For choosing 𝑄 and 𝑅, the individual diagonal elements describe how much each state and input 

should contribute to the overall cost index. The larger these values are, the more the state variables 

and input signals are penalized. Choosing a large value for 𝑅 means stabilizing the system with 

less (weighted) energy. This is usually called an expensive control strategy. On the other hand, 

𝑦(𝑡) 

𝑥(𝑡) 

𝑢(𝑡) 
Plant 

K 
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choosing a small value for 𝑅 means the energy consumption is little considered (cheap control 

strategy). Similarly, choosing a large value for 𝑄 means that the state variables should remain small 

and a small value for 𝑄 implies less concern about the state variables. Hence, the tuning of weight 

matrices 𝑄 and 𝑅 is a trade-off between the control performance and the energy consumption. 
The simplest method for choosing the elements of 𝑄 and 𝑅 matrix is to make 𝑄 = 𝐼, 𝑅 = 𝜌𝐼 ⇒

𝐽 = ‖𝑥‖2 + 𝜌‖𝑢‖2, and vary 𝜌 to get something that has a good response. Another method for 

choosing the individual weights 𝑞𝑖 and 𝜌𝑖 can be done by deciding on a weighting of the errors 

from the individual terms. Bryson and Ho [40] have suggested the following method for choosing 

the matrices 𝑄 and 𝑅: (1) choosing 𝑞𝑖 and 𝜌𝑖 as the inverse of the square of the maximum value 

for the corresponding 𝑥𝑖  or 𝑢𝑖 ; (2) modify the 𝑞𝑖  and 𝜌𝑖  to obtain a compromise among 

response time, overshoot, damping, and control effort. The second step can be performed by trial 

and error. 
 

3.1.1 Altitude controller 

The altitude controller belongs to the inner loop part of the flight controller as shown in Figure 3.1. 

The altitude controller generates the thrust command to control the quadcopter’s position along 𝑧 

axis of the inertial coordinate frame (altitude). The unit of the thrust command is Newton [N], in 

this way, the designing and the turning of the controller are more intuitive. LQR control strategy is 

used to design the altitude controller, and very good control performance is achieved. The linearized 

mathematical model (Equation 2-29) in chapter 2 is used for the LQR controller design. For the 

altitude subsystem, the related differential equation is: 

 �̈� = 𝑔 −
𝐹𝑡

𝑚
 (3-8) 

To write the differential equation for altitude to the format �̇� = 𝐴𝑥 + 𝐵𝑢, the state variables and 

the input of the subsystem are defined as: 
 𝑥𝑧 = [𝑧 �̇�]𝑇    𝑢𝑧 = 𝑚𝑔 − 𝐹𝑡   (3-9) 
Then the state-space representation of the altitude subsystem is: 

 �̇�𝑧 = [
0 1
0 0

] 𝑥𝑧 + [
0
1/𝑚

]𝑢𝑧 

 𝑧 = [1 0]𝑥𝑧 (3-10) 
After determining the weighting matrix 𝑄𝑧 ∈ ℝ

2×2  and 𝑅𝑧 ∈ ℝ , the feedback gain 𝐾𝑧 ∈ ℝ
1×2 

for the altitude control can be computed by MATLAB command lqr, and the control law for the 

altitude can be expressed as: 

 𝐹𝑡 = −1 · (𝐾𝑧 · [
𝑧𝑟 − 𝑧
�̇�𝑟 − �̇�

] − 𝑚𝑔) (3-11) 

The block diagram of the altitude controller is shown in Figure 3.3 below: 
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Figure 3.3 Block diagram of altitude controller 

 
Where the −𝑚𝑔 is the feedforward gravity term, this is the amount of thrust needed to offset the 

weight of the quadcopter so that the LQR controller just generates a positive thrust to make the 

quadcopter go down and a negative thrust to make it go up (The sign is opposite here since we use 

NED coordinate frame, up is the opposite direction of the coordinate frame). To limit the control 

command to the feasible values the quadcopter’s motor can generate, a saturation block is included 

in the controller. The limitations are set according to the characteristics of the actuator, and they are 

listed in Table 3.2 below. 
 

3.1.2 Attitude controller 

The Attitude controller is related to the rotational dynamics of the quadcopter, which belongs to the 

inner loop part of the flight controller. The attitude controller computes the desired torques implied 

to the quadcopter in the body coordinate frame to control the roll, pitch, and yaw angles for tracking 

the desired references. The unit of the torque commands is Newton-meters [Nm], in this way the 

designing and tuning of the controller will be more intuitive. The LQR control strategy is used, and 

the designed controller can achieve zero static error. The linearized mathematical model Equation 

2-29 derived in chapter 2 is used for controller design. For the attitude subsystem, the related 

differential equations are: 

 

{
 
 
 
 

 
 
 
 
 �̇� = 𝑝

 �̇� =
𝑀𝑥

𝐼𝑥

 �̇� = 𝑞

 �̇� =
𝑀𝑦

𝐼𝑦

 �̇� = 𝑟

 �̇� =
𝑀𝑧

𝐼𝑧

 (3-12) 

To write the equations in state-space format, the state vector 𝑥𝑎  and input vector 𝑢𝑎  for this 

subsystem are defined as: 
 𝑥𝑎 = [𝜙 𝜃 𝜓 𝑝 𝑞 𝑟]𝑇    𝑢𝑎 = [𝑀𝑥 𝑀𝑦 𝑀𝑧]𝑇 (3-13) 
The state-space representation of the subsystem is: 
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 �̇�𝑎 =

[
 
 
 
 
 
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

𝑥𝑎 +

[
 
 
 
 
 
0 0 0
0 0 0
0 0 0
1/𝐼𝑥 0 0
0 1/𝐼𝑦 0

0 0 1/𝐼𝑧]
 
 
 
 
 

𝑢𝑎 (3-14) 

 𝑦𝑎 = [
𝜙
𝜃
𝜓
] = [

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

] 𝑥𝑎 (3-15) 

After determining the weighting matrix 𝑄𝑎 ∈ ℝ
6×6  and 𝑅𝑎 ∈ ℝ

3×3 , the feedback gain 𝐾𝑎 ∈

ℝ3×6 can be computed by solving the algebraic Riccatic equation with MATLAB command lqr. 

The feedback gain 𝐾𝑎 is a 3 × 6 matrix, and the control law for the attitude subsystem can be 

expressed by: 

 𝑢𝑎 = [

𝑀𝑥

𝑀𝑦

𝑀𝑧

] = 𝐾𝑎

[
 
 
 
 
 
𝜙𝑟 − 𝜙
𝜃𝑟 − 𝜃
𝜓𝑟 −𝜓
−𝑝
−𝑞
−𝑟 ]

 
 
 
 
 

 (3-16) 

 
The block diagram of the attitude controller is shown below: 
 

 
Figure 3.4 Block diagram of the attitude controller 

 
A saturation block is included in the controller to limit the computed torque command to the feasible 

values the quadcopter’s motor can generate. The maximum and minimum values are set according 

to the characteristics of the motors and the arm length of the quadcopter, and they are listed in Table 

3.2 below. 
 

3.1.3 Position controller 

The outer loop part of the controller refers to the position control of the quadcopter on the 𝑋 − 𝑌 

horizontal plane. This loop takes the quadcopter’s current heading angle 𝜓 , current position, 

velocity, and the position reference signal 𝑥𝑟 and 𝑦𝑟 as inputs and computes the desired roll angle 

- 

+ 

Saturation 

𝑡𝑜𝑟𝑞𝑢𝑒_𝑐𝑚𝑑 
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Feedback gain 
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𝜙 and pitch angle 𝜃 for tracking the reference position. The unit of the position controller outputs 

is the radian. In this case, the turning of the controller is more intuitive. The linearized mathematical 

model derived in chapter 2 is used for designing the LQR controller and the differential equations 

related to the 𝑥 and 𝑦 positions are: 

 {
 �̈� = −𝑔𝜃
 �̈� = 𝑔𝜙

 (3-17) 

Defining the state variables and the input of the subsystem as: 
 𝑥𝑝 = [𝑥 𝑦 �̇� �̇�]𝑇    𝑢𝑝 = [𝜃 𝜙]𝑇 (3-18) 
The subsystem represented in state-space form is: 

 �̇�𝑝 = [

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

] 𝑥𝑝 + [

0 0
0 0
−𝑔 0
0 𝑔

]𝑢𝑝 (3-19) 

 𝑦𝑝 = [
𝑥
𝑦] = [

1 0 0 0
0 1 0 0

] 𝑥𝑝 (3-20) 

After determining the weighting matrix 𝑄𝑝  and 𝑅𝑝 , the full state feedback gain 𝐾𝑝  for the 

position control can be computed by MATLAB lqr command. The control law for the position 

control can be expressed by: 

 [
𝜃𝑟
𝜙𝑟
] = 𝐾𝑝 [

𝑥𝑟 − 𝑥
𝑦𝑟 − 𝑦
�̇�𝑟 − �̇�
�̇�𝑟 − �̇�

] (3-21) 

The output of the out-loop controller 𝜃𝑟  and 𝜙𝑟  are the desired pitch and roll angles for the 

quadcopter to track the desired reference, which are the input of the attitude controller part in the 

inner loop.  
The position controller is derived from the model linearizing around a hover point where the yaw 

angle 𝜓 is assumed to be zero. The movement of the quadcopter in the 𝑥 axis is decoupled from 

the roll angle and the movement in the 𝑦  axis is decoupled from the pitch angle under this 

assumption, which means giving a roll angle to the quadcopter, it only has a movement in 𝑦 axis, 

and giving a pitch angle, it only has a movement in 𝑥 axis. This simplifies the computation of the 

desired roll and pitch angles for tracking the reference position. In case when the yaw angle 𝜓 is 

not zero, the movements of the quadcopter in the 𝑥𝑦-plane are related to both roll and pitch angles. 

A roll angle will not only force the quadcopter to move in 𝑦 axis but also 𝑥 axis, and the same is 

for the pitch angle. To decouple the movement with the attitude as if the yaw angle 𝜓 is zero, a 

rotation must be considered. The rotation matrix applied to the 𝑥  and 𝑦  axes of the body 

coordinate frame is defined as: 

 𝑅𝑏𝑜𝑑𝑦−ℎ𝑜𝑣𝑒𝑟 = [
cos (𝜓) sin (𝜓)
−sin (𝜓) cos (𝜓)

] (3-22) 

The block diagram of the position controller is shown below: 
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Figure 3.5 Block diagram of the position controller 

 
A saturation is included in the controller to limit computed roll and pitch angle since too large angles 

make the quadcopter away from the equilibrium point at which the linearization is performed. The 

control performance of the linear controller will be less effective, leading to the instability of the 

quadcopter. The limit values are set to ±30∘ when performing the simulation. 
 

3.2 Motor mixer 

Grouping Equation 3-11 and Equation 3-16 together, we can get the physical control commands 

(thrust and moments). But such physical control commands are not enough for implementing the 

control action to a hardware platform since the real quadcopter platform takes the Power-Width 

Modulation (PWM) signal as input. The Electronic Speed Controllers of the quadcopter take the 

PWM signals as input to control and regulate the speeds of the motors, leading to the control action 

to the quadcopter. To generate the control command that can be used by motor ESC, the 

transformation between the physical values (thrust and moments) and PWM pulse width values 

must be implemented. 
In this project, the gyroscopic effect of the motor and the torque generated by wind, or any other 

disturbance are not taken into consideration, so the total torques implied to the quadcopter are 

completely supplied by the motors. Considering the motor configuration as shown in Figure 3.6, the 

relationship between physical control commands 𝐹𝑡 ,𝑀𝑥 ,𝑀𝑦 ,𝑀𝑧  and the variation of the thrust 

vector ∆𝑇 = [∆𝑇𝑓 ∆𝑇𝑥 ∆𝑇𝑦]𝑇 and torque ∆𝐶 can be expressed by: 

 

{
  
 

  
  ∆𝑇𝑓 =

𝐹𝑡

4

∆𝑇𝑥 =
𝑀𝑥

4𝐿𝑠𝑖𝑛(𝛼)

∆𝑇𝑦 =
𝑀𝑦

4𝐿𝑐𝑜𝑠(𝛼)

∆𝐶 =
𝑀𝑧

4

 (3-23) 

The first component of the variation vector ∆𝑇𝑓 represents the variation of the thrust required by 

𝑟𝑜𝑙𝑙_𝑝𝑖𝑡𝑐ℎ_𝑐𝑚𝑑 𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓 

�̇�, �̇� 

𝜓 

- 

+ 

Saturation 
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each motor to provide the quadcopter with a control force along the 𝑧 axis of the body coordinate 

frame, the second component ∆𝑇𝑥 represents the variation of the thrust required by each motor to 

provide the quadcopter with a control torque along the 𝑥 axis of the body coordinate frame, and 

the last component ∆𝑇𝑦 represents the variation of the thrust required by each motor to provide the 

quadcopter with a control torque along the 𝑦  axis of the body coordinate frame. The torque 

variation ∆𝐶 represents the variation of the reactive torque required by each motor to provide the 

quadcopter with a control moment along the 𝑧 axis of the body coordinate frame. 
The relationship between the PWM signal pulse width variations which defined as ∆𝑃𝑊𝑀 =

[∆𝑃𝑊𝑀𝑓 ∆𝑃𝑊𝑀𝑥 ∆𝑃𝑊𝑀𝑦 ∆𝑃𝑊𝑀𝑧]𝑇 and the thrust and torque variations ∆𝑇, ∆𝐶 need to 

be found. The first component ∆𝑃𝑊𝑀𝑓  represents the change of the PWM signal pulse width 

required by each motor to generate control thrust, the second component ∆𝑃𝑊𝑀𝑥 represents the 

change of the PWM signal pulse width required by each motor to generate the control torque around 

the 𝑥 axis, the third component ∆𝑃𝑊𝑀𝑦 represents the PWM pulse width change of each motor 

to generate control torque around 𝑦 axis, and the last component ∆𝑃𝑊𝑀𝑧 is the requested PWM 

signal pulse width change for each motor to generate control torque around 𝑧 axis. 
To find the relationship between ∆𝑃𝑊𝑀, ∆𝑇, and ∆𝐶, the propeller test to find the thrust and 

torque generated by one motor with respect to the PWM signal pulse width is required. The propeller 

test can be deployed on a test stand where the torque and thrust generated by the motor can be 

measured. More detailed information about the propeller test can be found in Appendix A 

Experimental measurements. The propeller test shows that the thrust and torque generated by the 

motor have a linear relationship with the PWM pulse width value. Hence the relationship between 

∆𝑇, ∆𝐶, and ∆𝑃𝑊𝑀 can be expressed by: 

 {
 ∆𝑇 = 𝑛𝐹 · ∆𝑃𝑊𝑀
 ∆𝐶 = 𝑛𝑇 · ∆𝑃𝑊𝑀

 (3-24) 

Where 𝑛𝐹 is the slope of the linear relationship between the thrust generated by each motor and 

the PWM pulse width value, and 𝑛𝑇 is the slope of the linear relationship between the reactive 

torque of each motor and the PWM pulse width value. Thus, the relationship between the physical 

control command (thrust and torque) and the PWM pulse width value can be expressed as follows: 

 

{
 

 
 

𝐹𝑡 = 4𝑛𝐹∆𝑃𝑊𝑀𝑓
𝑀𝑥 = 4𝑛𝐹𝐿𝑠𝑖𝑛(𝛼)∆𝑃𝑊𝑀𝑥

𝑀𝑦 = 4𝑛𝐹𝐿𝑐𝑜𝑠(𝛼)∆𝑃𝑊𝑀𝑦

𝑀𝑧 = 4𝑛𝑇∆𝑃𝑊𝑀𝑧

 (3-25) 

The motor mixer block determines how the four motors of the quadcopter work together to generate 

the control action. Figure 3.6 presents the motor configuration of the quadcopter considering the 

body coordinate frame. According to the motor configuration, the 1𝑡ℎ  motor contributes to the 

positive thrust, positive torque around 𝑥 axis, positive torque around 𝑦 axis, and negative torque 

around 𝑧 axis. The motor mixer equation can be simply derived by a linear combination of the 

required thrust and torques. The same analytical method can be used to derive the motor mixer 

equations of the other motors. Denoting 𝑃𝑊𝑀(𝑖)  the PWM pulse width of the 𝑖𝑡ℎ  motor, the 

motor mixer equations are: 
 𝑃𝑊𝑀(1) = ∆𝑃𝑊𝑀𝑓 + ∆𝑃𝑊𝑀𝑥 + ∆𝑃𝑊𝑀𝑦 − ∆𝑃𝑊𝑀𝑧 + 𝑖𝑑𝑒𝑙 
 𝑃𝑊𝑀(2) = ∆𝑃𝑊𝑀𝑓 − ∆𝑃𝑊𝑀𝑥 + ∆𝑃𝑊𝑀𝑦 + ∆𝑃𝑊𝑀𝑧 + 𝑖𝑑𝑒𝑙 
 𝑃𝑊𝑀(3) = ∆𝑃𝑊𝑀𝑓 − ∆𝑃𝑊𝑀𝑥 − ∆𝑃𝑊𝑀𝑦 − ∆𝑃𝑊𝑀𝑧 + 𝑖𝑑𝑒𝑙 
 𝑃𝑊𝑀(4) = ∆𝑃𝑊𝑀𝑓 + ∆𝑃𝑊𝑀𝑥 − ∆𝑃𝑊𝑀𝑦 + ∆𝑃𝑊𝑀𝑧 + 𝑖𝑑𝑒𝑙 (3-26) 
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Where 𝑖𝑑𝑒𝑙  is the pulse width set when the quadcopter is armed (usually equal to 1000). The 

MATLAB Simulink block diagram of the motor mixer is shown in Figure 3.7 below. The value of 

the PWM pulse width used by the ESC ranges between 1000 (minimum when armed) and 2000 

(maximum), and a saturation block is added to limit the output of the motor mixer. 
 

 

Figure 3.6 Quadcopter's motor configuration 
 

 
Figure 3.7 Simulink block diagram of motor mixer 

 

3.3 Simulation results 

In this section, the complete simulation model is implemented, and the simulation results are 

analyzed. Simulation is performed to turn and validate the LQR controllers without implementing 

them directly on the real quadcopter platform, leading to a significant saving on time and material. 

Firstly, the controller parameters are tuned, and the control performance is evaluated considering 

the rising time, the settling time, and the overshoot in response to the step input. Then, the trajectory 

tracking performance of the designed controller is validated and the results are reported and 

analyzed. In this project, the software used for deploying the simulation model is 

MATLAB/Simulink R2021b. 
 

3.3.1 Preliminary 

To perform the simulation, some parameters such as the mass, and the moment of inertia of the 

quadcopter must be known. These mechanical parameters can be measured with the method 
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proposed in [41], and they are listed in Table 3.1 below. 
 

Quadcopter’s mechanical parameters 
Parameters 

𝑚 
𝐿 
𝐼𝑥 
𝐼𝑦 
𝐼𝑧 

Values 
1.7𝑘𝑔 
0.15𝑚 

0.023𝑘𝑔 · 𝑚2 
0.028𝑘𝑔 · 𝑚2 
0.02𝑘𝑔 · 𝑚2 

Table 3.1 Quadcopter's mechanical parameters 
 
The maximum torque and thrust that the quadcopter’s motor can generate should be taken into 

consideration in the simulation. The computed torque and thrust by the controller must be limited 

to the maximum values that the quadcopter’s motor can achieve. Referring to the propeller test in 

Appendix A Experimental measurements, as well as the quadcopter mechanical parameters, these 

maximum values are determined and listed in Table 3.2 below. 
 

 Limitation values 
Thrust 

Torque around 𝑥 axis 
Torque around 𝑦 axis 
Torque around 𝑧 axis 

30N 
±1.5𝑁𝑚 
±1.5𝑁𝑚 
±0.02𝑁𝑚 

Table 3.2 Limitations to the thrust and torque 
 

3.3.2 Model implementation 

Some assumptions have to be made to implement the mathematical model in the simulation 

environment: 
1. All quadcopter states (attitude, position, linear velocity, and angular velocity) are assumed to 

be directly known from the mathematical model (the sensor block and the estimation block are 

not implemented).  
2. The aerodynamics due to wind and any other disturbance are not taken into account (the 

environment simulation is not implemented and the impact of the environment on the 

quadcopter is not considered during simulation).  
3. The control action is performed at 250Hz frequency, which is the same refresh frequency of the 

flight controller developed to implement on the quadcopter.  
 
The structure of the Simulink model follows the cascade flight controller structure in Figure 3.1, 

and it mainly consists of five blocks: 
1. Position controller: this block takes the reference position, actual position, current velocity, and 

current yaw angle as input, and outputs the roll and pitch angle references, which are the desired 

roll and pitch angles required by the system for tracking the reference position. 
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2. Altitude controller: this block takes the reference, altitude, and vertical velocity as input, and 

the throttle command to control the system is given as output. 
3. Attitude controller: this block takes the reference, attitude angles, and angular velocity as input 

and computes desired control torques to ensure that the system can track reference roll pitch 

and yaw angles. 
4. Motor mixer: the motor mixer block transforms the physical control commands (thrust and 

torques) computed by the controllers into the Power-Width Modulation (PWM) Duty Cycle 

(DC). 
5. Plant: the mathematical models of the actuator and the nonlinear quadcopter model are 

implemented in this block. 
The controller and motor mixer blocks have been previously discussed in section 3.1 and section 

3.2, respectively. The plant block includes the nonlinear mathematical model of the quadcopter 

represented by Equation 2-24 and the actuator model. The block diagram of the plant block is 

presented in Figure 3.8 below, which takes the PWM signal as input. The actuator block simulates 

the motors of the quadcopter, which transfers the PWM signal to physical control actions (thrust 

and torque). To model the actuator, an experimental test is performed on the test stand to find the 

equations describing the thrust and torque that one brushless motor can generate with respect to the 

PWM pulse width. More detailed information about the experimental test is presented in Appendix 

A Experimental measurements. Afterward, the actuator is simulated by a MATLAB function block, 

and the resulting model provides a relationship between the PWM signal computed by the motor 

mixer and the thrust and torques the actuator can generate. 
 

 
Figure 3.8 Block diagram of the plant 

 

3.3.3 Step response performance 

In this section, the controller performance in response to the step signal is simulated. The parameters 

of the LQR controller are tuned and determined by trial and error, and the designed controller 

achieves a fast response to commands with a low overshoot and a very small steady-state error. The 

parameters used in the simulation are listed in Table 3.3 below, and the 𝑥, 𝑦, 𝑧, roll, pitch, and 

yaw step signal responses are shown in Figure 3.9. The limitations to the minimum and maximum 

torque and thrust that the actuator can generate are required considering its capability. The limitation 

values are listed in Table 3.2 above. 
 

𝑀𝑧 

𝑀𝑦 

𝑀𝑥 

𝐹 

states PWM signals Nonlinear 

quadcopter model 
Actuator 
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Subsystem Q matrix R matrix 
Attitude control 
Altitude control 
Position control 

𝑑𝑖𝑎𝑔(0.05,0.07,0.1,0.001,0.001,0.1) 
𝑑𝑖𝑎𝑔(10,0.5) 
𝑑𝑖𝑎𝑔(15,15,1,1) 

𝑑𝑖𝑎𝑔(1,1,1) ∗ 10−6 
0.01 

𝑑𝑖𝑎𝑔(1,1) ∗ 500 
Table 3.3 Parameters of LQR controller 

 
The control performance in response to the step signal using the parameters listed in Table 3.3 are 

depicted in Figure 3.9 below. 
 

  

  

  
Figure 3.9 Step signal response of the designed controller 

 
The performance of the designed controller is evaluated considering the rising time, settling time, 

overshoot, and steady-state error. The rising time is defined as the time to reach for the first time the 

steady-state value of the response. It reflects the responsiveness of the controller. The overshoot is 
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the manifestation of the response that exceeds the reference. The settling time is defined as the time 

to reach and stay within ±𝛼% of the steady-state value of the response. Typical values for 𝛼 are 

1, 2, and 5. In this project, we choose 2 for 𝛼. The steady-state value is defined as the difference 

between the reference and the steady-state value of the response. The response performance of the 

controller is shown in Table 3.4 below. 
 

 Roll  Pitch  Yaw  X  Y  Z  
Rising time 0.62s 

3.90% 
2.72s 

0.0002° 

0.76s 
0% 

2.43s 

0.0002° 

4.23s 
1.72% 
3.84s 

0.0018° 

2.20s 
3.76% 
3.42s 

0.00007m 

2.16s 
3.62% 
3.13s 

0.000037m 

1.38s 
0% 

1.16s 

0.0011m 

Overshoot  
Settling time  
Steady-state 

error 
Table 3.4 Controller performance in response to the step signal 

 
The designed controller demonstrates a small rising time and settling time in response to roll and 

pitch commands, leading to a fast roll and pitch response speed, which benefits the position control. 

The rising time and settling time of the yaw response are much larger compared to the ones of roll 

and pitch response. The yaw response speed is much slower since the moment around the 𝑧 axis 

generated by the actuator is smaller than the moment around the 𝑥 or 𝑦 axis. But it’s still enough 

for autonomous flight. In general, the attitude controller shows a fast response speed, small 

overshoot, and small steady-state error. The altitude controller also shows a fast response with no 

overshoot. As for the position controller, it belongs to the out-loop controller and the response speed 

is slower than the one of the inner-loop controller. Also, it has an overshoot. But the overall control 

performance is acceptable.  
Despite being very small, the designed LQR controller always presents a steady-state error due to 

the lack of integrator action. The LQR controller takes the state and the state derivative as input to 

compute the control command, which is similar to a classical PD controller. Unlike the PID 

controller, the lack of integrator action in the LQR controller leads to a non-zero steady-state error 

issue. Hence, under the influence of noise and environmental uncertainties, the control performance 

of the LQR will decrease and even lead to system instability.  
 

3.3.4 Trajectory tracking performance 

To evaluate the performance of the proposed controller, a trajectory is given as the reference signal 

for the controller. The trajectory of the quadcopter can be defined in the four-dimensional space: 
 (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡),𝜓(𝑡)) (3-27) 
Where 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) represent the position of the quadcopter in the inertial coordinate frame 

over time, 𝜓(𝑡) represents the yaw angle or heading of the quadcopter over time. In this section, 

the trajectory is defined with a constant yaw angle equal to zero, hence 𝜓(𝑡) = 0 and the trajectory 

generation problem can be simplified.  
A series of waypoints and corresponding times of arrival are required to generate a trajectory for the 

quadcopter. With the given information, many methods such as trapezoidal velocity profile, 
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minimum jerk trajectory generation [42], and minimum snap trajectory generation [43] can be used 

to generate a trajectory for the quadcopter. In this section, the trapezoidal speed profile is adopted 

as the trajectory generation method. The trapezoidal velocity profile imposes a constant acceleration 

in the start phase, a cruise velocity, and a constant deceleration in the arrival phase [44]. The 

trapezoidal velocity profile can be described in Figure 3.10 below. The segment between two 

waypoints has three phases. In the start phase, The speed increases steadily until it reaches the 

maximum value. Then, In the constant velocity phase, the acceleration is zero and the velocity 

remains constant with maximum value. In the arriving phase, the velocity decreases to zero with 

constant deacceleration.  

 
Figure 3.10 Trapezoidal velocity profile 

 
The square pattern trajectory is given as the reference to test tracking performance and Table 3.5 

below lists the coordinates of the waypoints in the inertia coordinate frame and the corresponding 

times of arrival. The acceleration is set to ±𝑔/2, and the maximum velocity is determined such that 

the time of arrival can be respected. 
Sequence  Coordinates [m] Time of arrival [s] 

#1 
#2 
#3 
#4 
#5 
#6 
#7 
#8 
#9 

(0, 0, 0) 
(0, 0, -3) 
(5, 0, -3) 
(0, -5, -3) 
(-5, 0, -3) 
(0, 5, -3) 
(5, 0, -3) 
(0, 0, -3) 
(0, 0, 0) 

0 
5 
10 
15 
20 
25 
30 
35 
40 

Table 3.5 Waypoint list of square pattern trajectory 
 
The trajectory tracking performance of the designed LQR controller is shown in Figure 3.11. The 

simulation results demonstrate that the designed controller allows an acceptable following of the 

trajectory. The 𝑋 − 𝑌 view of the trajectory in Figure 3.11 (b) shows that the real response doesn’t 

pass through the defined waypoint, it will go to the next waypoint when it is closest to the current 

waypoint. This is the drawback of the designed controller. Figure 3.12 (a) and Figure 3.12 (b) 

demonstrate a 1.1s delay and a tracking error in 𝑥 , 𝑦  direction between the reference and the 
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response. As for the altitude control performance, Figure 3.12 (c) shows a good tracking of the 

position in 𝑧 axis with small error and delay. (Figure) below compares the velocity calculate by 

the trajectory and the real quadcopter velocity. Figure 3.13 (a) and Figure 3.13 (b) show a large 

rising/settling time for tracking the velocity in 𝑥, 𝑦 direction, which leads to the delay in position 

tracking. The velocity tracking in 𝑧  direction performs much better than the ones in 𝑥 , 𝑦 

direction. In general, the designed LQR controller shows excellent altitude control performance, but 

the 𝑥, 𝑦 position control has the problem related to steady-state error and delay. 
 

 
(a) Three-dimensional view 

 
(b) 𝑋 − 𝑌 view 

Figure 3.11 Square pattern trajectory tracking performance 
 

 
(a) Response and reference signal in 𝑥 

 
(b) Response and reference signal in 𝑦 

 
(c) Response and reference signal in 𝑧 

Figure 3.12 x, y, z step response 
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(a) 𝑣𝑥 reference and response 

 
(b) 𝑣𝑦 reference and response 

 
(c) 𝑣𝑧 reference and response 
Figure 3.13 Velocity behavior 
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Chapter 4: Sensors and GNSS module 
A real quadcopter platform mostly consists of the flight controller, sensors, actuators, radio 

communication module, and so on. To control and stabilize the quadcopter’s state such as position 

and attitude in flight, the flight controller needs accurate and reliable information on the real-time 

and accurate quadcopter state. The flight controller takes the actual quadcopter state as input, 

generating the desired control commands according to the difference between the reference and 

actual state to control and stabilize the quadcopter to the reference state. The sensors on the 

quadcopter in combination with the advanced sensor fusion algorithms can measure the 

quadcopter’s state very accurately in real-time. 
This chapter focuses on the sensors and the methods for using these sensor measurements to get 

accurate quadcopter position, attitude, and velocity. As mentioned above, the quadcopter’s motion 

in three-dimensional space includes translational and rotational motions. To control the translational 

motion in the horizontal plane, a sensor for positioning is required, and the typical positioning sensor 

is a GNSS module. To control the vertical motion, a sensor is required to measure the quadcopter's 

altitude, which could be a barometer, a TOF (time of flight) based laser sensor, an ultrasonic sensor, 

or a camera. As for the rotational motion control, the accurate and reliable attitude of the quadcopter 

is required, which can be measured by sensors consisting of MEMS gyroscopes, accelerometers, 

and magnetometers. 
 

4.1 Inertial Measurement Unit 

An inertial measurement unit or IMU for short is an electronic device that typically consists of 

accelerometers, gyroscopes, and magnetometers (optimal) which measure linear acceleration, 

angular velocity, and magnetic field strength, respectively. IMUs are often incorporated into 

Navigation Systems which utilize the raw measurements to calculate attitude, linear velocity, and 

position of an aircraft relative to a global reference frame. Besides navigational purposes, IMUs 

also serve as orientation sensors in many consumers product such as smartphones and game 

equipment. No matter what, IMUs are essential tools for measuring the attitude of an object in space. 

To develop a flight controller for the quadcopter, the IMU is indispensable, it provides the 

microcontroller with the quadcopter’s attitude, with which the control algorithm can generate the 

desired command to track an attitude signal.  
In this project, the MPU-6050 contains a gyroscope and an accelerometer is used. And the method 

for computing attitude angles of the quadcopter by the gyroscope and accelerometer is expounded, 

respectively. Then, the complementary filter used for reducing noises and sensor fusion is 

introduced and implemented to get more accurate and reliable attitude angles. 
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4.1.1 Gyroscope 

The gyroscope is an electronic sensor that measures the angular rate of the attached object, or how 

fast the object is turning relative to its body coordinate frame. By integrating the angular rate, it’s 

possible to get the attitude of the object in space. 
The gyroscope of MPU-6050 detects rotation about the 𝑋, 𝑌, 𝑍 axis and outputs the angular rate 

in 16 bits two’s complement format. The full-scale range of the gyroscope can be digitally 

programmed to ± 250, ± 500, ± 1000, or ± 2000. In this project, a ± 500 full-scale range is 

enough considering the quadcopter’s rotational dynamics. By referring to the MPU-6050 datasheet 

[45], it is found that in the case of a ±500 full-scale range, the gyroscope will output 65.5 when it 

is rotating at 1 degree per second. Hence the measured angular rate in degrees per second can be 

expressed as: 

 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑟𝑎𝑡𝑒 =
𝑟𝑎𝑤 𝑔𝑦𝑟𝑜 𝑜𝑢𝑡𝑝𝑢𝑡

65.5
 (4-1) 

Since the gyroscope measures angular rates, in ideal conditions, the gyroscope should output zero 

when it’s at rest, and output a constant value when it’s rotating at a constant speed. But in reality, 

the output of the gyroscope is not zero when it’s static. The gyroscope has a zero-rotation error due 

to its characteristics. The zero-rotation error should be subtracted from the output to center the 

gyroscope output to zero. The gyroscope calibration is a method to compute the zero-rotation error 

and it is implemented by collecting 2000 measurements and subtracting the mean value from the 

raw gyroscope output. The calibration starts every time the flight control program runs on the 

microcontroller, and it lasts a couple of seconds. During calibration, the gyroscope should be static 

to avoid affecting the calculation of the mean value. After the calibration process is finished, the 

raw gyroscope output is centered to zero and can be used to calculate the attitude angles. 
As mentioned above, the MPU-6050 is used to calculate the attitude angles of the quadcopter, which 

are the roll pitch and yaw angles introduced in section 2.2.3. The attitude angles can be obtained by 

integrating the angular rate. Denoting the roll pitch and yaw angles at 𝑛𝑡ℎ moment as 𝑟(𝑛), 𝑝(𝑛), 

𝑦(𝑛) respectively, and the angular rates measured by the gyroscope as 𝑔𝑥, 𝑔𝑦, and 𝑔𝑧, the attitude 

at the next moment needs to be calculated at the current moment. To calculate the attitude at 

(𝑛 + 1)𝑡ℎ moment, just add the corresponding attitude angle change based on the attitude at 𝑛𝑡ℎ 

moment. The amount of change in the attitude angle can be multiplied by the angular velocity and 

the adopted time interval. The renewal of the attitude angles can be expressed as: 

 

{
 
 

 
 

 

𝑟(𝑛 + 1) = 𝑟(𝑛) +
𝑑𝑟

𝑑𝑡
∆𝑡

𝑝(𝑛 + 1) = 𝑝(𝑛) +
𝑑𝑝

𝑑𝑡
∆𝑡

𝑦(𝑛 + 1) = 𝑦(𝑛) +
𝑑𝑦

𝑑𝑡
∆𝑡

 (4-2) 

Here, [
𝑑𝑟

𝑑𝑡

𝑑𝑝

𝑑𝑡

𝑑𝑦

𝑑𝑡
]
𝑇
 is the angular velocity relative to the inertial coordinate frame, which is used 

for attitude update. The attitude update is based on the inertial coordinate frame, while the angular 

rate measured by the gyroscope at 𝑛𝑡ℎ moment is relative to its own IMU coordinate frame or the 

body coordinate frame of the quadcopter. Hence, the angular rate measured by the gyroscope needs 

to be transformed to the angular velocity relative to the inertial coordinate frame before updating 

the attitude. According to Equation 2-7, the transformation matrix is based on current attitude and 
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can be expressed as: 

 𝑇 =

[
 
 
 
 1

sin(𝑝)sin (𝑟)

cos (𝑝)

cos(𝑟)sin (𝑝)

cos (𝑝)

0 cos (𝑟) −sin (𝑟)

0
sin (𝑟)

cos (𝑝)

cos (𝑟)

cos (𝑝) ]
 
 
 
 

 (4-3) 

The angular velocity relative to the inertial coordinate frame can be expressed as: 

 

[
 
 
 
 
𝑑𝑟

𝑑𝑡
𝑑𝑝

𝑑𝑡
𝑑𝑦

𝑑𝑡]
 
 
 
 

= 𝑇 [

𝑔𝑥
𝑔𝑦
𝑔𝑧
] =

[
 
 
 
 1

𝑠𝑖𝑛(𝑝)𝑠𝑖𝑛 (𝑟)

𝑐𝑜𝑠 (𝑝)

𝑐𝑜𝑠(𝑟)𝑠𝑖𝑛 (𝑝)

𝑐𝑜𝑠 (𝑝)

0 𝑐𝑜𝑠 (𝑟) −𝑠𝑖𝑛 (𝑟)

0
𝑠𝑖𝑛 (𝑟)

𝑐𝑜𝑠 (𝑝)

𝑐𝑜𝑠 (𝑟)

𝑐𝑜𝑠 (𝑝) ]
 
 
 
 

[

𝑔𝑥
𝑔𝑦
𝑔𝑧
] (4-4) 

The updating of the attitude angles can be implemented by Equation 4-4 and Equation 4-2. It should 

be noted that ∆𝑡  is the integration interval. Since the main loop frequency of the developed 

program is 250Hz, the integration interval is 0.004s. 
 

4.1.2 Accelerometer 

Accelerometer sensors can measure the linear acceleration and the gravitational acceleration along 

the axes of its coordinate frame. The measurement of the components of the gravitational 

acceleration on each coordinate axes can be used to determine the accelerometer roll and pitch 

attitude angles. The attitude angles are dependent on the order in which the rotations are applied, 

which are declared in section 2.2.3.  
When the accelerometer is at rest and placed horizontally, that is when the 𝑧  axis is straightly 

upright, the gravitational acceleration distribution along 𝑧 axis is 1𝑔, and along both 𝑥 axis and 

𝑦 axis, the distributed components are both 0. At this moment, the gravitational acceleration relative 

to the accelerometer’s coordinate frame can be recorded as: 
 𝐺 = [0 0 𝑔]𝑇 (4-5) 
When the accelerometer rotates to a certain attitude, the gravitational acceleration will produce 

corresponding components along the three axes of the accelerometer’s coordinate frame. These are 

essentially the coordinates of the gravitational acceleration relative to the new accelerometer’s 

coordinate frame. The rotation sequence applied to the accelerometer’s coordinate frame is 𝑍𝑌𝑋 

(yaw, then pitch and finally roll), and according to section 2.2.3, the rotation matrix from the 

accelerometer’s coordinate frame to the inertial coordinate frame can be expressed as: 

 𝑅 = [

𝑐𝜃𝑐𝜓 𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓 𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓
𝑐𝜃𝑠𝜓 𝑠𝜙𝑠𝜃𝑠𝜓 + 𝑐𝜙𝑐𝜓 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓
−𝑠𝜃 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃

] (4-6) 

Denoting the coordinate of gravitational acceleration relative to the accelerometer’s coordinate 

frame as [𝑎𝑥 𝑎𝑦 𝑎𝑧]𝑇, then: 

 [

𝑎𝑥
𝑎𝑦
𝑎𝑧
] = 𝑅𝑇 [

0
0
𝑔
] = [

− sin(𝜃)𝑔

sin(𝜙) cos(𝜃)𝑔

cos(𝜙) cos(𝜃)𝑔

] (4-7) 

By solving Equation 4-7, the roll and pitch attitude angles are obtained and can be expressed as: 
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 { 

𝜙 = arctan (
𝑎𝑦

𝑎𝑧
)

𝜃 = −arctan (
𝑎𝑥

√𝑎𝑦
2+𝑎𝑧

2
) (4-8) 

Since the gravitational acceleration along the 𝑧  axis remains constant when the accelerometer 

rotates around the 𝑧 axis, the yaw angle cannot be evaluated by the accelerometer. Another problem 

with the evaluated attitude angles is that the equations for the roll and pitch angles have 

mathematical instabilities when 𝑥  or 𝑦  axis happens to become aligned with the gravity and 

points upwards or downwards. In this project, the roll and pitch angles estimated by the 

accelerometer are limited considering the rotational dynamics of the quadcopter, hence this 

instability problem can be avoided.  
The accelerometer calibration is required to determine the level position of the quadcopter during 

flight, this can make the quadcopter fly as level and stable as possible. The data read from the 

accelerometer should be [0 0 𝑔]𝑇 when the quadcopter is on a spirit-level surface. But in reality, 

there is a bias in the 𝑥, 𝑦 axis of the accelerometer coordinate frame and it should be subtracted 

from the raw accelerometer data. The calibration procedure is the same as the one of the gyroscope. 

It’s implemented in the program by placing the quadcopter on a spirit-level surface, collecting 2000 

samples, and calculating the average. The accelerometer calibration is required after a crash. 
The accelerometer of MPU-6050 outputs the measured accelerations in 16 bits two’s complement 

format. And the full-scale range can be digitally programmed to ±2𝑔, ±4𝑔, ±8𝑔, or ±16𝑔. In 

this project, the full-scale range is set to ±8𝑔 and by checking the MPU-6050 datasheet [45], an 

output of 4096 from the accelerometer corresponds to 1𝑔. 
 

4.1.3 Complementary filter and sensor fusion 

Although both the gyroscope and the accelerometer can be used individually to measure the roll and 

pitch angles of the quadcopter, neither of the measured angles can be directly used by the flight 

controller due to the characteristics of the sensors. Hence, it’s necessary to integrate the results of 

the two sensor measurements to obtain more accurate and reliable results. 
The gyroscope gives a good indication of the attitude angles in dynamic conditions. Due to the non-

ideal offset compensation of the gyroscope, even after calibration, the raw outputs of the gyroscope 

are still not zero at rest. This makes the angles estimated by integrating the output of the gyroscope 

drift. When the quadcopter is in flight, the vibrations generated by the quadcopter will speed up the 

drift, which makes the attitude angles computed by the gyroscope different from the real attitude 

angles. The accelerometer gives a good indication of the tilt angles in static conditions. The 

accelerometer doesn’t have a drift problem, but the always presented vibrations and small 

accelerations during flight make the attitude angles unreliable and useless to the flight controller. 

Only the average of the angles computed by the accelerometer is usable to the flight controller. 
To overcome these problems, a complementary filter is utilized in the project to combine the two 

measurements obtained from the gyroscope and the accelerometer. The complementary filter is a 

convenient way to combine measurements from an accelerometer and a gyroscope into a better 

angle estimation than either could provide on its own. The idea behind the complementary filter is 
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to take slow-moving signals from the accelerometer and fast-moving signals from the gyroscope 

and combine them. 
The basic structure of the complementary filter is shown in Figure 4.1, where 𝑥1 and 𝑥2 are noisy 

measurements of the same signal that mainly contain low-frequency noise and high-frequency noise, 

respectively. The transfer function 𝐺(𝑠) can be made into a low-pass filter to filter out the high-

frequency noise in 𝑥2 and [1 − 𝐺(𝑠)] can be made into a high-pass filter that can filter out the 

low-frequency noise in 𝑥1. The output of the complementary filter can be expressed as: 
 𝑥 = 𝑥1[1 − 𝐺(𝑠)] + 𝑥2𝐺(𝑠) (4-9) 
And the first-order low-pass filter (LPF) and first-order high-pass filter (HPF) can be expressed as: 

 𝐿𝑃𝐹 = 𝐺(𝑠) =
1

𝜏𝑠+1
 (4-10) 

 𝐻𝑃𝐹 = 1 − 𝐺(𝑠) =
𝜏𝑠

𝜏𝑠+1
 (4-11) 

Where 𝑠 = 𝜎 + 𝑗𝜔 is the complex variable in the frequency domain used for Laplace transform, 

and 𝜏 is the time constant that determines the filter cut-off frequency. 

 
Figure 4.1 Basic complementary filter 

 
In Figure 4.2, the bode diagrams of the first-order low-pass filter and high-pass filter are shown. 

The low-pass filter passes through signals with frequencies lower than the cut-off frequency and 

attenuates signals with frequencies higher than the cut-off frequency. Hence, the low-pass filter can 

be used to process the signals coming from the accelerometer which contain high-frequency noise 

(such as the accelerometer in the case of vibration). The high-pass filter behaves exactly in the 

opposite way. It allows short-duration signals to pass through while filtering out signals that are 

steady over time. This can be used to process signals coming from the gyroscope to cancel out the 

drift. 

 

(a) LPF 

 

(b) HPF 
Figure 4.2 Bode diagram of LPF and HPF (τ=1) 
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To implement the complementary filter to the microcontroller, the complementary filter represented 

in transfer function format must be written into a difference equation format. A straightforward 

method to implement the complementary filter to a microcontroller is to make the complementary 

filter in the form like this: 
 𝑥 = 𝛼 · 𝑥1 + (1 − 𝛼) · 𝑥2 (4-12) 
Where 𝑥1 and 𝑥2 represents signals coming from the gyroscope and accelerometer, the parameter 

𝛼 can be calculated by: 

 𝛼 =
𝜏

𝜏+∆𝑡
 (4-13) 

Where 𝛼 ∈ ℝ and 0 < 𝛼 < 1, 𝜏 is the time constant of the low-pass filter and the high-pass filter, 

∆𝑡 is the sampling interval. Since the accelerometer doesn’t estimate yaw angle, the complementary 

can only be used to integrate roll and pitch angles estimated from different sensors. The attitude roll 

and pitch angles estimated by the IMU can be expressed as: 

 { 
𝑟𝑜𝑙𝑙 = 𝛼 · 𝑟𝑜𝑙𝑙𝑔𝑦𝑟𝑜 + (1 − 𝛼) · 𝑟𝑜𝑙𝑙𝑎𝑐𝑐
𝑝𝑖𝑡𝑐ℎ = 𝛼 · 𝑝𝑖𝑡𝑐ℎ𝑔𝑦𝑟𝑜 + (1 − 𝛼) · 𝑝𝑖𝑡𝑐ℎ𝑎𝑐𝑐

 (4-14) 

And the block diagram of the complement filter utilized in this project is shown in Figure 4.3 below: 
 

 
Figure 4.3 Block diagram of the discrete complementary filter 

 
The roll and pitch angles estimated by the gyroscope, the accelerometer, and the complementary 

filter are shown in Figure 4.4 below. The blue curves represent the accelerometer estimation, which 

are rough and spiky, indicating that the angles estimated by the accelerometer are affected by the 

noise and vibration. The angles estimated by the gyroscope are less affected by the noise and 

vibration, but they have drift problems, and over time, the difference between them and the true 

values will become larger and larger. The green curves represent the complementary filter estimation, 

and the results show that the angles estimated by the complementary filter are more accurate, less 

affected by noise and vibration, and there is no drift phenomenon. 
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(a) Roll angle (𝛼 = 0.995) 

 
(b) Pitch angle (𝛼 = 0.995) 

Figure 4.4 Comparison between roll and pitch angles estimated by gyroscope, accelerometer, and 

complementary filter 
 

4.2 Electronic compass 

The yaw angle estimated by the IMU by integration can’t be used to represent the heading angle of 

the quadcopter to the North, and the inherent drift problem makes the estimated yaw angle away 

from the real one. Hence, it can’t be used directly by the flight controller. To get an accurate and 

reliable heading angle of the quadcopter, an electronic compass module is required. Implementing 

an electronic compass module to the quadcopter allows it to know its heading angle or direction in 

space. With the direction information, it’s possible to add features like head locking, GPS position 

control, and waypoint fly to the quadcopter. 
The electronic compass module calculates the heading angle by measuring the strength of its 

surrounding geomagnetic field. In this section, the Earth’s magnetic field and its basic features are 

introduced. Then, the formula to calculate the heading angle using the measurements of the 

electronic compass module is derived. Finally, the method to use the electronic compass module in 

combination with the IMU to design a more accurate, reliable, and tilt-compensated compass is 

presented. 
 

4.2.1 Earth’s magnetic field 

The Earth’s magnetic field can be approximated with the dipole model shown in Figure 4.5 below. 

As the figure shows, the Earth’s magnetic field points down toward the north in the northern 

hemisphere, is horizontal and points toward the north at the equator and points up toward the north 

in the southern hemisphere. In all cases, the Earth’s magnetic field has a component parallel to the 

surface and points toward the magnetic north [46]. This horizontal component can be measured by 

the electronic compass module and the heading angle can be calculated by trigonometry. This is the 

principle for using the electronic compass to estimate the heading angle.  
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Figure 4.5 Earth's magnetic field 
 

4.2.2 Heading angle calculation 

When the compass is at a leveled position (horizontal to the Earth’s surface), then the roll and pitch 

angles would be zero and the heading angle can be determined as shown in Figure 4.6. The local 

Earth’s magnetic field 𝐻 has a fixed component 𝐻ℎ on the horizontal plane pointing to the Earth’s 

magnetic north. Denoting the horizontal components measured by the electronic compass module 

as 𝑋ℎ and 𝑌ℎ. Then the heading angle is calculated as: 

 ℎ𝑒𝑎𝑑𝑖𝑛𝑔 = arctan (
𝑌ℎ

𝑋ℎ
) (4-15) 

To account for the tangent function being valid over 180° and not allowing the 𝑌ℎ = 0 division 

calculation, the following equations can be used: 

 ℎ𝑒𝑎𝑑𝑖𝑛𝑔 =

{
 
 
 

 
 
 

 

180 − arctan(
𝑌ℎ

𝑋ℎ
) ,      𝑓𝑜𝑟(𝑋ℎ < 0)

−arctan(
𝑌ℎ

𝑋ℎ
) ,               𝑓𝑜𝑟(𝑋ℎ > 0, 𝑌ℎ < 0)

360 − arctan(
𝑌ℎ

𝑋ℎ
) ,      𝑓𝑜𝑟(𝑋ℎ > 0, 𝑌ℎ > 0)

90,                                    𝑓𝑜𝑟(𝑋ℎ = 0, 𝑌ℎ < 0)
270,                                 𝑓𝑜𝑟(𝑋ℎ = 0, 𝑌ℎ > 0)

 (4-16) 

 
 

 
Figure 4.6 Heading angle calculation 

 
As is shown in Figure 4.6, when 𝑋𝑏 (𝑋 axis of the electronic compass coordinate frame) is parallel 

to 𝐻ℎ, which is the horizontal component pointing to the magnetic north, then the heading angle 

equals zero. Rotating the electronic compass clockwise or counterclockwise on the horizontal plane, 

the heading angle increases or decreases. After a full round 360° rotation, we can get a centered 

circle if plotting 𝑋ℎ and 𝑌ℎ values measurements in 𝑥 − 𝑦 plane. It should be noted that only the 
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horizontal components 𝑋ℎ  and 𝑌ℎ  are used when computing the heading angle, the vertical 

component 𝑍ℎ should be ignored. 
In this project, the electronic compass module is mounted on the quadcopter to measure the heading 

angle. Hence, in most cases, the compass is not confined to a level plane (Figure 4.7). In this 

situation, the roll and pitch angles are not equal to zero, and the electronic compass measurements 

𝑋  and 𝑌  are not the horizontal components, and can’t be directly used in Equation 4-16 for 

computing the heading angle. The conversion between the electronic compass measurements 𝑋, 𝑌, 

𝑍, and the horizontal components 𝑋ℎ and 𝑌ℎ is required. As is mentioned in section 2.2.3 above, 

the rotation to be performed is first rolled and then pitched. The electronic compass also follows 

this rotation sequence, and the following relationship can be obtained: 

 [

𝑋ℎ
𝑌ℎ
𝑍ℎ

] = 𝑅(𝜃) · 𝑅(𝜙) · [
𝑋
𝑌
𝑍
] 

 [

𝑋ℎ
𝑌ℎ
𝑍ℎ

] = [

cos (𝜃) sin(𝜙) sin (𝜃) cos(𝜙) sin (𝜃)
0 cos (𝜙) −sin (𝜙)

−sin (𝜃) cos(𝜃) sin (𝜙) cos(𝜙) cos (𝜃)
] [
𝑋
𝑌
𝑍
] (4-17) 

Where the roll and pitch angles can be estimated by the MPU-6050 as mentioned in section 4.2. the 

relationship between the horizontal components and the electronic compass measurements can be 

expressed as: 

 { 
𝑋ℎ = 𝑋 · cos(𝜃) + 𝑌 · sin(𝜙) cos(𝜃) + 𝑍 · cos(𝜙) sin (𝜃)

𝑌ℎ = 𝑌 · cos(𝜙) − 𝑍 · sin (𝜙)
 (4-18) 

After the horizontal components are determined by Equation 4-18, then the heading angle can be 

computed using Equation 4-16. 
 

 
Figure 4.7 Tilt compensation of the compass 

 
As is shown in Figure 4.8 below, the true north, also called the geographic north, is the intersection 

of the Earth’s rotation axis and the Earth’s surface, which is not at the same geographical location 

as the magnetic north (They are about 11.5° rotation from each other). The declination angle is 

used to describe the difference between them. By definition, the angle on the horizontal plane 

between magnetic north and geographic north is the declination angle. It’s positive when the 

magnetic north is to the east of the geographic north, and negative when the magnetic north is to the 

west. The declination angle varies a lot depending on the position on the Earth’s surface, and at 

some locations, the declination angle will even be as large as 25° . For a given location the 

declination angle can be found by using a geomagnetic declination map or by checking some official 

website. Equation 4-16 computes the heading angle relative to the magnetic north. To account for 

the difference between the magnetic north and the geographic north and get a more precise heading 

angle, the declination angle should be added or subtracted from the heading angle computed by 
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Equation 4-16. The declination used in this project is +2.85∘. 
 

 
Figure 4.8 Magnetic North and Geographic North 

 
In this project, the electronic compass module utilized is the QMC5883L. The output of this 

compass is in 16 bits two’s complement format. In this project, this compass is configured to 

continuous mode, the output data rate is set to 200Hz, and the full-scale range is set to ±8 Gauss. 

By checking the datasheet of QMC5883L [47], the sensitivity is 3000 LSB/G when the full-scale 

range is set to ±8 Gauss. 
 

4.2.3 Magnetic distortions 

The reading from the compass will probably not be usable due to the magnetic distortions caused 

by nearby ferrous materials. Magnetic distortions can be categorized as hard iron distortion and soft 

iron distortion.  
The hard iron distortion is produced by materials such as magnetized iron or steel that exhibit a 

constant, additive field to the Earth’s magnetic field, thereby generating a constant additive value to 

the output of each axis of the compass. The hard iron distortion is the most important to be 

eliminated. The hard iron distortion causes an offset to the compass reading and the correction can 

be implemented by removing that bias. The formulas for calculating the bias and removing it from 

the compass reading can be expressed as: 

 {

𝑥𝑜𝑓𝑓𝑠𝑒𝑡 = (𝑥𝑚𝑎𝑥 + 𝑥𝑚𝑖𝑛)/2

𝑦𝑜𝑓𝑓𝑠𝑒𝑡 = (𝑦𝑚𝑎𝑥 + 𝑦𝑚𝑖𝑛)/2

𝑧𝑜𝑓𝑓𝑠𝑒𝑡 = (𝑧𝑚𝑎𝑥 + 𝑧𝑚𝑖𝑛)/2

 (4-19) 

 {

𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝑥 − 𝑥𝑜𝑓𝑓𝑠𝑒𝑡
𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝑦 − 𝑦𝑜𝑓𝑓𝑠𝑒𝑡
𝑧𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝑧 − 𝑧𝑜𝑓𝑓𝑠𝑒𝑡

 (4-20) 

Where 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 are the maximum and minimum magnetic field strength measured in the 

x-axis direction when rotating the compass 360 degrees in space.  
Soft iron distortion is the result of materials that distort a magnetic field but do not necessarily 

generate a magnetic field itself. The soft iron distortion depends on the orientation of the materials 

relative to the compass. The computationally cheap way of correcting the soft iron distortion is 

shown below: 
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 {

∆𝑥 = (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)/2
∆𝑦 = (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)/2
∆𝑧 = (𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛)/2

 (4-21) 

 ∆𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = (∆𝑥 + ∆𝑦 + ∆𝑧)/3 (4-22) 

 {

𝑘𝑥 = ∆𝑎𝑣𝑒𝑟𝑎𝑔𝑒/∆𝑥
𝑘𝑦 = ∆𝑎𝑣𝑒𝑟𝑎𝑔𝑒/∆𝑦

𝑘𝑧 = ∆𝑎𝑣𝑒𝑟𝑎𝑔𝑒/∆𝑧

 (4-23) 

Where 𝑘𝑥, 𝑘𝑦, 𝑘𝑧 are scale factors used for correcting the soft iron distortion. The formulas for 

correcting both hard iron distortion and soft iron distortion can be expressed as: 

 {

𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = (𝑥 − 𝑥𝑜𝑓𝑓𝑠𝑒𝑡) ∗ 𝑘𝑥

𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = (𝑦 − 𝑦𝑜𝑓𝑓𝑠𝑒𝑡) ∗ 𝑘𝑦

𝑧𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = (𝑧 − 𝑧𝑜𝑓𝑓𝑠𝑒𝑡) ∗ 𝑘𝑧

 (4-24) 

 

4.3 GNSS module 

The Global Navigation Satellite System, abbreviated GNSS, includes constellations of Earth-

orbiting satellites that broadcast time and their location in space, networks of ground control stations, 

and receivers that calculate ground position by trilateration [48]. GNSS can provide users with three-

dimensional coordinates, speed, and timing signals anywhere on the Earth's surface or near-Earth 

space. Hence, it now receives more and more attention from researchers and is widely used in 

positioning, navigation, transportation, military, surveying and mapping, agriculture, archaeology, 

and the Internet of Things. At present GNSS include two fully operational systems, the U.S. Global 

Positioning System (GPS) and the Russian Federation’s Global Navigation Satellite System 

(GLONASS), as well as the developing global and regional systems such as Europe’s European 

Satellite Navigation System (GALILEO) and China’s COMPASS/Bei-Dou, India’s Regional 

Navigation Satellite System (IRNSS) and Japan’s Quasi-Zenith Satellite System (QZSS) [48]. In 

addition to these, GNSS also includes several satellite-based augmentation systems that can improve 

the positioning accuracy, integrity, and availability of the basic GNSS signals.  
Over the past few years, the GNSS technology has advanced enough to make it both affordable and 

lightweight enough to be implemented in the average consumer quadcopter. A quadcopter in 

combination with a GNSS module can achieve autonomous flight, leading to an increasing number 

of outdoor applications such as mapping and surveying, reconnaissance surveillance, transportation, 

and so on. Implementing a GNSS module can add the following features to a quadcopter: 
1. Position hold. The quadcopter with a GNSS module is able to identify and maintain its position 

and achieve a stable hover. It can hover in place even under a breeze or a gust. If it identifies 

that it has drifted away from the hover location, it will automatically correct and return to the 

same location. The GNSS module can also help the quadcopter to achieve a more stable and 

smooth flight. 
2. Return to home. The quadcopter with a GNSS module can remember the take-off position and 

return to it. This is obviously only possible with the GNSS module to tell the quadcopter where 

it is at any given time and where it took off. When the quadcopter is in return to home mode, 
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its flight controller takes the take-off position as the reference and calculates desired control 

commands according to the current position measured by the GNSS module. 
3. Waypoint fly. The principle of waypoint fly is the same as the one of return to home. A GNSS 

quadcopter can use the autopilot function to fly a series of predetermined waypoints. Some 

flight controllers can even direct the quadcopter to hover for a set amount of time at each 

waypoint. 
In this section, the GNSS positioning principle is first introduced. Then how to use the GNSS 

measurement to calculate the state error that the designed LQR controller can use is expounded. 

Finally, the GNSS module implementation to the real quadcopter platform is elaborated. 
 

4.3.1 GNSS positioning principle 

The GNSS positioning involves the application of the mathematical principle called trilateration. 

The trilateration principle is quite simple: the position of a point can be calculated if the distances 

from that point to another three points whose positions are known can be obtained. As is shown in 

Figure 4.9 below, the locations of three satellites in space are known beforehand, These satellites 

send signals to the GNSS receiver while orbiting the Earth and the distances from the receiver to 

the three satellites can be computed by multiplying the signal transmission speed and transmission 

time, then the unknown receiver position can be computed by solving this trilateration problem: 
 𝑐(∆𝑡𝑚) = √(𝑥 − 𝑥𝑚)2 + (𝑦 − 𝑦𝑚)2 + (𝑧 − 𝑧𝑚)2        𝑚 = 1,2,3 (4-25) 
Where 𝑚 is the satellite index, (𝑥𝑚, 𝑦𝑚, 𝑧𝑚) is the known position of the satellite in space, ∆𝑡𝑚 

is the GNSS signal transmission time, 𝑐(∆𝑡𝑚) is the distance between the receiver and the satellite, 

and (𝑥, 𝑦, 𝑧) is the unknown position of the receiver. In reality, the transmission time from each 

satellite to the receiver has a common unknown bias due to a common time error from the inaccurate 

receiver clock. Therefore, an additional clock bias term 𝛿𝑡  must be introduced as the fourth 

unknown, and (Equation) can be rewritten as: 
 𝑐(∆𝑡𝑚 + 𝛿𝑡) = √(𝑥 − 𝑥𝑚)2 + (𝑦 − 𝑦𝑚)2 + (𝑧 − 𝑧𝑚)2        𝑚 = 1,2,3,4 (4-26) 
The trilateration based positioning implies that a GNSS receiver actually needs to receive signals 

from at least four satellites to achieve a position fix. If the number of satellites is above four then 

every additional satellite can increase the positioning accuracy. Nowadays, many commercial GNSS 

receivers on market can receive signals from more than ten satellites at the same time, resulting in 

an accuracy of several meters in positioning.  
 

 
Figure 4.9 Principle of GNSS positioning [49] 
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4.3.2 Geographic coordinate frame 

The GNSS module usually outputs the position in the form of geographic coordinates. A geographic 

coordinate system is a system that uses a three-dimensional spherical surface to determine locations 

on the Earth and any location can be referenced by a point with longitude and latitude coordinates 

[50]. For any given point on the Earth’s surface represented with the geographic coordinate frame, 

it has two coordinate values: latitude 𝜑 and longitude 𝜆, and both units are in degrees. Latitude is 

defined as the angle formed by the intersection of a line perpendicular to the Earth’s surface at a 

point and the plane of the Equator [51]. At the equator, the latitude value is zero and from the equator 

to the North and South poles, the value of latitude gradually increases for 0° to 90°. Points In the 

northern hemisphere have positive latitude values, while points in the southern hemisphere have 

negative values. Longitude is defined as the horizontal angle between the point and the meridian 

that is defined as a circle line passing through the North and South poles, and the Greenwich, UK. 

The longitude value ranges from −180° to 180°. Positive longitude values are east of the meridian 

while negative ones are west. The geographic coordinate frame and the latitude and longitude 

definition are shown in Figure 4.10. 
 

 
Figure 4.10 Geographical coordinate frame 

 

4.3.3 Estimation of distance and speed based on GNSS data 

The GNSS data should be converted from the geographic coordinate frame to the NED coordinate 

frame before it can be used by the LQR controller. To convert the position represented by the latitude 

and longitude to the 𝑥, 𝑦 coordinates in the NED reference coordinate frame, the distance, and 

bearing from that point to the coordinate frame origin are required. 
Considering the Earth as a sphere, the distance between two geographical coordinate points can be 

computed using spherical geometry and trigonometric functions. The shortest distance between two 

points on the Earth's surface is the great circle distance, corresponding to the arc linking two points 

on the sphere. The Haversine formula can be used to calculate an accurate great circle distance 

between two points. Denoting 𝜑1,𝜑2 the latitude of two points, 𝜆1,𝜆2 the longitude of two points, 

the Haversine formula can be expressed as: 

 𝑎 = 𝑠𝑖𝑛2 (
∆𝜑

2
) + cos (𝜑1) · cos (𝜑2) · 𝑠𝑖𝑛

2(
∆𝜆

2
) (4-27) 
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 𝑐 = 2 · 𝑎𝑡𝑎𝑛2(√𝑎, √1 − 𝑎) (4-28) 
 𝑑 = 𝑅 · 𝑐 (4-29) 
Where ∆𝜑 and ∆𝜆 represent the latitude and longitude difference, respectively, 𝑅 is the Earth’s 

radius (mean radius is 6371km). 
The bearing is defined as the clockwise angle from the true North to the great circle arc. The bearing 

will vary as follows along the great circle arc. The final bearing and the initial bearing will be 

different. The bearing at the initial point can be computed by: 
 𝜃 = 𝑎𝑡𝑎𝑛2(sin(∆𝜆) cos(𝜑2) , cos(𝜑1) sin(𝜑2) − sin(𝜑1) cos (𝜑2)cos (∆𝜆) (4-30) 
It should be noted that the 𝑎𝑡𝑎𝑛2 function returns a value between −180° to 180°, to normalize 

it to the compass bearing (range between 0° and 360°), the negative values need to be transformed 

into the range 180° to 360°. The formula is expressed as: 

 𝜃 = { 
𝜃, 𝜃 ≥ 0

𝜃 + 360°, 𝑥 < 0
 (4-31) 

As is shown in Figure 4.11, the great circle distance between two points is an arc on the surface of 

the Earth connecting these two points. The bearing angle is the clockwise angle from the geographic 

north to the great circle. 
 

 
Figure 4.11 Great circle distance 

 
Defining the first GNSS measurement as the origin of the NED coordinate frame, then the GNSS 

data represented by latitude and longitude can be converted to the 𝑥, 𝑦 coordinate in the NED 

coordinate frame. With the great circle distance 𝑑 and the initial bearing 𝜃 between two GNSS 

measurements. the transformation from the latitude and longitude degrees to 𝑥, 𝑦 coordinates can 

be expressed as: 

 {
𝑥 = 𝑑 · cos (𝜃)
𝑦 = 𝑑 · sin (𝜃)

 (4-32) 

Another method to compute the distance between two points and convert the latitude and longitude 

degrees to 𝑥, 𝑦 coordinates is presented below, which is based on the flat-earth approximation. 

This method is valid only for short-range distances. Denoting the coordinates of two points that are 

close to each other on the Earth are (𝜑1, 𝜆1) and (𝜑2, 𝜆2), then the distance between them can be 

calculated with the formulas below: 

 { 
𝑥 = 𝜋𝑅/180 · (𝜑2 − 𝜑1)
𝑦 = 𝜋𝑅/180 · (𝜆2 − 𝜆1) · cos (𝜑1)

 (4-33) 

 𝑑 = √𝑥2 + 𝑦2 (4-34) 
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Figure 4.12 Flat-Earth approximation 
 
This work uses Equation 4-33 and Equation 4-34 to convert GNSS data to 𝑥, 𝑦 coordinate in NED 

coordinate frame. The quadcopter will fly only a short-range distance, hence using the method based 

on the flat-earth approximation to convert geographic coordinates to coordinates in NED coordinate 

frame will be accurate enough. Besides, compared to the Haversine method, the method based on 

the flat-earth approximation reduces programming and processing computation.  
After converting the GNSS data represented by geographic coordinates to coordinates in the NED 

coordinate frame, the instantaneous speed in 𝑚/𝑠 can be replaced with the travel speed between 

the two consecutive GNSS coordinates: 

 {
𝑣𝑥 = 𝑥/𝑡
𝑣𝑦 = 𝑦/𝑡

 (4-35) 

Where 𝑡 is the travel time between two consecutive GNSS measurements and depends on the data 

output rate of the GNSS module. 
 

4.3.4 GNSS module implementation  

The GNSS module used to position the quadcopter is a U-Blox NEO-M8N GNSS receiver. This 

GNSS receiver can provide users with a positioning accuracy of up to 2 meters. It can also measure 

altitude but the altitude measurement accuracy is very poor compared to the positioning accuracy. 

In addition to measuring position and altitude, this GNSS receiver can also measure the speed over 

ground in kilometers per hour. The measurement results and other auxiliary messages are output in 

NMEA (National Marine Electronics Association) sentence format. Figure 4.13 below demonstrates 

a block of GNSS data outputs with NMEA sentence format. 
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Figure 4.13 GNSS output in NMEA format 

 
It can be seen every sentence begins with ‘$xxxxx’. The geographic coordinates (latitude and 

longitude) can be extracted from the sentence beginning with ‘$GNGGA’ (Global Positioning 

System Fix Data) or ‘$GNGLL’ (Geographic Position, Latitude / Longitude and time). The 

geographic coordinates are in degrees and minutes. For example, the latitude in Figure 4.13 is 45 

degrees and 2.1877 minutes North, and the longitude is 7 degrees and 38.74213 minutes. Due to the 

property of the NMEA protocol, the GNSS receiver outputs signals in a fixed format, and the 

longitude and latitude coordinates are also at fixed positions in the sentence. Therefore, it is easy to 

read the output signal of the GNSS receiver through the serial port of the STM32 board and extract 

the longitude and latitude. 
 

4.4 Altitude sensor 

To enable the quadcopter to automatically adjust the flight altitude during autonomous flight, an 

altitude sensor is required to measure its flight altitude in real-time. The altitude of the quadcopter 

can be accurately measured with several different physical methods. These include optical (laser 

measuring instruments), electronic (microwave detectors), and barometric procedures. Many 

commercial quadcopters on the market utilize the barometer to measure altitude during flight, for 

example, most DJI quadcopters measure altitude using a barometric sensor with an AGL (Above 

Ground Level) reference. This section outlines the principle of using a barometer to measure the 

altitude of the quadcopter. 
 

4.4.1 Air pressure and altitude 

The barometer measures the air pressure and by means of the pressure equations, the altitude of the 

measured surface can be computed. Air pressure describes the pressure generated by the weight of 

the air surrounding the Earth. The air in the atmosphere is denser at the base, and the column of air 

is thus heavier than vice versa. Hence, the air pressure decreases with rising altitude from its zero 

point (sea level) at 1013 mbar. Measured from sea level, air pressure changes at approximately 1 

mbar/8 m. There are two different equations for describing the relationship between air pressure and 

altitude. When the temperature change with height in the atmosphere is taken into consideration 

(temperature lapse rate is not equal to zero), the equation can be expressed as: 

 𝑃 = 𝑃𝑏[
𝑇𝑏+(ℎ−ℎ𝑏)𝐿𝑏

𝑇𝑏
]
−𝑔𝑀

𝑅·𝐿𝑏  (4-36) 
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Where 𝑃𝑏 is the reference pressure (pressure at the sea level) [Pa], 𝑇𝑏 is the reference temperature 

(the temperature at sea level) [K], 𝐿𝑏 is the temperature lapse rate ( -0.0065 [
𝐾

𝑚
]) in ISA, ℎ is the 

height at which the air pressure is calculated [m], ℎ𝑏 is the height of reference level (height about 

sea level) [m], 𝑅  is the universal gas constant (8.31432 [
𝐽

𝑚𝑜𝑙·𝐾
] ), 𝑔  is the gravitational 

acceleration constant (9.80665 [
𝑚

𝑠2
]), and 𝑀 is the molar mass of the Earth’s air (0.0289644 [

𝑘𝑔

𝑚𝑜𝑙
]). 

This equation can be arranged to calculate the altitude above sea level given the measured air 

pressure: 

 ℎ = ℎ𝑏 +
𝑇𝑏

𝐿𝑏
· [(

𝑃

𝑃𝑏
)

−𝑅·𝐿𝑏
𝑔𝑀

− 1] (4-37) 

When the temperature lapse rate is not taken into account, which means the temperature doesn’t 

change through an altitude change, another equation can be used: 

 𝑃 = 𝑃𝑏 · exp [
−𝑔𝑀(ℎ−ℎ𝑏)

𝑅·𝑇𝑏
] (4-38) 

And given the measured pressure, the altitude can be computed according to: 

 ℎ = ℎ𝑏 +
𝑅·𝑇𝑏·ln (

𝑃

𝑃𝑏
)

−𝑔𝑀
 (4-39) 

In this work, a barometer pressure sensor is mounted on the quadcopter to measure the absolute 

pressure during flight. Equation 4-37 is used to compute the altitude according to the measured air 

pressure. Substituting all parameters into the equation, the equation that calculates the altitude 

relative to the sea level is: 

 ℎ = 44330.7 · (1 − (
𝑃

101325
)
0.19

) (4-40) 

Figure 4.14 below is the plot of Figure 4-40 and the figure shows that there is a linear relationship 

between the air pressure and the altitude when the altitude is less than 600 meters.  
 

 

Figure 4.14 Relationship between air pressure and altitude 
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4.4.2 Barometer implementation 

In this project, the MS5611 barometer is used for measuring the quadcopter altitude during flight. 

It's a very sensitive pressure sensor that can detect pressure differences with a 10cm accuracy. Every 

induvial barometer is factory calibrated at two temperatures and two pressures. As a result, six 

coefficients are calculated and stored in the memory of each induvial. These six coefficients must 

be read by the flight controller and used in the program converting the digital pressure value and 

digital temperature value into compensated pressure and temperature values. The MS5611 datasheet 

[52] has demonstrated the formulas for converting the digital pressure and temperature values into 

compensated pressure and temperature values. 
The MS5611 can be configured to work under five different oversampling ratios 

(256/512/1024/2048/4096). Different oversampling ratio corresponds to different pressure and 

temperature resolution, and different conversion time required by the Analog to Digital Converter 

to get the digital pressure and temperature values. In this project, the oversampling ratio is 

configured to 1024. According to the MS5611 datasheet [52], the corresponding temperature 

resolution is 0.005℃, and the pressure resolution is 0.027 mbar. According to Figure 4.14, 0.027 

mbar pressure resolution corresponds to 0.2319 meters altitude resolution, which is accurate enough 

for this project. When the oversampling ratio is configured to 1024, the conversion time required 

by the ADC is 2.28 milliseconds. Since the flight controller main loop runs every 4 milliseconds 

(flight controller frequency is 250Hz), it’s impossible to get the digital pressure and temperature 

value and calculate the compensated pressure and temperature values at one main loop. Therefore, 

the following program running process is proposed: 
 

 
Figure 4.15 Flowchart of the program to read data from the barometer 

 
In the first loop, the flight controller sends a command to the MS5611 barometer to request the 

digital temperature value, and the barometer ADC starts the conversion. Then in the second loop, 

the temperature conversion is already finished and the flight controller can directly access the digital 

temperature value from the barometer. In the third loop, the flight controller sends a command to 

Setup () { 

Get calibration values 

} 

Loop () { 

Request temperature 

} 

Loop () { 

Poll temperature value 

} 

Loop () { 

Request pressure 

} 

Loop () { 

Poll pressure value 

Calculate  

} 



  

 
 

56 

request the digital pressure value. Then in the fourth loop, the pressure conversion is finished and 

the flight controller accesses the digital pressure value from the barometer and calculated the 

compensated temperature and pressure values. With this approach, the barometer updates the 

pressure every four main program loops, which is 16 milliseconds. 
The MS5611 is an absolute pressure sensor and the measured pressure can be used to compute the 

altitude relative to the sea level. Equation 4-40 is used to compute the altitude relative to the sea 

level and the results are shown in Figure 4.16 below. The red line represents the altitude estimated 

without using a filter. The result is pretty noisy and can’t be used by the flight controller directly. 

The blue line represents the result after implementing a digital low pass filter to the barometer. It 

can be seen that the noise has become very small after using a low pass filter.  
After knowing the altitude of the quadcopter, the instantaneous vertical velocity can be replaced by 

the travel speed between two consecutive barometer measurements: 

 𝑣𝑧 =
ℎ1−ℎ2

𝑡
 (4-41) 

Where ℎ1 , ℎ2  are two consecutive altitude measurements, 𝑡  is the travel time between two 

measurements. As mentioned, the travel time between two measurements is 16ms. 
 

 
Figure 4.16 Barometer measurements 
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Chapter 5: Hardware components 
In this chapter, the hardware components requested for developing a real quadcopter platform and 

their specifications and characteristics are first introduced. Then, according to the working voltage 

and interactive mode of these hardware components, the schematic diagram of this autonomous 

quadcopter is designed and presented. 
 

5.1 hardware introduction 

In this section, the hardware components such as IMU, electronic compass, barometer, GNSS 

module, actuators, and their features and specifications are introduced. The hardware components 

used to develop the quadcopter platform include: 
1. STM32 development board 
2. MPU-6050 gyroscope/accelerometer 
3. QMC5883L compass module 
4. FlySky FS-i6X transmitter and FS-IA6B receiver 
5. Electronic speed controller 
6. SD card adapter 
7. APC220 radio communication module 
8. NEO-M8N GNSS module 
9. MS5611 barometer  
 

5.1.1 STM32 development board 

The STM32 development board used as the flight controller is the STM-32F103C8T6 (Figure 5.1). 

This development board has very low power consumption, very strong computing ability, and open-

source hardware resources. Hence, it’s ideal as the core of a flight control system. The MCU of this 

board is based on an ARM 32-bit Cortex-M3 CPU core, and the maximum CPU frequency is 72MHz, 

which makes this board very computational compared to an Arduino board (the CPU only runs at 

8MHz or 16 MHz). The board works with 5V but the MCU works with 3.3V, hence this development 

board houses a 5V to 3.3V voltage regulator IC. Even though the MCU operates at 3.3V, most of its 

GPIO pins are 5V tolerant. This development board also has two header pins which can be used to 

toggle the MCU boot mode between programming mode and operating mode. In addition to the 

above features, this board also features 20 Kbytes of SRAM, up to 128Kbytes of Flash memory, and 

up to 9 communication interfaces. More detailed information about its specifications is shown in 

Table 5.1 below. 
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Figure 5.1 STM32F103C8T6 

 
As mentioned above, two header pins (boot 0 and boot 1) are used to select the memory from which 

the MCU boots. When both boot 0 and boot 1 pins are set to low (0), then the internal flash memory 

acts as the main boot space and when boot 0 is set to high (1) and boot 1 is set to low (0), the system 

memory acts as the main boot space. To upload code to the flash memory of the MCU, the system 

memory must be selected as the main boot space. By booting into the system memory, the flash 

memory will be reprogrammable. This is the programming mode of this board. In programming 

mode, every reset or power-off will clear the code uploaded to the board. Once the program is 

uploaded to the flash memory, switch back the boot 0 to low (0), so that from the next reset or 

power-up, the MCU will boot from the flash memory, and the code uploaded will be preserved. This 

is the operating mode of this board. 
 

STM32F103C8T6 
Operating Voltage 
CPU Frequency 
Flash Memory 

RAM 
Number of GPIO pins 
Number of PWM pins 

Analog input pins 
USART peripherals 

I2C peripherals 
SPI peripherals 

Can 2.0 peripheral 
Timers 

2.7V to 3.6V 
72 MHz 
128 KB 
20 KB 

37 
12 

10 (12-bit) 
3 
2 
2 
1 
4 

Table 5.1 STM32F103C8T6 specifications 
 
In this project, we use the Arduino IDE to program this STM32 board. The code written on the 

Arduino IDE can be uploaded to the STM32 board by two methods. One is through the interface 

headers on the board, for this, the st-link debugger is required. The other one is through UART, and 

for this, a USB to TTL module is required. In this project, the FT232RL FTDI adapter (Figure 5.2) 

is used as the USB to TTL module, with which the Arduino code can be uploaded to the board with 

the serial method. 
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Figure 5.2 FT232RL FTDI adapter 

 

5.1.2 MPU-6050 gyroscope/accelerometer 

The IMU used to measure the attitude and rotation speed of the quadcopter during flight is MPU-

6050 (Figure 5.3), which is a 6-axis Motion Tracking device that combines a 3-axis gyroscope, a 3-

axis accelerometer, and a Digital Motion Processor (DMP) all in a very small package. This IMU 

features a small size, low power consumption requirements, high accuracy, and high reputability. 

Also, it’s pretty simple to interface with microcontrollers and other sensors such as magnetometers. 

More detailed information about its specifications can be found in Table 5.2 below. 

 
Figure 5.3 MPU-6050 with the GY-521 breakout board 

 
Gyroscope Features Accelerometer Features 

3-Axis sensor with a user-programmable full-scale 

range of ±250, ±500, ±1000, and ±2000 

degrees per second 

3-Axis sensor with a user-programmable 

full-scale range of ±2g, ±4g, ±8g, and 

±16g 
16-bit ADCs 16-bit ADCs 

Digitally programmable low-pass filter Orientation detection and signaling 
Factory calibrated sensitivity scale factor User-programmable interrupts 

Up to 8000Hz output data rate Up to 1000Hz output data rate 
Electrical and other common specifications 

9-Axis motion fusion by the on-chip Digital Motion Processor (DMP) 
VDD supply voltage range of 2.375V-3.46V 

1024-byte FIFO buffer reduces power consumption 
Digital-output temperature sensor 

400kHz Fast Mode I2C for communication 
Internal clock oscillator 

Table 5.2 MPU-6050 specifications 
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5.1.3 Compass module 

The compass module used in this project is QMC5883L (Figure 5.4), which is a multi-chip three-

axis magnetic sensor. This sensor is based on state-of-the-art magneto-resistive technology and has 

the advantage of low noise, high accuracy, low power consumption, offset cancellation, and 

temperature compensation [47]. The QMC5883L compass module can achieve 1° to 2° compass 

heading accuracy. More detailed information about its specifications can be found in Table 5.3 below. 
 

 
Figure 5.4 QMC5883L compass module 

 
QMC5883L 

Supply voltage 
Full-scale range 

Resolution (ADC) 
Gauss resolution 
Output data rate 

Interface 
I2C rates (kHz) 

Operating temperature 

2.16V to 3.6V 
±8 Gauss 

16 bits 
±2mG to ±8G 

10Hz, 50Hz, 100Hz, 200Hz 
I2C 

100, 400 
-40∘C to 85∘C 

Table 5.3 QMC5883L specifications 
 

5.1.4 Transmitter and receiver 

The transmitter and receiver make up the radio control system of the quadcopter. The transmitter is 

an electronic device that uses radio signals to transmit commands wirelessly to the radio receiver 

that is connected to the quadcopter flight controller. The transmitter reads the stick inputs (control 

commands) and sends them through a PWM or PPM signal to the receiver in near real-time.  
The radio receiver is the device capable of receiving commands from the radio transmitter. A 

transmitter uses many frequencies like 27MHz, 72MHz, 433MHz, 900MHz, 1.3GHz, and 2.4GHz. 

Most transmitters work on a 2.4GHz radio frequency. A receiver’s frequency must be compatible 

with the transmitter one to establish communication, which means a 2.4GHz transmitter can only 

work with the 2.4GHz radio receiver. 
In this project, the FS-i6X transmitter with FS-iA6B receiver (Figure 5.5) is utilized as the radio 
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control module of the quadcopter. The FS-i6X transmitter features 6 channels and works in the 

frequency of 2.4GHz with PPM output and the FS-iA6B is the matched 6 channels receiver that can 

receive PPM signal. The specifications of the transmitter and receiver are summarized and listed in 

Table 5.4 and Table 5.5, respectively.  
 

 
Figure 5.5 Flysky FS-i6X transmitter with IA6B Receiver 

 
FS-i6X transmitter 

Channels 
RF range 

Bandwidth 
Range 

Stick resolution 
Low voltage warning  

Power supply 
Size 

Weight 
Temperature range 

6-10 (Default 6) 
2.408-2.475GHz 

500KHz 
500-1500m (in the air) 

4096 
Less than 4.2V 

6V DC 1.5AA*4 
174×89×190mm 

392 g 
-10°C to +60°C 

Table 5.4 Specifications of FS-i6X transmitter 
 

IA6B receiver 
Channels 
RF range 
RF power 

RF receiver sensitivity  
Range 

Power supply 
Temperature range 

Size 
Weight 

6 
2.408-2.475GHz 
Less than 20dBm 

- 105dBm 
500-1500m (in the air) 

4.0-8.4V 
-10°C to +60°C 
47×26.2×15mm 

10 g 

Table 5.5 Specifications of IA6B receiver 
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5.1.5 Electronic Speed Controller 

The electronic speed controller or ESC controls the motor of the quadcopter, it takes the control 

signal (PWM signal) generated by the flight controller as input and controls and regulates the 

rotational speed of the motor. The ESCs raise or lower the voltage to the motor according to the 

duty cycle of the input PWM signal, thus changing the speed of the motor. ESCs have a refresh rate 

in Hertz (Hz), which is how many times a second the motor speed can be regulated. The ESCs for 

quadcopters and other multirotor drones may have higher refresh rates, as their stability and 

maneuverability depend entirely on the balance of motor speeds, and as such, they require fine 

control over the motor speeds. 
In this project, four XXD HW30A Brushless Motor ESCs (Figure 5.6) are utilized to control and 

regulate the motors of the quadcopter. More detailed information about the ESC’s specifications is 

available in Table 5.6 below. The four ESCs receive the PWM signals from the PB6, PB7, PB8, and 

PB9 pins of the STM32 board respectively. The STM32 flight controller computes the desired PWM 

pulse width values and generates PWM signals with the STM32 timer. More detailed information 

about how to generate PWM signals with STM32 and how to set up the timer configurations can be 

found in Appendix B PWM signal generation with STM32 timer.  
 

 
Figure 5.6 Electronic speed controller 

 
HW30A Brushless Motor ESC 

BEC power 
Cut off voltage 

Current 
Size 

Net weight 

1.5A/5V 
4V 

30A 
57mm×25mm×8mm 

27g 

Table 5.6 ESC specifications 
 

5.1.6 NEO-M8N GNSS module 

In this project, the GNSS module used to position the quadcopter during outdoor flight is a u-blox 

GNSS module from the NEO-M8 series (Figure 5.7). The NEO-M8 modules utilize concurrent 

reception of up to three GNSS systems (GPS/Galileo together with BeiDou or GLONASS), 
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recognize multiple constellations simultaneously, and provide outstanding positioning accuracy in 

scenarios where urban canyon or weak signals are involved [53]. This GNSS module can measure 

the latitude, longitude, altitude, velocity, and also the date information of the quadcopter during 

flight. The horizontal position accuracy can be up to 2 meters with concurrent reception from two 

GNSS systems, but the altitude position accuracy is much worse compared to the horizontal one 

(almost ten times worse). Hence the altitude measured by this GNSS module can’t be used by the 

flight controller, and a more precise altitude sensor such as the barometer or the LiDAR is required 

to get the accurate altitude of the quadcopter. The interface between this GNSS module and the 

microcontroller can be easily achieved by UART or SPI bus interface. Some basic information about 

this GNSS module is listed in Table 5.7 below. 
 

 
Figure 5.7 NEO-M8N GNSS module 

 
NEO-M8N GNSS module 

Power supply voltage 
Sensitivity 

Update rate single GNSS 
Update rate 2 concurrent GNSS 

Horizontal position accuracy 
Time to first fix 

Operating temperature 
Altitude limit 

3.3V to 5V 
-167dBm 

Up to 10Hz 
Up to 5Hz 

2m  
26s for cold start and 1s for hot start 

-40℃ to +85℃ 
50000m 

Table 5.7 Specifications of the NEO-M8N 
 

5.1.7 MS5611 barometer 

Since the GNSS module can’t provide accurate altitude information of the quadcopter during flight, 

an MS5611 barometer is used as the altitude sensor (Figure 5.8). The MS5611 is a new generation 

of high-resolution altimeter sensors from MEAS Switzerland with SPI and I2C bus interface and 

it’s optimized for altimeters and variometers with an altitude resolution of 10 cm [52]. Table 5.8 

below lists more detailed information about the specifications and features of this barometer. One 

important thing that should be noted when using this barometer is that it’s very light sensitive and 

need to be protected from sunlight. In this project, a small black cage is utilized to protect this 

barometer from the sunlight during outdoor flight while at the same let the air flow in and out to 
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make sure this barometer can measure the air pressure and work properly.  
 

 
Figure 5.8 MS5611 barometer 

 
MS5611 Barometer 

Power supply 
Operating temperature 

ADC 
Pressure range 

Oversample rate 
Pressure resolution  

Response time  
Temperature range 

Temperature resolution 
Resolution RMS 

1.8 V to 3.6 V 
-40℃ to +85℃ 

24 bits 
10 mbar to 1200 mbar 

256/512/1024/2048/4096 
0.065/0.042/0.027/0.018/0.012 mbar 

0.5/1.1/2.1/4.1/8.22 ms 
-40℃ to +85℃ 

<0.01℃ 
0.012/0.008/0.005/0.003/0.002℃ 

Table 5.8 Specifications of MS5611 barometer 
 

5.1.8 SD card and SD card adapter  

To collect quadcopter data such as position, attitude, and velocity during flight for subsequent 

analysis, a data storage module is mandatory. The SD card is one of the most practical one among 

storage devices. With the corresponding SD card adapter, the flight controller can communicate with 

the SD card and write or read data on it. The SD card adapter interfaces with the flight controller 

through the Serial Peripheral Interface (SPI) bus and the communication between them can be easily 

implemented with the Arduino SD library. The pinout of the SD card adapter is shown in Figure 5.9 

below. MISO is the Master In Slave Out line, this line transfers data from the SD card adapter (the 

slave device) to the flight controller (master device). MOSI is the Master Out Slave In line, this line 

transfers data from the flight controller to the SD card adapter. SCK is the clock line that 

synchronizes the data transmission between the master and slave. CS is the chip select line, which 

is used by the flight controller (master device) to enable and disable a specific device on the SPI 

bus. The specifications of the SD card adapter are listed in Table 5.9 below. 
 



  

 
 

65 

 
Figure 5.9 SD card adapter 

 
The SD card used in this project is shown in Figure 5.10, the storage capacity is 2GB, which is more 

than enough for collecting data during flight. 
 

 
Figure 5.10 SD card 

 
SD card adapter 

Operating voltage 
Current requirement 

4.5V to 5.5V DC 
0.2mA to 200mA 

3.3V on-board voltage regulator 
Supports FAT file system 

Supports micro SD up to 2GB 
Supports Micro SDHC up to 16GB 

Table 5.9 Specifications of SD card adapter 
 

5.1.9 radio communication module 

To monitor the flight conditions and have real-time information on the key components of the 

quadcopter during outdoor flight, a radio communication module is required. The radio 

communication module allows real-time communication between the quadcopter and the PC in the 

form of a data stream. In this project, the radio communication module is utilized to send commands 

from the PC to the quadcopter or to receive signals back from the quadcopter for monitoring its 

conditions. The radio communication module used in this project is the APC220 radio 

communication module (Figure 5.11). Two APC220 modules are required for the data transmission, 

one is wired to the flight controller and interfaces with the flight controller with UART protocol, 

and the other is connected to the PC through a USB to TTL converter. More detailed information 

about the specifications of the APC220 module is in Table 5.10 below. 
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Figure 5.11 APC220 radio communication module and USB to TTL converter 

 
APC220 radio communication module 

Working frequency 
Power supply 

Current  
Working temperature 

Range 
Interface 
Baud rate 

Baud rate (air) 
Receiver buffer 

Size 
Weight 

431 MHz to 478 MHz 
3.3V to 5.5V 
<25-35mA 

-20°C to 70°C 
1200m line of sight (1200 bps) 

UART/TTL 
1200-19200 bps 
1200-19200 bps 

256 bytes 
37mm × 17mm × 6.6mm 

30g 

Table 5.10 APC220 specifications 
 

5.2 Schematic of the quadcopter 

The schematic of the quadcopter is designed taking into account the operating voltages of the 

individual components and their interaction method with the STM32. The designed schematic is 

shown in Figure 5.12 below. The STM32 board accesses data from the IMU, the compass, and the 

barometer through the I2C (Inter Integrated Circuit) bus. Hence, the I2C interfaces of these sensors 

should be connected to the PB10 and PB11 pins of the STM32 board. The IMU and the barometer 

work at 5V, they should be wired to the 5V pin of the board, while the compass works at 3.3V and 

should be wired to the 3.3V pin. The GNSS module uses the UART (Universal Asynchronous 

Receiver-Transmitter) protocol to transmit data to the STM32 board, and its RX and TX pins should 

be wired to the PA2 and PA3 pins of the board. The telemetry module communicates with the 

STM32 board through the UART protocol too, and its RX and TX pins should be wired to the PA9 

and PA10 pins of the board. The FTDI adapter is used to upload codes to the STM32 board, and it 

shares the same RX and TX pins of the board with the telemetry module. PB6, PB7, PB8, and PB9 

correspond to the four channels of STM32 timer2, they are wired to the ESCs to transmit PWM 

signals generated by the STM32 timer. The four ESCs are powered by a 12V battery. One of the 

ESCs outputs 5V voltage and is used to power the STM32 board. The receiver has six channels and 

channel 1 is used to receive PPM control signals from the transmitter. The receiver is powered by 
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5V and the channel is wired to the PA0 pin of the board. The SD card adapter communicates with 

the STM32 through SPI (Serial Peripheral Interface) protocol. The CS (Chip Select) pin should be 

wired to PA4, the SCK (Serial Clock) pin should be wired to PA5, the MOSI (Master Out Slave In) 

pin should be wired to PA7, and the MISO (Master In Slave Out) pin should be wired to PA6. The 

SD card adapter must be wired to 5V otherwise it won’t work.  
All the sensors, receiver, telemetry module, SD card adapter, and STM32 board are mounted on a 

Printed Circuit Board (PCB) and connected with wires. 
 

 
Figure 5.12 Schematic of the flight controller 

 

5.3 Flight controller program architecture 

In this section, the program architecture of the designed flight controller is introduced. The program 

is based on Arduino STM 32 and written with Arduino IDE. 
The flowchart of the flight controller program is shown in Figure 5.13 below. Like most Arduino 

programs, this flight control program has three parts: the pre-setup part, the setup part, and the main 

loop part. The pre-setup part contains the libraries used by the program and all the variables and 

arrays are defined and initiated here. The setup part does some preparatory work before the main 

program loop runs. In this flight controller program, the pin mode configuration, the STM32 timer 

setup, all the sensors’ setup, sensors’ calibration, and storage device initialization are implemented 

in the setup part. The main loop part is executed after the setup part and it will be executed over and 

over again during the flight. The sensor data accessing, the quadcopter position and attitude 

estimation, the flight controller, and the data storage are all implemented in the main loop part.  
Below, the tasks of all the functions used in this program are explained: 
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1. timer_setup. The STM32 timer2 is configured as input capture mode to receive signals from the 

radio controller, and the STM32 timer4 is configured to generate the PWM signal, which is 

used to control the speed of the motor. 
2. gps_setup. Configure the GNSS receiver and set the refresh rate from 1Hz (default) to 5Hz and 

the baud rate from 9600 (default) to 57600. 
3. gyro_setup. Set the full-scale range and digital low pass filter of the gyroscope and 

accelerometer. 
4. calibrate_gyro. Calculate the bias of the gyroscope. 
5. gyro_signalen. Access raw data from the gyroscope and the accelerometer. 
6. angle_calc. Calculate attitude angles from the gyroscope and accelerometer data and perform a 

complementary filter to avoid noise and drift. 
7. setup_compass. Set the full-scale range, data output rate, oversample rate, and operation mode 

of the electronic compass. 
8. read_compass. Access raw data from the compass. 
9. Azimuth_calc. Calculate the heading angle of the quadcopter relative to the North according to 

the compass measurements. 
10. read_barometer. Access data from the barometer and calculate the altitude of the quadcopter 

from the barometer measurement. When the quadcopter is in autonomous flight mode, the 

attitude controller branch will be executed. 
11. read_gps. Extract geographic coordinates (latitude and longitude) from the GNSS receiver 

output. When the quadcopter is in autonomous flight mode, the GNSS position controller 

branch will be executed. 
12. LQR_attitude. Take roll and pitch angle reference as input and calculate control effort according 

to the LQR control strategy. 
13. start_stop_takeoff. Detect the quadcopter’s status. 
14. receiver_handle. Parse PPM Signals from the radio controller. 
15. print_on. Collect data (GNSS position, attitude, altitude) from sensors during flight to an SD 

card. 
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Figure 5.13 Flowchart of the program 
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Chapter 6: Experiment result 
In this chapter, the real quadcopter platform is presented and experiments are implemented to 

validate the performance of the quadcopter when flying in manual control mode. The flight 

controller program is deployed on this quadcopter and flight tests are implemented to validate its 

control performance.  
 

6.1 Quadcopter platform 

The real quadcopter platform based on the STM32 development board is shown in Figure 6.1 below. 

This quadcopter platform consists of several different modules such as the sensor module, the flight 

controller, the actuator module, the radio controller module, the radio communication module, and 

the data storage module.  
1. Sensor module. The sensor module consists of an IMU, an electronic compass, a GNSS receiver, 

and a barometer that are utilized to measure the crucial information of the quadcopter during 

flight. The IMU is used to measure the roll and pitch angles of the quadcopter. The electronic 

compass is used to measure the heading angle of the quadcopter relative to the North, with 

which advanced features like GNSS position hold and waypoint fly can be added to the 

quadcopter. The barometer measures the flight altitude based on changes in air pressure. As for 

the GNSS receiver, it is used to position the quadcopter in the horizontal plane.  
2. Flight controller. The flight controller is the core of the quadcopter platform. In manual flight 

mode, the flight controller takes the sensor measurements and the pilot command signals as 

input to compute and generate the desired control signals. In autonomous flight mode, the flight 

controller works in conjugation with the sensor module to complete the tasks scheduled by the 

program. 
3. Actuator module. The actuator module consists of four DC brushless motors and their 

corresponding electronic speed controllers. Each electronic speed controller takes the control 

signals from the flight controller as input to control and regulate the rotational speed of the 

motor. The four motors work together to generate control actions for the quadcopter. 
4. Radio controller module. The radio controller module consists of a radio controller and a 

receiver. The radio controller is used to send the pilot’s control commands to the quadcopter 

wirelessly. The receiver accepts the control commands and transmits these control commands 

to the flight controller.  
5. Radio communication module. The radio communication module consists of two radio 

communication devices, one is mounted to the flight controller and the other is connected to the 

PC. The radio communication module is used to monitor the status of the quadcopter wirelessly 

while flying. 
6. Data storage module. The data storage module is used to save the quadcopter’s data and other 
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auxiliary information during flight, which can be used for subsequent analysis and flight tests. 
It is important to note that the barometer sensor is very susceptible to sunlight and being exposed to 

sunlight will seriously affect its measurement accuracy. Exposure to sunlight can cause a significant 

drift in barometer measurements. To overcome this issue, the barometer is packed in a small black 

box and placed below the PCB of the quadcopter. In this way, the effect of sunlight on the barometer 

can be counteracted. 
 

 
Figure 6.1 Quadcopter developed for implementing flight test (Top view) 

 

6.2 Manual flight test 

In this section, the results of the manual flight tests are presented. The main purpose of the manual 

flight test is to validate the performance of the designed quadcopter when flying in manual control 

mode. Three manual flight tests are performed and three different LQR designs are implemented on 

the attitude controller. 
The parameters of the quadcopter (mass and moment of inertia) should be modified since the 

quadcopter in manual flight is slightly heavier than the quadcopter referenced when doing the 

simulation. Electronic components such as the compass, the barometer, the GNSS receiver, and the 

radio communication module are added to the quadcopter, leading to the change in its parameters. 

Among these components, the GNSS receiver has the greatest influence on the changes in the 

quadcopter’s parameters since it’s heavier than the other components, and is supported by a rod and 

placed away from the center of gravity of the quadcopter. Instead of implementing a pendulum test 

again to measure the mass and inertia moment of the quadcopter, the quadcopter parameters used in 

the simulation are multiplied by a scale factor as the new parameters. During the experiment, this 

scale can be tuned until good performance is achieved. 
For manual flight test 1, The weighting matrices Q and R are the same as the weighting matrices 

used during the simulation (see Table 6.1). The results of the manual flight test 1 are shown in Figure 

6.2 below. The experimental result shows both the roll and pitch angle can achieve acceptable and 

satisfactory tracking performance to the command. The roll angle can track the reference but there 

is some tracking error and overshooting. In the vast majority of cases, the roll angle tracking error 

is less than 5 degrees. The pitch angle’s tracking performance is better than that of the roll angle.  
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To overcome the roll angle tracking error, the first entry of the weighting matrix Q (this entry is 

related to the roll angle control) is slightly increased to increase the response speed of the roll angle 

controller. This can make the quadcopter more reactive to the roll command. The modified 

weighting matrix is shown in Table 6.1 below. Manual flight test 2 is implemented to validate the 

control performance. The results of the manual flight test 2 are shown in Figure 6.3 below. Manual 

flight test 3 further increases the first component of the Q matrix based on manual flight test 2. The 

modified weighting matrix is shown in Table 6.1 and the test results are shown in Figure 6.4 below. 

The results of flight test 2 and flight test 3 show that the roll angle tracking performance is slightly 

improved by increasing the first entry of the Q matrix. Figure 6.5 demonstrates the roll angle 

tracking error during flight test 2, it can be seen that in the vast majority of cases, the roll angle 

tracking error is less than 5 degrees. Those particularly large errors are due to the slow response of 

the flight controller.  
 

 
Figure 6.2 Manual flight test 1, weighting matrices are the same as the one used in the simulation 
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Figure 6.3 Manual flight test 2, the first component of the weighting matrix Q is slightly increased 

 
 
 

 
Figure 6.4 Manual flight test 3 result 
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Figure 6.5 Manual flight test 2, roll angle tracking error 

 
Test Q R 

Simulation  
# test 1 
# test 2 
# test 3 

𝑑𝑖𝑎𝑔(0.05,0.07,0.1,0.001,0.001,0.1) 
𝑑𝑖𝑎𝑔(0.05,0.07,0.1,0.001,0.001,0.1) 
𝑑𝑖𝑎𝑔(0.08,0.07,0.1,0.001,0.001,0.1) 
𝑑𝑖𝑎𝑔(0.09,0.07,0.1,0.001,0.001,0.1) 

𝑑𝑖𝑎𝑔(1,1,1) ∗ 10−6 
𝑑𝑖𝑎𝑔(1,1,1) ∗ 10−6 
𝑑𝑖𝑎𝑔(1,1,1) ∗ 10−6 
𝑑𝑖𝑎𝑔(1,1,1) ∗ 10−6 

Table 6.1 Weighting matrices used during flight test 
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Chapter 7: Conclusion and future works 
In this thesis, a quadcopter autonomous flight controller based on the Linear Quadratic Regulator 

(LQR) control strategy is designed and presented. Considering the under-actuated characteristics of 

the quadcopter, the flight controller adopts an inner-outer loop structure. The inner loop corresponds 

to the fast dynamics of the quadcopter and is related to the attitude and altitude control. The outer 

loop corresponds to the slow dynamics of the quadcopter and is related to the horizontal position 

control. This inner-outer loop structure has been proved to be more suitable for quadcopter control. 

The flight controller is designed and tuned in a simulation environment considering the quadcopter’s 

dynamic model. The performance of the designed flight controller is validated and evaluated in 

simulation, taking into account the step response performance and trajectory tracking performance. 

Then, an open-source quadcopter based on STM32, being able to interact with various sensors such 

as IMU, compass, barometer, and GNSS receiver, with remote communication and data storage 

functions, is designed. The designed flight controller is deployed on this quadcopter to achieve 

manual control flight, autonomous flight, GNSS position hold, waypoint fly, autonomous return, 

and other functions. To deploy the designed flight controller to the quadcopter, the flight control 

program based on Arduino STM32 is developed. The programming language is C++. Finally, 

manual flight tests are carried out on the quadcopter platform to verify and evaluate its manual flight 

performance and achieved good results. 
During the simulation, the designed controller shows a good step response performance with a fast 

response speed, small oscillation, small overshoot, and very small steady-state error. Due to the 

property of the LQR control strategy, the steady-state error always presents in step response. A 

solution to this problem could be using the LQI control. The LQI control is a control strategy adding 

an integration action to the LQR control. The trajectory tracking simulation is performed assuming 

the yaw angle is always zero, and the trapezoidal speed profile is used to generate a trajectory 

between two waypoints. The simulation result demonstrates the designed controller achieves good 

trajectory tracking performance, especially with altitude tracking. But the horizontal position 

tracking has two drawbacks: (1) velocity tracking shows a large rising/settling time, leading to a lag 

in position tracking. and (2) the flight path can only be very close to each waypoint, but cannot reach 

and pass through these waypoints. The possible solution to these problems could be adding 

integration action to the LQR controller or designing a controller using nonlinear control strategies 

such as SMC. In general, the simulation results show that despite the above flaws, the designed 

LQR controller can achieve satisfactory performance in step signal response and trajectory tracking. 
The designed open-source quadcopter comprises various sensors and other auxiliary electronic 

components. The IMU is used to measure the quadcopter’s attitude. The attitude calculation method 

based on Euler angle & rotation matrix is utilized to estimate the roll pitch angles of the quadcopter 

from IMU and a complementary sensor fusion algorithm is implemented to avoid noise and drift 

during IMU measurements. Experimental tests demonstrate that with this method, the attitude 

measurement is very accurate, reliable, and reactive. A tilt-compensated compass is utilized to 

measure the heading angles of the quadcopter during flight to achieve features like GNSS/GPS 
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position hold and waypoint fly. The calibration method based on scale biases is implemented to 

lighten and remove the influence of soft iron distortion and hard iron distortion on the compass 

measurement. Results show that this tilt-compensated compass can perform accurate heading angle 

estimation. The GNSS receiver interacts with the quadcopter flight control through the UART port 

and its data output rate and baud rate are configurated from default values to 5Hz and 57600 bits/s, 

respectively. By doing this, the quadcopter flight controller can get more position information from 

the GNSS receiver and achieve more smooth position control. The barometer measures the absolute 

air pressure, and the flight altitude of the quadcopter can be computed according to the relationship 

between the air pressure and altitude. A digital low pass filter is implemented on the barometer 

measurements to avoid the influence of the noise. Other auxiliary components such as telemetry and 

SD card adapter are integrated into the quadcopter to realize functionality like radio communication 

and data collection. Overall, this quadcopter integrates various electronic components and is a good 

example of system integration.  
To deploy the designed autonomous flight controller to the quadcopter, the flight control program 

based on Arduino STM32 is developed. The quadcopter is programmed to fly in manual flight mode 

or autonomous flight mode. Experiments have been carried out to evaluate manual flight 

performance. During the experiment, the weighting matrix Q is fine-tuned to achieve good flight 

performance. Results demonstrate that the designed controller can achieve very good control 

performance when the quadcopter is in manual flight mode. Although experimental data show that 

there is a tracking error of 1 degree to 5 degrees in the roll angle reference tracking, during the 

experiment, even in the presence of gusts, the aircraft can still achieve a very stable flight. The 

excellent performance of manual flight also lays a foundation for the later autonomous flight test 

and tuning. 
 
There is still much room for improving this project and a path for the continuous work of this project 

could be: 
1. Improve current simulation model. The simulation model can be improved and closer to reality 

by adding the state estimation/observer block and the environment simulation block. The 

sensors’ mathematical model and the sensor fusion algorithms that are used to estimate states 

can be included in the current model to achieve more realistic state feedback. Also, modeling 

the state estimation block can help deal with the sensor noise and different sample ratios of 

sensors. The environment simulation block can model the effects of the environment on the 

quadcopter such as the effects of aerodynamics, which can improve the robustness of the 

designed flight controller. 
2. Test and tune the autonomous fly. Manual flight tests have shown the excellent performance of 

the attitude controller. Experiments should be carried out to test the altitude and position 

controller on the real quadcopter and fine-tune the controller parameters.  
3. Add GNSS + IMU sensor fusion and barometer + IMU sensor fusion. The current stage of the 

work uses the position and altitude measurements directly from the GNSS module and the 

barometer. The GNSS module has the problems of low measurement accuracy, low 

measurement frequency, and weak signals or even signal loss due to the influence of 

surrounding buildings. Implementing the GNSS and IMU sensor fusion with a Kalman filter or 

a complementary filter can help deal with the problem of low measurement frequency and 

achieve more accurate horizontal position and speed measurement. As for the barometer, it’s 
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susceptible to sunlight and disturbances in the surrounding airflow, which will cause the altitude 

measurement to drift. Implementing the barometer and IMU sensor fusion can handle the 

problem of barometer interference and achieve more altitude and vertical speed measurements. 
4. Implement a nonlinear control strategy. The linear model of the quadcopter is a simplification 

of its mathematical model. The linear controller based on the linear model can’t handle all the 

dynamic behavior of the quadcopter. A solution to this problem can be implementing the 

nonlinear controller to the quadcopter.  
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 
 

78 

 

 

Appendix A Propeller’s thrust and torque 

measurements 
To find the mathematical relationship between the PWM signal provided to the ESC from the flight 

controller and the thrust and torque generated by the motor, the propeller’s thrust and torque tests 

are mandatory. This allows the conversion between the commands generated by the flight controller 

expressed as the PWM signals and the physical input vector 𝑢 defined in chapter 2. 

 𝑢 = [

𝐹𝑡
𝑀𝑥

𝑀𝑦

𝑀𝑧

] (A-1) 

The measurements of the torque and thrust generated by the motor are implemented on the 

RCBenchmark Series 1580 test stand (Figure A.1), on which it is possible to measure up to 5kgf of 

thrust and 2 Nm of torque as well as voltage, current, power, motor rotation speed, vibration, and 

efficiency. The test stand has three measurement sensors, one of which is for measuring the thrust 

and the left two are for measuring the torque. The board on the test stand provides the PWM signal 

to the motor ESC and allows connecting the stand to a PC with a USB cable. Using the support 

software of this test stand, it’s possible to manually control the pulse length of the PWM signal and 

collect the test data. To collect a sufficient number of samples, the software is set to continuous 

sample mode and the PWM pulse length is manually increased from 1000us to 1650us. 
 

 
Figure A.1 RCBenchmark Series 1580 test stand 
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(a) 

 
(b) 

Figure A.2 Pictures during the experiment 
 
The behavior of one motor is shown in Figure A.3 below, and the experimental data shows that the 

torque-PWM and thrust-PWM characteristics of the motor show a nearly linear behavior. 
 

 

(a) Thrust behavior 

 

(b) Torque behavior 
Figure A.3 Behavior of single motor 

 
Linear approximation of the torque-PWM and thrust-PWM characteristics can be derived using the 

Least Square method. The obtained data can be fitted using first-order functions, Take the 

measurement error 𝑒  into consideration, the model equation can be suitably written in the 

following format: 
 𝐹 = 𝑛𝐹 · 𝑃𝑊𝑀 + 𝑞𝐹 + 𝑒𝐹 
 𝑇 = 𝑛𝑇 · 𝑃𝑊𝑀 + 𝑞𝑇 + 𝑒𝑇 (A-2) 
Where the gain 𝑛𝐹 , 𝑛𝑇  and the offset 𝑞𝐹 , 𝑞𝑇  are unknown parameters to be estimated. By 

considering the 𝑁 measurements of the thrust collected in the experiment, the following system of 

linear equations is derived: 

 

𝐹1 = 𝑃𝑊𝑀1 · 𝑛𝐹 + 𝑞𝐹 + 𝑒𝐹1
𝐹2 = 𝑃𝑊𝑀2 · 𝑛𝐹 + 𝑞𝐹 + 𝑒𝐹2

⋮
𝐹𝑁 = 𝑃𝑊𝑀𝑁 · 𝑛𝐹 + 𝑞𝐹 + 𝑒𝐹𝑁

 (A-3) 

The previous equations can be written in matrix form: 
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 [

𝐹1
𝐹2
⋮
𝐹𝑁

] = [

𝑃𝑊𝑀1 1
𝑃𝑊𝑀2 1
⋮ ⋮

𝑃𝑊𝑀𝑁 1

] · [
𝑛𝐹
𝑞𝐹
] + [

𝑒𝐹1
𝑒𝐹2
⋮
𝑒𝐹𝑁

] (A-4) 

The estimation problem is recast in the standard Least Square format: 
 𝑦 = 𝜙 · 𝜗 + 𝑒 (A-5) 
Where 𝑦 ∈ ℝ𝑁 , ϕ ∈ ℝ𝑁×2 , 𝜗 ∈ ℝ2  and 𝑒 ∈ ℝ𝑁 . Since the unknown is the vector 𝜗 , the 

problem to be solved is overdetermined, because the number of unknowns is smaller than the 

number of measurement equations taken into account and then, in general, the system of equations 

does not admit any solution, since the matrix ϕ cannot be inverted. Using the least square algorithm 

as an estimation method, the solution could be: 
 �̂� = (𝜙𝑇 · 𝜙)𝑇𝜙𝑇 · 𝑦 (A-6) 
Under MATLAB, the least-squares solution is provided by the operator “\” or the command 

mldivide, and the result is: 

 �̂� = [
𝑛ො𝐹
𝑞ො𝐹
] = [

0.0088
−8.8085

] (A-7) 

As a result, the thrust 𝐹 in the function of the PWM signal is: 
 𝐹(𝑃𝑊𝑀) = 0.0088 · 𝑃𝑊𝑀− 8.8085 (A-8) 
Figure A.4 (a) shows the result of overlapping the equation to the experimental thrust curve, the 

equation can fit the linearity between thrust and PWM signal very nicely. Using the same method, 

the relationship between the torque 𝑇 and the PWM signal is: 
 𝑇(𝑃𝑊𝑀) = 0.0000136 · 𝑃𝑊𝑀− 0.0134 (A-9) 
And Figure A.4 (b) shows the result of overlapping this equation to the experimental torque curve. 
 

 

(a) Estimated thrust behavior 

 

(b) Estimated torque behavior 
Figure A.4 Estimated single motor behavior 

 
Lastly, the command input can be written in the function of the 𝑖𝑡ℎ motor PWM signal 𝑃𝑊𝑀(𝑖): 

 𝑢(𝑃𝑊𝑀) =

[
 
 
 
 

−(𝐹(𝑃𝑊𝑀1) + 𝐹(𝑃𝑊𝑀2) + 𝐹(𝑃𝑊𝑀3) + 𝐹(𝑃𝑊𝑀4))

(𝐹(𝑃𝑊𝑀1) − 𝐹(𝑃𝑊𝑀2) − 𝐹(𝑃𝑊𝑀3) + 𝐹(𝑃𝑊𝑀4))𝐿𝑠𝑖𝑛(𝛼)

(𝐹(𝑃𝑊𝑀1) + 𝐹(𝑃𝑊𝑀2) − 𝐹(𝑃𝑊𝑀3) − 𝐹(𝑃𝑊𝑀4))𝐿𝑐𝑜𝑠(𝛼)

−𝑇(𝑃𝑊𝑀1) + 𝑇(𝑃𝑊𝑀2) − 𝑇(𝑃𝑊𝑀3) + 𝑇(𝑃𝑊𝑀4) ]
 
 
 
 

 (A-10) 

In this formula, 𝑃𝑊𝑀𝑖 is the PMW signal to the 𝑖𝑡ℎ motor. 
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Appendix B PWM signal generation with 

STM32 timer 
As mentioned in section 4.5, the electronic speed controller (ESC) takes the PWM signal generated 

by the flight controller to control and regulate the speed of the motor. This section describes how to 

generate the desired PWM signals using the STM32 microcontroller.  
The STM32 timer can be used as a time-based generator to generate a PWM signal. The STM32 

timer unit includes a counter register (CNT), a pre-scaler register (PSC), an auto-reload register 

(ARR), and a repetition counter register (RCR). The timer can generate a PWM signal in edge-

aligned mode or center-aligned mode depending on the configuration of the timer register. When 

the STM32 timer module is set to the PWM generation mode, the counter register (CNT) gets the 

clock signal from the internal clock and counts up to the auto-reload register (ARR) value, then the 

output channel pin is driven high. And it remains until the counter register (CNT) value reaches the 

compare register (CCRx) value, when the counter register (CNT) value is greater than the compare 

register (CCRx) value, the output channel pin is driven low. And it remains until the counter register 

(CNT) counts up to the auto-reload register (ARR) value, and so on. This is the edge-aligned PWM 

generation mode in an up-counting configuration. The frequency of the resulting PWM signal is 

determined by the internal clock, the pre-scalar (PSC) value, and the auto-reload register (ARR) 

value. And the duty cycle is determined by the compare register (CCRx) value and the auto-reload 

register (ARR) value. The formula below can be used for calculating the PWM frequency for the 

output: 

 𝐹𝑃𝑊𝑀 =
𝐹𝐶𝐿𝐾

(𝐴𝑅𝑅+1)×(𝑃𝑆𝐶+1)
 (B-1) 

Where 𝐹𝐶𝐿𝐾  is the internal clock frequency. The PWM duty cycle percentage is controlled by 

changing the value of the compare register (CCPx), and the duty cycle can be expressed as: 

 𝐷𝑢𝑡𝑦𝐶𝑦𝑐𝑙𝑒𝑃𝑊𝑀[%] =
𝐶𝐶𝑅𝑥

𝐴𝑅𝑅
[%] (B-2) 

Figure B.1 shows how the auto-reload register (ARR) value affects the frequency (period) of the 

PMW signal, how the compare register (CCPx) value affects the corresponding PWM signal’s duty 

cycle and illustrates the whole process of PWM signal generation in the edge-aligned up-counting 

configuration. 
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Figure B.1 Edge-aligned PWM waveforms (ARR = 8) 

 
One of the most important features of a PWM signal is the resolution, which is the number of 

discrete duty cycle levels that the PWM signal can get. The resolution determines how many steps 

the duty cycle can take until it reaches the maximum value. Hence, the PWM signal resolution can 

determine how fine the duty cycle can be changed to obtain a certain percentage. This can be 

extremely important for controlling the quadcopter’s motors. The STM32 PWM resolution formula 

can be expressed as: 

 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑃𝑊𝑀[𝐵𝑖𝑡𝑠] =
log (

𝐹𝐶𝐿𝐾
𝐹𝑃𝑊𝑀

)

log (2)
[𝐵𝑖𝑡𝑠] (B-3) 

 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑃𝑊𝑀[𝐵𝑖𝑡𝑠] =
log (𝐴𝑅𝑅+1)

log (2)
[𝐵𝑖𝑡𝑠] (B-4) 

Equation B-3 can be used to calculate the resolution of the PWM signal given a specific frequency 

or the opposite. Equation B-4 describes the relationship between the auto-reload register (ARR) 

value and the PWM signal resolution, it can be used to calculate the auto-reload register (ARR) 

value given a resolution.  
The STM32F103C8T6 has four timers. In this project, timer 4 is used to generate the PWM signal, 

the four channels of which correspond to the PB6, PB7, PB8, and PB9 pins of the board. The pre-

scaler register (PSC) value is set to 71, since the internal clock frequency is 72MHz, the counter 

register (CNT) will count up every 1 microsecond. The auto-reload register is set to 5000. The 

counter register (CNT) is initiated every 4000 microseconds. Hence, the frequency of the generated 

PWM signal is 250Hz, which satisfies the requirement that the refresh rate of the controller should 

be 250Hz. The compare register (CCPx) is set according to the PWM pulse width value calculated 

by the controller (section 3.2), which is limited to 1000 to 2000. With these configurations, the 

STM32 timer can generate PWM signals with 250Hz and pulse width limited between 1000𝑢𝑠 and 

2000𝑢𝑠. 
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