
POLITECNICO DI TORINO
Master’s Degree in Electronic Engineering

Master’s Degree Thesis

Hardware Design of a Homomorphic-like
Encryption Scheme for Spiking Neural

Networks

Supervisor

Prof. Guido MASERA

Prof. Maurizio MARTINA

Project Ass. Alberto MARCHISIO

Candidate

Gianluca MENDITTO

07 2022





Summary

The last decades have seen a significant development of Artificial Neural Networks
(ANNs). These advancements have enabled the application of ANNs to various
domains, such as handwriting and speech recognition, or classification and computer
vision tasks. The basic idea is to emulate the human brain in analyzing and
processing information to solve several tasks, especially if they are hardly described
formally.
Depending on the use cases, different kinds of neural networks are employed.
For instance, the Convolutional Neural Networks (CNNs) are widely used in
classification tasks. However, the high power effort required by these NNs has
pushed the research toward the low power domain. A new paradigm of NNs,
named the Spiking Neural Networks (SNNs) have demonstrated promising results
in terms of performance and efficiency. The advantage is the different way in which
the neurons communicate. In fact, since in SNNs the information is propagated
through spikes that can be represented with a single bit, the computation is lighter.
Moreover, these networks can closely mimic the human brain, becoming the most
biologically-plausible NNs model.
The success achieved by NNs certainly lies in the great availability of data. On the
contrary, these datasets may contain sensitive information which make it challenging
from the privacy perspective to maintain the confidentiality of data. An efficient
solution is represented by the Homomorphic Encryption (HE), a cryptographic
method that allows performing computations over encrypted data instead of its raw
version. The data owner encrypts the data and sends them to an SNN to obtain an
encrypted prediction. The application of HE to NNs leads to ensure privacy both
on the data and on the prediction since only the data owner can access their actual
value. A HE scheme includes four algorithms: the key generation, the encryption,

ii



the decryption and the evaluation. The last three processes are extremely complex
and require a high computational effort.
In this thesis, a Somewhat Homomorphic Encryption(SHE) scheme is presented.
Despite allowing only a limited number of computations over encrypted data, it is
sufficient and convenient since this scheme has a lower overhead than a complete
Fully Homomorphic Encryption (FHE) scheme. In this thesis the design of a SHE
system for SNNs using the Brakerski-Fan-Vercauteren (BFV) scheme is conducted.
In particular, the implementation of the algorithm is carried out partially in
Python and partially in VHDL. The key and the other parameters generations are
implemented in Python; these functions require a random sampling in a specific
distribution to obtain a set of variables which are put as inputs to the different
blocks. The encryption, the decryption and addition between ciphertexts blocks,
are implemented in VHDL. The three above-discussed units includes different
operations between polynomials, such as addition, multiplication and division.
While the first two are explicitly involved in homomorphic equations, the division
is useful to scale the size of the polynomial and its coefficients after the other two
operations. The polynomial multiplication results in the most complex operation
both in terms of resources and clock cycles. For this reason, the encryption unit
which performs the multiplication over two input data is the most computationally-
heavy block. Instead, the decryption unit is simpler since it performs operations
only over one data, namely the ciphertext. The addition between ciphertexts is the
computationally lightest operation, since it is very close to the standard addition
between polynomials, except for an additional scaling operation.
The whole design is simulated with Modelsim to test its correct behaviour.
The last step is the logical synthesis with Synopsys Design Compiler to evaluate
the performance of the design in terms of timing, area and power; moreover, the
optimizations are applied to improve the above-discussed performance. As expected,
the multiplication operation shows high complexity since it requires a high number
of clock cycles, and the encryption unit consumes higher resources than the other
blocks.
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Chapter 1

Introduction

Nowadays the terms Artificial intelligence (AI), Machine learning (ML), Artificial
neural networks (ANN) and Deep learning (DL) are often improperly used to
mean the same thing, but actually, they have different meanings even though they
are related to each other to some extent.

Machine 

learning

Artificial neural 

network

Artificial 

intelligence

Deep learning

Figure 1.1: Relation among AI, ML, ANN, DL
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Introduction

Figure 1.1 shows the relation among the above-discussed terms. Starting from
the top, AI is a field of computer science that enables machines to solve tasks as
humans do. All the others can be considered components of the prior term.
Initially, the artificial intelligence aimed at solving problems that are intellectually
difficult for humans but relatively simple for computers; these problems can be
described using a mathematical approach. The true challenge to AI became solving
the tasks that are easily tackled by the human brain but hardly described formally.
The machine learning proposes to overcome this limitation [1]. ML seeks to make
intelligent systems that can automatically learn through experience, without being
explicitly programmed or requiring any human intervention.
A branch of ML is the ANN which aims to emulate the human brain in analyzing
and processing information to solve several tasks. At the same time, ANNs are still
different from a biological point of view compared to the actual brain. In this sense,
the Spiking neural networks (SNNs) represent the most biologically-plausible ML
models based on neurons and synapse interaction.
A subset of ANN is the DL which aims to make self-teaching system. The starting
point for realising DL is a complex ANN.

This chapter provides a more detailed overview of ANNs and SNNs.

1.1 Artificial neural network - ANN

Artificial neural networks, inspired by the human brain, are characterized by inter-
connected artificial neurons that employ some mathematical rules to generate the
output which in turn can propagate along with the network. One of the earliest
and most basic ANN models is the perceptron [2]. Perceptrons were developed by
Frank Rosenblat in 1957 and were considered the most notable invention of AI.
A perceptron emulates the behaviour of a neuron which takes many binary inputs
x1, x2, ...xn and produces only one binary output. Figure 1.2 compares the structure
of a typical biological neuron and an artificial one.
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Introduction

Figure 1.2: Biological neuron vs artificial neuron

The following list defines the main components of the neuron:

• dendrites: or inputs; they permit the receipt of signals from other neurons.
These inputs are multiplied by that dendrite’s weight.

• soma or body: it behaves like the sum function of the signals coming from den-
drites. They can be positive or negative (excitatory or inhibitory, respectively),
increasing or decreasing the membrane potential.

• axon: it represents the output of the neuron. Each neuron has an axon
that can have many terminals to connect it to the dendrites of other neurons
through a synapse.

The neuron’s output is determined according to a nonlinear function, named the
activation function. The simplest case is a step function:

output =

0 when q
j wjxj ≤ threshold

1 when q
j wjxj > threshold

(1.1)

The term xj represents the input, while wj is the weight, which is a real number
defining the relevance of the respective input to the output. When the output
is equal to one, it means the membrane potential exceeds the threshold and so
the neuron fires and produces an output signal called action potential while the
membrane is reset to a rest value.
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The weight is specific for each synapse, so it leads to increasing or decreasing the
sum according to its value. Hence, some inputs have a more significant effect on
the output. Therefore, by varying the weights (and eventually the threshold), it is
possible to get different models of decision-making. This property of strengthening
or weakening the synapse is known as plasticity.

The model described so far represents the starting point for the building of the
simplest ANN.

inputs outputs

Figure 1.3: Generic ANN

It is organized in a maximum of three layers and in a so-called fully-connected
graph: in other words, each node of a layer is connected to all the nodes of the
previous and following layers. More in detail, they are distinguished in:

• first layer: it is composed of nodes that represent the inputs of the network;

• last layer: it is the last column of neurons where they are not connected to
other nodes. They provide the result of the network;

• hidden layer: it is between the first and output layer. In more complex
ANNs, there can be multiple hidden layers.

There exists another mathematical way to describe the perceptrons that simplifies
the writing; the first modification is to write q

j wjxj , as a dot product w·x, where
w and x are vectors whose components are the weights and inputs, respectively.
Moreover, the threshold is moved to the left-hand side of the inequality (1.1) and
now it is indicated as the perceptron’s bias, b = −threshold. The consequent
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expression becomes:

output =

0 if w·x + b ≤ 0

1 if w·x + b > 0
(1.2)

The bias can be thought to how easy it is to get the output equal to 1, or rather
how easy it is to get the neuron to fire. In fact, if the bias is large, it is very easy
to obtain 1 as output; vice-versa if the bias is small or even negative.

1.1.1 Convolutional neural network - CNN

There are several kinds of artificial neural networks, which are used for different
use cases and data types [3]. For instance, the recurrent NNs where the neurons
can be connected with loops and generally are used for handwriting or speech
recognition; whereas convolutional neural networks have a connectivity pattern of
the neurons analogous to the human brain, exploiting the temporal and spatial
correlation among input data; the basic idea is to offer a more scalable approach
to classification and computer vision tasks.

A ConvNet has three main types of layers:

• convolutional layer

• pooling layer

• fully-connected (FC ) layer

There can be one or more convolutional layers but of course, the FC is the last
layer of the network. Earlier layers are in charge of detecting the simplest features
of an image, and as going through the layers the complex features are detected.
Let’s describe each layer more in detail.

The convolutional layer is the most important component of the network be-
cause it is responsible for the majority of the computation. The key operation
is the application of a specific filter, to a sub-portion of the input data. The
filter is characterized by a size, called kernel, which defines the dimensions of the
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subwindow of the image, named receptive field. The application of the filter means
to multiply the kernel weights with the corresponding pixel of the image, and then
sum them. The result, known as feature map, is so obtained. An example of the
calculation is shown in Figure 1.4.

Figure 1.4: Numerical example of a convolutional filter application with a 3x3 kernel

The filter is shifted step by step in both x and y directions as far as the kernel has
covered the entire image with a pitch, named stride, that defines the new receptive
field progressively.
Moreover, an image can have multiple channels: in this case, the filter must have
the same number of channels of the input data. Each channel is characterized by a
different set of weights and the feature map is computed summing up the result
from each channel. Sometimes there is also another contribution to the sum, known
as bias. Figure 1.5 provides a better understanding of the process.
In that case, in addition to the convolution, also an operation of zero-padding is
applied; in general, it is useful to modify the size of the output. There are three
different kinds of zero-padding:

• valid padding: the last convolution is dropped if the dimensions do not align.

• same padding: this padding ensures that the output layer has the same size
as the input layer.

6
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Figure 1.5: Numerical example of a convolutional filter application with multi channel and
an addition of a bias value [Source: [4]]

• full padding: this kind of padding increases the size of the output by adding
zeros to the border of the input.

The example in Figure 1.5 shows a full padding application.

A convolutional layer can be followed by another convolutional layer or a pooling
layer. The latter aims to reduce the size of the feature map. Similarly to the
convolutional layer, a filter is swept across the whole image, but this time it has
no weights. Rather an aggregation function is applied to the value within the
receptive field to get the output. As shown in Figure 1.6, there are two main types
of pooling:

• max pooling: it returns the maximum value of a pixel from the subwindow
of the image swept by the filter.

• average pooling: it computes the average value of the receptive field.

The last layer of a ConvNet is a fully-connected layer. Unlike the previous layers,
where the outputs are not connected directly to each pixel in the input image,
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Figure 1.6: Types of pooling [Source: [4]]

instead here this happens, as the name itself describes. The image is flattened in a
column vector.
This layer classifies the features extracted through the previous layers and their
different filters.

1.1.2 Spiking neural network - SNN

Spiking neural networks, referred as the third generation of NNs, closely mimic
the human brain. The main difference with ANN is the information propagation
approach: the neurons communicate via spikes, discrete events which happen at
defined times. The general idea is that the SNN takes as input a train of spikes
and generates a train of spikes as output.

Spike train input from preceding 

neuron

Integrate and 

Fire Neuron

Figure 1.7: Schematic depiction of a spiking neuron [Source: [5]]
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As shown in Figure 1.7, the neuron receives several input spikes from the previous
layers’ neurons. These spikes are modulated with weights and accumulated as
the neuron membrane potential. As soon as the membrane potential crosses a
certain threshold, the neuron emits a spike to the following layer and the membrane
potential is reset.
The SNN requires data are coded into spikes trains [5]. To perform this conversion,
the concept of time is introduced in the model. In fact, there are different neural
coding strategies based on spike timing. The main three ones are:

• time to first spike: the information is encoded as the time between the
stimulus and correspondent output.

• rank-order coding: the information is encoded by the order of spikes from
a population of neurons.

• latency code: the information is coded as the delay between two subsequent
spikes.

Figure 1.8: Different encoding strategies of information in spikes [Source: [5]]
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Chapter 2

Mathematical models of the
membrane potential

There are a lot of mathematical models to describe more or less faithfully the
behaviour of the neuron. These models can be classified into different categories:
the most interesting is the "Electrical input-output membrane voltage"; the models
in this category illustrate the link between neuronal membrane currents, evaluated
at the input stage, and membrane voltage, evaluated at the output stage. This
category includes the biophysical models, such as the Hodgkin-Huxley model,
which depict the membrane voltage as a function of the input current and the
activation of ion channels, and the simpler mathematical models, such as the
Integrate and Fire model, that represent the membrane voltage as a function of
the input current and predict spike times without biophysical descriptions.

2.1 Hodgkin-Huxley (H&H) model

The Hodgkin–Huxley model [6] depicts the relationship between the flow of ionic
currents across the neuronal cell membrane and the membrane voltage of the cell.
It can be described through the equivalent circuit in figure 2.1. The current can
be brought through the membrane either by charging the membrane capacity or
by the flow of ions through the resistances placed in parallel with the capacitance.

10



Mathematical models of the membrane potential

Mathematically [6], it can be formulated through Equation 2.1:

I = CM
dV

dt
+ Ii (2.1)

where CM represents the capacitive contribution and the Ii the ionic current that
can cross the membrane.

Figure 2.1: Equivalent circuit diagram of the Hodgkin-Huxley neuron [Source: [7]]

The ionic current consists of different components, the sodium and potassium ions,
respectively INa and IK , and one small leakage current IL, made by chloride and
other ions. Each component can be computed as the correspondent conductance
multiplied by the electrical potential difference, given by the membrane potential
(E) and the equilibrium potential (ENa, EK or EL). For practical applications it is
convenient to rewrite the above relation in a different way assuming that:

V = E − Er (2.2)
VNa = ENa − Er (2.3)
VK = EK − Er (2.4)
VL = EL − Er (2.5)

where Er is the absolute value of resting potential. The ionic current can be
described through Equation 2.6:

Ii = INa + IK + IL = gi(V − Vi) (2.6)
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Mathematical models of the membrane potential

Where the term gi is the conductance. The components related to potassium and
sodium are variable and depend on membrane potential; they can be expressed as
their maximum conductance ḡ and the activation and inactivation fractions m and
h. The total current through the membrane is given by Equation 2.7:

I = CM
dV

dt
+ ḡKn4(V − VK) + ḡNam3h(V − VNa) + ḡL(V − VL) (2.7)

N , m and h can assume a value between 0 and 1 and can be computed through
differential equations, which combined to Equation 2.7, complete the set of the
equations of the model.
The Hodgkin-Huxley neuron represents the closest model to our current under-
standing of the actual biological neurons but its mathematical complexity makes it
unsuitable to be used in practical applications.

2.2 Integrate and Fire (IF) model

The Integrate and Fire is one of the earliest models of neurons, and can be traced
back to Louis Lapicque in 1907 [8].
The IF model can be sketched with a simple electric circuit, shown in Figure 2.2:

Figure 2.2: Equivalent circuit diagram of the IF model

Modeled as in Equation 2.8, the neuron’s membrane behaves as a capacitor ideally
isolated, in which the voltage represents the membrane potential, and the source
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Mathematical models of the membrane potential

current represents the input from all the synapses.

I(t) = CM
dV (t)

dt
(2.8)

When the input current is applied, the voltage increases up to reach a specific value,
called threshold voltage. At that point an output current spike is produced and
the voltage is reset to its resting value.
Then the membrane starts to increase again as new spikes arrive at the input.
This model, whose behavior is shown in Figure 2.3, results the simplest one and
does not have any bio-plausible reference.

Figure 2.3: Schematic representation of the IF model [Source: [9]]

2.2.1 Leaky-integrate and fire (LIF) model

The Leaky-integrate and fire (LIF) neuron represents an improvement over the
IF model, by introducing two new concepts, the leakage and refractory period.
The first concept derives from the removal of the ideal isolation condition: the
membrane, if it is not stimulated with any input, exhibits a leakage which tends to
discharge the capacitance along the time. This behaviour is shaped by introducing
a resistor in parallel to the capacitor, as shown in Figure 2.4: Hence, the LIF model
can be described with the Equation 2.9, where RM is the membrane resistance:

I(t) = CM
dV (t)

dt
+ V (t)

RM

(2.9)
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Figure 2.4: Equivalent circuit diagram of the LIF model

The other new feature relates to the fact that as the membrane reaches the threshold
is reset. After this reset, there is an amount of time, called refractory period (TR),
during which the neuron remains in a sort of quiet state: all the spikes received
within this time window are ineffective, even though the membrane potential is
beyond the threshold. Only when the TR is elapsed, a new spike can be emitted.
Figure 2.5 depicts such a behaviour. In summary, the essential parameters of a

Figure 2.5: Schematic representation of the LIF model [Source: [9]]

LIF neuron are the membrane threshold voltage, the reset potential, the refractory
period and the leak rate. At each time step t, the membrane potential can be
described by Equation 2.10, where xi,j(t− 1) is the input spike from the neuron i
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in the previous layer to neuron j in the current layer and the refractory period[9].

V (t) = V (t− 1) +
Ø

i

wi,jxi,j(t− 1)− λ (2.10)

The parameter λ corresponds to the leak, and wi,j is the weight. The output spike
of a neuron can be expressed by Equation 2.11:

x(t) =

1 if V (t) > threshold and t− tspike > TR

0 otherwise
(2.11)

where tspike is the time step at which the neuron fired.

2.3 Izhikevich model

The Izhikevich model, designed by Eugene M. Izhikevich in 2003, combines the
biological plausibility of the Hodgkin–Huxley-type dynamics and the computational
efficiency of integrate-and-fire neurons [10]. It is described through a 2-D system
of differential equations (Equations 2.12 and 2.13), which can be considered as a
reduction of the more accurate H&H model:

dv

dt
= 0.04v2 + 5v + 140− u + I (2.12)

du

dt
= a(bv − u) (2.13)

With the after-spike resetting formula in Equation 2.14.

if v ≥ 30 mV , then

v ← c

u← u + d
(2.14)

Where all the terms are dimensionless:

• v stands for the membrane potential of the neuron

• u symbolizes the recovery variable, which takes into consideration for the
activation of K+ ionic currents and inactivation of Na+ ionic currents, and it
produces negative feedback to v
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• I symbolizes the synaptic currents and injected dc-currents

• a describes the time scale of the recovery variable u. The smaller the values,
the slower the recovery

• b describes the sensitivity of the recovery variable u to the subthreshold
swing of the membrane potential v. Greater values couple v and u more
strongly providing possible subthreshold fluctuations and low-threshold spiking
dynamics

• c represents the after-spike reset value of the membrane potential v

• d represents the after-spike reset of the recovery variable u

The part corresponding to 0.04v2 + 5v + 140 in Equation 2.12 derives by fitting the
spike initiation dynamics of real neurons, in such a way the membrane potential v

has mV scale and the time t has ms scale.
As the spike amounts to its peak (+30mV ), the membrane voltage and the recovery
variable are reset according to Equation 2.14.
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Chapter 3

Learning process

One of the most important problems which affects the performance of the network
is to make it able to recognize the input data and classify them: in other words, a
training has to be performed.
In order to train a NN, a dataset is necessary; a dataset is a collection of data of
different kinds as images, sounds, texts and so on. They normally are divided into
two groups: the train set, which contains data actually used for training and, the
test set, which contains data not provided to the network during training, but they
are used to evaluate the network. Let’s see how the training process happens.

3.1 Supervised and unsupervised learning

The training process can be of two main types:

• supervised: each input is associated with a label that identifies which class
it belongs to. The training is performed knowing in advance the expected
output.

• unsupervised: the network independently determines the features and be-
comes capable to classify the input data.

In the former method, to compare the actual predicted output with the expected
one, a cost function is used. It is also called loss function and can be expressed
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through Equation 3.1:

C(w, b) = 1
2n

Ø
x

∥y(x)− a∥2 (3.1)

As usually, w and b represent the weights and the bias respectively, while n is
the total number of input, x is the input, y(x) is the desired output, and a is the
output of the network. The notation ∥v∥ indicates the length function for a vector.
The goal of the training process is to find the weights and biases of the network
which minimize the cost function. To achieve this task, the gradient descent
algorithm is used. It is composed of various steps that are repeated until the
function reaches its minimum:

1. forward phase during which the input is given to the network and the output
is generated.

2. the output is compared with the expected one and the cost function is therefore
computed.

3. the derivative of the loss function with respect to each weight of the network
is calculated, starting from the output and moving towards the input. This
step is normally known as backpropagation.

4. the weights are modified proportionally to the result of the derivative.

The backpropagation is the most used method for training ANNs, even though it
is not ensured as the way in which the human brain learns. Instead, in the case of
SNNs, this method cannot be applied due to the non-differentiable nature of spike
events [11]. For this reason, two novel techniques have been proposed to overcome
the limitation and produce supervised learning for SNNs:

• training the SNNs directly using spike-based backpropagation [12].

• converting the trained ANNs to SNNs [13]

For what concerns unsupervised learnings, the most biologically plausible method is
represented by the Spike timing dependent plasticity (STDP). This method leads
to the adjustment of the strength (or of the weights) of connections between neurons
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in the brain [14]. The process is based on the timing correlation between the arrival
time of the input spike and the instant in which a new spike is generated; in other
terms, it is related to the so-called pre and post neuronal spikes. Moreover, the
STDP process includes the long term potentiation (LTP) and long term depression
(LTD):

• LTP: when an input spike arrives before the production of a new spike, the
synapse weight is incremented. This increase is proportional to the timing
difference between the two events: the shorter difference, the higher the
increment. Hence, the synapse is responsible to make the neuron fire.

• LTD: when an input spike arrives after the emission of an output spike, the
synapse weight is decreased. In other words, the synapse is irrelevant in
making the neuron fire.

The learning rule can be expressed mathematically with the Equation 3.2:

wi ← wi + ∆wi, ∆wi =

+a+wi(1− wi), if ∆t > 0

−a−wi(1− wi), if ∆t ≤ 0
(3.2)

∆t = tout − tin (3.3)

Where tin and tout indicate the time instant of the presynaptic and postsynaptic
spikes, respectively. The synaptic weight wi is modulated by a quantity ∆wi,
according to LTP and LTD. The quantity by which the weight is incremented or
reduced is proportional to the learning rates a+ and a and to the weight itself.
The figure 3.1 shows the representation of the STDP equation assuming that the
long term potentiation and long term depression have the same intensity. Graphi-
cally it implies a symmetrical characteristic; however, it is not always true in reality.
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Figure 3.1: Plot of the STDP equation
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Chapter 4

Privacy in deep learning

The algorithms based on ANNs have achieved significant success and have been
widely applied in various fields including image classification, autonomous driving,
natural language processing and so on; this has led to their adoption in many
production systems. The main contribution to these advances is certainly the great
availability of data; at the same time, the resulting datasets may contain sensitive
information. Thus privacy and security issues have been arisen.

This chapter describes the most common attacks and privacy concerns against deep
learning. It also depicts the privacy-preserving countermeasures in recent years.

4.1 Existing threats

Generally, the threats against DL and ML are classified into two main categories
[15]: direct and indirect information exposure as shown in Figure 4.1. In the case of
direct threats, the attacker has the possibility to access the information via direct
exposure; while in indirect ones, the attacker aims at extracting the information
while not having direct access to it.
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Existing threats

untrusted cloud

membership inference

model inversion and attribute 

inference

hyperparameter inference

property inference

parameter inference

untrusted data curator

untrusted communication link

Figure 4.1: Categorization of existing threats [Source: [15]]

4.1.1 Direct information exposure

As shown in figure 4.1, the direct information exposure may happen in different
settings and not only limited to ML. For instance, the untrusted data curator is
related to dataset security: this breach is often caused unintentionally by virus,
malware, or by carefreely sharing sensitive data with attackers. In 2016 Intel
security published a study [16] which demonstrates that about 21% of data leakage
is provoked by employees unintentionally.
Another possible breach is due to the leakage through communication links. It may
occur because of the absence of proper data encryption. Similarly, in an untrusted
cloud, the services don’t tell exactly what occurs to the data after they have been
processed.

4.1.2 Indirect information exposure

The indirect information exposure can be divided into 5 main groups, as shown in
figure 4.1. Before going into details about each of them, it is worth defining the
two possible ways that the adversary has to access the ML model [17]:

• white-box: the attacker has complete knowledge of the target ML model, its
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architectures and parameters, and training data;

• black-box: the adversary knows neither the target model, consisting of its
architecture and parameters nor the training data. The attacker identifies
the ML model’s exposure by exploiting the knowledge about output and then
sends a series of queries to retrieve the ML model.

Membership Inference

Assuming white or black-box access to the model, a member inference attack (MIA)
establishes the contribution of a given data instance to the training step. Shokri
et al. [18] proposed the first MIA in which the so-called shadow training is used
and it generates multiple shadow models to simulate the target model. However,
this attack model requires making several assumptions, like using multiple shadow
models, or the knowledge of the target model; for this reason, successive studies
[19] have relaxed these hypotheses, demonstrating the effectiveness of the attack
also at lower cost and without the access to confidence score [20].

Model Inversion and Attribute Inference

In a model inversion attack, the adversary is able to infer some training data; he
knows non delicate attributes related to instances in the training set and tries to
deduce the value of a delicate attribute [21]. For instance, Fredrikson et al. [22]
proposed an attack inverting the ML model of a medicine dose prediction task.
Besides this main information, they could recover the genomic information about the
patient, or other non-sensitive attributes such as height, age, and weight. Another
formulation by Fredrikson [23] shows that the adversary could infer instances of
training data exploiting oracle access to a ML classification model. For example,
Figure 4.2 shows a face image recovered from a training set of images, by utilizing
this kind of attack.

Hyperparameter and Parameter Inference

As described in the previous chapters, the DNNs store the information acquired
during the training step; the training data can be considered properties of their
owners, therefore the inference of the model results in a privacy breach. There is a
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Figure 4.2: On the left an image recovered thanks to a model inversion attack and, on the
right the image from the dataset

model stealing mechanism that tries to infer the model parameters via black-box
access to the target model. Tramer et al. [24] proposed an attack which seeks
parameters of a model given its confidence values solving equations based on pairs
of input-outputs. Instead, the hyperparameter stealing attack occurs during the
training.

Property inference

During the learning process, there could be a possibility that the model learns
attributes that are not relevant with its main task. The property inference takes
advantage of this and tries to deduct these secondary properties [25].

4.2 Privacy-Preserving Mechanism

As the threats, also the defense mechanisms can be classified into groups as shown
in Figure 4.3.

4.2.1 Data aggregation

The data aggregation methods [26], whose purpose is the collection of data and
the creation of datasets preserving the privacy of the contributors, can be divided
into two groups:

• context-free privacy: the solutions are unaware of how the data will be used;
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Data aggregation Training phase Inference phase

Naive Data Anonymization

Input Perturbation

Differential privacy

Output Perturbation

Gradient Perturbation

Homomorphic Encryption

Secure Multi-Party

Computation
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Homomorphic Encryption

Differential Privacy
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Theoretic Privacy
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Figure 4.3: Classification of Privacy-Preserving-Mechanisms for deep learning [Source :[15]]

• context-aware: the solutions are aware of the aim whereby the data will be
used for.

Naive Data Anonymization

Naive anonymization means the suppression of identifiers from data, like the names,
and other information of the participants in order to protect privacy. For example,
this method was used for protecting patients in medical fields; however, it has been
demonstrated to fail in several scenarios [27].

k-Anonymity

"A dataset has k-anonymity property if each participant’s information cannot be
distinguished from at least k − 1 other participants whose information is in the
dataset" [26]. In other words, the K-anonymity implies the presence of at least k
rows with the same set of attributes for any combination of quasi-identifiers, which
are attributes available to the adversary. Again this method is limited to small
datasets [28].
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Differential Privacy

Differential Privacy (DP) was introduced by Dwork et al. [29]. Their goal was to
ensure an algorithm to learn statistical information about the population without
leakage of sensitive information. ϵ-DP is verified for a randomized mechanism M
if, for any pair of datasets D and D’ that differ in only one element, satisfy the
Equation 4.1:

Pr[M(D) ∈ S] ≤ exp(ϵ)Pr[M(D’) ∈ S] (4.1)

where S are all the subsets of M and ϵ is the privacy budget parameter which
defines the privacy level. M can be formulated as in Equation 4.2:

M(D) = f(D) + n (4.2)

where n is the additional noise to the function f(D) provoked by M. Generally, n is
drawn from a Laplace or Gaussian distribution. Therefore, in other terms, even if
an adversary is aware of the whole dataset D except for a single element, he is not
able to infer additional information about that record by accessing the output[17].
The function is also characterized by a sensitivity ∆f which defines how much the
output of the function varies by changing any element in D, the output of the
function varies, as expressed in 4.3:

∆f = max∥f(D)− f(D′)∥ (4.3)

In order to loosen the definition of ϵ-DP which is very strict, the (ϵ, δ)-DP were
introduced, where the parameter δ is added to the right-hand side of Equation 4.1:

Pr[M(D) ∈ S] ≤ exp(ϵ)Pr[M(D’) ∈ S] + δ (4.4)

Semantic Security and Encryption

The semantic security, expressed as λ [30] is a typical privacy specification of
encryption schemes. It establishes that the advantage (a measure of an adversarial
attack success versus a cryptographic algorithm) of an adversary with background
information should be negligible or small.
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Information-Theoretic Privacy

The information-theoretic privacy is a context-aware privacy solution, which clearly
models the dataset statistics. Some of these solutions try to achieve privacy and
fairness through information degradation. Huang et al. [31] introduced a solution
known as generative adversarial privacy, which leads to privatized datasets.

4.2.2 Training phase

The private training of deep learning models is extremely effective. It can be either
based on differential privacy or semantic security and encryption.

Differential Privacy

During the training phase, the application of DP can occur in different places of
the whole deep learning framework as shown in Figure 4.4. The DP can be applied
to the input, to the gradient updates, to the loss function, to the labels and to the
output.

Figure 4.4: Overview of how differential privacy can be applied during training [Source: [15]]

The input perturbation is similar to what discussed in Section 4.2.1 to describe
sanitized dataset. The objective and output perturbation are performed with
convex objective functions. However, in Deep Learning, because the non-convexity
of the objective function, the calculation of the sensitivity of the function (which is
needed to compute the intensity of the additional noise) is non-trivial. A possible
solution is to use an approximate convex polynomial function in place of the
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non-convex function [32] but this leads to restricting the capability of conventional
DNNs. For this reason, the gradient perturbation approach is widely used in
DL. The basic idea is to inject noise into the gradient at each step of the stochastic
gradient descent algorithm.
The label perturbation, is performed by injecting noise into the label. More
in detail, Papernot et al. [33] proposed a new approach, Private Aggregation of
Teacher Ensembles: an ensemble of "teacher" models learns only unrelated subsets
of the sensitive data, and after a "student" model is trained. But the student model
is not allowed access the sensitive data and due to the noise added, privacy is
ensured.

Homomorphic Encryption

Homomorphic Encryption (HE) enables the computation on the sensitive data
guaranteeing the privacy of data. A client encrypts and sends the data; the server
performs the computation without decrypting, and finally, it is sent to the client
again who can decrypt it. This privacy mechanism will be discussed more in detail
in Chapter 5.

Secure Multi-Party Computation

Secure Multi-Party Computation (SMC) offered two main approaches in DL
[17]. The first approach is that a data owner does not want to exhibit all the
training data to a server to train the network. Hence, the idea is to distribute the
training/testing data to different servers in a way that each server does not know
the training/testing data of other ones. The second approach is that multiple data
owners want to train a shared network with all the available data, while ensuring
the privacy of their ones.

4.2.3 Inference Phase

As shown in Figure 4.3, the categorization of inference privacy is almost equal to
the training phase except for a new field, named Information-Theoretic. The basic
idea of inference privacy is to assume the ML model is already trained and its
parameters are not further updated. The solutions are context-aware and the goal
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is to provide a reduced information content (or better, the much as needed) to the
service for the inference.
Generally, in literature, it is possible to highlight a diffused trend: the use of DP
for the training phase and encryption and SMC methods for the inference phase.
A possible reason lies in the computational cost [34]: in fact, the encryption results
particularly slow during the training phase and, as told before, also degrades the
performance. Instead, the application of HE during the inference phase seems
more trivial, due to the fact the model is already trained. Similarly, the differential
privacy and hence the addition of noise becomes simpler in this stage.

Information-Theoretic Privacy

The information-theoretic approaches usually assume that the service tries to
degrade any unnecessary information in the input data that is not required for
the primary task [35]. There exists another solution, the Deep Private Feature
Extraction (DPFE) [36] which aims at degrading the input images by modifying
the network topology and architecture. In particular, the network is divided into
two partitions, one related to the edge and one to the cloud. Moreover, an encoder
is inserted in order to resize the input data, reducing the communication cost and
the amount of data sent, thus enhancing the privacy.
DPFE algorithm forecasts the retraining of the given neural network and of
the encoder with its loss function. The training attempts to generate clustered
representations of data: inputs with the same private labels join different clusters,
and inputs with different labels go in the same cluster. In this way, the inference
of the private labels is compromised by the adversary. After training, the noise is
added to the intermediate results but it is not related to differential privacy.
Instead, the Shredder solution [37] performs a similar approach by cutting the
NN and executing only a part of it; hence a benefit is the decreasing of execution
time with respect to the whole execution time of the DNN inference. Therefore,
both DPFE and Shredder show a reduction of information in the sent intermediate
representation versus the original data. The main difference is that the DPFE
becomes effective only if the user knows what to protect, whereas Shredder is a
more general approach which tries to delete any information unrelated to the main
task. At the same time, DPFE is more efficient in terms of inferring private labels,

29



Privacy in deep learning

since the misclassification rate is higher thanks to its access to the labels during
the training phase.

4.2.4 Privacy-Enhancing Execution Models and Environ-
ments

Besides the method described so far, there are also other privacy-preserving ap-
proaches which exploit specific execution models and environments. The most
known are the federated learning, split learning and trusted execution
environments.

Federated Learning

Federated learning (FL) is a machine learning technique by which multiple clients
train a model on decentralized devices or servers while keeping the training data
local. The concept is totally opposite to the centralized ML techniques and tends
to reduce the privacy risk [38].
The flow of operations can be divided into 6 stages [15]:

1. Problem identification: definition of the problem to solve with FL.

2. Client instrumentation: the clients are equipped with the data needed for
training.

3. Simulation prototyping (optional): prototyping of several architectures and
testing several hyperparameters in a federated learning simulation.

4. Federated model training: multiple federated training tasks are launched
which train different variations of the model or use different optimization
hyperparameters.

5. Model evaluation: after the training, which can last also days, the models are
analyzed and evaluated, considering both the standard centralized datasets
and the local client data.

6. Deployment: a model is selected and the launch process is started. This
process consists of different tests and it does not depend on how the model is
trained.
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Split Learning

Split-learning is an execution model in which the neural network is split between
the client and the server [39]. The approach is very similar to the partitioning
described in Section 4.2.3. There exist two main split learning configurations, the
Vanilla split learning and the boomerang split learning. In the former, each client
performs the computation until a specific layer, called the cut layer. The outputs
of this layer, known as smashed data, are sent from the edge device to another
entity, such as a server which concludes the remaining operation. In this scheme,
the raw data is not shared between client and server.
The boomerang scheme (or U-shaped) denies not only the sharing of raw data but
also of the labels between the two entities. Figure 4.5 depicts the two configurations.

Figure 4.5: On the left the Vanilla configuration. On the right the U-shaped one [Source:
[15]]

Trusted execution environments

The Trusted Execution Environment (TEE) is an operating environment of the
main processor that ensures a safe execution environment for trusted applications.
Moreover, the TEE guarantees integrity and confidentiality during execution. There
are few works that utilize TEE to provide privacy in DL [17].
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Homomorphic encryption

Homomorphic encryption (HE) is a cryptographic method that allows performing
computations over encrypted data instead of its raw version. The implementation
of this defense mechanism has long been studied since the possibility of applying it
in several fields, mainly to computation on sensitive data ensuring privacy [40].
This chapter provides an accurate description of the HE and its evolution in time.
First, to properly understand it, some basic notions are discussed in the following
preliminary sections.

5.1 Cryptographic Background

Cryptography is a method to make secure the communication from the sender to
the receiver allowing only them to read and process the information. First of all, it
is worth defining the main actors of any cryptographic scheme.
The plaintext is the term used to indicate the information in plain language.
The plaintext is sometimes also referred to as cleartext. Instead, the ciphertext
is the term used to refer to the information in encrypted form. In other words,
they can be seen as the input and output of the encryption algorithm which is
the process that transforms the plaintext into the ciphertext. On contrary, the
decryption algorithm performs the opposite transformation, from the ciphertext
to the plaintext.
These processes need specific parameters, named keys. They are like codes used
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to encrypt and decrypt the information.

Now that these terms are known, it is also important to understand how to
evaluate a cryptographic scheme. In particular, there are two main features to
characterize the effectiveness of a cryptographic scheme:

• The semantic security expressed as λ [30] is a typical privacy specification of
encryption schemes which establishes that the advantage (a measure of an
adversarial attack success versus a cryptographic algorithm) of an adversary
with background information should be negligible or small. The semantic
security notion is also referred to as ciphertext indistinguishability under
chosen-plaintext attack: the encryption scheme is secure if the attacker cannot
distinguish two ciphertexts encrypting the same message [30].

• Correctness: a homomorphic scheme is correct if the decryption function
always returns the original plaintext [41]. Notice that the HE is probabilistic
and this implies the addition of noise during encryption. In these cases, the
decryption acts as a filter that removes the noise under a certain noise threshold.
Otherwise, if the noise is large and overcomes this limit, the ciphertext cannot
be decrypted anymore.

The problem of noise together with the complexity of defining schemes makes the
Fully Homomorphic Encryption (FHE) schemes too inefficient for practical use.
Hence, there exist intermediate solutions easier to build which allow to achieve
better efficiency.
Partially Homomorphic Encryption (PHE) schemes are characterized by the
verification of homomorphism properties only for a subset of functions belonging to
plaintext space’s algebraic operations, for instance assuming that the decryption
function is a homomorphism of the multiplicative group. Therefore, only functions
composed by multiplications have an equivalent in the encrypted space [41].
Somewhat Homomorphic Encryption (SHE) schemes are characterized by the
verification of homomorphism properties for two kinds of operations, addition and
multiplication. Nevertheless, it cannot be a complete FHE schemes because of the
limit of its evaluation capability, namely a limited number of computations over
encrypted data.
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5.1.1 Symmetric and asymmetric encryption

There exist two main forms of encryption, the symmetric encryption and
asymmetric encryption, as shown in Figure 5.1.
The former technique uses the same key both to encrypt and decrypt the information;
for this reason, it is also known as a single-key algorithm or private key encryption
[42]. Instead, the latter technique uses two different keys, the public key for
encryption, and the secure key for decryption. The algorithm is also known as
public key encryption.
The symmetric scheme is less secure than the asymmetric scheme because anyone
who has the public key can both encrypt and decrypt the message, while in the
asymmetric scheme, any person who gets the public key can encrypt the information,
but he cannot decrypt it without the secure key. At the same time, symmetric
encryption is characterized by a higher operating speed than asymmetric one.

5.1.2 Algorithms in an Encryption scheme

With a standard encryption scheme, the only possible operations are storage and
retrieval. To perform any kind of computation, it is needed to decrypt the data
first. Instead, the HE mechanism allows to perform computations directly upon
encrypted data.
Craig Gentry, who can be considered the author of the FHE, provides a very
effective and fancy example to explain HE [43] modelling it as a transparent glove
box, as depicted in Figure 5.2. It assumes that a jewellery store owner has a
collection of expensive raw materials from which a costly final product can be
obtained. However, since the owner does not trust his workers, he would find a
strategy to allow the workers to deal the materials without having direct access to
them. Hence, he devises to insert the material inside a transparent glow box and
lock it with a personal and secure key; in this way, the workers can insert their
hands in the gloves and process the materials to obtain a piece of finished jewellery.
Finally, the workers give back the box to the owner who can open it and get the
jewellery.
Let’s try to understand the above example with the correct formalism. The whole
process models the encryption procedure. In particular, the raw materials inserted
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(a) Symmetric encryption scheme

(b) Asymmetric encryption scheme

Figure 5.1: Overview of two encryption schemes

in the box, represent the plaintext {m1, m2, ...mn}; the handling of the materials
symbolizes the processing of data to encrypt them, Enck, where k is the key used by
the owner to lock the box. Finally, the obtained product represents the cyphertext:

c = Enck(m1, m2, ...mn) (5.1)

To conclude, a Homomorphic encryption scheme includes four algorithms:

• KeyGen: takes as input some security parameters and then outputs a pair of
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Figure 5.2: The raw materials are locked inside the box and the worker can only manipulate
them without having direct access[Source: [44]]

key, the public key pk and the private key sk:

(pk, sk)← KeyGen(parameters) (5.2)

• Enc: takes as inputs the plaintext m ∈ {0, 1} and the public key. Then it
outputs the ciphertext c. The process can be indicates as:

c← Encpk
(m) (5.3)

• Dec: takes as inputs the ciphertext and the private key. It returns the
plaintext message if decryption is successful. This process is denotes as:

m = Decsk
(c) (5.4)

• Eval: takes as inputs n ciphertexts c1, c2, ..cn, a defined function f and the
public key. It returns f(c1, c2, ..cn). The operation is succesful if:

Dec(Eval(f, ci, pk), sk) = f(mi) (5.5)

where ci is the set of ciphertexts and mi the corresponding decrypted messages.

Notice that, the above algorithms are defined in the case of asymmetric encryption.
However, it is possible to transform an asymmetric encryption into a symmetric
one, simply considering that the homomorphic evaluation algorithm needs the
encryption key. To counteract this trouble, the encryption key can be attached
to the end of each ciphertext [45]. Instead, the transformation from a symmetric
scheme to an asymmetric one is more difficult.
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5.1.3 History towards Fully Homomorphic Encryption

The origin of homomorphism lies in another cryptosystem, the RSA. It was intro-
duced by Rivest, Shamir and Adleman [46] in 1974 and it is nowadays one of the
most widely used for secure data transmission. The work got immediate interest
after its publication which leads to a quick improvement: the question was the
possibility to compute upon encrypted data. Hence, with Dertouzos, they proposed
a method of solving the question with a process called homomorphism [47]. The
idea was to create a cryptosystem with a large defined set of operations which
permit computations on encrypted data without requiring the decryption of the
operands: they named this encryption function "privacy homomorphism" [48]. The
term was borrowed from mathematics: homomorphism is an application between
two algebraic structures of the same type which preserves the operations defined in
such structure.
However, they cannot pursue the task in their work because of the current state of
research in cryptography.
Afterward, there were long periods of silence in the research community alternating
with a few works related to privacy homomorphism. In 1999 Tomas Sander et al
[49] launched the classical problem:

"Alice has an input x and Bob has function C. Alice should learn the value
of C(x) but nothing else substantial about C. Bob should learn nothing
else substantial about Alice’s input x."

They proposed a new protocol that involved one party sending encrypted data to a
second party, the computing one, which evaluates the data securely, and provides the
output to the sender without engaging in additional communications. Some years
later, Dan Boneh published a paper [50] which described a homomorphic encryption
scheme, that allowed the evaluation of quadratic function on the ciphertext. This
formulation was a keystone toward the first plausible implementation of HE. Then,
in fact, a graduate student named Craig Gentry expanded Boneh’s work, and in
2009 published a seminal work [51] which makes it possible to perform arbitrary
computations on encrypted data, without first decrypting it and keeping the data
secure. Notwithstanding his initial implementation was unfeasible, Gentry’s work
is generally considered as the FHE breakthrough.
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5.1.4 Four generations of FHE

Homomorphic encryption schemes have been developed using different approaches.
Generally, FHE schemes are grouped into four generations.

First generation: bootstrapping

The Gentry’s implementation is based on the so called bootstrapping procedure and
demonstrates that, from a "bootstrappable" SHE scheme, it is possible to obtain
an FHE scheme. As described in Section 5.1, SHE scheme allows only a limited
number of operations. The task of bootstrapping is to reduce the noise over the
ciphertext; it applies a sort of periodic "refreshing" to the ciphertext whenever
the noise becomes large, leading to an arbitrary number of computations without
increasing the noise much.
However, the first implementations of bootstrapping on FHE schemes turned out
to be unfeasible [52] due to both the noise growth and the complexity of the
architecture.

Second generation: Leveled-FHE

The schemes belonging to the second generation are not strictly FHE because the
complexity is not arbitrary but defined in advance. For instance, the complexity is
measured in terms of multiplicative depth. This is because the increase of noise due
to a multiplication is higher than due to an addition. The reason can be explained
with the following example. In an HE scheme, the underlying equations are verified:

• homomorphic addition:

Encrypt(a) + Encrypt(b) = Encrypt(a + b) (5.6)

• homomorphic multiplication:

Encrypt(a) ∗ Encrypt(b) = Encrypt(a ∗ b) (5.7)
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Whenever an operation is performed, some noise is added to ciphertext. For the
addition, the noise can be considered negligible, in fact:

Noise(Encrypt(a) + Encrypt(b)) = Noise(Encrypt(a)) + Noise(Encrypt(b))
(5.8)

However, the noise introduce by a multiplication becomes very large:

Noise(Encrypt(a)∗Encrypt(b)) = Noise(Encrypt(a))∗Noise(Encrypt(b)) (5.9)

These schemes are commonly known as Leveled-FHE. The technique used is
called modulus switching and constitutes the basic concept for designing the well
known BGV scheme [53]. The goal of these moduli is to control the noise growth;
nevertheless, they cause variation in the size of the ciphertext.
Brakerski [54] proposed a new technique, named scale-invariant which let to control
the noise without the moduli. The security of these schemes is based on the problem
of Learning With Errors (LWE) or its variant, the Ring-LWE(RLWE) like the
BFV scheme [55], another well accepted scheme to implement FHE.
Some years later, Cheon, Kim, Kim and Song released their CKKS scheme [56]
which allowed homomorphic computations on real numbers.
All these three schemes follow Gentry’s original construction, namely, they first
construct a SHE scheme and then convert it to an FHE scheme through the
combination of some techniques in order to reduce the noise.

Third generation: simplified Leveled-FHE

The third generation reviews the previous one avoiding the insertion of other
manipulation in order to reduce the noise, like the relinearization step. Some
popular schemes belonging to this generation are the GSW [57] and SHIELD [58].
Both implementations are based on Brakerski’s scheme [54]. They lead to more
specialized constructions with a highly reduced noise growth.
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Fourth generation: gate bootstrapping

The fourth generation revisits the bootstrapping technique: the refreshing of the
ciphertext occurs after every single operation. In this way, the noise is not cumula-
tive anymore. This approach is known as gate bootstrapping [59].
Before the FHEW and then the TFHE [60] scheme adopt this new approach. In
particular, the TFHE can perform the bootstrapped gate in the order of tenth
of milliseconds. However, due to its extreme complexity, it requires dedicated
hardware implementation.

5.1.5 Bootstrapping

All existing HE schemes are affected by the noise growth during the encryption.
Every time a computation is performed on ciphertext, the noise increases. If it
overcomes a specific threshold, the decryption process fails [55].
Reminding the example of the glove box, the issue of noise can be illustrated by
thinking the box is defective: namely, after a certain number of operations or of
time, the gloves lock. A possible solution is to provide several glove boxes with a
one-way insertion slot to the workers. Each one of these boxes contains a key to
open the previous box: for example, box 2 contains the key 1, box 3 contains the
key 2 and so on. On the other hand, the key of the last box is held only by the
owner.
As soon as the time or operations elapses, the whole box is inserted in another
one. Therefore, the worker takes the key and retrieves the raw materials in order
to continue the manipulation. This operation is repeated every time the lock of
gloves occurs, until the final product is obtained. At that time only the jewellery
owner who has the key of the last box can access the final product.
Bootstrapping is a technique used to reduce the noise growth which occurs during
the encryption and keep it under a certain limit depending on the complexity of the
circuit. Originally the technique was named by Gentry [43] as recrypt operation.
The effect is to "refresh" the chipertext at each operation; removing this noise,
some other additional noise is added in the evaluation function. Nevertheless, as
long as the new noise is less than the eliminated one from the encrypted data, the

40



Homomorphic encryption

scheme should operate properly.
The problem is that the bootstrapping is extremely difficult: its complexity is at
least the complexity of the decryption times the bit-length of the single ciphertexts
that are used to encrypt the bits of the public key [53].

5.1.6 Modulus Switching

Due to the high complexity of bootstrapping, alternative methods to handle the
noise have been proposed. One of these is the modulus switching explained by
Gentry, Brakerski and Vaikuntanathan [53]. The main idea of this technique is to
use an evaluator, which has information about the length of the private key sk,
but not about sk itself; it transforms a ciphertext c mod q into a new ciphertext
c′ mod p without compromising the accuracy of the scheme. The procedure
consists of scaling by a factor the chipertext after each multiplication; this factor is
gradually decreased for each level of the multiplication. The result of the scaling is
the reduction of the noise without applying costly bootstrapping.

5.1.7 LWE and RLWE

The Learning With Error problem was introduced by Regev in 2005 [61] and soon
became an adaptable basis for cryptographic constructions. Precisely the LWE
problem is defined as follows:

Let Zq be the ring of integers modulo q and let Zn
q the set of n-vectors over

Zq. For a vector s ∈ Zn
q , called secret, the LWE distribution As,χ over

Zn
q xZq, is sampled by choosing a ∈ Zn

q uniformly at random, choosing
e← χ, and outputting:

(a, b = ⟨s, a⟩+ e mod q) (5.10)

There exist two main versions of the problem, the search problem, in which the
task is to find the secret vector from the LWE samples; instead in the other version,
named decision, the goal is to distinguish between LWE samples and random ones.
The LWE problem is demonstrated to be hard to solve as several worst-case lattice
problems and for this reason, it results useful in cryptography.
In 2010, Lyubashevsky, Peikert, and Regev proposed the RLWE [62]. It can be
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seen as a larger version of the LWE which handles polynomial rings of the form
R = Z[X]/(Xn + 1) for power-of-two n. The definition is:

For a vector s ∈ Rq, called secret, the RLWE distribution As,χ over
Rq ×Rq, is sampled by choosing a ∈ Rq uniformly at random, choosing
e← χ, and outputting:

(a, b = s · a + e mod q) (5.11)

Also, the RLWE has two different versions, search and decision, which are similar to
the simpler LWE. The higher complexity to solve the problem even on a quantum
computer represents a hardness assumption to build cryptosystems.

5.1.8 Models of homomorphic computation

Regardless of the generations to which they belong, the FHE schemes can be
divided into three classes [63] depending on their computation model. Moreover,
this classification represents a good starting point to choose the right approach to
implement an FHE scheme.

• boolean circuits

• modular arithmetic

• approximate number arithmetic

Table 5.1 offers a comparison overview among the three models, focusing on how the
plaintext data are represented and on the type of circuit used for the computations.
According to their features, each model fits better for different cases. The first
one is characterized by a very fast bootstrapping and it results highly effective for
number comparison. The schemes used are the GSW, FHEW and TFHE. The
modular design of the model allows high precision integer arithmetic and fast scalar
multiplication. The selected schemes for this model are the Leveled-FHE as the
BGV or BFV. Finally, the third class deals with floating-point numbers. It allows
fast polynomial approximations and generally is implemented with Leveled-FHE,
such as the CKKS scheme.
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Models Plaintext data Circuit type
boolean circuit bits boolean

modular arithmetic integers integer
approximate number arithmetic real floating-point

Table 5.1: Comparison among the three computation models
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Chapter 6

Model Design and
Implementation of the HE
Scheme

Somewhat Homomorphic Encryption (SHE) schemes are an extension of the PHE
schemes. They are characterized by the verification of homomorphism properties
for two kinds of operations, addition and multiplication. However, it cannot be
considered a complete FHE scheme due to the limit of its evaluation capability. In
other words, this means that only a limited number of computations over encrypted
data are feasible.
Despite these limitations, the SHE scheme is the chosen structure in this thesis. The
reason lies in the fact there are occurrences in which the SHE may be sufficient: for
instance, when only a simple function is required to be computed, it is demonstrated
that the SHE scheme has an overhead (the ratio between the time to compute
operations on ciphertext over the time to compute operations on the plaintext)
lower than the FHE scheme [52].
The HE scheme deals with addition and multiplication of polynomials. To better
understand the implemented architecture, it is worth making a quick example of
how to work with it.
At first, the modulus operation provides as result the remainder of the division.
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It is very simple to apply to real numbers but let’s analyze how it works with
polynomials. For instance, considering the polynomial p(x) = x5 +3x4 +2x3 +x+5
and q = 4, computing p(x) mod q the result is:

p(x) mod q = x5 + 3x4 + 2x3 + x + 1 (6.1)

Instead, considering the function f = x4 + 1 and the same polynomial p(x), let’s
try to calculate p(x) mod f . At first, notice that for example x5 can be written as
x(x4 + 1)− x and so computing the x5 mod f the result is −x. Similarly:

p(x) mod f = (x5 + 3x4 + 2x3 + x + 5) mod f = (6.2)

= −x− 3 + 2x3 + x + 5 =

= 2x3 + 2

6.1 BFV: Brakerski-Fan-Vercauteren

As described in Chapter 5, different generations of FHE exist, and each of them
includes several schemes. The chosen one in this work is the BFV [55].
In 2012, Fan and Vercauteren revisited Brakerski’s scheme which is based on LWE,
and adopt the assumption of RLWE to build a new scheme. The BFV includes
both the relinearization and the bootstrapping, which are implemented with a more
simple procedure called modulus switching.
The plaintext space in the chosen scheme is Rt = Zt[x]/(xn + 1) where:

• t is the plaintext modulus

• n is power of 2 and represents the polynomial modulus degree

The encryption process in the BFV generates a ciphertext which is expressed as
two polynomials with the same polynomial modulus but with a different coefficient
modulus q ≫ t: so the ciphertext space is Rq = Zq[x]/(xn + 1).
The BFV scheme is characterized by 8 functions:

1. Private key generation: it takes as input the security parameter λ and,
from a uniform distribution R2 samples s, so the private key sk will be a
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binary polynomial:
sk = PrivateKeyGen(λ) (6.3)

2. Public key generation: it takes as input the private key, indicated as s and
samples the value a uniformly over Rq, and a small error e from a discrete
Gaussian distribution χ over Rq:

pk = PublicKeyGen(sk) = (6.4)

= ([−(a · s + e)]q, a)

Notice that, notwithstanding the multiplication between two polynomial,
which implies the addition of the exponent, the maximum degree remains the
same thanks to the mod operation by (xn + 1).

3. Evaluation key generation: it takes as input the private key sk and T

which is a positive integer base. Let l be ⌊logT (q)⌋, assume sk = s and sample,
as before, ai and ei for i = 0, ......, l, so:

evk = EvaluationKeyGen(sk, T ) = (6.5)

= ([−(ai · s + ei) + T i · s2]q, ai)

for i = 0, ......, l.

4. Encrypt: it takes as input the public key pk and a message m ∈ Rt. Assuming
p0 = pk[0] and p1 = pk[1], and randomly sampling u, e1, e2 from χ and let be
∆ = ⌊q/t⌋:

ct = Encrypt(pk, m) = (6.6)

= ([p0 · u + e1 + ∆ ·m]q, [p1 · u + e2]q)

5. Decrypt: it takes as input the ciphertext ct and the private key sk. Setting
sk = s, c0 = ct[0] and c1 = ct[1]:

m′ = Decrypt(sk, ct) = (6.7)
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=
57

t · [ct[0] + ct[1] · s]q
q

:6
t

Let’s understand better how the decryption function acts. Since p0 + p1 · s is
small, c0 + c1 · s is close to ∆ ·m. Hence to recover the original message m it
is needed to divide by ∆, that is q/t; finally the rounding is applied.
Going more into detail,

[ct(s)]q = [c0 + c1 · s]q = [(p0 · u + e1 + ∆ ·m) + (p1 · u + e2) · s]q = (6.8)

= [−(a · s + e) · u + e1 + ∆ ·m + a · u · s + e2 · s]q =

= ∆ ·m− e · u + e1 + e2 · s =

= ∆ ·m + v

or rather the scaled message with a noise "v". Now, since (∆ ·m + v is lower
than q, the mod q operation has no effect, this means until v < ∆/2, the
plaintext m is always recovered correctly.

6. Addition between ciphertexts: it takes as inputs two ciphertexts ct0 and
ct1:

(ct0 + ct1) = (ct0[0] + ct1[0], ct0[1] + ct1[1]) (6.9)

From a practical point of view, adding ciphertexts is like adding two polyno-
mials in Rq.

7. Multiplication between ciphertexts: it takes as inputs two ciphertexts
ct0 and ct1 and returns a 3-tuple:

c0 =
57

t · ct0[0] · ct1[0]
q

:6
q

(6.10)

c1 =
57

t · (ct0[0] · ct1[0] + ct0[1] · ct1[0])
q

:6
q

(6.11)

c2 =
57

t · ct0[1] · ct1[1]
q

:6
q

(6.12)

But this has 3 coefficients, therefore is not the final result. Moreover, this
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size can grow linearly as much as the further multiplication performed on the
ciphertexts. To get the correct final result, it is needed the following operation.

8. Relinearization: the task is to restore the size of the ciphertext back to
2-degree. This operation requires the result of the Evaluation key generation
function:

c′
0 = [c0 + evk[0]c2]q (6.13)

c′
1 = [c1 + evk[1]c2]q (6.14)

The issue is that c2 can have coefficients up to size q and this could lead the
decryption process to fail. So, c2 needs to change to a smaller base before
being used in the above equations. Namely:

c2 =
lØ

i=0
ci

2T
i (6.15)

Figure 6.1 depicts a high level overview of the BFV scheme, considering two plain-
text messages m and m′, which are encrypted, getting ct and ct′. Hence, they are
evaluated and finally decrypted.

6.2 Implementation

The implementation regards some functions of the BFV scheme described in the
previous section. The basic idea is to separate these functions into software
implementation and hardware one as shown in Table 6.1.

Software implementation Hardware implementation
Private Key Generation Encryption
Public Key Generation Decryption

Addition between ciphertexts

Table 6.1: Design structure

More in detail, the Key Generation functions are implemented in Python and all
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KeyGen->(pk, sk)

m m'

ct=(ct[0], ct[1]) ct'=(ct'[0], ct'[1])

Encryption (pk, -) Encryption (pk, -)

Evaluation

Decryption (sk, -)

f (ct, ct')

M (m, m')

Figure 6.1: High level overview of the BFV scheme

the HW implementation is carried out using VHDL.

6.2.1 Key Generation functions

The reason why the Key Generation functions are implemented in software lies in
their definition; in fact, they are defined by drawing samples from different kinds of
distribution. A simple way to model these distributions is using Python language.
Python is an interpreted programming language and provides several programming
paradigms, like structured, functional and object-oriented. Nowadays Python is one
of the most popular programming languages thanks to its high level of abstraction
which makes it simpler, and also to the possibility to use it in several application
domains. In fact, Python’s library offers a lot of tools suited for any task. For
instance, there exist more than 300 000 packages which provide functionality in
automation, databases, GUI, image processing, machine learning, mobile apps, web
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framework and so on.
The library used for the implementation of the key Generation functions is the
NumPy. It is a mathematical library, in fact, the name is an abbreviation of
Numerical Python.
In the Algorithm 1 is shown the function to compute the private and public key as
described in [64]:

Algorithm 1 Key Generation function sk from a uniform distribution and pk =
([−(a · s + e)]q, a).

1: function keygen(size, modulus, poly_mod, mean, std)
2: ▷ size is the size of the polynomials
3: ▷ modulus is the ciphertext modulus q
4: ▷ polymod is polynomial modulus
5: ▷ mean is the mean of distribution
6: ▷ std is the standard deviation
7: sk ← gen_binary_poly(size)
8: a← gen_uniform_poly(size, modulus)
9: e← gen_normal_poly(size, mean, std)

10: b←
poly_add(poly_mul(−a, sk, modulus, poly_mod),−e, modulus, poly_mod)

11: return (b, a), sk

12: end function

Appendix A reports the details about the functions gen_binary_poly, gen_uniform-
poly and gen_normal_poly. The functions poly_mod and poly_mul, perform
addition and multiplication between polynomials, respectively. As explained in the
previous section, these operations require an additional computation to scale the
consequent polynomial. This operation is explained more in detail in Section 6.2.2.
The results of this function are put as inputs of the Encryption block or Decryption
one in according to Equations 6.6 and 6.7.

6.2.2 Encryption

Looking at Equation 6.6, other parameters are missing to execute the encryption
process. u, e1 and e2 are generated exploiting the same function discussed in the
Key Generation algorithm, as described in Algorithm 2.
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Algorithm 2 Parameters Generation function u, e1 and e2.
1: function Param_gen(size, mean, std)
2: ▷ size is the size of the polynomials
3: ▷ mean is the mean of distribution
4: ▷ std is the standard deviation
5: u← gen_binary_poly(size)
6: e1 ← gen_normal_poly(size, mean, std)
7: e2 ← gen_normal_poly(size, mean, std)
8: return u, e1, e2
9: end function

At this point, the plaintext m which has to be encrypted is chosen and the encryp-
tion process can start. The Figure 6.2 shows the datapath implemented for this
function.

Figure 6.2: Schematic representation of the encryption block

Let’s analyze the internal structure, shown in Figure 6.3, focusing step by step on
the operations performed. Recalling the Equation 6.6:

ct = Encrypt(pk, m) =

= ([p0 · u + e1 + ∆ ·m]q, [p1 · u + e2]q)
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Figure 6.3: Schematic internal representation of the encryption block

the public keys are multiplied by u. The key is a polynomial with a coefficient
in the range [0,q[, while u is a binary polynomial; both have the same size. The
product provides a polynomial with double size. The operation is very expensive,
because it requires a number of multiplications equal to size2, and then the sum of
the coefficients having the same degree. For example:

(x4 + 2x3 + x2 + 3x + 1) ∗ (2x4 + x3 + 3x2 + x + 2) = (6.16)

= 2x8 +x7 +3x6 +x5 +2x4 +4x7 +2x6 +6x5 +2x4 +4x3 +2x6 +x5 +3x4 +x3 +2x2+

+6x5 + 3x4 + 9x3 + 3x2 + 6x + 2x4 + x3 + 3x2 + x + 2 =

= 2x8 + 5x7 + 7x6 + 14x5 + 12x4 + 15x3 + 8x2 + 7x + 2

The best approach to implement this operation is to use a Multiply-Accumulate
(MAC). It is a well known unit in computing and allows to perform a multiplication
between two numbers, and add the result to an accumulator. The Figure 6.4 depicts
the external block and its internal components. The whole operation is described
in VHDL using three different processes:

1. product_process: it handles the multiplication between two coefficients of the
two polynomials.

2. reg_update: it adds the result to the previous value stored in the register
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file; moreover it evaluates a flag, named end_mpy which indicates that all
multiplications are computed and hence the results can go forward in the path.

3. index_update: it deals with the indexes of the two polynomials in order to
swap all coefficients; also, these indexes are used to address the register file.
Finally, when all coefficients are elapsed, the flag end_mpy is raised.

Figure 6.4: Schematic representation of the polynomial multiplication block

For the purpose of reducing the latency, the second process works on the falling
edge of the clock, whereas the other two are on the rising edge. In this way, the
total latency is halved.
The raising of the flag end_mpy enables the mod q operation and in the next clock
cycle these size2 coefficients are stored in a register.
Now a scaling operation is needed, both to restore the size of the polynomial and
to scale the coefficient. This operation is implemented with the datapath shown in
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Figure 6.5 which performs a division of the polynomial by the polynomial modulus.
It is equal to xn + 1. Generally, a division provides a quotient and a reminder, but
the wanted scaling operation needs the reminder only. At the end of computation,
as usual, the mod q operation is performed, and in the following clock cycle the
result is stored in a register.

Figure 6.5: Schematic representation of the division block

Moving on in the encryption formula 6.6, the following operation is an addition. Of
course, it is the simplest operation in terms both of complexity and area. The unit
is depicted in Figure 6.6. The idea is very simple: to sum the coefficients having
the same degree in the two polynomials. Now all the operations are complete, and
the last thing to do to get the two components of the ciphertexts is the mod q

operation.
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Figure 6.6: Schematic representation of the polynomial adder

6.2.3 Decryption

Similarly to the approach conducted for the encryption, let’s recall the decryption
equation 6.7 and evaluate the datapath and its internal composition shown in
Figure 6.7 and Figure 6.8, respectively.

m′ = Decrypt(sk, ct) =

=
57

t · [ct[0] + ct[1] · s]q
q

:6
t

The decryption block provides only one result which is the decrypted message.
All operations are computed with the same blocks seen before: at first, there is a
polynomial multiplication between ct[1] and s, followed by a sum with ct[0] and a
simple integer multiplication t/q. Moving on there is a round to nearest integer
operation indicated as ⌊·⌉. This rounding is implemented in the following way.
Considering, for example, the division 27/7, the algebraic result is 3.86. The result
of the integer division is 3, but the rounding to the nearest integer should provide
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Figure 6.7: Schematic representation of the decryption block

Figure 6.8: Schematic internal representation of the decryption block

4. Let’s move to the binary domain:

272 = 11011 and 72 = 00111

Assuming p =number of shift= 3. Let’s multiply 27 ∗ 2p, that is 27 ∗ 8 = 216.

2162 = 11011000

Now let’s perform the division 216/7:the result is 30 plus reminder.

302 = 00011110

Add 0.5 ∗ 2p = 0.5 ∗ 23 = 4, so the number becomes 34.

342 = 00100010
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Finally a number of bits equal to p are truncated and the result is:

00100 = 4

which is ⌊27/7⌋ = ⌊3.86⌋ = 4.
So generalizing: let be c = a/b and p =number of shift

1. compute a′ = a ∗ 2p

2. compute c′ = a′/b

3. compute c′′ = c′ + 0.5 ∗ 2p = c′ + 2p−1

4. the result is c = c′′/(2p)

6.2.4 Addition between ciphertexts

The addition is one of the two possible operations computable on ciphertexts. It is
particularly simple because is similar to a standard polynomial addition. The only
difference is the additional scaling operation to reduce the coefficient of the result.
The Figure 6.9 shows the block scheme of the function. After the addition of each
component of the two ciphertexts, there is the division block in order to scale the
result, which finally is stored in a register.
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Figure 6.9: Schematic representation of the addition between ciphertexts block
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Chapter 7

Evaluation of the
implemented design

Now that the design is complete, it can be simulated to verify the proper execution
and to evaluate its performance. Appendix B contains the main parts of the VHDL
code of the design.

7.1 Simulations

The simulations are carried on with Modelsim. While several tests have been
conducted, in the following paragraph a specific example is discussed. At first,
the Python code is launched and the results provided by the Key Generation and
Parameters Generation functions are set as inputs to the corresponding block.
As well as the plaintext message is set (m = 1011), and hence the simulation is
launched. In Figure 7.1 is shown the start of the simulation of the encryption
process. In particular, the simulation regards the computation of ct[0], in fact, the
input parameters are pk[0], u, e1 and m, as displayed on the upper let corner of the
image. After the first 3 clock cycles, where the yellow line is placed, the temporary
product (product_temp) is updated: in fact, a first complete cycle of index_j is
elapsed. This loop is repeated until all coefficients have been multiplied and this
requires 16 clock cycles since the parallelism is set to 4. Then, there are other 3
clock cycles to terminate the computation due to the division, the addition and
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the storing in the output register. Hence the whole process takes 20 clock cycles.
The Figure 7.2 shows the correct result. The outputs provided by the encryption
block, ct[0] and ct[1], are set as inputs to decryption unit to check its behaviour.
In this way, its correctness can be easily verified by comparing its results with
the original plaintext. The Figure 7.3 depicts the end of the simulation of the
decryption process. The red circle indicates the result, confirming the accuracy of
execution.
Also in this case, as expected, the whole process lasts 20 clock cycles: the kind
and the number of operations are the same compared to the encryption process,
except for the integer multiplication and rounding operations that are performed
combinatorially.

Figure 7.1: Start simulation of the encryption process

The last block to check is the addition between ciphertexts. The plaintexts are
m = 1011 and m′ = 1101. The encryption process provides:

ct1 = [(10799, 1289, 13898, 6657), (4158, 6765, 8053, 13761)]

ct2 = [(12335, 12087, 6998, 12364), (6780, 10923, 14819, 5432)]

The addition requires 3 clock cycles since the operations performed are:

1. addition
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Figure 7.2: End simulation of the encryption process. The red circled number highlights the
final result ct[0]

Figure 7.3: End simulation of the decryption process. The red circle highlights the final result
dt which is equal to the original plaintext m = 1011

2. division

3. storing

The Figure 7.4 shows the simulation and the final results.

7.2 Logic synthesis

After verifying the correct behaviour of the circuits, the synthesis has been performed
with Synopsys Design Compiler using a 65nm technology node. The logical
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Figure 7.4: Simulation of the addition between ciphertexts. The red circle highlights the final
result new_ct

synthesis process can be divided into the following steps:

• reading VHDL source files;

• applying constraints;

• start the synthesis;

• save the results.

During the first step, the source files are only read; the unit and all its components
are analyzed. Going on, some constraints are applied. At first, a clock signal
is created and then, to be closer to reality, also the uncertainty of the clock is
considered since it can be affected by jitter. Moreover, each signal, at the input
or at the output, could arrive with a certain delay with respect to the clock. So a
maximum delay is set at both ports.
To verify the timing of the design the command report_timing is launched. This
command shows the longest path in the design and if the timing requirement
imposed with the create clock statement is met or not. When the report states
"Met", it does not rule out the possibility to go faster. Hence, to find the maximum
clock frequency of the design, the period has been forced to 0 when applying the
constraints. Then a new synthesis is run and the timing result is used for the next
synthesis. This process is repeated until a slack value equal to 0 is achieved and
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the report states "Met". The last period set in the clock statement represents the
minimum period Tmin.
At this point, keeping the same clock constraints, the area and power consumption
are observed with the report_area and report_power command respectively. Table
7.1 contains all the above information for the three implemented units.

Unit fmax[MHz] Area [µm2] Power [mW]
encryption 505 24815.88 9.15
decryption 505 11477.16 4.07

addition between ciphertexts 1052.6 5062.68 5.15

Table 7.1: Report data after the synthesis of the encryption, decryption and
addition between ciphertexts unit

As expected, the max frequency of the encryption and decryption unit is the same
since they take the same number of clock cycles to complete the execution. Also,
the area and the power show a foreseeable trend: in fact, the encryption unit
is composed of two equal instances, one to compute ct[0] and one to compute
ct[1]. Both of them perform the well-known sequence of operations (multiplication,
division and addition). Whereas the decryption is made up of only one instance,
with only the difference of the rounding block.
The adder unit is extremely faster, as expected, due to the reduced number of
operations to perform. The area is approximately half of the decryption block
power: this gap, considering the two internal structures, is due to the overhead of
the multiplier in the decryption unit, since the rounding block has no significant
effect as demonstrated before. Finally, analyzing the power, in the adder unit, the
increase has been caused by the internal power of the registers which are more
than in the decryption block, since the operations are computed simultaneously on
two inputs, ct1 and ct2.

7.2.1 Optimization

Now, the analysis is repeated on an optimized design. Synopsys offers the possibility
to deal with the position of the registers in order to optimize the overall structure,
issuing the compile_ultra command instead that the simple compile. The benefits
relate not only to timing but also to area and power.
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The following histograms compare each unit in the two different compile modes.
Thanks to the high effort compile on the design, the minimum period has decreased
by 12% for the encryption and decryption block and by around 5% for the adder.
The area has reduced of 17%, 19% and 16% respectively. Whereas the power has
decreased by 13%, 20% and 18% respectively.
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7.3 Future works

Starting from this design, there are several possible future works. At first, the main
task is to complete the SHE scheme, implementing the remaining blocks to execute
all operations in ciphertext space, such as the multiplication between ciphertexts
and the following relinearization to restore the size. In particular, a widely known
approach is the Number theoretic transform (NTT) based polynomial multiplica-
tion. It allows to reduce from the quadratic complexity of a standard polynomial
multiplication to a quasi-linear complexity. Moreover, this implementation could
optimize this design, taking the place of the polynomial multiplication in plaintext
space.
The relinearization operation requires an evaluation key. It can be obtained by
implementing the EvalKeyGeneration function in Python. Then, the relinearization
can be performed with two main techniques [55]. Each of them has specific pros and
cons, however, the second one called modulus switching results simpler to design.
Finally, as soon as the design is complete, the next step is to integrate it in
neuromorphic hardware to execute SNN in an encrypted mode. The data owner
encrypted the data and sends them to a third party, in this case to an SNN to
obtain an encrypted prediction. The application of HE to neural networks implies
also rethinking the whole training algorithm. The effect of this process leads to
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ensure privacy both on the data and on the prediction since only the data owner
can access their actual value.
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Conclusions

Recent developments of ANNs have led to the application of Machine Learning
to different fields by trying to emulate the human brain in solving tasks through
experience. This widespread has arisen two outcomes. The first was to reduce the
power effort and it has enabled a breakthrough in AI: Spiking Neural Networks.
Due to their biologically inspired behaviour, the communication between neurons
is based on spikes, ensuring a low computational effort. The second challenge
is related to the great availability of data, which causes privacy issues since the
dataset could contain private and sensitive information.
A Privacy-Preserving Mechanism is Homomorphic Encryption which allows compu-
tation over encrypted data. A client encrypts and sends the data to a server that
performs the computation without decrypting; finally, the data is sent to the client
again who can decrypt it, since he only has the secure key. The cryptographic
method includes multiple algorithms which have an expensive computational cost.
This thesis has provided a design of a Somewhat Homomorphic Encryption scheme.
The implementation is split into two domains, software and hardware. The Key and
other parameters generation functions are carried out in Python. They produce a
set of parameters, such as public and private keys, which are drawn over particular
distributions. These parameters are nothing else that input data to the encryption
and decryption unit designed in VHDL. Each block involves a sequence of opera-
tions to encrypt the plaintext, to perform addition between ciphertexts and finally
to decrypt the message. The correct behaviour of the whole design is verified with
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Modelsim. Then, the performance is evaluated and the results demonstrate the
highest complexity of the polynomial multiplier. Finally, the structure is optimized
by modifying the position of the registers, achieving considerable improvements in
occupation area and dissipated power.
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Python functions

This Appendix reports the Python code of the functions used in the Key Genera-
tion(see Section 6.2).

1 import numpy as np
2 de f gen_binary_poly ( s i z e ) :
3 " " " Generates a polynomial with c o e f f e c i e n t s in [ 0 , 1 ]
4 Args :
5 s i z e : number o f c o e f f c i e n t s , s i z e −1 being the degree o f the
6 polynomial .
7 Returns :
8 array o f c o e f f i c i e n t s with the c o e f f [ i ] be ing
9 the c o e f f o f x ^ i .

10 " " "
11 re turn np . random . rand int (0 , 2 , s i z e , dtype=np . in t64 )
12

13

14 de f gen_uniform_poly ( s i z e , modulus ) :
15 " " " Generates a polynomial with c o e f f e c i e n t s be ing i n t e g e r s in

Z_modulus
16 Args :
17 s i z e : number o f c o e f f c i e n t s , s i z e −1 being the degree o f the
18 polynomial .
19 Returns :
20 array o f c o e f f i c i e n t s with the c o e f f [ i ] be ing
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21 the c o e f f o f x ^ i .
22 " " "
23 re turn np . random . rand int (0 , modulus , s i z e , dtype=np . in t64 )
24

25

26 de f gen_normal_poly ( s i z e , mean , std ) :
27 " " " Generates a polynomial with c o e f f e c i e n t s in a normal

d i s t r i b u t i o n
28 o f mean mean and a standard dev i a t i on std , then d i s c r e t i z e i t .
29 Args :
30 s i z e : number o f c o e f f c i e n t s , s i z e −1 being the degree o f the
31 polynomial .
32 Returns :
33 array o f c o e f f i c i e n t s with the c o e f f [ i ] be ing
34 the c o e f f o f x ^ i .
35 " " "
36 re turn np . in t64 (np . random . normal (mean , std , s i z e=s i z e ) )

To conclude, it is worth to describe the random.randint and random.normal func-
tions from numpy package[65]:

• random.randint(low, high=None, size=None, dtype=int):
return random integers from low (inclusive) to high (exclusive) sampling from
a "discrete uniform" distribution.

• random.normal(loc=0.0, scale=1.0, size=None):
draw random samples from a Gaussian distribution.
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VHDL code

This Appendix reports the VHDL code to implement the functions and their
operations as discussed in Section 6.2. Each of these operations is designed as a
component in VHDL, and the whole encryption unit or decryption one connects
them properly to get the final results. For the sake of order and simplicity, only
the architecture part of the code is inserted.
At first, the following package is used:

1 package my_package i s
2 constant p a r a l l e l i s m : i n t e g e r range 1 to 64 := 4 ;
3 constant ciphertext_mod : i n t e g e r := 2 ∗∗ 14 ;
4 constant plaintext_mod : i n t e g e r := 2 ;
5 constant de l t a : i n t e g e r := ciphertext_mod

/ plaintext_mod ;
6 type vec to r i s array ( p a r a l l e l i s m − 1 downto 0) o f i n t e g e r range

−2 ∗ ciphertext_mod to 2 ∗ ciphertext_mod ;
7 type vector_out i s array ( p a r a l l e l i s m − 1 downto 0) o f i n t e g e r

range −4∗ciphertext_mod to 4∗ ciphertext_mod ;
8 type vector_out_2 i s array ( p a r a l l e l i s m − 1 downto 0) o f i n t e g e r

range −6∗ciphertext_mod to 6∗ ciphertext_mod ;
9 type d i v i s o r i s array ( p a r a l l e l i s m downto 0) o f i n t e g e r range 0

to 1 ;
10 constant poly_mod : d i v i s o r := (0 => 1 ,

p a r a l l e l i s m => 1 , o the r s => 0) ;
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11 type max_vector i s array (2 ∗ p a r a l l e l i s m − 2 downto 0) o f
i n t e g e r range −p a r a l l e l i s m ∗ ciphertext_mod to p a r a l l e l i s m ∗
ciphertext_mod ;

12 end my_package ;

The reason for different types of vector definitions is to avoid the out-of-range error
at the beginning of the simulation. For each operation, the result data type is
chosen considering the maximum possible output.

B.1 Polynomial multiplier

1 a r c h i t e c t u r e mpy_arch o f mpy i s
2 s i g n a l pout_D : max_vector ;
3 s i g n a l product_temp : max_vector ;
4 s i g n a l index_i : i n t e g e r ;
5 s i g n a l index_j : i n t e g e r ;
6 s i g n a l end_mpy : s td_log i c ; −− i t i s u s e f u l to f l a g

the end o f m u l t i p l i c a t i o n and so to enable the s to rage in pout_D
7 s i g n a l r e s : max_vector ;
8 begin
9 product : p roc e s s ( c lk , r s t )

10 v a r i a b l e product : max_vector ;
11 begin
12 i f ( r s t = ’1 ’ ) then
13 product := ( o the r s => 0) ;
14 e l s i f ( c lk ’ event and c l k = ’1 ’ ) then
15 product ( index_i + index_j ) := p1 ( index_i ) ∗ p2 ( index_j ) ;
16 end i f ;
17 product_temp <= product ;
18 end proce s s ;
19

20 reg_update : p roce s s ( c lk , r s t , end_mpy)
21 v a r i a b l e reg : max_vector ;
22 begin
23 i f ( r s t = ’1 ’ ) then
24 reg := ( o the r s => 0) ;
25 e l s i f ( c lk ’ event and c l k = ’0 ’ ) then
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26 reg ( index_i + index_j ) := reg ( index_i + index_j ) +
product_temp ( index_i + index_j ) ;

27 i f (end_mpy = ’1 ’ ) then
28 mod_loop : f o r i in 0 to 2 ∗ p a r a l l e l i s m − 2 loop
29 reg ( i ) := reg ( i ) mod ciphertext_mod ;
30 end loop mod_loop ;
31 pout_D <= reg ;
32 reg := ( o the r s => 0) ;
33 end i f ; −−
34 end i f ;
35 end proce s s ;
36

37 index_update : p roc e s s ( c lk , r s t )
38 v a r i a b l e i : i n t e g e r ;
39 v a r i a b l e j : i n t e g e r ;
40 begin
41 i f ( r s t = ’1 ’ ) then
42 i := 0 ;
43 j := 0 ;
44 e l s e
45 i f ( c lk ’ event and c l k = ’1 ’ ) then
46 i f ( j < p a r a l l e l i s m − 1) then
47 j := j + 1 ;
48 end_mpy <= ’ 0 ’ ;
49 e l s i f ( i < p a r a l l e l i s m − 1) then
50 i := index_i + 1 ;
51 j := 0 ;
52 end_mpy <= ’ 0 ’ ;
53 e l s e
54 i := 0 ;
55 j := 0 ;
56 end_mpy <= ’ 1 ’ ;
57 end i f ;
58 end i f ;
59 end i f ;
60 index_i <= i ;
61 index_j <= j ;
62 end proce s s ;
63 reg_out_mpy : p roce s s ( c lk , r s t )
64 begin
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65 i f ( r s t = ’1 ’ ) then
66 r e s <= ( othe r s => 0) ;
67 e l s i f ( c lk ’ event and c l k = ’1 ’ ) then
68 i f (end_mpy = ’1 ’ ) then
69 r e s <= pout_D ;
70 end i f ;
71 end i f ;
72 end proce s s ;
73 pout <= r e s ;
74 end a r c h i t e c t u r e mpy_arch ;

B.2 Division

1 a r c h i t e c t u r e d iv i s i on_arch o f d i v i s i o n i s
2 s i g n a l res_D : vec to r ;
3 begin
4 proce s s ( d iv id )
5 v a r i a b l e reminder : max_vector ;
6 v a r i a b l e rem_output : vec to r ;
7 v a r i a b l e j : i n t e g e r range 0 to 2 ∗ p a r a l l e l i s m − 2 ;
8 v a r i a b l e i : i n t e g e r range 0 to 2 ∗ p a r a l l e l i s m ;
9

10 begin
11 reminder := d iv id ;
12 i := (2 ∗ p a r a l l e l i s m − 2 − ( d iv id ’ l ength − d iv i s ’

l ength ) ) ;
13 j := 1 ;
14

15 i_loop : whi l e ( i <= 2 ∗ p a r a l l e l i s m − 2) loop
16 reminder ( i ) := reminder ( i ) − reminder ( j − 1) ;
17 i := i + 1 ;
18 j := j + 1 ;
19 end loop i_loop ;
20 rem_loop_3 : f o r z in (2 ∗ p a r a l l e l i s m − 2) downto 3 loop
21 rem_output ( z − 3) := reminder ( z ) mod ciphertext_mod ;
22 end loop rem_loop_3 ;
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23 res_D <= rem_output ;
24 end proce s s ;
25 reg_out_div : p roc e s s ( c lk , r s t )
26 begin
27 i f ( r s t = ’1 ’ ) then
28 r e s <= ( othe r s => 0) ;
29 e l s e
30 i f ( c lk ’ event and c l k = ’1 ’ ) then
31 r e s <= res_D ;
32 end i f ;
33 end i f ;
34 end proce s s ;
35 end a r c h i t e c t u r e d iv i s i on_arch ;

B.3 Addition

1 a r c h i t e c t u r e add_arch o f add i s
2

3 s i g n a l res_D : vector_out ;
4

5 begin
6 proce s s ( add1 , add2 )
7 v a r i a b l e sum : vector_out ;
8 begin
9 sum_loop : f o r i in 0 to p a r a l l e l i s m − 1 loop

10 sum( i ) := add1 ( i ) + add2 ( i ) ;
11 end loop sum_loop ;
12 res_D <= sum ;
13 end proce s s ;
14

15 proce s s ( c lk , r s t )
16 begin
17 i f ( r s t = ’1 ’ ) then
18 r e s <= ( othe r s => 0) ;
19 e l s e
20 i f ( c lk ’ event and c l k = ’1 ’ ) then
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21 r e s <= res_D ;
22 end i f ;
23 end i f ;
24 end proce s s ;
25 end a r c h i t e c t u r e add_arch ;

B.4 Encryption

1 a r c h i t e c t u r e encryption_block_arch o f encrypt ion_block i s
2

3 s i g n a l pk0_u_temp : max_vector ; −−vec to r a f t e r the
m u l t i p l i c a t i o n pk0∗u

4 s i g n a l pk0_u : vec to r ; −−vec to r a f t e r the d i v i s i o n
5 s i g n a l e1_delta : vector_out ; −−vec to r a f t e r the

add i t i on de l t a+e1
6 s i g n a l pk0_u_e1_delta : vector_out_2 ; −−vec to r a f t e r the add i t i on

pk0_u+e1_delta
7

8 s i g n a l pk1_u_temp : max_vector ; −−vec to r a f t e r the
m u l t i p l i c a t i o n pk1∗u

9 s i g n a l pk1_u : vec to r ; −−vec to r a f t e r the d i v i s i o n
10 s i g n a l pk1_u_e2 : vector_out ; −−vec to r a f t e r the add i t i on

pk1_u+e2
11

12 s i g n a l delta_m : vec to r ;
13 s i g n a l ct0_temp : vector_out_2 ;
14 s i g n a l ct1_temp : vector_out ;
15

16 component mpy i s
17 port (
18 c l k : in s td_log i c ;
19 r s t : in s td_log i c ;
20 p1 : in vec to r ;
21 p2 : in vec to r ;
22 pout : out max_vector
23 ) ;
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24 end component mpy ;
25

26 component d i v i s i o n i s
27 port (
28 c l k : in s td_log i c ;
29 r s t : in s td_log i c ;
30 d iv id : in max_vector ;
31 d i v i s : in d i v i s o r ;
32 r e s : out vec to r
33 ) ;
34 end component d i v i s i o n ;
35

36 component add i s
37 port (
38 c l k : in s td_log i c ;
39 r s t : in s td_log i c ;
40 add1 : in vec to r ;
41 add2 : in vec to r ;
42 r e s : out vector_out
43 ) ;
44 end component add ;
45

46 component add_sup i s
47 port (
48 c l k : in s td_log i c ;
49 r s t : in s td_log i c ;
50 add1 : in vec to r ;
51 add2 : in vector_out ;
52 r e s : out vector_out_2
53 ) ;
54 end component add_sup ;
55

56 begin
57

58 mpy_pm : mpy
59 port map(
60 c l k => clk ,
61 r s t => rst ,
62 p1 => pk0 ,
63 p2 => u ,
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64 pout => pk0_u_temp
65 ) ;
66

67 div_pm : d i v i s i o n
68 port map(
69 c l k => clk ,
70 r s t => rst ,
71 d iv id => pk0_u_temp ,
72 d i v i s => poly_mod ,
73 r e s => pk0_u
74 ) ;
75

76 add_sup_pm : add
77 port map(
78 c l k => clk ,
79 r s t => rst ,
80 add1 => e1 ,
81 add2 => delta_m ,
82 r e s => e1_delta
83 ) ;
84

85 add_sup_pm2 : add_sup
86 port map(
87 c l k => clk ,
88 r s t => rst ,
89 add1 => pk0_u ,
90 add2 => e1_delta ,
91 r e s => pk0_u_e1_delta
92 ) ;
93

94 mpy_pm2 : mpy
95 port map(
96 c l k => clk ,
97 r s t => rst ,
98 p1 => pk1 ,
99 p2 => u ,

100 pout => pk1_u_temp
101 ) ;
102

103 div_pm2 : d i v i s i o n
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104 port map(
105 c l k => clk ,
106 r s t => rst ,
107 d iv id => pk1_u_temp ,
108 d i v i s => poly_mod ,
109 r e s => pk1_u
110 ) ;
111

112 add_sup_pm3 : add
113 port map(
114 c l k => clk ,
115 r s t => rst ,
116 add1 => pk1_u ,
117 add2 => e2 ,
118 r e s => pk1_u_e2
119 ) ;
120

121 delta_m_computation : p roce s s (m)
122 begin
123 delta_loop : f o r index in 0 to p a r a l l e l i s m − 1 loop
124 delta_m ( index ) <= de l t a ∗ m( index ) ;
125 end loop delta_loop ;
126 end proce s s ;
127

128 ct0_end : p roce s s ( pk0_u_e1_delta )
129 begin
130 ct0_loop : f o r index in 0 to p a r a l l e l i s m − 1 loop
131 ct0_temp ( index ) <= pk0_u_e1_delta ( index ) mod

ciphertext_mod ;
132 end loop ct0_loop ;
133 end proce s s ;
134

135 ct1_end : p roce s s (pk1_u_e2)
136 begin
137 ct1_loop : f o r index in 0 to p a r a l l e l i s m − 1 loop
138 ct1_temp ( index ) <= pk1_u_e2( index ) mod ciphertext_mod ;
139 end loop ct1_loop ;
140 end proce s s ;
141

142 reg_out_enc : p roce s s ( c lk , r s t )
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143 begin
144 i f ( r s t = ’1 ’ ) then
145 ct0 <= ( othe r s => 0) ;
146 ct1 <= ( othe r s => 0) ;
147 e l s e
148 i f ( c lk ’ event and c l k = ’1 ’ ) then
149 ct0 <= ct0_temp ;
150 ct1 <= ct1_temp ;
151 end i f ;
152 end i f ;
153 end proce s s ;
154 end a r c h i t e c t u r e encryption_block_arch ;

B.5 Decryption

1 a r c h i t e c t u r e decryption_block_arch o f decrypt ion_block i s
2

3 s i g n a l ct1_s_temp : max_vector ; −−ct1 ∗ s
4 s i g n a l ct1_s : vec to r ; −−ct1 ∗ s a f t e r the d i v i s i o n
5 s i g n a l plus_ct0 : vector_out ; −−ct0+ct1 ∗ s
6 s i g n a l dt_D : vector_out ;
7

8 component mpy i s
9 port (

10 c l k : in s td_log i c ;
11 r s t : in s td_log i c ;
12 p1 : in vec to r ;
13 p2 : in vec to r ;
14 pout : out max_vector
15 ) ;
16 end component mpy ;
17

18 component d i v i s i o n i s
19 port (
20 c l k : in s td_log i c ;
21 r s t : in s td_log i c ;
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22 d iv id : in max_vector ;
23 d i v i s : in d i v i s o r ;
24 r e s : out vec to r
25 ) ;
26 end component d i v i s i o n ;
27

28 component add i s
29 port (
30 c l k : in s td_log i c ;
31 r s t : in s td_log i c ;
32 add1 : in vec to r ;
33 add2 : in vec to r ;
34 r e s : out vector_out
35 ) ;
36 end component add ;
37

38 begin
39 mpy_pm : mpy
40 port map(
41 c l k => clk ,
42 r s t => rst ,
43 p1 => ct1 ,
44 p2 => sk ,
45 pout => ct1_s_temp
46 ) ;
47

48 div_pm : d i v i s i o n
49 port map(
50 c l k => clk ,
51 r s t => rst ,
52 d iv id => ct1_s_temp ,
53 d i v i s => poly_mod ,
54 r e s => ct1_s
55 ) ;
56

57 add_pm : add
58 port map(
59 c l k => clk ,
60 r s t => rst ,
61 add1 => ct1_s ,
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62 add2 => ct0 ,
63 r e s => plus_ct0
64 ) ;
65 dt_end : p roce s s ( plus_ct0 )
66 v a r i a b l e dt_temp : vector_out ;
67 v a r i a b l e dt_end : vector_out ;
68 begin
69 mod_loop : f o r index in 0 to p a r a l l e l i s m − 1 loop
70 dt_temp ( index ) := ( ( plus_ct0 ( index ) mod ciphertext_mod ) ∗

plaintext_mod ∗ 2) / ciphertext_mod ;
71 dt_temp ( index ) :=(dt_temp ( index )+1) /2 ;
72 dt_end ( index ) :=dt_temp ( index ) mod plaintext_mod ;
73 end loop mod_loop ;
74 dt_D <= ( dt_end ) ;
75 end proce s s ;
76

77 reg_out_dec : p roce s s ( c lk , r s t )
78 begin
79 i f ( r s t = ’1 ’ ) then
80 dt <= ( othe r s => 0) ;
81 e l s e
82 i f ( c lk ’ event and c l k = ’1 ’ ) then
83 dt <= dt_D ;
84 end i f ;
85 end i f ;
86 end proce s s ;
87 end a r c h i t e c t u r e decryption_block_arch ;

B.6 Addition between ciphertexts

1 a r c h i t e c t u r e add_cipher_block_arch o f add_cipher_block i s
2 s i g n a l ct_0_temp : vector_out ;
3 s i g n a l ct_1_temp : vector_out ;
4 s i g n a l new_ct_0_temp : vec to r ;
5 s i g n a l new_ct_1_temp : vec to r ;
6
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7 component add i s
8 port (
9 c l k : in s td_log i c ;

10 r s t : in s td_log i c ;
11 add1 : in vec to r ;
12 add2 : in vec to r ;
13 r e s : out vector_out
14 ) ;
15 end component add ;
16

17 component div_cipher i s
18 port (
19 c l k : in s td_log i c ;
20 r s t : in s td_log i c ;
21 d iv id : in vector_out ;
22 d i v i s : in d i v i s o r ;
23 r e s : out vec to r
24 ) ;
25 end component div_cipher ;
26

27 begin
28 add_pm_0 : add
29 port map(
30 c l k => clk ,
31 r s t => rst ,
32 add1 => ct1_0 ,
33 add2 => ct2_0 ,
34 r e s => ct_0_temp
35 ) ;
36

37 div_pm_0 : div_cipher
38 port map(
39 c l k => clk ,
40 r s t => rst ,
41 d iv id => ct_0_temp ,
42 d i v i s => poly_mod ,
43 r e s => new_ct_0_temp
44 ) ;
45

46 add_pm_1 : add
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47 port map(
48 c l k => clk ,
49 r s t => rst ,
50 add1 => ct1_1 ,
51 add2 => ct2_1 ,
52 r e s => ct_1_temp
53 ) ;
54

55 div_pm_1 : div_cipher
56 port map(
57 c l k => clk ,
58 r s t => rst ,
59 d iv id => ct_1_temp ,
60 d i v i s => poly_mod ,
61 r e s => new_ct_1_temp
62 ) ;
63

64 reg_out_add_chiper : p roce s s ( c lk , r s t )
65 begin
66 i f ( r s t = ’1 ’ ) then
67 new_ct_0 <= ( othe r s => 0) ;
68 new_ct_1 <= ( othe r s => 0) ;
69 e l s e
70 i f ( c lk ’ event and c l k = ’1 ’ ) then
71 new_ct_0 <= new_ct_0_temp ;
72 new_ct_1 <= new_ct_1_temp ;
73 end i f ;
74 end i f ;
75 end proce s s ;
76 end a r c h i t e c t u r e add_cipher_block_arch ;
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