
POLITECNICO DI TORINO

Master degree course in Electronic engineering

Master Degree Thesis

Side-channel leakage assessment
methodology applied to Post

Quantum Cryptography algorithm

Supervisor:
prof. Guido Masera
Co-supervisor:
prof. Maurizio Martina

Candidate:

Lorenzo Cecchetti

Accademic year 2021-2022

This work is subject to the Creative Commons Licence

Contents

List of Tables 5

List of Figures 6

1 Introduction 9

2 Post-quantum cryptography 13
2.1 Classic McEliece . 13

2.1.1 Key and matrices generation . 15
2.1.2 Encryption . 15
2.1.3 Decryption . 15

2.2 LEDAcrypt . 16
2.2.1 Key and matrices generation . 16
2.2.2 Encryption . 17
2.2.3 Decryption . 18

3 Vector By Sparse Circulant binary multiplier 19
3.1 Algorithm . 19
3.2 Architecture . 20

3.2.1 Datapath . 21
3.2.2 Control unit . 22

4 Power Analysis Attacks 25
4.1 Simple Power Analysis attack . 26

4.1.1 Template based attack . 26
4.2 Differential Power Analysis attack . 28

4.2.1 Choice of the instrumentation 28
4.2.2 Measurement . 30
4.2.3 Signal processing . 30
4.2.4 Prediction and selection function generation 31
4.2.5 Differential traces production 31
4.2.6 Results evaluation . 31

4.3 Correlation Power Analysis attack . 34

3

4.3.1 Power consumption measurement 34
4.3.2 Power model choice . 35
4.3.3 Intermediate value choice . 37
4.3.4 Intermediate value computation 37
4.3.5 Power consumption prediction 37
4.3.6 Correlation trace generation . 38
4.3.7 Results evaluation . 39

5 Methodology 43
5.1 Power Traces generation . 43

5.1.1 QuestaSim script . 45
5.1.2 PrimeTime script . 46

5.2 Simulation of a Power Analysis Attack 49
5.2.1 Power model choice . 50
5.2.2 Intermediate value choice . 51
5.2.3 Intermediate value computation 51
5.2.4 Power consumption prediction 52
5.2.5 Generation of correlation traces 52
5.2.6 Results evaluation . 53

5.3 Threshold frequency detection . 60
5.3.1 Results . 61

6 CPA attack on a multiplier FPGA implementation 63
6.1 VirtLab architecture . 63

6.1.1 Master side . 64
6.1.2 User side . 65

6.2 Power trace recording . 65
6.3 Results . 67

4

List of Tables

5.1 First value written in the SynNew register during the first 3 cycles. . . 56
5.2 Second value written in the SynNew register during the first 3 cycles. . 56
5.3 First value written in the SynNew register during the first 4 cycles. . . 58
5.4 Second value written in the SynNew register during the first 4 cycles. . 58
5.5 Values of the correct key peak, the highest wrong key peak and the

accuracy of the result depending on the working frequency of the multiplier. 61

5

List of Figures

3.1 First level of the Collapse Unit . 22
3.2 Schematic of the multiplier datapath. 24
4.1 Figure showing 3 traces. Going from top to bottom, the first and second

one are the average traces of two subsets, while the third one is the
difference trace. 29

4.2 Typical setup for a DPA attack. 30
4.3 Scheme of the trace division into subsets based on the value assumed by

the selection function for each possible key value. 32
4.4 Scheme representing how the differential trace for each key value is pro-

duced starting from the trace subsets. 32
4.5 Difference between the differential trace of a correct key value and an

incorrect one. 33
4.6 Graphical representation of the correlation coefficient meaning. 39
4.7 Difference between the correlation trace of a correct key value and an

incorrect one.K:rifare . 40
4.8 CPA attack steps. 41
5.1 ASIC design flow. 44
5.2 Sequence of tools used to produce the power traces. 45
5.3 Sequence of operations executed by the QuestaSim script. 46
5.4 Sequence of operations executed by the PrimeTime script. 48
5.5 Power trace produced by PrimeTime representing the power consump-

tion of the polynomial multiplier during the whole multiplication. . . . 48
5.6 Small portion of the multiplier power trace shown in Figure 5.5. 49
5.7 Execution order of the attack steps done on the multiplier. 50
5.8 Architecture of the polynomial multiplier where it is shown the register

whose content has been chosen as intermediate value to be attacked. . . 51
5.9 Structure of one of the V matrices . 52
5.10 Creation of the H matrix starting from the two V matrices. 52
5.11 Creation of the R matrix starting from the H matrix and T matrix . . 53
5.12 Plot showing all the correlation traces containing a strong correlation

value for the guessing of the key position 1. 55
5.13 Zoom of Figure 5.12 in the part containing the highest correlation values. 55

6

5.14 Plot showing the correlation traces having a strong correlation peak
during the guessing of the key position 2. 55

5.15 Plot showing the correlation traces having a strong correlation peak
during the guessing of the key position 11. 60

5.16 Graph representing the behaviour of the correlation peak of the correct
key value and an indication on the accuracy of the attack depending on
the working frequency of the multiplier. 61

6.1 Block diagram of the VirtLab architecture. 64
6.2 Measuring setup used to record power traces using the VirtLab board. . 66

7

8

Chapter 1

Introduction

In the last decades the most important factor that has changed our lifestyle is the
technological evolution. In the electronic and computer science field a huge step forward
will happen with the rise of quantum computers that with their exponential increase
in the computation capabilities are going to break all the cryptography algorithms
that are commonly used. That is why the NIST (National Institute of Standards and
Technology) has launched a competition open to everyone whose goal is to find new
standards and algorithms that could be used in the future era of quantum computers.
The focus of this competition are algorithms on Public Key Cryptography (asymmetric
cryptography) and on the digital signature problem. The most promising solutions for
PKC are:

• McEliece which is a code-based cryptosystem;

• NTRU that instead is a lattice-based cryptosystem.

Code-based cryptosystems have the Public Key (PK) and Secret Key (SK) based on
the Encoding/Decoding matrices of an Error Correcting Code and in McEliece cryp-
tosystems Goppa Codes are employed. McEliece has been proved to be secure against
current quantum computer attacks since it relies on a problem to be solved by the
attacker which is different from the ones used nowadays like the factorization of a very
big number. In fact the property that this cryptosystem has is that it is impossible to
recover the private code from the public key because the attacker does not know any
characteristic of it.
The main problem of McEliece is the huge dimension of the public and private keys
which limits its adoption in most of the systems. Low Complexity variants has been
proposed in the NIST competition, among them LEDAcrypt/BIKE are code based pro-
posals that adopt LDPC/MDPC codes. LEDAcrypt is composed by two algorithms:
a key encapsulation mechanism for symmetric systems called LEDAkem and an al-
gorithm for asymmetric cryptosystems named LEDApkc. The advantage brought by
LEDA with the respect of McEliece is the use of Low Density Parity Check Codes

9

1 – Introduction

(LDPC) which makes the memory storage of the Secret Key (SK) much more feasible.
Moreover, an efficient hardware implementation has been found to compute the prod-
uct between the Secret Key (SK) matrix which is both sparse and Quasi-Cyclic (QC)
and the message vector. The hardware Implementation of LEDAcrypt appeared to be
the most efficient among the code based ones due to the very low requirement of hard-
ware resources that are needed, but its security towards side-channel attacks has to
be addressed. In the present work its robustness against a specific typology of attacks
called Power Analysis Attacks has been tested.
Those attacks tries to recover the private key used during the encryption or decryption
of the message by exploiting the device power consumption over the time. The three
most important typologies are:

• Simple Power Analysis (SPA);

• Differential Power Analysis (DPA);

• Correlation Power Analysis (CPA).

Simple power analysis is a technique that aims at finding recurrent patterns in a single
power trace in order to find the secret key used, while DPA and CPA requires the use of
multiple traces to be performed. CPA computes the correlation between the measured
power traces and a predicted power consumption value and finds the private key by
searching the highest correlation value obtained. Instead DPA divides the collected
power traces into subsets based on some key binary selection functions, then the traces
belonging to the same subset are averaged and the trace obtained is subtracted to the
one computed on the other subset of the same selection function. The correct key is
the one where the differential trace assumes non-null values (has some spikes).
The present work proposes a methodology that could be used by designers that work in
the cryptographic field to test in the design phase if the developed ASIC architecture
is safe from power analysis attacks. Being quite general, this method can be inserted
as an additional step into the ASIC design flow and consists in performing a simulated
power analysis attack on the device post-synthesis netlist. The simulated power traces
are obtained using two tools: QuestaSim by Mentor Graphics and PrimeTime by Syn-
opsys. The former is used to produce the Value Change Dump file of the simulation
in which the netlist receives in input a private key and a message and has to produce
in output the product between them. The latter is used to compute the instantaneous
power consumption of the netlist during the simulation time, which consists in the
generation of the so called power trace. Depending on the attack that will be executed
next, this procedure can be repeated several times to obtain the necessary power traces.
The following step involved the validation of the method. Then the simulated attack
has been executed giving to the designer an idea on the robustness of the architecture.
In order to determine how much reliable are the result obtained, the same attack has
been conducted on a physical device, in particular an FPGA. The board that has been

10

1 – Introduction

used is a prototype developed by the Politecnico di Torino named VirtLab which can
contain both the device under test and the measuring equipment by emulating a Digital
Storage Oscilloscope (DSO) using the Analog Front-End (AFE) of a microcontroller
present in it. Before executing the attack on a real device, a study has been conducted
to determine which is the minimum working frequency of the multiplier in the simula-
tion environment that allows to obtain a successful result. The outcome of this study
has been useful to have an idea on the minimum working frequency that in the real
world is necessary to reach in order to have a chance of guessing the secret key used
during the multiplication. In the end, the result of the real attack and the simulated
one have been compared and the appropriate conclusions have been drawn.

11

12

Chapter 2

Post-quantum cryptography

Quantum computers will soon become reality and their coming brings a lot of advan-
tages and facilities for the human being, but at the same time serious problems arise in
the cryptographic field, especially in the Public Key Cryptography (PKC), due to their
impressive computing power which outscales the one of modern machines. In fact today
cryptographic algorithm are based on problems which result computationally impos-
sibles for modern computers, but it has been demonstrated that quantum computers
can resolve them pretty easily. That is why in 2016 the NIST (National Institute of
Standards and Technology) has begun the selection process for a new possible standard
for the PKC and the digital signature problem. The proposed algorithms belong to
one of the following categories[4]:

• Code-based cryptosystem [12];

• Lattice-based cryptosystem [11];

• Isogeny algorithms [15];

• Multivariate cryptosystem [3].

One of the most promising proposals is called Classic McEliece which belongs to the
category of code-based cryptosystems and one of his variant is named LEDAcrypt.

2.1 Classic McEliece
McEliece is a public key (asymmetric) cryptosystem based on algebraic coding the-
ory[10]. This system still nowadays results to be unbroken which means that it has not
been discovered yet a polynomial-time algorithm able to successfully break its asym-
metry. Its robustness stands in the fact that both the private and public keys are
generator matrices of a binary linear error correcting code but by looking at the public
key matrix it is impossible to recover the structure of the code and as a consequence
discover the private key. The derivation of the Public Key (PK) from the Secret Key

13

2 – Post-quantum cryptography

(SK) has a polynomial time complexity, while the inverse problem is considered NP-
hard.
More exhaustive explanations on error correcting codes can be found in [1], while in
the following only some key concepts are reported. Let GF2 = (0,1, +, ×) be the Galois
field of order 2 with the operations of addition and multiplication; and let GF k

2 be its
k-dimensional vector space. A binary code of length n and dimension k is defined as a
map which uniquely associate to a k-bit information vector u a n-bit codeword c.

C : GF k
2 → GF n

2 (2.1)

A code is linear if, being Γ the image of C, Γ is a subspace of dimension k of GF n
2 , which

means that there are k independent codewords {g0, ..., gk−1} of n bits that form a basis
of Γ. A linear code has the property that the sum or difference of two codewords is still
a codeword. As a consequence, any codeword can be expressed as a linear combination
of the elements of the basis as shown in equation 2.2:

c = u0g0 + u1g1 + ... + uk−1gk−1 (2.2)

where the coefficients u0, ..., uk−1 are the bits of the information word u.
Equation 2.2 written in a matrix form becomes:

c = u · G (2.3)

where G is called Generator matrix of the code C and its dimension is k × n. It is
important to notice that the generator matrix G is not unique.
Now let’s consider the vector space which is the orthogonal complement of the space
Γ and whose dimension is:

dim(Γ⊥) = n − dim(Γ) = n − k = r (2.4)

This means that there are r linearly independent words of n bits which can form a
basis of Γ⊥. As for the matrix G, also this basis can be written in a matrix form that
is indicated as H and whose name is Parity Check Matrix.

H =



h0

.

.

.

hr−1


Being the orthogonal space of Γ each codeword c must satisfy the following equation:

H · cT = 0 (2.5)

The quantity S = H · cT is called Syndrome of the codeword c through H; so each
codeword belonging to the code C must have a null syndrome, which means that must

14

2.1 – Classic McEliece

satisfy all the parity check equations of the code. Moreover, as for G, also the parity
check matrix is not unique for the code. A code is an ECC (Error Correcting Code)
with an error correcting capability t if, when it is used for the encryption and decryp-
tion of an information word that must be sent through a communication channel, it is
able to correct up to t errors added to the codeword sent.

McEliece uses a particular family of codes named Goppa codes as private codes. The
first parameters to be chosen are the length n of the code, its dimension k and its error
correcting capability t. Then an irreducible polynomial called a(x) of degree t over
GF (2m has to be found.

2.1.1 Key and matrices generation
From the polynomial a(x), the generator matrix G is computed. After that other 2
matrices must be generated in order to compose the private key: a permutation matrix
P with size n × n and a dense, non singular, scrambling matrix S whose dimension is
k × k. The public key is then computing by multiplying together the 3 matrices as
shown in equation .

G′ = S · G · P (2.6)

2.1.2 Encryption
When the user A wants to send an information word u to the user B, he multiplies it
with the public key of the user B and add to the result an error vector e of weight t.

x = u · G′ + e = c + e (2.7)

If the transmission channel is not ideal, which means that some bits of the message
can be flipped during the transmission, the weight of e must be reduced in order to be
sure to not exceed the maximum error capability t of the code.

2.1.3 Decryption
When the user B receives the encrypted message x, he firstly computes the inverse of
the permutation matrix P and multiplies it with the message x [1].

y = x · P −1 = (u · S · G · P + e) · P −1

⇓

y = u · S · G + e · P −1

After that, using some known algorithms as the Patterson’s one, B is able to remove
the error vector contribution obtaining [1]:

y = u · S

15

2 – Post-quantum cryptography

The last step consists in inverting the scrambling matrix S and multiplying it by u to
recover the original message word.

2.2 LEDAcrypt

LEDAcrypt[9] cryptosystem has been developed by an italian research team and it
includes 2 algorithms inside:

• LEDAkem which is a key encapsulation mechanism based on the Niederreiter
cryptosystem using QC-LDPC (Quasi Cyclic Low Density Parity Check) codes;

• LEDApkc that consists in an asymmetric cryptosystem based on McEliece using
QC-LDPC codes.

In the following the LEDApkc algorithm is described since it is the one based on the
McEliece cryptosystem.
LEDA overcome one of the major problems of the classic McEliece cryptosystem which
is the low amount of memory required to store the key due to the cyclicity and sparsity
of the key.

2.2.1 Key and matrices generation

The secret key is composed of a QC matrix H composed of n0 cyclic square matrices
of size p[6]. That is why this matrix can be stored in memory by just saving its first
row, in particular the index of the bits set to 1 in it. Its structure is[9]:

H = [H0, H1, ..., Hn0−1]

where each square matrix Hi is:

Hi =



h0 h1 ... hp−1

hp−1 h0 ... hp−2

. . .

. . .

. . .

h1 h2 ... h0


In order to produce the public key, another matrix is needed. It is a transformation
matrix Q which is quasi cyclic and its structure is[9]:

16

2.2 – LEDAcrypt

Q =



Q0,0 Q0,1 ... Q0,n0−1

Q1,0 Q1,1 ... Q1,n0−1

. . .

. . .

. . .

Qn0−1,0 Qn0−1,1 ... Qn0−1,n0−1


Each block Qi,j is a square circulant matrix of size p and their weights are defined by
another QC matrix[9]:

w(Q) =



m0 m1 ... mn0−1

mn0−1 m0 ... mn0−2

. . .

. . .

. . .

m1 m2 ... m0


where the sum of all the mi of the same row or column is constant. By doing the
product between H and Q, another circulant matrix is obtained and it is called L[9]:

L = HQ = [L0, L1, ..., Ln0−1] (2.8)

In order to compute the public key from L two conditions must be satisfied[9]:

• the weight of each row of H and the sum of the mi must be odd;

• the matrix Q must have maximum rank.

The public key, which means its generator matrix M , is computed in the following
way[9]:

M = L−1
n0−1L = [Ml, Ip] (2.9)

2.2.2 Encryption
The steps performed to encrypt an information word u are the following[9]:

1. the information word is multiplied with the public key:

m = u · MT

2. a vector error of weight t is generated;

3. the vector error is added to m to produce the final cyphertext:

x = m ⊕ e

17

2 – Post-quantum cryptography

2.2.3 Decryption
To retrieve the original information word LEDApkc uses the Q-Decoder algorithm
which first of all computes the syndrome of the received message as s = HxT and then
execute a finite number of iterations where in each of them the following operations
are performed[9]:

1. σ(l) = s(l−1)H

2. ρ(l) = σ(l)Q = [ρ(l)
1 , ρ

(l)
2 , ..., ρ(l)

n]

3. the correlation thresholds are computed;

4. the position of the correlation values higher than the threshold are saved;

5. the error vector is updated in the following way:

e(l) = e(l−1) ⊕ e(new)

where e(new) is a vector of n bits where those set to 1 are positions of the correlation
values higher than the threshold;

6. the new syndrome is computed : s(l) = s(l−1) + e(l)L;

7. if s(l) = 0 the decoding is successful. Instead if the syndrome is not null and the
current iteration is the last one the decoding has failed, otherwise a new iteration
is performed.

18

Chapter 3

Vector By Sparse Circulant
binary multiplier

Most of the code-based post-quantum algorithms that are participating to the NIST
selection process uses Low Density Parity Check codes (LDPC) or Moderate Density
Parity Check codes (MDPC). In those algorithms there is a frequent use of multi-
plications between a vector and a sparse circulant matrix; so in order to efficiently
compute the products ad-hoc architectures it have been designed. The one described
in this chapter is a simplified version of the Schoolbook multiplier adapted for the use
of very sparse matrices [7] that has been used inside an hardware implementation of
the LEDAkem, the key encapsulation mechanism of the LEDAcrypt cryptosystem.

3.1 Algorithm

The algorithm used to perform the vector by matrix multiplication is very similar to
the canonical one, but there is a huge improvement in the performance due to the
sparsity and cyclicality of the matrix. In fact the final product can be expressed as the
sum of partial products each of them being a rotated version of the input vector. The
number of partial products is equal to the number of bits set to 1 present in the first
row of the matrix. To better clarify it an example is proposed where the length of the
vector v is p = 5 and the number of 1 set in the first row of the matrix A is dA = 3.
The vector-matrix product r can be expressed as follows[7]:

19

3 – Vector By Sparse Circulant binary multiplier

r0 = a0v0 + a1v1 + a2v2 + a3v3 + a4v4 (3.1)
r1 = a4v0 + a0v1 + a1v2 + a2v3 + a3v4 (3.2)
r2 = a3v0 + a4v1 + a0v2 + a1v3 + a2v4 (3.3)
r3 = a2v0 + a3v1 + a4v2 + a0v3 + a1v4 (3.4)
r4 = a1v0 + a2v1 + a3v2 + a4v3 + a0v4 (3.5)

(3.6)

Since dA = 3, let’s suppose that a0 = a2 = a3 = 1 and a1 = a4 = 0. In this case the
final product become[7]:

r0 = v0 + v2 + v3 = v0 + v2 + v3 (3.7)
r1 = v1 + v3 + v4 = v1 + v3 + v4 (3.8)
r2 = v0 + v2 + v4 = v2 + v4 + v0 (3.9)
r3 = v0 + v1 + v3 = v3 + v0 + v1 (3.10)
r4 = v1 + v2 + v4 = v4 + v1 + v2 (3.11)

(3.12)

It can be seen that r is composed by the sum of 3 partial products and each of them
consists in the input vector v rotated by an amount of positions equal to the index of
a 1 present in the first row of the matrix.
The formal description of the algorithm is provided below[7]:

Input: length-p vector p, weight of A
(interpreted as the weight of each row and column of A) dA ∈ N ,
first row of A represented as a list of positions SA with size dA

Output: length-p vector r=vA
1: r = 0
2: for i = 0 to dA - 1 do
3: k = SA(i)
4: v(i) = [vk, vk+1, ..., vp−1, v0, v1, ..., vk−1]
5: r = r+vi

6: end for
7: return r

3.2 Architecture
The architecture of the multiplier can be divided in 2 blocks:

20

3.2 – Architecture

• the Control Unit;

• the Datapath;

3.2.1 Datapath
The datapath is composed by the following units and their interconnections can be
seen in the schematic shown in Figure 3.2[6]:

• Message memory: it is the memory storing the Message. It is divided in words
of 8 bits, but since the message length must be a prime number, the second-last
word in partially filled with zeros and the last one contains only zeros. This is
necessary to guarantee a correct behaviour when the last word of the message has
been read and the new one to be consumed is the first one;

• Ltr memory: it is the memory storing the secret key. As introduced before,
the key is a huge sparse circulant matrix and in order to occupy less resources as
possible to store it, by exploiting its circularity it is sufficient to store the positions
of the bits set to 1 in its first row since the position of the 1s in the other rows can
be retrieved by the first one. Each cell of the memory is composed of 15 bits where
the MSB is set to 0 or 1 depending on the position of the shift with the respect
of the index of the last bit in the second-last row of the Message memory. This
bit is useful to correctly manage the transition from the last word of the message
memory to the first one. The remaining 14 bits contains the effective position of
the 1 in the key matrix;

• Syndrome memory: it is the memory storing the final product and it is divided
in words of 8 bits;

• Message counter: it is in charge of providing the address in order to read the
correct word from the Message memory. Its initialization value is taken from the
content of the Ltr register, in particular Ltr[3,14]; then it is always incremented
by one until the message has been entirely read. After that, when a new key
position is read, it is initialized again;

• Ltr counter: it provides the address used to read the correct position from the
Ltr memory. It is initialized to 0 and when a partial product has been entirely
computed it is incremented by 1;

• Syndrome counter: it is used to index properly the Syndrome memory. It is
initialized to 0 and it is incremented by one until the entire partial product has
been saved; then it is reset to 0 and the cycle restarts;

• Msg2 register: it receives in input the word coming from the Message memory
and its output is connected to the input of the Msg1 register and to the Collapse
Unit;

21

3 – Vector By Sparse Circulant binary multiplier

• Msg1 register: its input is connected to the output of the Msg2 register in order
to act as a sort of shift register where instead of shifting a single bit an entire byte
is shifted. Its output is connected to the Collapse Unit;

• SynNew register: it is the register where each word of a partial product is saved
before being stored into the Syndrome memory. The input data is the result of
the xor operation between the word read from the Syndrome memory and the
output of the Collapse Unit;

• Ltr register: it contains the current key position read from the Ltr memory. Its
content pass through some logic which transform it into control signals for the
Collapse Unit;

• Collapse unit: this is the core unit of the datapath since it is the component
in charge of computing the shifted message words. It receives in input 2 message
words coming from the Msg1 and Msg2 register and select a portion of 8 bits based
on the shift that must be applied to the message. This unit is composed of 4 levels
where the lth level performs a rotation of 8/2l−1 bits. Each level is composed by
a multiplexer with 2 inputs each one composed by nb bits and produces in output
a word composed of nb + nb/2 bits as shown in Figure 3.1.

Figure 3.1: First level of the Collapse Unit

3.2.2 Control unit
The control unit is implemented as a finite state machine that pass through the fol-
lowing states in the same order in which they are listed below[6]:

1. Load_Ltr_FirstCycle: here the first position of the key is read and saved in
a register. At the same time the register used to read the content of a syndrome
memory word is cleared to 0;

2. Load_Msg: based on the value of the Ltr position read, the first word of the
Message is read and saved in the Msg2 register and the Message counter is initial-
ized;

22

3.2 – Architecture

3. Load_Msg_Syn: a new Message word is read and saved in Msg2 while the
previous content of Msg2 is transferred to the register Msg1. Simultaneously
the Syndrome memory is read and the content of the first word is saved in the
Syndrome register;

4. Cmp: Msg1 and Msg2 register values are given in input to the collapse unit
which produce the shifted message word. This word is xored with the content of
the Syndrome register to produce the initial word of the first partial product that
is stored in the SyndromeNew (SynNew) register;

5. Store: the content of the SynNew register is saved in the Syndrome memory.

After that, the CU pass through the following states in loop to produce the entire first
partial product:

1. Load_Msg_Syn;

2. Cmp;

3. Store.

The loop terminates when the last word of the Syndrome memory is written, then
another position from the key Ltr memory is read and the entire flow described above
is repeated with the exception that instead of going through the Load_Ltr_FirstCycle
state the CU goes into a normal Load_Ltr state.
Since the length of the message must be a prime number, the second-last word of the
message saved in memory contains partially the last message bits and the remaining
part is filled with zeros and the last one is completely filled with zeros. When this word
is read, a PartialStore is done instead of a normal Store which means that the Syn-
drome word is computing by connecting together the words produced by two successive
iterations.

23

3 – Vector By Sparse Circulant binary multiplier

Figure 3.2: Schematic of the multiplier datapath.

24

Chapter 4

Power Analysis Attacks

Power Analysis Attacks refers to a method applied to a device in order to discover
information on the secret key. PAA belong to the category of passive non-invasive
Attacks which means that only accessible interfaces of the device are exploited, no
evidence of the attack is left behind and the key is obtained by exploiting physical
properties of the device[8]. Passive non-invasive attacks are also called side-channel
attacks and have gained a lot of attention during the last years. The three most
important types of side-channel attacks are:

• timing attacks which exploits the execution time of the device;

• power analysis attacks which exploit its power consumption;

• electromagnetic attacks which exploit the electromagnetic field emitted by the
device.

In this chapter the focus is put on Power Analysis Attacks. In particular in the following
is provided the description of the 3 most important attacks that belong to this category
and they are:

• Simple Power Analysis attack(SPA);

• Differential Power Analysis attack(DPA);

• Correlation Power Analysis attack(CPA).

All this types of attack require to have a recording of the power consumption of the
device over the time in which it is executing some cryptographic operation, which is
also called power trace. The number of traces that are needed to perform the attack
depends on the type of attack that is considered, in fact SPA require a single trace
while DPA and CPA need multiple traces to be executed.

25

4 – Power Analysis Attacks

4.1 Simple Power Analysis attack
In Simple Power Analysis attacks the attacker tries to retrieve the secret key using
only a single power trace. This attack requires the knowledge of the architecture of the
device where the cryptographic algorithm is executed and since only a single trace is
used, the key must have a huge impact on the power consumed by the device[8].
The idea behind SPA is to recognize patterns within the trace and that is why it is
usually used when the algorithm is run on a microcontroller. In this case the algorithm
is translated into a sequence of instructions which have a unique power consumption
pattern because each of them works with different hardware components of the mi-
crocontroller that consumes different amount of power. The fact that each instruction
has a unique pattern can be exploited by the attacker if the sequence of instructions
executed depends on the key value, especially on public-key cryptography. In Figure
?? it is shown the power consumption of a microprocessor while it is performing an
RSA decryption. It is clearly visible that in the power trace there are several patterns
each of them corresponding to a single or a sequence of instructions. If the visual in-
spection of the trace is not enough to determine the key used during the cryptographic
operation, there are more advanced techniques such as template based attacks.

4.1.1 Template based attack
In template based attacks the power trace is characterized by the means of a multi-
variate normal distribution which has a mean vector m and a covariance matrix C.
The couple composed by m and C is named template[8]. In this type of attack it is
assumed that the attacked device can be fully characterized, which means that, for
example, the attacker has a copy of the target device and uses it to record the power
consumed when different inputs are provided. If multiple traces can be recorded for
each possible pair of inputs (di,kj), where di is a possible message and kj is a possible
key, the attacker groups together the traces regarding the same inputs and compute
their mean vector and covariance matrix. In this way he has obtained a template for
each possible couple of inputs.
After that the attacker computes the probability:

p(t; (m, C)di,kj
) =

exp(−1
2 · (t − m)′ · C−1 · (t − m))ñ

(2 · π)T · det(C)
(4.1)

This probability is computed for every template and the higher is p, the higher
the template fits to the power trace t. Since each template is associated to a key
value, the correct key value is the one associated to the template that gives the highest
probability.
In the following, additional strategies and hints used in the template building phase
and in the template matching phase are provided.

26

4.1 – Simple Power Analysis attack

Template building phase

In the first phase when the attacker tries to build suitable templates, in addition to
the technique described above which consists in creating a template for every possible
couple of inputs, there are other solutions that can be adopted. One of them is to build
templates referred to an intermediate value produced during the algorithm flow. The
intermediate value must be chosen carefully since it must be a function of both the
inputs (message and key), but the advantage is that this technique reduces the number
of template to be produced.
A further improvement consists in associating each intermediate value to a predicted
power consumption. There are several power model that could be used and in this way
it is possible to reduce further more the templates adopted because more values can be
associated to the same power consumption. At the end of the attack when the most
suitable template is known, it is straightforward to retrieve the key used during the
operation by just going backwards.

Template matching phase

In this phase in order to avoid the exponentiation, the logarithm is applied to the
equation 4.1[8]:

ln(p(t; (m, C)di,kj
)) = ln(

exp(−1
2 · (t − m)′ · C−1 · (t − m))ñ

(2 · π)T · det(C)
) (4.2)

↓

ln(p(t; (m, C))) = −1
2(ln((2 · π)NIP · det(C)) + (t − m)′ · C−1 · (t − m)) (4.3)

In this way the template that leads to the smallest absolute value of the logarithm of
the probability is the correct one.

|ln(p(t; (m, C)di,kj
))| < |ln(p(t; (m, C)di,kl

))| ∀l /= j (4.4)

A further simplification can be done by considering the covariance matrix equal to the
identity matrix in order to avoid computing the inverse of the covariance matrix; in
this way the correlation between the trace points is not considered and the resulting
template composed only by the mean vector is called reduced template. Using the
reduced template, the equation 4.1 becomes[8]:

p(t; m) =
exp(−1

2 · (t − m)′ · (t − m))ñ
(2 · π)NIP

(4.5)

27

4 – Power Analysis Attacks

Also in this case the logarithm can be applied:

ln(p(t; m)) = −1
2(ln(2 · π)NIP + (t − m)′ · (t − m)) (4.6)

The method that uses reduced templates is also called least square (LSQ) test and since
the most relevant term in the equation is the square of the difference between t and
m, the rule that can be used to identify the correct template is the following:

(t − mdi,kj
)′ · (t − mdi,kj

) < (t − mdi,kl
)′ · (t − mdi,kl

)∀l /= j (4.7)

4.2 Differential Power Analysis attack
With the respect of SPA, Differential Power Analysis attacks[5] need multiple power
traces to be executed. The methodology consists in dividing the set of traces into
different subsets, computing point by point the average of these subsets and then
making the difference between them. If the choice of assigning each trace to a specific
subset is correlated to the trace measurements, the difference of the averages will be a
value far from 0, otherwise the difference will be very close to 0. This difference can be
plotted in a XY graph where the X axis represents the time and the Y axis indicates
the difference value, as shown in Figure 4.1.

Going more into the details the DPA attack is composed of the following stages[5]:

1. Choice of the instrumentation;

2. Measurement;

3. Signal processing;

4. Prediction and selection function generation;

5. Differential traces production;

6. Results evaluation;

4.2.1 Choice of the instrumentation
The first thing to do is to choose the instruments to communicate with the device under
attack and to record its power consumption during the time in which it is executing the
cryptographic operation. Usually, to record the power consumption we use a digital
oscilloscope that measures the voltage drop across a resistor put in the supply line of
the device or, thanks to the use of current probes, the current that it absorb. The
typical setup used to perform a DPA attack is shown in Figure 4.2.

28

4.2 – Differential Power Analysis attack

Figure 4.1: Figure showing 3 traces. Going from top to bottom, the first and second
one are the average traces of two subsets, while the third one is the difference trace.

29

4 – Power Analysis Attacks

Figure 4.2: Typical setup for a DPA attack.

4.2.2 Measurement

The measurement stage is the step in which the power consumption of the crypto-
graphic device is sampled by the oscilloscope and sent to the device where the DPA
algorithm is implemented. It is important to reduce as much as possible the noise
superposed to the signal by adding analog filters, adjusting the oscilloscope bandwidth
and sampling rate and reducing as much as possible the distance between the various
instruments.

4.2.3 Signal processing

Since each trace can be seen as a signal, a technique that allows to obtain better
measurements and, as a consequence, having more chances to recover the secret key,
is applying some signal processing to the entire set of traces. The technique usually
adopted is the time alignment of the traces against a time reference point or in alter-
native to perform the DPA attack in the frequency domain, which implies to compute
the Fourier transform of the power traces [5]. The second common technique that is
used measures multiple traces of the power consumption. These traces are obtained
giving in input to the device the same data and then average them in order to reduce
significantly the amount of noise superimposed to the signal. In general, it is common
that only small portions of the trace contains useful information for the DPA attack,
if the device can be characterize it is useful to remove the non interesting parts of the

30

4.2 – Differential Power Analysis attack

trace. In this way, the execution time of the attack is minimized due to the fact that
the amount of data to process is strongly reduced. Moreover, another useful technique
is the trace compression where consecutive measurements are summed together and
repetitive effects are eventually removed from the trace [5].

4.2.4 Prediction and selection function generation
DPA attacks exploit the fact that in the device some steps of the computation depend
on the secret key value. The attacker has to develop a selection function that will be
used to assign traces to subsets and they are usually based on the guess on the value
assumed by an intermediate variable produced during the computation. The outcome
of these functions can be binary (0 or 1) or can be non-binary. In the latter case the
output of the function assumes the role of a weight when in the next step the traces will
be averaged and each weight can be 0, positive or negative. Usually in DPA attacks
binary functions are used as, for example, the value of the LSB of the result coming
from an SBOX in an AES encryption.
After that, the selection function must be applied to all possible values that the key
portion which the attacker wants to guess can assume. So if the target of the DPA is
the value of one byte of the key, the traces will be divided in 2 subsets for each of the
256 possible values that the key byte can assume. A scheme of the entire process is
shown in Figure 4.3.

4.2.5 Differential traces production
This is the phase where the most of the DPA calculation is performed since at this point
the average of the traces contained in the same subset is computed. The complexity
of this task increase proportionally with the number of traces, the length of each
trace and the number of selection functions used (which is equal to the number of
possible values that the target portion of the key can assume). That is why usually
some optimization techniques are used such as the compression and the removal of
the non interesting portions of the traces in order to reduce the trace length and as
a consequence the total number of points that need to be averaged. Since this task
is highly parallelizable, another possible way to reduce the bottleneck is to work in
parallel with different threads and machines.

Once the averages have been computed, a differential trace is produced for each
possible key value by subtracting the average trace of one subset to the average trace
of the other one. A scheme of this phase is shown in Figure 4.4.

4.2.6 Results evaluation
In most of the cases the result evaluation consists in the visual inspection of the differ-
ential traces previously obtained. The correct key value is the one whose differential

31

4 – Power Analysis Attacks

Figure 4.3: Scheme of the trace division into subsets based on the value assumed by
the selection function for each possible key value.

Figure 4.4: Scheme representing how the differential trace for each key value is produced
starting from the trace subsets.

32

4.2 – Differential Power Analysis attack

trace presents the highest peaks; while the traces related to incorrect values will have
smallest peaks or even none. Some results may be misleading since regions with un-
usually high noise can show spurious peaks, but in order to compensate to these effects
each point of the trace can be divided by the standard deviation of all the traces at
the same point [5]. Moreover, for certain types of DPA attacks and algorithm, differ-
ential traces different from the correct one can have a significant correlation with the
target leak and so they can show huge spikes as well. The key values related to those
traces are called harmonics and, although initially they can make some confusion on
the guessing of the correct value, they can provide useful information to the attacker.
In fact, by knowing the selection function used and the cryptographic algorithm he
can predict the harmonic pattern that would be generated and check if it is compliant
with the observed one [5]. In Figure 4.5 is shown the difference between the differential
trace of a correct key value and the one of an incorrect value.

(a) Correct key differential trace.

(b) Incorrect key differential trace.

Figure 4.5: Difference between the differential trace of a correct key value and an
incorrect one.

33

4 – Power Analysis Attacks

4.3 Correlation Power Analysis attack
As for DPA attacks, also Correlation Power analysis (CPA) attacks [2] require the use
of multiple traces. The difference between them is in the way in which the traces are
analyzed to compute which is the correct key used in the cryptographic operation. The
general idea of this type of attack is to compute the correlation between the real power
measured from the device and the predicted power consumption during the generation
of a specific intermediate value. Usually the key which gives the highest correlation is
the correct one, but sometimes due to the presence of harmonics there can be more
than a single value which produce strong correlation values. In that case by reasoning
on the algorithm properties all the harmonics can be discarded and the correct key
value is found.
The attack is composed of the following steps:

1. Power consumption measurement;

2. Power model choice;

3. Intermediate value choice;

4. Intermediate value computation;

5. Power consumption prediction;

6. Correlation traces generation;

7. Results evaluation.

A block diagram illustrating the steps of the CPA attack is shown in Figure 4.8.

4.3.1 Power consumption measurement
The setup used to measure the power consumption of the cryptographic device in a
CPA attack is exactly the same described in section 4.2.2 for a DPA attack since the
power traces needed to perform this attack are the same.
That is why also some signal processing is applied after the collection of the traces. The
most used technique in this attack are the averaging to reduce the noise superimposed
to the measurement and the cut of useless parts to lighten the amount of data to be
processed in the next steps. All the power traces must be recorded while the device is
using the same secret key, but a different message for each trace. The messages can
be random or chosen appropriately if the attacker can in some way have access to the
inputs of the device. A crucial point in this part is assessing the needed number of
power traces to guess the correct key value, but this will be described in section 4.3.7
since the concept of Pearson correlation coefficient has not been treated yet.
The whole recorded power traces can be grouped together in order to form a matrix

34

4.3 – Correlation Power Analysis attack

that we call T[8]. Its dimension will be N x K where N represents the number of
collected power traces and K the number of samples that compose each trace. In this
way each row of the matrix T is a different power trace.

4.3.2 Power model choice

This step consists in the choice of a suitable power model to be used to model the
power consumed by the device in a certain instant of time. The most important power
models are:

• Bit model;

• Hamming weight model;

• Hamming distance model;

• Zero value model;

Bit model

The bit model is the simplest of the models listed above. It consists in modeling
the power consumed by the device to 0 or 1 based on the value of a single bit of an
intermediate value produced during the device computation. The power consumed is
assumed to be 1 if the chosen bit is 1 and 0 otherwise. This power model, being very
simple, can be used only for software implementations of the cryptographic algorithm
(which means that the algorithm is run in a microprocessor) and the processor leakage
is pretty high.

Hamming weight model

The Hamming weight model (HW) can be seen as en extension on multiple bits of
the bit model since it models the power consumed by the device with a scalar number
equal to the number of bits set to 1 of an intermediate value. This type of model
is suitable for software implementations of the cryptographic algorithm because, for
example, it can model well the power consumed by the device when the intermediate
value is transferred using a bus which is precharged to 0. In that case the power
consumed by the device is equal to the number of 0 to 1 transitions that occur in the
bus, which is equal to the Hamming weight of the value transferred. Giving a more
general definition, this model can give very good results if, considering a transition
from a value v0 to a value v1 where v1 is the target intermediate value, the value of v0

is constant.

35

4 – Power Analysis Attacks

Hamming distance model

The Hamming distance model is used to predict the power consumed during a transition
that occurs inside the device. When there is a transition from a value v0 to a value v1,
the power consumed is modeled with a scalar value equal to the number of bits in the
same position that differs from the 2 values. For example, if v0 is equal to 0110 and v1

is equal to 1010, the Hamming distance corresponds to 2.
This power model is used especially for hardware implementation of a cryptographic
algorithm, which means that the algorithm is described in hardware using an ASIC,
since it allows to predict in a precise way the dynamic power consumed by a logic cell,
especially a CMOS one. In fact the power consumption of a CMOS cell can be seen as
the sum of 2 components as shown in equation 4.8: the leakage power and the dynamic
power.
The leakage power is a contribution which is always present when the cell is supplied
and its value is almost insignificant with the respect of the dynamic power. The leakage
power is due to a small current that flows across the silicon substrate even if the cell is in
idle state. The major part of the whole power consumed by a CMOS cell consists in the
dynamic power, which is the power consumed when there is a transition at the output
pins of the cell and it is due to the current that flows across it in the little amount
of time in which, during the transition, both the pull-up and pull-down networks are
conducting, and the current necessary to charge internal nodes.

Ptot = Pleak + Pdyn (4.8)
Pdyn ≫ Pleak (4.9)

Pdyn = 1
2 · fclk · Cload · V 2

dd· ∝ (4.10)

Zero value model

The zero-value model (ZV) assumes that the power consumed by the device when it
receives in input values equal to 0 is much less than the power consumed in all the
other cases. In particular it models the power consumption equal to 0 when the inputs
are 0 and 1 otherwise as shown in equation 4.11.

Pi,j = ZV (vi,j) =

0 for vi,j = 0
1 for vi,j /= 0

(4.11)

This model can be applied in fewer cases than all the other model described before, but
can be very efficient when it is used in the right context, for example when modeling
the power consumption of a multiplier.

36

4.3 – Correlation Power Analysis attack

4.3.3 Intermediate value choice
In CPA attacks, as for DPA attacks, it is not important to model the power consump-
tion of the device over its entire computation, but it is sufficient to predict it in a single
instant of time, usually during the computation or saving of an intermediate value.
The properties that the intermediate value must have in order to be a good candidate
are the following:

• message dependency;

• key dependency.

Those two conditions are fundamental, otherwise it is impossible to correlate the power
consumption to the secret key used during the cryptographic operation. Moreover, if
the Hamming distance model is used, two consecutive intermediate values must be
chosen since it requires to have a transition, while if the choice fell on one of the other
power models only one intermediate value is sufficient.

4.3.4 Intermediate value computation
Once the target intermediate value is chosen, the next step consists in computing its
value for every possible couple (message,key). Before doing that the attacker needs to
understand more deeply the key dependency of the intermediate value since he must
know exactly which portion of the key it depends on. Then, for each message used
during the power trace recording and for each possible value that can be assumed
by the selected key portion, the intermediate value is computed. The result of this
operation is a matrix V whose dimension is N x P[8]. N represents the number of
possible messages and P is the possible values that the key portion can have. In this
way the element vi,j is the intermediate value produced by the device when it receives
in input the ith message and the key value j. If the attacker wants to use the Hamming
distance model, two matrices V has to be produced, one for each intermediate value,
otherwise a unique matrix is sufficient.

4.3.5 Power consumption prediction
This phase consists in predicting the power consumption of the device during the
production or saving of the chosen intermediate value for every possible couple (mes-
sage,key). This can be translated in the production of a matrix H where the element
hi,j of the matrix H is obtained by applying the chosen power model to the intermediate
value vi,j of the matrix V[8]. As a consequence, the dimension of the matrix H is the
same of the matrix V.

hi,j = PowerModel(vi,j) ∀i = 1...N, ∀j = 1...P (4.12)

37

4 – Power Analysis Attacks

4.3.6 Correlation trace generation
This is the step demanding the most quantity of time and computing power since the
correlations between the predicted power consumptions and the measured ones are cal-
culated. Starting from the power trace matrix T and the predicted power consumption
matrix H, the correlation matrix R is built where each element ri,j is computed using
the formula shown in equation 4.13 [8].

ri,j =
qN

n=1(hn,i − h̄i) · (tn,j − t̄j)ñqN
n=1(hn,i − h̄i)2 · qN

n=1(tn,j − t̄j)2
(4.13)

This is the application of the Pearson correlation coefficient formula shown in equation
4.15 where X and Y are two random variables, xi and yi are single measurements of
those variable and x̄ and ȳ stand for their mean.

ρ(X, Y) = Cov(X, Y)ñ
V ar(X) · V ar(Y)

(4.14)

ρ(X, Y) =
qN

n=1(xn − x̄) · (yn − ȳ)ñqN
n=1(xn − x̄)2 · qN

n=1(yn − ȳ)2
(4.15)

This coefficient is an adimensional number whose value is between -1 and 1 that repre-
sents the linear relationship between the two variables. When the correlation coefficient
is positive, the datasets of the 2 variables are directly proportional, which means that
if the value of X increase, also the value of Y increase; instead if the coefficient is
negative, the datasets of the two variables are inversely proportional. The remaining
option is when the correlation is equal to 0 and that means that there no correlation
between them. A graphical example about the meaning of the correlation coefficient
is shown in Figure 4.6.
In the case of the CPA attack, the variable X is a column of the matrix H which is the
power consumption prediction with a fixed key and a variable message, while the vari-
able Y is a column of the matrix T which represents the measured power consumption
at a certain instant of time t in every power trace.
Each row of the matrix R is a correlation trace and it is referred to the key value equal
to the index of the row. In particular the kth correlation trace represents the correlation
in time between the measured traces and the predicted power consumption computed
assuming that the key value is k.

38

4.3 – Correlation Power Analysis attack

Figure 4.6: Graphical representation of the correlation coefficient meaning.

4.3.7 Results evaluation
Once the matrix R has been produced, the guess on the correct key can be done by
plotting all the correlation traces. The one related to the correct key value will show a
strong correlation peak in a certain instant of time, while all the others will be almost
flat or just noise as shown in Figure 4.7. The correlation peak gives to the attacker also
another important information: the time in which the target intermediate value has
been produced or used inside the device. In some particular cases, depending on the
choice of the intermediate value, the structure of the architecture and the cryptographic
algorithm, more than one correlation trace can show a spike. When this happens, it’s
up to the attacker to identify which is the correct value based on the information that
he has on the architecture of the device and on the algorithm.
Moreover, another fundamental parameter which determines the outcome of the attack
is the number of traces needed to perform it successfully. In fact, the robustness of
a device from a cryptographic point of view is directly proportional to the number of
traces that are needed to successfully attack it. This is due to the fact that by increasing
the number of traces, the variance of the noise superimposed to the measurement is
decreased of a factor

√
N .

39

4 – Power Analysis Attacks

(a) Correct key correlation trace.

(b) Incorrect key differential trace.

Figure 4.7: Difference between the correlation trace of a correct key value and an
incorrect one.K:rifare

40

4.3 – Correlation Power Analysis attack

Figure 4.8: CPA attack steps.

41

42

Chapter 5

Methodology

The goal of this work is to create a methodology that could be used by designers who
work in the cryptographic field to test if their design is safe against Power Analysis
Attacks before the physical production of the device. This could save a huge amount
of time and money to manufacture a new and safe product.
The method has been thought in order to be integrated within the ASIC design flow
visible in Figure 5.1, in particular it should be applied during the Logical Verification
and Testing phase since it requires the use of the post-synthesis netlist. In order to
test its validity, it has been adopted to assess the side-channel leakage of the Vector
By Circulant multiplier described in Chapter 3, which means verify if it is possible to
retrieve one of its inputs by analyzing the power consumed during the multiplication.
Since the inputs are an encrypted message and a private key, the device can be con-
sidered vulnerable if it is possible to guess the entire private key.
This methodology consists of 2 phases:

1. Power traces generation

2. Simulation of a Power Analysis Attack

5.1 Power Traces generation
The first phase consists in the generation of the power traces of the device, which
means collecting its power consumption over the time in which it is performing some
cryptographic operation.
The number of power traces that must be produced depends on the attack that the
designer wants to simulate next: for a Simple Power Analysis attack only a power trace
is needed while Differential Power Analysis attacks and Correlation Power Analysis
attacks require multiple traces. To test the side-channel leakage of the multiplier it has
been decided to perform a Correlation Power Analysis attack, so multiple traces were
needed. The minimum number that allows to obtain valid results has been discovered

43

5 – Methodology

to be 30 and so the attack has been executed using 30 different traces to minimize its
execution time.
Each power trace is referred to a multiplication executed with the same private key and
a different message. The messages have been generated randomly, while the private key
is still random but has all the characteristics necessary to be considered a possible real
private key. Since the device has not been physically produced, the power measured
in this step is computed with the help of two tools: QuestaSim developed by Mentor
Graphics and PrimeTime developed by Synopsys. The generation of the power traces
has been automatized by the use of a script written in Python which launches in
sequence firstly QuestaSim and immediately after Primetime, as shown in Figure 5.2.
The number of traces that will be generated is a parameter of the script so it can be
easily modified depending on the needs of the designer.

Figure 5.1: ASIC design flow.

44

5.1 – Power Traces generation

Figure 5.2: Sequence of tools used to produce the power traces.

5.1.1 QuestaSim script
QuestaSim is used to simulate the post-synthesis netlist and to produce in output the
Value Change Dump file. This file contains the time in which each signal present
in the post-synthesis netlist changes during the simulation and the new value that it
assumes. Those information will be used by PrimeTime to compute the instantaneous
power consumption of the device.
The inputs of this script are:

• the post-synthesis netlist;

• the inputs of the device to be used during the simulation. For the multiplier
they consists in an encrypted message and a private key. Those inputs are stored
in separate files that will be read at the beginning of the simulation and their
content will be stored into the appropriate memories. In particular the message
is composed of 14939 bits divided in word of 8 bits equal to the length of each
memory cell, while the key is composed of 11 values each of them representing the
position of a 1 in the first row of the key matrix. For this reason the value that
each position can assume goes from 0 to 14938 and they are all different from the
others;

• the testbench. It consists of the vhdl files that are used to provide stimulus to
the netlist during the simulation;

• the technological library used for the synthesis. It contains all the basic logic
cells that have been adopted by the synthesizer to produce the post-synthesis
netlist. The library used in this test is composed of cells developed using a 65 nm
technology;

• the Standard Delay Format file produced during the synthesis. It contains all
timing information about the netlist which means path delays, timing constraint
values, interconnection delays and high level technology parameters.

The script executes the following steps, visible also in Figure 5.3:

1. compilation of the testbench files;

2. compilation of the post-synthesis netlist;

45

5 – Methodology

3. compilation of the technological library;

4. simulation initialization;

5. simulation run until the files containing the inputs of the netlist are fully read and
their content loaded into the appropriate memories;

6. creation of the VCD file and its initialization with all the needed signals;

7. simulation run until the multiplication is done;

8. simulation end.

Figure 5.3: Sequence of operations executed by the QuestaSim script.

5.1.2 PrimeTime script
The PrimeTime script is launched immediately after the QuestaSim one terminates.
This tool is employed in order to compute the power consumed by the netlist during
the simulation time, which is also called Time Based Power Analysis. The inputs of
this script are:

• the post-synthesis netlist;

• the technological library;

• the VCD file produced by the QuestaSim script;

• the SDF file created during the synthesis;

• the Synopsys Design Constraint file generated during the synthesis. This is
an ASCII file containing design constraints and timing assignments given in input
to the synthesizer.

The script perform the following steps, visible also in Figure :

1. read the technological library;

46

5.1 – Power Traces generation

2. enable the power analysis feature;

3. set the power analysis mode to time based. In this way the tool calculates the
power for every event present in the switching activity file, which is the VCD file,
to generate power waveforms over time;

4. activate the Delay-Aware Peak Power Analysis. This setting allows to obtain more
accurate peak power numbers since in this way the tool shifts all the events by a
delay factor computed by looking at the cell or net delay stored in the technological
library. If this feature is not enabled, the instantaneous peak powers are lowered
because the leakage and dynamic energy associated to any event is distributed
evenly over the clock period. This is due to the fact that in the switching activity
files the signal transitions occurs only during the clock edges and so the events
are all aligned and considered instantaneous;

5. set the effort level of delay shifting to high. In this way PrimeTime chooses the
cell-arc, and as a consequence the shifting delay, based on the transition that
occurs in the cell and this allows to obtain the most accurate power consumption
values. Instead, if the effort level is set to low, the tool always chooses the cell arc
with the worst delay;

6. read the post-synthesis netlist;

7. create the reference clock;

8. read the SDF file;

9. read the SDC file;

10. read the VCD file;

11. perform the power analysis;

12. create the power waveform file. If the resolution is not specified, PrimeTime
computes the power at the same resolution of the switching activity file, otherwise
it sums up the energy of all the events that occur inside the resolution time interval
and distributes the energy evenly within it. The resolution has been set equal to
the clock period in order to obtain reliable power values and reduce as much as
possible the file dimension.

47

5 – Methodology

Figure 5.4: Sequence of operations executed by the PrimeTime script.

Figure 5.5 and Figure 5.6 shows one of the multiplier power waveforms produced by
PrimeTime plotted using Matlab. The former represents the power consumption over
the entire multiplication, while the latter is the zoom over a small portion of Figure
5.5 to better show each sample of power consumption computed by the tool.

Figure 5.5: Power trace produced by PrimeTime representing the power consumption
of the polynomial multiplier during the whole multiplication.

48

5.2 – Simulation of a Power Analysis Attack

Figure 5.6: Small portion of the multiplier power trace shown in Figure 5.5.

5.2 Simulation of a Power Analysis Attack
After the generation of the needed power traces the next step is to simulate a Power
Analysis Attack on the netlist using the power waveforms previously produced. In this
way it is possible to understand if the architecture firstly designed and then sinthetized
using a specific technological library leaks or not confidential informations, such as in
the case of the multiplier, the private key of the code.
As described in Chapter 4, there are several types of attacks that exploits the power
consumption behaviour of the device over time, but the one that has been chosen is
the Correlation Power Analysis attack. The attack has been developed in an iterative
way, which means that for each iteration a single key position is guessed. Since the
key is composed by 11 positions, 11 iterations are necessary to guess the entire key.
The attack si composed of the following steps and they are executed following the flow
shown in Figure 5.7

1. choice of a power model;

2. choice of an intermediate value;

3. computation of the intermediate value

4. power consumption prediction;

5. correlation traces generation;

6. results evaluation.

49

5 – Methodology

In the following it is described how each step of the attack has been performed and
the reasons behind the decisions that have been made.

Figure 5.7: Execution order of the attack steps done on the multiplier.

5.2.1 Power model choice
The first step consists in the choice of a suitable power model that approximates in
the most realistic way the instantaneous power consumed by the device. When a CPA
or DPA attack has to be performed on a hardware implementation of an algorithm,
the power model that guarantees the best results is the Hamming distance because it
allows to model in a very precise way the power consumed by logic cells. Since the
Hamming distance model expresses the power as a scalar number corresponding to the
number of bits that changes between 2 binary numbers; if those two numbers are 2
consecutive values that are stored in the same register, this model becomes very accu-
rate in representing the dynamic power consumed by the register when switching from
a value to another one.

50

5.2 – Simulation of a Power Analysis Attack

5.2.2 Intermediate value choice
Since the chosen power model is the Hamming distance, two intermediate values need
to be selected. The ones that have been chosen for this attack are the first and second
values stored in the SynNew register in each key position cycle, as shown in Figure 5.8.
They are the result of the bit-xor between the value produced by the collapse unit and
the value coming from the Syndrome memory, which is the one where every partial
product is stored until the final result is produced.
The choice fell on those values because they have both a message and key dependency.
The message dependency is justified by the fact that one of the values given in input
to the xor gates is the result produced by the collapse unit which is always a mes-
sage word. Instead, the key dependency comes from the fact that the portion of the
message generated by the collapse unit depends on one of the key positions. These
dependencies are even more emphasized if also the other input of the xor gates is taken
into consideration because its value, being a partial product, has a dependency with
both the message and previous positions of the key (with the exception for the first
key position in which the content of the Syndrome memory is set to 0).

Figure 5.8: Architecture of the polynomial multiplier where it is shown the register
whose content has been chosen as intermediate value to be attacked.

5.2.3 Intermediate value computation
This step consists in the computation of the chosen intermediate values for each possible
couple message-key position. Since the messages are 30 and each key position can
assume 14939 values, at each iteration of the attack 2 V matrices of size 30x14939 are
computed as shown in Figure 5.9.

51

5 – Methodology

Figure 5.9: Structure of one of the V matrices

5.2.4 Power consumption prediction
This step consists in generating a unique matrix H starting from the two intermedi-
ate values matrices V. Each element in the H matrix is obtained by computing the
Hamming distance between the elements in the same position in the two V matrices
as shown in Figure 5.10.

Figure 5.10: Creation of the H matrix starting from the two V matrices.

5.2.5 Generation of correlation traces
This step consists in the generation of the correlation matrix R starting from the power
prediction matrix H and the power traces following the procedure described in section
4.3.6. The power traces can be grouped together in order to form a unique matrix
called T where each row is one of them. Since the dimension of the matrix H is 30 x

52

5.2 – Simulation of a Power Analysis Attack

14939 and the power trace matrix T is 30 x 61719, the correlation matrix dimension is
14939 x 61719 as shown in Figure 5.11.

Figure 5.11: Creation of the R matrix starting from the H matrix and T matrix

5.2.6 Results evaluation
The results that has been obtained for the first key position are different from the ones
obtained for the successive positions, but at the end the attack was successful since
the entire private key has been correctly guessed. Further details about the obtained
results is given in the following.

1st position

For the first key position there are several traces with a correlation peak very close to
1 (only one in each trace) and so the corresponding key values are all candidates to be
the correct guess.

In Figure 5.12 are shown in a unique plot all the previously mentioned correlation
traces. It is clearly visible that all those traces have a correlation peak immediately at
the beginning of the simulation and this is correct since the target key position is the
first one and the chosen intermediate values are the first two words of the first partial
product produced by the architecture. Figure 5.13 has been obtained by zooming in
the zone where all the correlation peaks are grouped. It can be noticed that they are
all distanced by 3 clock cycles and those clock cycles represents the time needed by the
architecture to produce a word of the partial product (a micro-cycle). In fact all the
peaks corresponds to the moments in which the value stored in the SynNew register is
overwritten by the new one just produced.

53

5 – Methodology

The peak corresponding to the correct key is the first one of the series, all the other
ones must be discarded. The reason behind this statement and the strange results
obtained can be explained by the fact that the multiplier has a cyclic architecture
and that the partial product words produced during the first macro-cycle are always a
rotation of the input message. This is because, since it is the first cycle, the Syndrome
memory is initialized to 0 and all its contributions are irrelevant, so the xor gates can
be seen just as buffers that propagates the result coming from the collapse unit. In
particular: let’s assume that the correct key value is k. The first value to be written
into the SynNew reg will be the Message bits whose index are between k and k + 7
that for seek of practice are indicated as Message[k, k + 7]. After that, the value that
will overwrite it will be Message[k + 8, k + 15] and so on. The exclusive or between
Message[k, k + 7] and Message[k + 8, k + 15] will produce the target intermediate
value of the attack and the CPA algorithm will find a strong correlation in the clock
cycle t. If the correct key value would have been k + 8, the value that will be searched
by the CPA algorithm will be the exclusive or between Message[k + 8, k + 15] and
Message[k + 16, k + 23]. In the power trace, where the used key is k, it is be produced
in the clock cycle t + 3 and, as a consequence, also the correlation peak will be in that
position.
In conclusion, all the potential correct keys found by the algorithm are:

• the correct key value;

• all key values obtained by summing multiples of 8 (the parallelism of the archi-
tecture) to the correct one until reaching the maximum value.

As said before the correct guess can be made by considering only the correlation trace
that shows a strong correlation the closest to the beginning of the simulation. To
confirm this statement an additional verification has been done by checking in the
QuestaSim simulation that the moment in time of the correlation peak corresponds to
the instant in which the SynNew register is overwritten with the second value.

2nd position

For the second key position the result is univocal since only one correlation trace
presents a strong correlation value(almost 1) and the key value associated to that trace
is the correct one. An example of the resulting correlation trace is shown in Figure .

3rd position

For what concerns the third key position guess, the number of correlation traces show-
ing a correlation peak very close to 1 can be:

• 2 for most of the cases;

• 3 in rare situations.

54

5.2 – Simulation of a Power Analysis Attack

Figure 5.12: Plot showing all the correlation traces containing a strong correlation
value for the guessing of the key position 1.

Figure 5.13: Zoom of Figure 5.12 in the part containing the highest correlation values.

Figure 5.14: Plot showing the correlation traces having a strong correlation peak during
the guessing of the key position 2.

55

5 – Methodology

In the first scenario the key values related to the relevant traces are the correct one
and the one guessed for the second position. In the former trace the peak appears in
the right position, while the one related to the incorrect value is in the instant of time
where the intermediate values in the 1st macro-cycle are saved in the SynNew register.
In order to explain the reason behind this behavior let’s assume that the correct key
values in the first 3 macro-cycles are respectively k, j and n.
Following this assumption, the first 2 values that are written in the SynNew register
in each cycle are the one shown in Table and Table .

Position Key value SynNew value 1
1 k Message[k, k + 7]
2 j Message[j, j + 7] ⊕ Message[k, k + 7]
3 n Message[n, n + 7] ⊕ Message[j, j + 7] ⊕ Message[k, k + 7]

Table 5.1: First value written in the SynNew register during the first 3 cycles.

Position Key Value SynNew value 2
1 k Message[k + 8, k + 15]
2 j Message[j + 8, j + 15] ⊕ Message[k + 8, k + 15]
3 n Message[n + 8, n + 15] ⊕ Message[j + 8, j + 15]

⊕Message[k + 8, k + 15]

Table 5.2: Second value written in the SynNew register during the first 3 cycles.

When the algorithm computes the correlation trace for a certain key value, it as-
sumes that the correct value is the one under analysis. So, when it is evaluating the
correlation trace for the key value j, the first two values written in the SynNew register
become:

n = j

SynNew_value_1 = Message[n, n + 7] ⊕ Message[j, j + 7] ⊕ Message[k, k + 7]
SynNew_value_2 = Message[n + 8, n + 15] ⊕ Message[j + 8, j + 15]

⊕Message[k + 8, k + 15]

⇓

m = n

SynNew_value_1 = Message[j, j + 7] ⊕ Message[j, j + 7] ⊕ Message[k, k + 7]
SynNew_value_2 = Message[j + 8, j + 15] ⊕ Message[j + 8, j + 15]

⊕Message[k + 8, k + 15]
⇓

56

5.2 – Simulation of a Power Analysis Attack


m = n

SynNew_value_1 = Message[k, k + 7]
SynNew_V alue_2 = Message[k + 8, k + 15]

Those values are equal to the ones produced during the first key position cycle and
that is why the algorithm finds a strong correlation in the clock period when the first
SynNew value is overwritten by the second one in the first macro-cycle. In the case
in which the algorithm produce in output 3 possible candidates for the correct key
value, the additional value is the correct 1st key position. This is due to the fact that,
maintaining valid the previous assumption for what concerns the correct values in the
first 3 macro-cycles, when the algorithm computes the correlation trace for the key
value k it assumes that the two values written in the SynNew register are:


n = k

SynNew_value_1 = Message[n, n + 7] ⊕ Message[j, j + 7] ⊕ Message[k, k + 7]
SynNew_value_2 = Message[n + 8, n + 15] ⊕ Message[j + 8, j + 15]

⊕Message[k + 8, k + 15]

⇓

m = n

SynNew_value_1 = Message[k, k + 7] ⊕ Message[j, j + 7] ⊕ Message[k, k + 7]
SynNew_value_2 = Message[k + 8, k + 15] ⊕ Message[j + 8, j + 15]

⊕Message[k + 8, k + 15]

⇓
m = n

SynNew_value_1 = Message[j, j + 7]
SynNew_V alue_2 = Message[j + 8, j + 15]

If those two values are really saved in the register during the multiplication the algo-
rithm will find a strong correlation and identify the key value k as a possible candidate.
This correlation can only be found in the simulation time in which the first key po-
sition is managed since the content of the SynNew register is composed by a single
contribution. Although this situation can happen only if two conditions are satisfied:

• the difference between the 1st (k) and 2nd (j) position values is a multiple of the
parallelism of the architecture.

• the 2nd key value must be greater than the 1st one.

57

5 – Methodology

If those conditions are not satisfied, the bits that compose Message[j, j+7] are splitted
and inserted in two consecutive values produced during the macro-cycle managing the
1st key position. The same consideration can be done for Message[j + 8, j + 15].
Independently on the number of possible candidates found by the algorithm, the correct
value can simply be found by exclusion since the other values have already been guessed
and there cannot be two identical values in the key.

Other positions

For the remaining positions there are always 2 correlation traces showing a strong
peak close to 1. The key values associated to those traces are the correct one and the
correct value of the previous position. In the former trace the peak appears in the right
position, while the one related to the incorrect value is in the instant of time where
the intermediate values of two macro-cycles ago are saved in the SynNew register. In
order to better understand why an example is reported.
Let’s assume that the key position to be guessed is the 4th one whose value is m and
the previously guessed values are: k for the first position, j for the second one and n

for the third one. In Table 5.3 and Table 5.4 are reported the first 2 values that will
be stored in the SynNew register during the 4 macro-cycles.

Position Key value SynNew value 1
1 k Message[k, k + 7]
2 j Message[j, j + 7] ⊕ Message[k, k + 7]
3 n Message[n, n + 7] ⊕ Message[j, j + 7] ⊕ Message[k, k + 7]
4 m Message[m, m + 7] ⊕ Message[n, n + 7] ⊕ Message[j, j + 7]

⊕Message[k, k + 7]

Table 5.3: First value written in the SynNew register during the first 4 cycles.

Position Key Value SynNew value 2
1 k Message[k + 8, k + 15]
2 j Message[j + 8, j + 15] ⊕ Message[k + 8, k + 15]
3 n Message[n + 8, n + 15] ⊕ Message[j + 8, j + 15]

⊕Message[k + 8, k + 15]
4 m Message[m + 8, m + 15] ⊕ Message[n + 8, n + 15]

⊕Message[j + 8, j + 15] ⊕ Message[k + 8, k + 15]

Table 5.4: Second value written in the SynNew register during the first 4 cycles.

So when the algorithm is evaluating the correlation trace for the key value n, the

58

5.2 – Simulation of a Power Analysis Attack

first two values that it expects to be written in the SynNew register are:

m = n

SynNew_value_1 = Message[m, m + 7] ⊕ Message[n, n + 7] ⊕ Message[j, j + 7]
⊕Message[k, k + 7]

SynNew_value_2 = Message[m + 8, m + 15] ⊕ Message[n + 8, n + 15]
⊕Message[j + 8, j + 15] ⊕ Message[k + 8, k + 15]

⇓

m = n

SynNew_value_1 = Message[n, n + 7] ⊕ Message[n, n + 7] ⊕ Message[j, j + 7]
⊕Message[k, k + 7]

SynNew_value_2 = Message[n + 8, n + 15] ⊕ Message[n + 8, n + 15]
⊕Message[j + 8, j + 15] ⊕ Message[k + 8, k + 15]

⇓
m = n

SynNew_value_1 = Message[j, j + 7] ⊕ Message[k, k + 7]
SynNew_V alue_2 = Message[j + 8, j + 15] ⊕ Message[k + 8, k + 15]

It can be noticed that those two values are equal to the one present in the second row of
Table 5.3 and Table 5.4 because they are the first two numbers written in the SynNew
register during the 2nd macro-cycle. That is why the algorithm finds strong correlation
also in the clock period in which in the simulations the first number is overwritten by
the second one. By the way this additional peak doesn’t affect the final guess since the
correct value can be found by simply excluding the values guessed during the previous
cycles because there cannot be 2 identical values in the key.
An example of two relevant correlation traces found during the 11th position guess is
shown in Figure 5.15

59

5 – Methodology

Figure 5.15: Plot showing the correlation traces having a strong correlation peak during
the guessing of the key position 11.

5.3 Threshold frequency detection
A study has been conducted in order to find which is the minimum working frequency
of the multiplier that allows to recover the secret key using the CPA attack described
in the previous sections. In this case, instead of guessing the entire key, the target is
only its second position. This choice has been made in order to replicate the attack
conducted on a real device described in chapter 6 where also the motivations behind this
choice are detailed. As shown in chapter 4 the dynamic power consumed by a digital
system is directly proportional to its working frequency. Since the power contribution
exploited by the CPA attack is the dynamic one it is reasonable to expect that the
higher is the dynamic power, the higher will be the accuracy of the attack result. For
accuracy it is meant the difference between the correlation peak of the correct key and
the highest correlation peak coming from all the other key guesses which are wrong.
To find this threshold the same CPA attack has been reproduced by only changing the
working frequency of the architecture, which means that:

• the post-synthesis netlist is the same and it has been produced giving the same
clock constraint of the attack described in chapter 5, which is 200 MHz. It is
important to not modify the clock frequency in the synthesis constraints because
it would almost surely lead to some changes in the synthesized architecture;

• the clock frequency in the testbench files has been changed and has assumed
a different value for each test conducted. This is the working frequency of the
architecture during the simulations;

• the VCD files produced by QuestaSim and, as a consequence, also the power traces
coming from PrimeTime will be different because of the different clock frequency
set in the testbench files;

60

5.3 – Threshold frequency detection

• the number of power traces used for the CPA attack has remained unchanged to
30, which is the minimum number that allows to obtain reasonable results.

5.3.1 Results
The results obtained are shown in Figure 5.16 and in Table 5.5.

Figure 5.16: Graph representing the behaviour of the correlation peak of the correct
key value and an indication on the accuracy of the attack depending on the working
frequency of the multiplier.

Frequency (kHz) Correct peak Highest wrong peak Accuracy
250 0.75543 0.8602 -0.10477
300 0.80914 0.8632 -0.05406
400 0.87777 0.862417 0.015353
500 0.91381 0.861798 0.052012
1000 0.97411 0.86723 0.10688

Table 5.5: Values of the correct key peak, the highest wrong key peak and the accuracy
of the result depending on the working frequency of the multiplier.

The blue line represents the behaviour of the correlation peak of the correct key
value, while the orange line corresponds to the accuracy of the attack. As expected,
the higher is the frequency, the higher is the value of the peak. From the graph it can
be noticed that the minimum working frequency that allows to recognize the correct

61

5 – Methodology

key value from the wrong ones is around 400 kHz where the difference between the
peaks starts to be greater than 0 which means that the correct key has the highest
peak. The behaviour of the two graphs is very similar because the value of the highest
wrong peak is always around 0.86 and does not vary significantly with the frequency.
Those results have to be intended as ideal since they come from simulations, so if the
same experiment has to be repeated on a real device, the frequency threshold will
surely be higher than 400 kHz due to the noise and various errors superimposed to
the power trace signal coming from different sources like the instruments used for the
measuring setup and from the environment. All those unwanted components will lower
the correlation peak value and as a consequence more traces will be needed to make
the CPA attack successful.

62

Chapter 6

CPA attack on a multiplier
FPGA implementation

The last step of this work has been to apply the same CPA attack done in simulation to
a real implementation of the multiplier. The only difference is that instead of recovering
the entire key, the target has been only the second position since it is the one requiring
the lower number of samples to be recorded from the power trace of the device allowing
us to reduce as much as possible the required storage memory and the execution time
of the attack.
The goal is to verify if the results obtained from the simulations are compliant with the
one obtained in a real scenario. Both the measuring setup and the device under test
used for this experiment are included into a unique board which has been developed
by the Politecnico di Torino named VirtLab.
In the following sections will be described the architecture of the board [14], how the
traces have been recorded and the results obtained.

6.1 VirtLab architecture
The board is divided in two sides:

• the Master side containing the test equipment and the logic to program the user
side;

• the User side containing the device under test.

Both the User and Master sides contain an FPGA and a microcontroller together with
some peripherals and LEDs. A block diagram representing the architecture of the
board is shown in Figure 6.1.

63

6 – CPA attack on a multiplier FPGA implementation

Figure 6.1: Block diagram of the VirtLab architecture.

6.1.1 Master side
The master side contains all the components that act as test equipment and control
the User side elements. The measuring instruments integrated in the board are:

• a Digital Storage Oscilloscope;

• a Signal generator;

• a Multimeter;

• a Logic Analyzer.

The main components that are included in this side are:

• a 32 bit microcontroller that is in charge of programming the User FPGA
by using an I2C bus or a RS232 bus and the Master FPGA thanks to a QSPI
channel. Moreover it can be used to configure and send control commands to the
components and its peripherals that act as test equipment and retrieve from them
signals that can be sent to a PC using an USB connection;

• an FPGA connected to the main and only general purpose I/O bus of the board
that connects together all the most important components in both the Master and
User sides;

64

6.2 – Power trace recording

• an Analog Front End that is formed by the components in charge of converting
digital signals into analog output and viceversa such as ADCs and DACs. In this
way it is possible to emulate the functionalities of both a digital oscilloscope and
of a signal generator.

• a Hyper-RAM which is used to store samples from both the oscilloscope and
the signal analyzer;

• a Flash QSPI that contains the configuration file (.RBF) of the FPGA master
and its content will be transferred to the FPGA at the startup of the board thanks
to the Master microcontroller.

6.1.2 User side
The User side is the one where the system under test is implemented and its main
components are:

• a microcontroller which is freely programmable and it is connected both to the
User FPGA and to some useful peripherals like a 7-segment display and 4 LEDS;

• a FPGA that, as the microcontroller, is fully programmable and it is connected
to 4 LEDS.

Both the microcontroller and the FPGA are connected to the 32 bits IO bus in order
to communicate also with the components in the Master side.

6.2 Power trace recording
Since only the second value of the key had to be guessed, it has been recorded only
the time frame where that value was used during the multiplication. The setup was
organized as shown in Figure 6.2. The VirtLab was connected to the pc through a
USB port which has been used to program both the microcontroller and the FPGA on
the User side and to send commands to the Master microcontroller to setup correctly
the oscilloscope [13]. The testbench components and the multiplier with its memories
have been implemented as follows:

• the User MCU (MicroController Unit) contains the testbench. Its role is to send
the control signals to the multiplier in order to start and stop correctly the oper-
ation;

• the User FPGA has been used to implement the multiplier together with all the
memories that it needs to retrieve the input values and store the result.

65

6 – CPA attack on a multiplier FPGA implementation

Figure 6.2: Measuring setup used to record power traces using the VirtLab board.

For what concerns the measuring equipment, the oscilloscope has two channel that
can be connected to six possible sources:

• two general purpose analog channels;

• a signal representing the power consumption of the user FPGA on the 3.3V power
line. This voltage is used to feed the I/O cells of the FPGA;

• a signal representing the power consumption of the user FPGA on the 2.5V power
line. This line feeds the analog part of the PLLs present in the device;

• a signal representing the power consumption of the user FPGA on the 1.2V power
line that feeds the core cells.

For our purpose the relevant sources are the 3.3V and the 1.2V that have been
connected to the 2 channels of the oscilloscope. Then, the measuring procedure has
been the following:

1. the User MCU has been programmed;

2. the User FPGA has been configured in order to have both the multiplier and
the two input memories containing respectively the secret key and a message to
decrypt;

3. the oscilloscope has been set up: the two channels were connected to the 3.3V and
1.2V power line of the FPGA and the sampling frequency was set to the double
of the working frequency of the multiplier in order to obtain 2 samples for each
clock cycle.

4. the testbench has been launched;

5. when the testbench is concluded the samples stored by the oscilloscope in both
the channels were retrieved by transferring them through the USB port to the pc
where they have been saved into text files.

This procedure has been repeated for each power trace collected and, when all the
measures have been done, for each couple of traces (3.3V and 1.2V) related to the same
message, they were summed up into a unique trace that has been used to perform the
CPA attack.

66

6.3 – Results

6.3 Results
Due to the fact that the maximum sampling frequency that could be reached using
the VirtLab board is 500 kSa/s, the working frequency of the multiplier has been set
to 250 kHz in order to obtain two samples for each clock cycle. As expected from
the results obtained in chapter 5.3, the working frequency of the architecture was not
enough to make the attack successful. In this experiment 100 different messages has
been used and for each of them 10 traces have been collected. The attack has been
conducted firstly using for each message one of the 10 traces collected and, with the
second try, the traces related to the same message have been previously mediated and
the mean-trace produced was used for the attack. This procedure has been done to
reduce the amount of noise superimposed to the signal. Since those attacks did not
lead to good results, another approach was used for the last attempt. The idea was
to delete from the power trace the static contribution or at least to reduce it a lot in
order to maintain only the dynamic part. This was done by firstly computing a mean
trace from the 100 messages and them subtract this contribute, that should be very
close to the static power, to each of the 100 traces. The power profiles obtained from
this operation should represent the dynamic power consumed by the architecture and
have been used to perform the attack. However also this attempt was not successful.
As already stated in chapter 5.3, due to the fact that the threshold frequency in sim-
ulations is 400 kHz, if a real CPA attack has to be conducted on this architecture, its
working frequency must be much higher in order to make the dynamic power significant
with the respect to the sum of the static contribution and the noise superimposed to
the signal, but with the hardware used in this experiment this was not possible.

67

68

Bibliography

[1] Marco Baldi. QC-LDPC code-based cryptography. Springer Science & Business,
2014.

[2] Eric Brier, Christophe Clavier, and Francis Olivier. “Correlation power analysis
with a leakage model”. In: International workshop on cryptographic hardware and
embedded systems. Springer. 2004, pp. 16–29.

[3] Jintai Ding and Bo-Yin Yang. “Multivariate public key cryptography”. In: Post-
quantum cryptography. Springer, 2009, pp. 193–241.

[4] Olaf Grote, Andreas Ahrens, and César Benavente-Peces. “A Review of Post-
quantum Cryptography and Crypto-agility Strategies”. In: 2019 International
Interdisciplinary PhD Workshop (IIPhDW). 2019, pp. 115–120. doi: 10.1109/
IIPHDW.2019.8755433.

[5] Paul Kocher et al. “Introduction to differential power analysis”. In: Journal of
Cryptographic Engineering 1.1 (2011), pp. 5–27.

[6] Kristjane Koleci. “VLSI QC-LDPC Decoder for Post-Quantum Cryptography”.
MA thesis. Politecnico di Torino, 2019.

[7] Kristjane Koleci et al. “Efficient Hardware Implementation of the LEDAcrypt
Decoder”. In: IEEE Access 9 (2021), pp. 66223–66240.

[8] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks:
Revealing the secrets of smart cards. Vol. 31. Springer Science & Business Media,
2008.

[9] Baldi Marco et al. LEDAcrypt: Low-dEnsity parity-check coDe-bAsed crypto-
graphic systems. 2019. url: https://www.ledacrypt.org/documents/LEDAcrypt_
v3.pdf.

[10] Robert J McEliece. “A public-key cryptosystem based on algebraic”. In: Coding
Thv 4244 (1978), pp. 114–116.

[11] Daniele Micciancio and Oded Regev. “Lattice-based cryptography”. In: Post-
quantum cryptography. Springer, 2009, pp. 147–191.

[12] Raphael Overbeck and Nicolas Sendrier. “Code-based cryptography”. In: Post-
quantum cryptography. Springer, 2009, pp. 95–145.

69

https://doi.org/10.1109/IIPHDW.2019.8755433
https://doi.org/10.1109/IIPHDW.2019.8755433
https://www.ledacrypt.org/documents/LEDAcrypt_v3.pdf
https://www.ledacrypt.org/documents/LEDAcrypt_v3.pdf

BIBLIOGRAPHY

[13] Massimo Ruo Roch. “Tutorial: Setting up and using VirtLab”. VirtLab tutorial.
Nov. 2021.

[14] Massimo Ruo Roch. “VirtLab 1.2”. VirtLab documentation. Apr. 2021.
[15] Katsuyuki Takashima. “Efficient algorithms for isogeny sequences and their cryp-

tographic applications”. In: Mathematical modelling for next-generation cryptog-
raphy. Springer, 2018, pp. 97–114.

70

	List of Tables
	List of Figures
	Introduction
	Post-quantum cryptography
	Classic McEliece
	Key and matrices generation
	Encryption
	Decryption

	LEDAcrypt
	Key and matrices generation
	Encryption
	Decryption

	Vector By Sparse Circulant binary multiplier
	Algorithm
	Architecture
	Datapath
	Control unit

	Power Analysis Attacks
	Simple Power Analysis attack
	Template based attack

	Differential Power Analysis attack
	Choice of the instrumentation
	Measurement
	Signal processing
	Prediction and selection function generation
	Differential traces production
	Results evaluation

	Correlation Power Analysis attack
	Power consumption measurement
	Power model choice
	Intermediate value choice
	Intermediate value computation
	Power consumption prediction
	Correlation trace generation
	Results evaluation

	Methodology
	Power Traces generation
	QuestaSim script
	PrimeTime script

	Simulation of a Power Analysis Attack
	Power model choice
	Intermediate value choice
	Intermediate value computation
	Power consumption prediction
	Generation of correlation traces
	Results evaluation

	Threshold frequency detection
	Results

	CPA attack on a multiplier FPGA implementation
	VirtLab architecture
	Master side
	User side

	Power trace recording
	Results

