
POLITECNICO DI TORINO

Master of Science Degree
in Electronic Engineering

Master’s Degree Thesis

Simplified Affine Motion Estimation algorithm and architecture
for the Versatile Video Coding standard

Supervisors Candidate
Prof. Maurizio Martina Costantino Taranto
Prof. Guido Masera

Academic Year 2021-2022

Summary

The demand for higher-quality video content from users grows over time. In this scenario,
it becomes essential to rely on efficient video coding algorithms and standards to avoid
huge memory and computational resource requirements. Versatile Video Coding (VVC)
is the latest video coding standard developed by the Joint Video Experts Team and
finalized in July 2020 in ITU-T as Recommendation H.266. It can achieve significant bit
rate reductions in video stream storage and transmission, in the neighbourhood of 50%
over its predecessor, HEVC, for equal video quality. This compression rate growth comes
with increased complexity, lengthening the encoding time in VVC compared to previous
standards for the same input data stream. To reduce the computational complexity
burden on the encoding processors, a hardware accelerator has been designed.
This thesis work reports all the theoretical analyses and design phases which have brought
to the final product: a synthesized netlist for the cited hardware accelerator.

The first chapter is an introduction to the whole dissertation. Versatile Video Coding
(VVC) is presented and its block diagram is illustrated. VVC’s main blocks are analyzed
from the complexity point of view. In fact, to ease the encoding process, it is essential
to understand which is the system’s bottleneck and act on that consequently. In this
chapter, there is the explanation of why the Affine Motion Estimation has been chosen as
the subject algorithm for this thesis work: because it is one of the most complex stages of
the encoding chain. The chapter is concluded with the presentation of the most complex
block’s state-of-art and the motivation behind this work.

Initially, in the second chapter, the Affine Motion model and Estimation algorithm
in VVC are presented. By applying some modifications and simplifications, the proposed
method for Affine Motion Estimation (AME) is obtained and presented. The algorithm is
divided into two sub-parts, the "construction" and the "estimation", which are described
in detail. Subsequently, this simplified and approximated method is compared with the
VVC’s exact one. The comparison at first is done in terms of computational com-
plexity: the savings in terms of elementary operations is shown. The second metric for
comparison is the compression ratio. A good Motion Estimation algorithm, as explained
in this chapter, reduces the amount of information to be transmitted (better compression
of the "residual frame"). Therefore, an evaluation of the residual signal energy when using
the approximated algorithm is performed. The chapter is concluded with a comparison
to other works on AME. What emerges from the study is that, to the best of the author’s
knowledge, there are no other works on AME that simplify the algorithm in the same way
as in this one.

2

The hardware implementation process and components are described in the third
chapter. The architecture is implemented for ASIC 45 nm through an RTL description,
using VHDL. The chapter is also organized into two parts, one dedicated to the "Con-
structor" component and the other one for the "Extimator" one, which are the two main
sub-blocks of the proposed hardware accelerator. For both the blocks, the Datapath,
Timing Diagram, and Control Unit are explained in detail. The chapter is concluded with
an analysis of the components’ usage percentage, to understand how much each compo-
nent is exploited. What may happen is that, if this value is too low, there might be the
possibility to apply some techniques to save complexity at the cost of a small increase in
the delay.

After the design and implementation processes, the Design Flow requires the logical
verification of the circuit, which is reported in the fourth chapter. In this thesis work,
the verification step is performed using MATLAB, for the generation of the test sequences,
and a VHDL testbench to read the cited inputs and feed them to the architecture. Here,
the main components of the verification environment are explained, and the results of this
phase are exposed. Finally, the design is concluded with the synthesis step, performed
using the 45nm Nangate Open Cell Library and the DesignWare Library on the Synopsis’
Design Vision software. The chapter ends with the area, timing, and power dissipation
estimation. With this data, the encoding performance of the circuit is evaluated.
According to the estimation and average computational complexity of the whole VVC
encoding chain, the designed component can assist the VTM encoder in the elaboration
of video streams with resolutions up to 1920x1080 at 50 frames per second.

The last chapter presents the conclusions about the whole study and design. Some
considerations are done about the possibility to improve or modify the hardware acceler-
ator. Moreover, other ideas about Affine Motion Estimation architectures are proposed,
to experiment with innovative ways for reducing the VVC encoder complexity in future
works.

3

Contents

List of Tables 5

List of Figures 6

1 Introduction 7
1.1 The increasing complexity of video coding standards 7
1.2 The Versatile Video Coding standard . 8
1.3 VVC Encoder Block Diagram . 9
1.4 VVC encoder complexity analysis . 10

1.4.1 VVC Test Model and Common Test Conditions 10
1.4.2 Encoder complexity breakdown . 12

1.5 VVC complex blocks’ algorithms and architectures state-of-art 13
1.5.1 Motion Estimation . 13
1.5.2 Transform and Quantization . 14
1.5.3 Loop Filters . 14
1.5.4 Entropy Coding . 15

2 Affine Motion Estimation simplified algorithm 17
2.1 The Affine Motion Model . 17
2.2 Affine Motion model in VVC . 18

2.2.1 Affine AMVP prediction . 19
2.3 The proposed algorithm . 21

2.3.1 Proposed candidate construction method 22
2.3.2 Best-candidate choice simplified algorithm 23

2.4 Comparison between the proposed algorithm and the exact one 26
2.4.1 Computational complexity . 26
2.4.2 Compression Ratio . 26

2.5 Comparison with other works on AME . 32
2.5.1 Other works on Affine Motion Estimation 32
2.5.2 Comparison and conclusions . 34

3 Hardware implementation 35
3.1 The Constructor component . 36

3.1.1 Constructor Datapath . 37

4

3.1.2 Constructor Timing diagram . 40
3.1.3 Constructor Control Unit . 40

3.2 The Extimator component . 41
3.2.1 Extimator Datapath . 41
3.2.2 Extimator Timing diagram . 46
3.2.3 Extimator Control Unit . 49

3.3 Components Usage percentage . 52
3.3.1 Definition . 53
3.3.2 Evaluation in the Extimator and Constructor 53

4 Verification, Synthesis, and Performance 57
4.1 Logical Verification . 57

4.1.1 Simulation Script . 57
4.1.2 Memory . 57
4.1.3 Monitor . 59
4.1.4 Verification Results . 59

4.2 Synthesis and Area, Timing and Power evaluation 61
4.2.1 The Synthesis process . 61
4.2.2 Power consumption estimation . 64
4.2.3 The Constructor and Extimator separate contributions 66

4.3 Architecture encoding performance . 67
4.3.1 Comparison with other architectures for VVC 69

5 Conclusions 71

A Video Coding overview 73
A.1 Image representation in Video Streams . 73
A.2 Video Encoders basic blocks . 74

A.2.1 Motion-compensated prediction . 74
A.2.2 Discrete Cosine Transform . 75
A.2.3 Quantization and Coding . 78
A.2.4 Frame Partitioning . 79
A.2.5 Loop Filter . 80
A.2.6 Random Access Capability . 80
A.2.7 Profiles and Levels . 81
A.2.8 Intra prediction . 83

B Proposed model Matlab Implementation 85
B.1 Candidate construction . 85
B.2 Affine Motion Estimation . 87

C Estimating algorithm performance 93
C.1 Test sequences used . 93
C.2 Proposed Candidate construction algorithm performance 94
C.3 Approximated AME algorithm performance 95

5

D Hardware Implementation 101
D.1 Constructor component . 101
D.2 Extimator component . 104
D.3 Verification and Synthesis . 107

6

List of Tables

1.1 Some of the Common Test Conditions video sequences 12
2.1 Error in the truncation rounding method 23
2.2 Complexity savings of the Approximated AME algorithm 26
2.3 The video test sequences used. 29
2.4 Main ideas and results about all the works on AME. 34
3.1 How the CU width and height are encoded. 37
3.2 Extimator possible latency values. 49
3.3 Constructor usage percentage analysis with different Coding Unit sizes. . . 53
3.4 Extimator usage percentage analysis with different Coding Unit sizes. . . . 54
4.1 Critical path delay; maximum clock frequency; area and power consump-

tion of the proposed architecture and its main sub-blocks. 67
4.2 Clock frequency requirement on the AME Architecture (fmin), calculated

with three different CU sizes. 68
4.3 Comparison between pre-existing architectures for VVC and the proposed

one. 69
A.1 Display order for the GOP in figure A.7 81
A.2 Bitstream order for the GOP in figure A.7 82
C.1 Test cases used for the algorithm performance estimation (and later as test

sequences for the hardware implementation logical verification). 93
C.2 Some data about the Construction and proposed algorithm presented in

section 2.3.1 . 94
C.3 Performance estimation of the proposed algorithm presented in section 2.3.2 99

7

List of Figures

1.1 Coding standards timeline, from [1]. 8
1.2 The VVC encoder block diagram. 9
1.3 An example of GOP in the All Intra configuration. In blue, the I-type

frames. From [2]. 10
1.4 An example of GOP in the Low Delay configuration. In blue, the I-type

frames while the P and B frames are colored with shaded green. P with
the lightest shade, B with the darkest, depending on the temporal layer.
From [2]. 11

1.5 An example of GOP in the Random Access configuration. The coloring
pattern is the same as figure 1.4. From [2]. 11

1.6 VVC encoder complexity breakdown with the LD and RA configurations . 13
2.1 An example of pixel block affine motion, made by a combination of zoom

and shearing. Video source from "VQ Analyzer" sample streams [3]. 17
2.2 Three different motion models types: HEVC Translational Motion Model

(TMC) (a); VVC Affine Motion Model with two (b) and six (c) control
points. 18

2.3 CU neighboring blocks in a frame. 20
2.4 What happens in the VVC encoder when choosing the best candidate. The

process in figure is repeated for each CPMVP and the the one with the
lowest SAD is chosen. Video source from "VQ Analyzer" sample streams [3]. 21

2.5 CU tu be encoded with its neighboring blocks and relative motion vectors. 23
2.6 an example of 32 × 32 CU split into four 16 × 16 sub-blocks (in blue), each

one with its four representatives (in red). 25
2.7 How TMC is applied on an example CU. 25
2.8 VQ Aalyzer software. On the left, the "Prediction Mode" view. On the

right, some extracted motion information. 29
2.9 The 8-parameter model proposed in [4]. Figure from [4]. 33
3.1 Proposed architecture top-level blocks. 36
3.2 Constructor high-level block diagram . 36
3.3 Constructor Datapath. The dotted in lines in red represent pipeline registers. 38
3.4 The h_over_w block diagram. 39
3.5 The LR_SH2 block diagram. 40
3.6 Extimator high-level block diagram . 42

8

3.7 A 16×16 example CU with the block, representative and pixel coordinates
reported. 43

3.8 The firstPelPos component for x0 . 43
3.9 The R_SH2 component. 44
3.10 A MULT_1 multiplication example’s timing diagram. 45
3.11 ADD3 component’s block diagram. 46
3.12 How input MVs are presented to the Extimator when there are no C-type

candidates. 47
3.13 How input MVs are presented to the Extimator when there is a C-type

candidate. 48
3.14 "Ready Handler" FSM state diagram. 50
3.15 Extimator’s Control Unit state diagram. 52
4.1 The verification environment. 58
4.2 The simulator script flow chart. 59
4.3 Maximum clock frequency, area and power consumption of the proposed

architecture compared to its main sub-blocks. 66
A.1 The path traversed by the electron beam in a television. From [5] 73
A.2 Block diagram of the ITU-T H.261 encoder, from [5]. 75
A.3 The bases matrices for the DCT. From [5] 76
A.4 The 8x8 pixel smile, scaled 2x. On the left, the original figure; on the right

the same image after cutting out the highest frequency components 77
A.5 The zig-zag scan which arranges the quantized DCT coefficients in a 1-D

matrix. From [6] . 78
A.6 An example of Frame Partitioning in HEVC 79
A.7 A possible arrangement for a group of pictures. From [5] 81
A.8 Prediction modes in AVC. In small letters the pixel of the block to be

encoded, in capital letters the neighbor pixels from the same frame. From [5] 83
D.1 Constructor’s Control Unit state diagram. 101
D.2 Constructor Timing diagram. 102
D.3 Extimator Datapath. The dotted lines in red represent pipeline registers. . 104
D.4 The MULT1 component. RTL representation generated with Quartus de-

sign software [7]. 105
D.5 Extimator Timing diagram. 106

9

10

Chapter 1

Introduction

The fast evolution of image and audio acquisition systems’ quality over years has brought
an increase in the amount of information to be stored and transmitted over time. To
understand how heavy is the data flow in the context of video media, consider that Cisco
Systems estimates an Internet video traffic of 187.4 Exabytes per month in 2021 [8].
This number would be even larger if it wasn’t for the techniques allowing to reduce the
size of video streams. They belong to a large branch of "information coding" called video
coding.
In this context, K. Sayood in [5] presents an interesting example. To digitally repre-
sent 1 second of video without compression (using the CCIR 601 format), more than 20
megabytes are needed. This is a large amount of data considering that it is just one sec-
ond. At first sight, there are mainly two problems involved in the handling of raw video
materials. The first one is the storage requirement. Considering the previous example,
to store a two hours long movie about 140GB of storage would be necessary, which is
quite expensive considering modern user devices. The second one is the transmission
and processing of such data loads. To elaborate and represent 20Mbps (Megabytes per
second) of information, very high-speed devices would be required, consuming also an
inexcusable amount of energy. If it wasn’t for compression techniques, real-time services
like video streaming and videoconferencing would not be possible. Since video content
needs to be displayed on different devices produced by distinct companies, video coding
standards have been developed over the decades by the most important standardization
organizations, the ITU-T (International Telecommunication Union – Telecommunication
Standardization Bureau) and ISO (International Organization for Standardization).

1.1 The increasing complexity of video coding stan-
dards

M. Wien and B. Bross present in [1] a brief overview about the history of Coding stan-
dards, from 1998’s H.261 to modern H.266. Figure 1.1 shows all the standards by ITU-T
(International Telecommunication Union – Telecommunication Standardization Bureau)
and ISO (International Organization for Standardization) represented on a timeline.

11

Introduction

Figure 1.1. Coding standards timeline, from [1].

From 1984’s H.120 to 2020’s VVC, new features and encoding algorithms have
been introduced. Appendix A shows the most important blocks that have been added, to
improve the compression ratio of data streams. This strategy has unavoidably increased
the standards’ complexity, that video coding experts try to keep as low as possible over
all the new generations. Nowadays, the efforts have moved towards the most recent coding
standard, Versatile Video Video Coding (VVC).

1.2 The Versatile Video Coding standard
The Versatile Video Coding (VVC) standard was finalized in July 2020 in ITU-T as
Recommendation H.266 and ISO and IEC (International Electrotechnical Commission)
as MPEG-I Part 3 [9]. The need for a more efficient coding standard than its predecessor,
the HEVC, was due to the requirement for higher-quality video content from modern
devices. This is what motivated the ITU-T’s Video Coding Experts Group (VCEG) and
ISO/IEC Moving Picture Experts Group to collaborate and form a joint group called
the Joint Video Exploration Team in 2015, which will become the Joint Video Experts
Team two years later, in 2017. After the Joint Call for Proposal (October 2017), the
formal project for the development of the VVC standard started in April 2018. The first
drafts of the specification document and the software for the VVC test model (VTM)
were generated in the same month.
Currently, VVC can achieve significant bit rate reductions in the neighborhood of 50%
over its predecessor for equal video quality. Unfortunately, the improved compression
efficiency comes at the cost of increased complexity, as described in detail in [10].
The complexity can be both at the encoder and decoder side, but it is more present on
the former since it is the least used block and the one determining the size of the data
stream to be transmitted or stored.
Like all the previous video coding standards, VVC specifies only the syntax elements and
the bit-stream structure, which are used in the decoding process. This means that all
the different decoder implementations should be designed according to the specifications

12

1.3 – VVC Encoder Block Diagram

of the standard, being able to reconstruct the same video starting from the same VVC
compliant bit-stream. The encoder implementation choices, instead, are all left to the
designers. In this way, several encoders can be designed as long as they produce bit-
streams compliant with the VVC standard.

1.3 VVC Encoder Block Diagram
VVC, like most of its predecessors, relies on the hybrid video coding scheme, based on
inter and intra prediction and transform coding. In figure 1.2 the block diagram of the
VVC encoder is depicted.

Figure 1.2. The VVC encoder block diagram.

Even though it is similar to one of the previous standards like HEVC, there are many
new functionalities, briefly reported in the following. The frame to be encoded (which
can be referred to as "Current Frame"), is split into blocks called Coding Tree Unit
(CTU) and sub-blocks called Coding Units (CU). Before subtracting the reconstructed
Reference Frame, it is processed with a "Luma Mapping with Chroma Scaling" (LMCS)
filter, which modifies the dynamic range of the input signal using a luma inverse mapping
function [9].
The residual signal is then transformed exploiting different types of DCT and DST. The
residual alone is not enough for the decoder to extract the correct video stream, also
the Motion information is needed. This latter is produced by reconstructing locally the
encoded data.
Reconstruction happens in a few steps, which involve the inverse transform of the reference
frame and the use of loop filters like the Sample Adaptive Offset (SAO), the LMCS, and
the Adaptive Loop Filters (ALF). Another important step is the Motion Estimation which
allows for reducing the residual frame size and produces the Motion Data needed by the

13

Introduction

Encoder to perform the Motion Compensation.

1.4 VVC encoder complexity analysis
As already mentioned, the compression rate growth brought by the VVC standard comes
with an increased complexity [10]. Figure 1.2 shows that the standard is made in many
different stages, each one with its specific purpose and structure. To reduce the compu-
tational burden of the VVC encoder, it is essential to understand which of these blocks is
more expensive in terms of complexity. In [10] a detailed analysis is reported.
Versatile Video Coding block diagram, as well as all the previous standards, is made by
an encoder and a decoder. In this thesis work, the stage considered is the encoder. This
is because the encoding process is performed a few times compared to the decoding one.
Consequently, this former is always designed to be more complex than the latter. This
makes the encoder computational burden reduction crucial.

1.4.1 VVC Test Model and Common Test Conditions
Before presenting the complexity breakdown of the VVC encoder, it is important to briefly
introduce the two main components in the coding standard test environment. The first
one is the VVC Test Model, free and open-source software that implements all the
functionalities of the VVC encoder and decoder. It is downloadable from Fraunhofer’s
website [11] and it can be installed on almost any Unix-based Operating system. The
main functionality of VTM is to encode and decode raw or encoded video streams with
custom parameters for the coding algorithm. For example, it is possible to set the CTU
minimum and maximum allowed size, disable or enable some prediction strategies, or set
custom profiles and bit-width for the pixel intensity. Moreover, it allows extracting data
about the output BDBR or the encoding time, which is useful to make considerations
about the complexity burden of each component in the processing chain.
Like its predecessor HEVC, there are three configurations for the encoder depending on
the GOP structure that the algorithm must use during its elaboration.
The first one is the All Intra (AI), where all the frames are of type I. This means that
no temporal redundancy is exploited. The encoding complexity and time requirements
are low, but the compression rate is low too. In figure 1.3 an example of GOP in the AI
configuration is shown.

Figure 1.3. An example of GOP in the All Intra configuration. In blue,
the I-type frames. From [2].

14

1.4 – VVC encoder complexity analysis

The second one is the Low Delay (LD) one, where only the first frame in the sequence
is of the I kind. The subsequent frames are all of type P or B. There is only one prediction
direction, which is "backward". This is a slightly more complex setting for the encoder
but it is able to achieve higher compression rates [5]. An example of GOP is depicted in
figure 1.4.

Figure 1.4. An example of GOP in the Low Delay configuration. In blue, the I-type
frames while the P and B frames are colored with shaded green. P with the lightest
shade, B with the darkest, depending on the temporal layer. From [2].

The last configuration is the Random Access (RA), which exploits all the types of
frames and prediction directions. This means that there can be I, P, and B frame types
and the prediction can be performed in both forward and backward directions. This is
the setting with the highest computational complexity for the encoder but also the one
with the best compression rate. In figure 1.5 an example of GOP in the RA configuration
is shown.

Figure 1.5. An example of GOP in the Random Access configuration. The coloring
pattern is the same as figure 1.4. From [2].

When performing tests with the VTM, one of these three configurations can be chosen
and the compression rate can be evaluated. Subsequently, considerations can be made
about the best one depending on the specific requirements.
Since the processing results depend on the video sequence subject and the reference soft-
ware configuration parameters, the JCT-VC (Joint Collaborative Team on Video Coding)
has defined the Common Test Conditions (CTC) [12]. It is a set of directives about
how the experiment must be conducted. It contains also a list of test sequences with
different resolutions (ranging from 420 × 240 up to 4096 × 2160), frame rate (20fps to
60fps), and bit depth (8 or 10 bits per sample). Two of these sequences are used in this
work to test the designed AME Architecture, they are cited in the next sections. In table

15

Introduction

1.1 some of the CTC test sequences are reported.

Class Resolution Sequence Frame Count Frame Rate Bit Depth
A1 4096 × 2160 Tango2 294 60 10
A1 4096 × 2160 FoodMarket4 300 60 10
A2 2560 × 1600 CatRobot1 300 60 10
A2 2560 × 1600 ParkRunning3 300 50 10
B 1920 × 1080 MarketPlace 600 60 10
B 1920 × 1080 Cactus 500 50 8
C 832 × 480 BQMall 600 60 8
C 832 × 480 PartyScene 500 50 8
D 416 × 240 RaceHorses 300 30 8
D 416 × 240 BasketballPass 500 50 8
E 1280 × 720 FourPeople 600 60 8
E 1280 × 720 KristenAndSara 600 60 8
F 832 × 480 BasketballDrillText 500 50 8
F 1024 × 768 ChinaSpeed 500 30 8

Table 1.1. Some of the Common Test Conditions video sequences

1.4.2 Encoder complexity breakdown

In [13], the complexity breakdown for the encoder of VVC Test Model 6 is reported. The
tests are performed on six video sequences with resolutions of 720p, 1080p, and 2160p
with the three configurations (LD, RA, AI). A first interesting result is that, depending
on the settings used, the VVC encoder can be from 5× up to 31× more complex than
HEVC. This remarks on how fast the computational complexity is growing in modern
video coding standards and how it’s essential to reduce the burden of general-purpose
processors.
The test outcome is that on average with LD and RA the heaviest stage is Motion
Estimation (ME), taking 47% of the total complexity. It is followed by Intra Prediction
(IP), Transform and Quantization (T/Q), Entropy Coding (EC), Loop Filters (LF), and
Memory (Mem) operations, with 6%, 28%, 10%, 2%, 3% respectively. In the All Intra
configuration, instead, the most complex stage is the IP stage with 29%, followed by
T/Q with 44% and EC with 55%. This latter result is consistent with the former since
in AI there is no forward nor backward prediction, therefore no Motion Estimation is
involved. Figure 1.6 presents the complexity breakdown of the encoder with the LD and
RA configurations.

Of course, to reduce the complexity burden of the VVC encoder it is essential to act on
the most complex stages. With such results, the choice is to focus on the heaviest blocks
and, in particular, on Motion Estimation, Transform and Quantization, Entropy Coding,
and Loop Filters.

16

1.5 – VVC complex blocks’ algorithms and architectures state-of-art

Figure 1.6. VVC encoder complexity breakdown with the LD and RA configurations .

1.5 VVC complex blocks’ algorithms and architec-
tures state-of-art

A state-of-art analysis of VVC’s most complex blocks’ methods and architectures is carried
on to select an algorithm on which to take action to design a relative hardware component.

1.5.1 Motion Estimation
One of the most recent references about Motion Estimation in VVC is "Motion Vector
Coding and Block Merging in the Versatile Video Coding Standard" [14], which is an
overview on the motion vector coding and block merging techniques. In particular, it
shows how the new inter-prediction methods can jointly achieve 6.2% and 4.7% BD-Rate
savings on average with the Random Access and Low Delay configurations. It is helpful
to understand how Motion Vector Coding and Block Merging work in VVC and which
are the differences compared to HEVC.
In "Decoder-Side Motion Vector Refinement in VVC: Algorithm and Hardware Imple-
mentation Considerations" [15] the focus is on the description of DMVR, which is a
method to increase the prediction accuracy of the blocks coded in merge mode using a
refinement strategy. The focus here is on the hardware implementation considerations,
particularly on memory bandwidth requirements and the algorithm’s processing latency.
There is no hardware implementation presented, all the data are extracted from simu-
lations on the VTM 8.0. Compared to the former HEVC, this new coding tool allows
achieving from 4.7% to 6.0% of BD-rate reduction in the Random Access configuration,
at the cost of doubling the decoding time. On the contrary, in "An Approximate Versa-
tile Video Coding Fractional Interpolation Hardware" [16] an implementation on Xilinx
VC7VX330T-3FFG1157 FPGA is present. In particular, the stage taken into consider-
ation is the fractional interpolation filter, whose equation is simplified before describing
the relative hardware component using Verilog HDL. It is interesting to notice how the
simplified filter occupies less area and consumes up to 40% less power consumption than
the exact fractional interpolation hardware.
Beyond these documents, in literature a set of papers about Affine Motion Estimation
is present. They are briefly presented in the next sections since they are of particular

17

Introduction

interest.

1.5.2 Transform and Quantization
There are many documents about Transform and Quantization algorithms and architec-
tures in the literature. This is because the Discrete Cosine Transform and the Quantizer
have been always present in video coding since ITU-T H.261.
"A 2-D Multiple Transform Processor for the Versatile Video Coding Standard" [17], an
FPGA implementation of three transforms is present. In particular, the considered algo-
rithms are DCT-II, DST-VII, and DCT-VIII with a supported block size of up to 32x32
pixels. Similar work but for ASIC TSMC 65 nm has been done in "A Pipelined 2D
Transform Architecture Supporting Mixed Block Sizes for the VVC Standard" [18]. Here a
high-performance pipelined hardware implementation for 2D DST-VII/DCT-VIII trans-
form operations in VVC is presented. The circuit can support clock frequencies up to 250
MHz.
The mentioned works are all done for the VVC encoder, but there is also some effort
put into the decoder in "Lightweight Hardware Implementation of VVC Transform Block
for ASIC Decoder" [19]. Here the implementation of three inverse transform algorithms,
IDCT-II, IDST-VIII, and IDCT-VIII, is presented, targeting an ASIC platform. The
transform block supported dimensions range from 4 × 4 up to 64 × 64. It is important to
notice how the authors support what was previously said about the multitude of works
already present for the DCT. Another work for FPGA is produced in "DCT -II Transform
Hardware-Based Acceleration for VVC Standard" [20], where the focus is on the 1-D and
2-D DCT-II transform. VHDL implementation of the proposed method targets an "Arria
10AX115N3F4512SGES" running at 164MHz.
From Politecnico di Torino comes a "Low-Complexity Reconfigurable DCT-V Architecture"
[21]. In this work, a low-complexity and reconfigurable architecture for DCT-V of length
32 are presented. The results obtained when implementing it on 90 nm CMOS technology
is that it occupies only 90k eq. gates reaching a clock frequency of 187 MHz.
The task of achieving high performance is present in "An FPGA-Based Architecture for
the Versatile Video Coding Multiple Transform Selection Core" [22]. A deeply pipelined
architecture is proposed that implements Multiple Transform Selection (MTS) for block
sizes up to 64×64. It is implemented on a System on a Programmable Chip (SoPC)
on a Cyclone V device. The system clock domain works at 200MHz and it can process
3840 × 2.160 at 64fps for 4 × 4 transform sizes.
There is also a set of works whose aim is to optimize the execution of transform algorithms
[23, 24, 25, 26]. They are not presented since the T/Q stage is not the focus of this thesis
work. In fact, the amount of work already present has moved the attention towards other
stages of the VVC encoding chain.

1.5.3 Loop Filters
For what concerns Loop Filters, in "VVC In-Loop Filters" [27] a detailed overview of the
different kinds of filters used in VVC is reported. There are different filters in this coding
standard, each one with different purposes. The most common filters are the "deblocking"

18

1.5 – VVC complex blocks’ algorithms and architectures state-of-art

ones, whose aim is to reduce blocking discontinuities. Even though this stage contributes
only the 2% on encoding computational cost, a brief analysis has been carried on, to have
a complete sight of all the VVC’s most complex stages.
In "In-Loop Filter with Dense Residual Convolutional Neural Network for VVC" a resid-
ual convolutional neural network (CNN) [28] is proposed which saves computational
resources and allows for reduction the encoding time. For LD, RA and AI configurations,
the saving is 1.52%, 1.45%, and 1.54% respectively. The tests are performed using the
DIV2K dataset produced in the NTIRE 2017 (New Trends in Image Restoration and En-
hancement workshop) and the VTM-4.0.
The idea of a neural network is exploited again "One-for-all: An Efficient Variable Con-
volution Neural Network for In-loop Filter of VVC" [29], where a Variable-CNN-based
in-loop filter is designed. It can handle videos compressed with different Quantization
Parameters (QPs) and Frame Types (FTs) via a single model. This solution can achieve
on average 6.42%, 8.08%, and 7.02% BD-rate reduction under AI, LP, and RA configura-
tions, respectively, compared with the HEVC anchor.
Another proposal for VVC Loop Filters is the one in "Optimized Adaptive Loop Filter in
Versatile Video Coding" [30]. More specifically, the Adaptive Loop Filter (ALF) is the
subject of interest. This filter is a new feature in VVC, it is an LF capable of changing its
characteristics depending on luma and chroma samples intensity. The proposal is of an
optimized ALF framework which is 25% faster than the standard one, with negligible cod-
ing performance change under Random Access configuration. In conclusion, the tools for
Loop Filtering currently treated in literature are the Deblocking, SAO (Sample Adaptive
Offset), and ALF ones. The first two were still present in High-Efficiency Video coding,
only the last one is new in VVC. Generally, there is a tendency to exploit Convolutional
Neural networks to improve the compression ratio.

1.5.4 Entropy Coding

Like in section 1.5.3, for this stage, there is a complete overview in [31] which is worth
mentioning. It shows how much complexity is present in VVC, which is added to improve
the compression ratio. And more computational effort is added in [32], where additional
statistical dependencies between quantization indexes are utilized. This complicates
the procedure of entropy coding, increasing the encoding time by 10%, but improves the
compression ratio too, with bit-rate savings of 1.5%, 1.0%, and 0.8% (AI, RA, LD).
VVC standard adopts the trellis-coded quantization, an algorithm which reduces the
size of some DCT coefficients while recovering others to take their place. Like many
other stages in the processing chain, it allows high compression efficiency, but also high
complexity and low throughput capacity. In "Low Complexity Trellis-Coded Quantiza-
tion in Versatile Video Coding" [33] a low complexity trellis-coded quantization scheme
is proposed. There is actually no hardware implementation of the method, only simula-
tions on the VVC Test Model. Results show that the proposed scheme achieves 24% and
27% quantization time savings with All Intra and Random Access configurations, respec-
tively. As predictable, lower computational effort leads to higher memory or bandwidth
requirements, in fact, there is a 0.11% and 0.05% BD-Rate increase.

19

Introduction

In conclusion, there are a few hardware implementations of VVC’s most complex stages,
except for the Transform algorithm. Considering all the analyzed works, what happens
when acting on the processing chain is that the compression ratio and encoding time or
computational complexity, change in the opposite direction. Adding features to the
algorithm typically reduces the bit-rate, but complicates the encoding process, like in
[15, 29, 32]. On the contrary simplifying the methods used, results in reducing the
encoding time but at the cost of higher bandwidth and memory requirements. This
happens in [16, 28] and it is the direction taken in this thesis work.

The reason behind this choice is that VVC is already able to achieve approximately
50% of bit rate savings against its predecessor, but with up to 31× the computational
complexity [13]. Consequently, the consideration made up is that the real need is to
reduce this high complexity rather than increase an already good compression rate. After
this brief study on the heaviest VVC encoding components, the choice has been to focus
on Motion Estimation, since it is the one with higher computational complexity and
because it includes a vast family of algorithms on which it is possible to act. In particular,
the considered one is Affine Motion Estimation.

20

Chapter 2

Affine Motion Estimation
simplified algorithm

2.1 The Affine Motion Model

Pakmadan et al. [13] report that, among the sub-parts of Motion Estimation (ME), affine
search is the most important one in terms of computational requirements. As already
mentioned in section A.2.1, ME exploits temporal redundancy by storing or transmitting
information about elements’ movement in an already decoded frame to reconstruct another
frame. For the encoder to recognize these movements it has to search for matching blocks
in the current ("to-be-encoded") and reference frames. The searching and consequently the
reconstruction algorithms were based on the translation of pixel blocks until HEVC and
the early version of VVC. In this case the method is referred to as Translational Motion
Estimation (TME). It is quite simple in terms of implementation and computational effort
but does not allow the identification of complex motions. What happens in practice is that,
if objects in a picture perform complex movements like distortion, rotation or shearing,
TME will not be able to identify them. Figure 2.4 shows an example of affine motion
made by a combination of zoom and shearing.

Figure 2.1. An example of pixel block affine motion, made by a combination of zoom
and shearing. Video source from "VQ Analyzer" sample streams [3].

21

Affine Motion Estimation simplified algorithm

If the translational motion model does not include such complex movements, the pre-
diction error increases and so does the bit rate too, thus more sophisticated models have
been searched through the years to handle non-translational motions.
Choi et al. in [4] present a complete history of how these models changed through time
until an Affine Motion model was finally introduced in Versatile Video Coding. They
report that at the 11th JVET (ITU’s Joint Video Experts Team) meeting in July 2018,
an AME model was integrated into VTM2 based on [34].

2.2 Affine Motion model in VVC
The Joint Video Expert Team (JVET), which is a partnership of ITU-T Study Group 16
Question 6 (known as VCEG) and ISO/IEC JTC 1/SC 29/WG 11 (known as MPEG),
established the Versatile Video Coding (VVC) draft 8 and the VVC Test Model 8 (VTM8)
algorithm description and encoding method at its 17th meeting (7–17 January 2020, Brus-
sels, BE) [35]. In this document, a description of the Affine Motion model currently in
use in VVC is detailed.
In HEVC only one motion vector is used and that is sufficient since it identifies trans-
lational motion only. In the VVC Affine Motion model instead, the motion field of a
pixel block is described by motion vectors relative to some specific points called Control
Points (CPs). The number of CPs determines the predictable movement complexity.
Figure 2.2 shows the motion models types: in HEVC (a); in VVC with two (b) and six (c)
control points. When two CPs are used, the model is called a four-parameter model,
otherwise it’s a six-parameter one. The parameters are simply the coordinates of the
Control Point Motion Vectors (CPMPs). Since a Motion Vector mv has two coordinates
(mvh, mvv) (horizontal ad vertical), the number of parameters in a model is simply double
the CPs used.

Figure 2.2. Three different motion models types: HEVC Translational Motion Model
(TMC) (a); VVC Affine Motion Model with two (b) and six (c) control points.

In VVC, CMPVs for each Coding Unit are derived by the encoder with the Affine
Motion Estimation algorithm. Then, they are sent by the decoder which exploits them to

22

2.2 – Affine Motion model in VVC

reconstruct the encoded frame using the Affine Motion Compensation (AMC) algorithm.
Before detailing AME it is essential to present how AMC works. Compensation is not per-
formed at pixel level using the CPMVs, otherwise, the extremely high complexity burden
would be unaffordable in practice [34]. Actually, a sub-block level motion compensation is
employed, where the sub-block dimension is 4 × 4.
Let mv0, mv1, mv2 be the CPMVs of a CU with height h and width w. The Motion vector
mv = (mvh, mvv) for a 4 × 4 sub-block with coordinates (x, y) can be calculated asmvh(x, y) = mvh

1 −mvh
0

w x − mvv
1 −mvv

0
w y + mvh

0

mvv(x, y) = mvv
1 −mvv

0
w x + mvh

1 −mvh
0

w y + mvv
0

(2.1)

when the 4-parameter model is used, while{
mvh(x, y) = mvh

1 −mvh
0

w x + mvh
2 −mvh

0
h y + mvh

0
mvv(x, y) = mvv

1 −mvv
0

w x + mvv
2 −mvv

0
h y + mvv

0
(2.2)

is applied with the 6-parameter model. In VVC there are two Affine Motion Estimation
modes: AMVP (Advanced Motion Vector Prediction) mode and merge mode. In the first
one, an algorithm is designed to predict the MVs of Coding Units. In the second one, the
MVs in a CU are derived from the neighboring CU, therefore there are no complex calcu-
lations to be performed, the VTM must only look at the neighboring CUs and copy some
of their motion vectors depending on the Coding Units are coded. For the affine AMVP
mode instead, the prediction is generated starting from two triples of MV candidates
with which Affine Motion Compensation is applied to understand which one could be the
best for the motion prediction. The algorithm and so the hardware accelerator has been
designed to perform Affine Motion Estimation in the AMVP mode, whose algorithm is
described in section

2.2.1 Affine AMVP prediction
Affine AMVP mode can be applied on CUs with both width and height larger than or
equal to 16. The upper limit on the CU dimension depends on the VTM settings and can
reach up to the maximum allowed Coding Unit size, which is 128×128. The motion model
exploited in each case can have 4 or 6 parameters. The prediction is generated starting
from triplets (or couples, depending on the number of parameters), of MVs candidates
called CPMVP (Control Point Motion Vector Predictors). The number of CPMVPs in
the candidates list is two and they are selected among four types of Control Point Motion
Vectors:

1. Inherited affine AMVP candidates. They are derived from the affine motion model
of the neighboring Coding units. Figure 2.3 shows the considered blocks. In total
there are two possible inherited predictors, one selected from group A : {A1, A0},
and one from B = {B1, B0, B2}. The candidate selection among each group is
done simply by taking the first available CPMVP and discarding the other ones,
following list order. When a neighboring affine CU is identified, its control point

23

Affine Motion Estimation simplified algorithm

motion vectors are used to derive the CPMVP (Control Point Motion Vector Pre-
dictor) candidate in the candidates list of the current CU.
If from the first selection, not enough MVs are found, the block A0 is checked. If it
is coded in affine mode, the CPMVs of the CU which contains the block are attained
and set as (v1, v2, v3) (if A0 exploits the 4-par model, the last vector is absent).
When block A0 is coded with the 4-parameter affine model, the last CPMV of the
current CU is calculated according to v2, and v3. In case that block A is coded with
6-parameter affine model, it is calculated according to v2 , v3 and v4.

2. Constructed affine AMVP candidates CPMVPs that are derived using the trans-
lational MVs of the neighbor Coding Units. With reference to figure 2.3, if any
of the neighboring 4 × 4 sub-blocks belongs to a CU that is inter-coded, their
MV is indicated as MVX , where X is the block name. Three sets are formed,
S0 = {B2, B3, A2}, S1 = {B1, B0}, S2 = {A1, A0}. The two CPMVPs are the first
and second triplet of candidates picked from S0, S1, and S2 groups’ MVX , following
list order. If the CU is coded with the 4-parameter model, S2 is discarded.

Figure 2.3. CU neighboring blocks in a frame.

3. Translational MVs from neighboring CUs. They are collected if affine AMVP
list candidates are still less than two after Inherited affine AMVP candidates and
Constructed AMVP candidates are checked. When available, mv0, mv1, mv2 are
added, in order, as translational MVs to predict all control point MVs of the current
CU.

4. Zero MVs: if the affine AMVP list is still not full, zero MVs are used to fill it.

The listing order is important since candidates of higher types in the list, if available,
have priority on the lower types. When the list is full of candidates of the higher kind,
no more MVs are considered. At this moment, Motion Compensation is applied to each
one of the two candidates and the Sum of Absolute Transformed Differences (SATD) is
calculated. The candidate providing the minimum SATD cost is chosen as the "best" one
and set as {mv

(0)
0 , mv0

1}.

24

2.3 – The proposed algorithm

Figure 2.4. What happens in the VVC encoder when choosing the best candidate. The
process in figure is repeated for each CPMVP and the the one with the lowest SAD is
chosen. Video source from "VQ Analyzer" sample streams [3].

Subsequently, an iterative algorithm is applied [34]. In each i-th step, (starting with
i = 0), a new {mv

(i+1)
0 , mv

(i+1)
1 } is computed, which replaces {mv

(i)
0 , mv

(i)
1 } if it provides

a lower SATD cost. This refinement loop il repeated N times in the worst case, with N
adjustable in the VTM settings. It consists in many steps which require to:

• Apply the Sobel operator on the CU to be encoded. That means filtering a 128×128
pixel block by multiplying it with a 128 × 128 square matrix, in the worst case.

• Solve a linear system of M equations, with M equal to the number of model parame-
ters. In the worst case, with 6-parameter model, the solution of a 6 equations linear
system must be computed.

• Performing AMC on {mv
(i+1)
0 , mv

(i+1)
1 } and compute the SATD cost to decide if

these CPMVP constitute a better estimation than {mv
(i)
0 , mv

(i)
1 }.

This last iterative algorithm has high computational complexity compared to the pre-
vious ones. Consider that the best-candidate choice requires just one AMC while the
refinement process performs it N times. Each iteration requires the calculation of tens of
motion vector using 2.1 or 2.2 and then performing 128 · 128 = 16384 memory accesses
just for the AMC. Finally, 16384 differences and a 128 × 128 matrix multiplication must
be performed for the SATD [36].
In this thesis work a simplified algorithm is proposed compared to the one currently
present in the VTM.

2.3 The proposed algorithm
The idea of a simplified algorithm starts considering the possibility of leaving out the
iterative refinement process described in 2.2.1 while making the candidate construc-
tion method more sophisticated. In addition, the AMC process is simplified too, to make
also the best-candidate choice more lightweight in terms of complexity.
Like the exact AMPVP algorithm, the simplified one can be applied on CUs with both

25

Affine Motion Estimation simplified algorithm

width and height larger than or equal to 16, but no greater than 64. This choice has been
done in order to simplify the hardware architecture. Also here both 4 and 6 parameter
models are supported, and prediction is generated starting from two MVs candidates
called CPMVP (Control Point Motion Vector Predictors).
The list is built in the same way as in the exact VTM method (section 2.2.1), the only
change is the way of constructing the candidates.

2.3.1 Proposed candidate construction method
The proposed method is a slight modification of the one in [34]. It starts considering
the neighboring 4 × 4 blocks of the CU to be encoded, as shown in figure 2.5, together
with their respective Motion Vectors. Indicating the constructed candidate MV triplet as
{mvp0, mvp1, mvp2}, the algorithm works as below:

1. With reference to figure 2.5, collect motion vectors in three groups:
S0 = {MVA, MVB, MVC}, S1 = {MVD, MVE} and S2 = {MVF , MVG}, where MVX

is the MV from block X. If one neighboring block is not inter coded, its MV is set
as unavailable and therefore discarded.

2. ∀ (MVS0, MVS1, MVS2), with MVy ∈ y, derive the distrortion

D2(MVS0, MVS1, MVS2) = |MVS2 − MVp|2 (2.3)

MVp here is computed from an approximated version of 2.1 with mv0 = MVS0,
mv1 = MVS1 and (x, y) = (0, h):

MV h
p = −⌊ (MV v

S1−MV v
S0)

w h⌋ + MV h
S0

MV v
p = +⌊ (MV h

S1−MV h
S0)

w h⌋ + MV v
S0

(2.4)

3. Set {mvp0, mvp1, mvp2} as the (MVS0, MVS1, MVS2) triplet with the lowest distor-
tion value.

In [34], which presents a similar algorithm, the distortion is defined as

D(MVS0, MVS1, MVS2) = |MVS2 − MVp| (2.5)

Since

D = |MVS2 − MVp| =
√

(MV h
S2 − MV h

p)2 + (MV v
S2 − MV v

p)2 =
√

D2 (2.6)

considering the square value of D allows saving the computation of a square root.

In Equation 2.4, the use of the floor(x) = ⌊x⌋ function is made to model the trunca-
tion rounding method applied, which saves two bit in the number representation, since
the minimum value of h

w is

26

2.3 – The proposed algorithm

Figure 2.5. CU tu be encoded with its neighboring blocks and relative motion vectors.

min
(

h

w

)
= hmin

wmax
= 16

64 = 1
4 (2.7)

This means that the maximum number of shifts towards the right is 2. The rounding
bias is the average error when discarding d digits after a rounding operation. It measures
the tendency of a round-off scheme towards errors of a particular sign. For truncation,
with d = 2, the Rounding Bias is −3/8, as shown in table 2.1, where X is the integer
part of any bit length. This value becomes a problem when the output of the rounding
is the input of a feedback chain. Since this is not the case, this Rounding Bias value is
considered satisfactory.

Number ⌊x⌋ Error
X.00 X 0
X.01 X −1/4
X.10 X −1/2
X.11 X −3/4

Table 2.1. Error in the truncation rounding method

2.3.2 Best-candidate choice simplified algorithm
The exact VTM best-candidate choice algorithm requires performing AMC of the current
CU to be encoded and compute the SATD with the reference frame. To perform Motion
Compensation, all the MVs of each 4 × 4 block must be computed. In the worst case,
with a 128 × 128 Coding Unit, (128 × 128)/(4 × 4) = 1024 MVs must be computed using
equation 2.1 or 2.2. Moreover, affine movements include rotation and shearing, therefore
to resolve pixel overlapping, 6-tap filtering is required [9].
The proposed simplified algorithm reduces the number of Motion Vectors to be computed

27

Affine Motion Estimation simplified algorithm

and saves computational complexity by avoiding the use of the 6-tap filter. The algorithm
works as follows

1. Divide the Current CU to be encoded in 16 × 16 sub-blocks.

2. For each 16×16 sub-block, collect their upper-left, upper-right, lower-left, lower-right
4 × 4 sub-blocks and label them as the representative blocks for the 16 × 16 sub-
block. Figure 2.6 shows an example of 32 × 32 CU split into four 16 × 16 sub-blocks
(in blue), each one with its four representatives (in red).

3. Perform Transational Motion Compensation (TMC) on each representative block,
computing the representative’s Motion Vectors using the approximated version of
the Affine Model Equations (2.1 and 2.2) shown in 2.8.

{
mvh(x, y) = a2x + b2y + mvh

0
mvv(x, y) = a1x + b1y + mvv

0
(2.8)

with

a1 = ⌊mvv
1 − mvv

0
w

24⌋ 1
24 a2 = ⌊mvh

1 − mvh
0

w
24⌋ 1

24 (2.9)

b1 =
{

⌊mvh
1 −mvh

0
w 24⌋ 1

24 if sixPar = 0
⌊mvv

2 −mvv
0

h 24⌋ 1
24 if sixPar = 1

b2 =
{

−⌊mvv
1 −mvv

0
w 24⌋ 1

24 if sixPar = 0
+⌊mvh

2 −mvh
0

h 24⌋ 1
24 if sixPar = 1

(2.10)
where

• (x, y) are the representative block’s top-left pixel horizontal and vertical coor-
dinates.

• mv0 = {mvh
0 ; mvv

0}, mv1 = {mvh
1 ; mvv

1}, mv2{mvh
2 ; mvv

2} is the MV triplet of
the current MV candidate for the Motion Estimation.

• h and w are the height and with of the Current CU, respectively.
• sixPar is a flag indicating whether the motion model used has four (sixPar = 0)

or six (sixPar = 1) parameters.

The multiplication and division by a factor 24 take into account the intention of dis-
carding two LSBs in the binary expression of (a1,2, b1,2) while keeping four fractional
bits. This allows saving two bits in some components in the hardware architecture
while still keeping a low Rounding Bias. Since these bits are placed after four frac-
tional bits, the Rounding Bias here is 2−4 times the one computed in Section 2.3.1.
Figure 2.7 shows how TMC is applied on the example CU depicted in figure 2.6. In
red, the representative blocks of the CU to be encoded, in green their relative blocks
in the reference frame, in the position calculated applying TMC.

4. Compute the SAD between the 4×4 motion-compensated representative blocks and
their relative reference frame blocks. The candidate associated with the lowest SAD
value is the output of the motion estimation.

28

2.3 – The proposed algorithm

Figure 2.6. an example of 32 × 32 CU split into four 16 × 16 sub-blocks (in blue), each
one with its four representatives (in red).

Figure 2.7. How TMC is applied on an example CU.

29

Affine Motion Estimation simplified algorithm

2.4 Comparison between the proposed algorithm and
the exact one

2.4.1 Computational complexity
The approximations introduced in the simplified algorithm allow to save computational
resources. Since Motion Compensation is not applied on the whole CU but the repre-
sentative blocks only, the number of MVs to be computed is reduced by a factor of 4.
The same holds for the SAD algorithm: the number of subtractions is reduced by the
same factor. Moreover, since the SAD is computed instead of the SATD, the Hadamard
transform is no longer required. Finally, since the TMC is applied instead of AMC, the
6-tap filter is avoided. Table 2.2 is a summary of the cited advantages.

Requirements for a N × N CU VTM exact AME Proposed Algorithm
MV to be computed N2

16
N2

16 · 1
4

Subtractions required N2 N2 · 1
4

6-tap filter required Y es No
N × N Hadamard transform required Y es No

Table 2.2. Complexity savings of the Approximated AME algorithm

Another advantage is that this algorithm can be implemented in hardware without
using complex components. In fact, the operations involved include additions, products,
and subtractions only. There are no complex functions or division units required. Since the
divisors are all powers of two, the calculations are reduced to shift operations towards
the left or right.
When the algorithm is implemented as a hardware accelerator, the computational load
of the processor running the VTM software is reduced, being all the AME operations
handled by the former, the AME contribution to its computational effort is almost zero.

2.4.2 Compression Ratio
To compare the VTM exact AME to the proposed method in terms of compression ratio,
this latter is implemented in software using MATLAB tool. The construction algorithm
script is reported in (B.1) while the Affine Motion Estimation one is in (B.2). To perform
the tests under the Common Test Conditions, described in section 1.4.1, two video streams
have been coded using the VVC Test Model 8.0.

The installation files of the VTM-8.0 can be downloaded from VVCSoftware_VTM ’s
GitLab repository1. After cloning it on a Linux system, having make tool and Python
already present on it, the following script is enough to complete the installation.

1https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/tree/VTM-8.0/

30

https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/tree/VTM-8.0/

2.4 – Comparison between the proposed algorithm and the exact one

1 JOBS_NUMBER=4 #Jobs number
2 mkdir build
3 #Generate Linux Release Makefile:
4 cd build
5 cmake .. -DCMAKE_BUILD_TYPE=Release
6 #Generate Linux Debug Makefile:
7 cd build
8 cmake .. -DCMAKE_BUILD_TYPE=Debug
9 #Start the installation

10 make -j JOBS_NUMBER

For the last command, it is important to set the number of jobs that make uses for
the installation. Otherwise, the process would not limit that: this could result in some
machines in the procedure failure. This is done by setting the JOBS_NUMBER variable to
an appropriate value. For the Linux system used for this thesis work (a Lubuntu 64-bit
distribution), four jobs are sufficient.
After the installation, the VTM encoder can be used to issue the ./EncoderAppStaticd
command. The input and output files are YUV files. They contain non-encoded video
streams where each frame is represented explicitly and each pixel is associated with a
triplet of integers representing the luma and chroma components. Assuming an input
video stream named RAW_INPUT.yuv at a framerate FRAMERATE and resolution FR_W×FR_H,
the command to encode a number FRAME_NUMBER of frames is the following.

./EncoderAppStaticd -c CONFIG_FILE.cfg -i RAW_INPUT.yuv \
-o CODED_OUT.yuv -wdt FR_W -hgt FR_H -fr FRAMERATE -f FRAME_NUMBER

The VTM encoder allows to generate two internally reconstructed files named CODED_OUT.yuv
and a CODED_OUT.bin. The second one in particular is essential to analyze the encoding
information, like the type of each frame or, most importantly for this thesis work, when
Affine Motion Estimation is used and which are the Motion Vectors involved in each case.
Notice that ./EncoderAppStaticd requires a CONFIG_FILE.cfg, like the one in Report
2.1. It is essential to configure the encoding parameters, like

• MaxCUWidth, MaxCUHeight: They are the maximum allowed values for the Coding
Unit Width and Height. They are set to 64 since the maximum allowed CU size in
the proposed algorithm is 64 × 64.

• InternalBitDepth: Is the codec operating bit depth of both the input and the
internally reconstructed file. It is set to 8 since the test video sequences used are on
8 bits. This means that the (Y,U,V) components of the .yuv files can assume values
in the range [0,255].

• Affine: Specifies if Affine Motion Estimation is allowed. Since the whole study is
based on that kind of ME, it is important to enabling this flag by setting it to 1.

31

Affine Motion Estimation simplified algorithm

Report 2.1. CONFIG_FILE.cfg example
#======== Unit d e f i n i t i o n ================
MaxCUWidth : 64 # Maximum coding u ni t width in p i x e l
MaxCUHeight : 64 # Maximum coding uni t h e i g h t in p i x e l

#======== Coding S t r u c t u r e =============
I n t r a P e r i o d : −1 # Period o f I−Frame (−1 = only f i r s t)
DecodingRefreshType : 0 # Random Accesss 0 : none , 1 :CRA, 2 : IDR
GOPSize : 8 # GOP S i z e (number o f B s l i c e = GOPSize−1)

#======== Quantizat ion =============
QP : 32 # Quantizat ion parameter (0 −51)
MaxDeltaQP : 0 # CU−based multi−QP o p t i m i z a t i o n

#=========== Misc . ============
Interna lBitDepth : 8 # codec o p e r a t i n g bit −depth

#============ NEXT ====================

General
CTUSize : 128
LCTUFast : 1
A f f i n e : 1
SbTMVP : 1
IBC : 0 # turned o f f in CTC
AffineAmvr : 0
LMCSEnable : 1 # LMCS: 0 : d i s a b l e , 1 : enable

FastMrg : 1
AMaxBT : 1
FastMIP : 0
FastLocalDualTreeMode : 2

Encoder o p t i m i z a t i o n t o o l s
AffineAmvrEncOpt : 0
MmvdDisNum : 6
ALFAllowPredef inedFi l ters : 1
ALFStrengthTargetLuma : 1 . 0
ALFStrengthTargetChroma : 1 . 0
CCALFStrengthTarget : 1 . 0
DO NOT ADD ANYTHING BELOW THIS LINE
DO NOT DELETE THE EMPTY LINE BELOW

Exploiting the VTM reference software, two example streams from the Common Test
Conditions [12] have been coded. Moreover, an additional test video sequence has been
used for the proposed algorithm performance estimation. It is a video stream taken from
ViCueSoft’s "VQ Analyzer" sample streams [3]. This latter is considered relevant when
studying Affine Motion Estimation since it presents a considerable amount of objects
moving in different ways: rotation, distortion, and zooming. Table 2.3 summarizes the
three test sequences used for estimating the proposed algorithm performance.

The encoded .bin files are given as input to VQ Analyzer. Figure 2.8, shows the soft-
ware’s GUI (Graphical User Interface) and an example of a dialog screen showing motion
information. This functionality is exploited to extract MVs candidates of thirty different
Motion Estimation cases, which are the test cases used for the algorithm performance es-
timation (and later as test sequences for the hardware implementation logical verification).
In table C.1 the main examples identifiers are shown for each test case. In particular, the

32

2.4 – Comparison between the proposed algorithm and the exact one

Class Resolution Sequence Frame Count Frame Rate Bit Depth
D 416 × 240 RaceHorses 300 30 8
D 416 × 240 BasketballPass 500 50 8
- 432 × 240 VQ_sample 50 50 8

Table 2.3. The video test sequences used.

reported fields are:

• Ex. No.: "Example Number" is a unique identifier for each test case. Numbers
start from 3 since examples (0,1,2) were initial tests for the constructor only. They
have been discarded.

• Stream: It addresses the particular test sequence (among the ones in table 2.3)
from which the Current (to-be-encoded) and Reference frames have been extracted.

• POC: "Picture Order Count", is the POC of the Current frame in the given Stream.

• (x0, y0) are the coordinates of the Current CU (the Coding Unit considered) in the
Current frame.

• Par: The number of model parameters in the example

• (CUw, CUh): Current CU width and height, respectively.

Figure 2.8. VQ Aalyzer software. On the left, the "Prediction Mode" view. On the right,
some extracted motion information.

Using the test cases with all the Motion Vector candidates on the Matlab Model, some
data about the Construction and Estimation algorithms presented in sections 2.3.1 and
2.3.2 have been gathered. At first, some considerations are done about the proposed
candidate construction algorithm. In particular, table C.2 is reporting:

33

Affine Motion Estimation simplified algorithm

• VQ Comply : This flag indicates if, for the given example, the motion estimation
output from the VTM is the same as the approximated algorithm, considering that
for this latter the constructed candidates are given from the proposed construction
method. In the last row, "Comply Ratio" informs that the AME output is matched
in the 73% of the total tests. What happens when the matching does not occur is
discussed subsequently.

• "Any Constructed": The value of this field is "V" when at least one of the candi-
dates MV must be computed using the constructor. If the construction algorithm is
not required, for example, because all the candidates are "Inherited affine AMVP"
ones, "Any Constructed" is set to "X". In the last row, "Constructor usage" is
computed as 0.7. This means that the constructor algorithm is used in 70% of the
cases. This high value shows how much the constructor algorithm is used when
performing Affine Motion Estimation.

• Constr. Match: "Construction Match" is "V" if the Motion Vectors constructed
by the exact VTM are equal to the proposed constructor output, otherwise it’s "X".
In the last row, "Cons. Match Ratio" indicates that in 0.35% of the tested cases
this situation happens. This mismatch in the construction is reasonable considering
that the two methods are different.

• "VQ C. w/o constr.": "VQ Compliance without constructor" column brings some
considerations about the effectiveness of the proposed constructed method. This
flag is "1" when, for the given example, the motion estimation output from the
VTM is the same as the approximated algorithm, considering that for this latter
the constructed candidates are given from the exact VTM constructor. When
this happens, the "Comply Ratio" rises from 0.73 to 0.80. In short, the proposed
constructor makes the approximated estimation algorithm diverge from the exact
one. Whether this can bring benefit to the encoding performance or not, depends on
the achieved compression ratio when this constructor is enabled. This is discussed
subsequently.

After these considerations about the constructor behavior, a metric for the estima-
tion of the compression ratio achieved with the algorithm is searched. What is done in
other works about Affine Motion Estimation [34, 4, 37, 38] is to integrate the proposed
procedures in the VTM software directly acting on its source code. After that, the Bjon-
tegaard Delta Bitrate (BD-BR) [39] is calculated. This is a commonly used metric
to measure the compression gain when some modifications are brought to an encoding
algorithm. This would be feasible since VTM is an Open Source software, but little
documentation is available about it. This has made impossible the most common option.

The metric used in this thesis work is a signal energy ratio: it is computed as follows.
Let RCU1, RCU2 be the residual blocks for each example from table C.1, when Affine
Motion Compensation is done using the MVs from the approximated algorithm and the
exact one, respectively. If Ndct,1 and Ndct,2 are the number of DCT-II coefficients to store
99% of RCU1, RCU2 signal energy, the energy ratio is calculated as

34

2.4 – Comparison between the proposed algorithm and the exact one

Er = Ndct,1

Ndct,2
(2.11)

If Er > 1, using the approximated algorithm increases the energy content of the residual
signal, thus reducing the compression ratio. Otherwise, the amount of information to be
transmitted is lowered.
Moreover, an additional parameter has been evaluated. Let C1, C2 be the number RCU1,
RCU2 pixels whose intensity if different from zero respectively. The considered parameter
can be computed as

Cr = C1

C2
(2.12)

If Cr < 1 it means that the affine motion-compensated CU is closer to its corresponding
block in the reference frame when the approximated algorithm is used.
Both Er and Cr are evaluated using scripts (B.2,C.1,C.2) reported in the appendix. Table
C.3 summarizes the test results on the 30 cases reported in Table C.1. Besides the already
explained fields, there is the Parameters one which reports the models used for the
specific example. "6 percentage" indicates that "50%" of the tested cases exploit the 4-
parameter model, while the other one uses the 6-parameter one. This is intentional, to
have a balanced variety of example situations. The field "No Compliance Reason"
reports the reasons why there is no matching between the motion estimation output from
the VTM and the approximated algorithm. They are summed up in short identifiers,
whose meaning is the following:

• Constructed Candidate Mismatch (CCM): the estimation algorithm correctly
chooses the Constructed candidate, but this is not equal to the one constructed by
the exact algorithm.

• Wrong choice (X instead of Y): The constructed candidate, if present, is equal
to the one obtained from the exact algorithm. Nevertheless, the proposed estimator
chooses the candidate of type X, instead of Y. Candidates can be of type I (Inherited),
C (Constructed), or T (Translational).

• CCM + Wr. Ch. (X instead of Y): it is the same as the previous case, but
this identifier informs also that if there was no Constructed candidate mismatch the
proposed estimation algorithm would have complied with the exact one.

These additional notes could be useful to tune the algorithm in an eventually modified
version, to improve the Er value.
Two important indicators from Table C.3 is Er,AV E and Cr,AV E , which are the average
values of Er and Cr among all the tested cases. The measured values are Er,AV E ≃ 1.02
and Cr,AV E ≃ 0.99. This means that the average energy of the residual signal is slightly
increased by 2%, while the Motion Compensated CUs are almost unchanged, on average,
when using the approximated algorithm instead of the exact one.
Since the bit-rate depends on the DCT of the residual signal, the main parameter to be
taken into account to estimate the compression ratio of the algorithm is the energy ratio

35

Affine Motion Estimation simplified algorithm

Er. The measured value is greater than one: this means that the compression ratio is
slightly increased when using the approximation algorithm. This can be considered the
computational complexity reduction (described in Section 2.4.1) drawback. As already
mentioned and confirmed by other works on VVC analyzed in section 1.5, the compression
ratio and the computational complexity, change in the opposite direction. In this case,
simplifying the methods used, results in reducing the complexity but at the cost
of higher bandwidth and memory requirements. Whether this proposed method can be
adopted in an encoding system or not, depends on the target requirements.

2.5 Comparison with other works on AME

2.5.1 Other works on Affine Motion Estimation
A thorough search of the relevant literature yielded other articles about affine motion
estimation which propose modifications on parts of the AME algorithm, in some cases in
a way similar to what happens in this thesis work.
In "An Improved Framework of Affine Motion Estimation in Video Coding" [34], several
modifications to the standard AME are proposed.

1. Some changes to the Affine Inter Mode algorithm are proposed. These modifications
make the method similar to the Affine Merge mode, reducing the computational
complexity.

2. The authors show with some example cases that the CPMVs (Control Point Motion
Vectors) tend to be similar to each other. Relying on this fact, they propose to
transmit CPMVs differences (MV0,MV0 − MV1,MV0 − MV2). These latter are
smaller than the actual MVs: with this method the compression ratio increases.

3. The number of CPMVP (Control Point Motion Vector Predictors) in the VTM
standard candidate list of is two. The authors propose to increase this value to
four, increasing the complexity of the algorithm but improving the compression gain
by adding more chances to find the optimal MVs.

4. There is a modification in the iterative refinement algorithm described in Section
2.2.1. In particular, the way in which {mv

(i+1)
0 , mv

(i+1)
1 } is calculated starting from

{mv
(i)
0 , mv

(i)
1 } is changed. This new method is claimed to improve estimation accu-

racy.

5. The authors propose to merge the Normal (from Translational Motion Estimation)
and Affine Merge Mode into a "Unified Merge Mode". According to their considera-
tions, this should be done to simplify the syntactic structure of the encoded stream.

To measure the performance of this framework, it has been implemented on JEM-7.0
[11]. There is an average BD-BR reduction of 0.82%, while the encoding and decoding
time (Tenc,AV E , Tdec,AV E) is increased of 1% and 3% on average, respectively.

36

2.5 – Comparison with other works on AME

In "Design of efficient Perspective AME/AMC for VVC" [4], there and additional
CPMV is added to the three CPMVs already present in the Affine Motion Model. This
makes the modified algorithm an "8-parameter model", it is shown in figure 2.9. Similar to
what happens when moving from a 4-parameter model to a 6-parameter one, introducing
the 8-parameter possibility enables to predict of more complex movements, like blocks
distortion. This complicates the AME algorithm while achieving an average BDBR
reduction: ∆BDBRAV E = −0.1%.

Figure 2.9. The 8-parameter model proposed in [4]. Figure from [4].

In "Fast Affine Motion Estimation for VVC" [37], the idea proposed is to reduce the
number of times the AME is performed by avoiding it when it does not bring significant
advantages in terms of compression capabilities.
Let JAME and JCME be the Rate-Distortion cost of Affine Motion Estimation and Con-
ventional Motion Estimation, respectively. If for a given Coding Unit p(A|Spar) is the
probability that JAME < JCME when the CU’s parent prediction mode is "Skip Mode",
the authors have calculated p(A|Spar) = 9% on average. With such a result, their Fast
Affine Motion Estimation algorithm avoids AME for all the sub-blocks in a Coding Unit
whose prediction mode is "Skip Mode". This modification results in a reduction of the
encoding time spent performing AME (TAME) by 37%. In terms of compression ratio,
there is a ∆BDBRAV E = +0.1%.

In "An improved Fast AME Based on Edge Detection Algorithm for VVC" [38] there
are two proposed techniques:

1. Fast gradient prediction: This is a technique that can be applied to the iterative
refinement algorithm described in Section 2.2.1. This one is a gradient descent
algorithm, whose speed is constant. The authors propose the introduction of a
coefficient called "momentum", which can accelerate or decelerate the search for
the best MV.

2. AAMVP for 6-parameters: In VVC the AAMVP (Affine Advanced Motion Vector
Prediction) is used for the 4-parameter model only: the third motion vector is used
for understanding the quality of the other two MVs. In the way this algorithm is

37

Affine Motion Estimation simplified algorithm

designed, it cannot be used for the 6-parameter model. The authors propose a way
to use AAMVP with the 6-parameters model too: they use the motion-compensated
block proportions to estimate how much the usage of 3 MVs is appropriate.

These two modifications to the VVC standard complicate the encoding process, with
an average encoding time increase of the ∆Tenc,AV E = +15%, but with a BDBR variation
of ∆BDBRAV E = −23%.

2.5.2 Comparison and conclusions
Table 2.4 summarizes the main ideas and results about the other works on AME presented
in section 2.5.1, together with the results from this thesis work.

Work Proposal Performance

"An Improved Framework of Affine
Motion Estimation in Video Coding"

Simplified Affine Inter mode ∆BDBRAV E = −0.82%
MV difference coding ∆Tenc,AV E = +1%
Increase the candidate list size ∆Tdec,AV E = +3%
Iterative refinement algorithm improvements
Unified Merge Mode

"Design of efficient Perspective
AME/AMC for VVC" New 8-parameter model ∆BDBRAV E = −0.1%

"Fast Affine Motion
Estimation for VVC" AME usage optimization ∆BDBRAV E = +0.1%

∆TAME = −37%
"An improved Fast AME Based on

Edge Detection Algorithm for VVC" Fast gradient prediction ∆Tenc,AV E = +15%

AAMVP for 6-Parameters ∆BDBRAV E = −23%
Proposed method New candidate construction algortihm ∆Er,AV E ≃ +2%

Simplified AME algorithm

Table 2.4. Main ideas and results about all the works on AME.

This brief study about other works on AME remarks on what has been observed in
section 1.5, when studying VVC’s most complex blocks. When acting on the processing
chain, the compression ratio and encoding time behave the opposite way. Adding fea-
tures to the methods used typically reduces the bit-rate, but complicates the encoding
process, like in [34, 4, 38]. On the contrary simplifying the algorithm, results in a
reduction of the encoding time but at the cost of higher bandwidth and memory re-
quirements, like in [37]. Each one of the presented studies does this in its original way,
working on different stages and achieving distinct results.
Since the other works about AME act on algorithm parts that are not the one in this
work, the proposed method is orthogonal to the others. It is possible to integrate more
than one solution from Table 2.4 and eventually evaluate the performance.

38

Chapter 3

Hardware implementation

The simplified Affine Motion Estimation algorithm proposed in section 2.3 can be straight-
forwardly implemented in hardware following the well-known electronic systems design
flow. The starting point is the Matlab software model reported in B.1 and B.2 appendices.
The whole algorithm is composed by two methods, which are the "candidate construction"
and "best-candidate choice", described in sections 2.3.1 and 2.3.2 respectively. Their func-
tionality is independent of each other, they are independently replaceable with the exact
VTM software. In order to preserve this modularity of the system, the hardware archi-
tecture has been divided into three sub-blocks (shown in figure 3.1):

• The Constructor block, which implements the construction algorithm. It takes as
inputs the Neighbor CUs motion vector candidates (CMV0,1,2) and computes the
constructed MVs (cMV0,1,2) according to the procedure described in section 2.3.1.

• The Extimator unit. It performs the best-candidate choice algorithm described in
2.3.2. It starts reading the CPMVPs (Control Point Motion Vector Predictors) which
can be supplied by the constructor or the VTM software depending on the candidate
type. Subsequently, it performs affine motion estimation with the mentioned motion
vectors. To do so, it reads the Coding Unit and Reference Frame’s pixel intensity
values from the system’s memory.

• The Memory stores the Coding Unit of the frame to be encoded and part of the
Reference frame. In the subsequent sections, some considerations about its size and
organization are addressed.

The first two blocks can be considered a sub-part of the "AME Architecture", which
is the component designed using the Very high speed integrated circuit Hardware Descrip-
tion Language (VHDL) and then synthesized. The memory unit in this thesis work is a
virtual component used for the AME Architecture verification.

39

Hardware implementation

Figure 3.1. Proposed architecture top-level blocks.

3.1 The Constructor component

The constructor component is divided into a Control Unit, which handles the communi-
cation with the other system elements, and a Datapath, responsible for elaborating the
input data and producing the construction result. Figure 3.2 shows the mentioned units.

Figure 3.2. Constructor high-level block diagram

40

3.1 – The Constructor component

3.1.1 Constructor Datapath
The Constructor Datapath has been designed to implement the equations (2.3-2.4). Con-
sideration must be done about data parallelism. In VVC, motion vectors are expressed in
units of 1/16th of a pixel [9]. This is done to improve the image quality in the video de-
coding process. The range of values Motions Vectors can assume depend on the Search
Window (SW) size. This parameter is the maximum allowed distance for which the
VTM considers a possible Motion Estimation. This size is set in the VTM parameters
(for example using the config file in report 2.1). A too-large SW complicates the Motion
Estimation process, a too-small one makes the encoder incapable of performing Motion
Estimation. For this thesis work, its size has been left to its default value of 64 × 64.
This means that the maximum number of pixel movements a MV can represent is 64 pix-
els in any direction (where the movements upwards and towards the left are represented
by a negative sign). Considering the MV resolution, the range of values a motion vector
can assume is [−1023; 1023]. Using a 2’s Complement representation, eleven bits are
sufficient to store a Motion Vector with this Search Window.
According to the algorithm specifications the height and width values (CUh, CUw) a CU
can assume are (16,32,64). To represent these numbers as unsigned, seven bits would
be required. Using a simple coding strategy, two bits only have been used to represent
(CUh, CUw). This is simply achieved by taking the two MSBs of the unsigned binary
representation. Table 3.1 shows how the coding is performed

CU(w, h) Base-10 unsigned Encoded
16 0010000 00
32 0100000 01
64 1000000 10

Table 3.1. How the CU width and height are encoded.

Figure 3.3 shows the entire Constructor Datapath. Some components are described in
detail later in this section. Besides the most common operators, like multipliers; register
files; pipeline registers (represented by the red dotted lines in the figure), and comparators,
there are some complex components specifically designed for handling the construction
operation. Their functionality and structure are briefly illustrated subsequently.

41

Hardware implementation

Figure 3.3. Constructor Datapath. The dotted in lines in red represent pipeline registers.

42

3.1 – The Constructor component

h_over_w
Equation 2.4 requires to compute the product of motion vector difference (dMV)
by the factor h

w . This would normally require a multiplication and a division. This
operations can be avoided, saving precious resources, by considering that both

(w, h) ∈ {16,32,64} (3.1)

Therefore, the cited multiplication can result to be only by a factor 2n with

n ∈ {−2, −1,0,1,2}. (3.2)

The component h_over_w computes the value of n, with the purpose of feeding
another unit, the LR_SH2, which simply executes a shift on dMV .
Figure 3.4 shows the h_over_w block diagram, where "RSH" and "cmd_RSH" are
two right shifters whose enable signals are controlled by the Control Unit. "SH_cmd",
instead, is the mentioned n, represented on three bits in "magnitude an sign" repre-
sentation. This allows LR_SH2 to perform its operation more easily.

Figure 3.4. The h_over_w block diagram.

LR_SH2
This component name stands for "Left or Right Shift register by 2 position at most".
It shifts the previously mentioned dMV by |n| positions left or right depending on
sign(n). The output of this component is thus dMV · 2n.
Figure 3.5 shows the LR_SH2 block diagram, where RSH and LSH are right and
left shift registers, respectively, whose enabling signals are derived from SH_cmd.
The latency of this component, as well as for h_over_w, is 2 clock cycles. In each
clock cycle, the value of w and h is observed and the choice of shifting towards a
certain direction is taken. This latency could be reduced by using a barrel shifter
which can perform a shift by any amount of position in 1 clock cycle only. The
drawback is that barrel shifters are complex components that can increase the area

43

Hardware implementation

Figure 3.5. The LR_SH2 block diagram.

and delay of the circuit. Since the value of n is 2 at most, the use of two registers
cascaded is considered a good choice. Notice that the fractional bits in the result are
discarded. This solution agrees with the floor function included in the approximate
construction model.

if_UA
This component, whose name is short for "if UnAvailable", calculates if one or more
MV of each triplet is unavailable. In fact, unavailable MVs are set to (−1024)10.
Inside if_UA there is simply a comparator which checks if one of the input MV
is equal to (−1024)10. If yes, the flag "invalid_triplet" is set to 1. In this case, the
value of the distortion associated with that triplet is set to the maximum possible
value. In this way, the triplet is discarded by the construction process.

3.1.2 Constructor Timing diagram
Having all the datapath components with their respective control signals defined, a timing
diagram (TDG) has been laid down. It defines how data and control signals must behave
during execution such that the functional specification (defined by the Matlab model) is
met. Figure D.2 shows the designed TDG. The data and control signals have been grouped
into functional blocks. For example, signals belonging to the h_over_w and LR_SH2 are
highlighted. Due to the circuit pipelining, the constructor latency is 25 clock cycles. This
information is essential to evaluate the circuit performance later.

3.1.3 Constructor Control Unit
The Constructor Control Unit, as shown in figure 3.2, is responsible for the communication
with the outside circuits and for producing correct Datapath control waveforms. The first
task is achieved using the following signals:

44

3.2 – The Extimator component

• START: When asserted, the feeding circuit informs the CU that the first MV triplet
is available and the construction process can start.

• READY: With this signal, the CU asserts that it is available for a new elaboration.

• DONE: When the construction process is terminated and cMV(0,1,2) are valid, the
CU asserts this signal.

• GOT: This signal is used by the outside circuits (for example, the "Extimator"), to
inform the constructor that the output constructed MVs have been correctly stored.
In this way, the CU can start a new execution without overwriting a result that has
not been sampled yet.

• CU_RST : This is an asynchronous reset that forces the CU to move to its reset
state "ON_RESET".

The Control Unit design is mainly focused on the state diagram design. It describes
which are the available CU states, the input signals which trigger the state transitions,
and the output signals in each state. It is reported in figure D.1. Notice how the already
mentioned control signals make the CU move from one state to another one.

3.2 The Extimator component
The Extimator component implements the "best-candidate choice" algorithm described in
section 2.3.2 which concludes the simplified AME process. Figure 3.6 shows the system
block diagram. It is mainly composed of two groups of blocks: the first one is the Control
Unit block, which includes the Control Unit (CU), the CU_Adapter and the Ready
Handler (it is colored in green in the figure); the second one is the Datapath block,
which contains the Datapath (DP) only (it is highlighted in orange).

3.2.1 Extimator Datapath
The Extimator Datapath is depicted in figure D.3. Notice that the "Memory" drawing
has been split into two parts to optimize the visualization. This choice in the represen-
tation highlights also the two main purposes of the Extimator unit. The first one is to
compute the Relative Addresses to access the Memory at the correct location, which
depends on the representative blocks’ position and the motion vectors. The second one is
to compute the Sum of Absolute Differences for each candidate and choose the one
with the lowest one.
Besides the most common operators, like multipliers; register files; pipeline registers (rep-
resented by the red dotted lines in the figure) and comparators, there are some complex
components specifically designed for handling the estimation operation. Their function-
ality and structure are briefly illustrated subsequently.

firstPelPos
This component name stands for "First pixel position calculator". Its purpose is

45

Hardware implementation

Figure 3.6. Extimator high-level block diagram

to compute all the representative blocks’ first pixel position relative to the current
Coding Unit. The reference system used assumes (0,0) as the current CU position
in the current to-be-encoded frame. For example, with reference to the 16 × 16 CU
in figure 3.7, the output pattern that firstPelPos must generate is

(x0, y0)0 = (0,0); (x0, y0)1 = (12,0); (x0, y0)2 = (0,12); (x0, y0)3 = (12,12) (3.3)

This pattern is obtained by strategically using two T-type "flip flops" and two modulo
4 counters. With reference to figure 3.7, the first two compute the current represen-
tative x and y positions (in blue), and the other two address the current 16×16 block
in the CU (in orange). The two pieces of information are wrapped up together to
obtain (x0, y0). Figure 3.8 shows the firstPelPos part for the calculation of x0. The
circuit which produces y0 is identical, it is not reported to optimize the graphical
representation.
Since x0 and y0 are CU coordinates, they can assume values in the range [0; 63].
Therefore, they are represented on six bits as unsigned integers. The last_block(x,y)
flag informs the Control Unit if the current 16 × 16 block x or y component has
reached its maximum allowed value. This information is essential for the CU for gen-
erating the correct (x0; y0) sequence depending on the Coding Unit size. In fact the
signals CE_REPx,y, which increase the CurRepx,y value; and CE_BLKx,y, RST_BLKx,y
which increase or reset CurBlockx,y, are generated by the Control Unit depending
on the last_block(x,y) values. The way this process is carried on is explained in the
section relative to the Extimator Control Unit (3.2.3).

46

3.2 – The Extimator component

Figure 3.7. A 16 × 16 example CU with the block, representative and pixel
coordinates reported.

Figure 3.8. The firstPelPos component for x0

R_SH2
This component is similar to the Constructor’s LR_SH2, with the difference that it
handles only the "right shift" operation. Having in input a motion vector difference
dMV = mv

(h,v)
(1,2) − mv

(h,v)
0 , this block computes

{a, b}(1,2) = ±⌊ dMV

(h, w)24⌋ 1
24 (3.4)

for the equations (2.8-2.10). Notice that (h, w) ∈ {16,32,64}, this means that the
input must be shifted by at least 4 positions. Thus, instead of being {4,5,6} the
number of possible shifts towards the right, it is {0,1,2} and the result is expressed
in fixed point representation FXP 8.4 (8 bits for the integer part and 4 for the

47

Hardware implementation

fractional one). The last two bits in the result are discarded, as already mentioned
in section 2.3.2. This allows to save two bits in the following components’ parallelism
while still keeping a low Rounding Bias. In fact, since these bits are placed after four
fractional bits, the Rounding Bias here is 2−4 times the one computed in Section
2.3.1. The choice of discarding no more than two bits comes from some tests
performed on the Matlab model. A variable fxp_prec is used, it stores the number
of fractional bits in the fixed point representation. What has been discovered is
that if fxp_prec is less than 4, the estimation results of the Matlab model on the
30 test sequences start to change significantly with respect to the exact one with
6 bits of fractional part. Figure 3.9 shows the R_SH2 block diagram, where RSH
components are shift registers whose shift is enabled by SH_en and SH_en2.

Figure 3.9. The R_SH2 component.

MULT_1
This component handles the product {a, b}(1,2) · {x, y} of equation 2.8. The coef-
ficients {a, b}(1,2) are signed fixed point numbers represented on twelve bits with
notation FXP 8.4. {x, y} components, instead, are the {x0, y0} CU coordinates gen-
erated by firstPelPos. They are represented as unsigned integers on 6 bits. To
multiply these values, {x0, y0} are properly extended to assume the same represen-
tation as the {a, b}(1,2).
In order to reduce the multiplier cost and maximize the usage percentage of the
component, Instead of using a twelve-bit multiplier with unitary latency, a six-bit
one with four-cycles latency (neglecting the fifth one needed to load the output reg-
ister) is introduced. Its Register Transfer Level (RTL) representation is reported in
figure D.4. Together with the 6-bit multiplier (labeled as Mult0), there are several
registers and multiplexers to handle the partial products sum. Figure 3.10 reports a
multiplication example’s timing diagram. The operands as op1 and op2, both on 12
bits, are split in two halves of 6-bit-length, named (op1[0], op2[0]) and (op1[1], op2[1]).
With this concept clarified, the signals involved in the multiplication are:

– mult_in: Contains the current Mult0 input. At each cycle, new couple
(op1[i],op2[i]) halves are fed to Mult0, to compute the partial product mult_out.

48

3.2 – The Extimator component

– is_signed: The 6 LSBs of op1 and op2, (op1[0], op2[0]), must be treated as
unsigned numbers. The signal is_signed[i] informs Mult0 whether the input
op − i[(0,1)] must be treated as unsigned or not.

– SH_en: The equation the component implements when splitting op1 and op2
into two 6-bit halves is the following

op1 · op2 = op1[0] · op2[0] + 26(op1[1] · op2[0] + op1[0] · op2[1]) + 212op1[1] · op2[1]
(3.5)

The multiplication by 212 is obtained by shifting the partial product of 6 bits
to the correct cycle. This is achieved by using a shift register whose enabling
signal is SH_en.

– product_int_rst: resets the partial products register at the end of the elab-
oration

– sum: Stores the temporary result of the multiplication.

Figure 3.10. A MULT_1 multiplication example’s timing diagram.

Notice that the only input signals are clk, op1, op2 and VALID. The other control
signals are internally generated using counters.

ADD3
This adder computes the sum (a(1,2)x+ b(1,2)y +mv

(h,v)
0) of equation 2.8. A straight-

forward implementation of a three-input adder could be made by two 2-inputs adders
cascaded. The solution proposed in the extimator datapath is one 2-input adder
re-used. This allows to save one adder and maximize the usage percentage of the
component. Figure 3.11 shows the ADD3 block diagram. Notice that, similarly to
MULT_1, ADD3 also needs a VALID signal to be issued when the operands are
provided. This is essential to move the multiplexer at the inputs.

49

Hardware implementation

Figure 3.11. ADD3 component’s block diagram.

Round
As already mentioned, the MVs are expressed in the VTM as multiples of 1/16 − th
of a pixel. This form can be called the exact expression of the motion vector
(MVex = mvh

(ex), mvv
(ex)). To perform simple Translational Motion Compensation

on the CU representative blocks, MVs expressed as multiples of 1 pixel are needed.
They are obtained from MVex simply by discarding the 4 LSBs (this operation
corresponds to a division by 24 = 16) and rounding the result. The rounding
method uses, in this case, is the round to nearest scheme. The choice of this
method is done because it has a low maximum rounding error, corresponding to 1/2
post-truncated LSB, which means 1/2 pixel here.

3.2.2 Extimator Timing diagram
The extimator is supplied with MV candidates from the VTM and the constructor. This
latter produces a candidate of the "Constructed" (C) type, while the VTM software pro-
vides the "Inherited" (I) and "Translational" (T) ones (see section 2.2.1). The gathering
process of the I and T type candidates is simpler than the one of the C types. Therefore,
in this thesis work, it is assumed that, at the start of the estimation process

• the I and T-type candidates are ready

• the Constructor starts the construction process, so 25 clock cycles are needed
before the C-type candidate MVs are valid

There are two possible scenarios about how the candidates are presented to the exti-
mator:

• In the first one, the MVs are all of the Inherited and Translational types. This
means that, at the start of the estimation process, they are all ready and fed to the

50

3.2 – The Extimator component

Extimator as soon as it is available. Figure 3.12 shows how the inputs are presented
in this case.

Figure 3.12. How input MVs are presented to the Extimator when there are
no C-type candidates.

The protagonist signals in this timing diagram are

– extim_READY: The Extimator READY signal, which informs if it is avail-
able to accept candidates. Notice that in clock cycle "1" it is negated (signaling
that no MVs are accepted). That is because the Control Unit’s reactivity is
such that two clock cycles are needed to move the Register File input address
(RF_Addr). Therefore, if a new candidate was supplied during that clock
cycle, it would have overwritten the first one.

– MV(0,1,2),in_VTM: The input candidates fed by the VTM software. Ac-
cording to the previous assumptions, they are all available at the start of the
estimation process and fed to the Extimator as soon as it is available.

– MV(0,1,2),in_Constructor: The input candidates fed by the Constructor.
Since this is an example with no C-type candidates, the value of this signal
is always "Don’t Care".

– VALID: This is an input signal for the Extimator. It is obtained by the logic
OR between the constructor DONE output and the VTM software’s VALID.

• In the second scenario, one candidate is of the Inherited or Translational type, so it
is available at the start of the estimation process. The other one is of Constructed
type, so it is available after the Constructor latency, which is of 25 clock cycles.
Figure 3.13 shows how the inputs are presented in this case.
The signals meaning are the same as the one previously mentioned. Among the
30 test sequences used for the algorithm and architecture analysis, summarized in
Table C.1, this is the most frequent situation (70% of the sequences).

The main difference between the two cases is that when the Constructor is needed,
the second candidate is not immediately ready, creating the risk of a bubble in the
Extimator’s estimation process. In fact, if the Constructor’s latency is longer than the
number of clock cycles required to elaborate the first candidate (Nel,1), the Extimator is

51

Hardware implementation

Figure 3.13. How input MVs are presented to the Extimator when there is a
C-type candidate.

stalled until the constructed MVs are ready.
Being the Constructor latency equal to 25 clock cycles, the only situation in which this
happens is when the Coding Unit size is 16 × 16. In fact:

Nel,1 = Nel,SB
CUw · CUh

16 × 16 (3.6)

where

• Nel,1 is the number of clock cycles required to elaborate the first candidate.

• Nel,SB is the number of clock cycles to elaborate a 16×16 sub-block. This is constant
and equal to 16, assuming that the memory is able of reading four pixels per frame
per clock cycle.

• (CUw, CUh) are the Coding Unit width and height respectively.

Being (CUw, CUh) ∈ {16,32,64}, the only case for Nel,1 < 25 is CUw = CUh = 16. In
this situation only, there is an additional delay Nadd to be considered in the Extimator
latency, equal to

Nadd = 25 − Nel,1(CUw = CUh = 16) = 25 − 16 = 9 (3.7)

The Extimator latency Text can be computed as

Text = Pdepth + 2 · Nel,1 + c · d · Nadd (3.8)

Where

• Pdepth is the pipeline depth of the circuit, equal to 22.

• c is equal to 1 if one of the candidates is of the Constructed type, otherwise it is 0.

• d is equal to 1 if the CU dimension is 16 × 16, otherwise it is 0.

• Nel,1 and Nadd are already been defined in equations 3.6 and 3.7.

52

3.2 – The Extimator component

CU size Nel,1 Text

16 × 16 16 63
32 × 32 64 150
64 × 64 256 534

Table 3.2. Extimator possible latency values.

For all the subsequent analyses the "worst-case" scenario is assumed, with c = 1. In
table 3.2, some examples of Extimator latency values have been calculated.

These data are essential to evaluate the architecture performance. This analysis is
performed later in the next chapters.

Figure D.5 reports an example of Extimator timing diagram. It has been drawn
assuming as input the test sequence number 26 from table C.1. Here, with reference to
equation 3.8, there are (c = 1; m = 1) and Text = 63, in agreement with the result in table
3.2.

3.2.3 Extimator Control Unit
The Extimator component is more complex than the Constructor one. This is reflected
in the control circuit, colored in green in figure 3.6. The control system in fact is made of
three components, each one with its purpose.

Ready Handler
The name of this Finite State Machine (FSM) is because it is responsible for gener-
ating the READY signal. As already shown in the timing diagram in figure 3.12, this
signal must be negated one clock cycle after the VALID signal is issued. This cannot
be done by the CU due to its slow reactivity.
The "Ready Handler" (RH) is indeed more reactive but does not have its input sig-
nals sampled. In general, when this is done, there is the probability that the Control
Unit’s output generator net could increase the critical path delay. Since the RH is
simpler than the CU, this risk is reduced.

Besides the already mentioned READY, there are other signals which are generated
by the "Ready Handler" which are essential for correct processing:

– Second_Ready: Informs the Control Unit that the second candidate has been
correctly sampled and stored in the Datapath’s Register File. The second can-
didate can be provided at any given moment during the Motion Estimation,
even when the CU is busy elaborating the first one. When the CU is no longer
occupied, it looks at the Second_Ready signal to know whether it has to wait
for the second candidate or it can start its elaboration.

– GOT: This signal goes directly in the Constructor’s CU, to inform it that its
produced constructed candidate has been correctly sampled. In this way, it can

53

Hardware implementation

start a new execution without overwriting a result that has not been sampled
yet.

Figure 3.14 shows the "Ready Handler" FSM state diagram. Notice that it has six
possible states only, and three signals as output. This confirms what was previously
said about its low complexity compared to the Control Unit, which can assume 27
states and generates 23 output signals.

Figure 3.14. "Ready Handler" FSM state diagram.

Control Unit (CU)
The Extimator’s Control Unit (CU) generates 23 signals which are essential for the
correct Motion Estimation process. It can assume 27 states as shown in its state
diagram in figure 3.15, which have been divided in five groups according to their
purpose in the processing chain:

1. Initialization and Idle states (in red). They are the ON_RESET and IDLE
states. In the first one, all the sequential components in the Extimator are reset
using an asynchronous signal.
In the IDLE state, the reset from the first two pipeline layers is removed to
compensate for the CU’s low reactivity. The READY signal is asserted, and
the Extimator is ready for a new elaboration.

2. 16 × 16 sub-block processing states (in white). For each candidate, the
simplified Translational Motion Compensation is performed looping over each
16×16 sub-block. Each four-state group in white can be identified by the name
(X)REP_WAIT(N), where X is related to the representative’s number (S: Second,
T: Third ...) and N is the representative block’s 4-pixel row which is elaborated
in that state.

54

3.2 – The Extimator component

3. New action choice states (in purple). After the elaboration of a 16 × 16
Coding Unit (CU) sub-block, the Control Unit chooses the new state depending
on the CU size and how much candidates have been currently completed their
SAD calculation.
If there are sub-blocks yet to be processed, the new state must be NEW_LINE
or NEXT_BLOCK depending on the position of the next block. The movement
is performed by acting on the firstPelPos’ CE_REPx,y, CE_BLKx,y, RST_BLKx,y
control signals.
If there are no more 16 × 16 sub-blocks left, the new state must be TERM_CAND1
or TERM_CAND2 ("Terminate candidate 1/2") depending on how many candidates
have been already processed. In these states, the current SAD (Cur_SAD) value
is compared with the lowest already calculated (SAD_min): if the first is lower
than the second, the "Best candidate" is set as the current one and SAD_min
is set as Cur_SAD.

4. Second candidate wait states (in yellow). When the first candidate elabora-
tion is completed, the second one could be ready or not depending on its type
and the Coding unit size (as already presented in section 3.2.2).
SREP_CAND2 is equivalent to SREP_CAND1 and it is taken when the second candi-
date is already available at the end of the first one’s processing. CAND2_WAIT is
taken when the Constructor has not completed the construction algorithm yet.
In this state, the Extimator waits for the VALID signal to be asserted to start
the second candidate’s elaboration.

5. Estimation completion stages (in green). After the second candidate’s elab-
oration is completed, the "Best Candidate" register contains the Register File
(RF) address where the best candidate is stored. The last steps towards the
estimation process completion are taken by this group’s stages. The operations
performed are:

– Wait for the DP’s final stage latency needed to compute the second candi-
date’s SAD (WAIT_COUNT).

– Issue the RF’s Best candidate reading (READ_BEST).

– Write the MVs result in the output Register (WRITE_BEST).

– Show the result at the Extimator output by enabling the output register
reading and asserting the DONE signal (ESTIMATE).

55

Hardware implementation

Figure 3.15. Extimator’s Control Unit state diagram.

Control Unit Adapter
Due to the applied pipelining technique, some signals generated from the Control
Unit in a given state are needed by some components several clock cycles later.
The "Control Unit Adapter" block is responsible for adapting their timing using
preskew/deskew pipe registers.

3.3 Components Usage percentage
In both the Extimator and Constructor, some Datapath (DP) elements are more involved
in the data elaboration than others. It is useful to perform a Usage percentage (Up)
evaluation on them, to understand how much each component is exploited. If this value

56

3.3 – Components Usage percentage

is too low, there might be the possibility to apply some techniques to save complexity and
increase Up, at the cost of a few additional clock cycles delay.
This is what is done with the components MULT_1, ADD3, LR_SH2, R_SH2, where
some resources are re-used with an increase in the usage percentage, a cost reduction and
a little increase in the Extimator and Constructor’s latency.

3.3.1 Definition
Let Ui be the usage of the ith datapath component, defined as the number of clock cycles
during which it is needed for the elaboration. If Tel is the component latency in clock
cycles, the usage percentage Up,i of the component can be defined as

Up,i = Ui

Tel
· 100 (3.9)

The higher the Up,i, the more the component usage is optimized for the elaboration.

3.3.2 Evaluation in the Extimator and Constructor
For both the Extimator and Constructor’s usage percentage analysis, the Tel value in
equation 3.9 has been set as the Extimator latency Text of equation 3.8. This is done
because the elaboration period of Affine Motion Estimation is the Extimator latency.
Moreover, while the Constructor delay is constant, Text depends on the Coding Unit size.
It is interesting to observe how Up,i varies with Text and consequently with the CU size.
Table 3.3 reports the Constructor components’ usage percentage variation with different
Coding Unit sizes.

Up,i Up,i Up,i

CU : (16 × 16) CU : (32 × 32) CU : (64 × 64)
Component Units Parallelism Ui Tel = 63 Tel = 150 Tel = 534
Register_in 1 66 b 12 19,05 12,70 2,25
Signed Adder 6 11 to 27 b 12 19,05 12,70 2,25
Right Shifter 2 2 b 3 4,76 3,17 0,56
Right Shifter 2 12 b 12 19,05 12,70 2,25
Left Shifter 2 12 b 12 19,05 12,70 2,25
Unsigned Comparator 1 28 b 12 19,05 12,70 2,25
Unsigned Adder 1 27 b 12 19,05 12,70 2,25
Signed Multiplier 2 15 b 12 19,05 12,70 2,25

Table 3.3. Constructor usage percentage analysis with different Coding Unit sizes.

What shows up is that the usage percentage reduces with the CU size. That is be-
cause the usage Ui of the Constructor components is independent of the CU size, while
the elaboration time of the CU increases.
To increase Up,i, some component re-usage techniques could be applied, but this would

57

Hardware implementation

increase the latency of the circuit. This could as a consequence increase Tel of the Exti-
mator when one of the candidates is of the constructed type and the CU size is sufficiently
small (see section 3.2.2). A trade-off must be considered in this situation.

Table 3.4 reports the Extimator components’ usage percentage variation with different
Coding Unit sizes.

Up,i Up,i Up,i

Ui Ui Ui 16 × 16 32 × 32 64 × 64
Component # Par. 16 × 16 32 × 32 64 × 64 Text = 63 Text = 150 Text = 534
Signed Subtractor (SUB1) 4 11 b 2 2 2 3,17 1,33 0,37
Right Shifter (R_SH2) 2 12 b 4 4 4 6,35 2,67 0,75
Signed Multiplier (MULT1) 4 6 b 32 128 512 50,79 85,33 95,88
Signed Adder (ADD3) 2 19 b 16 64 256 25,40 42,67 47,94
Round 2 19 b 8 32 128 12,70 21,33 23,97
Signed Adder for x (ADD1_x) 1 12 b 8 32 128 12,70 21,33 23,97
Signed Adder for y (ADD1_y) 1 12 b 32 128 512 50,79 85,33 95,88
Memory 1 64b 32 128 512 50,79 85,33 95,88
Subtractor (Pel_Sub) 4 8 b 32 128 512 50,79 85,33 95,88
Absolute Value Operator (ABS) 4 9 b 32 128 512 50,79 85,33 95,88
4-Input Adder (Pel_add) 1 8 b 32 128 512 50,79 85,33 95,88
Unsigned Adder (CurSAD_ADD) 1 18 b 32 128 512 50,79 85,33 95,88
Unsigned Comparator (Comp) 1 18 b 2 2 2 3,17 1,33 0,37

Table 3.4. Extimator usage percentage analysis with different Coding Unit sizes.

Notice that, differently from what happens in the Constructor, the usage Ui factor
of most components changes with the Coding Unit size. Table 3.4 is divided into four
layers since the behavior of components in the same layer is similar.

• In the first layer, the components SUB1 and R_SH2 have a constant Ui since they
are used only once or twice at the beginning of a new candidate elaboration. This
is why their usage percentage reduces with the CU size.

• In the second layer, there are the components relative to the MV calculation of each
representative block. Therefore, their usage is

Ui = Nrep · Nc · Rf

where Nrep is the number of representatives; Nc is the number of MV triplets in
the candidates’ list (equal to 2); Rf is how may times the component is re-used
for a single result calculation. The multiplier MULT1 is the one with the highest
Up since its Rf = 4, but it also adds 4 latency clock cycles. Notice how in this
component group the usage percentage increases with the CU size. This is because
with more representatives come more MVs to be computed, so the usage increases.
The elaboration time increases too, but as the Nel,1 in the expression of Text = Tel

(equation 3.8) starts dominating over Pdepth, Text becomes similar to Ui.

58

3.3 – Components Usage percentage

• In the fourth layer, there are the components responsible for computing the SAD
value for the two CPMV candidates. They are needed every time a reading operation
is performed on memory, this is why their Up,i is high. For the same reason as the
previous layer, here the usage percentage increases with the CU size.
This is because with more representatives come more pixels to be processed, thus
the usage increases. The elaboration time increases too, but as the Nel,1 in the
expression of Text = Tel (equation 3.8) starts dominating over Pdepth, Text becomes
similar to Ui.

• The fifth layer contains the final SAD comparator only. It performs its operation
only once per SAD value computed, so its Ui is constant and equal to 2. This is why
it Ui,p reduces as the CU size increases.

For the Extimator component, the usage percentages are quite high, except for the
first and last elements which operate only once or twice per candidate. Therefore it has
been chosen to leave the Datapath as it is, without applying further techniques. For future
works, there is the possibility to change some components and, after modifying the control
unit coherently, observe how the situation changes.

59

60

Chapter 4

Verification, Synthesis, and
Performance

4.1 Logical Verification
After the design and implementation processes, the Design Flow requires the logical ver-
ification of the circuit. In this thesis work, the verification step is performed using
MATLAB, for the generation of the test sequences, and a VHDL testbench to read the
cited inputs and feed them to the architecture. Finally, a bash script automatically loops
over all the 30 cases from table C.1. Figure 4.1 shows how this verification environment is
set. Besides the testbench’s driver, which is included in the former’s VHDL description,
the other components are all described in separate entities.

4.1.1 Simulation Script
As shown in figure 4.1, the set of test sequence inputs and expected outputs are collected
together as a single large dataset. The purpose of the simulator script is to perform
the simulation of a given test from table C.1 using the testbench compiled and loaded on
Siemens’s QuestaSim. In report D.1 the script content is shown. This program’s aim is
achieved by performing a sequence of steps, illustrated in its flow chart in figure 4.2.

4.1.2 Memory
As previously mentioned, the system’s Main memory is virtual and used for design verifica-
tion only. However, a brief analysis on the memory size and performance requirements
has been carried out. The motivation behind this study is to give a specification for even-
tual future implementations.
The Memory component stores the Current Coding Unit and the Reference frame, which
in this verification environment are loaded by the simulation script. Considering a search
window of 64 × 64 pixels, not the whole Reference frame must be stored in memory,
but just a sub-block whose size is, in the worst-case 320 × 320 pixels (obtained by

61

Verification, Synthesis, and Performance

Figure 4.1. The verification environment.

translating a 64 × 64 block of 64 pixels in all the possible directions). Therefore, only
(320 · 320) B = 102400 B are required. Additional (64 · 64) B = 4 kB must be considered,
to store a Coding Unit in the worst case.
In total, a 128 kB memory is necessary. Moreover, the system timing has been designed
assuming a reading operation latency of 1 clock cycle. Therefore, the reading time must
be sufficiently low for the memory to sustain the hardware accelerator’s pace. For the
proposed architecture, the clock frequency is (evaluated later in this chapter) in the or-
der of 350 MHz, which is considered a reasonable clock frequency requirement for a main
memory.
About parallelism specification, the system is designed to process 8 pixels at a time (four
from the Reference frame, 4 from the Current CU). This means that the memory output
parallelism must be of 64 bit.

62

4.1 – Logical Verification

Figure 4.2. The simulator script flow chart.

4.1.3 Monitor
The Monitor (output_checker.vhd) reads the architecture’s outputs and compares them
with the expected output prepared by the simulator script. The comparison results are
stored in an output file called results_N.txt, where N is the example identifier.

4.1.4 Verification Results
With a verification environment set up to perform a simulation on a single test sequence,
the logical verification of the circuit over all the thirty test sequences (table C.1) is straight-
forward. The script in report 4.1 is exploited: it loops over all the example cases and, at
each iteration, checks whether all the outputs are matched or not.

Report 4.1. The scripts multiple_examples_simulator.sh which loops the script sim-
ulator over the 30 test sequences.

1 #!/bin/bash
2 #Run "example_simulator.sh" for the examples in the interval "firstExample to

lastExample"; check the correctness.↪→

3 firstExample=3
4 lastExample=32
5 waitingTime=10 #time to wait for the simulations to terminate, in seconds
6 errors=0 #indicates if there have been errors
7 echo "Starting the simulations from example $firstExample to $lastExample"
8 for exampleNum in $(seq $firstExample $lastExample) ; do
9 eval "./example_simulator.sh $exampleNum"

63

Verification, Synthesis, and Performance

10 sleep $waitingTime
11 curResultsFileName="../tb/results/results_ex$exampleNum.txt"
12 lastLine=$(tail -n 1 $curResultsFileName)
13 if [[$lastLine == "SIMULATION ENDED SUCCESSFULLY"]] ; then
14 echo "Simulation for example $exampleNum terminated

successfully."↪→

15 else
16 echo "Simulation for example $exampleNum terminated with

ERRORS."↪→

17 errors=1
18 fi
19 done
20 if [[$errors -eq 0]] ; then
21 echo "All the simulations completed successfully."
22 else
23 echo "Some simulations terminated with ERRORS."
24 fi

The verification process using this method results in all the simulation successfully
completed. In report D.2, the output of the multiple_examples_simulator.sh is
shown. In the following report 4.2, the results file of a single test (example 14 from the
test sequences) is shown. The fields meaning are explained by the adjacent comments.

Report 4.2. The logical verification simulation results over the 30 test seqences.
EXPECTED OUTPUT, OUTPUT, TEST RESULT
52 ,52 ,OK ##<−−− Twelve Constructor d i s t o r s i o n
776 ,776 ,OK # v a l u e s
20826 ,20826 ,OK #
23722 ,23722 ,OK #
257 ,257 ,OK #
2141 ,2141 ,OK #
24641 ,24641 ,OK #
28697 ,28697 ,OK #
29 ,29 ,OK #
785 ,785 ,OK #
24125 ,24125 ,OK #
27053 ,27053 ,OK #−−−−−−−−−−
−5,−5,OK #<−−− Constructed MV0_h
42 ,42 ,OK # MV0_v
−90,−90,OK #<−−− Constructed MV1_h
46 ,46 ,OK # MV1_v
−5,−5,OK #<−−− Constructed MV2_h
−6,−6,OK #−−−−−−−−−− MV2_v
5103 ,5103 ,OK #<−−− Extimator SAD_1
4972 ,4972 ,OK #<−−− Extimator SAD_2
−5,−5,OK #<−−− Extimated MV0_h
42 ,42 ,OK # MV0_v
−90,−90,OK #<−−− Extimated MV1_h
46 ,46 ,OK # MV1_v
−5,−5,OK #<−−− Extimated MV2_h
−6,−6,OK #−−−−− MV2_v
SIMULATION ENDED SUCCESSFULLY

64

4.2 – Synthesis and Area, Timing and Power evaluation

4.2 Synthesis and Area, Timing and Power evalua-
tion

Having the RTL description of the Affine Motion Estimation (AME) Architecture and the
appropriate design libraries, the circuit synthesis is straightforward. For this thesis work,
the design is synthesized for an ASIC (Application-Specific Integrated Circuit) using the
45nm Nangate Open Cell Library and the DesignWare Library.
The first one is an open-source standard-cell library developed by the American company
Nangate and donated to aid university research programs. Currently, it contains more than
100 different cells which come in multiple strength variants. The second one, instead, is a
library from Synopsis which includes a collection of IP (intellectual properties) integrated
into the Design Compiler environment, which is the software used in this work. Thanks
to DesignWare, the synthesizer automatically detects the most common basic blocks (e.g.
multipliers, adders) and optimizes the synthesis to meet the constraints imposed by the
user.

4.2.1 The Synthesis process
The design logic Synthesis maps the logic RTL description of a digital circuit to physical
components taken from the design libraries. The result is a netlist containing cells that
together perform the same operations as the HDL description, with known characteristics
in terms of area, delay, and parasitic elements. Therefore, having the architecture netlist,
some estimations about its area occupation, critical path delay and power consumption
can be carried out.
The synthesis process consists of the following sequence of steps:

1. Prepare the Design Compiler. In this case an initialization script is sourced as
follows
source /eda/scripts/init_design_vision.
It is also important that the setup file is located in the correct directory. This file,
called .synopsys_dc.setup, is essential to inform the Design Compiler about the
design libraries and where to find them.

2. Run the Design Compiler. Here this is done using the following command
dc_shell -f synopsys_commands_custom.tcl
where synopsys_commands_custom.tcl is a script containing all the required com-
mands to perform the subsequent steps automatically. The -f option programs the
Design Compiler in shell mode to run the script. Report D.3 shows the mentioned
Tcl script for the synthesis automation.

3. Read VHDL source files. In this step, the VHDL source files providing the circuit
RTL description are read. This phase is dived into an analysis and an elaboration
phase. In the first one, the files are checked for syntactic and semantic errors (the
syntactic rules depend on the language used).
In the second one, the HDL description is expanded. All instances of all entities

65

Verification, Synthesis, and Performance

are represented as unique objects. Moreover, this phase involves the evaluation and
propagation of ports, constants, and generics present in the description.

4. Apply constraints. Among all the possible constraints that Design Compiler allows
the user to apply to a design, only some constraints on the clock signal and the output
load are exploited. In this work, there is a clock signal period set as 10 ns for the
first synthesis, with a clock uncertainty of the 7% and a maximum delay of 0.5. The
output load is a BUF_X4 ("fan-out of four" load).

5. Start the synthesis and save the results. Issuing the compile command, the
synthesis is performed. After this step, some results can be saved, like the timing
report, and the area report (showing information about the critical path delay
and area occupation). Reports 4.3 and 4.4 show an excerpt of the timing and area
report respectively when the clock period is Tclk = 2.93ns.

Report 4.3. Synthesized AME Architecture timing report (excerpt)
[. . .]
∗∗
Report : t iming

−path f u l l
−delay max
−max_paths 1

Design : AME_Architecture_expanded
Vers ion : R−2020.09−SP2
Date : Tue Jul 5 1 1 : 1 6 : 0 8 2022
∗∗
A fanout number o f 1000 was used f o r high fanout net computations .

Operating Condit ions : t y p i c a l Library : NangateOpenCellLibrary
Wire Load Model Mode : top

S t a r t p o i n t : c o n s t r u c t i n g _ u n i t /Datapath/D_v_sample/Q_int_reg [1]
(r i s i n g edge−t r i g g e r e d f l i p −f l o p c l o c k e d by MY_CLK)

Endpoint : c o n s t r u c t i n g _ u n i t /Datapath/D_v_sq_sample/Q_int_reg [2 6]
(r i s i n g edge−t r i g g e r e d f l i p −f l o p c l o c k e d by MY_CLK)

Path Group : MY_CLK
Path Type : max

Des/ Clust / Port Wire Load Model Library
−−
AME_Architecture_expanded

5K_hvratio_1_1 NangateOpenCellLibrary

Point I n c r Path
−−
c l o c k MY_CLK (r i s e edge) 0 .0 0 0 .0 0
c l o c k network delay (i d e a l) 0 .0 0 0 .0 0
c o n s t r u c t i n g _ u n i t /Datapath/D_v_sample/Q_int_reg [1] /CK (DFFR_X1)

0 . 00 # 0.0 0 r
c o n s t r u c t i n g _ u n i t /Datapath/D_v_sample/Q_int_reg [1] /Q (DFFR_X1)

0 . 10 0 . 10 r
[. . .]

c o n s t r u c t i n g _ u n i t /Datapath/D_v_sq_sample/D[2 6] (REG_N_N27_1)
0 . 00 2 . 82 r

c o n s t r u c t i n g _ u n i t /Datapath/D_v_sq_sample/Q_int_reg [2 6] /D (DFFR_X1)
0 . 01 2 . 82 r

data a r r i v a l time 2 . 82

c l o c k MY_CLK (r i s e edge) 2 .9 3 2 .9 3

66

4.2 – Synthesis and Area, Timing and Power evaluation

c l o c k network delay (i d e a l) 0 .0 0 2 .9 3
c l o c k u n c e r t a i n t y −0.07 2 . 86
c o n s t r u c t i n g _ u n i t /Datapath/D_v_sq_sample/Q_int_reg [2 6] /CK (DFFR_X1)

0 . 00 2 . 86 r
l i b r a r y setup time −0.03 2 . 83
data r e q u i r e d time 2 . 83

−−
data r e q u i r e d time 2 . 83
data a r r i v a l time −2.82

−−
s l a c k (MET) 0 . 00

From the timing report what emerges is that the critical path is across the 26-bit
multiplier which belongs to the constructor datapath. It is a predictable result since it
is the most complex block in the whole circuit which is not internally pipelined. With all
the constraints set, the clock period for which the slack is zero is Tclk = 2.93ns . This
means the maximum clock frequency for this architecture is fclk = 341 MHz.

Report 4.4. Synthesized AME Architecture area report
∗∗
Report : area
Design : AME_Architecture_expanded
Vers ion : R−2020.09−SP2
Date : Tue Jul 5 1 1 : 1 6 : 0 8 2022
∗∗

Library (s) Used :

NangateOpenCellLibrary [. . .]

Number o f p o r t s : 11755
Number o f nets : 23491
Number o f c e l l s : 10828
Number o f combinat ional c e l l s : 7598
Number o f s e q u e n t i a l c e l l s : 2719
Number o f macros / black boxes : 0
Number o f buf / inv : 1812
Number o f r e f e r e n c e s : 5

Combinational area : 9516.948023
Buf/ Inv area : 1042.454002
Noncombinational area : 14372.512424
Macro/ Black Box area : 0 .000000
Net I n t e r c o n n e c t area : undef ined (Wire load has ze ro net area)

Total c e l l area : 23889.460447
Total area : undef ined

The area occupation of the circuit is 23889 µm2, with 60% on sequential blocks and
40% on combinational blocks. This proportion is probably because there is a generous
amount of register file and pipe register throughout the whole circuit, which results to
waste more area than the combinational part itself.

67

Verification, Synthesis, and Performance

4.2.2 Power consumption estimation
The power consumption estimation process is carried out jointly using QuestaSim and
Design Compiler. It is divided into the following steps

1. Compile the netlist produced in the synthesis process and the testbench which
includes it, using QuestaSim. It is important to link the cells library of using the
option -L and the delay file (.sdf file) generated by the Design Compiler. QuestaSim
gives as output a value-change-dump (vcd) file, which contains information about the
circuit’s switching activity.

Note: When estimating the power consumption of a digital circuit, the switching
activity plays an important role. It depends on the input test sequence: for different
stimuli during this phase, slightly different results may be obtained. For the sake of
completeness, it is pointed out that the test sequence 4 from table C.1 is used for
this step.

2. Convert the vcd file to saif, which is a format that Design Compiler can handle.
This is done using the vcd2saif command.

3. Perform power consumption estimation with Synopsys Design Compiler. The
software loads the netlist and the saif file and produces a power report.

Report 4.5 shows the generated power report for the whole AME Architecture.

Report 4.5. Synthesized AME Architecture power report (excerpt).
[. . .]
∗∗
Report : power

−a n a l y s i s _ e f f o r t low
Design : AME_Architecture_expanded
Vers ion : R−2020.09−SP2
Date : Tue Jul 5 1 1 : 5 5 : 2 9 2022
∗∗

L i b r a r y (s) Used :

NangateOpenCellLibrary [. . .]

Operating Condit ions : t y p i c a l L i b r a r y : NangateOpenCellLibrary
Wire Load Model Mode : top

Design Wire Load Model L i b r a r y
−−
AME_Architecture_expanded

5K_hvratio_1_1 NangateOpenCellLibrary

Global Operating Voltage = 1 . 1
Power−s p e c i f i c u n i t i n f o r m a t i o n :

Voltage Units = 1V
Capacitance Units = 1.000000 f f
Time Units = 1 ns
Dynamic Power Units = 1uW (d e r i v e d from V, C,T u n i t s)
Leakage Power Units = 1nW

C e l l I n t e r n a l Power = 1 . 2 1 9 0 mW (88%)
Net Switching Power = 169.4913 uW (12%)

−−−−−−−−−
Total Dynamic Power = 1 . 3 8 8 5 mW (100%)
C e l l Leakage Power = 435.1093 uW

68

4.2 – Synthesis and Area, Timing and Power evaluation

I n t e r n a l Switching Leakage Total
Power Group Power Power Power Power (%) Attrs
−−
io_pad 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 (0.00%)
memory 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 (0.00%)
black_box 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 (0.00%)
clock_network 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 (0.00%)
r e g i s t e r 1 . 0 6 9 4 e+03 14.9613 2 . 0 2 8 8 e+05 1 . 2 8 7 2 e+03 (70.59%)
s e q u e n t i a l 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 (0.00%)
c o m b i n a t i o n a l 149.6187 154.5309 2 . 3 2 2 3 e+05 536.3785 (29.41%)

−−
Total 1 . 2 1 9 0 e+03 uW 169.4922 uW 4 . 3 5 1 1 e+05 nW 1 . 8 2 3 6 e+03 uW

There are three power contributions extracted with the report_power command and
shown in report 4.5:

1. Internal Power: It is the short-circuit power. This is due to the direct connection
between the power supply and the voltage reference that is created when, during a
transition, some transistors inside the circuit are conducting at the same time.

2. Switching Power: Due to the charging and discharging of internal nodes and load
capacities.

3. Leakage Power: Due to the sub-threshold current of the transistors, which does
not assume the ideal null value when this is off (Vgs = 0).

The first two power types sum up to form the Dynamic Power, while the last one is
associated with the Static one. What happens in this circuit is that the Internal power
is the dominant power consumption component (with its 1.22 mW, 67% of the total),
followed by the Leakage power, with 435 µW, 24% of the overall consumption. The last
component is the Switching power, which covers the 9%.

69

Verification, Synthesis, and Performance

4.2.3 The Constructor and Extimator separate contributions
As shown in figure 3.1, the AME Architecture is composed of two distinct hardware
accelerators (the "Constructor" and the "Extimator"), which are independent of each other.
The Constructor could be replaced with the VTM software construction algorithm exposed
in 2.2.1. In the same way, the Extimator could be replaced with the exact estimation
method shown in the same section.
With such degrees of freedom, it is possible to choose which component to use depending
on the specific application. Therefore it is important to have an idea of how the two
components separately contribute to the whole AME Architecture characteristics.

To obtain the area, timing, and power report of the two components individually, the
same processes reported in sections 4.2.1 and 4.2.2 are performed on the Constructor and
Extimator. Figure 4.3 shows the maximum clock frequency, area, and power consumption
estimation results.

Figure 4.3. Maximum clock frequency, area and power consumption of the proposed
architecture compared to its main sub-blocks.

Separate considerations must be done about the obtained estimations.

• About the clock frequency, being the critical path entirely in the Constructor, the
maximum fclk in this latter is nearly the same as the whole architecture’s one. In the
Extimator, instead, the circuit speed increases of the 35%. This is a considerable
improvement and could be a good motivation to use only the Extimator if the system
requirement is execution speed.

• From the area occupation side, the Extimator, and the Constructor cover the 46%
and 54% of the total area. This means that the two components have roughly the
same cost in terms of area. This is an interesting parameter to consider when
choosing which one of the components is essential or not.

• For what concerns the total power consumption, both the Extimator and Con-
structor consume half the amount of the total architecture. Again, the two compo-
nents achieve roughly the same results, bringing to the conclusion that they could
be considered components with similar complexity.

70

4.3 – Architecture encoding performance

Table 4.1 summarizes the results obtained for the three blocks.

Tcp(ns) fclk(MHz) Area(µm) Total Power (mW)
Extimator 2,17 460,83 11099 0,87
Constructor 2,82 354,61 12723 0,91
AME Architecture 2,93 341,30 23889 1,82

Table 4.1. Critical path delay; maximum clock frequency; area and power consumption
of the proposed architecture and its main sub-blocks.

4.3 Architecture encoding performance
The circuit performance in terms of encoding capability can be analyzed starting from
the maximum clock frequency evaluated during the synthesis process. The main metric
on which this property is measured is the maximum video resolution and framerate
that the architecture can process without slowing down the VTM software.
As already mentioned in the previous sections, the Affine Motion Estimation (AME)
process is not the only algorithm in the VVC encoding chain. As Pakdaman et al. in [13]
have measured, the AME is 17% of the ME complexity, which is, in turn, the 47% of the
total encoding complexity. Therefore, it is calculated that Affine Motion Estimation is
approximately 8% of the total VVC encoder computational burden.

The clock frequency requirement variation with the video stream parameters is
calculated under the following conditions.

• Assume a video stream with resolution Fw × Fh and framerate fr.

• All the blocks are coded with Affine Motion Estimation.

• The block size is fixed at CUw × CUh and equal for all the Coding Units.

• Assume that the minimum clock frequency required increases linearly with the com-
putational complexity.

Under the previous constraints, the minimum frequency fmin required to the AME
Architecture is:

fmin = 1
0.08

Fw · Fh

CUw · CUh
· Text · fr (4.1)

Where Text is the Extimator latency shown in equation 3.8. Using the relation in
4.1, fmin has been calculated with three different CU sizes and with the resolution and
framerate examples from the Common Test Conditions [12]. The results are shown in
table 4.2.

Notice how fmin depends on the CU sizes. In this thesis work, the simplified algorithm
is implemented in a way that allows for a maximum frequency of 341 MHz. Considering

71

Verification, Synthesis, and Performance

CU: (16 · 16) CU: (32 · 32) CU: (64 · 64)
Fw Fh fr fmin fmin fmin

2560 1600 30 378,00 225,00 200,25
1920 1080 60 382,73 227,81 202,75
1920 1080 50 318,94 189,84 168,96
1920 1080 30 191,36 113,91 101,38
1920 1080 24 153,09 91,13 81,10
1280 720 60 170,10 101,25 90,11
1280 720 30 85,05 50,63 45,06
1280 720 20 56,70 33,75 30,04
1024 768 30 72,58 43,20 38,45
832 480 60 73,71 43,88 39,05
832 480 50 61,43 36,56 32,54
832 480 30 36,86 21,94 19,52
416 240 60 18,43 10,97 9,76
416 240 50 15,36 9,14 8,14
416 240 30 9,21 5,48 4,88

Table 4.2. Clock frequency requirement on the AME Architecture (fmin), calcu-
lated with three different CU sizes.

the results in table 4.2, in the worst case where all the Coding Units are 16×16 sized, the
maximum frame rate and resolution supported by the architecture is 1920×1080 @ 50fps.
Whether this result cold be sufficient or not, depends on the particular application con-
sidered.

72

4.3 – Architecture encoding performance

4.3.1 Comparison with other architectures for VVC
In this thesis dissertation, pre-existing works for VVC have been analyzed from scien-
tific literature (sections 1.5 and 2.5). For some of them, an hardware implementation
is produced, and results in terms of area, throughput and cost are reported. Table 4.3
summarizes these features and compares them with the proposed architecture’s ones.

Work Algorithm fclk(MHz) Throughput Ptot Cost Target
[40] ME 435 1920 × 1080@88fps 467.93 mW 37.6 kgates ASIC 90 nm
[16] ME 227 1920 × 1080@47fps 320.18 mW - FPGA
[17] T/Q 576 3840 × 2160@86fps - - FPGA
[18] T/Q 250 - 69.5 mW - ASIC 65 nm
[19] T/Q 600 4096 × 2160@48fps - 96849 µm2 ASIC 28 nm
[20] T/Q 164 - - - FPGA
[21] T/Q 187 - 13.10 mW 90k eq. gates ASIC 90 nm
[22] T/Q 143 3840 × 2160@64fps - 5.2 kgates SoPC 40 nm
[41] LF 367 4096 × 2160@120fps - 369 kgates ASIC 65 nm
Prop. AME 341 1920 × 1080@50fps 1.82 mW 23889 µm2 ASIC 45 nm

Table 4.3. Comparison between pre-existing architectures for VVC and the proposed one.

Some papers do not report all the architecture characteristics. This is why some data
is missing.
What emerges is that most of the works handle the "Transform and Quantization" (T/Q)
stage. That is because DCT (and in some cases DST) are commonly studied algorithms,
that exist since the first video coding standard.
The operating clock frequencies are in the range of [164 ÷ 600] MHz: the proposed
architecture, with its 341 MHz, is placed in the middle.
From power estimations, the proposed work dissipates 86% less than the second less
consuming one. The motivation can be seen in the algorithm simplicity, that implements
only one part of a lager block that is Motion Estimation.
This low complexity is highlighted also by the low cost in terms of area.

73

74

Chapter 5

Conclusions

In this thesis dissertation, a simplified Affine Motion Estimation algorithm and its hard-
ware implementation are presented. First of all, the motivation behind the work is carried
out: the increasing computational resources requirement of the new encoding stan-
dard, Versatile Video Coding. The idea of relieving part of the software complexity burden
by simplifying the algorithm and introducing a hardware accelerator could be exploited
in other works by acting on other complex blocks. For this purpose, the VVC complexity
analysis carried out in chapter 1.2 could be exploited. An ideal point of arrival could be a
complete hardware implementation of the VVC encoder, where every block is low-power
and high-performance optimized.

As already mentioned, the proposed algorithm and architecture are composed of two
distinct and independent sub-parts. The first one is the construction algorithm (hardware-
implemented as the "Constructor"): it provides part of the Motion Vector (MV) candi-
dates which will participate in the motion estimation process. The second one is the
estimation algorithm (hardware-implemented as the "Extimator"), which chooses from
the candidates’ list the MVs that are the result of the Motion Estimation (ME) process:
the Motion information for the current Coding Unit. The better the ME algorithm, the
lower the residual information to be transmitted: this is what distinguishes a good Es-
timation method from a bad one. Therefore, in order to evaluate the goodness of the
proposed algorithm, the amount of residual information after the motion estimation is
evaluated. But this is not a standard procedure. An interesting work that could be per-
formed on the algorithm could be to implement it in the VTM software and extract
its performance in terms of Bjontegaard Delta Bit-Rate (BDBR). That is what is done
in the other works on AME, which act on different parts of the algorithm. This property
makes the proposed method orthogonal to the cited works ([34, 4, 37, 38]). It is possible
to integrate more than one solution from Table 2.4 and evaluate the performance of the
new combined algorithm. Eventually, many hardware implementations could come out,
each one with its advantages and flaws.

The hardware implementation of the algorithm is based on a strong hierarchical
structure. Everything starts from the smallest inverter and is organized up to the largest
AME Architecture, which includes the Constructor and the Extimator, each one with

75

Conclusions

its Datapath, Control Unit, and signal adapters. However, this is not the only possible
implementation of the algorithm. Some changes can be applied to the signals’ timing,
the component structure, and so on. These architectural modifications, in future works
could be applied with the aim of improving one of the three main system characteristics:
cost in terms of area, performance in terms of critical path delay (Tcp) and power con-
sumption. Usually what happens is that, when improving one of the three parameters,
there is another one that degrades. A trivial but effective strategy is to reduce the ar-
chitecture critical path delay acting on the 26-bit multiplier in the constructor, because
the critical path starts and ends in this component. One method to do so is to internally
pipeline it, or reduce its parallelism (and thus complexity) by using a pipelined structure
similar to Extimator’s "MULT1" component described in section 3.2.1. Both the solutions
increase the circuit latency, reducing at the same time the system’s performance. An
analysis of the new implementation delay should be carried out to understand whether
this could bring advantages or not. Ideally, if the Constructor’s Tcp became lower than
the Extimator’s one, the new operating frequency could be this latter component’s one,
that is fclk ≃ 460 MHz, a growth of the 35%. This would allow the AME Architecture to
elaborate streams up to 2560 × 1600 @ 30fps, according to the considerations in section
4.3.

Another possible architectural modification is related to the circuit input timing. In
the implementation proposed here, a new Motion Estimation process can start only when
the preceding one is completed. This is a waste in terms of execution time since, thanks
to the used pipelining technique, the first components in the pipeline are available even
when the elaboration is not completed. To improve the execution speed, a "non-stop"
execution mode could be implemented. The drawback, in this case, would be the added
complexity in both the Extimator’s Datapath and Control Unit. Another idea for future
work could be to produce a hardware implementation of the exact VTM Affine Motion
Estimation algorithm shown in section 2.2.1 and to compare its characteristics with the
proposed simplified one.

Finally, this study is concluded with an analysis on the encoding performance,
having in mind the possibility to integrate this component into a system with a processor
running the VTM software. It is shown that the architecture is supposed to support
the main encoding algorithm in the elaboration of video streams with resolution up to
1920 × 1080 @ 50fps. However, this estimation is obtained by applying some constraints
to ease the frequency requirement calculation. Therefore, one last idea for future work
could be to perform tests with the VTM software to verify if the proposed architecture
really achieves this performance or if it behaves worse, or even better.

76

Appendix A

Video Coding overview

A.1 Image representation in Video Streams
Before introducing the very first video coding standard, it is essential to show how images
are digitally represented in a video stream.
To understand deeply why the standard currently in place is this one, the history of
TV broadcasting must be dug up. The first electronic black-and-white television sets
were produced and released commercially in the late 1930s [42]. Back then picture was
generated by exciting the phosphor of a screen using an electron beam driven by the video
signal. The path that modulated electron beam traces was linear and it is shown in figure
A.1.

Figure A.1. The path traversed by the electron beam in a television. From [5]

In the late 1950s, the first colour television based on a system designed by RCA (Radio
Corporation of America) began commercial broadcasting [43]. Of course, there is more
information to be transmitted in this case, and in fact, instead of a single electron gun,

77

Video Coding overview

there are three of them, each one exciting a different colour among red, green and blue.
This change in the way of representing pictures led shortly to two main problems. The
first one was the increased bandwidth due to new colour information that has to be
transmitted. The second one was backward compatibility. In fact, by the advent of colour
television systems, there were still many black-and-white TV sets users, which television
stations did want to reach too using the same signal of color TV ones.
Both problems found a solution when the composite color signal was introduced. It
is composed of the luminance signal (luma), which is the same used for the intensity in
black-and-white television and the two chrominance (chroma) signals, used to represent
color.
In the late 1990s, digital television started spreading [44], the mentioned signals began
to be sampled and stored digitally. This new transition was regulated by International
Consultative Committee on Radio (CCIR) recommendation 601-2. In this standard the
sampling rates for the cited operation were defined, all multiple of the base frequency
3.725 MHz. Each sample is arranged on a rectangular array, becoming a pixel of the
picture.
The three components of the composite color signal are indicated with the letters Y ,Cb,Cr

to indicate the luma and the two chroma components respectively. These signals can be
collected with a different sampling rate, a triplet of integers indicates which choice has
been made and it may vary from one standard to another. A typical instance is the 4:2:0,
which means that the sampling frequency of the chroma components is one-half of the
luma one. This particular choice is addressed to as chroma subsampling, it allows
to reduce the bandwidth requirement by halving the number of chroma samples while
achieving quite the same image quality. This is because the human eye is more sensitive
to intensity than color variation [45].

A.2 Video Encoders basic blocks
Leaving out the first standard H.120, which is "not used much" [1], the first DCT-based
video coding standard is the ITU-T H.261 standard. Its block diagram is shown in figure
A.2. This first, simple standard is useful as a base for describing the basic principles of
video coding.

A.2.1 Motion-compensated prediction
In most video sequences there is little change in content between one frame and the next
one. This phenomenon is what can be called temporal redundancy. Keeping in mind
that the main task of Video Coding is to reduce the amount of information to be stored
and transmitted, the idea behind motion-compensated prediction is to take advantage of
this redundancy by using a frame to generate a prediction for the next one using Motion
Estimation. If the decoder knows how to perform the prediction, always having stored
the previous frame it will easily recover the current one using Motion Compensation
exploiting the prediction information sent by the encoder. This encoded data is more
lightweight than an entire frame.

78

A.2 – Video Encoders basic blocks

Figure A.2. Block diagram of the ITU-T H.261 encoder, from [5].

In practice, this "prediction information" consists of one or more vectors called motion
vectors (MVs), which simply inform the decoder about the movement of some pixel
blocks. Having this information, the decoder applies the motion vectors to the previously
decoded frame. Of course, this is not enough to reconstruct faithfully a frame, since what
can happen to elements in a frame is more complex than a simple movement (change of
brightness, appearance or disappearance of objects and so on). To improve the frame
reconstruction accuracy another piece of data is transmitted along with the MVs, the
"prediction error" or residual.
The residual is the difference between the motion-compensated reference frame and the
current frame. This is what is actually sent as information into the stream. If the predic-
tion is sufficiently good, the motion-compensated picture is quite similar to the one to be
encoded, leading to a very low-content residual and as consequence a reduced amount of
data out of the video encoder.
It is not mandatory to perform always Motion Estimation/Compensation. There may be
some cases in which it is not applied and the residual coincides with the current frame to
be encoded. This may happen, for example, when there is an abrupt change of scene in a
movie. If the two consecutive frames of the previous and next shot are totally different,
there is no way to identify the movement of objects. Motion prediction is useless in such
an occurrence. In this case, the encoder is said to be working in intra mode, otherwise,
it’s in inter mode.

A.2.2 Discrete Cosine Transform
Since H.261 the coded residuals are not represented directly with their pixel intensity, they
are transformed using transforms which may change among standards. The most used
ones represent the signals in the frequency domain. Indeed image, like most information,

79

Video Coding overview

is a signal that varies with a certain parameter (in this case, space). The speed of variation
of the signal is strictly related to its frequency components. If it was possible to extract
these components it would be allowed to cut out the higher ones, reducing the payload
while keeping almost the same visual quality. This is because the human eye is not capable
of perceiving very fast variations of intensity in a frame.
In H.261 as well as most of the following standards, the discrete cosine transform
(DCT) is exploited. It gets its name from the fact that the rows of the NxN transform
matrix C are obtained as a function of cosines [5].

[C]i,j =

√

1
N cos (2j+1)iπ

2N i = 0, j = 0,1, ..., N − 1√
2
N cos (2j+1)iπ

2N i = 1, j = 0,1, ..., N − 1
(A.1)

The DCT of an image can be computed by matrix product with C. The result represents
how much each frequency component is present in the picture. The coefficients of the result
can also be applied to the bases matrices to reconstruct the original image.
The base matrices for a NxN transform are a set of NxN matrices that can be summed
up to reconstruct a frame if they are weighted using the coefficient of the DCT of an
image. In figure A.3, an example of an 8x8 set is reported.

Figure A.3. The bases matrices for the DCT. From [5]

To show how image transform and inverse transform work and how DCT can be ex-
ploited to reduce the amount of information in an image while preserving quality, an
interesting example can be shown. Assume the current frame to be the 8x8 pixel smile
reported in figure A.4, on the left. Using the Matlab tool, its DCT-II is computed and
reported in table A.2.

80

A.2 – Video Encoders basic blocks

560,73 471,64 390,67 548,36 534,21 416,48 514,77 546,94
82,18 60,80 −21,57 99,82 87,32 −15,21 129,99 94,36
152,28 −28,11 −183,05 −149,56 −163,80 −173,48 −8,14 146,19

−169,15 −129,43 58,62 106,41 95,86 89,73 −112,97 −164,79
−13,43 197,98 146,72 9,54 14,49 141,42 166,87 1,76
120,79 29,23 −0,37 72,80 74,68 13,61 −37,08 88,17
−46,24 74,40 102,22 59,27 76,65 117,01 43,17 −34,15
−36,24 70,43 −37,81 21,29 26,38 −42,31 20,69 −23,16

(A.2)

Performing the inverse transform of the DCT coefficients allows for reconstructing
accurately the original image, having the information about each frequency component.
Graphically, what happens is that each base in figure A.3 is multiplied by the respective
coefficient in table A.2, then each 8x8 block is summed up to produce the original "smile"
image.
Having explicitly shown each frequency component, it is possible to cut out the highest
ones and obtain the matrix in A.3.

560,73 471,64 390,67 548,36 534,21 416,48 514,77 546,94
82,18 60,80 −21,57 99,82 87,32 −15,21 129,99 94,36
152,28 −28,11 −183,05 −149,56 −163,80 −173,48 −8,14 146,19

−169,15 −129,43 58,62 106,41 95,86 89,73 −112,97 −164,79
−13,43 197,98 146,72 9,54 14,49 141,42 166,87 1,76
120,79 29,23 −0,37 72,80 74,68 0 0 0
−46,24 74,40 102,22 59,27 76,65 0 0 0
−36,24 70,43 −37,81 21,29 26,38 0 0 0

(A.3)

Performing the anti-transform (IDCT-II, Inverse Discrete Cosine Transform - Type
II) of this latter, the "smile" in figure (A.4, on the right) is obtained.

Figure A.4. The 8x8 pixel smile, scaled 2x. On the left, the original figure; on the right
the same image after cutting out the highest frequency components

Even though the two figures are not identical, the result obtained may be sufficient
considering the reduced amount of information needed to represent it. The number of
coefficients in matrices A.2 and A.3 are still the same, it could be argued that there is
no payload reduction. The advantage of the second matrix is that the last coefficients
are all equal to zero: the quantization and coding block is in charge of exploiting this
property to increase the compression of images.

81

Video Coding overview

A.2.3 Quantization and Coding

The matrix of DCT coefficients of the transformed frame (like the one in A.2) has to be
manipulated to reduce the amount of information to be transmitted.
The transform operation does not introduce error when reconstructing the image. Ideally,
applying the DCT on an image and the IDCT on the result would result in the same
starting image. The operation issued in this block, instead, does introduce an error.
It consists in dividing each coefficient by a number (called quantization parameter
(QP)) and rounding the results in a way that is different from one standard to the
next one. In H.261, the QP can change among 32 possible values [5], depending on how
much each frequency component is considered important in the final reconstruction. If a
DCT coefficient is smaller than the quantization parameter, its value could be rounded to
zero. Usually, this is the case with higher frequency components, which are placed in the
bottom-right positions of the matrix.
After the quantization operation, the matrix is encoded in a 1-D array to be transmitted
or stored. The order the coefficients are collected follows a particular path called zig-
zag scan which may slightly vary among the different coding standards. An example of
zig-zag scan is shown in figure A.5 [6].

Figure A.5. The zig-zag scan which arranges the quantized DCT coeffi-
cients in a 1-D matrix. From [6]

This kind of path allows collecting a large number of zeroes consecutively. Taking the
matrix example A.3, the last elements would be lined up as

[...,1.76,0,0,26.38,0,0,0,0,0,0] (A.4)

This sequence is fed to a block called Coder. Its purpose is to code this stream in
order to remove the redundancies, thus reducing the amount of information. For example,
in H.261 the nonzero coefficients are coded along with the number, or run of coefficients
quantized to zero. Moreover, the 20 most commonly occurring combinations of (run,
label) are coded with a single variable-length codeword. This last principle is the one on
which the Entropy Coder works. The idea is to represent the most common labels with
the shortest symbols in order to reduce the total amount of information.

82

A.2 – Video Encoders basic blocks

A.2.4 Frame Partitioning

All the operations described so far (Motion Compensation,Tansform and Quantization),
are not performed on the whole frame at the same time during the encoding/decoding
process. Since H.261, the frames in video streams are split into blocks of small dimensions.
In the first standard, there was only one choice for the block dimensions, which was
8 × 8. This technique is called frame partitioning and is used to find the optimum in
terms of computation cost. Performing the DCT on a frame of size 1920 × 1080 which
is the resolution of standard HD format would be very intense in terms of computational
complexity. This is why the frame is divided into blocks. Blocks size may not be too
small, since it increases the number of transform operations to be performed. There is no
fixed solution in finding the best block dimension, a tradeoff has to be done depending on
the encoder structure and performance.
While the video coding standards became more complex, frame partitioning evolved too.
An interesting example is the HEVC standard, where the block division follows a tree
structure, in which the largest possible block is the Coding Tree Unit (CTU) with a size
chosen by the encoder which may range from 16 × 16 to 64 × 64 [46]. The CTU can be
divided into Coding Units (CUs) according to a quad-tree-based algorithm.
The advantage of this strategy is to adapt the video content to the granularity of the
operation to be applied. For example, high-detail areas may need a fine granularity in
Motion Prediction, since each detail could move in a different direction. Areas that are
uniform in terms of intensity may have very few, low-frequency DCT coefficients, so it
is profitable to include them in the same large block. In figure A.6 an example of frame
partitioning in HEVC is shown. It can be noticed how regions with higher details are
associated with smaller Coding Units.

Figure A.6. An example of Frame Partitioning in HEVC

83

Video Coding overview

A.2.5 Loop Filter
The use of frame partitioning described in section A.2.4 may lead to discontinuities of the
prediction error at the edges of coding units. As already mentioned in section A.2.2, fast
variation of intensity leads to large values for the frequency coefficients, thus increasing
the transmission rate. This problem is solved by smoothing the pixel intensity of the
coding units using a spatial filter called the loop filter. The coefficients of the filter may
change among the different coding standards, but its purpose remains the same.

A.2.6 Random Access Capability
One of the most important concepts in video coding is the use of residuals, differences
between two frames, which are sent to the encoder since they are more lightweight than
the whole frames. What the encoder performs is to apply those differences to the picture
it already recovered to reconstruct the video stream. The only problem with this approach
is that, to reconstruct a given frame, all the previous frames are needed. This means that
it’s not possible to decode a video sequence starting from any frame. On the contrary,
this capability is mandatory in services like broadcast, where the users do not necessarily
want to access the video stream starting from the first frame.
The ability to start decoding a video sequence at, or close to, some arbitrary point is
called random access capability. This is what was introduced in the MPEG-1 video
standard by the ISO/IEC MPEG (Moving Picture Experts Group). The idea proposed is
quite simple, and it relies on the use of frames that are periodically coded without any
reference to past frames, called I frames (Intra coded frames). The number of I frames
in a video sequence affects the random access capability and the transmission rate in the
opposite direction. Since the I frames do not exploit information of the adjacent ones,
their compression ratio is quite high, they are the heaviest frames of a video sequence. To
reduce the transmission rate, it’s important to reduce the number of I frames in a video
sequence. However, if there are few I frames, it is not possible to start decoding a video
sequence close to any given frame, so the random access capability is negatively affected.
There are two extreme cases related to this choice. The first one, where all the frames are
I frames, where it is possible to view the video sequence starting from any frame, but the
amount of information in the coded stream is high. The second one, where only the first
frame is of type I, where the transmission rate is the lowest, but the video sequence can
only be viewed starting from the beginning. Of course, there is a trade-off, in this case,
to be considered.
The frames that are not of the I type are divided in P (Predictive coded) and B (Bidi-
rectionally predictive coded) ones. The P frames are coded using motion-compensation
prediction applied to the closest I or P frame, thus their compression efficiency is better
than the one of the I kind. The B frames, instead, rely on the closest I or P frame, which
is a past frame or a future frame. This improves further the compression efficiency but
complicates unavoidably the coding standard. If there are frames that, to be displayed,
require that future frames are decoded, the decoding order is different from the order in
which the pictures are displayed. Thus, since MPEG-1 a distinction between the decod-
ing order (or bistream order) and the display order was made. The frames in video

84

A.2 – Video Encoders basic blocks

streams are organized in group of pictures (GOP), defined as "the smallest random access
unit in the video sequence" [5]. In a GOP, the first I frame is either the first one or is
preceded by B frames that use motion-compensated prediction only from this I frame.
An example of GOP is shown in figure A.7. In tables A.1 and A.2, instead, two possible
display and bitstream order for the GOP are shown.

Figure A.7. A possible arrangement for a group of pictures. From [5]

I B B B P B B B P B B B I
1 2 3 4 5 6 7 8 9 10 11 12 13

Table A.1. Display order for the GOP in figure A.7

The GOP structure is an important setup for the encoder since it is a trade-off be-
tween the high compression efficiency of motion-compensated coding and the versatility
of random access capability of intra-only coding.

A.2.7 Profiles and Levels
Considering all the stages of video coding along with their complexity, it shows up that en-
coding and decoding a video stream may require a powerful processing system. Currently,
there is a large variety of internet-connected devices, each of them with its computational
capability [8]. This variety of devices arose the need for a coding standard suitable to
each device, which could change its performance requirements according to the available
resources. This is what led the "Moving picture experts group" to introduce in their new
standard MPEG-2 the concept of profiles and levels, which is still in use so far.
Profiles allow for reducing or increasing the algorithmic complexity of the coding stan-
dard. The first profiles included in MPEG-2 are worth mentioning since they are similar
to the ones still used in modern standards. The first one is the simple, which avoids the

85

Video Coding overview

I P B B B P B B B I B B B
1 5 2 3 4 9 6 7 8 13 10 11 12

Table A.2. Bitstream order for the GOP in figure A.7

use of B frames since they are the most complex to be processed. Then there is the main
profile, which includes the use of all the blocks as they were described so far. The next
one is the snr-scalable, where two different streams are transmitted. The first one contains
the essential information to reconstruct the encoded stream, while the second one allows
enhancing the quality of the reconstruction. This solution is called layered approach
and can be used to transmit also some additional frames to increase the framerate (tem-
porally scalable profile) or to improve picture resolution (spatially scalable profile). This
is a versatile approach since low-performance devices can reconstruct the video using only
the first stream, while high-performance ones could improve de video quality including
the second one in the elaboration. Notice that the order of profiles is important since each
of them is also capable of decoding the other ones. For example, a decoder designed for
the spatially scalable profile could decode a video encoded in main.
Levels allow to reduce or increase the resolution or the frame-rate, to tune the burden
on the processing elements which work on the video stream. In MPEG-2, the levels with
their relative frame sizes are: low, with 352 × 240, main with its 720 × 480, high 1440
with its 1440 × 1152, high, corresponding to 1920 × 1080. All of these levels are defined
with a framerate of 30 frames per second.

86

A.2 – Video Encoders basic blocks

A.2.8 Intra prediction
In the ITU-T Recommendation H.264, ISO/IEC MPEG-4 Part-10 also called AVC (Ad-
vanced Video Coding), an innovative way of processing the I frames was introduced. Pre-
vious standards had no way to introduce predictive coding when considering Intra-frames.
Consequently, the number of bits required to store I frames was substantially higher than
for the other kind of pictures. To reduce the bitrate, the AVC introduced spatial pre-
diction modes for Intra prediction. This means that in a single frame, the pixel in a
block of a certain dimension (in AVC, 4 × 4) are predicted using the value of boundary
pixels belonging to the same frame. Depending on the direction of prediction, a number
is associated with the prediction mode. Figure A.8 shows the modes available in AVC.

Figure A.8. Prediction modes in AVC. In small letters the pixel of the block to be
encoded, in capital letters the neighbor pixels from the same frame. From [5]

There is an additional mode which is not shown in figure A.8, the DC mode associated
to the number 2. In this mode, all the pixels of the block to be encoded are predicted
using the average of left and top neighbor pixels.

87

88

Appendix B

Proposed model Matlab
Implementation

B.1 Candidate construction

1 %% candidate_search (example 31)
2 % This script selects the best candidate(s) for the affine AMVP prediction
3

4 clear
5

6 %Example-specific parameters
7

8 h=64; %Current block height
9 w=16; %Current block width

10

11 %We are computing the third element in a triplet, the
12 %MV'S2 described in paper (2), which imposes that x=0 while y=h
13 x=0;
14 y=h;
15

16 % Neighboring blocks motion vectors
17 %Group 0
18 mv0_h(1)=32; %A2 x component
19 mv0_v(1)=8; %A2 y component
20

21 mv0_h(2)=32; %B2 x component
22 mv0_v(2)=0; %B2 y component
23

24 mv0_h(3)=32; %B3 x component
25 mv0_v(3)=8; %B3 y component
26

27 %Group 1
28 mv1_h(1)=32; %B1 x component

89

Proposed model Matlab Implementation

29 mv1_v(1)=8; %B1 y component
30

31 mv1_h(2)=32; %B0 x component
32 mv1_v(2)=8; %B0 y component
33

34 %Group 2
35 mv2_h(1)=-32; %A1 x component
36 mv2_v(1)=-8; %A1 y component
37

38 mv2_h(2)=32; %A0 x component
39 mv2_v(2)=8; %A0 y component
40

41 D_min=121237;
42 D_min2=121238;
43

44 %Rows C(1) and C(2) contain the first and second best candidates respectively
45 %The third row contains the third vector for which the distortion D is the
46 %minimun one
47 C=zeros(2,3);
48

49 % Best candiadate search
50 for i=1:length(mv0_h)
51 for j=1:length(mv1_h)
52 %Calcolo qui MVS2' perché nel prossimo step, con gli MVS2
53 %calcoleremo solo le distortion
54 mv2p_h(i,j)= -bitshift((mv1_v(j)-mv0_v(i)),log2(h/w),'int16') +

mv0_h(i);↪→

55 mv2p_v(i,j)= bitshift(+(mv1_h(j)-mv0_h(i)),log2(h/w),'int16') +
mv0_v(i);↪→

56 for k=1:length(mv2_h)
57 D=sqrt((mv2p_v-mv2_v(k))^2+(mv2p_h-mv2_h(k))^2);
58 if D<D_min
59 %Set the best candidate couple as the current one,
60 %the previous best couple becomes the second one
61 D_min2=D_min;
62 D_min=D;
63 C(2,1)=C(1,1);
64 C(2,2)=C(1,2);
65 C(2,3)=C(1,3);
66 C(1,1)=i;
67 C(1,2)=j;
68 C(1,3)=k;
69 elseif D<D_min2
70 %Check if this candidate couple is not the same as the best one
71 if mv0_h(i)~=mv0_h(C(1,1)) || mv0_v(i)~=mv0_v(C(1,1)) ||

mv1_h(j)~=mv1_h(C(1,2)) || mv1_v(j)~=mv1_v(C(1,2))↪→

72 %If they're not the same, you can update the second
73 %best candidate
74 D_min2=D;

90

B.2 – Affine Motion Estimation

75 C(2,1)=i; %Second best candidates
76 C(2,2)=j;
77 C(2,3)=k;
78 end
79 end
80 end
81 end
82 end
83

84

85

B.2 Affine Motion Estimation
1 %% AMC for canditates choice multiparameter model
2 %This model chooses between the different candidates the one whose SAD is
3 %lower than the others
4

5 close all
6 clear
7

8 %Add the scripts folder to the MATLAB path
9 addpath '.\YUV'

10 addpath '.\myMatlabLib'
11

12 %Acquire example name from input
13 prompt = {'Enter example file path:'};
14 dlgtitle = 'Example file';
15 dims = [5 100];
16 definput = {'.\AMC_examples_data\AMC_examples_data_ex26.xlsx'};
17 examplefile = inputdlg(prompt,dlgtitle,dims,definput);
18

19 %Load example data
20 data=readtable(char(examplefile));
21

22 %fame parameters
23 frame_h=data.frame_h(1);
24 frame_w=data.frame_w(1);
25 sixPar=data.sixPar(1);
26

27 %Block parameters
28 w=data.w(1);
29 h=data.h(1);
30 x0=data.x0(1);
31 y0=data.y0(1);
32

33 %Raw image extraction
34 numfrm=1;%Extract just one frame

91

Proposed model Matlab Implementation

35 startfrm=data.startfrm_cur(1); %POC of the current frame
36 [Y]=yuv_import(char(data.file_cur(1)),[frame_w frame_h],numfrm,startfrm);
37 Curframe=cell2mat(Y);
38 figure('Name','Frame to be encoded (original file)')
39 colormap('gray');
40 image(Curframe)
41 %CU to be encoded
42 %NOTA: In Matlab le immagini, se indicate come matrici di pixel, hanno gli
43 %indici che si riferiscono prima alla coordinata y e poi alla x. Questo
44 %perche' si mette sempre prima l'indice della riga e poi quello della
45 %colonna!
46 CurCu=Curframe((y0+1):(y0+h),(x0+1):(x0+w));
47 figure('Name','CU to be encoded (original file)')
48 colormap('gray');
49 image(CurCu)
50

51 %Reference frame extraction
52 numfrm=1;
53 startfrm=data.startfrm_ref(1);
54 [Y]=yuv_import(char(data.file_ref(1)),[frame_w frame_h],numfrm,startfrm);
55 Refframe=cell2mat(Y);
56 figure('Name','Reference frame (prev. frame from the encoded file)')
57 colormap('gray');
58 image(Refframe)
59 %Same CU but from the reference frame
60 % RefCu=Refframe((y0+1):(y0+h),(x0+1):(x0+w));
61 % figure('Name','Same CU but from the reference frame')
62 % colormap('gray');
63 % image(RefCu)
64

65 %Representative Blocks
66 figure('Name','Reference blocks highlighted (original file)')
67 colormap('gray');
68 image(CurCu)
69 title('Current Coding Unit')
70 xlabel('pixel x (horizontal) position')
71 ylabel('pixel y (vertical) position')
72 hold on
73

74 for j=0:floor((h-1)/16) %Vertical control
75 for i=0:floor((w-1)/16) %Horizontal control
76 rectangle('Position',[0.5+16*i 0.5+16*j 4 4],'EdgeColor','r') %Plot

the first representative 4x4 block in a 16x16 block↪→

77 rectangle('Position',[(0.5+12)+16*i 0.5+16*j 4 4],'EdgeColor','r')
%Plot the second representative 4x4 block in a 16x16 block↪→

78 rectangle('Position',[0.5+16*i (0.5+12)+16*j 4 4],'EdgeColor','r')
%Plot the third representative 4x4 block in a 16x16 block↪→

79 rectangle('Position',[(0.5+12)+16*i (0.5+12)+16*j 4 4],'EdgeColor','r')
%Plot the fourth representative 4x4 block in a 16x16 block↪→

92

B.2 – Affine Motion Estimation

80 end
81 end
82

83 %Plot the 16x16 blocks
84 for j=0:floor((h-1)/16) %Vertical control
85 for i=0:floor((w-1)/16) %Horizontal control
86 rectangle('Position',[0.5+16*i 0.5+16*j 16 16],'EdgeColor','b') %Plot

the first 4x4 block in a representative 16x16 block↪→

87 end
88 end
89

90 %Applico trasformazione affine "semplificata"
91

92 cand_num=data.cand_num(1); %Number of candidates
93

94 %Candidates MV and Refframe initialization
95 Refframe_AMC=zeros(frame_h,frame_w,cand_num);
96 mv0_v=zeros(cand_num,1);
97 mv0_h=zeros(cand_num,1);
98 mv1_v=zeros(cand_num,1);
99 mv1_h=zeros(cand_num,1);

100 mv2_v=zeros(cand_num,1);
101 mv2_h=zeros(cand_num,1);
102 for i=1:cand_num
103 Refframe_AMC(:,:,i)=Refframe; %Affine compensated reference frame
104 %CPMV 4-parameter
105 mv0_v(i)=data.mv0_v(i);
106 mv0_h(i)=data.mv0_h(i);
107 mv1_v(i)=data.mv1_v(i);
108 mv1_h(i)=data.mv1_h(i);
109 %If CMPV 6-parameter, add MV2 too
110 if sixPar==1
111 mv2_v(i)=data.mv2_v(i);
112 mv2_h(i)=data.mv2_h(i);
113 end
114 end
115

116

117 %Number of representatives in a 16x16 block
118 rep_num=4;
119 %Number of 16x16 blocks
120 block_num=(w*h)/256; %(Total n of pixels)/(pixels in a 16x16 block)
121 %SAD(n) contains the SAD for the n-th candidate
122 SAD=zeros(cand_num,1);
123 %Relative mv's (mvr) matrix
124 %First index: Candidate identifier (da 1 a cand_num)
125 %Second index: Representative identifier (da 1 a rep_num, typ: rep_num=4)
126 %Third index: 16x16 block identifier (da 1 a block_num)
127 %Fourth index: First coordinate: y [v], second coordinate: x [h]

93

Proposed model Matlab Implementation

128 mvr=zeros(cand_num,rep_num,block_num,2);
129 %Exact values
130 mvr_ex=mvr;
131

132 fxp_prec=4;%Alla fine 4 è la precisione totale, non ho approssimato
133 %con 3 anche se avrei potuto per motivi spiegati nel datapath
134

135

136 for curcand=1:cand_num
137 curbloc=0; %Current block index
138 %Motion vector matrices
139 for j=1:(h/16) %Vertical control
140 for i=1:(w/16) %Horizontal control
141 curbloc=curbloc+1;
142 for currep=1:rep_num
143 %Compute x and y coordinates of the current block
144 offset_x=0;
145 if mod(currep,2)==0
146 offset_x=12;
147 end
148 offset_y=0;
149 if currep>2
150 offset_y=12;
151 end
152 x=16*(i-1)+offset_x;
153 y=16*(j-1)+offset_y;
154

a_1=bitshift((mv1_v(curcand)-mv0_v(curcand)),-(log2(w)-4),'int16')/16;
%a_v_hw

↪→

↪→

155

a_2=bitshift((mv1_h(curcand)-mv0_h(curcand)),-(log2(w)-4),'int16')/16;
%a_h_hw

↪→

↪→

156 if sixPar==0
157

b_1=bitshift(+(mv1_h(curcand)-mv0_h(curcand)),-(log2(w)-4),'int16')/16;
%b_v_hw

↪→

↪→

158

b_2=-bitshift((mv1_v(curcand)-mv0_v(curcand)),-(log2(w)-4),'int16')/16;
%b_h_hw

↪→

↪→

159 else
160

b_1=bitshift(+(mv2_v(curcand)-mv0_v(curcand)),-(log2(h)-4),'int16')/16;
%b_v_hw

↪→

↪→

161

b_2=bitshift(+(mv2_h(curcand)-mv0_h(curcand)),-(log2(h)-4),'int16')/16;
%b_h_hw

↪→

↪→

162 end
163 mvr_ex(curcand,currep,curbloc,1)=x*a_1 + y*b_1 +

mv0_v(curcand); %mv_v exact_hw↪→

94

B.2 – Affine Motion Estimation

164 mvr_ex(curcand,currep,curbloc,2)=x*a_2 + y*b_2 +
mv0_h(curcand); %mv_h exact_hw↪→

165

mvr(curcand,currep,curbloc,1)=round(mvr_ex(curcand,currep,curbloc,1)/16);
%mv_v_hw

↪→

↪→

166

mvr(curcand,currep,curbloc,2)=round(mvr_ex(curcand,currep,curbloc,2)/16);
%mv_h_hw

↪→

↪→

167 SAD(curcand)=SAD(curcand)+ sum(
abs(Refframe((y0+1+y+mvr(curcand,currep,curbloc,1)):(y0+1+y+mvr(curcand,currep,curbloc,1)+3),↪→

168 (x0+1+x+mvr(curcand,currep,curbloc,2)):
169 (x0+1+x+mvr(curcand,currep,curbloc,2)+3)) -

CurCu(y+1:(y+4),x+1:(x+4))),'all');↪→

170 %Copy the original position of each block (graphical
171 %reference)
172

Refframe_AMC((y0+1+y):(y0+1+y+3),(x0+1+x):(x0+1+x+3),curcand)=CurCu(y+1:(y+4),x+1:(x+4));↪→

173 end
174 end
175 end
176 end
177

178 %Plot the CurCu and the AMC connected by a red line
179 for curcand=1:cand_num
180 curbloc=0;
181 s1='AMC for candidate number:';
182 s2=num2str(curcand);
183 figure('Name',strcat(s1,s2))
184 colormap('gray')
185 image(Refframe_AMC(:,:,curcand))
186 title('TMC on the representative blocks')
187 xlabel('pixel x (horizontal) position')
188 ylabel('pixel y (vertical) position')
189 rectangle('Position',[(x0+0.5),(y0+0.5) w h],'EdgeColor','b') %Plot the

first 4x4 block in a representative 16x16 block↪→

190 for j=0:floor((h-1)/16) %Vertical control
191 for i=0:floor((w-1)/16) %Horizontal control
192 curbloc=curbloc+1;
193 for currep=1:rep_num
194 offset_x=0;
195 if mod(currep,2)==0
196 offset_x=12;
197 end
198 offset_y=0;
199 if currep>2
200 offset_y=12;
201 end
202 %First representative 4x4 block in a 16x16

block↪→

95

Proposed model Matlab Implementation

203 first_edge_x=0.5+offset_x+16*i+x0; %First (in
alto a sx) edge of the Refframe's CurCu coordinates↪→

204 first_edge_y=0.5+offset_y+16*j+y0;
205 first_edge_AMC_x=first_edge_x+mvr(curcand,currep,curbloc,2);

%First (in alto a sx) edge of the Refframe's CurCu coordinates when AMC is
applied

↪→

↪→

206 first_edge_AMC_y=first_edge_y+mvr(curcand,currep,curbloc,1);
207 rectangle('Position',[first_edge_x first_edge_y

4 4],'EdgeColor','r')↪→

208 rectangle('Position',[first_edge_AMC_x
first_edge_AMC_y 4 4],'EdgeColor','g')↪→

209 line([first_edge_x+2,first_edge_AMC_x+2],
210 [first_edge_y+2,first_edge_AMC_y+2],'Color','red')
211 end
212 end
213 end
214 end
215

216 %Results computation
217 [SAD_min,Best_candidate]=min(SAD(1:2));
218 SAD_max=max(SAD(1:2));
219 SAD_adv=(1-SAD_min/SAD_max)*100;
220 msgbox({'Best Candidate';num2str(Best_candidate);'SAD

Advantage';strcat(num2str(SAD_adv,'%.2f'),'%')})↪→

221

222 %Check if the VQ_best is different from the Matlab chosen one. If yes,
223 %perform the comparison
224 if isfield(table2struct(data),'VQ_best')
225 VQ_best=data.VQ_best(1);
226 if VQ_best~=Best_candidate
227 comp_offs_y(1)=data.comp_offs_y(Best_candidate);
228 comp_offs_x(1)=data.comp_offs_x(Best_candidate);
229 comp_offs_y(2)=data.comp_offs_y(VQ_best);
230 comp_offs_x(2)=data.comp_offs_x(VQ_best);
231 mv0_h_comp=[mv0_h(Best_candidate) mv0_h(VQ_best)];
232 mv0_v_comp=[mv0_v(Best_candidate) mv0_v(VQ_best)];
233 mv1_h_comp=[mv1_h(Best_candidate) mv1_h(VQ_best)];
234 mv1_v_comp=[mv1_v(Best_candidate) mv1_v(VQ_best)];
235 mv2_h_comp=[mv2_h(Best_candidate) mv2_h(VQ_best)];
236 mv2_v_comp=[mv2_v(Best_candidate) mv2_v(VQ_best)];
237 [coeffReq,nonZero,nonZero_gt10] =

residual_compare(Refframe,CurCu,sixPar,mv0_h_comp, mv0_v_comp,mv1_h_comp,
mv1_v_comp,mv2_h_comp, mv2_v_comp, comp_offs_x, comp_offs_y)

↪→

↪→

238 SAD_Ratio=SAD(Best_candidate)/SAD(VQ_best)
239 end
240 end

96

Appendix C

Estimating algorithm
performance

C.1 Test sequences used

Ex. No. Stream POC x0 y0 Par CUw CUh

3 RaceHorses_416x240_30.yuv 4 208 160 4 32 32
4 RaceHorses_416x240_30.yuv 4 256 64 4 16 32
5 VQ_sample_432x240.yuv 3 192 160 4 32 32
6 VQ_sample_432x240.yuv 28 192 96 4 16 32
7 RaceHorses_416x240_30.yuv 1 96 192 6 32 32
8 VQ_sample_432x240.yuv 12 160 128 6 32 16
9 VQ_sample_432x240.yuv 34 208 96 6 32 32
10 BasketballPass_416x240_50.yuv 49 224 104 6 16 16
11 BasketballPass_416x240_50.yuv 1 64 128 6 32 32
12 BasketballPass_416x240_50.yuv 1 64 96 6 32 32
13 BasketballPass_416x240_50.yuv 1 256 160 4 32 32
14 VQ_sample_432x240.yuv 1 256 64 6 64 32
15 VQ_sample_432x240.yuv 2 128 80 4 16 32
16 RaceHorses_416x240_30.yuv 1 256 176 4 32 16
17 RaceHorses_416x240_30.yuv 1 96 32 6 32 32
18 RaceHorses_416x240_30.yuv 2 128 160 4 32 32
19 RaceHorses_416x240_30.yuv 2 224 200 4 32 16
20 BasketballPass_416x240_50.yuv 5 64 200 4 64 16
21 BasketballPass_416x240_50.yuv 7 240 80 6 16 32
22 VQ_sample_432x240.yuv 3 224 128 6 32 32
23 VQ_sample_432x240.yuv 4 160 152 6 32 16
24 VQ_sample_432x240.yuv 4 160 128 4 32 16
25 BasketballPass_416x240_50.yuv 25 16 160 6 16 32
26 BasketballPass_416x240_50.yuv 29 32 144 4 16 16
27 RaceHorses_416x240_30.yuv 3 192 144 6 64 32
28 RaceHorses_416x240_30.yuv 5 136 168 4 16 16
29 BasketballPass_416x240_50.yuv 38 264 96 4 16 16
30 VQ_sample_432x240.yuv 25 192 128 6 64 64
31 BasketballPass_416x240_50.yuv 4 64 64 4 16 64
32 BasketballPass_416x240_50.yuv 13 64 0 6 32 64

Table C.1. Test cases used for the algorithm performance estimation (and later as test
sequences for the hardware implementation logical verification).

97

Estimating algorithm performance

C.2 Proposed Candidate construction algorithm per-
formance

Example VQ Comply Any Constructed Constr. Match VQ C. w/o constr.
3 1 V V 1
4 1 V V 1
5 1 V X 1
6 0 V X 1
7 1 V V 1
8 0 V X 0
9 1 X - 1
10 1 X 1
11 0 V X 1
12 1 X - 1
13 1 V V 1
14 0 V X 0
15 1 V - 1
16 1 X - 1
17 0 V X 1
18 1 X - 1
19 1 V V 1
20 1 V X 0
21 0 V X 0
22 1 V V 1
23 1 X - 1
24 1 X - 1
25 0 V X 1
26 1 V V 1
27 1 V X 1
28 1 V X 1
29 1 V X 0
30 0 X - 0
31 1 V X 1
32 1 X - 1

Comply Ratio Constructor usage Cons. Match Ratio Comply Ratio
0,73 0,7 0,35 0,80

Table C.2. Some data about the Construction and proposed algorithm pre-
sented in section 2.3.1

98

C.3 – Approximated AME algorithm performance

C.3 Approximated AME algorithm performance

Report C.1. Matlab script for the evaluation of E1,2 and C1,2 (stored in variables
coeffReq and nonZero respectively).

1 function [coeffReq,nonZero,nonZero_gt10] = residual_compare(Refframe,CurCu,
sixPar, mv0_h, mv0_v, mv1_h, mv1_v, mv2_h, mv2_v, comp_offs_x, comp_offs_y)↪→

2

3 %% Transformation of the Cu with both the candidates
4

5 %mvi_(v,h) sono i CPMV del
6 % 1: Miglior candidato secondo il mio algoritmo
7 % 2: Miglior candidato secondo il VTM
8

9 if sixPar==0
10 mv2_h=zeros(2,1);
11 mv2_v=zeros(2,1);
12 end
13

14 %Convert the CurCu into image in order to transform it
15 CurCu_imm=mat2gray(CurCu,[0 255]);
16 [CurCu_h,CurCu_w]=size(CurCu_imm);
17

18 for i=1:2
19 movingpoints=[1 1; CurCu_w 1; 1 CurCu_h]; %Dove si trova la coda dei CPMV

(ordine [x y])↪→

20 fixedpoints=[1+mv0_h(i)/16 1+mv0_v(i)/16; CurCu_w+mv1_h(i)/16
1+mv1_v(i)/16; 1+mv2_h(i)/16 CurCu_h+mv2_v(i)/16]; %Dove si trova la punta
dei CPMV

↪→

↪→

21

22 tform = fitgeotrans(movingpoints,fixedpoints,"affine");
23

24 CurCu_tran_imm=imwarp(CurCu_imm,tform);
25 %Memorize separatedly the two CurCu tranformed. I cannot use
26 %a 3-D matrix because the dimension of the two immages may be different
27 if i==1
28 CurCu_tran_1=CurCu_tran_imm*255;
29 else
30 CurCu_tran_2=CurCu_tran_imm*255;
31 end
32 end
33

34 figure('Name','Transformation with Matlab Candidate')
35 colormap('gray')
36 image(CurCu_tran_1)
37

38 figure('Name','Transformation with VTM Candidate')
39 colormap('gray')
40 image(CurCu_tran_2)

99

Estimating algorithm performance

41

42

43 %% Matlab candidate residual computation
44

45 %Fill the black squares with the values from the reference frame
46 [CurCu_AMC_1_h,CurCu_AMC_1_w]=size(CurCu_tran_1);
47 CurCu_AMC_1=CurCu_tran_1;
48 RefCu_1=zeros(CurCu_AMC_1_h,CurCu_AMC_1_w);
49

50 for j=1:(CurCu_AMC_1_h)%Scorri righe
51 for i=1:(CurCu_AMC_1_w)%Scorri colonne
52 if CurCu_AMC_1(j,i)==0
53 CurCu_AMC_1(j,i)=Refframe(j+comp_offs_y(1),i+comp_offs_x(1));
54 end
55 RefCu_1(j,i)=Refframe(j+comp_offs_y(1),i+comp_offs_x(1));
56 end
57 end
58

59 figure('Name','AMC with Matlab Candidate')
60 colormap('gray')
61 image(CurCu_AMC_1)
62

63 %Compute the residual
64 Residual_1=abs(CurCu_AMC_1-RefCu_1);
65 figure('Name','Residual with Matlab Candidate')
66 colormap('gray')
67 image(Residual_1)
68

69 %Compute what fraction of DCT coefficients contain 99% of the energy in the
image↪→

70 coeffReq(1)=dctCoeffNum(Residual_1,99);
71 %Number of nonzero elements
72 nonZero(1)=nnz(Residual_1);
73 nonZero_gt10(1)=nnz(round(Residual_1/10));
74

75 %% VTM candidate residual computation
76

77 %Fill the black squares with the values from the reference frame
78 [CurCu_AMC_2_h,CurCu_AMC_2_w]=size(CurCu_tran_2);
79 CurCu_AMC_2=CurCu_tran_2;
80 RefCu_2=zeros(CurCu_AMC_2_h,CurCu_AMC_2_w);
81

82 for j=1:(CurCu_AMC_2_h)%Scorri righe
83 for i=1:(CurCu_AMC_2_w)%Scorri colonne
84 if CurCu_AMC_2(j,i)==0
85 CurCu_AMC_2(j,i)=Refframe(j+comp_offs_y(2),i+comp_offs_x(2));
86 end
87 RefCu_2(j,i)=Refframe(j+comp_offs_y(2),i+comp_offs_x(2));
88 end

100

C.3 – Approximated AME algorithm performance

89 end
90

91 figure('Name','AMC with VTM Candidate')
92 colormap('gray')
93 image(CurCu_AMC_2)
94

95 %Compute the residual
96 Residual_2=abs(CurCu_AMC_2-RefCu_2);
97 figure('Name','Residual with VTM Candidate')
98 colormap('gray')
99 image(Residual_2)

100

101 %Compute what fraction of DCT coefficients contain 99% of the energy in the
image↪→

102 coeffReq(2)=dctCoeffNum(Residual_2,99);
103 nonZero(2)=nnz(Residual_2);
104 nonZero_gt10(2)=nnz(round(Residual_2/10));
105

106 %% CPMV comparison
107 %We compute the abs ratio and phase difference between the CPMVs. This
108 %gives us an idea of how much the extimated cpmvs are different from the
109 %VTM ones
110

111 [abs_mv_ratio(1),phase_mv_diff(1)] = mv_compare(mv0_h,mv0_v);
112 [abs_mv_ratio(2),phase_mv_diff(2)] = mv_compare(mv1_h,mv1_v);
113 if sixPar==1
114 [abs_mv_ratio(3),phase_mv_diff(3)] = mv_compare(mv2_h,mv2_v);
115 table({"Abs Ratio";"Phase

Diff"},{abs_mv_ratio(1);phase_mv_diff(1)},{abs_mv_ratio(2);phase_mv_diff(2)},↪→

116 {abs_mv_ratio(3);phase_mv_diff(3)},
'VariableNames',{'Var','MV0','MV1','MV2'})↪→

117 else
118 table({"Abs Ratio";"Phase

Diff"},{abs_mv_ratio(1);phase_mv_diff(1)},{abs_mv_ratio(2);phase_mv_diff(2)},↪→

119 'VariableNames',{'Var','MV0','MV1'})
120 end
121 msgbox({'The model and VTM choices are different. Check the Command

Window...'})↪→

Report C.2. Function dctCoeffNum(image,perc) called in script C.1 .

1 function coeffReq=dctCoeffNum(image,perc)
2

3 P=image;
4

5 %Compute the discrete cosine transform of the image data. Operate first along
the rows and then along the columns.↪→

101

Estimating algorithm performance

6 Q = dct(P,[],1);
7 R = dct(Q,[],2);
8

9 %Find what fraction of DCT coefficients contain perc% of the energy in the
image.↪→

10 X = R(:);
11

12 [~,ind] = sort(abs(X),'descend');
13 coeffs = 1;
14 while norm(X(ind(1:coeffs)))/norm(X) < (perc/100)
15 coeffs = coeffs + 1;
16 end
17

18 %The total number of coefficients in the dct
19 coeffNum=numel(R);
20 %The number of coefficients required to contain perc% of the energy in the

image.↪→

21 coeffReq=coeffs;
22 %fprintf('%d of %d coefficients are sufficient\n',coeffs,numel(R))

102

C.3 – Approximated AME algorithm performance

Example VQ Comply Parameters Er Cr No Compliance Reason
3 1 4 1,000 1,000
4 1 4 1,000 1,000
5 1 4 1,000 1,000
6 0 4 0,718 0,936 Costructed Candidate Mismatch (CCM)
7 1 6 1,000 1,000
8 0 6 1,009 0,987 CCM
9 1 6 1,000 1,000
10 1 6 1,000 1,000
11 0 6 1,044 1,000 Wrong choice (C instead of I)
12 1 6 1,000 1,000
13 1 4 1,000 1,000
14 0 6 1,083 0,982 CCM
15 1 4 1,000 1,000
16 1 4 1,000 1,000
17 0 6 1,022 0,994 Wrong choice (C instead of T)
18 1 4 1,000 1,000
19 1 4 1,000 1,000
20 1 4 1,000 1,000
21 0 6 0,983 1,021 Wrong choice (T instead of C)
22 1 6 1,000 1,000
23 1 6 1,000 1,000
24 1 4 1,000 1,000
25 0 6 1,245 1,026 CCM + Wr. Ch. (T instead of C)
26 1 4 1,000 1,000
27 1 6 1,000 1,000
28 1 4 1,000 1,000
29 1 4 1,000 1,000
30 0 6 1,406 0,985 Wrong choice (T2 instead of T1)
31 1 4 1,000 1,000
32 1 6 1,000 1,000

Comply Ratio "6" percentage Er,AV E Cr,AV E

0,73 0,5 1,017 0,998

Table C.3. Performance estimation of the proposed algorithm presented in section 2.3.2

103

104

Appendix D

Hardware Implementation

D.1 Constructor component

Figure D.1. Constructor’s Control Unit state diagram.

105

Hardware Implementation

Figure D.2. Constructor Timing diagram.

106

D.1 – Constructor component

107

Hardware Implementation

D.2 Extimator component

Figure D.3. Extimator Datapath. The dotted lines in red represent pipeline registers.
108

D.2 – Extimator component

M
U

LT
1:

\M
U

LT
1_

G
E

N
:0

:M
U

LT
1_

X

R
S

T

V
A

LI
D cl
k

op
1[

11
..0

]

op
2[

11
..0

]

pr
od

uc
t[2

3.
.0

]

C
O

U
N

T_
V

A
L_

N
:c

trl
_s

ig
n_

ge
n

C
E

R
S

T cl
k

H
IT

C
O

U
N

T[
1.

.0
]

Fl
Fl

:\S
U

M
_r

st
_d

el
ay

:1
:S

U
M

_R
S

T_
FF

X

D

R
S

T cl
k

Q

Fl
Fl

:\S
U

M
_r

st
_d

el
ay

:2
:S

U
M

_R
S

T_
FF

X

D

R
S

T cl
k

Fl
Fl

:in
t_

LE
_F

F

D

R
S

T cl
k

Q

Fl
Fl

:re
su

lt_
LE

_F
F

D

R
S

T cl
k

Q

xM
ul

t0
A

[6
..0

]

B
[6

..0
]

O
U

T[
13

..0
]

R
E

G
_N

:a
dd

1_
sa

m
pl

in
g

R
S

T cl
k

D
[1

3.
.0

]

Q
[1

3.
.0

]

R
E

G
_N

_L
E

:o
ut

pu
t_

re
g

LE

R
S

T cl
k

D
[2

3.
.0

]

Q
[2

3.
.0

]

ad
de

r:p
p_

su
m

op
1[

13
..0

]

op
2[

13
..0

]

su
m

[1
4.

.0
]

op
1_

in
t[5

..0
]

0 1

op
1_

in
t[6

]
0

1'
h0

1

op
2_

in
t[5

..0
]

0 1

op
2_

in
t[6

]
0

1'
h0

1

pr
od

uc
t_

in
t[2

5.
.0

]

D

C
LK

S
C

LR
26

'h
0

Q

pr
od

uc
t_

in
t_

rs
t

pr
od

uc
t_

in
t~

[1
3.

.0
]

0 1

pr
od

uc
t_

in
t~

[3
9.

.1
4]

0 1

pr
od

uc
t_

in
t~

[6
5.

.4
0]

0 1
26

'h
0

6{0} 6{1}

0 26{0}1

11
:6

5:
0

11
:6

5:
0

12
:2

5

6:110:11

25
:1

2

11:0

5

5:0

5

5:0

13:0

0:13,6{13}

11:0

Figure D.4. The MULT1 component. RTL representation generated with
Quartus design software [7].

109

Hardware Implementation

Figure D.5. Extimator Timing diagram.

110

D.3 – Verification and Synthesis

D.3 Verification and Synthesis

Report D.1. The Simulator script.

1 #!/bin/bash
2 #This script takes as input argument a single example number and starts the

simulation↪→

3 #of that example in batch mode (the commands to QuestaSim are given
automatically)↪→

4

5 #acquire the example number
6 if [$# -ne 1]
7 then
8 echo "Usage: $0 example_number"
9 exit

10 fi
11 exampleNum=$1
12

13 #Prepare files for the example
14 #text files
15 filesToBeRenamed=("constructor_out/constructor_out"

"extimator_out/extimator_out" "memory_data/Curframe" "memory_data/Refframe"
"VTM_inputs/VTM_inputs")

↪→

↪→

16 for curfileToBeRenamed in ${filesToBeRenamed[@]} ; do
17 curFileName=$curfileToBeRenamed"_ex"$exampleNum".txt"
18 if [-f "../tb/$curFileName"] ; then
19 cp "../tb/$curFileName" "../tb/$curfileToBeRenamed.txt"
20 else
21 touch "../tb/$curfileToBeRenamed.txt"
22 fi
23 done
24 #vhd files
25 filesToBeRenamed=("memory/DATA_MEMORY")
26 for curfileToBeRenamed in ${filesToBeRenamed[@]} ; do
27 curFileName=$curfileToBeRenamed"_ex"$exampleNum".vhd"
28 if [-f "../tb/$curFileName"] ; then
29 cp "../tb/$curFileName" "../tb/$curfileToBeRenamed.vhd"
30 else
31 touch "../tb/$curfileToBeRenamed.txt" #I leave it as txt so

that compiler will generate an error.↪→

32 #This is made on purpose beacuse if the memory file is not
present there actually IS a problem↪→

33 #and the compiler needs to be stopped
34 fi
35 done
36

37 #open the compilation command file
38 exec 3< ./modelsim_ex/tb_AME_Architecture.txt
39

111

Hardware Implementation

40 #Search and store the Log filename
41 while read LINE <&3 ; do
42 if ["$LINE" == "--LOG_FILENAME"] ; then
43 read LINE <&3
44 break
45 fi
46 done
47 LogFilename=$LINE
48

49 #Move in the simulation folder and delete the old log
50 SimPath="/home/thesis/costantino.taranto/git/AME_Architecture/sim"
51 cd $SimPath
52 if [-f "$LogFilename"] ; then
53 rm "$LogFilename"
54 fi
55 #Prepare the simulation tool
56 source /eda/scripts/init_questa
57 if [-d "work"]
58 then
59 rm -r work
60 fi
61 vlib work
62

63

64 #Compile the source files
65 while read LINE <&3 ; do
66 if ["$LINE" == "--SOURCE"] ; then
67 break
68 fi
69 done
70

71 while read LINE <&3 ; do
72 if ["$LINE" == "--TESTBENCH"] ; then
73 read LINE <&3
74 #Note that there is a testbench
75 isTb=1
76 eval "$LINE>>$LogFilename"
77 break
78 else
79 eval "$LINE>>$LogFilename"
80 fi
81 done
82

83 #launch the simulation
84 if grep -Fq "** Error" $SimPath/$LogFilename
85 then
86 echo "Compliation error. See \"/sim/$LogFilename\" file for more."
87 else
88 if [[$isTb -eq 1]] ; then

112

D.3 – Verification and Synthesis

89 read LINE <&3
90 if ["$LINE" != "--TB_NAME"] ; then
91 echo "Please provide a Testbench unit name."
92 else
93 read LINE <&3
94 eval "vsim -do ../sim/batch_simulate.cmd work.$LINE"
95 #eval "vsim work.$LINE"
96 fi
97 else
98 echo "Compilation completed succesfully. No Testbench has been

provided."↪→

99 fi
100 fi
101

102 #store the results filename with the correct name
103 mv "../tb/results/results.txt" "../tb/results/results_ex$exampleNum.txt"

Report D.2. The logical verification simulation results over the 30 test seqences.
S t a r t i n g the s i m u l a t i o n s from example 3 to 32
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 3 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 4 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 5 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 6 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 7 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 8 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 9 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 10 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 11 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 12 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 13 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 14 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l

113

Hardware Implementation

Simulat ion f o r example 15 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 16 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 17 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 18 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 19 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 20 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 21 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 22 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 23 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 24 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 25 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 26 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 27 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 28 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 29 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 30 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 31 terminated s u c c e s s f u l l y .
You can run vsim
Reading p r e f . t c l
S imulat ion f o r example 32 terminated s u c c e s s f u l l y .
Al l the s i m u l a t i o n s completed s u c c e s s f u l l y .

Report D.3. The synopsys_commands_custom.tcl Tcl script for the synthesis automation.

1 #*******Reading VHDL source files**************
2 #-------ANALYSIS PHASE
3 #compile all files provided by the script "compilation_list_gen.sh"

114

D.3 – Verification and Synthesis

4 uplevel #0 source
/home/thesis/costantino.taranto/git/AME_Architecture/scripts/syn_scripts/syn_toCompile.txt
> ./synopsys_results/analyze_out.log

↪→

↪→

5 #Set one parameter to preserve rtl names in the netlist to ease the procedure
for power consumption estimation.↪→

6 set power_preserve_rtl_hier_names true
7

8 #-------ELABORATION PHASE
9 #Launch elaborate command to load the components

10 #elaborate <top entity name> -arch <architecture name> -lib WORK > log_fileName
11 elaborate AME_Architecture_expanded -arch structural -lib WORK >

./synopsys_results/elaborate_out.log↪→

12 #uniquify #optional command to addres to only 1 specific architecture
13 link
14

15 #******* Applying constraints ***************
16 #create clock (period in ns)
17 create_clock -name MY_CLK -period 2.93 clk
18 #since the clock is a “special” signal in the design, we set the "don't touch"

property↪→

19 set_dont_touch_network MY_CLK
20

21 #jitter simulation
22 set_clock_uncertainty 0.07 [get_clocks MY_CLK]
23

24 #input/output delay
25 set_input_delay 0.5 -max -clock MY_CLK [remove_from_collection [all_inputs]

CLK]↪→

26 set_output_delay 0.5 -max -clock MY_CLK [all_outputs]
27

28 #set output load (buffer x4 used)
29 set OLOAD [load_of NangateOpenCellLibrary/BUF_X4/A]
30 set_load $OLOAD [all_outputs]
31

32 #********* Start the syntesis *************
33 compile > ./synopsys_results/compilation_results.txt
34

35 #********* Save the results *************
36 report_timing > ./synopsys_results/timing_results.txt
37 report_area > ./synopsys_results/area_results.txt
38

39 #Finally, we can save the data required to complete the design and to perform
switchingactivity-based power estimation.↪→

40 #First, we ungroup the cells to flatten the hierarchy as follows:
41 ungroup -all -flatten
42 #Then, we have to export the netlist in verilog. So that we impose verilog

rules for the names of the internal signals. This is obtained with↪→

43 change_names -hierarchy -rules verilog
44 #We also save a file describing the delay of the netlist:

115

Hardware Implementation

45 write_sdf ../netlist/AME_Architecture_expanded.sdf
46 #We can now save the netlist in verilog:
47 write -f verilog -hierarchy -output ../netlist/AME_Architecture_expanded.v
48 #and the constraints to the input and output ports in a standard format:
49 write_sdc ../netlist/AME_Architecture_expanded.sdc
50

51 #******* close Design compiler ****************
52 quit

116

Bibliography

[1] Mathias Wien and Benjamin Bross. Versatile video coding - algorithms and specifi-
cation. ieee international conference on multimedia and expo (icme), 2020.

[2] Maurizio Masera. Transform algorithms and architectures for video coding. Doctoral
Program in Electrical, Electronic and Telecommunication Engineering (30th cycle),
2018.

[3] ViCueSoft. Vq analyzer - video analyzer and quality tuning. URL https://
vicuesoft.com/vq-analyzer/.

[4] Young-Ju Choi, Dong-San Jun, Won-Sik Cheong, and Byung-Gyu Kim. Design
of efficient perspective affine motion estimation/compensation for versatile video
coding (vvc) standard. Electronics, 8(9), 2019. ISSN 2079-9292. doi: 10.3390/
electronics8090993. URL https://www.mdpi.com/2079-9292/8/9/993.

[5] Khalid Sayood. Introduction to Data Compression (Fifth Edition). Morgan
Kaufmann, 2018. URL https://www.sciencedirect.com/science/article/pii/
B978012809474700001X.

[6] Sankar Shanmuganathan and Nagarajan Ls. Zzrd and zzsw: Novel hybrid scanning
paths for squared blocks. International Journal of Applied Engineering Research, 9:
10567–10583, 10 2014.

[7] Intel. Intel® quartus® prime lite edition design software. URL https:
//www.intel.com/content/www/us/en/collections/products/fpga/software/
downloads.html. Version 21.1.

[8] Cisco Systems. Vni complete forecast highlights, 2018. https://www.cisco.com/
c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/
Global_2021_Forecast_Highlights.pdf.

[9] Benjamin Bross, Ye-Kui Wang, Yan Ye, Shan Liu, Jianle Chen, Gary J. Sullivan,
and Jens-Rainer Ohm. Overview of the versatile video coding (vvc) standard and its
applications. IEEE Transactions on Circuits and Systems for Video Technology, 31
(10):3736–3764, 2021. doi: 10.1109/TCSVT.2021.3101953.

117

https://vicuesoft.com/vq-analyzer/
https://vicuesoft.com/vq-analyzer/
https://www.mdpi.com/2079-9292/8/9/993
https://www.sciencedirect.com/science/article/pii/B978012809474700001X
https://www.sciencedirect.com/science/article/pii/B978012809474700001X
https://www.intel.com/content/www/us/en/collections/products/fpga/software/downloads.html
https://www.intel.com/content/www/us/en/collections/products/fpga/software/downloads.html
https://www.intel.com/content/www/us/en/collections/products/fpga/software/downloads.html
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf

BIBLIOGRAPHY

[10] Frank Bossen, Karsten Sühring, Adam Wieckowski, and Shan Liu. Vvc complexity
and software implementation analysis. IEEE Transactions on Circuits and Systems
for Video Technology, 31(10):3765–3778, 2021. doi: 10.1109/TCSVT.2021.3072204.

[11] Fraunhofer Heinrich-Hertz-Institut. Versatile video coding (vvc). URL https://
jvet.hhi.fraunhofer.de/.

[12] Jill Boyce, Karsten Suehring, Xiang Li, and Vadim Seregin. Jvet-j1010: Jvet common
test conditions and software reference configurations. 07 2018.

[13] Farhad Pakdaman, Mohammad Ali Adelimanesh, Moncef Gabbouj, and Mah-
moud Reza Hashemi. Complexity analysis of next-generation vvc encoding and de-
coding. pages 3134–3138, 2020. doi: 10.1109/ICIP40778.2020.9190983.

[14] Wei-Jung Chien, Li Zhang, Martin Winken, Xiang Li, Ru-Ling Liao, Han Gao, Chih-
Wei Hsu, Hongbin Liu, and Chun-Chi Chen. Motion vector coding and block merging
in the versatile video coding standard. IEEE Transactions on Circuits and Systems
for Video Technology, 31(10):3848–3861, 2021. doi: 10.1109/TCSVT.2021.3101212.

[15] Han Gao, Xu Chen, Semih Esenlik, Jianle Chen, and Eckehard Steinbach. Decoder-
side motion vector refinement in vvc: Algorithm and hardware implementation con-
siderations. IEEE Transactions on Circuits and Systems for Video Technology, 31
(8):3197–3211, 2021. doi: 10.1109/TCSVT.2020.3037024.

[16] Hasan Azgin, Ercan Kalali, and Ilker Hamzaoglu. An approximate versatile video
coding fractional interpolation hardware. In 2020 IEEE International Conference
on Consumer Electronics (ICCE), pages 1–4, 2020. doi: 10.1109/ICCE46568.2020.
9042986.

[17] Matías J. Garrido, Fernando Pescador, M. Chavarrías, P. J. Lobo, and Cesar Sanz.
A 2-d multiple transform processor for the versatile video coding standard. IEEE
Transactions on Consumer Electronics, 65(3):274–283, 2019. doi: 10.1109/TCE.
2019.2913327.

[18] Yibo Fan, Yixuan Zeng, Heming Sun, Jiro Katto, and Xiaoyang Zeng. A pipelined
2d transform architecture supporting mixed block sizes for the vvc standard. IEEE
Transactions on Circuits and Systems for Video Technology, 30(9):3289–3295, 2020.
doi: 10.1109/TCSVT.2019.2934752.

[19] I. Farhat, W. Hamidouche, A. Grill, D. Menard, and O. Déforges. Lightweight hard-
ware implementation of vvc transform block for asic decoder. In ICASSP 2020
- 2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1663–1667, 2020. doi: 10.1109/ICASSP40776.2020.9054281.

[20] Werda Imen, Belghith Fatma, Maraoui Amna, and Nouri Masmoudi. Dct-ii transform
hardware-based acceleration for vvc standard. In 2021 IEEE International Conference
on Design and Test of Integrated Micro and Nano-Systems (DTS), pages 1–5, 2021.
doi: 10.1109/DTS52014.2021.9498196.

118

https://jvet.hhi.fraunhofer.de/
https://jvet.hhi.fraunhofer.de/

BIBLIOGRAPHY

[21] Jurgen Kello, Massimo Ruo Roch, Guido Masera, and Maurizio Martina. Low-
complexity reconfigurable dct-v architecture. IEEE Transactions on Circuits and Sys-
tems II: Express Briefs, 67(12):3417–3421, 2020. doi: 10.1109/TCSII.2020.2998604.

[22] Matías J. Garrido, Fernando Pescador, Miguel Chavarrías, Pedro J. Lobo, César Sanz,
and Pedro Paz. An fpga-based architecture for the versatile video coding multiple
transform selection core. IEEE Access, 8:81887–81903, 2020. doi: 10.1109/ACCESS.
2020.2991299.

[23] Bouthaina Abdallah, Fatma Belghith, and Nouri Masmoud. Low-complexity trans-
form algorithm for versatile video coding. In 2019 IEEE International Conference
on Design and Test of Integrated Micro and Nano-Systems (DTS), pages 1–3, 2019.
doi: 10.1109/DTSS.2019.8915188.

[24] Heiko Schwarz, Tung Nguyen, Detlev Marpe, Thomas Wiegand, Marta Karczewicz,
Muhammed Coban, and Jie Dong. Improved quantization and transform coefficient
coding for the emerging versatile video coding (vvc) standard. In 2019 IEEE In-
ternational Conference on Image Processing (ICIP), pages 1183–1187, 2019. doi:
10.1109/ICIP.2019.8803768.

[25] Zhaobin Zhang, Xin Zhao, Xiang Li, Li Li, Yi Luo, Shan Liu, and Zhu Li. Fast
dst-vii/dct-viii with dual implementation support for versatile video coding. IEEE
Transactions on Circuits and Systems for Video Technology, 31(1):355–371, 2021.
doi: 10.1109/TCSVT.2020.2977118.

[26] Keke Ding, Dong Jiang, Feiyang Zeng, Jucai Lin, and Jun Yin. A fast transform algo-
rithm based on vvc. In 2020 4th International Conference on Computer Science and
Artificial Intelligence, CSAI 2020, page 80–85, New York, NY, USA, 2020. Associa-
tion for Computing Machinery. ISBN 9781450388436. doi: 10.1145/3445815.3445829.
URL https://doi.org/10.1145/3445815.3445829.

[27] Marta Karczewicz, Nan Hu, Jonathan Taquet, Ching-Yeh Chen, Kiran Misra, Ken-
neth Andersson, Peng Yin, Taoran Lu, Edouard François, and Jie Chen. Vvc in-loop
filters. IEEE Transactions on Circuits and Systems for Video Technology, 31(10):
3907–3925, 2021. doi: 10.1109/TCSVT.2021.3072297.

[28] Sijia Chen, Zhenzhong Chen, Yingbin Wang, and Shan Liu. In-loop filter with dense
residual convolutional neural network for vvc. In 2020 IEEE Conference on Mul-
timedia Information Processing and Retrieval (MIPR), pages 149–152, 2020. doi:
10.1109/MIPR49039.2020.00038.

[29] Zhijie Huang, Jun Sun, Xiaopeng Guo, and Mingyu Shang. One-for-all: An efficient
variable convolution neural network for in-loop filter of vvc. IEEE Transactions on
Circuits and Systems for Video Technology, 32(4):2342–2355, 2022. doi: 10.1109/
TCSVT.2021.3089498.

[30] Xuewei Meng, Jiaqi Zhang, Chuanmin Jia, Zhang Xinfeng, Wang Shanshe, and Ma Si-
wei. Optimized adaptive loop filter in versatile video coding. In 2021 Data Compres-
sion Conference (DCC), pages 359–359, 2021. doi: 10.1109/DCC50243.2021.00082.

119

https://doi.org/10.1145/3445815.3445829

BIBLIOGRAPHY

[31] Heiko Schwarz, Muhammed Coban, Marta Karczewicz, Tzu-Der Chuang, Frank
Bossen, Alexander Alshin, Jani Lainema, Christian R. Helmrich, and Thomas Wie-
gand. Quantization and entropy coding in the versatile video coding (vvc) standard.
IEEE Transactions on Circuits and Systems for Video Technology, 31(10):3891–3906,
2021. doi: 10.1109/TCSVT.2021.3072202.

[32] Heiko Schwarz, Tung Nguyen, Detlev Marpe, Thomas Wiegand, Marta Karczewicz,
Muhammed Coban, and Jie Dong. Improved quantization and transform coefficient
coding for the emerging versatile video coding (vvc) standard. In 2019 IEEE In-
ternational Conference on Image Processing (ICIP), pages 1183–1187, 2019. doi:
10.1109/ICIP.2019.8803768.

[33] Meng Wang, Shiqi Wang, Junru Li, Li Zhang, Yue Wang, Siwei Ma, and Sam Kwong.
Low complexity trellis-coded quantization in versatile video coding. IEEE Transac-
tions on Image Processing, 30:2378–2393, 2021. doi: 10.1109/TIP.2021.3051460.

[34] Kai Zhang, Yi-Wen Chen, Li Zhang, Wei-Jung Chien, and Marta Karczewicz. An im-
proved framework of affine motion compensation in video coding. IEEE Transactions
on Image Processing, 28(3):1456–1469, 2019. doi: 10.1109/TIP.2018.2877355.

[35] Joint Video Experts Team (JVET). Test model 8 for versatile video coding
(vtm 8), 2020-01-17. URL https://mpeg.chiariglione.org/standards/mpeg-i/
versatile-video-coding/test-model-8-versatile-video-coding-vtm-8.

[36] Matheus F. Stigger, Victor H. S. Lima, Leonardo B. Soares, Claudio M. Diniz, and
Sergio Bampi. Approximate satd hardware accelerator using the 8 × 8 hadamard
transform. In 2020 IEEE 11th Latin American Symposium on Circuits and Systems
(LASCAS), pages 1–4, 2020. doi: 10.1109/LASCAS45839.2020.9068987.

[37] Sang-Hyo Park and Je-Won Kang. Fast affine motion estimation for versatile video
coding (vvc) encoding. IEEE Access, 7:158075–158084, 2019. doi: 10.1109/ACCESS.
2019.2950388.

[38] Weizheng Ren, Wei He, and Yansong Cui. An improved fast affine motion estimation
based on edge detection algorithm for vvc. Symmetry, 12(7), 2020. ISSN 2073-8994.
doi: 10.3390/sym12071143. URL https://www.mdpi.com/2073-8994/12/7/1143.

[39] G. Bjontegaard. Calculation of average psnr differences between rd-curves. ITU-T
VCEG-M33, 2001. URL https://cir.nii.ac.jp/crid/1572543025125831168.

[40] Ahmet CanMert, Ercan Kalali, and Ilker Hamzaoglu. A low power versatile video
coding (vvc) fractional interpolation hardware. In 2018 Conference on Design and
Architectures for Signal and Image Processing (DASIP), pages 43–47, 2018. doi:
10.1109/DASIP.2018.8597040.

[41] Xin Wang, Heming Sun, Jiro Katto, and Yibo Fan. A hardware architecture for
adaptive loop filter in vvc decoder. In 2021 IEEE 14th International Conference on
ASIC (ASICON), pages 1–4, 2021. doi: 10.1109/ASICON52560.2021.9620332.

120

https://mpeg.chiariglione.org/standards/mpeg-i/versatile-video-coding/test-model-8-versatile-video-coding-vtm-8
https://mpeg.chiariglione.org/standards/mpeg-i/versatile-video-coding/test-model-8-versatile-video-coding-vtm-8
https://www.mdpi.com/2073-8994/12/7/1143
https://cir.nii.ac.jp/crid/1572543025125831168

BIBLIOGRAPHY

[42] Television History The First 75 Years. America’s first electronic television set. URL
http://www.tvhistory.tv/1939%20Du%20Mont%20Brochure.htm.

[43] Mary Bellis. The history of color television, 2019. URL https://www.thoughtco.
com/color-television-history-4070934.

[44] Public Subsidiary of Hubbard Broadcasting Inc. History of u.s. satellite
broadcasting company inc., 2018. URL http://www.fundinguniverse.com/
company-histories/u-s-satellite-broadcasting-company-inc-history/.

[45] Margaret Livingstone. The first stages of processing color and luminance: Where and
what, 2002.

[46] Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand. Overview
of the high efficiency video coding (hevc) standard. IEEE Transactions on Circuits
and Systems for Video Technology, 22(12):1649–1668, 2012. doi: 10.1109/TCSVT.
2012.2221191.

121

http://www.tvhistory.tv/1939%20Du%20Mont%20Brochure.htm
https://www.thoughtco.com/color-television-history-4070934
https://www.thoughtco.com/color-television-history-4070934
http://www.fundinguniverse.com/company-histories/u-s-satellite-broadcasting-company-inc-history/
http://www.fundinguniverse.com/company-histories/u-s-satellite-broadcasting-company-inc-history/

Acknowledgements

This thesis work represents the conclusion of a study cycle that started a long time ago.
Along this path, I have met wonderful people for which I am grateful, but first of all, I
want to show my love and appreciation to some people who were always there, from the
beginning: my parents. Without them, I would never be able to live the life I’m living
and get there to produce these beautiful results. Thank you from the deepest part of my
heart.

Another important person which I owe this work to and I really want to thank is my
dear supervisor, professor Maurizio Martina. During these months I discovered him as
a strongly enthusiast, sympathetic and encouraging professor, and a joyful and pleasant
person. Thank you for the interest you showed in my work and the support you gave me
through all this time.

During this last year in Politecnico, I did never stay in a classroom, since I had already
attended all my courses. My house has been the VLSI Lab, which I want to thank for
hosting me.
I am glad I had the chance to meet in person a teacher who changed my life during the
last academic year: Prof. Mariagrazia Graziano. I am never tired to tell her how much
I’m grateful for her teachings, and I am doing so here too.
Thank you also to the great teachers and beautiful persons I have met during this course
of study at Politecnico: Prof. Maurizio Zamboni, Prof. Gianluca Piccinini, Prof. Guido
Masera, Prof. Massimo Ruo Roch, and all the others who have increased my love and
enthusiasm for this marvelous and curious subject that is Electronic Engineering.

I want to show my love and gratitude to my fantastic colleagues and friends which
whom I collaborated during these years. Fore example, the Operazione San Silvestro’s
improbable group: Martino D’Alessandro, Francesco Trinca e Pasquale Santoro. Thank
you for all the fun and the time spent together. Not to forget my friends Gianluca Goti,
Matilde Cerbai, and Laura Chisciotti, I’m glad we had the luck to meet in person and to
stay close during the hard times. Thank you for your beautiful company and support.

122

Acknowledgements

A huge thank you to all my friends from Calabria, whom I will not list here since
there are too many names. You are my second family and I would not be here without
your company and emotional support. Thank you for all the laughter, the fun, and the
precious moments we lived together.

To my family: my loved brother, my cousins, my uncles and aunts, and my two
grandmas. I am grateful for your love throughout all these years. You were always there
since I moved my first steps into this world, and I hope you will always be by my side.

123

	List of Tables
	List of Figures
	Introduction
	The increasing complexity of video coding standards
	The Versatile Video Coding standard
	VVC Encoder Block Diagram
	VVC encoder complexity analysis
	VVC Test Model and Common Test Conditions
	Encoder complexity breakdown

	VVC complex blocks' algorithms and architectures state-of-art
	Motion Estimation
	Transform and Quantization
	Loop Filters
	Entropy Coding

	Affine Motion Estimation simplified algorithm
	The Affine Motion Model
	Affine Motion model in VVC
	Affine AMVP prediction

	The proposed algorithm
	Proposed candidate construction method
	Best-candidate choice simplified algorithm

	Comparison between the proposed algorithm and the exact one
	Computational complexity
	Compression Ratio

	Comparison with other works on AME
	Other works on Affine Motion Estimation
	Comparison and conclusions

	Hardware implementation
	The Constructor component
	Constructor Datapath
	Constructor Timing diagram
	Constructor Control Unit

	The Extimator component
	Extimator Datapath
	Extimator Timing diagram
	Extimator Control Unit

	Components Usage percentage
	Definition
	Evaluation in the Extimator and Constructor

	Verification, Synthesis, and Performance
	Logical Verification
	Simulation Script
	Memory
	Monitor
	Verification Results

	Synthesis and Area, Timing and Power evaluation
	The Synthesis process
	Power consumption estimation
	The Constructor and Extimator separate contributions

	Architecture encoding performance
	Comparison with other architectures for VVC

	Conclusions
	Video Coding overview
	Image representation in Video Streams
	Video Encoders basic blocks
	Motion-compensated prediction
	Discrete Cosine Transform
	Quantization and Coding
	Frame Partitioning
	Loop Filter
	Random Access Capability
	Profiles and Levels
	Intra prediction

	Proposed model Matlab Implementation
	Candidate construction
	Affine Motion Estimation

	Estimating algorithm performance
	Test sequences used
	Proposed Candidate construction algorithm performance
	Approximated AME algorithm performance

	Hardware Implementation
	Constructor component
	Extimator component
	Verification and Synthesis

