
POLITECNICO DI TORINO

Master’s degree

in Mechatronics Engineering

A.y. 2021/2022

Degree session: July 2022

Hardware and Software development of a remote
interface to program Embedded Systems

Supervisor: Candidate:

Maurizio Martina Carlo Fiori

2

Abstract

In recent years, the need of remote control of various electronic devices has

grown more and more, especially in the automotive sector. Some of the main

reasons are: to speed up design times, to facilitate the cooperation between

companies (by testing in real-time various alternatives and/or changes in

the projects), to limit the physical presence of employees in a laboratory or

in a company, also due to the pandemic situation.

This project intends to give a specific method to develop Hardware and

Software design of a particular electronic device, that permits to program

through a remote interface an embedded system, like an electronic control

unit. The work was divided into two main parts: hardware design and

programming/web design, both made with the help of a device called Rasp-

berry Pi, in particular the Raspberry-Pi 3 model B+ was used, on which

the Raspbian Operating System was installed. By means of this electronic

device it was possible, through some simple programs, to manage its own

GPIOs (General-Purpose-Input-Output pins), to which various electronic

devices have been connected. In the first part of the hardware design, var-

ious electronic components, mainly produced by companies such as RS,

Farnell and Digi-key, were carefully selected and integrated together, first

mounted on a breadboard (base used to create circuit prototypes) to test

and verify the functionality of each individual component, and then welded

together in a multi-hole plate to reduce the amount of wiring. In the second

part dedicated to programming/web design, the web application was cre-

ated, with the development of a part called “front-end” (web interface with

3

4

which the user can interact) written in HTML and JavaScript languages,

and a “back-end” part (not accessible to the user and that communicates

with the front-end) built with the help of NGINX and some servers.

During the hardware design phase, Hardware-In-the-Loop tests were per-

formed in order to verify the correct functionality of all the components

which constitute the PCB: this procedure consists of connect external mod-

ules, which can be switched on/off from the Raspberry-Pi device, to the

PCB and then test if they are detected from the RPi itself. At the end, the

overall system, PCB and Application Web, were tested connecting the RPi

with an ECU.

This electronic device, which can be called Smarthub, was created ad hoc

according to the needs of the Abinsula company where the work was car-

ried out, to manage and program an electronic control unit. Anyway, it can

be useful for many companies, in particular the multinational ones, which

want to control and manage remotely in an efficient way various devices

(telematic boxes, motherboards, production machines, etc..) from different

sites and in any moment.

6

Contents

1 Introduction 9

1.1 Thesis scheme . 10

2 Hardware design 13

2.1 System description . 14

2.2 Rapsberry Pi . 16

2.2.1 Model Used . 17

2.2.2 Setup . 18

2.3 PCB design . 19

2.3.1 HIL (Hardware-In-the-Loop) test 26

2.4 3D MODEL of the PCB . 31

2.4.1 KiCad . 31

2.4.2 Electric Scheme . 32

3 Software design 37

3.1 What is an Application Web? 37

3.2 NGINX . 41

3.2.1 NGINX configuration 41

3.3 Back-end . 44

3.3.1 OPEN-API . 45

3.3.2 Node.js . 48

3.3.3 STREAMING.py . 50

3.4 Front-end . 52

3.4.1 index.html . 53

7

8 CONTENTS

3.4.2 index.css . 55

3.4.3 button.js . 56

3.4.4 coding.js . 57

3.4.5 serial.js . 57

4 Validation Test 59

4.0.1 Test case . 60

5 Conclusions 63

Nomenclature 64

List of figures 66

Bibliography 68

Chapter 1

Introduction

This thesis gives a detailed procedure on how to design, from both Hard-

ware and Software point of view, a specific PCB (electronic device called

Printed Circuit Board), able to manage various external devices and useful

to program an Electronic Control Unit, or, in general, an electronic board

(e.g a Motherboard, Telematic box, Device Under Test, etc...).

This part provides a general information about objectives obtained and a

description, at the end, of the content of various chapter, providing to the

reader the followed steps.

The aim of this project is to create a simple extension board for the Rasp-

berry Pi device, called "Shield" : this component allows to group in a spe-

cially sized space other electronic modules that the basic model of Rasp-

berry does not possess. This Shield was created for interface a computer

to an Electronic Control Unit to be programmed remotely: for this pur-

pose, many peripherals (such as Programmer, USB Pen drives, Camera,

USB2ETH, USB2CAN, SERIAL USBs) must be managed remotely, for ex-

ample switching them on/off during the programming phase. This work

makes possible the connection of an external computer to the Raspberry,

through an Application Web interface. In this way everybody can control

and perform the programming of any board (like Motherboards, Device Un-

der Test, and much more) remotely.

9

10 CHAPTER 1. INTRODUCTION

In particular, the main followed steps are:

• Setup of Raspberry-PI 3 (B+ model) in order to manage the external

peripherals through the PCB: the Operating System Raspbian (OS of

Linux Debian distribution) is installed;

• Research and selection of components able to switch on/off USBs,

Power Supply, USB2CAN, USB2ETH, SERIAL USB modules;

• Check functionality of each component mounting them over a bread-

board;

• Weld together the components in a multy-hole plate to reduce the

amount of wirings;

• Install Camera device useful to check the correct functionality re-

motely;

• Design of Electronic scheme of the PCB and its 3D model with KiCad

6.0 software;

• Develop an Application web in order to interface an external computer

to the Raspberry, connected to the designed PCB;

• Test the overall system.

1.1 Thesis scheme

Right away, a brief description of the content of each chapters, in order to

understand better the followed procedure:

• Chapter 2: Hardware design

This chapter fully describes the Hardware design of the PCB, starting

1.1. THESIS SCHEME 11

from the selection of various components, of which will be given the

relatives Datasheets and functionalities, until the description of the

overall Electric circuit, with a section dedicated to the 3D realization

through KiCad 6.0 software;

• Chapter 3: Software design

This section is dedicated to the Software design: from the compilation

of the back-end part, written in Python and Javascript languages,

that deals with the creation of web servers for the remote managing

of the external components linked to Raspberry Pi, until the styling of

the front-end part (webpage), written in HTML, CSS and Javascript

languages.

• Chapter 4: Test and Validation

This section is about test and validation phases, useful to check the

right functionality of the PCB and the correctness of Application web.

• Chapter 5: Conclusions

The aim of this chapter is to give general informations on what is done

during the overall design, on the results and on the possible improve-

ments to perform in order to adapt this work to various scenarios.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Hardware design

This chapter is dedicated to the accurate description of the procedures fol-

lowed to build the Printed Circtuit Board (PCB) as a Rapsberry-Pi shield.

This device, at which various external devices will be connected, is managed

and drived by the Raspberry Pi. In particular, this PCB must be capable

of:

• Switch on/off at most eight USB modules, among which: USB Pen-

drives, Programmer (USB side), USB2-ETHERNET cable, Camera

Video, USB2-CAN cable and SERIAL USBs for serial comunication.

For this aim, two types of components must be selected: one deals

with the VCC and the other with the Data BUS D+ and D- of the

USB modules;

• Power on/off the power supply of the Electronic Control Unit that has

to be programmed;

• Detach and reattach the ARM-JTAG (10 pin cable), through which

the ECU is linked to the Programmer;

• Short-circuit two pins mounted on the ECU used for its Boot (set of

processes used for the load of kernel of the ECU).

13

14 CHAPTER 2. HARDWARE DESIGN

These requirements are fundamental for the programming of the ECU, since,

for example, to flash the memory of its processor, there is the need to switch

off the power supply before connect the Programmer. Once the Programmer

is accessible from the Raspberry pi, the Power Supply of the ECU can be

switched on and then the USB ports related to the Serial Communication

can be activated.

In the past, many software problems on the ECU were found after the

ECU itself was installed in the vehicle: this was a huge problem since the

ECU had to be replaced with another one. Nowadays instead, OEMs (Orig-

inal Equipment Manufacturers) offer the possibility of using flashing pro-

cedures: a set of software and standards to install on the ECU without

remove it from vehicle. Without enter into detail of programming phases

since it is not part of the project, there exist some programming operations

executed during the ECU boot, which ensure that the firmware is updated

and check the functionality of the application (for example, one of main the

application installed on any ECU is the ABS system, that does not lock the

wheels during the vehicle brake) installed on the ECU.

2.1 System description

Before going into the details of the PCB design, it is important to under-

stand how the overall system is composed, from the remote computer to the

ECU (or DUT) to program. The next figure explains better the structure:

2.1. SYSTEM DESCRIPTION 15

Figure 2.1: Structure of the system.

As shown in figure 2.1, it is possible in every moment with a remote PC

to connect, through an IP address, to a simple website in which you can

interact with the Raspberry Pi, where the Application Web is compiled. To

make it possible, it is important to connect the computer, by way of VPN,

to the IP address of the Raspberry Pi. At this point, the Raspberry device,

equipped with two HUBs USB, is now linked to the designed PCB through

a 40 pin cable. This cable is very important because allows to link GPIOs

with PCB components that have to be managed. The ECU (or DUT), the

last component, is powered by 12 V Power Supply and it is connected to the

Raspberry Pi (passing through the PCB) with different cables (Serial Cable,

ARM-JTAG cable, USB2ETH cable, USB2CAN cable and Programmer).

The overall connections will be widely explained in the chapter 4.

In particular, the designed PCB can be described as a composition of 3

sub-systems: the first sub-system is composed by eight couple of

FSUSB30MUX/Relay-Groove, with the aim of switching the eight USB

modules described before; the second one is assembled with two Relays,

16 CHAPTER 2. HARDWARE DESIGN

of which one deals with the Power Supply and one of the Boot; the last

subsystem includes only the 10-BIT Bus SWitch, for the ARM-JTAG cable.

2.2 Rapsberry Pi

Figure 2.2: Raspberry Pi.

The very first step was to interface with the Raspberry Pi’s world. This

very small version of a contemporary computer, with a very little dimension,

was first delivered in 2012 by the United Kingdom Raspberry Pi foundation,

with the aim of promoting subjects such as computer Science and Internet

of Things (IoT) to a varied audience, in a faster and more immediate way.

Equipped with Raspbian OS, Linux-Debian Operating System based, it be-

haves like a real computer: for this reason it is accessible to everyone and

perform a lot of basic operations, from simplest (search on Internet, send

emails, manage document, etc...) to most difficult ones. It can be de-

scribed with the concept of "Single Board Computer" (SBC): in fact it does

not have the need of external hardware to work, but only few peripherals

(RAM, CPU and GPU) are needed to interact with this device. The most

important portion of Raspberry Pi are the GPIOs (General-Purpose-Input-

2.2. RAPSBERRY PI 17

Output pins), through which it can interact with external components, such

as sensors, display LED, Voltage Regulators, Relays, Integrated Circuits

(ICs) and much more. Hence, thanks to its simple configuration and to its

small price, this very useful device can be adopted in projects for personal

use and in general for Embedded Systems. Furthermore it has various fields

of applications, such as Domotic, Automotive, Automation, Education and

so on [7].

2.2.1 Model Used

The first choice was the Raspberry Pi model B+ V1.2, with a RAM memory

of only 512MB. However, its processor (ARM11) isn’t compatible with the

tools of the Programmer needed for flashing the memory of the ECU. Hence,

a more suitable choice, is the usage for the entire project of the Raspberry

Pi 3 model B+, with the following specifications [2]:

• Processor: Broadcom BCM2387, 1.2GHz Quad-Core ARM Cortex-

A53

• Memory: 1GB LPDDR2 SDRAM;

• GPU: Dual Core VideoCore IV® Multimedia Co-Processor;

• MEMORY: 512MB SDRAM;

• OS: Raspbian (LINUX-BASED OS) Boots from Micro SD card;

• POWER: Micro USB socket 5V/2A;

• CONNECTORS: Ethernet, Video Output(HDMI), Audio Output(3.5mm

JACK), 4 x USB 2.0, 40-pin 2.54mm pitch, Camera Connector(15-pin

MIPI Camera-Seria-Interface), Display COnnector (15-pin Display-

Seria-Interface), Memory Card Slot

18 CHAPTER 2. HARDWARE DESIGN

Figure 2.3: Raspberry Pi 3 model B+ [2].

2.2.2 Setup

The very first operation was to install the Operating System on the Raspberry-

pi device: for this purpose, with the help of an external PC equipped with

Windows 10 OS, it was possible to install into a SD card (32GB memory) the

Rapsbian-OS Desktop Version (LINUX-BASED Operating System) through

the software Raspberry Pi Imager, downloadable for free from Google.

Figure 2.4: RaspberryPi Imager [15].

Once the OS is installed, the SD card was insert into the Raspberry Pi

appropriate slot, and the Raspian OS was accessible to begin its setups. At

this point, two main operations was performed: the installation of packages

and the configuration for the ARM Core and Linux Kernel.

2.3. PCB DESIGN 19

• PACKAGES

Through Raspbian shell it was possible to install many packages:

not including those installed for dependencies, the most important

ones are: "python3", that allows to program into python language;

"nodejs", essential for the Application Web design (JavaScript envi-

ronment) and "nginx", for the creation of various servers that will be

explained in the chapter 3.

• INTERFACE OPTIONS CONFIGURATIONS

This operation is very important to interface the Raspberry with ex-

ternal devices that interact with different communication protocols.

Through the command line "sudo raspi-config" it was possible to ac-

cess the Raspberry Pi BIOS, where in particular were enabled the

Camera (for the streaming), the SSH (to consent remote connection),

the SDA/I2C (for the communication with the components used for

switch on/off the USB peripherals) and the Serial.

2.3 PCB design

Nowadays, Printed Circuit Boards are the main part of electronic devices

in several applications, such as Biomedical (defibrillators, electrocardio-

gram, pacemakers,...), automotive (ECUs, navigation systems, sensors, ac-

tuators,...), aerospace, industrial (CNC machines, electrical equipment,...),

or in general, in everyday life (Cellphones, washing machines, microwave

ovens, Personal Computers,...). The need of building and designing PCBs

was born out of the necessity of link together ICs and other electric devices

in a stable, fast and simple way: formerly, this interconnection was done

20 CHAPTER 2. HARDWARE DESIGN

by hand using cables. Today, PCBs have a simple structure, composed

by a insulating material and conductor material: they can be organized

in two types of configurations, one structured by only one copper layer on

top and the other by two copper layers, top and bottom, separated by an

insulating material [14]. The design process of the PCBs is a fundamental

sensitive step, that starts from the motivation for using the PCB until its

conclusive production. Hence, the first operation is to analyze requirements

and research of electronic components: these needs are translated into a

concept and schematic phase, which deals with functionality, size and op-

erating work of the PCB. Subsequently, components are assembled and the

connection are routed. At the end, the overall PCB is tested, and, in case

of success, a report is compiled and PCB can be produced [19]. For this

specific Project, not all the phases were followed: from requirements men-

tioned before, components were chosen and weld together in a multi-plate

hole, and then a model of the PCB was performed, without any reporting

phase and production. The requirements led to the choice of the following

components:

FSUSB30MUX

Figure 2.5: FSUSB30MUX [13].

This component is a DPDT (double-pole-double-throw) low-power

high speed USB 2.0 switch: it is able to switch between the data

coming from two high-speed (480 Mbps) USB input ports. This small

IC, is designed for many applications such as cellphones, TV, printers,

digital cameras and so on. Main features are [13]:

2.3. PCB DESIGN 21

• Maximum Supply Voltage Vcc: +5.5 V;

• Control Input Voltage: +5.5 V

• DC Output Current: 50 mA;

• Operating temperature: 85 C◦

The scheme of this component can be summarized as follows:

Figure 2.6: Scheme of FSUSB30MUX [13].

In the image above: D+ and D- are the data plus and minus respec-

tively of the output USB; the HSD1+ and HSD1- are the data plus

and minus of the first input USB; the HSD2+ and HSD2- are the

ones of the second input USB; S is the Control Signal (connected with

one of the Raspberry Pi GPIO) and OE is a Control Signal used for

enable/disable the switch. In this specific project, there is no need

to switch the data between two input USB ports, but the aim is only

to switch on/off the data coming from the same port. So one of the

couple of input (in particular HSD1+ and HSD1-) are left always un-

connected. Since eight of this multiplexers are needed, the truth table

played a fundamental role to reduce the usage of Raspberry Pi GPIOs.

In fact:

22 CHAPTER 2. HARDWARE DESIGN

Figure 2.7: Truth Table of FSUSB30MUX [13].

the GPIO 2 of Raspberry Pi was connected to all the OEs of the

eight FSUSB30MUXes and it has been set to LOW (the overline in

the symbol OE means that the signal has to been set in the reverse

state); at this point the HSD1+ and HSD1- of each FSUSB30MUX

were always left unconnected and the external input USB is connected

only with the HSD2 port. Hence, with only one GPIO (set to LOW) it

was possible to connect all the switches, and with other eight GPIOs

every single USB was managed and controlled separately.

To work with this very small component, with only 0.5 mm pitch

between its pins, was important to weld them with an appropriate

package, the MSOP10 package. The following images show the phys-

ical dimension of the component and the package:

Figure 2.8: Physical dimension of FSUSB30MUX [13].

2.3. PCB DESIGN 23

Figure 2.9: MSOP10 Package [1].

RELAY GROOVE v1.2

Figure 2.10: Relay Grove v1.2 [16].

This component is a normally-open and bistable relay piloted with an

input signal coming from the Rasperry Pi GPIO: setting the GPIO

to high, a led, mounted in the circuit, lights up red and and the relay

state is changed [16]. For this specific project is used to switch on/off

the VCC of the USBs, to short-circuit the two pins of the ECU used

for the BOOT and to switch on/off the Power Supply of the ECU

(ten of these are used). This component, with regard to switch USBs

state, is flanked with the FSUSB30MUX component: they are con-

trolled by the same GPIO, since the data and Vcc of each USB has

to be switched on/off at the same time (also in this case the usage of

GPIOs is reduced).

24 CHAPTER 2. HARDWARE DESIGN

SN74CBDT3384

Figure 2.11: SN74CBDT3384 [5].

This component is a 10 bit high-speed Bus Switch: it looks like a 2

separated 5-bit channels each piloted by two different OEs and for

this specific case is used to switch on/off the ARM-JTAG cable with

which the ECU is connected with the Programmer. Most important

features are [5]:

• Maximum Supply Voltage Vcc: +5.5 V;

• Control Input Voltage: +5.5 V

• DC channel current: 128 mA;

• Operating temperature: 85 C◦

In the following image, pins description is shown:

Figure 2.12: Pin description of 10 BIT BUS SWITCH [5].

As it can see, there are two separated channel, 1An/1Bn and 2An/2Bn,

each piloted by two different control signals: the 1OE control pin pi-

2.3. PCB DESIGN 25

lots the left side bus connection and the the 2OE pilots the right side

bus connections (5 channels): for this specific application the left side

and right side are piloted by the same pin at the same time, since

there is the need of detach/reattach a 10 pin cable. As described for

the FSUSB30MUX, also for this IC was important to chose a suitable

package to be able to connect it to the Raspberry Pi GPIOs, since it

has very small pins with 0.65 mm distance between each other.

Figure 2.13: TSSOP 24 [3].

26 CHAPTER 2. HARDWARE DESIGN

2.3.1 HIL (Hardware-In-the-Loop) test

Hardware-in-the-Loop is an approach test used mostly in automotive fields:

it is born in Aerospace and Defence industry in the 1950s, from the neces-

sity of ensure security in human life during the executions of tests. Then

it has expanded in automotive fields, since the usual design processes in-

volved in control system development require a lot of validation phases

repeated in loop. For example, the design process starts from the analy-

sis of requirement, followed by tests and eventually, if test is not passed,

by the redefinition of the requirements. Hence, before producing a embed-

ded system, this test ensures costs and time saving [9]. It is widely used

in Model-Based-design processes: in fact, it permits to validate a generic

real-time application connecting them with the physical system [11]. In this

part of the project, with HIL test we mean a procedure in which Raspberry

Pi manages components visible from the device itself. The overall test, ex-

plained better in the chapter 4, is slightly different, since from a remote PC

in laboratory, through the website, the correct functionality of the PCB and

the Application Web is verified connecting them together with a physical

ECU system.

The first test case, called Local HIL, is made with the usage of a breadboard:

Figure 2.14: LOCAL HIL test.

2.3. PCB DESIGN 27

This test consists of manage separately all components with Raspberry

Pi device, in which we can see if an external component is switched on or

switched off. Hence, with a simple program compiled in Python language,

the components were piloted through GPIOs. The test was repeated in

loop until the correct functionality of all components was verified. In the

following image, the functionality of the couple FSUSB30MUX and Relay-

groove is tested linking them together: this subsystem is able to switch

on/off an external USB module (such as a Mouse, Keyboard or Pen Drive),

visible from the Rasperry Pi itself.

Figure 2.15: Connection between FSUSB30MUX and Relay-Groove.

Since the previous test is successfully passed, the other two sub-systems

(two Relay-Grooves and the 10-bit Bus Switch) were tested with the help of

a Multimeter. The following image shows the connection between Raspberry-

Pi GPIOs and the electronic devices:

28 CHAPTER 2. HARDWARE DESIGN

Figure 2.16: Connections of two Relay-Grooves and 10-BIT Bus Switch.

At this point, all components were melded together on a multi-hole

plates: this step was essential in order to reduce the amount of wiring,

since the cables came loose easily. Moreover, this operation allowed to

group all the electronic devices into a organized space subdivided into two

layers. For this purpose, other components were integrated in the circuit:

in particular, one ARCELI RPi GPIO breakout expansion board type T

with 40 pin (together with 20 cm FC40 flat ribbon cable) and a generic

connector for the Power Supply, to feed all the subsystems. Since all the

components are mounted in parallel (the next sub-chapter explains better

the electric scheme of the PCB), a 5V-4A Power Supply is enough to feed

the entire system.

It is also important to explain how the GPIOs usage is organized:

- GPIO 2 is used for the OEs of the eight FSUSB30MUXes;

- GPIOs 3, 4, 17, 27, 22, 10, 9, 11 are used to control the eight couples

previously described;

- GPIO 20 is used for the OE1 and OE2 of the 10-BIT Bus Switch;

2.3. PCB DESIGN 29

- pin 6 (GND) is used to create a common ground between Raspberry Pi

device and the PCB.

Figure 2.17: GPIO description [18].

Currently, the HIL, called now Global HIL, was repeated, for the vali-

dation of the entire system.

Figure 2.18: GLOBAL HIL test.

Various USB modules (also in this case Keyboards, Mouses and Pen

Drives was used) were been connected to the PCB, and with the help of an

HUB USB and USB expansion cables, they can be read from the Raspberry

Pi device. Running from RPi’s shell a simple program in Pyhton, in which

GPIOs were piloted with a time interval of about 3 seconds, was possible

to verify if the external modules were read from the RPi itself: the result

30 CHAPTER 2. HARDWARE DESIGN

has shown that not all the devices were read at the same time, but some

of those, depending on order in which they was switched on or off, took a

little longer to be read by the device. This is due to a simple limitation of

the RPi. Since there is no need that all the modules have to be read within

a certain time frame, the test can be considered as successfully passed. The

next images show respectively the overall connection between components

on the PCB prototype and a representation of the real one:

Figure 2.19: PCB prototype connections.

Figure 2.20: Real PCB prototype.

2.4. 3D MODEL OF THE PCB 31

2.4 3D MODEL of the PCB

2.4.1 KiCad

In recent years, grows the need to implement PCB for domestic or industrial

use with a fast and simple way. There exist a lot of softwares, such us Eagle,

Kicad, FreePCB and so on, that are on sale for the implementation of circuit

diagrams and PCB design. In fact, a lot of libraries of various components

are shared for users, and this makes the modelling phase an efficient and fast

work. For this specific project, KiCad open-source software was used, but

same procedures can be adopted on other software since the methodologies

are the same. The work on this phase ends on the 3d modelling of the

PCB, but a next implementation could be an home-made production with

the help of a printer, a bromograph and photosensitive copper plate [6]. The

KiCad software work-flow can be represented by the following flow-chart:

Figure 2.21: KiCad work-flow flowchart [6].

32 CHAPTER 2. HARDWARE DESIGN

As it can see from the image, the first step is the creation of the scheme

of the electric circuit: the symbols of the components are add from stan-

dard libraries, otherwise they are created or searched on internet suitable

web pages. Once the component is put into the schematic, the relative

footprint is added: at this point, the what is called Netlist was created and

exported into PCBnew, a tool that permits to create the electric tracks be-

tween components, to choose the appropriate dimensions of the PCB and

to visualize it through a 3D Visualizer.

2.4.2 Electric Scheme

The electric scheme of the PCB was created by adding the symbols of the

components previously described:

Coaxial Power connector

This is a schematic of a common connector for the Power Supply input

of coaxial shape:

Figure 2.22: Coaxial Power connector electric scheme.

SN74CBDT3384 (10-Bit Bus Switch)

The schematic of the SN74CBDT3384 is coupled with the schematic of

two ARM-JTAG 10 pin header, used for the switch of the ARM-JTAG

cable with which the ECU is connected to the Programmer:

2.4. 3D MODEL OF THE PCB 33

Figure 2.23: 10-Bit Bus Switch electric scheme.

40 PIN header

This component is able to replicate the 40 pins mounted in the Rasp-

berry Pi device for the managing of the GPIOs:

Figure 2.24: 40 PIN header scheme.

FSUSB30MUX

The schematic of the USB switches is represented as follows:

Figure 2.25: FSUSB30MUX electric scheme.

34 CHAPTER 2. HARDWARE DESIGN

USB type A

In the following image are represented the schematics of a generic

Female USB port, of which one is connected to the HUB USB, and

one with an external USB module:

Figure 2.26: Female USB electric scheme.

Relay-Groove

The schematic of the Relay-Grove circuit was imported from the ven-

dor website, and it is composed of a bistable relay, of a transistor

piloted by a control signal (the GPIO) for the control of the state of

the relay, and of a Power Regulator:

Figure 2.27: Relay-Groove electric scheme.

Once all the symbols was generated, they are put in the same schematic

file in order to create the overall electric circuit of the PCB, producing the

following result (due to paper limitation, some of the components are shown

one time):

2.4. 3D MODEL OF THE PCB 35

Figure 2.28: Overall Electric Circuit scheme.

Currently, since the electric scheme is correctly built, the Netlist is ex-

ported and subsequently imported in the PCBnew tool for the creation

of the electric routes: this is a essential phase in which every connection

was drawn in order to link all components together. For this project, the

designed PCB has electric tracks in both bottom and top side:

Figure 2.29: PCB electric routing.

36 CHAPTER 2. HARDWARE DESIGN

Now, through a 3D visualizer, it is possible view the 3D model of the

designed PCB:

Figure 2.30: Top, Bottom and Side 3D view of the PCB.

Chapter 3

Software design

3.1 What is an Application Web?

Currently, does not exist a unique definition of web application, but with

this term we mean systems based on client-server communication services.

In the past, web services were born with the need of sharing files between

users or to send emails, and then, with the growth of concepts such as

IoT (Internet of Things), API (Application Programming Interfaces), SOA

(Service Oriented Architecture), web services finalities evolved into dynamic

structure used for entertainment, information, smart-working , e-commerce

and so on. In fact, World Wide Web has modified its own nature: from

a static entity done by a set of web pages it is improved into an vigorous

architecture that communicates with servers and databases services. To un-

derstand better the notion of web application, it has to be compared with a

desktop application: the first one can share and distribute data into a multi

address environment, while a desktop application is run into the device in

which the application is installed, and data are managed in a unique ad-

dress space. Therefore, early, the web pages shared static documents placed

into a server web: the user, who is connected to the web client application,

through a suitable interface option, could request the relative document and

wait for an answer from server. Then, this methodologies were improved

37

38 CHAPTER 3. SOFTWARE DESIGN

by involving together programming languages like JavaScript, PHP, Java,

Jquery, Ajax and HTML, for both client and server side. Web application

can manage a lot of users simultaneously, while the user, in the client side,

has not particular software settings to perform: this makes the communi-

cation client-server an easy and fast process [4]. Essentially, the changes in

terms of server-client communication can be summarized as follows[12]:

• First configuration involves only two computers: one computer-client

accesses to the web site and through network can communicate with

the second one in which web server is compiled [12].

Figure 3.1: Old configuration web structure.

• Second configurations instead deals with several computers: again,

the first one is used by the user that is served by the second computer

that runs the web server. The last one is connected to N-computers

in which various application servers are installed and run in parallel

[12].

3.1. WHAT IS AN APPLICATION WEB? 39

Figure 3.2: Recent configuration web structure.

The differences between the two configurations are clearly evident: from

a weak structure you pass into a more secure, reliable and scalable one.

In this project case, an external PC accesses to a browser web page by

inserting in the browser URL the IP-address of Raspberry-Pi, in which

front-end and back-end of the application web is built. In particular, RPi

executes Nginx proxy-server (explained better in the following section), in

which client-side part is compiled, and other servers that deals with back-

end part.

Front-end

This part is structured with four main files:"index.html", for the struc-

ture of the web page, "index.css", that deals with the style pages, and

other three JavaScript files, "coding.js", "buttons.js" and "serial.js",

which communicate with server side.

Back-end

The back-end part is made of four servers:

• OPENApi: it is an HTTP server for remote managing RPi GPIOs;

• COMPILER.js: web-socket server that manages an online com-

piler for the remote ECU programming;

• STREAMING.py: for the Video Streaming;

40 CHAPTER 3. SOFTWARE DESIGN

• SERIAL.js: web-socket server for the visualization of Serial Out-

put coming from the ECU.

In other words, the Web Site makes available to the client interface struc-

tures that are managed remotely from servers, and that allows to play a

lot of functionalities, from the streaming to the online programming. Ng-

inx is only an intermediary element that makes possible the communication

between client-side and server-side.

The overall structure can be described as follows:

Figure 3.3: Application web structure.

3.2. NGINX 41

3.2 NGINX

To increase efficiency in communication through internet it is important to

evaluate the performances of Web servers. Nowadays, we are searching for

criteria such as accuracy, velocity and efficiency in communication services

through network world. There exist a lot of web server that have very good

performances, like Apache, Ngnix, IIS and Lighttpd: Nginx, used also in

this project, is one of the last developed web server which excels in terms

of CPU utilization, service rate, memory usage and fast response time [8].

Nginx, that stands for "Engine-X", is an open-source web server that be-

haves like a reverse-proxy server: this means that, when a client requests

any content from the web page, NGINX recovers these contents coming from

different servers and sends them back to the client as if they came from the

same server.

3.2.1 NGINX configuration

The configuration starts with the installation of this web server into the

Raspberry device. Through the shell command "sudo apt-get install nginx"

we begin the installation located into the path /etc/nginx/ and /var/www/.

In the first path there are several configuration files, while in the second one

the HTML page (web interface), that is located together with the front-end

part of the Application web, described in the section 3.4. At this point, the

main file, called "nginx.conf", was modified to allow the communication be-

tween client-side and server-side. NGINX manages both master and worker

processes: the master ones deal with decodification of the main configura-

tion directives, while the seconds are responsible for managing the client

requests. In particular, NGINX makes available to the client four upstream

42 CHAPTER 3. SOFTWARE DESIGN

servers through port 80 and the configuration includes the following code:

server {

listen 80;

server_name localhost;

root /var/www;

gzip_static always;

index index.html;

include nginx_locations.conf;

}

This allows to access to the page web, served by the file "index.html"

located into the path /var/www/, by inserting on the browser URL the

following line:

http://localhost:80/

At this point, the four servers are accessible, by defining on the configu-

ration file "nginx_http.conf" four upstream servers (term upstream means

that NGINX acts as balance loader between the servers):

upstream smarthub {

server 127.0.0.1:8080; # OPENApi server for GPIOs

}

upstream smarthub-compiler{

server 127.0.0.1:9001; # Online Compiler

}

upstream smarthub-serial{

server 127.0.0.1:9002; # Serial ECU output

}

upstream smarthub-streaming{

server 127.0.0.1:9003; # Streaming Video

}

3.2. NGINX 43

As it can be seen from the code above, each server communicates through

different ports (8080, 9001, 9002 and 9003) and NGINX serves to the client

all of these with an unique port, the 80 precisely. In the end, another im-

portant configuration file, located in the /etc/nginx/ path and called "ng-

inx_locations.conf", is considered. In this file are defined the paths which

address the client requests to the right servers. This file is characterized by

the following code:

location /v2/ {

proxy_pass http://smarthub/v2/;

}

location /smarthub-compiler {

proxy_pass http://smarthub-compiler;

proxy_http_version 1.1;

proxy_set_header Upgrade $http_upgrade;

proxy_set_header Connection $connection_upgrade;

}

location /smarthub-serial {

proxy_pass http://smarthub-serial;

proxy_http_version 1.1;

proxy_set_header Upgrade $http_upgrade;

proxy_set_header Connection $connection_upgrade;

}

location /smarthub-streaming{

proxy_pass http://smarthub-streaming

proxy_http_version 1.1;

proxy_set_header Upgrade $http_upgrade;

proxy_set_header Connection $connection_upgrade;

}

44 CHAPTER 3. SOFTWARE DESIGN

In particular, the location function defines, after the symbol "/", the

path of requests linked to relative servers, initialized with the upstream

command. Hence, to make an example, when the client uses the online

compiler (described in the following section), NGINX directs the requests

towards the server called smarthub-websocket, and the same happens for the

other servers.

3.3 Back-end

With Back-end, that deals with the server-side, we mean all the operations

executed behind any application web that the client does not visualize, but

with which he can interact. Many programming languages can be used

to develop the back-end such as HTML, Python, SQL (in case of database

development), JavaScript, nodejs (JavaScript runtime) and other more. For

this specific project, the server-side handle the remote programming of the

ECU. It must be capable of:

• manage GPIOs remotely (switch on/off devices described in the last

Chapter) with suitable buttons. This is done by developing with

Python language the what is called "OPENApi" HTTP server;

• carry out the real programming phase through the Programmer using

the shell of the Raspberry-Pi: for this purpose a web-socket server,

written in JavaScript, called "COMPILER.js" is built;

• visualize through a suitable area in the client side the Serial Output

coming from the ECU: another web-socket server, called this time

"SERIAL.js", is developed;

• show through Streaming video the correct functionality of the ECU

and other devices, with the implementation of a python web-socket

server named "STREAMING.py";

3.3. BACK-END 45

3.3.1 OPEN-API

Before enter into details on the building of the server, it is important to

give the definition of what is called API (Application Programming Inter-

faces), namely a set of tools that consent to access to resources or data from

a server: it behaves like a "courier" which mediates between request and

response. For this project we will deals precisely with RESTful API, a par-

ticular type of API that returns resources and relative responses through

HTTP protocol in JSON format, one of the most popular programming

languages. More specifically, the client makes requests through the browser

using URI and HTTP methods: the main are GET (get data from server),

PUT (modify data into server), POST (send data to server) and DELETE

(cancel data from server). The RESTful API acts as an intermediary be-

tween client and server and gives back to client a response and the relative

resource [10]. But, what is OPENApi? OPENApi is a documentation for

managing RESTful API services. Also called Swagger, it is an open-source

tool that creates documentation for the API based on HTTP, using the

YAML (used for this project) and JSON languages. Hence, trough Swag-

ger.io site, a online compiler for API documentation, the yaml code, called

"smarthub.yaml", is compiled. In this file program, are defined the resources

and methods with which we want to access the data. In particular the fol-

lowing resources and methods were defined:

• The information of the USBs, JTAG, POWER SUPPLY and BOOT

status (ON or OFF) through the GET method;

• Changing the USBs, JTAG, POWER SUPPLY and BOOT status

through PUT method;

• The information of the ports used for the Serial output, using the

GET method;

This means that the client, using the URL browser, can access to the

resource and perform operations in order to know or to change remotely the

46 CHAPTER 3. SOFTWARE DESIGN

status of the USBs, the BOOT, the POWER SUPPLY, the JTAG and the

serial ports, used for the Programming. The next image shows the visual-

ization of the API:

Figure 3.4: API visualization through Swagger Editor.

At this point we can build the OPENApi server that manages the API:

through command prompt on Windows 10 we generate the server start-

ing from the smarthub.yaml file by installing the what is called OpenApi

Generator and subsequently by running the following command line:

npx @openapitools/openapi-generator-cli generate -i

smarthub.yaml -g python-flask -o D:\SmartHub

In a folder, called SmartHub, is created the source code of the OPE-

NApi server compiled in Python. The main Python files are located into the

folder SmartHub/openapi_server/controllers and are responsible for man-

3.3. BACK-END 47

aging GPIOs connected to the external module described in the previous

chapter:

• usb_controller.py: this file is responsible for managing GPIOs in

which are connected electronic components for switching on/off the

external USB modules. It returns the value (HIGH or LOW) of the

pin and consequently the status of the relative USB;

• jtag_controller.py: this file pilots pin in which the JTAG module

is connected;

• boot_controller.py: used for the BOOT of the ECU;

• power_controller.py: controls and manages the POWER SUPPlY

of the ECU;

• ports_controller.py: returns the actual port in which an external

serial port is connected.

Once the server is generated and its main code files are modified, the

overall folder SmartHub is imported into Raspberry Pi device and it is run

by writing on the shell the following commands

python3 -m openapi_server

The server is running on the 8080 port, but is served from NGINX to the

client on port 80. Moreover, it is an HTTP static server: this means that it

sends responses to the client if and only if the client makes a request; in the

other cases the server remains in "wait" mode. To test the functionalities

of this server the RESTMAN tool (an open-source online tool) is used:

it is equipped with a suitable interface in which you can see the responses

from the server and you can select the methods (GET or PUT in this case)

with which make requests to the server.

48 CHAPTER 3. SOFTWARE DESIGN

Figure 3.5: OPENApi Server shell output.

3.3.2 Node.js

Usually the development of a Web based application is split between two

different professional figures: Front-end developer, who deals with HTML,

CSS and JavaScript programming languages for the implementation of the

web site design and the relative style and visual effects, and Back-end devel-

oper, which creates the algorithm of the application by using PHP, JAVA,

JavaScript and eventually, in case of databases presence, SQL. Most of

cases, both of the developers must have knowledge on both of back-end and

front-end parts: in this case we speak about Full Stack developers. Node.js

plays an important role for this purpose: it solves the problem related on

the knowledge of different languages for Full Stack development about the

implementation of an application in both server and client sides. In fact,

one of the advantages of using Node.js, is that it require the only knowledge

of JavaScript: the developer does not have to switch between multiple lan-

guages while it is developing client and server side of an application web.

Node.js has many application fields, between which SPA (Single Page Appli-

cations), NodeOS (JavaScript based Operating System) and IoT (Internet

of Things). The strong point of Node.js is that it is suitable for development

of applications for embedded system, as in this case, since it makes available

asynchronous and event-driven functions [17]. For this project two Node.js

based web-socket servers were created.

3.3. BACK-END 49

COMPILER.js

This server is responsible for the management of the online compiler.

Being a web-socket server, it remains always in "open" mode on port

9001: it receives as input from the client a script specially created

for the ECU programming. This script language is made of several

commands:

• "USB num_usb mode_usb": "num_usb" is replaced with

a number which identifies the USB that we want to switch and

"mode_usb" is replaced with ON (or OFF);

• "wait seconds": "second" is replaced with a number related to

the interval time between one command and the next one;

• "jtag mode_jtag": for switch on/off the JTAG module;

• "power mode_power": for switch on/off the Power Supply of

the ECU;

• "boot mode_boot": for switch on/off the Boot of the ECU;

• "from cmd:" : this command allows the client to directly write

a series of commands executed on the Raspberry Pi shell. In fact,

the COMPILER.js takes as input this command and returns a re-

sponse in term of what is called "stdout" and "stderr", standard

channels in which the operating system warns if the command

was successful or if there is an error.

Once the script message is received from the client, the server perform

the operations (get, put, wait or write on shell) specified from the

script itself, and after the operation is ended, the server send back to

the client a message: this message could be the output of the operation

in case of successful, or an error message in case of failed operation.

The output generated after the shell command "node COMPILER.js"

is the following:

50 CHAPTER 3. SOFTWARE DESIGN

Figure 3.6: COMPILER.js Server shell output.

SERIAL.js

This server is a web-socket server always open on port 9002. It sends

to the client, in a suitable textarea, the output of the serial communi-

cation coming from the ECU. In particular, the client, from the web

interface, selects the port number in which the serial USB is connected

and the baud rate (transmission speed) of the data coming from the

serial of the ECU (usually 115200 bps is chosen); then it clicks on a

specific button for the visualization of the output. Through the shell

command "node SERIAL.js" the following output is generated:

Figure 3.7: SERIAL.js Server shell output.

3.3.3 STREAMING.py

This is the last server, used for the Streaming Video, useful to check re-

motely the correct functionality of the entire system. Also in this case we

speak about web-socket server, served on port 9003. Compiled in Python,

it uses packages for the management of the PiCamera module connected

to the Raspberry Pi: through a parameter in which is defined the IP ad-

dress of the Raspberry Pi that makes available the HTML page, it creates

a "stream.mjpeg" file that contains the output of the video recorded by the

camera, with a certain frame rate defined in the code (30 fps is chosen).

This mjpeg file is called back into the HTML page through the code for the

streaming:

3.3. BACK-END 51

By executing the shell command "python3 STREAMING.py", the result

is the following:

Figure 3.8: STREAMING.py Server shell output.

52 CHAPTER 3. SOFTWARE DESIGN

3.4 Front-end

The term "Front-end" stands for any graphical interface with which the

client, through browser, can interact to perform any operation, from sharing

data to requesting resources from servers or from databases. Any applica-

tion web has its own interface, whose functionality depends on the purpose

for which the application is implemented. Nowadays, is grown more and

more the need of a well-organized graphical interface, in order to make the

client experience pleasant and intuitive. In this regard, usually the web

page is composed by a multiple file codes, written in different programming

languages. In particular, with HTML5 language (the new updated version

of HTML) the structure of the page is built, and with CSS the style ele-

ments are implemented into the structure. In the end, other files in other

languages, such as PHP or JavaScript, are used in order to add graphical

effects or to perform communication between client-side and server-side. In

this project, the Front-end development is made of the following files:

• "index.html" ;

• "index.css" ;

• "buttons.js" ;

• "coding.js" ;

• "serial.js".

This files are located into the Rapsberry Pi device in the path /var/www/ :

this folder is served by NGINX to make accessible the interface to the client.

The following part gives a more detailed description of the documents men-

tioned before, in order to make clarification on how the interface (client-side)

is connected to the server-side.

3.4. FRONT-END 53

3.4.1 index.html

This file, written on HTML5 language, contains the overall structure of the

web interface and some JavaScript function. In particular, the structure

contains:

• Navigation bar: it is always fixed in the top of the page through

a JavaScript function called "fixnavbar" and it is used to access to a

specific section.

Figure 3.9: Navigation Bar of the Web site.

• Home section: this section contains the general information about

the project, explaining the content of the web page.

Figure 3.10: Home section of the Web site.

• Buttons section: contains all the buttons relatives to all the mod-

ules (Programmer, USB Pen Drives, Serial USBs, Power Supply, Boot,

Jtag) to switch on/off. Each button, marked with a what is called

check-box, is identified by an id and is associated with a function,

called SwitchUSB, that performs PUT requests to change each USB

status and consequentially the relative button position.

54 CHAPTER 3. SOFTWARE DESIGN

Figure 3.11: Buttons section of the Web site.

• Compiler section: contains two textarea elements. One of this

textarea is dedicated to writing a script to be sent to the COM-

PILER.js server via a button marked with the word "COMPILE" ;

the other one textarea shows the output of the responses send back

from the server.

Figure 3.12: Compiler section of the Web site.

• Serial section: this section is dedicated to the output of the Serial

communication coming from the ECU. In particular, there are five

elements: two list elements in which you can choose the actual active

3.4. FRONT-END 55

port for the serial communication and the baud rate speed; one button

element, marked with "VIEW", that sends the data selected from

the list elements to the SERIAL.js server; a textarea element for the

visualization of the serial output; and another button, marked with

the word "ADD", which allows to duplicate the previous elements to

visualize different outputs coming from other ports and baud rates.

Figure 3.13: Serial section of the Web site.

• Footer: is the last section of the web page, located in the bottom

side, in which are present personal information and contact and web

site of the company in which the project was performed.

Figure 3.14: Footer of the Web site.

3.4.2 index.css

This is a CSS file, called in the index.html file, responsible for the style

of the elements initialized on the HTML file: for example, the colors of

the buttons at different positions, background of various sections, style and

56 CHAPTER 3. SOFTWARE DESIGN

color of the navigation bar and of the footer, position and width of the

elements inside of the section, and so on.

3.4.3 button.js

This file contains JavaScript functions for the HTTP requests to the OPE-

NApi server. These requests are executed in two ways: the GET request is

done at the load of the web page, so that, every time you access the page,

you have information about the actual status of the buttons, and therefore

of the modules; instead the PUT request are performed by pressing the but-

tons, changing the status of the modules. Without reporting the content

of all the functions, on the following code example the general structure is

explained, in order to better understand how the client is connected to the

server:

function (){

$.ajax({

method: "GET"

url: ’http://’+ location.host +’:80/v2/jtag’,

success: function(data, code, status) {

error: function() {console.log(arguments)},

})

};

As it can be noticed from the code above, this function calls an AJAX

(Asynchronous JavaScript and XML) function dedicated to the management

of the requests coming from the client, forwarding them to the server. In

particular, it specifies the methods with which make the requests and the

URL in which write the IP address of the Raspberry Pi followed by the

name of modules of which you want to modify or know the status. These

modules are exactly the API previously defined. At this point, on the base

3.4. FRONT-END 57

of the values present in the variable "data" (1 if ON or 0 if OFF), the

position of the button is changed in the correct position.

3.4.4 coding.js

This file is characterized by JavaScript functions that interfaces the client

with the COMPILER.js server (Online Compiler). In particular, it takes

the script sentences written in the textarea by the client and, before send

them to the server, it checks if there are errors on the script with the usage

of a flag. When no error occurs, every sentence is forwarded one at a time to

the server: the next operation can be performed only if previous operation,

executed on the server-side, returns a successful output.

3.4.5 serial.js

This is a JavaScript file that interacts with the SERIAL.js server for the

serial communication output. It takes the port and baud rate information

from the list elements and saves them into a string variable called "com-

mand" to send to the server: at this point the server takes this string and

creates a serial port variable in which are present serial data coming from

the ECU. In particular, in the server side:

var PORT = command[0];

var BAUDRATE = Number(command[1]);

var port = new SerialPort({

path:"/dev/"+PORT,

baudRate: BAUDRATE,

});

The data saved in the port variable are forwarded to the client and visualized

in a suitable textarea.

58 CHAPTER 3. SOFTWARE DESIGN

Chapter 4

Validation Test

The last phase of this project is related to the test of the entire system: the

aim is to verify if the external components are readable by the Raspberry Pi

through the PCB and visualize in the browser, in which we accessed from

an external PC, the output of some programming operations done on the

ECU. Before enter into the details on the setup and connection between

ECU and Raspberry Pi device, it is important to analyze the TEST case

performed on the ECU. The ECU under consideration is a Magneti Marelli

prototype entrusted to the Abinsula company for what is called "Smoke

Test" or "Build Verification Testing" : these are software tests that allows

to verify if some basic functions on the ECU software work properly. This

particular test is performed during the Validation phase: the first step is

the Pre-Integration test, in which the Development Team checks if the ECU

software is developed according to the SW Requirements and Standards,

the second step instead is the Integration Test, in which Integration Team

performs Automatic Integration Tests, Smoke tests (checks of basic software

functions such as installation and Power-on) and Performance Tests. The

following image shows the System Integration Loop of the ECU.

59

60 CHAPTER 4. VALIDATION TEST

Figure 4.1: System Integration Loop.

4.0.1 Test case

We connected the ECU to the Raspberry Pi through the PCB and we

checked all the functionality executing some operations using the Applica-

tion web. In particular, the following connections were performed:

• The ECU is feed by a 12 V Power Supply through an ODB cable,

switched on/off by one Relay-Groove mounted on the PCB;

• Through a ARM-JTAG cable, we connected across the BUS-SWITCH

the ECU to the Programmer, in turn linked to the Raspberry Pi de-

vice. In this case we can switch on/off both the JTAG and the Pro-

grammer (USB module);

• The ECU was linked to the Raspberry Pi device using one Serial USB,

one USB2CAN cable and USB2ETH cable;

• One Pen Drive module is connected to RPi in order to install a build

into the ECU software.

Once the connections were performed, with an external PC we logged

into the web page by writing in the URL the Raspberry Pi IP address.

The test consisted on writing on the Online Compiler a set of commands

in order to perform some programming operations, and then to verify if the

USB modules, that communicates with different communication protocols,

were read correctly passing trough the electronic components installed in

the PCB. Let’s see an example of script:

61

power off

jtag on

usb programmer on

from cmd: /rfp-cli -d RH850 -t e2 -osc 16.0 -auth id

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -a

/media/data/dut_bootldr_app.hex

With this script command we performed a SW operation that allows to

take from the Pen Drive a Bootloader program (that loads into the ECU

processor the data of the operating system from secondary memory) using

a tool of the E2 Programmer: two types of outputs were generated, one

coming from the Programmer itself and one coming from the Serial com-

munication, visible in the Serial Terminal of the web page. The output was

the following:

Renesas Flash Programmer CLI V1.03

Module Version: V3.09.01.000

Connecting the tool (E2 emulator)

Tool: E2 emulator (0LS005082D)

Interface: 2 wire UART

Tool Firmware Version: V1.02.00.001

Emulator power supply: OFF

Connecting the target device

Enter Main clock [MHz] (8.0 - 24.0)? 16.0

Main Clock: 16 MHz

Speed: 500,000 bps

Enter ID Code (16 Bytes)? FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Connected to R7F701602

Reading data from the device...

This output gives information about the tool used, the clock frequency and

the ECU model showing through the Serial Port some basic instructions

62 CHAPTER 4. VALIDATION TEST

installed in the ECU SW. This means that the Programmer and the ECU

were correctly read from the Raspberry Pi device, passing through PCB

components. Some different script codes were performed, observing that

other communications protocols were readable crossing the PCB.

The results obtained in the previous tests are compared with the same op-

erations performed using an external PC equipped with Ubuntu Operating

System, to which we connected the ECU in the same way done for the

Raspberry Pi. The outputs obtained after the shell commands were the

same for both the PC and the Raspberry Pi device. The only difference

between the two devices was that the RPi requires more time to print the

outputs. This delays are caused not only by the difference in RAM and in

speed of the processors computation, but also by the components installed

into the PCB device: infact, the FSUSB30MUXes interface with external

devices at 480 Mbit/s (typical speed of USB 2.0), unlike the PC that pos-

sesses USB 3.0 ports which manage data at 5Gbit/s. The same holds also

for the JTAG cable that links the ECU to the Programmer through the

10-Bit BUS switch, that seems to slow down the stream of data: we noticed

that between the input and output ports of the BUS Switch, the Multimeter

revealed a resistance between 400 mΩ and 500 mΩ.

Chapter 5

Conclusions

In this thesis is discussed a design description of a Raspberry-Pi shield

used to perform programming operations on the ECU, from both Hardware

and Software (web-based) point of view. The design goes from the choice of

different electronic components until the compilation of an Application Web.

During the HW design process, various HIL tests were performed, with

which the correct functionality of all the components chosen was verified,

before going on into the SW design. After that, the Application web was

build, first compiling the back-end part with NGINX, and then writing the

Front-end part using HTML5 and Javascript languages. The last phase of

the design process was to test the overall system by connecting it to an ECU.

The results obtained led to improve the quality of programming an ECU,

decreasing the time required to perform connections and disconnections

between the ECU and various devices. Thanks to the possibility of a remote

control, problems related to human errors or the risk of ruin contacts and

cables are avoided. However, this component, as it has been built so far, still

has limitations, partially due to Raspberry-Pi performances and partially

due to the electronic components used. A possible improvement could be the

choice of different components which constitute the PCB, for managing data

stream with a faster speed or for managing the programming of multiple

ECUs at the same time. Another improvement could be the choice of a

63

64 CHAPTER 5. CONCLUSIONS

different model of Raspberry-Pi device, or directly the employment of an

embedded PC. Obviously, these updates lead to HW and SW modifications,

and also to higher costs.

Nomenclature

API Appliction Programming Interface

CPU Central Processing Unit

DPDT Double-Pole-Double-Throw

DUT Device Under Test

ECU Engine Control Unit

GPIO General Purpose Input Output

GPU Graphics Processing Unit

HIL Hardware-In-the-Loop

HW Hardware

IC Integrated Circuit

ODB On-Board Diagnostics

OE Output Enable

OEM Original Equipment Manufacturers

OS Operating System

PCB Printed Circuit Board

RPi Raspberry-Pi

65

66 NOMENCLATURE

SBC Single Board Computer

SW Software

URI Uniform resource identifier

URL Uniform Resource Locator

List of Figures

2.1 Structure of the system. 15

2.2 Raspberry Pi. 16

2.3 Raspberry Pi 3 model B+ [2]. 18

2.4 RaspberryPi Imager [15]. 18

2.5 FSUSB30MUX [13]. 20

2.6 Scheme of FSUSB30MUX [13]. 21

2.7 Truth Table of FSUSB30MUX [13]. 22

2.8 Physical dimension of FSUSB30MUX [13]. 22

2.9 MSOP10 Package [1]. 23

2.10 Relay Grove v1.2 [16]. 23

2.11 SN74CBDT3384 [5]. 24

2.12 Pin description of 10 BIT BUS SWITCH [5]. 24

2.13 TSSOP 24 [3]. 25

2.14 LOCAL HIL test. 26

2.15 Connection between FSUSB30MUX and Relay-Groove. . . . 27

2.16 Connections of two Relay-Grooves and 10-BIT Bus Switch. . 28

2.17 GPIO description [18]. 29

2.18 GLOBAL HIL test. 29

2.19 PCB prototype connections. 30

2.20 Real PCB prototype. 30

2.21 KiCad work-flow flowchart [6]. 31

2.22 Coaxial Power connector electric scheme. 32

2.23 10-Bit Bus Switch electric scheme. 33

67

68 LIST OF FIGURES

2.24 40 PIN header scheme. 33

2.25 FSUSB30MUX electric scheme. 33

2.26 Female USB electric scheme. 34

2.27 Relay-Groove electric scheme. 34

2.28 Overall Electric Circuit scheme. 35

2.29 PCB electric routing. 35

2.30 Top, Bottom and Side 3D view of the PCB. 36

3.1 Old configuration web structure. 38

3.2 Recent configuration web structure. 39

3.3 Application web structure. 40

3.4 API visualization through Swagger Editor. 46

3.5 OPENApi Server shell output. 48

3.6 COMPILER.js Server shell output. 50

3.7 SERIAL.js Server shell output. 50

3.8 STREAMING.py Server shell output. 51

3.9 Navigation Bar of the Web site. 53

3.10 Home section of the Web site. 53

3.11 Buttons section of the Web site. 54

3.12 Compiler section of the Web site. 54

3.13 Serial section of the Web site. 55

3.14 Footer of the Web site. 55

4.1 System Integration Loop. 60

Bibliography

[1] Lcqt-msop10. https://www.digikey.it/it/products/detail/

aries-electronics/LCQT-MSOP10/4754589.

[2] Raspberry pi 3 model b+. https://

static.raspberrypi.org/files/product-briefs/

Raspberry-Pi-Model-Bplus-Product-Brief.pdf.

[3] Ic adapter soic24 / tssop24 to dip24 pitch 15.24mm ups-so24. https:

//www.gmelectronic.com/ups-so-24-tssop-24-dil24.

[4] Nalaka Ruwan Dissanayake and Kapila Asanga Dias. Web-based Ap-

plications: Extending the General Perspective of the Service of Web.

August 2017.

[5] Texas Instruments, editor. SN74CBT3384A 10-BIT FET BUS

SWITCH. https://www.ti.com/lit/ds/symlink/sn74cbt3384a.

pdf?HQS=dis-mous-null-mousermode-dsf-pf-null-wwe&ts=

1656080808744&ref_url=https.

[6] David Jahshan, Phil Hutchinson, Fabrizio Tappero, Christina Jarron,

and Melroy van den Berg. Getting Started in KiCad, May 2015.

[7] Steven J Johnston and Simon J Cox. The Raspberry Pi: A Technology

Disrupter, and the Enabler of Dreams. July 2017.

[8] Douglas Kunda, Sipiwe Chihana, and Sinyinda Muwanei. Web Server

Performance of Apache and Nginx: A Systematic Literature Review.

November 2017.

69

70 BIBLIOGRAPHY

[9] Syed Nabi, Mahesh Balike, and Jace Allen. An Overview of Hardware-

In-the-Loop Testing Systems at Visteon. March 2004.

[10] Andy Neumann, Nuno Laranjeiro, and Sarang Noether. An Analysis

of Public REST Web Service APIs. July 2021.

[11] P.C. Nissimagoudar, Venkatesh Mane, Gireesha H M, and Nalini C.

Iyer. Hardware-in-the-loop (HIL) Simulation Technique for an Auto-

motive Electronics Course. 2019.

[12] Jeff Offutt. Web Software Applications Quality Attributes.

[13] onsemi / Fairchild, editor. FSUSB30 Low-Power, Two-Port, High-

Speed USB 2.0 (480 Mbps) Switch. https://www.mouser.it/

datasheet/2/308/1/FSUSB30_D-2314152.pdf.

[14] Francisco Perdigones and José Manuel Quero. Printed Circuit Boards:

The Layers’ Functions for Electronic and Biomedical Engineering.

March 2022.

[15] Emma Roth. The raspberry pi image flasher receives an

important update, MAR 2021. https://www.makeuseof.com/

raspberry-pi-image-flasher-receives-important-update/.

[16] seeedstudio. Grove - relay. https://wiki.seeedstudio.com/

Grove-Relay/.

[17] Hezbullah Shah and Tariq Rahim Soomro. Node.js Challenges in Im-

plementation. May 2017.

[18] TerryWarwick, Rsa Meser, Matt Wojo, and Sara Clay. Mapping dei

pin raspberry pi 2 3. https://docs.microsoft.com/it-it/windows/

iot-core/learn-about-hardware/pinmappings/pinmappingsrpi.

[19] Nikola Zlatanov. PCB Design Process and Fabrication Challenges.

September 2012.

