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Chapter 1

Introduction

The purpose of this thesis is to model and verify Remote Attestation protocols in a
fog computing environment. Fog computing is a cloud infrastructure that consists
in devices connecting to a cloud, but instead of forwarding data to the center of the
cloud, much of the processing is done at the edges.

This work is related to the European project called Rainbow. Rainbow [14] is a
trusted fog computing platform that provides simple management of heterogeneous
IoT (Internet of things) devices, which contain sensors and exchange data over the
Internet.

In a fog computing infrastructure, there can be different security issues [13]. Since a
great number of devices is involved in the architecture, there are concerning issues
about authentication, trust and privacy. It is important to establish trust between
all the components, because they all interact with each other through different
networks: this kind of flexibility can extend the attack surface. In this scenario,
a malicious agent can take control of one of the devices and compromise the en-
tire system. In order to avoid this issue, protocols of remote attestation are needed.
Starting from interaction between two systems (Fog Node and Orchestrator), RAIN-
BOW provided two important functionalities in its attestation Toolkit: Attestation
by Proof and Attestation by Quote. Both these functionalities are for automatic
establishment of trust through the verification of the integrity of the fog nodes. The
remote attestation process, in general, allows to understand if a fog node can be con-
sidered trusted, verifying its correctness. For this reason it is important that these
protocols are secure. Security properties of a protocol can be evaluated using differ-
ent techniques. In this thesis, the correctness of the remote attestation protocols is
analysed using the Formal Verification, which is an a-priori security verification of
a mathematical model.

The tool used for this purpose is the Tamarin Prover, which takes as input a
symbolic model and automatically proves its correctness.

1.1 Structure of the document

The thesis document is structured in seven chapters, organized as follows:

• Chapter 2: it presents the general concepts and the Tamarin Prover;

10



• Chapter 3: it describes the remote attestation protocols;

• Chapter 4: it describes the objective of this work of thesis;

• Chapter 5: it describes the implementation of the Tamarin models;

• Chapter 6: it shows the results of the model’s verification;

• Chapter 7: it presents the conclusions.
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Chapter 2

General concepts

2.1 Remote attestation

The remote attestation [8] is a method used to verify the integrity of a software that
is running on a remote device. The two agents involved in the attestation process
are the Prover and the Verifier: the Verifier is the agent that wants to verify the
integrity of the Prover, which has to provide a verifiable evidence. The data sent
by the Prover to the Verifier have to be authentic. In order to provide authenticity
a trust anchor has to be used. In this work, the trust anchor part of the reference
architecture is the TPM (Trusted Platform Module).

2.1.1 Architecture

The reference architecture considered in this fog computing scenario, is based on
three main actors:

• Orchestrator (Orc): it is a coordinator component, that handles the life-cycle
of all the edge-computing architecture, managing also applications and net-
work services;

• Fog Node: it is one of the edge devices with some ability to process the collected
data from sensors;

• TPM (Trusted Platform Module)[5]: it is a module present in the fog nodes, a
secured cryptographic co-processor which can communicate with its host. The
TPM capabilities are[10]:

– Secure generation of three hierarchies of keys: Platform(for platform’s
firmware), Endorsement(for privacy-sensitive operations), Storage(for the
platform’s owner);

– Hardware random number generator;

– Binding: data encryption with the storage key;

– Sealing: similar to binding, but with a specific TPM state;

– Authentication of hardware with the Endorsement Key (EK).

The TPM contains a set of specific memory registers used to measure the
state and the configuration of the software, they are called PCRs (Platform
Configuration Registers).
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Figure 2.1: Fog Computing Architecture.

In this environment, is important that the nodes who join the cluster are trusted,
in order to guarantee a certain level of security. Considering this architecture, for
the purpose of remote attestation, the fog node is identified as the Prover, while the
Orchestrator is the Verifier.

When a node wants to join the cluster, it has to provide a verifiable evidence on
its configuration integrity, proving to the Orchestrator that its state is correct.

2.2 Security properties

A secure system, in general, has to follow the principles of the CIA model:

• Confidentiality: information should be hidden from unauthorized entities, for
example using cryptographic operations;

• Integrity: data should not be manipulated and changed from the original ones;

• Availability: data should be always accessible to authorized entities.

In particular, a remote protocol should guarantee that some specific security prop-
erties are maintained in the execution. The main security properties analysed in
this thesis are:

• Secrecy: it is a property that specifies the need for certain data to not be
discoloured, for example symmetric and private asymmetric keys;

• Authentication: provides proof of authenticity of messages and agents inter-
acting during the execution of the protocol;

• Aliveness: it is a form of authentication that guarantees to an agent A aliveness
of another agent B if, whenever A completes a run of the protocol, then B has
previously been running the protocol;
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• Injective Agreement: it is a stronger authentication property that guarantees
to an agent A a unique matching partner B in the running of the protocol, in
order to prevent replay attacks.

2.3 Security analysis

A system is considered secure if it guarantees some specific security properties and
a certain level of security [12]. In order to verify if a system is secure, a security
analysis is needed. Different techniques[16] can be used:

• Vulnerability assessment: identification of network vulnerabilities in a system;

• Penetration testing: attempt to exploit vulnerabilities found in a system;

• Code analysis: style checking, documentation checking, code checking;

• Formal verification [11]: The formal verification is the static analysis of a
system formal model, that is a mathematically-based model;

• Auditing: meetings for evaluating security.

2.3.1 Formal verification

This work is based on the verification of symbolic models of remote attestation
protocols. The symbolic analysis approach uses models which refer to the Dolev-
Yao(DY) model [7], [9]. The DY model is based on some assumptions:

• Abstract data types: data are symbolic terms;

• Perfect cryptography: cryptographic primitives are perfect black-boxes with
ideal properties;

• The attacker has full control over the network: it can read, delete, substitute,
build and insert messages and can also execute cryptographic operations.

There are different tools for formal verification of security protocols in the symbolic
model, the main ones are:

• ProVerif: it is a tool for automatic verification of cryptographic protocols [4], it
can verify protocols for an unbounded number of sessions and the abstractions
used make the verification sound but not always complete. This tool has
been used, for example, for a formal analysis to verify security properties of
procedures executed when a mobile device changes LTE cell or switches to a
UMTS network [6];

• Tamarin Prover: The Tamarin Prover is a modern alternative to ProVerif, it
also provides an interactive mode that can be used to explore the states and
guide tool to the proof if it does not complete. The Tamarin Prover has been
used, for example, for formal analysis of an ECC-DAA, Direct Anonymous
Attestation [17].
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2.4 Tamarin prover framework

The protocols analysed in this thesis are modeled and verified using the Tamarin
Prover. Tamarin [15] is a tool used for symbolic analysis of security protocols in
presence of a Dolev-Yao (DY) style network adversary (Section 2.3.1).
The Tamarin prover allows to analyse security protocols starting from a symbolic
model and automatically constructing proofs that the protocol satisfies its security
properties. The models of the protocols are based on multiset rewriting rules and
the security properties are written using first-order logic, which is an extension of
propositional logic where the atomic propositions are replaced by predicates and
new concepts, such as quantifiers, functions and variables. The model taken as
input specifies the agents, their roles and their actions, as well as the adversary
and the security properties to verify, that can be modeled as trace-properties or
as observational equivalence of two transition systems. The adversary can interact
with the protocol by sending or manipulating messages on the network.

In order to analyse the protocol, Tamarin constructs proofs, based on heuristics,
and counterexamples, representing the possible attacks. The correctness of a proto-
col is not always a decidable problem, so Tamarin may not terminate. In this case
Tamarin’s interactive mode can be used to explore the states and guide Tamarin to
the proof.

In the following sections, all the main characteristic that the Tamarin Prover re-
quires in modelling the protocols will be briefly explained.

2.4.1 State, Facts, Rules

As said before, Tamarin works with symbolic models and protocols are modeled
using mutilset rewriting rules. In a symbolic model all messages are modeled as
terms. The rules operate on the states of the protocol execution, each represented
as a finite multiset of facts, which are distinguished terms. They define how the
system transitions to a new state. A rule is written as:

[LHS]− [actions] → [RHS].

Rules are composed by finite sequences of facts called premise and conclusion,
also referred to as left hand side (LHS) and right hand side (RHS), and they are
separated by an arrow. In the premise there are the facts that have to be present
in the current state for the rule to be executed, after the execution the facts in the
conclusion will be added to the state. Actions between LHS and RHS are associated
to the specific rule and represent labels of it. During the execution, actions yield
the traces, that are then captured as lemmas.

The following example (2.4.1) shows how two agents interact with each other.

Example 2.4.1. Alice wants to send an encrypted nonce to Bob, Bob will decrypt
the message with its private key and do an hash of the nonce, then send it back to
Alice.

theory first_example

begin
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builtins: hashing, asymmetric-encryption

rule Register_pk:

[

Fr(∼ltkB)

]

-->

[

!Ltk($B, ∼ltkB)

, !Pk($B, pk(∼ltkB))

, Out(pk(∼ltkB))

]

rule Alice_send:

[

Fr(∼nonce)

, !Pk($B, pkB)

]

--[Send($A, ∼nonce)]->

[

Out( aenc(∼nonce, pkB) )

]

rule Bob_receive:

[

!Ltk($B, ltkB),

In(n)

]

--[Send_hash($B, h(n))]->

[

Out( h(adec(n, ltkB)) )

]

rule Alice_receive:

[

In(hashed_nonce)

]

--[Receive($A, hashed_nonce)]->

[]

end

In this example (2.4.1), Tamarin’s built-in functions are used. The Tamarin
prover has a number of built-in equational theories (a set of equations) that can be
used for models, such as hashing, asymmetric-encryption, signing and diffie-hellman.
Built-ins contain some useful functions and facts, in this example the used built-ins
are needed for the hash function, and the encryption and decryption operations.
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The facts present in this example are:

• Fr: it is a fact that models a frashly generated unique term;

• Out: it is a fact that models the protocol sending a message on the public
channel;

• In: it is a fact that models the protocol receiving a message on the public
channel;

• !Ltk: it associates the agent with its private key;

• !Pk: it associates the agent with its public key.

The exclamation mark “!” specifies that a fact is persistent, which means that it
can be consumed more than one time, as opposed to linear ones.

2.4.2 Lemmas

The security properties of a protocol that need to be evaluated using the Tamarin
prover are described by lemmas. Action facts yield traces, lemmas capture these
traces and evaluate them. A lemma is proved correct if it is satisfied by all traces
or if exists one trace, it depends on how it is specified. The Example 2.4.2 defines a
possible lemma for the previous one (2.4.1).

Example 2.4.2. This lemma is the one that verifies that the protocol is executable
and the actions follow a specific flow considering the timepoints i, j and k.

lemma functional_correctness:

exists-trace

"Ex A B m #i #j #k.

Send(A,m)@i &

Send_hash(B,m) @j &

Receive(A, m) &

i<j &

j<k"

2.4.3 Restrictions

In Tamarin, it is possible to give constraints to the protocol execution using re-
strictions. Restrictions refer to action facts, which are specific for each rule. Given
that action facts yield traces, restrictions on them limit the yielded traces in the
protocol execution and they can be used to remove degenerate cases. There are
numerous types of restriction, some common ones are the ones used for comparison,
in particular the equality one, which is important for the verification of signatures.

In the example below (2.4.3), Alice verifies the signature on the message contain-
ing the nonce received signed by Bob. In order to verify the signature, the restriction
Equality is specified, it refers to the action fact present in the ”Alice receive” rule
and it allows to consider for analysis only the traces of the protocol in which the
verify function is true.
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Example 2.4.3. Alice wants to send a nonce to Bob, Bob will sign the message
with its private key and then send it back to Alice, who will verify the signature.

theory restriction_example_signature

builtins: signing

rule Register_pk:

[

Fr(∼ltkB)

]

-->

[

!Ltk($B, ∼ltkB)

, !Pk($B, pk(∼ltkB))

, Out(pk(∼ltkB))

]

rule Alice_send:

[

Fr(∼nonce)

]

--[Send($A, ∼nonce)]->

[

, Out( ∼nonce )

]

rule Bob_receive:

[

!Ltk($B, ∼ltkB)

In(n)

]

--[Send_signed($B, n)]->

[

Out( <n, sign(n, ltkB)> )

]

rule Alice_receive:

[

!Pk($B, pkB)

In(<nonce, signed_nonce>)

]

--[

Receive($A, hashed_nonce),

Eq(verify(signed_nonce, nonce, pkB), true)

]->

[]
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restriction Equality:

"All x y #i. Eq(x,y) @i ==> x = y"

end

2.4.4 Channels

In the previous examples, the agents communicate over a public channel using the
In and Out facts. The public channel, however, is totally accessible by the attacker,
who can read, delete and inject messages, having also the possibility to construct
messages starting from an initial knowledge. In order to manage the traffic, channels
can be modeled using rules to limit attacker’s control over them, making sure that
they guarantee some specific security properties (confidentially, authenticity).

Different types of channels can be defined using rules, depending on the proper-
ties they have to satisfy. There are three main types of channels:

• Confidential channel: it is a channel in which the attacker can send messages,
but can not read messages sent between the agents;

• Authentic channel: it is a channel in which the attacker can read the messages,
but can not send or modify messages;

• Secure channel: it is a channel in which the attacker can not send, modify or
read the messages, because it is both confidential and authentic. The rules for
the definition of this type of channel are described in the 2.4.4 example.

Example 2.4.4. This example shows the two rules needed for the creation of a
secure channel between two agents. The !Sec persistent fact is used to bind the
sender, the receiver and the message. Sending a message on this type of channel,
Tamarin guarantees that it is secret and authentic.

rule ChanOut_S:

[ Out_S($A,$B,x) ]

--[ ChanOut_S($A,$B,x) ]->

[ !Sec($A,$B,x) ]

rule ChanIn_S:

[ !Sec($A,$B,x) ]

--[ ChanIn_S($A,$B,x) ]->

[ In_S($A,$B,x) ]
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Chapter 3

Remote attestation protocols

The attestation protocols for automatic establishment of trust through the verifica-
tion of the integrity of the fog nodes, can be of two types:

• Attestation by Proof: it is a local attestation, which preserves privacy;

• Attestation by Quote: it is a remote attestation, which involves the TPM
quote, a structure containing a nonce and the PCRs [2].

Symbols and Abbreviations Translation
Orc Orchestrator
TPM Trusted Platform Module
VF Virtual Function
EK Endorsement Key
SK Storage Key
AK Attestation Key
Vrf Verifier
Prv Prover
Trce(r) Retrieve the binary contents of the object r
h Hash digest
hmac Hash-based Message Authentication Code
Vf Verification
hk(a,b) Symmetric hash key between a and b
Sign(a, b) Computes the signature over a with b
Sigba Signature over a with b
proof (a) TPM’s secret value associated to a’s hierarchy
TPL(a) Template for a (attributes)
name(a) Digest over the public part of a
CC TPM command code
PCR Platform Configuration Register
NVPCR Non-Volatile PCR
mPCR Mock PCR
mNVPCR Mock NVPCR

Table 3.1: Table of abbreviations.
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In this chapter are presented the protocols for remote attestation that are mod-
eled and evaluated in the next chapters: Attestation by quote and Oblivious remote
attestation, which is an update version of the Attestation by Proof protocol. These
two protocols exploit TPMs’ capabilities, which authenticate the evidence of the
integrity state of the PCRs, inferring the correctness of the component.

3.1 Attestation by quote

The attestation has to be executed together with the update of measurements pro-
tocol in order to verify the integrity of the device, because policy and configuration
can always change and be updated. For this reason, the state of the platform has
to be attested periodically, for the node to be considered trusted. Each time there
is a change in the policies or there are configuration updates, the state has to be
verified, comparing it to the reference hashed digest computed by the Orc. This
verification process can be done with the Attestation by Quote protocol.

3.1.1 Update protocol

The Orchestrator, each time there is an update in the configuration, computes the
new state, accumulating values in the virtual PCRs (vPCRs), that will be compared
to the real ones for attestation. Then, the Orc sends the update request and the
Tracer, which given an object identifier returns securely the corresponding binary
data, measure the requested file and the TPM extends its PCRs.

The Update protocol is shown in the figure below (Figure 3.1).

Figure 3.1: Update Measurement protocol.

3.1.2 Attestation by quote protocol

The Attestation by quote protocol is described in the figure below (Figure 3.2). To
check the updated PCRs and the current state of the platform, after the update, the
Orchestrator sends an Attestation by Quote request, specifying the PCRs to attest
(I) and a nonce. The TPM computes its state, an hash of the specified PCRs, and a
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Quote containing the computed hash, a nonce and I. Inside the TPM is embedded
an RSA key, called Endorsement Key, which is used, in this protocol, to sign the
Quote, so as to prove that the Quote was securely built inside it. After the signing
operation, the TPM sends the signed Quote to the Orchestrator for verification, that
will compare the hashed PCRs with the virtual ones computed by itself.

Figure 3.2: Attestation by Quote protocol.

3.2 The Oblivious Remote Attestation

The Oblivious Remote Attestation[3] is a process of attestation in a redefined system,
that takes into account a virtualized system, with a virtualized network and an
Orchestrator that manages VFs (Virtual Functions) associated with a software TPM
as trust anchor.

A possible problem in this redefined system is the exclusive use of the normal
registers, the PCRs already existing in the TPM, which are few. This issue limits
the number of VFs, because each VF needs a static PCR for measuring and storing
its state. In order to solve this problem, NVPCRs have been introduced. NVPCRs
are registers created from the Non-Volatile memory: this solution solves the issue,
because in theory there can be an unbounded number of NVPCRs. This new types
of registers, which imitate the normal PCRs, have to be managed, from creation
to deletion: this is the reason why two other protocols of remote administration
have been introduced. NVPCRs, together with the static PCRs, are used in all the
protocols that are going to be presented.

The Oblivious Remote Attestation (ORA) process allows VFs to check if other
VFs can be considered trusted (Figure 3.3). This attestation process starts with the
Orchestrator sending a request for the creation of an Attestation Key (AK) to a VF
(X). X creates in a secure way the AK using its TPM; after the AK is verified by the
Orchestrator, it can be used to sign the challenges that other VFs send to X to check
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if it’s in a correct state. This protocol does not need exchange of state information,
as opposed to the Attestation by Quote, for this reason privacy can be considered
maintained during its execution. Another protocol useful in these scenario is the
Measurement Update one, which is the protocol managing a configuration update
and attesting whether the update was done correctly or the platform is corrupted.

Figure 3.3: Oblivious-based inter-VF Remote Attestation.

3.2.1 Attestation Key creation

The AK creation protocol starts when the Orchestrator sends a message containing
the TPL, that is a template of the properties that the AK should have, and an hash
(hpol) defined as:

hpol = H(H(0...0||CC||name(EKO)))

The parameters of the previous formula are:

• 0...0 : padding value;

• CC : command code;

• name(EKO): the hash of the public parts of the Orchestrator’s Endorsement
Key.
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X receives this message and sends it to the TPM, together with the Storage Key
handle (Hsk). The TPM creates:

• Attestation key (AK);

• Attestation key Handle (Hak);

• Ticket: it is the result of an HMAC operation over some internal information,
that attests that the Key has been created inside the TPM.

After creating these data, the TPM sends them to X, to receive them back and
verifies that the ticket holds, which means that the AK was actually created inside
the trusted module. The last step done by the TPM is the creation of the certificate
signed with the Endorsement Key. The certificate is sent to the Orchestrator through
X and the Orchestrator verifies all the certificate information in order to check if
the AK was created legitimately and can be used for future inter-VFs attestations.
The command EvictControl is a particular command for the TPM: executing it the
TPM stores the AK in order to make it persistent for X’s lifetime.

In the Figure 3.4 are described all the steps of the Attestation Key provisioning
protocol.

24



Figure 3.4: Attestation Key creation protocol.
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3.2.2 Measurement Update protocol

The Measurement Update protocol is a protocol used to manage configuration up-
dates: the Orchestrator starts the protocol and compares the update done by the
TPM on its registers with the one computed by itself in the mock PCRs. The
mock PCRs are the registers used by the Orchestrator to emulate the operations
and the update done by the TPM and to store the results for future verification.
In the context of the Oblivious Remote Attestation, this protocol is important to
update measures with the policy authorized by the Orchestrator, after the Attes-
tation Key is created, in order to enable X to prove its configuration correctness
using its AK to other VFs. The protocol starts with the Orchestrator measuring
locally the new configuration and authorizing the expected policy digest. Then the
Orchestrator sends the FQPN, which is the path of the configuration file, together
with the update request to X. The update request is a message defined as:

Requpdate =< hpol, H(hpol), SigH(hpol), idx >

The values of the update request are:

• hpol : the authorized policy digest;

• H(hpol) : the hash of the authorized policy digest;

• SigH(hpol): the signature over the hash of the authorized policy digest computed
with the Orchestrator’s Endorsement Key;

• idx : the index of the register to update with the hash of the file.

The measure of the file is done with the Trce function. After the measure, X’s
TPM verifies the policy digest and creates the ticket attesting it has been verified.
The TPM then proceeds to extend the specified PCR with the new measure during
an HMAC session. At the end of the process the TPM certifies the current session
digest and the Orchestrator verifies the digest comparing it with the one it calculates
locally. In the Figure 3.5 are described all the steps of the Measurement Update
protocol.
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Figure 3.5: Measurement Update protocol.
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3.2.3 ORA protocol

The Oblivious Remote Attestation protocol, is a revisited attestation protocol that
consists in an updated version of the Attestation by Proof protocol in the redefined
system. The ORA protocol is used for remote attestation between two nodes:

• Y: the node that wants to know if the other one is trustworthy;

• X: the node that has to prove its trustworthiness.

if a VF(Y) wants to check the integrity of another VF(X) sends a challenge, a nonce,
which has to be signed by X with its Attestation Key, created and verified with the
previous protocol (Attestation Key creation protocol 3.2.1). This protocol starts
when Y sends a nonce to X. The nonce has to be signed with the Attestation Key,
but in order to use the Attestation Key, the values of X’s PCRs must be in a specific
state, a state authorized by the Orchestrator. X sends to the TPM the authorized
policy (P), which contains the values of the PCRs that have been authorized, and
the ticket (T), which proves that P is signed by the Orchestrator. Then, the TPM
computes its P and T and checks them against the values received by X with the
PolicyAuthorize command. If the verification holds, the TPM can sign the nonce
with the Attestation Key (Sign command) and send it back through X to Y, which
can verify the signature and confirm that X is trusted. In the Figure 3.6 are described
all the steps of the ORA protocol.

28



Figure 3.6: Inter-VFs Oblivious Remote Attestation protocol.
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3.2.4 NVPCRs administration

As explained at the start of this section, NVPCRs have to be managed and admin-
istrated, from creation to deletion, as they can also be reset and recreated during
run-time. The two protocols useful to remotely administrate NVPCRs, are called
the Attaching protocol and the Detaching protocol. Creation and deletion of these
registers have to be authorized by the Orchestrator with a flexible policy.

Attaching NVPCR protocol

For attaching a NVPCR to a specific virtual function X, the Attaching NVPCR
protocol can be used. This protocol, shown in the Figure 3.7, starts with the Or-
chestrator sending a request to X to add a new NVPCR. The add request is defined
as:

Reqadd =< idx, TPL(idx), IV, hpol >

The values contained in this message are:

• idx: NV identifier;

• TPL(idx): template with the attributes of the NV slot;

• IV: initial value to extend;

• hpol: the authorization policy.

Upon an add request sent by the Orchestrator, the TPM execute three commands:

• NV DefineSpace: TPM creates the NVPCR;

• NV Extend: TPM extends the NVPCR with initial value;

• NV Certify: TPM certifies the NVPCR.

After these three operations, the Orchestrator has to verify that everything holds,
that the signature is correct, that the values are the ones expected and the register
is bound to the authorization policy it has created.
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Figure 3.7: Attaching NVPCRs protocol.

Detaching NVPCR protocol

The Figure 3.8 below, shows the details of the Detaching NVPCR protocol. This
protocol starts with a fresh session, with X sending a nonce to the Orchestrator.
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Then, the Orchestrator sends a delete request. The delete request is defined as:

Reqdel =< idx, hcp, SigaHash, hpol, H(hpol), SigH(hpol) >

The values contained in the delete request are:

• idx: NVPCR’s identifier;

• hcp: CP digest, digest over the command parameter, used to restrict the policy
only to the correct register;

• SigaHash: signature over the aHash value (hash of the nonce and the hcp value)
with the Orchestrator’s Endorsement Key;

• hpol: authorized policy;

• H(hpol): digest over the authorized policy;

• SigH(hpol): signature over the hashed policy digest value with the Orchestra-
tor’s Endorsement Key.

The TPM verifies the signatures of the hpol value and executes the command
PolicySigned with the aHash value, signed by the Orchestrator: this command up-
dates the session’s policy digest to specify that the aHash was signed by the Or-
chestrator. The following commands executed are the PolicyAuthorize one, which
checks the value of hpol and specifies that the policy authorized is correct, and the
PolicyCommandCode, which restricts the session to the register in question. Last
command executed is NV UndefineSpaceSpecial, that is the one that actually deletes
the NVPCR.
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Figure 3.8: Detaching NVPCRs protocol.
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Chapter 4

Objective of the thesis

This thesis work is done within the context of the European project called Rainbow,
which aims to provide a trusted fog computing platform for managing heterogeneous
IoT (Internet of things) devices. In this chapter the objective of the thesis is pre-
sented, explaining how it was achieved.

4.1 Objective of the Thesis

In a fog computing environment there can be a great number of security issues, in
particular, it is important to provide an integrity verification mechanism. Rain-
bow designed the required security protocols to provide remote attestation in the
platform, which is the process of attesting if a device can be considered trusted,
verifying its integrity and its operational correctness. The Orchestrator is the one
entity that has to verify if the state of the device is correct, in order to know if it can
be considered trusted. The objective of this thesis is to verify the correctness of the
designed protocols for remote attestation, which have to guarantee a certain level
of security. Rainbow has defined specific properties, from which axioms of trust can
be extracted, that these protocols have to satisfy. Trust has to be guaranteed by all
the entities involved in the attestation process: Fog Nodes, TPMs and Orchestrator
[1]. These defined properties include among the others:

• VF configuration correctness: device’s configurations must adhere to the poli-
cies of attestation authorized by the Orchestrator;

• Attestation Key protection: the Attestation Key has to be created securely
and kept secret to the adversary, so that the unforgeability is ensured;

• Immutability: the process of measurement must not change, the tracer always
measures correctly;

• Liveness and controlled invocation: attestation requests must reach the device
and the agent has to respond in a limited time;

• VF operational correctness: the Orchestrator has to always be able to verify
the correctness and the control flow safety of a device;

• SGC (Service Graph Chain) operational correctness: the Orchestrator has to
always be able to verify the trustworthiness and the workflow safety of the
SGC.
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The security of a protocol can be evaluated using different techniques. In this thesis,
the correctness of remote attestation protocols is analysed using the Formal Verifi-
cation, which is an a-priori security verification of a mathematical model. This work
of thesis has the purpose to analyse the designed protocols for remote attestation
using a tool called Tamarin Prover. In order to properly use the Tamarin Prover,
the protocols have been symbolically modelled, with the specific syntax required by
Tamarin. In particular, the modelled protocols are:

• Attestation by quote protocol: protocol of remote attestation based on the
Quote, a structure containing the registers value (Section 3.1);

• Attestation Key creation protocol: protocol for the creation of the Attestation
Key bound to a node (Section 3.2.1);

• Measurement Update protocol: protocol for managing the update of the con-
figurations (Section 3.2.2);

• Oblivious Remote Attestation protocol: protocol of remote attestation be-
tween two nodes (Section 3.2.3);

• Attaching NVPCRs protocol: protocol for creating a NVPCR (Section 3.2.4);

• Detaching NVPCRs protocol: protocol for deleting a NVPCR (Section 3.2.4).

The symbolic models of these protocols have been given to the Tamarin Prover as
input, comprehensive of some lemmas to verify, which describe the properties that
the protocols have to fulfill.

Tamarin Prover, given these inputs, automatically proves the correctness of the
protocols, in an unbounded number of sessions and in presence of an adversary. The
results of the verification can be seen from the GUI of the framework, that provides
visual representation of the execution, showing graphs from which it was possible
to analyse the flow of the protocols and all the possible sources for each fact. Using
these graph it has been analysed the correctness of the models and the security
of the protocols, highlighting, in particular, the possible problems and the reasons
behind those problems.
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Chapter 5

Design

This chapter describes how the protocols for attestation have been symbolically
modeled, in order to understand, using the Tamarin prover, their level of security
in presence of a DY adversary.

5.1 Attestation by quote

The Attestation by quote protocol and the update protocol are modeled together,
because each time there is an update, an attestation must be executed to verify
the integrity of the device. These two protocols are modeled using a public channel
between the fog node and its TPM. The model is comprehensive of thirteen rules,
which describe the states of the execution. The entities involved in the Attestation
by quote are four:

• O: the Orchestrator;

• F: the Fog Node;

• TPM: the trusted component;

• T: the Tracer.

In the model the following built-ins (set of equations) are used:

• Hashing: it is used for the hash operations, for example the hash of the con-
figuration;

• Signing: it is used for signing operations, in this model for signing the quote.

Before the actual protocols rules, some rules to initialize the entities are needed.
The Orchestrator is created in the Orc init rule, the Tracer in the Traces init rule and
the platform (Fog Node and TPM) in the Platform setup rule. The Platform setup
rule pairs up the fog node and its TPM. It also loads the Endorsement Key of the
TPM (ek) through the ek get function, that accepts the Endorsement key handle as
parameter. This key is used to sign the quote, therefor it is stored in the !Ek($TPM,
ek) persistent fact. This rule has two important restrictions:

• OnlyOnce: it is a restriction used to specify that the rule has to be executed
only one time;
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• Unique Pairing: it is a restriction used to specify that the pair of F and TPM
is unique.

rule Platform_setup:

let

ek = ek_get(handle_ek_get)

in

[

]

--[

Platform_setup($TPM, $F)
, PlatformInit()

, OnlyOnce()

, Create($TPM)
, Create($F)
, Unique_Pairing($F), Unique_Pairing($TPM)

]->

[

St_PlatformInit($TPM, $F)
, !Ek($TPM, ek)

]

Another important rule that is used in the model is the TPM EKReveal rule, which
models the dynamic compromise of the Endorsement Key: it reads the EK and
sends it in the public channel for the adversary to take.

rule TPM_EKReveal:

[ !Ek($TPM, ek) ] --[ Reveal_ek($TPM) ]-> [ Out(ek) ]

5.1.1 Update protocol model

The model of the update protocol, described in the Section 3.1.1, starts with the
Orc send update req, which starts from an initial state where all the entities are
initialized. The Orchestrator gets the virtual PCRs values and the file that have to
extend the PCRs by means of private functions, defines as follows:

• index get/0 [private]: function without any input;

• id get/0 [private]: function without any input;

• file get/1 [private]: function with one input value, which is the id of the file;

• vpcr I get/1 [private]: function with one input value, which is the index of the
register to be updated.

The rule ends with the Out fact, containing the file id and the index of the PCRs,
and two other persistent fact used to store the public part of the Endorsement Key
and the virtual registers updated with the index for future verification.
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rule Orc_send_update_req:

let

index = index_get()

id = id_get()

vpcr_i = vpcr_I_get(index)

file = file_get(id)

h_beta = h(file)

vpcr_i = h(<vpcr_i, h_beta>)

ek_pub = pk(ek_get(handle_ek_get()))

in

[

St_tracer($T)
, St_Orc($O)
, St_PlatformInit( $TPM, $F)

]

--[

Orc_send_update_req()

, Running($O, $T, <’update_req_to_tracer’, index>)]->

[

Out(<$O, id, index>),

!St_Orc_vPCR_i($O, vpcr_i, index),

!St_O_ek_pk($O, $F, ek_pub)

]

After the update request, another agent interacts with the platform and the Or-
chestrator: the Tracer. Actions done by the tracer, in particular the hash of the
file, are modeled in the Tracer update rule. The hash sent by the Tracer is then
forwarded by F to the TPM, together with the index of the register to be updated,
in the F update measure rule.

The last rule used to model the update phase, is the TPM update measure one.
This rule models how the TPM, starting from an initial state with its PCRs and
the hashed values received from the fog node, extends the PCRs and transitions to
a state where the new configuration is stored in the !St TPM pcr i($TPM, pcrs i,
index) fact.

rule TPM_update_measure:

let

pcrs_i = pcrs_I_get(index)

pcrs_i = h(<pcrs_i, hb>)

in

[

In(<$F, hb, index>)

]

--[

TPM_update_measure(), UniqueExecUpdateM(’TPM_updates_PCRi’)

, Commit($TPM, $F, <’update_req_to_TPM’, index>)

]->
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[

!St_TPM_pcr_i($TPM, pcrs_i, index)

]

5.1.2 Attestation by quote protocol model

The attestation phase starts with the O send nonce rule, which models the Orches-
trator producing a nonce (n) in its initial state with the Fr fact and computing its
configuration hash. Agent O then sends the nonce to the Fog Node with the index
of the PCRs to attest (i).

rule O_send_nonce:

let

I = I_get()

nonce = ~n

h_conf_Orc = h(updated_vpcrs_get(vpcr_i))

in

[

Fr(~n)

, !St_Orc_vPCR_i($O, vpcr_i, index)

]

--[

O_send_nonce()

, Send_nonce_to_FN(~n)

, Running($O, $F, <’init_attestation’, nonce>)

]->

[

Out(<$O, nonce, I>)

, St_Orc_nonce_I($O, $F, nonce, I)

, St_O_hconf($O, h_conf_Orc)

]

The values sent by the Orchestrator are forwarded to the TPM by the Fog Node
(F send nonce to TPM rule) and then taken by the TPM from the channel using
an In fact. The TPM constructs the quote, signs it and sends it back to be verified:
this is modeled in the TPM signAndSend rule. Again, the Fog Node receives the
massange from the TPM and forwards it to the Orc (FogNode sendSigned rule).

rule TPM_signAndSend:

let

h_conf = h(updated_pcrs_get(pcrs_i))

QCert = <h_conf, I, nonce>

QCert_sig = sign(QCert, ek)

in

[

In(<$F, nonce, I>)
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, !St_TPM_pcr_i($TPM, pcrs_i, index)

, !Ek($TPM, ek)

]

--[

TPM_signAndSend()

, Send_sig($TPM, QCert)

, Commit($TPM, $F, <’init_attestation_to_TPM’, nonce>)

, Running($TPM, $F, <’send_signed_to_F’, QCert>)

, UniqueExecSign(’TPM_signing’)

]->

[

Out(<$TPM, QCert_sig, QCert>)

]

The last step of the protocol, is modeled using the Orc receiveSigned verify rule: the
Orchestrator takes the quote and the signature from the public channel and, knowing
the public part of the Endorsement Key, previously stored in the !St O ek pk($O,
$F, ek pub) fact, verifies the signature and the quote.

rule Orc_receiveSigned_verify:

let

orc_QCert = <h_conf_Orc, I, nonce>

in

[

!St_O_ek_pk($O, $F, ek_pub)

, St_Orc_nonce_I($O, $F, nonce, I)

, !St_Orc_vPCR_i($O, vpcr_i, index)

, In(<$F, QCert_sig, QCert>)

, St_O_hconf($O, h_conf_Orc)

]

--[

Orc_receiveSigned_verify()

, Eq(verify(QCert_sig, QCert, ek_pub),true)

, Commit($O, $F, <’send_signed_to_O’, QCert>)

, Recv($O, QCert)

, Honest($O)
, Honest($F)
, Honest($TPM)
, Authentic($TPM, QCert)

, Eq(orc_QCert, QCert)

]->

[]

5.2 Oblivious Remote Attestation

For the models of the Oblivious Remote Attestation process, it has been taken into
account the redefined system described in Section 3.2. Before describing the model
of the Oblivious Remote Attestation protocol, the model of the Attestation Key
creation protocol and the Measurement update one will be presented.
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The Attestation key creation protocol creates and provides a VF with its Attes-
tation Key, that is used in the ORA protocol for signing a challenge for attestation.

The Measurement update protocol is the protocol used for configuration updates:
having a path name of a configuration file and the registers, the Orchestrator lo-
cally measures and authenticates the configuration measurement and authorizes the
expected policy digest, and the TPM extends its registers, both PCRs and NVPCRs.

At the end of this chapter, also the models of the two protocols managing
NVPCRs will be presented: Attaching and Detatching protocols.

5.2.1 Attestation Key creation protocol model

The entities involved in the AK creation are three:

• O: Orchestrator;

• X: Virtual Function;

• TPM: trusted component (software).

The states of the execution are described by twelve rules and the interactions
between the entities are modeled with a public channel.

In the model the following built-ins (set of equations) are used:

• Asymmetric-encryption: used for the seal operation;

• Hashing: it is used for the hash operations, for example the hash of the con-
figuration;

• Signing: it is used for signing operations, in this model for signing the quote.

In the execution of the Attestation Key creation protocol there are in particular
two keys that do not have to be compromised: the storage key, used for the seal
operation, and X’s endorsement private key, used for the signature of certificate
information. Their reveal is modeled with two specific rules: TPM SK reveal and
X ek priv get reveal.

The first rule is the Platform setup rule: it sets up X and the TPM, creating some
persistent facts containing the handles (for which values are retrieved from specific
private functions), that can be consumed more than one time over the execution in
order to get the needed keys:

• hsk: used to get the Storage Key;

• hek x: used to get the private part of the Endorsement key of X.

The restriction used in this rule, as well as the Equality restriction, are the ones
already used in the Attestation By Quote model (Section 5.1).

rule Platform_setup:

let

hsk = hsk_get()

hek_x = hek_X_get()
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creation_details = creation_details_get()

storage_key = sk_get(hsk)

ek_x_priv = ek_x_priv_get(hek_x)

in

[

]

--[

Platform_setup($TPM, $X)
, PlatformInit()

, OnlyOnce()

, OnlyOnceP(’Platform’)

, Create($TPM)
, Create($X)
, Unique_Pairing($X), Unique_Pairing($TPM)

]->

[

!St_key_handles_X($X, hsk, hek_x)

, St_creation_details_TPM($TPM, creation_details)

, St_PlatformInit($TPM, $X)
, !Sk_TPM($TPM, storage_key)

, !Ekx_TPM($TPM, ek_x_priv)

]

The other initialization rule used is the Orc init rule, which retrieves the handle
of the Endorsement Key(EK) of the Orchestrator and its name, consisting in an
hash of the public part of its EK, through the name Orc function. After the initial-
izations, the Orchestrator sends h pol and the template containing the attributes
needed for the AK creation to X (Orc send rule), that forwards them (X send hpol
rule) to its TPM together with the handle of the Storage Key (SK). Subsequently,
following the flow of the protocol, the creation of the Attestation key is modeled in
the TPM create AK rule. The rule TPM create AK creates the ak object, the AK
and the ticket(using the function hmac/2). The AK is a pair of keys that contains
the public key and the sealed private key. The secret part of the AK key is retrieved
from the function ak private get/1, which takes as input the AK object previously
created with the obj/3 function. The seal operation is described in Section 2.1.1: it
is an encryption done using the Storage Key of the TPM. This rule also describes
the transition to an Out fact, by which the TPM sends the ticket, the AK and
some creation details to X, that sends the message back and stores the ticket in the
St handles t hcreate X 3 linear fact (X send akx rule).

rule TPM_create_AK:

let

ak = obj(template_ak, hsk_x, h_pol)

h_creation = h(creation_details)

ak_sk = ak_private_get(ak)

ak_pk = pk(ak_sk)

ak_name = h(ak_pk)
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t = hmac(proof_hsk_get(), <’CREATION’, ak_name, h_creation>)

sealed_ak_sk = aenc(ak_sk, storage_key)

in

[

St_creation_details_TPM($TPM, creation_details)

, !Sk_TPM($TPM, storage_key)

, In(<$X, h_pol, template_ak, hsk_x>)

]

--[

TPM_send_AK_t()

, Honest($TPM) //

, Commit($TPM, $X, <’init_hpol’, h_pol>)

, Running($TPM, $X, <’create_ak’, ak>)]->

[

St_ak_name($TPM, ak_name)

, St_h_pol($TPM, h_pol)

, St_ak_pub($TPM, ak_pk)

, Out(<$TPM, h_creation, t, <ak_pk, sealed_ak_sk>>)

]

After the creation of the AK’s handle (TPM load rule) using the function location/1,
the ticket has to be sent back to the TPM from X for verification: if the ticket is
correct, the TPM creates the certificate for the generated AK and signs it with
the Endorsement key. This actions are modeled in the TPM CertifyCreation rule,
that produces an Out fact of the signature and the certificate. The verification of
both the signature and the certificate fields that has to be done by the Orchestrator
is modeled in the Orc verify rule: in particular, it is modeled using the Equality
restriction to verify the signature and compare the fields of the certificate with the
correct values.

rule TPM_CertifyCreation:

rule TPM_CertifyCreation:

let

t_primo = hmac(proof_hsk_get(), <’CREATION’, ak_name, h_creation>)

certInfo_objName = ak_name

certInfo_magic = ’TPM_GENERATED’

certInfo_authPol = h_pol

signature = sign(<certInfo_authPol, certInfo_magic,

certInfo_objName>, ek_x_priv_get(hek_x))

in

[

In(<$X, hak_x, hek_x, h_creation, t>)

, !Sk_TPM($TPM, storage_key)

, St_handle_ak_x($TPM, ak_name, hak_x)

, St_h_pol($TPM, h_pol)

, St_ak_pub($TPM, ak_pk)

]
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--[

TPM_verify_ticket(), Eq(t_primo, t)

, UniqueExecSign(’TPM_signing’)

, Secret(ek_x_priv_get(hek_x))

, Send_signed_to_Orc($TPM, <certInfo_authPol,

certInfo_magic, certInfo_objName>)

, Commit($TPM, $X, <’send_ticket’, t>)

, Running($TPM, $O, <’send_signed’, signature>)

]->

[

St_certInfo(certInfo_objName, certInfo_magic, certInfo_authPol)

, !Attestation_key_persistent($TPM, hak_x)

, Out(<$TPM, signature, <certInfo_authPol, certInfo_magic

, certInfo_objName>, ak_pk >)

]

rule Orc_verify:

[

In(<$TPM, certSigned,

<certInfo_authPol, certInfo_magic, certInfo_objName>

, ak_pk>)

, St_Orc_hpol($O, h_pol, template_ak)

, !St_key_handles_X($X, hsk, hek_x)

]

--[

Orc_verify()

, Authentic($TPM,<certInfo_authPol, certInfo_magic

, certInfo_objName>)

, Honest($O)
, Honest($TPM)
, Recv_signed($TPM, <certInfo_authPol, certInfo_magic

, certInfo_objName>)

, Commit($O, $TPM, <’send_signed’, certSigned>)

, Eq(h(ak_pk), certInfo_objName)

, Eq(certInfo_magic, ’TPM_GENERATED’)

, Eq(certInfo_authPol, h_pol)

, Eq(verify(certSigned,

<certInfo_authPol, certInfo_magic

, certInfo_objName>,

ek_x_pub_get(hek_x)), true)

]->

[

]
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5.2.2 Measurement update protocol

The agents interacting in the ORA protocol are:

• X: VF;

• TPM: X’s trusted component (software);

• O: Orchestrator;

• T: Tracer.

In order to model this protocol is taken into account only the case having the
Boolean value equal to True, which means that the registers to be extended are the
NVPCRs.

The Measurement update protocol has been modeled by means of twenty-one
rules. Two of these rules are the ones that model agents keys used for signing
operations being compromised: rule Ek sk X reveal and rule Ek sk O reveal.

The creation and initialization of the entities involved are done by three rules:
the Platform setup rule, which stores in persistent facts the handles of the keys and
X’s EK; the Orc init rule, which stores in persistent facts the specific configuration
path and the PCR’s id; the Tracer init rule. The tracer is used to model the Trce
function, that, given the configuration path (fqpn value) returns the configuration.
This function is used by both the Orchestrator and X. The Orchestrator uses it
to construct the update request (rule Orc update request), which has the h update
value as one of its fields, that is an hmac of the hash of the configuration sent by the
Tracer with the key shared between the Orchestrator itself and the virtual function,
needed for the configuration measure authentication. X uses the Tracer to compute
the same hmac value that will be used to extend the PCRs.

rule Orc_update_request:

let

h_update = hmac(hk_O_X, h(trce_fqpn))

h1 = h(<h_update>)

args = h(<h1, ’0’, ’0’>) //h1?

hpol = h(<’00000000’, ’CCpolicynv’, args, name_Orc>)

h_hpol = h(hpol)

h_hpol_signature = sign(h_hpol, ek_sk_O)

req_update = <hpol, h_hpol, h_hpol_signature, idx>

in

[

!St_trce_fqpn_O($O, trce_fqpn)

, !St_fqpn_O($O, fqpn)

, !St_hk_O_X($O, $X, hk_O_X)

, !St_idx_O($O, idx)

, !Ek_sk_O($O, ek_sk_O)

]

--[

Orc_update_request()

, Running($O, $X, <’O_sends_update_request’, req_update>)
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, Orc_send_updateReq_with_signature($O, h_hpol)]->

[

Out(<$O, fqpn, req_update>)

]

After the tracing phase and after taking from the public channel the update request
created by the Orchestrator, X sends the hash of the hash of the policy, its signature,
done by the Orchestrator, and the handle of Orc’s EK to its TPM. The TPM verifies
the signature using the public part of Orc’s EK and computes the ticket value, an
hmac of a value that specifies that the signature has been verified and sends it to X
with an Out fact.

rule TPM_VerifySignature:

let

ticket = hmac(proof_get(), <’VERIFIED’, h_hpol, name_Orc()>)

in

[

In(<$X, h_hpol, h_hpol_signature, hek_O_pk>)

]

--[

TPM_VerifySignature()

, Commit($TPM, $X, <’X_sends_to_TPM’, h_hpol >)

, Running($TPM, $X, <’TPM_sends_ticket’, ticket >)

, Eq(verify(h_hpol_signature,h_hpol,ek_pk_O_get(hek_O_pk)),true)

, Honest($TPM)
, Honest($X)
, Honest($O)
, Authentic_Orc_msg($O, h_hpol)

]->

[

Out(<$TPM, ticket>)

]

The TPM StartAuthSession command is modeled in a rule with the same name,
which produces an Out fact containing the handle of the session. After this com-
mand, the registers have to be extended. In order to extend the NVPCRs, X sends
the hmac, computed before over the hash of the configuration value retrieved by the
Tracer, and the id of the registers. TPM receives X’s message through an In fact and
extends the specified NVPCRs and construct the hash of the session (h audit): this
is modeled in the TPM NV Extend rule. In order to read the NVPCRs and extend
them, two function have been declared: nvRead/1 and nvWrite/2, both private.

rule TPM_NV_Extend: //nv true

let

nv_write = nvWrite(idx, h(<nvRead(idx), h_fqpn>))
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h_audit = h(<h_audit_init, cpHash_get(), rpHash_get()>)

in

[

In(<$X, idx, h_fqpn, handle_hs, audit_msg>)

, Session($X, $TPM, h_hs, h_audit_init)

]

--[

TPM_NV_Extend()

, Commit($TPM, $X, <’X_send_h_fqpn_true’, h_fqpn>)

]->

[

Session_2($X, $TPM, h_hs, h_audit)

]

The last TPM command is modeled in the TPM getSessionAuditDigest rule, in
which the TPM signs information of the session (h audit) with X’s EK. X forwards
the signature to the Orchestrator and the Orchestrator verifies the signature and
the the hash of the session (h audit) checking it against the one computed by itself
using the correct expected values.

rule TPM_getSessionAuditDigest:

let

auditInfo_hsession = h_audit

auditInfo_signature = sign(auditInfo_hsession, ek_sk_X)

in

[

In(<$X, hek_X, handle_hs>)

, Session_2($X, $TPM, h_hs, h_audit)

, !Ek_sk_X($X, ek_sk_X)

]

--[

TPM_getSessionAuditDigest()

, Commit($TPM, $X, <’X_send_handles’, hek_X, handle_hs>)

, Running($TPM, $X, <’TPM_send_signature’, auditInfo_signature>)

, UniqueExecSign(’TPM_signing’)

, TPM_Send_signed($TPM, auditInfo_hsession)

, Secret(ek_sk_X)

]->

[

Out(<$TPM, auditInfo_signature, auditInfo_hsession>)

]

5.2.3 Inter-Vfs Oblivious Remote Attestation protocol model

The agents interacting in the ORA protocol are:

• X: VF;
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• TPM: X’s trusted component (software);

• Y: VF that wants to verify the integrity of X.

The model of the ORA protocol is comprehensive of fifteen rules and, as the previ-
ous ones, starts with two initialization rules: the Platform setup rule, that sets up
the platform (TPM and X), similar to the one described for the Attestation Key
creation protocol, and Y init and send rule, that creates Y and generates a nonce,
the challenge sent to X for attestation, and stores the public part of X’s AK in the
St Y Ak pk X linear fact, while the private part should not be compromised (its
revealing is specified with the Ak reveal rule).

In the Platform setup rule the initial state consists in the declaration of what
the platform knows: handles of keys, the PCRs, the nvPCRs. The functions used
are:

• hak get/0: function used to get the AK handle

• hek pk O get/0: function used to get the Orchestrator’s EK handle

• hi get/0: function used to get the nvPCRs handle

• nv read/1: function used to read the specific nvPCRs

• ak get/1: function used to get the private part of the AK

The final state of this rule consists in having this data stored in persistent facts to
be consumed when it is needed.

The restrictions used for modeling this protocol are the same ones used for the
Attestation Key creation protocol.

rule Platform_setup:

let

hak = hak_get()

hek_pk_O = hek_pk_O_get()

hi = hi_get()//handle per NVpcrs

h_i = nv_read(hi) //NVPCR

pcrs = pcrs_get()

args = h(<h_i, ’0’, ’0’>)

ak = ak_get(hak)

in

[

]

--[

Platform_setup($TPM, $X)
, PlatformInit()

, OnlyOnce()

, OnlyOnceP(’Platform’)

, Create($TPM)
, Create($X)
, Unique_Pairing($X), Unique_Pairing($TPM)
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]->

[

!St_pcrs($X, pcrs)

, St_PlatformInit($TPM, $X)
, !St_hak($X, hak)

, !St_hek_O($X, hek_pk_O)

, !St_hi_nv($X, hi, h_i)

, !Ak($TPM, ak)

]

rule Y_init_and_send:

let

nonce = ~n

ak_pk_x = ak_pk_x_get()

in

[

Fr(~n)

, St_PlatformInit($TPM, $X)
]

--[

Y_init()

, Create($Y)
, Running($Y, $X, <’Y_init’, nonce>)

]->

[

St_YInit($Y)
, St_Y_Ak_pk_X($X, $Y, ak_pk_x)

, St_Y_nonce($Y, nonce)

, Out(<$Y, nonce>)

]

The protocol model starts with the X send sessionType rule, in which X takes the
nonce sent by Y from the public channel with the In fact, and then generates and
sends the session type to its TPM, that retrieves the session handle and sends it
to X. The session handle retrieving is modeled in the TPM StartAuthSession rule,
using a function that accepts one parameter (session type): sessionHandle get/1.

In order to model the extension of the existing attestation policies to require proof
that the specific agent handled the attestation, two rules are used: TPM policyNV
and TPM PolicyPCRS. With this rules, after taking from the channel the handle
of the session and the values of pcrs and nvpcrs sent by X, the TPM extends the
policy and finally stores the hashed value in the Session 3 linear fact.

rule TPM_policyNV:

let

args = h(<h_i, ’0’, ’0’>)

h_pol_new = h(<h_pol, ’CC_policyNV’, args, name_hi(hi)>)

in
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[

In(<$X, hi, h_i, hps>)

, Session_1($X, $TPM, hps, h_pol)

]

--[

TPM_policyNV()

, Eq(h_i, nv_read(hi))

, Commit($TPM, $X, <’X_send_forPolicyNV’, <hi, h_i>>)]->

[

Session_2($X, $TPM, hps, h_pol_new)

]

rule TPM_PolicyPCR:

let

h_pcrs = <’0’>

h_pcrs = <h_pcrs, pcrs>

h_pol_policy_pcr = h(<h_pol_new, ’CC_policyPCR’, pcrs, h(h_pcrs)>)

in

[

In(<$X, pcrs, hps>)

, Session_2($X, $TPM, hps, h_pol_new)

]

--[

TPM_PolicyPCR()

, Commit($TPM, $X, <’X_send_PCRS’, pcrs>)]->

[

Session_3($X, $TPM, hps, h_pol_policy_pcr)

]

The hash of the policy has to be compared to the one that X already knows (p).
In order for this to happen, X starts by taking the values of p and t: in the
X send for policyAuthorize rule, correct values to p and t are given. Then, X sends
them to the TPM using an Out fact, together with the Orchestrator name (hash of
its public information).

rule X_send_for_policyAuthorize:

let

p = h_pol_policy_pcr

t = hmac(proof_t(),(<’VERIFIED’, h(h_pol_policy_pcr)

, h(ek_pub_O_get(hek_pk_O))>))

in

[

!St_Hps_X($X, hps)

, !St_hek_O($X, hek_pk_O)

, Session_3($X, $TPM, hps, h_pol_policy_pcr)

]

--[

50



X_send_for_policyAuthorize()

, Running($X, $TPM, <’X_send_P_T’, <p, t>>)]->

[

Out(<$X, p, t, h(ek_pub_O_get(hek_pk_O)), hps>)

, Session_4($X, $TPM, hps, h_pol_policy_pcr)

]

For modeling the TPM policy authorize phase, one rule is used: TPM PolicyAuthorize.
This rule describes the TPM checking the computed ticket and hashed policy against
the values assumed authorized by the Orchestrator, p and t, which should have been
authorized after the running of the Measurement update protocol), by means of the
Equality restriction. After the verification, X has to send the challenge(nonce), pre-
viously received by Y, consuming the linear fact St nonce(nonce) and producing an
Out fact with that specific value for the TPM signing process. The TPM sign rule
models the signing process of the challenge: the TPM signs the nonce using the sign
function (function that it is defined in the signing built-in) with its AK and puts
the signature in the public channel for X to forward it to Y (X send to Y rule) for
verification.

rule TPM_sign:

let

signature = sign(nonce, ak)

in

[

In(<$X, nonce, hak, hps>)

, Session_5($X, $TPM, hps, h_pol_policyAuthorize)

, !St_auth_pol($TPM, auth_pol)

, !Ak($TPM, ak)

]

--[

TPM_sign(), Eq(h_pol_policyAuthorize, auth_pol)

,UniqueExecSign(’TPM_signing’)

, Commit($TPM, $X, <’X_send_for_signing’, nonce>)

, Running($TPM, $X, <’TPM_send_signature’, signature>)

, Send_signed($TPM, signature)

]->

[

Out(<$TPM, signature>)

]

The last rule that models the ORA protocol is the Y verify signature rule: this rule
describes Y taking from the public channel the signature over the nonce done by
the TPM of the other virtual function and also taking the nonce generated by itself
consuming the St Y nonce linear fact. The verification of the signature and the
nonce are modeled using the Equality restriction and the verify function, provided
by the signing built-in.
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rule Y_verify_signature:

[

In(<$X, signature>)

, St_Y_nonce($Y, nonce)

, St_Y_Ak_pk_X($X, $Y, ak_pk_x)

]

--[

Y_verify_signature()

, Honest($X)
, Honest($TPM)
, Honest($Y)
, Authentic($TPM, signature)

, Eq(verify(signature, nonce, ak_pk_x),true)

, Commit($Y, $X, <’X_send_signature_to_Y’, signature>)]->

[]

5.2.4 Attaching NVPCRs protocol model

The entities involved in the Attaching NVPCRs protocol are three:

• O: Orchestrator;

• X: Virtual Function;

• TPM: trusted component (software).

For the model of this protocol, after the usual Platform setup rule and Orc init
rule, the rule NV true has been written. This rule is the starting rule of the model of
the Attaching protocol, because it starts the process creating the req add message,
which contains all the information needed for the creation and extension of the new
NVPCR:

• The Identifier;

• The template: it describes the attributes of the register;

• Authorization policy: policy that can be used by the Orchestrator to delete
the register;

• IV: an initial value to extend.

rule NV_true:

let

iv = ’0’

idx = idx_get()

name_O = name_Orc()

TPL_idx = TPL_get(idx)

nv = ’true’
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hpol = h(<h(h(<’00000000’, ’CCpolicyauthorize’, name_O>))

, ’CCpolicycommandcode’,’CCnvundefinespacespecial’>)

req_add = <idx, TPL_idx, hpol, iv, nv>

in

[

]

--[

NV_true()

, Running($O, $X, <’send_req_add’, req_add>)

]->

[

Out(<$O, req_add>)

]

X takes these values from the public channel and forwards them to its TPM, which
then execute a series of commands:

• NV DefineSpace;

• NV Extend;

• NV Certify.

What the TPM does with these three commands has been modeled in three
specific rules: TPM NV defineSpace, TPM NV Extend, TPM NV Certify.

The first of these three rules is needed to model the creation of the space for
the NVPCR: this is done using a private function called nvCreate/4, which accepts
as parameters the identifier, the handle of the secret platform primary seed, the
template with the attributes and the policy created by the Orchestrator. After
the TPM NV defineSpace rule, the TPM NV Extend rule extends the initial value
(IV) sent by the Orchestrator, writing the newly created NVPCR. The last action
modeled, done by the TPM, is specified in the TPM NV Certify rule: the TPM
certifies the new NVPCR, signing the certificate information with the secret part of
X’s Endorsement Key, stored in the !Ek sk X persistent fact.

rule TPM_NV_defineSpace:

let

nv_create = nvCreate(idx, hpps, TPL_idx, hpol)

in

[

In(<$X, hpps, idx, TPL_idx, hpol>)

]

--[

TPM_NV_defineSpace()

, Commit($TPM, $X, <’send_hpol’, hpol>)

]->

[

St_TPM_template_hpol($TPM, TPL_idx, hpol)
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]

rule TPM_NV_Extend:

let

nv_write = h(<nvRead(idx), iv>)

in

[

In(<$X, idx, iv>)

]

--[

TPM_NV_Extend()

, Commit($TPM, $X, <’send_iv’, iv>)

]->

[

St_TPM_iv_idx($TPM, iv, idx)

]

rule TPM_NV_Certify:

let

certInfo_magic = ’TPM_GENERATED’

certInfo_nvContents = h(<’00000000’, iv>)

certInfo_objName = <h(TPL_idx), <’WRITTEN’, idx, hpol>>

certInfo = <certInfo_magic, certInfo_nvContents, certInfo_objName>

certInfo_signature = sign(certInfo, ek_sk_X)

in

[

In(<$X, hpps, idx, hek_X>)

, !Ek_sk_X($TPM, ek_sk_X)

, St_TPM_iv_idx($TPM, iv, idx)

, St_TPM_template_hpol($TPM, TPL_idx, hpol)

]

--[

TPM_NV_Certify()

, Commit($TPM, $X, <’send_handles’, hpps>)

, Running($TPM, $X, <’TPM_send_certInfo’, certInfo>)

, UniqueExecSign(’TPM_signing’)

, TPM_Send_signed($TPM, certInfo)

, Secret(ek_sk_X)

]->

[

Out(<$TPM, $TPM, certInfo_signature, certInfo>)

]

The end of the protocol consists in the Orchestrator verifying the signature and the
correctness of the certificate information, checking the values against correct ones.
For the verification to be correct, the certInfo fields have been given the correct
values in the TPM NV Certify rule.
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rule Orc_verify:

let

certInfo = <certInfo_magic, certInfo_nvContents, certInfo_objName>

in

[

In(<$X, certInfo_signature, certInfo>)

, St_TPM_iv_idx($TPM, iv, idx)

, St_TPM_template_hpol($TPM, TPL_idx, hpol)

]

--[

Orc_verify()

, Commit($O, $X, <’X_send_to_Orc’, certInfo>)

, Eq(verify(certInfo_signature, certInfo,

ek_pk_get(handle_ek_X_get)), true)

, Eq(certInfo_magic, ’TPM_GENERATED’)

, Eq(certInfo_nvContents, h(<’00000000’, iv>))

, Eq(certInfo_objName, <h(TPL_idx), <’WRITTEN’, idx, hpol>>)

, Authentic($TPM, certInfo)

, Honest($X)
, Honest($TPM)
, Honest($O)

]->

[

]

5.2.5 Detatching NVPCRs protocol model

The entities involved in the Detatching NVPCRs protocol are three:

• O: Orchestrator;

• X: Virtual Function;

• TPM: trusted component (software).

The Detatching NVPCR protocol model starts with the initialization of the Plat-
form and the Orchestrator, storing in persistent facts all the key handles useful.
The rule that starts the protocol is TPM StartAuthSession 1, in which the TPM
generates a fresh nonce with the Fr fact, and sends it to X, that forwards it to the
Orchestrator. The nonce generated is used by the Orchestrator in the NV true rule:
the Orchestrator creates the ahash value, which is a digest needed to authorize a
policy hpol, done over the nonce and the hcp value. With these values the Orches-
trator creates the request for deletion (req delete) and with an Out fact sends it to
X. Moreover, the St Orc reqDel stores the request.

rule NV_true:

let
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hpol = h(h(<’00000000’, ’CCpolicysigned’, name_Orc()>))

hhpol = h(hpol)

signhhpol = sign(hhpol, ek_sk_O)

hcp = h(<’CCnvundefinespacespecial’, idx>)

ahash = h(<n, ’00000000’, hcp>)

signahash = sign(ahash, ek_sk_O)

req_delete = <idx, hcp, signahash, hpol, hhpol, signhhpol>

in

[

In(<$X, n>)

, !St_idx($O, idx)

, !St_Orc_handle($O, hek_O)

, !St_Ek($O, ek_sk_O)

]

--[

NV_true()

, Commit($O, $X, <’X_forward_n’, n>)

, Running($O, $X, <’send_req_del’, req_delete>)

, Orc_send_reqDel_withSignature($O, signhhpol)

]->

[

Out(<$O, req_delete>)

, St_Orc_reqDel($O, req_delete)

]

X sends the session type to the TPM (X receives req del nv true rule), which starts
the session in the TPM StartAuthSession rule. After starting the session, X sends
req del values to the TPM. The TPM executes a series of commands, modeled with
rules that have the same name of the commands. These commands are:

• TPM VerifySignature;

• TPM PolicySigned;

• TPM PolicyAuthorize;

• TPM PolicyCommandCode;

• TPM NV UndefineSpaceSpecial.

In the TPM VerifySignature rule is modeled the TPM verifying the Orchestrator’s
signature over the policy. The signature verification is done by using the Equality
restriction. The TPM in this rule also construct the ticket, in order to attest that
the signature has been verified.

rule TPM_VerifySignature:

let

ticket = hmac(proof_get(), <’VERIFIED’, hhpol, name_Orc()>)

in
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[

In(<$X, hhpol, signhhpol, handle_ek_Orc>)

]

--[

TPM_VerifySignature()

, Commit($TPM, $X, <’X_send_h_hpol’, hhpol >)

, Running($TPM, $X, <’TPM_sends_ticket’, ticket >)

, Eq(verify(signhhpol,hhpol,ek_sk_O_get(handle_ek_Orc)),true)

, Honest($TPM)
, Honest($X)
, Honest($O)
, Authentic($O, signhhpol)

]->

[

Out(<$TPM, ticket>)

]

The TPM PolicySigned rule models the TPM verifying the other signature done by
the Orchestrator, the one over the aHash value. For the verification to be correct,
the aHash value has been given the correct value. The final state of this rule, stores
in the Session linear fact the new policy.

rule TPM_PolicySigned:

let

ahash = h(<nonce, ’00000000’, hcp>)

h_pol_new = h(h(<’00000000’, ’CCpolicysigned’, name_Orc()>))

cpHash = hcp

in

[

In(<$X, signahash, hcp, nonce, hek_O_pk, hps>)

]

--[

TPM_PolicySigned()

, Commit($TPM, $X, <’X_send_for_policySigned’, hps >)

, Eq(verify(signahash,ahash,ek_pk_O_get(hek_O_pk)),true)

]->

[

Session(h_pol_new, cpHash)

]

TPM PolicyAuthorize rule verifies the ticket previously constructed and modifies
the value of the policy to authorize it.

rule TPM_PolicyAuthorize:

let
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ticket = hmac(proof_get(), <’VERIFIED’, h(h_pol_X), name_O>)

h_pol = h(<’00000000’, ’CCpolicyauthorize’, name_O>)

in

[

In(<$X, h_pol_X, t_X, name_O, hps>)

, Session(h_pol_new, cpHash)

]

--[

TPM_PolicyAuthorize()

, Commit($TPM, $X, <’X_send_for_policyAuthorize’, h_pol_X >)

, Eq(h_pol_X, h_pol_new)

, Eq(ticket, t_X)

]->

[

Session_2(h_pol, cpHash)

]

The TPM PolicyCommandCode rule models the TPM restricting the session’s com-
mand code and storing the new policy value.

rule TPM_PolicyCommandCode:

let

cc = cc_nv_undefineSpaceSpecial

h_pol_undefineSpecial = h(<h_pol, ’CCpolicycommandcode’, cc>)

in

[

In(<$X, hps, cc_nv_undefineSpaceSpecial>)

, Session_2(h_pol, cpHash)

]

--[

TPM_PolicyCommandCode()

, Commit($TPM, $X,
<’X_send_for_policyCommandCode’,

cc_nv_undefineSpaceSpecial>)

]->

[

Session_3(h_pol_undefineSpecial, cpHash, cc)

]

The last rule, TPM nv undefineSpaceSpecial, models the TPM deleting the NVPCR,
if the authorization policy is fulfilled.

rule TPM_nv_undefineSpaceSpecial:

let

authPol = h(<h(<’00000000’, ’CCpolicyauthorize’, name_Orc>)
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, ’CCpolicycommandcode’, cc>)

destroy = nv_and_hps_destroy()

in

[

In(<$X, hpps, hps, idx>)

, Session_3(h_pol_undefineSpecial, cpHash, cc)

]

--[

TPM_nv_undefineSpaceSpecial()

, Commit($TPM, $X, <’X_send_for_nv_undefineSpaceSpecial’, hps >)

, Eq(authPol, h_pol_undefineSpecial)

, Eq(cc, ’CCnvundefinespacespecial’)

, Eq(cpHash, h(<’CCnvundefinespacespecial’, idx>))

]->

[

]
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Chapter 6

Results

In this chapter the results given by Tamarin prover on the symbolic models described
before are presented. Tamarin prover is based on the use of lemmas. Lemmas repre-
sents the security properties that have to be verified for the model. The framework
analyses the model until it can prove that a property holds or finds a counterexam-
ple.

6.1 Attestation by quote verification

The attestation by quote protocol has been modeled as described in Section 5.1. The
interaction between the TPM and the Fog Node is analysed using a public channel
(Section 2.4.4).

6.1.1 Attestation by quote: Lemmas

The security properties examined for all the protocols are modeled with the lemmas
of:

• Functional correctness;

• Message authentication;

• Aliveness;

• Injective agreement.

In the next section the lemmas will be explained, which are the same for all the
protocols, reporting in particular the code of those of the Attestation by Quote.

Functional Correctness

This lemma is used to check the correct flow of execution of the protocol. It checks if
the actions are performed in the correct order; it also takes into account two action
facts:

• UniqueExecUpdateM: it is an action fact of the TPM update measure rule.
In the lemma is used in order to check that the update operation is executed
only once at the same moment in time;
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• UniqueExecSign: it is an action fact of the TPM signAndSend rule. In the
lemma is used in order to check that the signing operation is executed only
once at the same moment in time.

lemma update_and_attestation_functional_correctness:

exists-trace

"Ex #a #b #c #d #e #f #g #i #l #m #o #n.

/*does not exist an endorsement key reveal*/

not( Ex C #k. Reveal_ek(C) @k) &

PlatformInit() @ a &

Orc_init() @ b &

Tracer_init() @ c &

Orc_send_update_req() @ d &

Tracer_update()@ e &

F_update_measure() @ f &

TPM_update_measure() @ g &

O_send_nonce() @ i &

F_send_nonce_to_TPM() @ l &

TPM_signAndSend() @ m &

FogNode_sendSigned() @ n &

Orc_receiveSigned_verify() @ o &

a < b &

b < c &

c < d &

d < e &

e < f &

f < g &

g < i &

i < l &

l < m &

m < n &

n < o &

( All #i #j x. UniqueExecUpdateM(x) @i & UniqueExecUpdateM(x) @j

==> #i = #j) &

( All #i #j x. UniqueExecSign(x) @i & UniqueExecSign(x) @j

==> #i = #j)

"

Message authentication

This lemma is used to verify that the message containing the quote certificate is sent
by the TPM through an honest Fog Node and received by the Orchestrator without
any not Honest agent revealing the TPM’s secret key.

lemma message_authentication:

"All f m #i. Authentic(f,m) @i
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==> (Ex #j. Send_sig(f,m) @j & j<i)

| (Ex B #r. Reveal_ek(B)@r & Honest(B) @i & r < i)"

Injective agreement

This lemma models the unique chain of events driven by specific input (nonce, I)
and guarantees that an agent A has a unique matching partner B in the interaction.

lemma injectiveagreement:

"All A B t #i.

Commit(A,B,t) @i

==> (Ex #j. Running(B,A,t) @j

& j < i

& not (Ex A2 B2 #i2. Commit(A2,B2,t) @i2

& not (#i2 = #i)))

| (Ex C #r. Reveal_ek(C)@r & Honest(C) @i)"

Aliveness

This lemma is used to guarantee to an agent A aliveness of another agent B: whenever
A completes a run of the protocol, then B has previously been running the protocol.

lemma aliveness:

"All a b t #i.

Commit(a,b,t)@i

==> (Ex #j. Create(b) @ j)

| (Ex C #r. Reveal_ek(C) @ r & Honest(C) @ i)"

6.1.2 Attestation by quote: Results

The functional correctness lemma for this protocol is verified: this means that the
model holds. Proving the property described by the message authentication lemma,
however, Tamarin finds vulnerabilities. From the execution of the model appears
that the Attacker, during the update phase, can modify the id of the configuration
file (Figure 6.1) and also the hash of the file (Figure 6.2) and send it in the channel
pretending to be the Tracer.
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Figure 6.1: Attestation by Quote protocol - Attacker coercing id of the configuration file
and index.

Figure 6.2: Attestation by Quote protocol - Attacker coercing the hash of the configuration
file.

During the attestation phase it can send a different nonce pretending to be the
Orchestrator (Figure 6.3), manipulate the message containing the signature of the
quote (Figure 6.4) and the quote. The Attacker can inject messages directly on the
channel: it can pretend to be each of the entities, so sending the ids, hash of the file
and nonce, it can construct the quote with the values inserted before and make the
process of attestation happen without the correct data. Even if the Orchestrator
discards the message, which is not verified, the Attacker can perform a DoS attack.
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Figure 6.3: Attestation by Quote protocol - Attacker coercing nonce.

Figure 6.4: Attestation by Quote protocol - Attacker coercing the signing message.

A possible attack that the Attacker can perform knowing the signature message,
is also the DoS attack: even if the Orchestrator checks the signature and discards it
if it is not verified, the attack can have impact on the performance. This problem
is given by the fact that this scenario does not consider an authentication protocol
(peer and message authentication).

The last two lemmas (Aliveness and Injective agreement) are also not proved
correct, as a consequence of the absence of a peer authentication protocol. The
Attacker can pretend to be both the Orchestrator and the Tracer, making the inter-
action with the platform (TPM and Fog Node) start and continue without the real
entities. The Figure 6.5 shows the traces found for these lemmas by Tamarin.
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Figure 6.5: Attestation by Quote - Aliveness and Injective agreement result.

6.2 Oblivious Remote Attestation verification

The Attestation Key creation protocol, the Measurement update protocol and the
ORA one have been modeled as described in Section 5.2, as well as the two protocols
describing the Attaching and Detaching mechanisms of the NVPCRs (Section 3.2.4).
Interactions between agents takes place on a public channel. The lemmas proved
for these protocols are the same as the ones of the Attestation by Quote protocol,
but written with action facts that are specific for them.

6.2.1 Attestation Key creation: Results

The verification of Attestation Key Creation protocol highlights some possible vul-
nerabilities, but apart from a remote case and the possibility of DoS attack, the
traces do not represent a threat to the system.

The functional correctness lemma is proved verified: the model is consistent and
exist a trace of the protocol following the correct flow. Despite this, it is interest-
ing to note that the attacker can manipulate everything on the public channel, and
can pretend to be the Orchestrator, making the execution of the protocol start; it
can send X messages that should come from either the Orchestrator and TPM, or
send messages pretending to be the TPM. However, the Orchestrator does verify
the content of the messages and the signature at the end of the protocol, hence
the attacker’s access points do not compromise the flow of execution, but a pos-
sible problem can be a DoS attack: even if the Orchestrator discards problematic
messages, if it receives a great number of them, performance can deteriorate.

Another vulnerability is shown in the Figure 6.6 below. During the execution, the
attacker can manage to take control of the TPM, compromising all the actions that
have to be done by the platform, in particular the creation of the AK. If the attacker
has control of the TPM, it can have access to the endorsement key, construct the
certificate and sign it: Tamarin shows how the message containing the signature, in
this case, it is not the authentic one. The case of the Attacker taking control of the
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TPM, however, is a very remote case, so even if the lemma is not valid in all the
traces, it cannot be considered as a possible attack.

Figure 6.6: Attestation Key creation protocol - Message Authentication result.

The Figure 6.7, shows how the attacker, having access to the public channel, can
probably construct some messages, such as attestation key, ticket and the hash of
the creation details of the ak, and insert them in the channel, sending them to X as
they are coming from the TPM, compromising X. This operation indicates that the
properties of aliveness and injective agreement are not proved, because X can start a
series of actions without the warranty of having another agent running the protocol
and of having a unique matching partner in the interaction: X acts in response to
the attacker and not to a real agent. Analysing this trace, it is possible to notice
that the one possible attack could be a DoS attack, while any other attack would
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not be possible, because at the end of the protocol the Orchestrator always verifies
the certificate and discards any wrong message, marking the platform as untrusted.
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Figure 6.7: Attestation Key creation protocol - Aliveness and Injective agreement.
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6.2.2 Measurement update: Results

The Measurement update protocol is based on the interactions between TPM, X,
Orchestrator and the Tracer on a public channel. Lemmas written for the model
of this protocol are not all verified. Aside from the functional correctness lemma,
which also in this case shows the correctness of the model’s flow of execution, the
results given by Tamarin for the other lemmas highlight some possible problems,
but the traces found do not represent a compromise of the system.

One possible problem could be if the attacker manages to extract the second
term of the Out fact of the Orc update request rule, which is the update request:
it can then coerce it and its signature and send them directly to the TPM for the
VerifySignature command (Figure 6.8). This trace proves that the message arriving
to TPM can be compromised and not be authentic. In the same way the attacker
can manipulate the signature of the audit information of the session and send to the
Orchestrator an unauthentic message: this interference is shown in the Figure 6.9.
These two interferences, however, do not compromise the protocol: the first one is
managed by the VerifySignature command, where if the message is not verified it
will be discarded; the second one is managed by the Orchestrator at the end of the
protocol, which will discard any unverified messages.
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Figure 6.8: Measurement Update protocol - Message authentication - 1.
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Figure 6.9: Measurement Update protocol - Message authentication - 2.
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Regarding Aliveness and Injective agreement, results are shown in the Figure
6.10. The figure shows, in particular, how the attacker, pretending to be the Tracer,
can send a message to the Orchestrator, even if the Orchestrator is not running the
protocol. However, this does not compromise the system.

Figure 6.10: Measurement Update protocol - Aliveness.

6.2.3 Oblivious Remote Attestation: Results

The Oblivious Remote Attestation protocol sees the interaction of two virtual func-
tions, X and Y, and the TPM, with Y trying to verify the integrity of X, as explained
in the Section 3.2.3. The functional correctness lemma for the ORA protocol is ver-
ified, this means that exists a trace in which the model follows the correct flow of
execution. As the results of the previous protocols, also this one shows how the
attacker can interact with the involved agents(in this case X, Y and TPM) without
an authentication mechanism: even if the message that are not correct are discarded
after the verification, the attacker can pretend to be any of the agents and perform
a DoS attack.

From the Figure below (Figure 6.11) it emerges that the attacker can start the
execution of the protocol, sending the message containing the session type, directly
to the TPM, pretending to be X. This action can make the TPM start the execution
of the protocol, in particular executing the startAuthSession command, without
other agents running the protocol and without having a trusted partner in the
interaction, but interacting with the adversary that pretends to be X. The same trace
is shown from the injective agreement lemma: this is because the startAuthSession
command can be executed by the TPM without having a unique partner (X) in the
interaction. However, no possible attack can arise from these traces.
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Figure 6.11: ORA protocol - Aliveness and Injective agreement.

A possible trace of attack found by Tamarin prover is shown in the Figure 6.12.
The figure describes how the attacker, if it manage to take control of the TPM, can
coerce the nonce, which is sent in clear on the channel by Y to X as a challenge for
integrity attestation, sign it with the attestation key and send it to Y for verification,
pretending to be X. However, this trace describes a remote case, the one of the
attacker having full control over the TPM.
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Figure 6.12: ORA protocol - Message authentication.
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6.2.4 Attaching NVPCRs: Results

The analysis of the Attaching NVPCRs protocol model shows some problems. Par-
ticularly, from the trace found by Tamarin for the message authentication lemma,
it emerges that the Attacker can manipulate a great number of messages. Starting
from the Orchestrator inserting in the public channel the add request, if the at-
tacker gets to know it(d 0 snd rule), can coerce the parameters of the request: the
identifier, the template and the hash of the authorization policy, as it is shown in
Figure 6.13. Knowing these information and constructing the others, the Attacker
manage to send them to the TPM in order to start the NV nvExtend command,
the NV defineSpace one, and the NV certify one, sending information instead of X,
multiple times. Doing so, the Attacker pretends to be X and, after making the TPM
certify the new corrupted PCR, it can intercept, extract and coerce the signature
(Figure 6.14): this means that the message received by the Orchestrator containing
the signature of the certificate and the certificate can come from the attacker and
not from X. These trace highlights a possible attack: the Attacker can make the
TPM executes its commands multiple times, always changing the identifier of the
NVPCR to be created. Acting like this, can possibly lead to the creation of multiple
unauthorized NVPCRs and memory saturation.
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Figure 6.13: Attaching NVPCRs protocol - Message Authentication - 1.
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Figure 6.14: Attaching NVPCRs protocol - Message Authentication - 1.

The Figure 6.15 below, shows the trace given by Tamarin for the Aliveness and
Injective Agreement lemmas for this protocol. The result shows how the Attacker
can make the TPM execute the NV Extend command without the Orchestrator
starting the execution of the protocol with its add request.

Figure 6.15: Attaching NVPCRs protocol - Aliveness and Injective agreement.

6.2.5 Detaching NVPCRs: Results

The results given by Tamarin for the Detaching NVPCRs protocol model are shown
in Figure 6.16 and in Figure 6.17: these two traces represents the ones in which the
lemmas are not verified.
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The Figure 6.16, shows the trace found for message authentication lemma: this
trace found by Tamarin shows how the Attacker can inject any message in the public
channel, and in this case it can probably construct the hash of the hash of the
configuration policy and its signature and send it to TPM for verification. However,
this trace does not represent a possible attack, because the TPM verifySignature
command always verifies the signature.

Figure 6.16: Detaching NVPCRs protocol - Message authentication.

The Figure 6.17 shows how the attacker, having full freedom in the public chan-
nel, can insert, in this case, all the values that the TPM needs in order to execute
the PolicySigned command. This command can be executed without the actual pro-
tocol being started and without Orchestrator and X participating. Also in this case,
the TPM verifies the values that receives, comparing them to the ones it calculates
inside, so this does not represent a possible attack.
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Figure 6.17: Detaching NVPCRs protocol - Aliveness and Injective agreement.
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Chapter 7

Conclusions

This chapter will present the conclusion of the thesis work, taking into account the
results obtained using the Tamarin prover.

7.1 Conclusion

The thesis document aimed to verify the security level of two kind of remote attes-
tation processes in a fog computing environment:

• Attestation by Quote: remote attestation between the Fog Node and the Or-
chestrator, based on the Quote;

• Oblivious Remote Attestation: inter-VFs remote attestation based on a chal-
lenge;

The Oblivious Remote Attestation process is comprehensive of five protocols:

• Attestation Key creation protocol: protocol managing the creation and provi-
sion of the Attestation Key;

• Measurement update protocol: it manages the updates in the configurations;

• ORA protocol: attestation between two nodes;

• Attaching NVPCRs and Detaching NVPCRs protocols: these are the two
protocols managing the NV registers’ creation and deletion.

Specifically, the protocols analysed have the objective of establish trust between all
the involved devices, checking their state correctness in order to know if they have
been compromised. The protocols have been symbolically modeled and verified
using a specific tool for formal verification, the Tamarin Prover. Following the
Tamarin Prover specifications, the protocols have been modelled using a set of rules,
describing the changes in the states during the interaction between all the entities
involved. The security properties have been modelled using the Lemma feature of
Tamarin: lemmas describe the properties to verify using the tool. In particular, a
remote attestation protocol should guarantee that some specific security properties
are maintained in the execution. The main lemmas describing the security properties
analysed in this thesis were:
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• Secrecy: it is a property that specifies the need for certain data to not be
discoloured, for example symmetric and private asymmetric keys;

• Authentication: provides proof of authenticity of messages and agents inter-
acting during the execution of the protocol;

• Aliveness: it is a form of authentication that guarantees to an agent A aliveness
of another agent B if, whenever A completes a run of the protocol, then B has
previously been running the protocol;

• Injective Agreement: it is a stronger authentication property that guarantees
to an agent A a unique matching partner B in the running of the protocol.

The functional correctness lemma is always verified, for each of the protocols,
while the results of the other lemmas, which should be verified for all the traces of
the protocols, highlight some possible problems and ways the attacker can interfere
in the interactions between entities. In particular, since the protocols have been
modelled using a public channel for the communication, the attacker can always
insert messages in the channel and send them to real entities, pretending to be
the partner in the interaction. These kind of action coming from the attacker can
lead to possible DoS attacks and deterioration of system performance. however,
apart from DoS attacks, the traces shown by the Tamarin Prover do not represent a
compromise of the system. The problems found on the analysed protocols are due to
the lack of a peer authentication protocol, that should be used to authenticate the
Orchestrator to the platform (X and TPM), and the platform to the Orchestrator, to
avoid interference from the attacker and make the agents only handle messages from
other authenticated ones. A possible way to implement peer authentication on the
channel could be the use of TLS (Transport Layer Security), which is a protocol that
can provide communication security over the network. Another solution, designed
by Rainbow is the use of DAA, Direct Anonymous Attestation, based on Elliptic-
curve cryptography (ECC), which enables remote authentication preserving privacy
with anonymity.

7.2 Future implementations

A possible future development of this work could be to try to verify these and
others security properties modelling the protocols with another formal verification
tool, such as Proverif. In order to avoid authentication problems, the protocols
could also be modelled making the entities interact on an authentic channel, instead
of a public one, so that the entities interacting always know that the messages are
coming from authenticated agents.
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