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Abstract

Nowadays, autonomous navigation systems are becoming increasingly pervasive in
everyday life and work. Unmanned Aircraft Systems (UASs) have been developed
in the recent years, conquering different market segments and gaining popularity
for their versatility and usefulness. Besides the economic benefits arising from their
employments, ranging from crops monitoring in agriculture to fast parcel deliveries,
their greatest incentive is the feasibility in hazardous and high risk operations.
Their rapid growth is mainly associated to the quick development of algorithms
and strategies for autonomous navigation and task execution, involving both
traditional approaches and applications of artificial intelligence (AI) algorithms.
One of the most challenging but rewarding field of study is the coordinated
behavior of a number agents, collaborating to carry out the same high level task
as well as distinguished low level objectives. Employment of fleets of Unmanned
Aerial Vehicles (UAVs) may be particularly fruitful especially for time-sensitive
operations, in which battery autonomy and time minimization are the most stringent
requirements. Several applications and needs may exploit all such potentialities,
provided that efficient collaboration models and strategies are implemented.
In this thesis, a Reinforcement Learning (RL) approach for coverage planning
is presented. The main aim is to efficiently map an environment using a fleet
composed of a certain number of UAVs, ranging from 2 to 10, while recognizing
and avoiding obstacles. This objective envisages several difficulties, notably those
related to collaborative behavior. In fact, each fleet component should autonomously
move while taking into account both unexplored areas and other drones positions,
in order to avoid mutual collisions and inefficient spreading in the environment.
UAVs are trained to accomplish these tasks in a shared environment, by means
of Proximal Policy Optimization (PPO) algorithm, a policy gradient method
making use of Convolutional Neural Networks (CNNs) for policy and value function
approximation. Training procedure is performed through a novel and modified
version of PPO, which exploits all agents’ trajectories to concurrently update
a shared policy function, subsequently tested in a decentralized fashion with a
variable number of UAVs. Trained fleets’ performance is then assessed in terms of
energy consumption, distribution statistics and coverage task accomplishment in
simulated test environments.
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Chapter 1

Introduction

1.1 Introduction

The goal of this thesis is to propose a Reinforcement Learning (RL)-based approach
to solve the coverage planning problem using fleets of Unmanned Aerial Vehicles
(UAVs), composed by 2 to 10 units. Efficient coverage strategies provide a series of
advantages and applications in different fields, among which Search and Rescue
(SAR) missions or aerial patrols, where the employment of autonomous systems
reduces the need of human presence in such risky situations. Development of
autonomous navigation and coordination of multi-agent systems has been a very
heated field of study in the recent years, and it was the terrain of development of
different strategies and approaches, taking inspiration from a variety of research
areas, including Artificial Intelligence (AI) and Machine Learning (ML). Those
research and application domains, which are in continuous and rapid growth, allow
to tackle autonomous navigation and task collaboration problems exploiting several
mathematical and human-inspired tools, like Convolutional Neural Networks (CNN).
Reinforcement Learning is a branch of Machine Learning, devoted to train agents
to achieve high performance in accomplishing difficult tasks, without the need
to perform explicit programming. In this field, learning process of such decision
makers is based on feedback rewards provided as function of the quality of their
choices with respect to the intended target to be accomplished, summarized by a
properly designed reward function.

In the proposed approach, coverage planning is implemented by equipping each
UAV of a variable size fleet with a coverage agent, trained using RL strategies, which
selects at each time the drone motion direction by processing information about
fleet distribution and explored areas. The obstacle avoidance task is performed
by another RL-agent, that fuses information about motion direction provided by
the coverage agent with local obstacle detections performed by simulated range
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sensors to provide the definitive motion direction. In real test implementations,
this process allows to reduce the computational time that standard and iterative
algorithms would require, since trained networks fastly process input data through
forward passes. Training and test phases are performed by assuming a constant
mutual communication among UAVs, in terms of both respective positions and
obstacle detections. Once fleets are trained in shared simulated environments to
be fully explored, their performances are assessed in terms of adopted distribution
strategies, exploration time and energy consumption.
The proposed algorithm is implemented in Python language, using Python 3.9.5.
Mostly used libraries for the code development are Tensorflow 2.4.1 [1], for neural
network management and training, numpy 1.21.2 for general purpose calcula-
tions, scikit-learn 1.0.2 [2] and pandas 1.4.2 for data analysis. Custom simulation
environments are used for training and test phases, taking inspiration by Ope-
nAI Gym framework for 2D simulations, whereas some tests in 3D environments
are carried out in Gazebo with ROS for communication and decision-making
management, and PX4 Autopilot software for vehicles’ control. All the code
and models developed during this project are available in my GitHub repository
https://github.com/cosimobromo/RL_UAVs_fleets.

1.2 Thesis outline
This thesis is organized as follows: in chapter 2, the state of art of RL applications to
autonomous systems is presented, including path planning and obstacle avoidance
methods, as well as a collection of applications in the area of multi-agent systems and
specific approaches to coverage planning problem. In chapter 3 the most relevant
theoretical notions about RL framework are provided, along with a classification
of the mostly used RL algorithms. Furthermore, an in-depth analysis of the
PPO algorithm follows. In chapter 4, the proposed approach is described with
reference to assumptions, agent interactions, reward function shaping and state
and action spaces definition. In chapter 5, the training algorithm for RL agents
is described, accompanied by the presentation of the learning curves. In chapter
6, the algorithm’s test results are presented, either on a large test set of maps,
and on specific ones selected as reference. In chapter 7, some results obtained by
simulations in 3D environments with ROS are presented as well as some pictures
taken during one exploration process. Finally, in chapter 8, conclusions are drawn,
along with a discussion about possible further improvements.
At the end of the thesis, in Appendix A there is a brief overview of the most
common Artificial Neural Network (ANN) structures and training algorithms,
while in Appendix B a formalization of the KL-Divergence, involved in the PPO
optimization function, is provided, along with an example of its application.

2
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Chapter 2

State of art

Reinforcement Learning and autonomous single-agent or multi-agent systems consti-
tute a wide field of development and research, characterized by a broad and varied
collection of approaches and works. In this chapter, some insights on the major
development of such topics are provided, along with some plausible applications of
the proposed work.
In Sec. 2.1, some instances of Reinforcement Learning applications for control sys-
tems and autonomous vehicles are illustrated, along with more detailed applications
of such framework to path planning and obstacle avoidance problems in (2.1.1).
In Sec. 2.2, main advantages and challenges in multi-agent systems literature are
presented, along with specific applications for coverage planning in (2.2.1).

2.1 Reinforcement Learning
Reinforcement Learning (RL) is a branch of Machine Learning (ML) aiming at
teaching agents to select actions so as to maximize discounted sum of rewards
collected over time. Given its high level description and mathematical formulation,
RL algorithms and procedures can be easily handled in many research and practical
fields, ranging from industrial automation to financial studies.
Some of the earliest successful attempts in RL field include training of agents in
playing popular Atari games [3]. This terrain provided outstanding results despite
the quite basic algorithms (Q-learning, DQN) and trained agents even outperformed
highly expert human players in solving most of the games.
RL is exploited for typical control tasks as well: in [4], Deep Deterministic Policy
Gradient (DDPG), a policy gradient based algorithm, is exploited to develop an
efficient control law for a nuclear reactor. Additionally, many industrial applications
adopt RL control strategies on industrial manipulators carrying out a variety of
tasks [5]; physical implementation and control performances are strengthened
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by specific training strategies, including domain randomization [6] for increased
robustness in filling the simulation-reality gap.
Finally, Reinforcement Learning exhibited notable potentialities in the financial
field as well, as for portfolio optimization, even in combination to traditional
approaches (like convex mean-variance optimization) [7]. In (2.1.1), an in-depth
investigation about RL-based path planning and obstacle avoidance applications
from the literature is provided.

2.1.1 Path Planning and obstacle avoidance

Besides the multi-domain approaches and potentialities of Reinforcement Learn-
ing, most of the efforts and consequent findings involve employment of RL for
autonomous vehicles navigation and control, particularly in terms of path planning
strategies. In the path planning literature, a series of methods and algorithms
have been proposed (a brief summary is reported in [8]), including A*, D*, RRT,
or APF-based planners with traditional control strategies [9, 10]. Path planning
methods try to compute optimal paths (with respect to some predefined metrics)
connecting a starting position to a target one, while avoiding obstacles during
navigation. In Fig. 2.1 a path planned using D* Lite algorithm [11] is displayed,
along with starting and ending position.

Figure 2.1: Path Planned through D* Lite Algorithm
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Some algorithms, including A*, deal with static environments only, while others are
more suitable to be employed with dynamic obstacles. With the development of
computational resources, in the years alternative path planning methods, especially
RL-based ones, have been proposed as well. [12, 13, 14, 15, 16] propose end-
to-end local motion planners for ground robots, using heuristic-based reward
functions. Specifically UAV-related approaches and applications have shown optimal
performances; some of them, see the combination of RL techniques along with
traditional approaches, like Model Predictive Control (MPC) [17].

2.2 Multi-Agent Systems
Multi-agent systems constitute a complex field of development, in which besides
the benefits raising from the joint employment of different autonomous systems
in performing similar tasks simultaneously, a series of complications may arise,
especially linked to coordination. Multi-agent systems are implemented in multiple
domains, including video games [18, 19] that, despite without practical implications,
represent a fruitful development terrain and baseline for research. In addition,
multi-agent systems arise in many industrial applications, involving, for example,
manipulators coordination in manufacturing processes. The most interesting area,
relatively to this thesis topic, concerns autonomous vehicles guidance and control,
that may be associated to different purposes, including war, geological or medical
related tasks. Applied methodologies may be varied: in [20] a Set Membership (SM)
approach for UAVs coordination during targets tracking is described, whereas [21]
proposes a Multi Agent SLAM-based exploration with noise robustness, employing
on-purpose designed utility functions. With the increasing need of developing
special multi-agent algorithms, RL framework extended in this direction, with
a series of MA-based algorithms, which are either the extension of single agent
methods or on-purpose developed ones. According to Multi Agent Reinforcement
Learning (MARL) literature and theory [22], multi-agent problems can be classified
in three possible settings type:

• Purely cooperative settings: Agents share the same reward and a common goal
to be achieved;

• Purely competitive settings: Agents are characterized by contrasting purposes,
one agent’s reward increases to the expenses of another one;

• Mixed cooperative-competitive settings: It is the most general case, in which
agents tend to maximize their individual rewards while subdued to some
shared objectives as well.

For purely cooperative settings, some special-purpose algorithms have been pro-
posed, since a shared objective function allows to treat all interacting agents at the
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same way. Among them, Counterfactual Multi Agent Policy Gradients (COMA)
[23] exploits agent’s equality to simplify value function estimation, while more com-
plex algorithms, built upon their single-agent counterparts, have been adapted for
all possible multi agents settings, since agents are allowed to have possibly different
objectives and they are trained accordingly [24, 25]. Among recent applications of
MARL, combat tasks deserves to be mentioned: in [26] a modified version of Multi
Agent Deep Deterministic Policy Gradient (MADDPG) is used, for combat tasks,
in a mixed cooperative-competitive environment; in [27] DDPG is exploited in a
fully collaborative environment to coordinate a UAVs fleet to reach a target from
different initial positions. In (2.2.1) a number of coverage planning approaches
using MARL are presented.

2.2.1 Coverage Planning
Coverage planning problem consists in finding an efficient exploration strategy of an
environment through a number of observers, so that an unknown area can be fully
explored. A solved coverage planning problem carries a series of benefits applicable
in many applications, basically linked to monitoring, mapping and data gathering.
In [28], MADDPG algorithm is applied to a swarm of buoys in order to efficiently
spread them so as to avoid their individual influence areas from overlapping and
to provide a constant monitoring of the considered underwater environment. The
same issue is approached for a small UAVs fleet in [29] and for some ground
robots in [30], in which a coordinated strategy for agricultural robots allows to
provide constant crops monitoring, with coordinated reallocation if one unit needs
to recharge its battery. Some MARL coverage planning approaches are based on
maps pre-processing techniques, exploiting for instance Voronoi partitioning [31,
32] in collaboration with RL control strategies.
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Chapter 3

Theoretical Background

In this chapter, the main theoretical concepts needed for understanding the proposed
methodology are briefly illustrated. In Sec. 3.1 Reinforcement Learning basics
and employed mathematical tools are explained; in Sec. 3.2 the wide variety of
algorithms and their principal differences will be illustrated and in Sec. 3.3 some
details about Proximal Policy Optimization (PPO) algorithm, the core of proposed
methodology, will be provided.

3.1 Reinforcement Learning basics
Reinforcement Learning (RL) constitutes a branch of Machine Learning (ML)
devoted to train a decision maker, usually referred to as an agent, to take actions on
the basis of its current state, so that the discounted sum of rewards it receives from
the environment over time is maximized. The other branches of ML are supervised
learning, involving model learning techniques based on input-output labeled data
samples, and unsupervised learning, specifically devoted to data classification
and analysis without any available a priori knowledge, including clustering and
dimensionality reduction methods. In Reinforcement Learning, training data is
collected as a result of agent-environment interaction, which is usually performed
in a simulated fashion. At each step time t, an agent selects and performs an
action at from a state st, which results in a transition to a consequent state st+1
in the next time step t + 1 and a reward rt+1. Rewards act as feedback signals
to agents, providing information about the effectiveness of choosing an action
given the current state, in compliance with the objective goal. Reinforcement
Learning agents are firstly trained during a specifically devoted phase and then
their performance is assessed in the test phase. To fulfill optimality conditions,
during the training process an adequate balance between exploration of the action
space and exploitation of the learned strategies must be found. Training process
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is made up of a sequence of episodes over which agent collects rewards until a
terminal condition is reached.

3.1.1 Markov Decision Process
Markov Decision Processes (MDPs) are meant to formalize the sequential decision
making process involving agents which learn to maximize a given goal while
interacting with an environment. Denoting as agent the learner and decision maker
and the environment whatever does not include the agent itself, using MDPs it is
possible to describe consistently all situations in which current actions influence
long-term rewards as well as immediate ones [33]. MDPs are stochastic control
processes, characterized by the Markov Property (see Def. 3.1.1).

Definition 3.1.1 (Markov Property). A stochastic control process satisfies the
Markov Property, and if so it is said to be Markovian, if the conditional probability
distribution of future states of the process depends on the current state only and
not on the past ones.

Definition 3.1.2 (Finite Markov Decision Process). If state and action spaces are
finite, the Markov Decision Process is said to be a Finite Markov Decision Process
(Finite MDP).

Agent and environment interactions happen in discrete time: at each time step
agent receives as input a representation of the current environment’s state st, selects
an action at and, as a consequence of the state-action pair (st, at), moves to the
next state st+1 while receiving a reward rt+1. During this process, agent’s trajectory
is collected, and in RL settings it is employed for its learning process.

Environment

Agent Action atState st+1 z−1 State stReward rt+1

Experience tuple: (st, at, rt+1, st+1)

Figure 3.1: Agent-environment interaction, summarized at each time step by an
experience tuple (st, at, rt+1, st+1). z−1 indicates the one-step delay.

A Markov Decision Process is defined as a 5-dimensional tuple (S,A,P ,R, γ)
where:

8
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• S is the state space, i.e. the set of all possible states;

• A(s) is the action space, i.e. the set of all possible actions available in a given
state s;

• P(sÍ|s, a) : S ×A×S → [0,1] is the transition probability1, i.e. the probability
that being in a state s and selecting an action a, agent will transition to
new state sÍ. P is responsible for the definition of the one-step environment
dynamic. In a deterministic environment, once defined the state-action pair
(s, a), the consequent state sÍ is defined uniquely, i.e. ∃!sÍ : P(sÍ|s, a) = 1 and
∀s̃ ∈ S \ sÍ : P(s, a, s̃) = 0

• R(s, a, sÍ) : S ×A×S → R is the reward function, mapping the tuple (s, a, sÍ)
to a number r ∈ R.

• γ is the discount rate, weighting the future rewards’ influence on the discounted
returns (see Eq. 3.2).

As previously anticipated, in Reinforcement Learning the goal is to maximize the
total amount of rewards the agent receives over time, that is generally referred to
as the expected return, reported in Eq. 3.1.

Gt
.= rt+1 + rt+2 + · · ·+ rT (3.1)

Expected return maximization may fail when it is not possible to guarantee the
end of the agent-environment interaction, i.e. when a terminal state may be not
reachable (T =∞). That’s why, in Reinforcement Learning, the discounted return
is chosen as maximization objective most of the times 2. The main idea behind
the concept of discounting is to weight future rewards less as considering farther
experiences in time. This is done by using a weighting parameter known as discount
rate γ ∈ [0, 1], exponentially decayed as time increases, as in Eq. 3.2. This definition
implies that, for γ → 1, interest towards future rewards is strengthened and the
agent is required to have enhanced forecasting capabilities.

Gt
.= rt+1 + γrt+2 + γ2rt+3 + · · · =

∞Ø
k=0

γkrt+k+1 (3.2)

Discounted return can be even defined in a recursive form, provided that if a
terminal state exists at time t = T , GT = 0:

Gt = rt+1 + γGt+1 (3.3)

1The symbol "|" indicates conditional probability. For instance, p(x|y) denotes the probability
of a certain event x conditioned on event y.

2It is possible to prove that, under some mild conditions on the reward function, mostly related
to boundedness of instantaneous rewards, the discounted return is finite even for T =∞.
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3.1.2 Policy and Value Functions
In Reinforcement Learning, an agent learns by updating during training process its
policy, which indicates the way states are mapped to actions. Generally, a policy
π(a|s) : S ×A → [0, 1] defines a probability distribution over the action space A(s)
reachable from state s.
Value functions, instead, give a quantitative indication of the discounted return that
would be attained from a given state, by following a defined policy π. Specifically,
there are three essential value functions in RL: state-value function vπ(s) (see Def.
3.1.3), action-value function qπ(s, a) (see Def. 3.1.4), advantage function Aπ(s, a)
(see Def. 3.1.5).

Definition 3.1.3 (State-value function).
The state-value function vπ(s) : S → R indicates the expected discounted return
that would be attained starting from a state s and following a policy π thereafter:

vπ(s) = Eπ[Gt|st = s] = Eπ
C ∞Ø
k=0

γkrt+k+1

-----st = s

D
(3.4)

Definition 3.1.4 (Action-value function).
The action-value function qπ(a, s) : S ×A → R indicates the expected discounted
return that would be attained starting from a state s, performing action a and
following policy π thereafter. It is often referred to as Q-function and its numerical
value is indicated as Q-value.

qπ(s, a) = Eπ[Gt|st = s, at = a] = Eπ
C ∞Ø
k=0

γkrt+k+1

-----st = s, at = a

D
(3.5)

Definition 3.1.5 (Advantage function).
The advantage function Aπ(a, s) : S ×A → R is the difference between the action-
value and the state-value function. It provides an indication of the convenience in
selecting an action a before following policy π rather than following it immediately.

Aπ(s, a) = qπ(s, a)− vπ(s) (3.6)

3.1.3 Optimality and Bellman equation
The target of Reinforcement Learning is to find the optimal policy, i.e. the policy
π∗ ensuring the highest possible expected return.

Definition 3.1.6 (Optimal Policy). A policy π∗ is said to be optimal if:

π∗ ≥ π, ∀π (3.7)

where π∗ ≥ π ⇔ vπ∗(s) ≥ vπ(s) ∀s ∈ S.
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An optimal policy π∗ is such that the optimal state-value function v∗(s) and the
optimal action value function q∗(s, a) are:v∗(s) = maxπ vπ(s)

q∗(s, a) = maxπ qπ(s, a)
(3.8)

For an optimal policy π∗ the Bellman optimality equations hold; they are reported
for a stochastic environment in Eq. 3.9.v∗(s) = maxa

q
sÍ p(sÍ|s, a)[r + γv∗(sÍ)]

q∗(s, a) = q
sÍ p(sÍ|s, a)[r + γmaxaÍ q∗(s, aÍ)]

(3.9)

In the case of a deterministic environment, as specified in the description of the
Markov Decision Process in (3.1.1), the sum reduces to a single element. Bellman
equation represents the optimality condition for a policy but also a tool to reach
optimality. Notwithstanding the existence of an optimal condition, it is not always
guaranteed that policy learning leads to an optimal policy, since RL algorithms
make use of approximations and function parametrization, as indicated in (3.1.4)
for what concerns policy and value function approximation using Artificial Neural
Networks (ANN).

3.1.4 Artificial Neural Networks as function approximator
In most of RL problems, the agent-environment interactions shall be defined in
continuous state-action spaces. In discrete state-action spaces, basic RL methods,
including Q-learning, employ Q-tables that map state-action pairs to Q-values.
However, if state and action spaces become larger, their dimensions induce a large
raise in complexity, while for continuous spaces the use of a Q-table is absolutely
impracticable. If both policy and value functions receive continuous inputs (states
and/or actions), they shall be coherently approximated.
Thanks to the rapid and impressing development of computational resources in
the recent years, Artificial Neural Networks (ANN) are progressively becoming
one of the most powerful tool in ML, allowing input-output mapping in both
classification and regression problems. In Deep Reinforcement Learning (DRL),
deep networks are specifically used for function approximation, of both policy
and value functions. The validity of this approach is supported by theoretical
foundations, mainly summarized by the universal approximation theorem presented
afterwards. For more details about ANN, refer to Appendix A.

Universal approximation theorem

Feedforward Neural Networks (FFNNs) can approximate efficiently several classes
of functions. Proofs of their universal approximation capabilities are attributed to
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G. Cybenko [34] and K. Hornik [35]. The theorem formulation is given by (3.1.1).

Theorem 3.1.1 (Universal Approximation Theorem). Let ψ(·) be a noncon-
stant, bounded and monotonically-increasing continuous function and In be the n-
dimensional hypercube [0, 1]n. C(In) is the set of continuous functions on In. Given
any Ô > 0 and any function f ∈ C(In), ∃N ∈ N; vi, bi ∈ R;wi ∈ Rn, i = 1, . . . , N
such that

F (x) =
NØ
i=1

viψ(wTi x+ bi)

is an approximation of the function f , i.e.

|F (x)− f(x)| < Ô, ∀x ∈ In

The same result holds if replacing In with any compact subset of Rn. The specific
structure of F can be actually attained, for example, by a FFNN with one hidden
layer with sigmoid activation function σ(x) = ex

1+ex and output layer with linear
activation. It is noticeable that Theorem 3.1.1 does not provide any indication
about a lower bound for N , but it nevertheless guarantees its boundedness and
existance.

3.2 RL Algorithms classification
There are several methods and aspects according to which it is possible to classify
RL algorithms. One discriminating factor is the knowledge of the environment
model accessible by the agent. The environment dynamics is described by the
transition function P as indicated in (3.1.1) but, in most of the cases, the agent
does not have any awareness of the state transition probabilities and associated
rewards. Obviously, if this knowledge is instead possible, agent will be benefited in
terms of long-term prediction accuracies, and sample efficiency, i.e. how much the
agent learns by a small amount of experiences. Nevertheless, model-based learning
techniques, are more difficult in terms of implementation, that’s why most RL
applications make use of model-free RL algorithms. In Fig. 3.2 an overview of the
modern RL algorithms is shown, classified with respect to the environment model
knowledge.
Focusing on model-free RL algorithm, two approaches are feasible. In Q-learning
based algorithms, policy improvement derives from Q-function learning and maxi-
mization. In policy optimization methods, instead, policy is updated by maximizing
a specific objective function, aiding with value function estimations. After all, many
algorithms like Deep Deterministic Policy Gradient (DDPG) or Twin Delayed Deep
Deterministic Policy Gradient (TD3) show similarities with both approaches, and
cannot be classified definitely in one or the other.
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Figure 3.2: Taxonomy of algorithms in modern RL. Image taken by [36].

3.2.1 On-policy vs off-policy methods

On the basis of the learning process details, algorithms can be defined as:

• On-policy: These algorithms, as the name suggests, update the same policy
that is used to take actions and to collect experiences on which learning takes
place. Among on-policy algorithms, PPO appears as one of the most stable
ones. In general, on-policy algorithms exhibit better learning stability, but
they may be not optimal in terms of exploration capabilities.

• Off-policy: In these algorithms, the policy employed to record experiences
during the training process differs from the one which is progressively updated.
For example, in DDPG or TD3, the policy under training is used to take
actions, then corrupted by correlated noise sequences which affect transitions
and recorded experiences. In some other algorithms, including DQN, actions
are sometimes chosen greedily with the policy (the ones associated to the
highest Q-value), sometimes randomly to promote exploration. Even in this
case, the learned policy differs from the one used to take actions and record
experiences. Off policy algorithms usually show better exploration capabilities,
at the cost of more unstable learning processes and convergence issues.
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3.2.2 Actor-critic methods
Most of modern RL algorithms are actor-critic methods, making use of two models,
an actor and a critic, to represent respectively the policy and the value function.
They allow to learn a state-value (or action-value) estimator, the critic, which
provides update directions for the policy, the actor. In Fig. 3.3 the actor-critic
framework is depicted. If the critic represents the state-value function (in algorithms
like PPO), critic model is trained by regression exploiting states (as inputs) and
rewards (for discounted return computation). If the critic models the action-value
function (as in DDPG, TD3), its inputs are both states and actions, while rewards
are used for output computation.

Environment

Policy Action atState st+1 z−1 State stReward rt+1

Value Function

Updates

Figure 3.3: Actor-Critic framework details. z−1 is the one-step delay.

3.3 Proximal Policy Optimization (PPO)
In this section, a detailed analysis of the Proximal Policy Optimization (PPO)
algorithm is presented, along with the main concepts and techniques employed in
the presented work. PPO is a recent algorithm, presented by OpenAI in 2017 [37],
empowering Trust Region Policy Optimization algorithm (TRPO) with a lower
implementation complexity and an enhanced sample efficiency. PPO is an on-policy
algorithm, that can be used in environments with both discrete or continuous state-
action spaces and it is an actor-critic method, in which the critic approximates
the state-value function. As TRPO, PPO improves the policy avoiding too large
update steps, possibly causing instability and performance degradation. This can
be done using either a KL-divergence constraint (refer to Appendix B) or a clipped
surrogate objective or both.
Let θold and θ represent the policy parameter before and after an update step. The
probability ratio rt(θ) in a given time t is reported in Eq. 3.10.

rt(θ) = πθ(at|st)
πθold(at|st)

(3.10)
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The probability ratio rt(θ) is exploited in the PPO objective function, as shown in
Eq. 3.11.

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− Ô, 1 + Ô)Ât))] (3.11)

This objective function penalizes excessive policy changes by clipping the prob-
ability ratio rt(θ) between [1 − Ô, 1 + Ô], while taking the minimum between the
unclipped objective and the clipped one induces conservativeness. Ât is the esti-
mated advantage (see (3.3.1) for advantage terms estimation procedure), whose
sign implicates two possible situations:

• Ât > 0⇒ qπ(st, at) > vπ(st): The selected action brings higher rewards: policy
π shall be updated in that direction;

• Ât < 0⇒ qπ(st, at) < vπ(st): The selected action brings lower rewards: policy
π shall move away from that direction.

Figure 3.4: Plots of LCLIP for positive and negative advantages, as function of
the probability ratio rt(θ). Image taken by [37].

In Fig. 3.4 the clipped objective LCLIP (θ), for both signs of the advantage, is
plotted as function of the probability ratio rt(θ). For positive advantages, clipping
penalizes excessive policy changes in the direction of significant probability ratio
increase, while for negative advantages clipping avoids significant policy changes in
the direction of critical probability ratio decrease. KL-Divergence constraint can
be introduced either as penalty in the objective function or as a constraint to the
optimization problem. In this thesis, the constrained version only will be presented
as it has been used for the algorithm development. The complete optimization
problem to be solved is indicated in Eq. 3.12, with δ being the KL-divergence
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threshold.

max
θ

Êt
C

min
1
rt(θ)Ât, clip(rt(θ), 1− Ô, 1 + Ô)Ât

2D
s.t. Êt

è
KL

è
πθold(· | st), πθ(· | st)

éé
≤ δ

(3.12)

The optimization objective for value function regression is reported in Eq. 3.13,
with Q being the overall training epoch length.

φ = arg min
φ

1
Q

QØ
t=0

1
Vφ(st)− R̂t

22
(3.13)

Being the PPO algorithm an actor-critic method, the critic model is trained by
regression, fitting the value function to the rewards-to-go concurrently to policy
optimization. Rewards-to-go correspond to discounted returns, computed on the
basis of the experienced transitions and gathered rewards. From a practical point
of view, they can be computed by means of an Infinite Impulse Response filter
(IIR); their definition is reported in Eq. 3.14, indicating with T a generic episode
length.

R̂t =
T−tØ
k=0

γkRt+k+1 (3.14)

The pseudocode of the PPO algorithm with clipped objective function and KL-
Divergence constraint is reported in Alg. 1, adapting [38].

Algorithm 1 PPO with clipped objective and KL-constraint
Initialize: policy parameters θ0, value function parameters φ0
for k = 0, 1, 2, . . . do

Collect set of trajectories Dk = {τi} running πk = π(θk) in the environment
Compute rewards-to-go R̂t

Compute advantage estimates Ât using V̂φk (see 3.3.1)
Update policy by solving the optimization problem indicated in (3.12)
Fit value function by regression on mean-squared-error, as in (3.13)

end for

Because of the multi-UAV settings described in this thesis, the reported algorithm
constitutes a simplified version of the truly implemented one, that has been suitably
modify to address the multi-agent settings (see Sec. 5.1.1). Anyhow, the original
algorithm is reported for completeness.
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3.3.1 Generalized Advantage Estimation (GAE)
Advantages’ estimates are needed for the computation of the PPO clipped objective
function. Recalling the definition of advantage function (see Eq. 3.6), at a given
time step, advantage can be estimated in several ways, as reported in Eq. 3.15.

Â
(1)
t = rt + γV̂φ(st+1)− V̂φ(st)

Â
(2)
t = rt + γrt+1 + γ2V̂φ(st+2)− V̂φ(st)
... = ...

Â
(∞)
t = rt + γrt+1 + γ2V̂φ(st+2) + · · · − V̂φ(st)

(3.15)

The superscript indicates the amount of time steps between the current one t and
the one in which state-value estimation is carried out. In general, being the critic
model an approximation of the state-value function V̂φ /= Vπ, advantage estimates
are biased. Â(j)

t with j → 1 are generally subject to lower variance but higher bias,
since there are few terms in the sum, and estimate relies heavily on the state-value
estimation (which can be biased). If j →∞, the number of terms in the sum rises
linearly with j, this makes such estimates more susceptible to higher variance but
reduces the bias [39].
Typically, a value j is chosen in order to find a compromise between variance and
bias, but Generalized Advantage Estimation (GAE) allows to concurrently exploit
all available information by considering an exponentially-weighted average of all
estimates. Generalized Advantage Estimate ÂGAE(γ,λ)

t is defined in Eq. 3.16, as
function of the parameter λ ∈ [0, 1], tuning the compromise between bias and
variance.

Â
GAE(γ,λ)
t = (1− λ)(Â(1)

t + λÂ
(2)
t + λ2Â

(3)
t + . . . ) (3.16)

Notice that, being lim∞
t=0 λ

t = 1
1−λ if λ < 1, if all estimates are perfectly equal, the

Generalized Advantage Estimate ÂGAE(γ,λ)
t coincides with them, as formalized in

Eq. 3.17.
Ât = Â

(1)
t = · · · = Â

(∞)
t =⇒ Â

GAE(γ,λ)
t = Ât (3.17)

Expanding expressions in Eq. 3.15 and denoting with δVt = rt + γV (st+1)− V (st)
the TD residual, the advantages estimates can be reformulated as in Eq. 3.18.

Â
(1)
t = δVt

Â
(2)
t = δVt + γδVt+1
... = ...

Â
(∞)
t =

∞Ø
k=0

γkδVt+k

(3.18)
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Then, expanding Eq. 3.16 in Eq. 3.19 and exploiting the TD-residuals, it is
possible to obtain the final form of the Generalized Advantage Estimate ÂGAE(γ,λ)

t

as demonstrated in Eq. 3.19.

Â
GAE(γ,λ)
t = (1− λ)(δVt (1 + λ+ λ2 + . . . ) + γδVt+1(λ+ λ2 + . . . )+

γ2δVt+2(λ2 + λ3 + . . . ) + . . . ) =

= (1− λ)
A
δVt

1
1− λ + γλδVt+1

1
1− λ + (γλ)2δVt+2

1
1− λ + . . .

B
=

=
∞Ø
k=0

(γλ)kδVt+k

(3.19)

From Eq. 3.19 it appears evident how it is possible to compute the GAE as the
discounted sum of the TD residuals, with discount rate γλ. λ must be tuned
opportunely in order to find a suitable trade-off between bias and variance. Despite
in the GAE the discount rate is the product of γ and λ, those parameters shall be
tuned independently, since having different purposes and meanings.
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Chapter 4

Methodology

In this chapter, a detailed description of the proposed approach for the project
development is presented. This chapter is organized as follows: in Sec. 4.1 the
main assumptions and simplifications are reported; in Sec. 4.2 the general settings
of the algorithm are illustrated, in Sec. 4.3 and 4.4, the coverage and obstacle
avoidance agents are described; in Sec. 4.5 the reference UAV and model for energy
consumption analysis are summarized.

4.1 Assumptions
In this section, the adopted assumptions are described. It is worth specifying that
most of them can be considered sufficiently reasonable and the algorithm can be
deployed in a real implementation with only limited adaptations.

4.1.1 Fleet Size
The entire work has been developed trying to make it fastly and efficiently adaptable
to variable fleet sizes. In order to assess performances and exploration capabilities
in terms of fleet dimension, all training and testing simulations have been performed
with a number of UAVs ranging from 2 to 10, in particular N = 2, 3, 4, 5, 6, 8, 10.
Even larger fleets can be trained and tested using the same framework, with just
small adaptations in terms of input states.

4.1.2 Information Exchange
Given that the main purpose of this thesis is to solve the coverage planning problem,
in order to address it and test the developed model without additional complexities,
an instantaneous and noise-free data exchange framework is considered. This
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allows to decouple the major objective of this thesis from other plausible problems,
which can be anyway addressed using special-purpose approaches in parallel to the
proposed algorithm. Possible robustness to noise affecting UAVs’ localization data
is anyway introduced in the definition of the input states to the coverage agents
(see Sec. 4.3).

UAVs distribution information Observation data

UAV n. 1 UAV n. 2 UAV n. N. . .

Figure 4.1: Scheme reporting the centralized architecture for data exchange in the
fleet. Each UAV shares its position and observed data with a centralized storage
and processing unit.

In Fig. 4.1 the data exchange framework employed in this thesis is shown, represent-
ing a centralized storage and processing unit, to which UAVs send instantaneous
information about their positions in the map and observations they gather during
the exploration, accessible at each time instant and without any transfer delay.

4.1.3 Exploration Environment and Maps
All simulated environments, with an obstacle occupancy ranging from 0 to 25 % of
the overall surface area, are built upon binary matrices M of dimensions 100× 100,
defined in Eq. 4.1.

M ∈ {0, 1}100×100 : Mij =
0, if in position (i, j) no obstacle is present

1, if in position (i, j) an obstacle is present
(4.1)

Potentially, such maps can approximate any squared real field with any dimensions,
assuming a different approximation precision of the matrix cells. As it commonly
happens in ML settings, 2 sets of maps were created: a training set composed by
2700 maps, and a test set, made up of 300 maps. All of them were created by
randomly placing obstacles, in compliance with the following requirements:
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• All obstacles are rectangular, this choice was made specifically for shape
prediction purposes, as specified in (4.1.5);

• Obstacle dimensions must be between the 8 and the 20 % of the map size and
their height is greater than UAVs’ flight altitude;

• The distance in l∞ norm between two obstacles’ centers must be greater than
or equal to the maximum sum of the obstacles’ dimensions, multiplied by a
safety factor q = 1.55. This value was determined by trial and error, in order
to place obstacles distant enough to allow drones to move among them.

Figure 4.2: Example of a map with 19 % obstacle occupancy

In Fig. 4.2 a randomly generated map with 19% obstacle occupancy is shown,
while in Alg. 2 the creation procedure of the simulated maps is described.
In order to be adaptable to different field dimensions, each UAV position X is
defined as a vector with normalized coordinates with respect to the map dimension
(see Eq. 4.2).

Xi =
C
xi
yi

D
∈ [0, 1]× [0, 1], i = 1, . . . , N (4.2)

In Fig. 4.3 the reference system that is adopted throughout the thesis is shown
alongside coordinates of a 2 UAVs fleet.

4.1.4 UAVs’ Field of View
It is assumed that UAVs move at a fixed flight altitude, thus their motion is limited
to a 2D plane. Allowing altitude changes, the occurrence of collisions obviously

21



Methodology

Algorithm 2 Maps creation procedure
for each map do

Initialize: zero matrix M ∈ R100×100, list of obstacles
while obstacle occupancy < desired obstacle occupancy do

Randomly choose new obstacle dimensions d∗ and center position c∗

for obstacle in list of obstacles do
if ||c∗ − cobst||∞ ≤ q ·max (d∗

x + dobst,x, d
∗
y + dobst,y) then

break
else if all obstacles were checked then

Place new obstacle and add it to list of obstacles
end if

end for
end while

end for

Figure 4.3: Adopted reference system, along with 2 UAVs coordinates in the map

reduces, but this more stringent requirement is anyway assumed. Reasonably
considering that fleets share the same sensors and cameras, the observable area size
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is the same for all fleet units, and it is considered to be a squared region. Intuitively,
given that larger exploration areas should correspond to higher flight altitudes, the
observable area dimensions are fixed in terms of number of cells, while their real
dimensions scale with respect to the environment size. In all training simulations,
fixed footprint dimensions of 11×11 cells are considered, while model performances
are assessed in test simulations by varying them from 11× 11 to 15× 15 cells. The
assumption of squared observable areas derives by considering that each UAV’s
Field of View (FOV) forms a pyramid with half-angle θ = θ1 = θ2, as shown in Fig.
4.4.

Figure 4.4: UAV’s Field of View forming a pyramid with half-angles θ1, θ2 with
ground. Image taken by [29].

With reference to Fig. 4.4, if θ1 = θ2 = θ, the relation among footprint dimension
fdim, FOV half-angle θ and flight altitude z is reported in Eq. 4.3.

fdim = 2z tan θ (4.3)

Choosing an half-angle θ = 45°, in Tab. 4.1 the flight altitudes matching with the
analyzed footprint dimensions and plausible environment sizes are reported.

4.1.5 Obstacle Shape Prediction
Obstacles are detected by simulated range sensors, scanning the space all around
the UAVs with a maximum detection range equal to half the footprint dimension.
Given the impossibility of detecting whatever is beyond the obstacle surface, once
UAVs communicate all information they gather during motion to the centralized
storage, a shape prediction algorithm is run in order to predict the interior areas of
the obstacles, undetectable by the fleet. The shape prediction is carried out thanks
to scikit-image Python package [40].
Merging information about the drones location with obstacle detections, recon-
structed map is firstly updated with the position of their countours, and then it
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Map dimension [m] fdim[−] fdim[m] Flight altitude [m]

10m× 10m
11× 11 1.1m× 1.1m 0.55
13× 13 1.3m× 1.3m 0.65
15× 15 1.5m× 1.5m 0.75

50m× 50m
11× 11 1.1m× 1.1m 2.75
13× 13 1.3m× 1.3m 3.25
15× 15 1.5m× 1.5m 3.75

100m× 100m
11× 11 1.1m× 1.1m 5.5
13× 13 1.3m× 1.3m 6.5
15× 15 1.5m× 1.5m 7.5

500m× 500m
11× 11 1.1m× 1.1m 27.5
13× 13 1.3m× 1.3m 32.5
15× 15 1.5m× 1.5m 37.5

1000m× 1000m
11× 11 1.1m× 1.1m 55
13× 13 1.3m× 1.3m 65
15× 15 1.5m× 1.5m 75

Table 4.1: Plausible flight altitudes compatible with footprint dimensions and
map sizes, assuming θ = 45°.

is processed so that unreachable locations are marked as occupied obstacle. The
assumption of rectangular obstacles, as anticipated in (4.1.3), is functional to the
use of this package; further adaptations would allow more complex shapes to be
suitable for shape prediction. In Fig. 4.5 an example of the shape prediction
algorithm applied to a local UAV observation is shown.

Figure 4.5: Shape prediction algorithm application to a local UAV observation.
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4.1.6 Mixed Competitive-Collaborative Settings
With reference to Sec. 2.2, in which the different settings for multi-agent systems
literature are reported, the coverage planning problem, as solved in this thesis, falls
into mixed cooperative-competitive settings. In fact, the global task of exploring
the entire environment is achieved through a competitive behavior learned by the
UAVs, each one trying to maximize its coverage to the disadvantage of the others,
while the mutual distancing and collision avoidance originates collaborative intents.
This problem, which at a first glance can seem purely cooperative, is therefore
solved developing competitive attitudes mixed with collaborative purposes (see
Sec. 4.3 for a more detailed explanation, specifically in terms of reward function
shaping).

4.2 General Settings
In order to solve the coverage planning problem effectively, two RL agents jointly
collaborate in order to efficiently choose the motion direction while avoiding
obstacles. The split of these tasks into two subproblems, taking inspiration from
the typical Hierarchical Reinforcement Learning (HRL) settings [41], allows to solve
the general problem by training the devoted agents independently and to assess their
collaboration performances. Ideally, the overall problem can be even solved by using
a learning agent devoted both to coverage planning and obstacle avoidance tasks,
but to avoid misleading multi-objective reward functions, this hierarchical pattern
is selected as more suitable to efficiently address both intents. Furthermore, since
during exploration the discovered and predicted obstacles’ positions are marked as
already covered areas, the coverage planning agent alone already makes use of this
information to suitably define a motion direction (see Sec. 4.3), which will be just
refined by the obstacle avoidance agent (see Sec. 4.4). The two employed agents,
which run locally on each fleet unit and acquire data from the shared centralized
storage and processing unit, are specifically defined as:

• Coverage agent: On the basis of the fleet distribution and of the previously
explored areas, encoded in a progressively updated coverage map, selects a
temporary motion direction, which is passed to obstacle avoidance agent before
being applied;

• Obstacle Avoidance agent: It merges information about the coverage
agent’s decision with local obstacle detections and outputs the definitive
motion direction.

The interaction between the agents is depicted in Fig. 4.6, describing the UAV-
environment interaction for a single fleet unit. Once the selected motions are
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Environment

UAV

Coverage agent

Obstacle Avoidance agent

Temporary
motion direction

Motion Execution

Definitive
motion direction

Coverage Map Update

Environment Reconstruction

Positions update

Obstacle detections

Position map

Coverage map

Detection vector

Figure 4.6: Single UAV interacting with the environment, outputting the selected
motion direction as a result of input processing and agents’ decision process.

executed by all UAVs, their positions are updated in parallel, their observations
are fused for environment reconstruction and obstacles are detected in the new
locations.

4.3 Coverage Agent
The coverage agent is the high-level decision maker, running on each UAV, in
charge of selecting a suitable motion direction on the basis of the fleet distribution
and of the already explored areas. The state and action spaces of the coverage
agent are specified in (4.3.1). The training procedure of this agent, obtained with
a modified version of the PPO algorithm, is outlined in (5.1.1).

4.3.1 State and Action spaces
The state space definition of the coverage agent comes from the need of taking
into account contemporarily both the UAVs positions in the unknown environment
and the coverage statistics at a given step. In the view of avoiding the input
state dimension to modify as function of the fleet size, a suitable encoding of such
information is employed, choosing as input two stacked matrices:

• Position map: It encodes the UAVs location in the map by means of a matrix
P ∈ [−1,1]100×100, which is specifically processed for each UAV at each time
step, so that the coverage agent can discriminate between the current UAV it
is running on and the other ones of the fleet. Starting from a zero matrix, in
correspondence to the current UAV a positive bi-variate normal distribution
with mean value µ = (x, y) and covariance matrix Σ = σ2I2 is added, with
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σ = 2.5, whereas negative distributions with the same µ and Σ are added
in correspondence to the other UAVs positions. In Eq. 4.4 the probability
density function of a multivariate normal distribution N (µ,Σ) is reported,
while in Fig. 4.7 the workflow of a position map construction is shown.

p(x, µ,Σ) = 1ñ
(2π)k det Σ

exp−1
2(x− µ)TΣ−1(x− µ) (4.4)

(x2, y2)Current UAV position:

(x1, y1), (x3, y3)Other UAV(s) position(s):

Position Map
Processing

Figure 4.7: First layer (position map) of the input state to UAV n. 2, processed
as function of the UAVs locations.

Obviously, the N processed maps at a given instant change in the sign of the
gaussian bells only, as it is illustrated in Fig. 4.8, which displays the position
maps processed at the same instant, for all members of a 3 UAVs fleet. A 3D
representation of a position map is reported in Fig. 4.9b.

• Coverage map: It is a binary map Cmap ∈ {0, 1}100×100 indicating the
distribution of already explored areas of the environment during simulation.

[Cmap]ij =
0, if cell (i, j) has not been covered

1, if cell (i, j) has been covered
(4.5)

The coverage map is updated at each step by putting at 1 the cells correspond-
ing to explored areas, i.e. the ones observed by the UAVs according to their
trajectories and footprint dimensions (4.1.4). An example of coverage map is
reported in Fig. 4.9a.

Coverage agent maps the input states to discrete actions, represented by integer
numbers ranging from 0 to 8 to which motion directions are associated as reported
in Tab. 4.2. While action 0 corresponds to no motion, actions 1− 8 correspond to
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Figure 4.8: Position maps for a 3 UAVs fleet.

(a) Example of a coverage map. (b) 3D representation of a position map

Figure 4.9

fixed-length displacements (of 4 cells, as a result of trial and error tuning) to the
corresponding directions.
Actually, it is worth pointing out that these motion direction shall be intended as
local waypoint assignments rather than direct velocity commands to be applied, to
be reached with special purpose path-planning methods for smoother trajectories
and attitude changes. More specifically, the coverage agent does not output directly
the action number, but it returns P = 9 real values zi for each action ai (logits),
which are then mapped to probabilities using the softmax function, as reported in
Eq. 4.6. The action selection is then performed by sampling from this categorical
distribution.

prob(a = aj | s) = ezj(x)qP−1
i=0 ezi(x) (4.6)
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Action number Motion type
0 Don’t move ·
1 Move up ↑
2 Move down ↓
3 Move left ←
4 Move right →
5 Move up left Ê
6 Move up right Â
7 Move down left Ë
8 Move down right Ã

Table 4.2: Correspondence between the discrete actions and motion directions
selected by the coverage agent.

4.3.2 Actor and Critic models
Coherently with the chosen inputs and outputs of the coverage agent, as indicated
in (4.3.1), CNNs are used as policy and value function approximators. In Fig. 4.10
a graphical representation of the selected architecture is illustrated.

Common structure

Critic model

Actor model

9 output units

1 output unit

Figure 4.10: CNN structure for actor and critic models of the coverage agent.

Actor and critic models share the same structure until the output layer, consisting
of P = 9 units for the actor and of 1 unit only for the critic model. The layered
input state is firstly processed by 2 convolutional layers, the former followed by a
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Max-Pooling layer and the latter by a batch normalization layer. A series of fully
connected layers then follows, until the output layers. A more detailed description of
the CNN structure is reported in Tab. 4.3, indicating layers, dimensions, activation
functions and other additional hyperparameters.

Layer Type N. units/Filter dimension Stride Activation Function
Convolutional 8× (5× 5) (3,3) ReLU

MaxPool (3× 3) (2,2) -
Convolutional 16× (3× 3) (2,2) ReLU
Batch Norm. - - -

Flatten - - -
FC 512 - ReLU
FC 256 - ReLU
FC 128 - ReLU
FC 64 - ReLU

Table 4.3: Detailed CNN common architecture of actor and critic models.

Weights and biases of the fully connected layers are initialized at the beginning
of training process by means of He Normal initialization [42], which consists in
randomly sampling initial weights from a normal distribution with mean value 0
and standard deviation

ñ
2
nl
, where nl is the number of units of the preceding layer.

4.3.3 Reward Function
As anticipated in (4.1.6), the common objective of fully covering unknown environ-
ments is achieved in this thesis by stimulating a competitive approach among the
fleet members: each one tries to maximize its own explored area, while keeping at
a safety distance from the other fleet members. The reward is thus independently
assigned to each UAV during training simulations as a function of its chosen action
and consequent interaction with the environment. Before defining the chosen
reward function, the coverage percentage and individually increased percentage of
covered area are formalized in Def. 4.3.1 and Def. 4.3.2.

Definition 4.3.1 (Coverage percentage).
The coverage percentage of an environment is the amount of already observed/pre-
dicted area with respect to the overall surface. It can be computed as function of
the coverage map Cmap by means of Eq. 4.7.

ν = ν(C) =
q100
i=1

q100
j=1 Ci,j

100× 100 (4.7)
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Definition 4.3.2 (Individually increased percentage of covered area).
The individually increased percentage of covered area of the i-th UAV at a given
time step t, henceforth denoted as ∆i(t), is the increase in coverage percentage of
environment that would be attained if the i-th UAV moved according to its selected
action ai and all other UAVs were kept fixed, i.e. aj = 0, j /= i. Denoting with
Cmap,i the updated coverage map after that i-th agent moves and with C∗map(t)
the initial coverage map at time t, before any motion, ∆i(t) is reported in Eq. 4.8,
while its computation procedure is outlined in Alg. 3.

∆i(t) = ν(Cmap, i)− ν(C∗map(t)) (4.8)

Algorithm 3 ∆i(t) computation at time t
Temporarily store initial coverage map Cmap(t) and UAVs positions x(t):

C∗map ← Cmap(t)
x∗
i ← xi(t), i = 1, . . . , N

for i = 1, . . . , N do
Move i-th UAV according to action ai and update Cmap
Compute ∆i(t) = ν

1
Cmap

2
− ν

1
C∗map

2
Restore i-th UAV position: xi(t)← x∗

i

Restore coverage map: Cmap(t)← C∗map
end for
Move all UAVs to new positions x(t+ 1) according to selected actions
Update and store coverage map Cmap(t+ 1)

To train agents in the achievement of these concurrent goals, a suitable reward
function is defined as the sum of a coverage and distribution contribution, as in Eq.
4.9.

r = rcov + rdist (4.9)

The coverage contribution reward rcov is specified in Eq. 4.10; weighting ∆i(t)
through a coverage gain K∆ = 100.

rcov,i =


K∆∆i, if ∆i > 0
K∆∆i + 10, if ∆i > 0 and ν(Cmap) > Cth

−0.1, otherwise,
(4.10)

A positive reward, proportional to ∆i is granted for actions providing a strictly
positive coverage percentage increase, while a small negative reward (-0.1) is
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provided if action doesn’t add further explored areas. If UAV’s action leads to a
full coverage of the environment, achieved when ν(Cmap) > Cth, coverage agent
receives an additional reward equal to (+10). Cth changes as function of the fleet
size from 95% to 99%, further details will be provided in (5.1.1).
The distribution contribution reward rdist is specified in Eq. 4.11. It is a function
of the l2-norm distances between couples of UAVs, computed as function of their
positions Xi, i = 1, . . . , N . A penalty is applied when mutual distance falls below
a certain threshold.

rdist,i =
−0.5, if ∃j /= i : ëXi −Xjë2 ≤ 0.1

0, otherwise
(4.11)

Notice that, for consistency and applicability to variable environment sizes, both
positions and distance values are normalized. Obviously, in the case of larger envi-
ronments the threshold can be lowered, but it is kept unchanged for all simulations
to consider a more stringent condition.

4.4 Obstacle Avoidance Agent
The obstacle avoidance (OA) agent is the low-level decision maker in charge of
selecting the definitive motion direction, once the temporary selection is outputted
by the coverage agent and local obstacles are detected. A detailed description
of state and action spaces of the OA agent are reported in (4.4.1), while for the
detailed training procedure refer to (5.2.1).

4.4.1 State and action spaces
The state space definition of the obstacle avoidance agent comes from the need of
fusing information about obstacle detections and the coverage agent selection. The
input state is thus the concatenation of two arrays:

• A priori action: it is the action selected by the coverage agent, reported in
one-hot encoding. Since there are P = 9 possible actions, this information is
converted into an array with 9 entries, all zero except for the one corresponding
to the selected action. All possible configurations are reported for completeness
in Tab. 4.4.

• Obstacle detections: Obstacle detections are performed by means of simu-
lated range sensors, displaced all around the UAVs, mutually shifted by 45°,
with a detection range corresponding to half the footprint dimension. Obstacle
detections are summarized in a binary array with 8 entries, assuming value:
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Action One-Hot Encoding
0 [1, 0, 0, 0, 0, 0, 0, 0, 0]
1 [0, 1, 0, 0, 0, 0, 0, 0, 0]
2 [0, 0, 1, 0, 0, 0, 0, 0, 0]
3 [0, 0, 0, 1, 0, 0, 0, 0, 0]
4 [0, 0, 0, 0, 1, 0, 0, 0, 0]
5 [0, 0, 0, 0, 0, 1, 0, 0, 0]
6 [0, 0, 0, 0, 0, 0, 1, 0, 0]
7 [0, 0, 0, 0, 0, 0, 0, 1, 0]
8 [0, 0, 0, 0, 0, 0, 0, 0, 1]

Table 4.4: One-Hot encoding conversion of the coverage agent action inputted to
OA agent.

– 0: if no obstacle is detected along i-th direction;
– 1: if obstacle is detected along i-th direction.

Since UAVs move at the same flight altitude, obstacle detections are performed
in the motion plane; this implies that other fleet members in the detection
range are detected and marked as obstacles as well. A graphical representation
of the detection directions is shown in Fig. 4.11.

Figure 4.11: Obstacle detection directions. Numbering of detection directions
follows the motion directions one in Tab. 4.2. The represented condition produces
an obstacle vector [0, 0, 0, 0, 1, 0, 0, 1].

The action space of the obstacle avoidance agent resembles the coverage agent’s one.
In particular, the obstacle avoidance agent outputs the discrete action probabilities
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just like the coverage agent does, in compliance with the action-motion direction
correspondance already described in Tab. 4.2.

4.4.2 Actor and Critic models
As for the coverage agent, the obstacle avoidance actor and critic models share
the same neural network architecture, except for the output layers, which consists
of 9 units for the actor model, approximating the policy function, and of 1 unit
for the critic model, approximating the state-value function as PPO algorithm is
implemented for training process.
Being the input state a binary array, the neural network architecture is made up of a
series of fully connected layers, with ReLU activation function. Weights initialization
is performed in the same way as for the coverage agent architecture, using He
Normal initialization (see 4.3.2). In Fig. 4.12 the neural network architecture of
actor and critic models of the OA agent is shown, more detailed information are
provided in Tab. 4.5.

51
2

25
6 12

8
6464

9

Critic model

Actor model

9 output units

1 output unit

Boolean obstacle detections

Coverage agent motion direction

Figure 4.12: Graphical representation of the NN structure for actor and critic
models of the obstacle avoidance agent, with common inputs and different outputs.

Layer Type N. units Activation Function
FC 512 ReLU
FC 256 ReLU
FC 128 ReLU
FC 64 ReLU

Table 4.5: Detailed NN common architecture of actor and critic models for the
obstacle avoidance agent.
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4.4.3 Reward function
Since the obstacle avoidance task is not influenced by the multi-agent settings, the
training procedure of the OA agent is performed with a single UAV moving in
the environment, as it is outlined in (5.2.1). The main objective of the obstacle
avoidance agent is to confirm the action selected by the coverage agent whenever
no obstacle is detected along the involved direction, on the contrast an action
change is required when the coverage agent’s one would lead to obstacle collision.
In compliance with the assumption that OA agent is devoted to just refine the
coverage agent’s decision, it incurs greater penalties the farther the final position is
from the original one, i.e. the one that would be attained by following the coverage
agent’s decision.
Defining:

• ã, as the action selected by the coverage agent;

• a, as the action selected by the OA agent;

• X̃, as the position that would be attained following ã;

• X, as the position that would be attained following a;

• õ, o, as a binary flags indicating if along directions corresponding respectively
to actions ã, a obstacles have been detected;

the reward function chosen for the OA agent is reported in Eq. 4.12.

r =



+1, if a = ã and o = õ = False
1− ëX−X̃ë2

maxX,X̃ ëX−X̃ë2
, if a /= ã and o = False and õ = True

−0.5, if a /= ã and o = õ = False

−1, if
a = ã and o = õ = True, or
a /= ã, o = True

(4.12)

The maximum reward (+1) is achieved when selecting the same action as the
coverage agent, in an obstacle-free direction, while the minimum reward (-1)
penalizes actions leading to obstacle collisions. A small negative reward is provided
if the OA agent selects an action differing from the coverage agent’s one, despite it
would have not led to any collision. Finally, when OA agent selects a /= ã because of
obstacle detections, a decreasing reward with the increasing of the distance between
X and X̃ is provided; the penalty is normalized with respect to the maximum
possible value that ëX− X̃ë2 can achieve, i.e. when a and ã correspond to opposite
directions. This quite complex reward function allows to drive training towards
selecting obstacle-free directions without discarding coverage planning purposes.
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4.5 Reference UAV for energy consumption
In the view of a pratictal implementation of the designed algorithm, an energy
consumption analysis of the fleet is carried out, so as to examine either the
capability of completing the exploration task as well as residual autonomy once
the environment is fully covered.

Figure 4.13: Front view of DJI Mavic 2 Pro [43], selected as reference UAV for
energy consumption analysis.

The UAV selected as reference model for consumption evaluation is the DJI Mavic
2 Pro [43] (see Fig. 4.13), which is a commercial drone with 0.91 kg takeoff weight
and a maximum (declared) flight distance of 18 km. It is worth specifying that this
choice is merely related to its technical specifics, including energy consumption data
which are employed for the presented analysis. This reference model may represent
a varied class of UAVs employable for the implementation of the algorithm, for
which it is reasonable to assume approximately the same autonomy as well as
similar energy consumption. Among its specifics reported in Tab. 4.6 [44], the
key parameter for the presented analysis is the Energy per meter (Epm) value,
indicating the average burned energy per traveled distance.
In [44], a survey of energy consumption models for drones is proposed. As well
as the contribution specifically related to horizontal motion, a variable amount
of autonomy is burned because of hovering, ascent and landing. In the proposed
approach, which is intended to provide just a rough estimate of the overall energy
consumption, a linear autonomy decay with respect to the travelled distance only
is assumed, as reported in Eq. 4.13, indicating with e the residual autonomy and s
the travelled distance.

e(t) = e(0)− Epm · s(t) (4.13)
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Drone Model Mavic 2 Pro
Takeoff weight [kg] 0.91
Max Flight Time 31 min at 6.94 m/s

Max Hover Time [min] 29
Max Speed [m/s] 20

Max Flight Distance [km] 18
Battery Energy [kJ] 213.4

Energy per meter (Epm) [J/m] 11.9

Table 4.6: Specifics of DJI Mavic 2 Pro, a commercial drone [44] selected as the
reference model for energy consumption analysis.

Further details and obtained results will be described in Chap. 6, in which model
performance is assessed also in energetic terms.
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Chapter 5

Agents training

This chapter is addressed to provide an in-depth analysis of the training processes
of both coverage and obstacle avoidance agents, accompanied by a description of
the selected hyperparameters and of the main learning curves and results.
In Sec. 5.1, which is devoted to the coverage agent training, the PPO algorithm
adapted for multi-agent settings is reported and described, along with the learning
performances, while in Sec. 5.2 the single-agent PPO implementation for the
obstacle avoidance agent is analyzed.

5.1 Coverage agent
As already anticipated in Sec. 4.3, given the multi-agent settings affecting the
coverage planning problem, a modified version of the PPO algorithm is implemented
for training the devoted agent. In [19], one of the first implementations of the Multi
Agent Proximal Policy Optimization (MAPPO) algorithm is applied to multi-agent
games in either cooperative and competitive settings. However, such scenarios
typically involve a fixed number of agents, with well-defined characteristics and
goals. In this thesis, instead, because of the willingness to validate the presented
approach for a wide range of fleet sizes, special multi-agent algorithms would have
been impracticable in terms of complexity and applicability. In fact, most of the
multi-agent actor-critic algorithms make use of an actor and (at least one) critic
network for each agent under training, thus requiring at least 2N networks to
be trained concurrently during the training procedure. With 10 UAVs fleets, 20
CNNs would have been trained concurrently at each learning epoch, requiring huge
memory allocation and computational resources and consequently long training
times. Furthermore, such an approach would be wasteful given the complete
equality among UAVs in terms of performances and roles, since it would lead to
train N policies that should ideally converge to a common one. In Fig. 5.1 the
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typical Multi-Agent Actor-Critic framework is represented. Depending on the
algorithm, the critic model can either approximate the state-value or action-value
function.

π1

v1, q1

π2

v2, q2

πN

vN , qN

. . .

o1 a1 o2 a2 oN aN

Figure 5.1: Multi-Agent Actor-Critic framework. In this picture it is shown how
each policy πi outputs action ai as function of the observation oi. Critic models
estimate the value function by concurrently processing all agents’ observations (and
eventually all their actions in some algorithms).

Exploiting these simplifications, the single-agent PPO algorithm was modified
so that each learning epoch is made up of trajectories collected by running the
same version of the policy function on all agents, and all such trajectories are
concurrently exploited as training experiences, useful for updating both policy π
and value function vπ. The adopted framework is graphically represented in Fig.
5.2.

5.1.1 Training procedure
The training process of the coverage agent is repeated for each analyzed fleet
dimension, specifically for N = 2, 3, 4, 5, 6, 8, 10. Before describing the training
algorithm, it is worth providing a brief description of the main hyperparameters:

• Epoch Length T : It is the length of the training epochs, i.e. the number of
experience tuples collected (for each agent) before a new policy and value
function update. A learning epoch may consist of several episodes, depending
on the general episode length and on the potential reaching of a terminal
condition;

• Maximum Episode Length τmax: It is the maximum number of steps that can

39



Agents training

π π π
. . .

o1 a1 o2 a2 oN aN

Trajectories {τ1, . . . τN}

v

Figure 5.2: Modified PPO framework employed in this thesis. Multiple instances
of the same policy π contribute in collecting trajectories, exploited for training
both v and π at the end of each learning epoch.

be completed during an episode, that is reached if no terminal state occurs
before;

• Discount rate γ: It weights the future rewards in the computation of the
discounted return (see Eq. 3.2);

• λ: it is a tuning parameter for GAE, involved in the exponential moving
average computation;

• αactor: it is the learning rate of the stochastic gradient descent algorithm
applied to update the actor model;

• αcritic: it is the same as αactor, but applied to update the critic model;

• δ: It is the KL-divergence threshold (see Appendix B) involved in the con-
strained version of the PPO optimization problem, reported in Eq. 3.12;

• Ô: It is the clip ratio, involved in the clipped objective function of the PPO
algorithm, reported in Eq. 3.11;

• Qa: it is the number of training epochs for the CNN approximating the
policy function (actor model), i.e. the number of times in which forward and
backward pass are applied to the entire buffer;

• Qc: it is the same as Qa but for the critic model (value function) training;
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• Coverage threshold Cth: it is the percentage of the overall ground surface over
which the environment is considered fully covered. A coverage percentage
greater than or equal to the coverage threshold implies the achievement of a
terminal state.

• Footprint dimension fdim: it is the amount of area that each UAV can observe
at a given step.

Some of the listed hyperparameters are fixed regardless of the number of UAVs and
their values are reported in Tab. 5.1, while some others are the result of trial and
error tuning made with respect to the fleet size and they are listed in Tab. 5.2.

Hyperparameter Symbol Description Value
T Maximum epoch length Variable
τmax Maximum episode length Variable
γ Discount rate 0.99
λ Tuning parameter for GAE 0.97

αactor Actor learning rate 1e-4
αcritic Critic learning rate 1e-3
Qa Actor training iterations Variable
Qc Critic training iterations Variable
δ KL Divergence threshold 0.015
Ô Clip ratio 0.2
Ctr Coverage threshold [%] Variable
fdim Footprint dimension 11× 11 cells

Table 5.1: List of training hyperparameters for Coverage Agent. Corresponding
value is provided if common to all fleet dimensions, refer to Tab. 5.2 instead.

It is noticeable how the main optimization-related hyperparameters, except for
Qa and Qc, do not change as function of the fleet size. This is also a consequence
of PPO algorithm’s data efficiency and robustness [38], with a reduced need of
hyperparameters tuning. Modification of the episode length is needed, since lower
size fleets intuitively need higher exploration times for reaching full coverage than
larger ones may require. Moreover, Cth, selected as 99% for all fleets with more
than 3 UAVs, is lowered for 2 and 3 UAVs fleets, respectively to 95 and 97 %,
because of the difficulties encountered in completing explorations with insufficient
fleet sizes within constrained number of steps. In Alg. 4 the coverage agent training
procedure is described in detail.
It is important to highlight how some training episodes may be executed partly
in one epoch and partly in the following one. Epochs consist of several episodes,
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N T [n. steps] τ [n. steps] Qa Qc Cth [%]
2 1200 600 3 3 95
3 2000 400 10 10 97
4 2000 400 10 10 99
5 1800 300 10 10 99
6 1800 300 10 10 99
8 1800 200 10 10 99
10 1800 200 10 10 99

Table 5.2: Training hyperparameters reported as function of the fleet size N .

Algorithm 4 Coverage Agent Training - General procedure for N agents
Initialize: Actor and Critic parameters θ0 and φ0 and networks πθ0 and vφ0

for k = 1, 2, . . . do
Initialize N buffers
for t = 1, . . . , T do

if no episode is running then
Reset the environment and start new episode
Place agents randomly in the map

end if
for agent i = 1, . . . , N do

Sample action ai(si) using policy πk = π(θk)
Move to next state sÍ

i and compute reward ri
Store experience in i-th agent’s buffer

end for
end for
for agent i = 1, . . . , N do

Load i-th agent’s buffer
Compute rewards-to-go R̂t and advantage estimates Ât
Update πk+1 consistently with Eq. 3.12
Fit the value function by regression on mean squared error, as in Eq. 3.13

end for
end for

this allows to exploit experiences collected at different times of the exploration
process and enables a greater forecasting ability. The policy update procedure,
which is performed consistently with the optimization problem in Eq. 3.12, is
outlined in Alg. 5, describing the process occurring at the end of each training
epoch. Specifically, policy is updated with Qa cycles of forward and backward
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passes, unless the KL-divergence computed between policies of consequent training
iterations overcomes the selected threshold δ, as reported in Alg. 5.

Algorithm 5 Coverage Agent Training - Policy Update
πk+1,0 ← πk
for j = 1, 2, . . . , Qa do

Update πk+1,j through SGD to maximize PPO objective (Eq. 3.11)
if KL(πk+1,j−1, πk+1,j) ≥ δ then

break
end if

end for

5.1.2 Training results
The learning process, repeated for fleet sizes N = 2,3,4,5,6,8,10, is evaluated in
terms of the overall returns gained per episode and of coverage and distribution
statistics. In order to analyze the learning curves obtained for variable N , the
episodic returns collected by the agents are averaged over the number of UAVs
in the simulated episodes, thus introducing the Averaged Episodic Return (AER),
which is defined in Def. 5.1.1.

Definition 5.1.1 (Averaged Episodic Return).
The Averaged Episodic Return (AER) is the sum of the rewards collected by each
agent during the episode, averaged over the number of agents. Let T be the length
of a generic training episode, its AER is defined as in Eq. 5.1.

AER = 1
N

NØ
i=1

TØ
t=0

ri(t), (5.1)

where ri(t) is the i-th agent’s reward collected at time t.

In Fig. 5.3 the AER for all training episodes is plotted against the episode number,
counted starting from the beginning of the training process.
It is noticeable how larger fleets are affected by lower steady state values of the
AER. This is in accordance with the reward function that is chosen for the coverage
agent: the coverage component of the reward is linked to the individual contribution
in exploration. Obviusly, an increasing number of UAVs results in a decrease of
the explorable portion of the environment for each fleet unit, entailing a reduced
individually gainable reward. In addition, an increased population involves higher
probabilities of mutual collisions or unsafe mutual approaches. All learning curves
show a convergence after about 8×103 episodes, after which policy is stable and does
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Figure 5.3: Filtered (by means of EMA) Averaged Episodic Return (AER) during
the learning process, for different fleet sizes N = 2,3,4,5,6,8,10.

not show further remarkable enhancements. The learning phase is characterized
by initial policy divergence from the randomly initialized one, after which training
proceeds smoothly until convergence.
Even though the AERs trends provide an elegant validation and proof of objective
accomplishment, it is nonetheless necessary to analyze the learning process perfor-
mances by means of specific coverage and distribution statistics gathered during
the simulated episodes. In Fig. 5.4, the percentage of explored surface at the end
of each training episode is reported during the learning process.
The curves show consistency with the coverage thresholds reported in Tab. 5.2.
During the first training phase, the untrained fleets don’t manage to reach the
coverage threshold target within the maximum episode length. Thanks to policy
learning, in a very reduced number of episode, convergence is achieved, with faster
learning rates for bigger fleets. Since the trends resemble logarithmic behaviors, a
Least-Squares (LS) fitting is performed, by assuming an approximating function ν̂
of the training episode e, resulting in a polynomial plus logarithmic approximation,
as specified in Eq. 5.2. The approximated trends are reported in Fig. 5.4 using
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Figure 5.4: Filtered (by means of EMA) coverage percentage at the episode
end (semi-logarithmic plot) during the learning process, for different fleet sizes
N = 2,3,4,5,6,8,10. Dashed lines result by LS approximation, as indicated in Eq.
5.2.

dashed lines.

ν̂(e) = a0 + a1e+ a2log(e) (5.2)

The LS estimates of a =
è
a0 a1 a2

éT
are reported in Tab. 5.3.

The first episodes of the training process, characterized by a limited coverage
percentage as reported in Fig. 5.4, end because the maximum episode length
τmax is exceeded before reaching a terminal state, attained when ν(Cmap) ≥ Cth.
Despite the fast convergence of the final coverage percentage during training, the
episode length continues to decrease even after, as a result of the policy improvement
reflected in Fig. 5.3.
In fact, in Fig. 5.5 the episodic length over the training episodes is plotted, for all
fleet sizes. The starting values correspond to the maximum episode lengths, as
reported in Tab. 5.2. As expected, the episode length decreases with larger fleets,
since they manage to reach the target coverage percentage in lower exploration
times.
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N a0 a1 a2

2 5.89e+01 -2.45e-04 4.13e+00
3 5.35e+01 -3.98e-04 5.15e+00
4 6.10e+01 -4.8e-04 4.69e+00
5 6.87e+01 -3.76e-04 3.76e+00
6 7.84e+01 -2.10e-04 2.48e+00
8 7.65e+01 -2.34e-04 2.74e+00
10 8.27e+01 -2.11e-04 2.03e+00

Table 5.3: Least Squares estimates of the convergence trends parameters, applied
to N = 2,3,4,5,6,8,10.

Figure 5.5: Filtered (by means of EMA) episodes lengths during the learning
process, for different fleet sizes N = 2,3,4,5,6,8,10.

Alongside the reported metrics, policy improvement reflects in terms of strategic
distribution as well. Spreading efficiency in the environment is evaluated by means
of two main metrics: the average minimum distance (AMID, see Def. 5.1.2) and
the average mutual distance (AMUD, see Def. 5.1.3).
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Definition 5.1.2 (Average Minimum Distance).
The Average Minimum Distance (AMID) of an episode is the mean over its length
τ of the minimum distance between couples of UAVs, recorded at each step. Its
formulation is reported in Eq. 5.3 denoting with X ∈ [0,1]× [0,1] the generic UAV
position.

AMID = 1
τ

τØ
t=0

min
i /=j
ëXi(t)−Xj(t)ë2 (5.3)

Definition 5.1.3 (Average Mutual Distance).
The Average Mutual Distance (AMUD) of an episode is the mean over its length T
of the average value of distances among couples of UAVs, recorded at each step.
Its formulation is reported in Eq. 5.4 denoting with X ∈ [0,1]× [0,1] the generic
UAV position.

AMUD = 1
τ

τØ
t=0

1
N(N − 1)

Ø
i /=j
ëXi(t)−Xj(t)ë2 (5.4)

Figure 5.6: Filtered (using EMA) AMID trends over the training process, reported
for N = 2,3,4,5,6,8,10.

The AMUD gives indication about the effectiveness of the coverage planning algo-
rithm in keeping drones appropriately spaced to promote parallel exploration, while
the AMID takes into account how much the algorithm is effective in avoiding critical
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Figure 5.7: Filtered (using EMA) AMUD trends over the training process,
reported for N = 2,3,4,5,6,8,10.

approaches. It is worth highlighting that, since the positions X are normalized,
both AMID and AMUD are invariant with respect to the environment size.
In Fig. 5.6 and 5.7, AMID and AMUD for the training episodes are reported, for all
fleet sizes. Both metrics are characterized by a fast improvement in the very initial
phase of training, with their values rapidly increasing before converging. AMID
changes consistently as function of the fleet size, nevertheless even for the largest
fleets (N = 10), learning process allows to exceed the critical value of distance (0.1)
under which agents are penalized during the process. Concerning AMUD, besides
showing a more remarkable enhancement during the first learning phase, it is of
special relevance the fact that even the largest fleets manage to plan coverage with
an efficient distribution although their increase in number.

5.2 Obstacle Avoidance Agent
The obstacle avoidance agent, being just a low-level decision maker refining each
UAV’s temporary motion, is trained and acts according to local information about
the current UAV only. In compliance with its local effects, the training procedure
of the obstacle avoidance agent is performed in single-agent settings, simulating
a single UAV moving in random environments as the ones described in (4.1.3)
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with variable obstacle occupancies. The training is performed by exploiting of
the original version of the PPO algorithm (see Sec. 3.3), defining the state and
action spaces as in (4.4.1) and in compliance with the reward function defined in
Eq. 4.12. The training settings for the OA agent shall be such to expose it to
all feasible conditions it can face during the test condition. Specifically, for this
purpose using the trained coverage planning as high-level action generator during
the OA agent training would be ineffective, since any biased behaviour may reflect
in the impossibility of facing all plausible conditions. That’s why in this training
process, while obstacle detections are properly simulated by means of range sensors,
the high-level motion direction, which in test conditions is the outcome of the
coverage agent, is generated randomly, by sampling from a uniform probability
distribution U over all possible actions. This ensures that, in terms of the input
state component related to the temporary motion direction, all possible motion
directions are faced with asymptotically identical frequencies and random detections
are generated by randomly displaced obstacles in the environment. Terminal state
of episodes correspond to obstacle collisions or to exceeding the maximum episode
length. In Fig. 5.8, this framework with random direction selection is schematized,
while in Fig. 5.9, the uniform probability distribution U for the possible input
actions is displayed.

5.2.1 Training procedure
The training procedure of the OA agent is tuned by means of hyperparameters
selected by trial and error, whose values are reported in Tab. 5.4. Given that OA
agent is trained by means of PPO algorithm as for the coverage one, a detailed
description of their meaning is already reported in (5.1.1). Notice that the maximum
episode length is set to 300 steps: an optimal policy should be able to avoid detected
obstacles for the entire episode, early stopping occurs only in the case of collisions.
Unintended ending before reaching maximum length implies a reduction of both
the episodic return (see Eq. 3.1) and of its discounted version (see Eq. 3.2).
In Alg. 6 the training procedure of the OA agent is reported, performed by means
of PPO algorithm.

5.2.2 Training results
The learning statistics of the obstacle avoidance agent refer mainly to episodic
return curves. In Fig. 5.10 the episodic return, computed as the sum of collected
rewards during each episode (qτ

t=0 r(t)), is plotted for the overall learning process.
In about 3000 episode, the episodic return shows policy convergence to a steady
state value which is slightly lower than the maximum achievable 300. Actually, it
is important to take into account that the maximum attainable episodic return
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Temporary direction ∼ U Obstacle detections

Obstacle Avoidance Agent

Definitive direction

Input State st

Action at

Motion execution

New temporary direction ∼ U New obstacle detections

Next State st+1

z−1

one-step delay

Figure 5.8: Obstacle Avoidance Agent’s inputs and outputs during training. z−1

represents the one-step delay block. Temporary directions are always sampled by
uniform distributions U (as reported in Fig. 5.9).

Hyperparameter Symbol Description Value
T Maximum epoch length 1500
τ Maximum episode length 300
γ Discount rate 0.9
λ Tuning parameter for GAE 0.97

αactor Actor learning rate 3e-4
αcritic Critic learning rate 1e-3
Qa Actor training iterations 20
Qc Critic training iterations 20
δ KL Divergence threshold 0.01
Ô Clip ratio 0.2

Table 5.4: List of training hyperparameters for Obstacle Avoidance Agent.

can be achieved only when no obstacle is present, since a unitary reward (see
reward function in 4.12) is provided at each step (the OA agent simply confirms
the coverage agent’s decision). When obstacles are present, even selecting the best
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Figure 5.9: Uniform Probability Distribution U over the action space. Each
possible motion direction (among the ones reported in Tab. 4.2) is sampled with
probability p = 0.11.

Algorithm 6 Obstacle Avoidance Agent Training Process
Initialize: Actor and Critic parameters θ0 and φ0 and networks πθ0 and vφ0

for k = 1, 2, . . . do
Initialize agent’s buffer
for t = 1, . . . , T do

if no episode is running then
Randomly pick an environment map from training set
Place agent in a random position

end if
Sample temporary motion direction ã ∼ U
Detect obstacle by simulated range sensors
Concatenate to build the input state st
Sample definite motion direction a ∼ πθk(st)
Move agent according to a and compute reward rt+1
Store experience in the buffer

end for
Compute rewards-to-go R̂t and advantage estimates Ât
Update πk+1 consistently with Eq. 3.12
Fit the value function by regression on mean squared error, as in Eq. 3.13

end for
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action allowing to move to the nearest obstacle-free direction, the attained reward
will be surely < 1 even though the best possible selection is made. This implies
that, except for the (extremely rare) case in which no obstacles are detected for the
entire episode, the episodic return will be necessarily < 300. When convergence
is achieved for the OA agent, episodes end after reaching their maximum length,
thus validating the trained agent’s effectiveness.

Figure 5.10: Filtered (using EMA) learning curve of the obstacle avoidance agent,
showing episodic returns as function of the number of episodes from the beginning
of the simulation.
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Chapter 6

Simulations and test

In this chapter the performance of the proposed methodology is evaluated by means
of several test simulations, in which the combined behaviour of the coverage and
obstacle avoidance agents is analyzed. The aim of this chapter is mainly to prove
the effectiveness of trained agents in solving the coverage planning problem, and
thus to validate the training approach proposed in Sec. 5.1. The simulations make
use of randomly generated environment, tests are carried out by testing agents’
performance on a test set consisting of 300 test maps with different complexities,
allowing to gather large quantities of simulation data, that are then exploited for
analysis. Some maps are then chosen as reference, to provide a detailed analysis
of the fleet behavior in plausible operating environments. In Sec. 6.1, the test
procedure is explained in detail, in Sec. 6.2 the employed metrics for performance
assessment are described, in Sec. 6.3 the main results obtained on the large test set
of environments are presented, in Sec. 6.4 some selected case studies are analyzed
and in Sec. 6.5 statistics of an exploration example are described.

6.1 Simulation algorithm
The test simulations are carried out loading the trained models of coverage and
obstacle avoidance agents (i.e. the trained ANN), and selecting actions by means
of forward passes of input data across the networks. Training process returns a
collection of weights and biases for the policy networks (and for the value functions
as well), saved in h5 data files that are then loaded in test phase, during which
no change of such parameters is performed. A schematic representation of these
different settings is shown in Fig. 6.1.
In order to test the fleet performance in more stringent conditions, at the beginning
of each test simulation, all UAVs are positioned in a little portion of the map. This
allows to evaluate their capability in spreading in spite of this unfavourable starting

53



Simulations and test

Trajectories Actor Critic

Actor CriticTrajectories

Training

Test

Update

Compute

Compute

Changing models

Fixed models

Figure 6.1: Schematic representation of the training and test procedures. In
training phase, models are used to compute trajectories through which they are
updated in turn. In test phase, fixed models are used to compute the trajectories,
without any further update.

condition, which is graphically shown in Fig. 6.2.

Figure 6.2: Representation of the initial fleet distribution in a test map.

Once the environment is initialized, positions and initial observations are sent
to a centralized storage and processing unit, which provides, at each step, useful
information to all fleet units. From the collected trajectories, various results are

54



Simulations and test

extrapolated, in compliance with the metrics of interest, reported in Sec. 6.2.
In Fig. 6.3, a flowchart describes the test algorithm, summarizing the main steps
involved in this phase. A more detailed description of this procedure is presented
in Alg. 7.

. . .

Coverage Agent

OA Agent

Coverage Agent

OA Agent

Coverage Agent

OA Agent

Execute selected motions
and perform observations

Update:
· Positions
· Coverage Map
· Reconstructed Map
· Coverage Percentage
· Statistics

ν(Cmap) > Cth

End Simulation

Environment Initialization

Pick and load a map Initialize UAVs location Initialize Coverage and Reconstructed maps

Positions
↓

Position map
+

Coverage map

Positions
↓

Position map
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Coverage map
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↓
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Coverage map

True

False

Check terminal state

UAVs

UAV n. 1 UAV n. 2 UAV n. N

ã1

a1

ã2

a2

ãN
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Figure 6.3: Flowchart of the simulation test algorithm.
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Algorithm 7 Simulation Algorithm
Pick and load an environment map for testing
Initialize UAVs location according to a tree-shaped structure
Initialize Cmap and reconstructed environment data
while ν(Cmap) < Cth do

for agent i = 1, . . . N do
From positions create i-th UAV’s position map
Stack position and coverage maps ⇒ õi
Sample temporary motion direction ãi (coverage agent)

ãi ∼ πcoverage(ã|õi)

Concatenate one-hot encoding of ãi with obstacle detections ⇒ oi
Sample definitive motion direction ai (OA agent)

ai ∼ πoa(a|oi)

end for
Move all UAVs according to selected actions
Update positions
Observe the environment from current positions
Update coverage map Cmap
Update reconstructed map with gathered information
Update statistics

end while
End simulation

Once the environment is initialized and all UAVs are placed, the exploration
procedure goes until the coverage percentage of the environment, computed as
ν(Cmap) (see Eq. 4.7), exceeds the threshold Cth. Its value, variable with respect
to the fleet size, corresponds in test phases to the one already reported for the
training procedure (see Tab. 5.2). At each time step, each UAV processes the
(normalized) positions of the fleet and creates its position map, which is then stacked
to the coverage map (common to all fleet members). Agents’ policies are invoked to
compute action probabilities distributions, from which actions are sampled. After
the fleet moves, coverage map is updated, taking into account the new explored
areas, while exploiting obstacle detections and shape prediction algorithm (see
(4.1.5)) a sensed version of the environment map is build. An alternative approach
would perform action selection by selecting the one associated to the maximum
probability instead of sampling it from the policy distribution, as reported in Eq.
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6.1.
a = max

a
π(a|s) (6.1)

Actually, despite at the beginning of the training process the output distributions
are quite flat, trained models output low entropy ones, thus the two approaches
would converge to the same results. The sampling approach is actually preferred
since, in the case where multiple actions are suggested with approximately equal
probability, it adds randomness to the exploration process.

6.2 Performance evaluation metrics
The choice of evaluation metrics for performance is made taking into account the
most influential aspects for a practical implementation of the proposed algorithm.
Those metrics include the exploration time needed for achieving full coverage
(reported in number of steps τ) as well as distribution-related parameters including
the average minimum distance (AMID) and average mutual distance (AMUD),
already mentioned in training statistics (see Def. 5.1.2 and 5.1.3). Moreover, data
gathered during simulation tests is exploited to provide an energy consumption
analysis, which is mostly based on the on-purpose defined efficiency parameter
χ(α), whose detailed definition is provided in (6.2.1). An overview of the employed
metrics is reported in Tab. 6.1.

Purpose Metric Symbol or computation
Exploration time Number of steps τ

Distribution AMID (Eq. 5.3)
AMUD (Eq. 5.4)

Energy Consumption

MTD 1
N

qN
i=1

qτ
t=1 ëXi(t)−Xi(t− 1)ë2

FEC (Eq. 6.2)
IEC (Eq. 6.3)
χ(α) (Eq. 6.4)

Table 6.1: Table containing the evaluation metrics, grouped by purpose.

6.2.1 Efficiency parameter
The efficiency parameter χ(α) is designed in order to provide indications of the
exploration efficiency of the fleet in terms of both exploration time and energy
consumption. Ideally, both terms should be minimized in the view of improving the
coverage planning, nonetheless they may be in contrast to each other: a decrease
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in exploration time may require some UAVs to reach far locations, that would be
otherwise explored by other UAVs in a later time but without big displacements.
More accent on the energy consumption, instead, would imply longer hovering times
for the sake of energy saving. Notice that the efficiency parameter does not enter
training process: the proposed algorithm is tested in consumption terms a posteriori
using this metric. In fact, the gathered data during test simulations allows to
build a tool that, depending on the desired trade off between fuel consumption and
exploration time, provides the fleet size guaranteeing highest efficiency. In fact,
larger fleets would undoubtedly consume more energy, but they will achieve the
target coverage percentage much earlier.
On the basis of the energy model, proposed in Sec. 4.5, the Fleet Energy Consump-
tion (FEC) is defined in Eq. 6.2, accounting for displacement consumption only,
and discarding hovering, landing and ascent contributions.

FEC =
NØ
i=1

Epm
τØ
t=1
ëXi(t)−Xi(t− 1)ë2 = N · Epm ·MTD (6.2)

From the Fleet Energy Consumption (FEC) it is possible to estimate the average
Individual Energy Consumtion (IEC) as reported in Eq. 6.3.

IEC = FEC
N

= Epm ·MTD (6.3)

The efficiency parameter χ, for a given trade-off parameter α is computed, as
function of the FEC and of the exploration time (τ), using Eq. 6.4.

χ(α) = τ−α · (FEC)α−1, α ∈ [0, 1] (6.4)

The trade-off parameter α weights the exploration time and fuel consumption
objectives:

• α→ 0: Interest is shifted towards energy consumption minimization;

• α→ 1: Interest is shifted towards exploration time minimization.

An intermediate value accounts for both objectives concurrently. It is important
to highlight that, for a coherent analysis, normalized values for τ and FEC shall
be used in the efficiency parameter computation (more details will be provided in
6.3.3).
In Fig. 6.4 the efficiency parameter χ is plotted as function of FEC and exploration
time τ (both normalized in the interval [0,1]) for α = 0, 0.5,1. While with α = 0 or 1,
χ depends uniquely on FEC or τ , χ(α = 0.5) is simultaneously (and with equal
weights) dependent on both of them.
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(a) χ(α), α = 0 (b) χ(α), α = 0.5

(c) χ(α), α = 1

Figure 6.4: Efficiency parameter χ(α) plotted for α = 0, 0.5, 1, as function of the
number of steps τ and of the Fleet Energy Consumption (FEC).

6.3 Entire test set
In order to validate the proposed approach by testing it on a variety of environments,
with different complexities, all trained models (all fleet sizes) are tested on a
set composed of 300 maps, randomly generated according to the procedure and
assumptions reported in (4.1.3). These maps, all approximated by means of 100×100
matrices, show an obstacle occupancy (defined as the surface occupied by obstacles
over the overall size) ranging from 0% to 25%. In Fig. 6.5, the distribution of the
obstacle occupancy over the test maps is reported for completeness. All results
presented in this section are obtained by assuming the most stringent condition for
the footprint dimension fdim = 11× 11 cells; in (6.3.4) some extended outcomes
about the metrics dependence on the observable area size are provided.
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Figure 6.5: Histogram showing the distribution of obstacle occupancies in test
maps, reported in terms of percentage of occupied area with respect to the envi-
ronment size.

6.3.1 Exploration time

In order to analyze the exploration efficiency and the time needed to fulfill coverage
objective, the number of steps, i.e. the number of motions during simulation, is
analyzed as function of the fleet dimension.
In Fig. 6.6, the average episode length (in number of steps) is plotted, as function
of the fleet size N . Specifically, in order to focus on the average trend, neglecting
the influence of environmental complexity, the figure shows, for each N , the average
episode length, computed on the basis of all simulations carried out in test maps.
Fleets consisting of 2 units only, as expected, require much longer times to complete
exploration than larger ones. In fact, 3 UAVs fleet manage to achieve full coverage
in almost half the time needed by couples of UAVs. Up to N = 6, τ decreases
monotonically: this intermediate dimension results in being optimal in terms of
exploration time. Fleet sizes with N > 6, do not show a further reduction in τ ,
indeed there is even a slight increase of exploration time for N = 8. This behaviour
is the consequence of an excess of fleet units collaborating in exploration. In fact,
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Figure 6.6: Plot showing the average exploration time (in number of steps τ) as
function of the fleet size N .

notwithstanding the presence of many UAVs may aid in work division and sharing,
an excess of multiple explorers requires substantial collaborative planning in terms
of distribution that penalizes the achievement of the main objective, in concordance
with the statistics reported in (6.3.2).

6.3.2 Distribution statistics
Regarding distribution-related metrics, the Average Mutual Distance (AMUD) and
Average Minimum Distance (AMID) are computed for each fleet size, during the
exploration of the map in the test set. The statistics involving the AMID parameter
are in agreement with the distribution-related contribution in the reward function
of the coverage agent. In fact, referring to Eq. 4.11, the application of a negative
penalty to couples of UAVs nearer than the normalized distance 0.1, reflects in
AMID being greater than this threshold, for all fleet sizes. This is shown in details
in Fig. 6.7, in which both the AMID distribution (on the left) and the average
values, along with ±1 · σ confidence intervals (on the left) are displayed.
The average value of the AMID monotonically decreases with the fleet size, with
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Figure 6.7: Representation of the results involving AMID parameter. The
empirical distribution is reported on the left, while the average values with ±1 · σ
confidence intervals are plotted on the right.

N = 6 representing the elbow point, after which the AMID average value remains
roughly steady. As it is more evident in the bar plot, the variance of this parameter
is greater for smaller fleets: this is reasonable because a larger N implies greater
probability of mutual approaches, thus restricting the AMID value in a smaller
region nearby the threshold inherited by the reward function. In any case, the
presented results validate the capability of the coverage agent in mutual distancing,
which already reduces the need of OA agent in avoiding mutual collisions. In Fig.
6.8 a similar analysis, concerning the AMUD parameter, is graphically shown.
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Figure 6.8: Representation of the results involving AMUD parameter. The
empirical distribution is reported on the left, while the average values with ±1 · σ
confidence intervals are plotted on the right.
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In this case, the average values do not change consistently as function of the fleet
size, varying in the range between 0.5 and 0.6. For N > 3, the fleet size does not
influence the variability of AMUD values on the different maps, while a greater
variance affects 2 UAVs fleets. This is partly due to the fact that unique distance
evaluated in such low-size fleets (AMUD and AMID coincide) greatly depends on
the map complexity and peculiarities.

6.3.3 Energy consumption
By means of the MTD recorded during test simulations, the Fleet Energy Con-
sumption (FEC) and Individual Energy Consumption (IEC) are computed in order
to evaluate the algorithm efficiency in energy terms. Specifically, the FEC provides
useful information in terms of overall fleet power usage, whereas the IEC allows to
assess the capability of the algorithm in achieving full coverage without running
out of autonomy on the single units. MTD metric, and consequently the FEC and
IEC, is computed by considering grounds with dimensions 1 km × 1 km.
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Figure 6.9: Representation of the results FEC and IEC. Both are computed on
the basis of the MTD and are expressed in J .

In Fig. 6.9 both metrics are plotted as function of the fleet size, reporting the
registered consumption, averaged over all test simulations. The FEC parameter
does not change substantially until N = 6, meaning that despite the increase in
fleet size, the required energy per unit reduces because of limited exploration time
and traveled distance involving each UAV, while larger fleets (N = 8, 10) require
almost double the power consumption required by smaller ones. Concerning the
IEC, its trend suggests a general reduction of the per unit consumption with the
fleet size, still strengthening the selection of fleet sizes with N = 6 as the most
efficient condition, in compliance with the proposed algorithm. In Tab. 6.2, the
average IEC values are reported, for all fleet sizes. Recalling that the selected
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reference UAV for energy consumption analysis (see Sec. 4.5) is empowered by a
213 kJ battery, the algorithm is capable to fulfill coverage objective for all fleet
sizes with N ≥ 3 without power issues. Anyway, recalling the big environment size
(1km × 1 km), it is reasonable that 2 UAVs alone could not manage to fully cover
such environment within their power constraints.

Fleet size N IEC [kJ]
2 236.5
3 122.6
4 118.6
5 96.47
6 74.44
8 88.68
10 78.64

Table 6.2: Average Individual Energy Consumption (IEC) results in test maps.

Using the processed results, it was possible to compute the efficiency parameter
χ(α) for all fleet sizes and for different values of the trade-off parameter α, by
averaging out the FEC and exploration time τ over the test simulations carried
out in all test maps of the set. In Fig. 6.10, efficiency parameter χ(α) is plotted,
as function of the fleet size, for different values of α ∈ [0,1].
As anticipated in (6.2.1), the FEC and τ parameters are normalized in the compu-
tation of the efficiency parameter so that, changing α value, the interest towards
energy efficiency or time minimization shifts accordingly without scaling issues.
In the case of low α, which corresponds to a greater interest in minimizing the
overall energy consumption, lower size fleets are preferred, specifically 3 UAVs fleets
show the highest efficiency parameter. On the other hand, higher α values, consider
low size fleets much more inefficient, preferring larger ones. It is evident how the
best compromise refers to medium size fleets (N = 6), for which the efficiency
parameter achieves above-average values as well as a limited variation as function
of α, that is the consequence of high capability of satisfying optimal performances
in terms of both energy consumption and exploration time.
It is worth to remark that selected motion directions do not properly constitute
a path planning method, rather they enable near waypoint assignments, to be
reached by calling specific end-to-end path planning methods. That’s why, even
though this analysis estimates the energy consumption in a sufficiently reliable way,
the effect of local motion planners may provide some variations on the numerical
values.
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Figure 6.10: Efficiency parameter χ(α) for different α, as function of the fleet
size.

6.3.4 Dependence on observable area size

To confirm expectations about performance metrics variation with respect to the
observable area size as well as applicability of the algorithm with variable operating
conditions, all fleet sizes were tested on all maps of the test set (see introductory
part of Sec. 6.3) with different footprint dimensions, from 11× 11 to 15× 15 cells.
The intuition that fleet performances shall improve, assuming wider fields of view
(FOVs), is confirmed by the simulation results.

In Fig. 6.11a the average exploration time (in number of steps τ) recorded on the
test maps is plotted as function of the fleet size, for different assumptions on the
footprint dimension. Increasing observable areas correspond to lower exploration
times, reaching for the largest dimension (15 × 15 cells) just 50 steps needed to
accomplish the goal, even with medium size fleets (N = 6). This is also correlated
to what is shown in Fig. 6.11b in which the FEC is plotted for the various FOV
assumptions. Enhanced sensing specifics reflect in lower energy consumption, for
all fleet sizes.
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(a) Exploration time for different fleet sizes, compared as function of the
FOV dimension.
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Figure 6.11: Results on test maps with varying FOV assumptions.

6.4 Case studies

To judge the fleet performances on environments which can be representative of
complex urban areas, reference maps with increasing complexity were selected
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as case studies, characterized by 0 to 20% of their surface occupied by obstacles,
shown in Fig. 6.12.

Map n. 1 Map n. 2 Map n. 3 Map n. 4 Map n. 5

Figure 6.12: Reference maps selected as case studies, with obstacles occupying
from 0 to 20 % of their surface.

For these maps, the performance assessment is conducted in the same way as for
the entire test set, as specified in Sec. 6.1, and the evaluation metrics are selected
among the ones already reported in Tab. 6.1. The precise amount of obstacles is
indicated in Tab. 6.3.

Map number Obstacle presence [%]
1 0
2 6
3 10
4 15
5 19

Table 6.3: Percentage of surface occupied by obstacles in maps selected as case
studies.

6.4.1 Exploration time
The exploration time, indicated in terms of number of steps before reaching full
coverage, is displayed in Fig. 6.13a for all fleet sizes, as function of the obstacle
occupancy, while in Fig. 6.13b the exploration time, averaged over the case studies,
is reported as function of the number of fleet units N .
According to the general trend, it is evident how to smaller fleets correspond longer
explorations, with only a limited dependence on the map complexity, whose increase
implies rises in exploration time, for all fleet sizes. Anyway, increasing complexity
does not cause substantial performance degradation, since the corresponding rise
in exploration time is limited and shows only a slight increase.
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(a) Semi-log plot of the exploration time in number of steps τ , as function of
the amount of surface occupied by obstacles, in the reference maps.
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(b) Plot of the exploration time in number of steps τ , as function of the fleet
size N , averaged over the reference maps.

Figure 6.13: Reference maps: exploration time

68



Simulations and test

6.4.2 Distribution statistics
The distribution efficiency is evaluated in terms of AMID among UAVs, during the
simulated exploration tests.
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Figure 6.14: Plot of the Average Minimum Distance AMID as function of the
fleet size, for all reference maps.

In Fig. 6.14 the AMID is reported, as function of the number of fleet units N ,
for all maps reported in Fig. 6.12. As well as the common expected reduction in
AMID with increasing fleet sizes, caused by a larger number of UAVs exploring
the same environment, it is notable how this parameter keeps almost always over
the threshold (0.1) appearing in the reward function (see Eq. 4.9), except for the
largest fleets exploring the most complex environments, for which the presence of
this value slightly below the threshold is still acceptable. In general, specifically for
simpler maps, AMID decreases monotonically with N .

6.4.3 Energy consumption
Apart from the FEC and IEC parameters, which are in line with the trends reported
for the entire test set in (6.3.3), the results gathered by simulating the proposed
model in the reference maps permits to draw a series of conclusions about energetic
efficiency, exploiting the efficiency parameter χ(α), whose formalization is provided
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in Eq. 6.4. In Fig. 6.15 the efficiency parameter χ(α) is reported, for all fleet sizes
and for all selected maps.
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Figure 6.15: Plot of efficiency parameter χ(α), for α = 0, for the different maps,
with variable fleet size N .

Recalling that α→ 0 makes the efficiency parameter biased toward fleet consump-
tion minimization, the obtained results suggest that low-medium size fleets manage
to be more efficient in these terms than bigger size ones, specifically in the case
of complex environments. In Fig. 6.16, the efficiency parameter with α = 0.5 is
plotted, in the same conditions as for Fig. 6.15.
In this case, after feature normalization, efficiency weights similarly exploration time
and FEC minimization, showing different scenarios with respect to the environment
complexity. Larger fleets are more efficient in these terms in simpler maps, while
for environments with higher obstacle density, low-medium size fleets are preferred.
The situation changes with α = 1, corresponding to time minimization interest
only. In this specific case, reported in Fig. 6.17, larger fleets are indicated to be
more efficient in reducing the exploration time than larger ones, independently
from the environment complexity.

6.5 Exploration example
In order to provide an example of the algorithm application, in this section the
exploration process of map n. 3 (see Fig. 6.12), carried out by a medium-size fleet
(N = 4) will be described and analyzed in detail.
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Figure 6.16: Plot of efficiency parameter χ(α), for α = 0.5, for the different maps,
with variable fleet size N .
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Figure 6.17: Plot of efficiency parameter χ(α), for α = 1, for the different maps,
with variable fleet size N .

In Fig. 6.18 the UAVs positions, along with the reconstructed environment, are
shown, at different phases of the exploration. Light blue areas correspond to
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Figure 6.18: Graphical representation of the exploration process over time.
Environment map is progressively built by the exploring UAVs.

obstacle-free explored regions, whereas dark blue zones indicate the presence of
detected/reconstructed obstacles. This simulation is conducted by assuming an
intermediate observable area dimension (13 × 13 cells). In order to analyze the
UAVs contribution in reaching the coverage objective, in Fig. 6.19 the cumulative
sum of individual coverage contributions qt∗

t=0 ∆i(t), i = 1, . . . , 4 is plotted, against
the episode step t∗, until full coverage.

Figure 6.19: Plot of the cumulative individual contributions in coverage as
function of the episode step.
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It is notable how the individual contributions of the fleet units in coverage at the
episode end are approximately comparable, in spite of slight differences, which can
be traced mainly to the starting conditions, already reported for a larger fleet in Fig.
6.2. As expected, the initial exploration phase is characterized by larger coverage
increases, followed by a reduction in rate increase which makes the exploration
proceed approximately steadily until completion. The initial limited contribution
of UAV n. 2 in coverage is mainly related to its unfavorable position in the fleet:
during the initial phase of exploration, before starting to operate in unknown
regions, it moves in the same direction as the other drones, which precede it before
the fleet spreads efficiently in the environment.

Figure 6.20: Plot of the average mutual distance and of the minimum distance
(both recorded at each step) during map exploration.

UAVs distribution as function of time can be observed in Fig. 6.20, in which, at
each time step, the mean mutual distance and the minimum reciprocal distance
are plotted, along with a reference line indicating the threshold, related to the
reward function definition in terms of distribution (see Sec. 4.3.3). It is evident
how during the first phase of simulation, when the fleet starts to explore and the
units distribute in the environment, the average mutual distance rises sharply and
then it oscillates around 0.6, thus indicating how UAVs explore different areas at
the same time. With reference to the minimum distance, after the initial phase in
which it remains below the threshold, due to the starting conditions, it exceeds the
limit value and remains above it throughout the simulation, as it is desirable.
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ROS Simulation

In this chapter, an implementation of the proposed coverage planning model in a
3D environment is presented. Specifically, the simulation is carried out in Gazebo
[45], a 3D open source simulator and ROS [46], that is a meta-operating system
providing tools and libraries for the development of robotic applications. For the
control of UAVs, an open source software, PX4 Autopilot [47], communicates with
ROS using the MAVROS package.

Figure 7.1: Graphical representation in Gazebo of the simulation environment.

The simulation environment is a 3D extension of the third map belonging to the
selected case studies (see Fig. 6.12), which was appropriately implemented in
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Gazebo environment, as shown in Fig. 7.1. The flight altitude is commonly set
to 4 m, while obstacles are all 6 m high. As already mentioned in (4.1.3), the
binary maps used for training and test phase of the RL agents can hypothetically
approximate any squared real field; in this case the simulation ground occupies an
area of size 50× 50m . To manage take-off, landing and path planning between
consequent waypoints, as many ROS nodes as fleet units are initialized, and interact
with Flight Control Units (FCUs) implemented in PX4 Autopilot software. The
starting condition of the fleet is represented in Fig. 7.2, showing 4 UAVs in idle
state, waiting for the take-off phase.

Figure 7.2: Starting condition of the fleet. UAVs are in idle state, before take-off.

In Fig. 7.3 the final part of the take-off phase is shown; UAVs are represented while
moving to the first waypoints computed using the trained agents. In Fig. 7.4 the
fleet is shown during the simulated exploration phase.
In order to validate the proposed model and check possible discrepancies with
respect to the test conditions, which do not take into account the effect of the
flight controllers, some ROS nodes were added to gather distribution data during
exploration and compute the average mutual distance and the minimum distance
among UAVs at each time step. In Fig. 7.5 such statistics are plotted, along with
all the recorded distances among all possible couples of UAVs. Considering that the
simulated conditions are the same as the ones reported in Sec. 6.5 and specifically
in Fig. 6.20, it is possible to notice how they show the same general trend, with
smoother changes, mainly linked to high frequency data acquisition and to the
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Figure 7.3: UAVs at the end of their take-off phase.

Figure 7.4: Fleet exploration during simulation.

presence of path planning methods between waypoints instead of abrupt position
changes.
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Figure 7.5: Plot showing the average and mutual distance among UAVs during
the exploration phase, computed on the basis of the UAVs positions resulting by
simulation.
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Chapter 8

Conclusions and further
studies

The proposed coverage planning model has shown interesting and encouraging
results in terms of both target accomplishment and distribution statistics. The
novel approach, which exploits the multi-agent settings to train a shared policy
function in order to prevent scalability issues as well as to reduce the training
time, allows to train fleets with widely varying sizes using an easily scalable
approach. This modified version of the PPO algorithm, in conjuction with the
power of convolutional neural networks, manages to plan coverage efficiently, without
facing mutual collisions. Furthermore, the joint implementation of the obstacle
avoidance agent, allows to prevent collisions with fixed obstacles while following
the coverage-driven indications. It is worth remarking that the motion selection,
although it implies small displacements, is anyway limited to a restricted set of
directions which introduce in the deployed trajectories sharp attitude and motion
direction changes. It is worth remarking that the proposed work does not aim at
developing a path planning model, rather the outputted motion directions can be
interpreted as waypoint generators, close to the current positions, to be reached to
boost the exploration by means of already developed and existing models. That’s
why movement between waypoints shall be managed by means of special-purpose
controllers and path planners, as done in Chap. 7 exploiting PX4 Autopilot software.
The usage of pre-trained neural networks in real test implementations, enables fast
decision-making without requiring online optimization. From this work, it appears
significantly evident the advantage of using RL-based techiniques to solve complex
and multi-objective problems by shaping a reward function, without needing to
explicitly program each agent’s motion. On the other hand, trial and error tuning
is still necessary due to the multitude of methods and approximations involved,
before obtaining stable and efficient learning convergence.

78



Conclusions and further studies

Although the completeness of the proposed approach and the satisfactory results
that have been achieved, it is anyway possible to outline a series of improvements
and extensions which can be applied to this work:

• Despite the proved reliability and effectiveness of the collaboration between
coverage and obstacle avoidance agents, splitting various objectives among hier-
archical policies does not guarantee optimality in general terms. In fact, while
a single policy may be ideally trained up to optimality, multiple policies are not
guaranteed to do so. Developing an agent which is capable to plan coverage
while taking into account obstacle detections would be preferrable, assuming
that all objectives are correctly accounted for in the reward function and
the input states provide a complete representation of the agent-environment
condition.

• The presented approach assumes an ideal condition of constant and instanta-
neous information exchange among UAVs. In the reality, especially in large
simulation fields, such assumption may be unrealistic. The proposed approach
may be extended by exploiting specific communication models or by perform-
ing expectations about other UAVs movements. In fact, given that the same
policy function is used in each fleet unit, by knowing previous positions and
coverage statistics, it is possible to predict other UAVs motions by calling the
on-board policy with modified inputs. This procedure may show limitations in
the case of trajectory modification because of unseen and not communicated
obstacles, but assuming temporary delays or communication interruptions,
they are expected not to diverge from the real behavior.

• As already mentioned, since the coverage planning output directions shall be
interpreted more as target waypoint generators rather than motion directions
to be directly applied, the application of specific path planning algorithms,
either more traditional ones, as well as RL-based approaches, would help in
end-to-end local planners, providing smoother trajectories without abrupt
attitude changes. Another possible approach would be to modify the action
space to a continuous one, enabling it to directly output smoother paths as
a path planning method would do as well as taking into account the UAVs’
heading directions in input states.

• UAVs are fixed to fly at the same altitude and they are characterized by equal
characteristics in terms of observability and sensors. Allowing them to move
vertically would surely enhance their exploration capabilities, both in terms of
changing observable footprint dimension as well as in a reduced possibility of
mutual approaches. A 3D extension with variable flight altitudes would also
require to change the input states and detection assumptions.
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Appendix A

Artificial Neural Networks

A.1 Introduction
Artificial Neural Networks (ANNs) are bio-inspired tools, taking inspiration from
functionality of human and animal brains. In an ANN, each elementary unit, called
neuron, linearly combines several input signals coming from other neurons, and
returns a single output value, after a nonlinear activation function. ANNs can be
exploited both for classification and regression problems and, due to nonlinearities
in each unit, they represent complex non-linear form of hypotheses parametrized
with respect to connection weights W and biases b, computed as a result of a
training procedure. A typical Feed-forward Neural Network (FFNN) structure is
shown in Fig. A.1.
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Figure A.1: Feed-forward Neural Network with 3 inputs, 2 outputs, and 3 hidden
layers. A FFNN does not have any loops or cycles.
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A.2 Elementary Unit: Neuron
The elementary unit of a neural network, called neuron, performs 2 operations:

• Linear combination of its inputs (to which, usually, a bias term is added);

• Nonlinear activation function.
Denoting with f(·) the activation function, and being b ∈ R;x,w ∈ Rn, the output
y of a single neuron with n inputs is computed according to Eq. A.1. In Fig. A.1
a neuron with n = 3 inputs and a bias term is schematized.

y = f(wTx+ b) (A.1)

f(·)

x1

x2

x3

+1

y

Figure A.2: Neuron with 3 inputs and a bias term.

A.2.1 Activation functions
Commonly used activation functions in ML settings are reported in Tab. A.1, along
with their representation in Fig. A.3.

Sigmoid σ f(z) = ez

1+ez

Hyperbolic Tangent (tanh) f(z) = ez−e−z

ez+e−z

Rectified Linear Unit (ReLU) f(z) = max(0, z)

Table A.1: Typical Activation Functions f(·).

A.3 Structure and modeling
An ANN is formed by connecting together several neurons, and it is composed by
three main layer types:
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Figure A.3: Plot of sigmoid, tanh and ReLU activation functions.

• Input layer : It receives the input values;

• Hidden layer(s): They are responsible for data processing, by means of tunable
parameters W, b, trained in the view of a loss function minimization;

• Output layer : It includes the output values of the NN, computed through the
preceding layers.

With reference to figure A.1, and considering a generic layer l, denote with sl the
number of its units. Each layer is associated to parameters (W (l), b(l)), where W (l)

ij

denotes the weight factor relating unit j in layer l with unit i in layer l + 1. For a
generic layer l, W (l) is thus a matrix W ∈ R(sl+1,sl). a(l)

i denotes the activation of
i-th node in the l-th layer, and it is computed as in equation A.2.

a
(l)
i = f

A sl−1Ø
j=1

W
(l−1)
ij aj + b

(l−1)
i

B
= f

A
W (l−1)a(l−1) + b(l−1)

B
(A.2)

These assumptions hold when there are no cycles and loops, as it happens in any
FFNN. The presence of several hidden layers makes a NN a Deep Neural Network
(DNN).

A.4 Training and Backpropagation Algorithm
Once network topology and parameters (W, b) are defined, NN output is computed
through a forward pass of the input values throughout the network layers and
weights. On the basis of the network output and of a suitably chosen loss function,
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the network parameters can be updated in order to minimize the loss value J . The
optimization algorithm to be solved is depicted in equation A.3.

min
W,b

J(W, b) (A.3)

In general, J is not a convex function of W and b, thus implying that most
optimization problems do not solve up to global optimality. Training procedure is
usually performed by means of stochastic gradient descent (SGD) method, which
reduces computational time of classical gradient descent algorithm through a
gradient approximation based on a limited subset of training samples. In this
technique, at each iteration step, weights are updated by moving towards descending
direction of the (approximated) gradient of the loss function, as reported in Eq.
A.4, indicating with ∇̃W and ∇̃b the approximated gradient with respect to W
and b respectively. η is the learning rate, weighting the parameters update at each
optimization step.

W ← W − η∇̃WJ(W, b)
b← b− η∇̃bJ(W, b)

(A.4)

Neural Network weights are typically initialized to small random values near
zero for symmetry breaking and gradient computation is performed exploiting
the backpropagation algorithm, which is based on the chain rule for derivatives
computation. Backpropagation algorithm consists of 3 main phases, repeated until
convergence:

• Forward pass: inputs are propagated across the current network, and outputs
are computed;

• Loss computation: On the basis of the computed outputs and of a suitably
chosen loss function, loss value is calculated;

• Backward pass: From the computed loss, gradients are calculated by moving
backwards in the layers and exploiting the chain rule.

A.5 Convolutional Neural Network
Convolutional Neural Networks (CNNs) are a class of ANNs, usually employed
for image processing and analysis. Their advantage is an increased efficiency in
hierarchical pattern recognition and analysis. With respect to fully connected
layers, in which the huge amount of weights and biases could lead to overfitting,
convolutional layers make use of local filters, which are applied to the input features
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by sliding along them, and do not require each neuron in a layer to be connected to
all neurons in the preceding one. Filters in CNNs average over the input layers by
dot products between local input with filter weights, subject to training. In each
convolutional layer, the number of filters equals the one of feature maps created,
and unlike fully connected layers, filter weights do not change by sliding, thus
providing a reduced computational burden during training. Besides the number of
feature maps, strides constitute another important hyperparameter, denoting the
amount of pixels the filters shift during their application. Among convolutional
layers, typically activation functions and pooling layers are interposed.

Figure A.4: Typical Convolutional Neural Network structure.

In Fig. A.4 a CNN with 3-layer input features is shown. The first convolutional
layer employs 32 filters with kernel size 5× 5, while in the second layer 48 filters of
dimension 2× 2 are used, before a series of fully connected layers.

Figure A.5: Max-Pool applied to 4 × 4 input map, with kernel size 2 × 2 and
stride (2,2). Image taken by [48].

Pooling layers are used in CNNs for dimensionality reduction, downsampling feature
maps before the subsequent layers. Typically, the mostly used pooling layer is the
Max-Pooling, but in some applications Avg-Pooling layers are applied as well. In
Fig. A.5 a numerical example of Max-Pool applied to a 4× 4 input map is shown.
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Kullback-Leibler (KL)
Divergence

KL-Divergence measures the statistical distance between 2 probability distributions
p(x) and q(x). Let p(x) the true distribution and q(x) be the approximated version
of p(x); since they are both probability distributions, the conditions reported in
Eq. B.1 always hold.Ú ∞

−∞
p(x)dx =

Ú ∞

−∞
q(x)dx = 1; p(x), q(x) > 0, ∀x (B.1)

The KL-divergence is defined, in the discrete space, as in Eq. B.2, while its
continuous counterpart is reported in Eq. B.3 [49].

DKL(p(x)||q(x)) =
Ø
x∈X

p(x) log p(x)
q(x) (B.2)

DKL(p(x)||q(x)) =
Ú ∞

−∞
p(x) log p(x)

q(x)dx (B.3)

Despite it gives indications about a distance, it cannot be considered a norm.
In fact, in general DKL(p(x)||q(x)) /= DKL(q(x)||p(x)), i.e. it is asymmetrical.
Moreover, it does not satisfy the triangle inequality but the positive definiteness
holds: DKL(p(x)||q(x)) = 0 ≥ 0, DKL(p(x)||q(x)) = 0 = 0⇔ p(x) = q(x).
In figure B.1 an histogram plot of 10000 randomly generated values sampled from
a Normal distribution q ∼ N (µ = 0, σ = 1) is shown, alongside the theoretical
probability distribution calculated according to Eq. B.4; both used to analyze the
KL-divergence resulting by approximating the theoretical Gaussian distribution
using the experimental one.

p(x) = 1√
2πσ

e
− 1

2

1
x−µ
σ

22

(B.4)
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Kullback-Leibler (KL) Divergence

Figure B.1: Histogram plot of randomly generated data, along with theoretical
Gaussian Distribution.

In Tab. B.1 the values of p(x) and q(x) are reported, used to compute the KL-
divergence DKL(p(x)||q(x)) = 0.071788.

x p(x) q(x)
-4.25e+00 4.79e-05 6.00e-05
-3.29e+00 1.72e-03 2.17e-03
-2.35e+00 2.51e-02 3.38e-02
-1.40e+00 1.49e-01 1.75e-01
-4.54e-01 3.60e-01 3.68e-01
4.94e-01 3.53e-01 3.07e-01
1.44e+00 1.40e-01 1.00e-01
2.39e+00 2.28e-02 1.25e-02
3.34e+00 1.51e-03 8.00e-04
4.29e+00 4.04e-05 1.00e-05

Table B.1: p(x), q(x) distribution values
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