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Abstract

Recently First Person Action Recognition (FPAR) has gained great interest
of the researchers’ community, mainly due to the increasing spread of wear-
able devices, the release of large and well-annotated datasets and the huge
investments in novel technologies e.g., autonomous drones and robots, self-
driving systems. Although egocentric vision rapidly attracted the interest of
the research community, this setup presents some important challenges, most
notably the ego-motion and the domain shift in feature space. Approaches
in the literature often exploit multiple modalities to help mitigating these
problems. However, domain shifts affect each modality in a different way,
so it is important to develop algorithms that can better leverage the com-
plementarity among modalities to achieve model resilience across domains,
allowing the model to better recognize actions under various domain shifts.

The literature proposes domain adaptation techniques to address such
problems: they consist in methods to mitigate the performance drop that
occurs when a model trained on source data is used on target data, and
these data do not follow the same probability distribution. However, such
techniques require some knowledge of the target distribution, and often such
assumption is too strong. Domain Generalization techniques tackle this kind
of scenario but, while for related tasks like image classification several meth-
ods exist, the literature in video domain generalization is still scarce.

This work focuses on domain adaptation in first person action recognition,
by proposing an approach that takes advantage of the multi-modal nature
of the perceptual input. Our approach is designed for a domain generaliza-
tion scenario, but that can also be used in unsupervised domain adaptation
scenario, taking further advantage from the availability of target data. We
motivate our approach in light of recent progress in understanding problems
and challenges of multi-modal training: in fact, jointly training multi-modal
networks is harder than training their uni-modal counterparts, because dif-
ferent modalities separately overfit and generalize at different rates, leading
to a sub-optimal joint optimization.

To this extend we study the relative norm alignment (RNA-Net) approach,
and propose it as a valuable technique to leverage multi-modal correlations
in input streams and as a valid regularizer, further proposing an extension
that guides the norm alignment towards higher feature norm regions. Our



experiments show that RNA-Net++ is able to effectively enhance the per-
formance of the model it is applied to, by leveraging a learn to re-balance
task that ensures a consensus mean feature norm among modality streams.
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Chapter 1

Introduction

Artificial Intelligence, Machine Learning and Deep Learning have become
commonly used buzzwords in the last decade, used by media in a inter-
changeable way, however without a clear idea of what those words mean. In
fact, the concept of a machine exhibiting an "intelligent" behaviour is much
older than the modern digital society. The process that lead humankind to
the development of modern computers started with the idea that calculus,
an activity that is indeed very intelligent since it implies abstracting the re-
ality into numbers and operations between them; however, some aspects of
calculus are repetitive, mechanic and in the end not very intelligent: some of
the greatest minds of the past understood that, in order to express the full
potential of the human mind, this kind of operations have to be automated
by using machines. Instruments to assist calculus like the abacus are known
from the very ancient times, but the first successful modern attempt to build
a calculator is attributed to Blaise Pascal, who in 1642 invented the so-called
"Pascalina", able to perform additions through wheels and gears. From that
invention, others developed more complex systems: Leibneiz developed a
machine able to perform additions, subtractions, multiplications, divisions
and square roots, handling numbers up to 16 digits; Jacquard invented the
concept of programming looms for the textile industry with punch cards, so
the concept of storing instructions, an idea then integrated in the Babbage’s
"Machina Analitica" (1835). From that moment, the idea of a machine per-
forming calculus was mature at least in theory, and some physical limits were
overcome with the introduction of electromechanical components and then
with the invention of electronics: from that moment the rest is history.

The idea of an artificial intelligence however is not so new as we may think:
as the idea of automatic calculus took place, the idea of automatic reasoning
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Introduction

became appealing. Ramon Llull invented a philosophical system known as
the "Ars Generalis" (1308), conceived as a type of universal logic to prove
the truth of Christian doctrine to interlocutors of all faiths and nationalities:
Llull believes that he can solve every problem with mathematical precision:
he starts from the assumption that every proposition is reducible to terms
and complex terms are reducible to several simple terms or principles. This
is believed to have influenced the the latter development of computation and
artificial intelligence. Perhaps the most famous work, considered the cor-
nerstone of the discussion on artificial intelligence, is an article from Alan
Turing, entitled "Can Machines Think?": it is the article in which the con-
ceptual experiment known as the "Turing test" is described. However, the
mainstream culture advertise a different idea of artificial intelligence: there is
plenty in the science fiction about humanoid robots taking over the humans,
so sometimes it is associated with that particular trait of humans that we
generically call intelligence, but that in fact we do not really know what it
is. Nevertheless the idea of intelligence applied to machines is rather differ-
ent: it has to do with exhibited behaviour than actual reasoning. The most
straightforward definition would identify something as intelligent in relation
of a human being, so in terms of fidelity to human performance. In many
fields indeed the human performance is the supreme benchmarks with which
the state of the art compares itself. Nowadays the use of intelligence applied
to machines is very practical: can we make a machine able to perform a
task such that it is useful for our purposes? Sometimes we need to process
some information to obtain value, and often this processing is unfeasible for
a human, given the volume of inputs. In practice, modern algorithms look at
pattern into the data to extract useful information, to identify relations to
exhibit a behaviour evaluated with a optimality metric. Most importantly,
machine learning algorithms learn from data: very little prior knowledge
about the task is integrated into the algorithm, because the answers we are
searching for are hidden in patterns from data.

Machine learning is everywhere: recommendation systems monitors our
online activity and purchases to propose products we might be interested
in; virtual assistants make our preferences understood and bridge the gap
in the human-computer interaction; autonomous driving algorithms promise
to free us from the burden of driving; advances in robotics combined with
cutting edge algorithms is giving us robots that can autonomously interact
with a complex environment and perform complex tasks too dangerous for
humans. The spreading of smart devices (like smartphones and wearables),
as the integration of IoT devices in our society, increases the interest in
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Figure 1.1. Example RGB frames with relative action annotations from
several EPIC-Kitchens videos.

machine learning and deep learning: indeed these devices generate a lot of
data, and their very purpose is linked to how these data can be exploited,
and machine learning is the tool we need. The scenario is very complex
and it is rapidly changing: artificial intelligence is a promising technology
to advance humanity like never happened before, with all the associated
challenges, from both scientific and social point of view. Deep Learning is
a subset of machine learning that has neural networks as core components:
the term deep refers to an architecture made of several layers of networks
to extract useful representations from the raw data for the task at hand. In
practice if machine learning generally uses shallow architectures in which, for
example, the features used by a classier are hand-designed or anyway require
a human intervention, deep architectures extract the relevant features from
the data and use them as input to the final part of the network.

A field of Artificial Intelligence where Deep Learning architectures have
become state of the art is Computer Vision: its goal is to enable computers
and machines to gain high-level understanding from images or videos to solve
all the various tasks associated with perception. Computer vision already
beats humans in some tasks, like image classification. However, perceiving
videos has been shown to be much more difficult. Recently, First Person
Action Recognition (FPAR) has gained great interest from the researchers’
community, mainly due to the increasing spread of wearable devices, the
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release of large and well-annotated datasets [13] and the huge investments
in novel technologies, e.g., autonomous drones and robots, self-driving sys-
tems. The most notable difference with general action recognition is that
visual information is collected from the human perspective, and the anal-
ysis of such egocentric data allows to study human behaviour in a more
direct manner. Although egocentric vision has rapidly attracted the interest
of the research community, this setup presents some important challenges.
For example, ego-motion, arising from the movements of the actor’s camera,
introduces confusion between the actor’s movements and the real action of
the subject. Furthermore, the actions’ surrounding environment frequently
introduces bias into the dataset (environmental bias); as a result of a do-
main shift in the features space, models frequently rely on environmental
characteristics to make predictions. Approaches in the literature often ex-
ploit multiple modalities to help mitigate these problems. For example, the
auditory channel is not affected by ego-motion, so the prediction related to
that modality would not be affected, and so this helps in making the model
more robust. Conversely, domain shifts are not all of the same nature, and
their impact can vary significantly across modalities; this means that domain
shift affects each modality in its own unique way. Moreover, results from bi-
ological sciences indicate that humans perceive the world in a multi-modal
way: multi-modality has a characteristics called reentry [14], the explicit
interrelating of multiple simultaneous representations across modalities. In
[15] authors provide an example: when a person experiences an apple, and
immediately characterizes it as such, the experience is visual, but also in-
vokes the smell of the apple, its taste, its feel, its heft, and a constellation
of sensations and movements associated with various actions on the apple.
Importantly, these multi-modal experiences are time-locked and correlated.
As a consequence, it is of crucial relevance to develop algorithms that can
better leverage the complementarity among modalities to achieve model re-
silience across domains, allowing the model to better recognize actions under
various domain shifts.

1.1 Research goals
The literature proposes domain adaptation techniques to address such prob-
lems: they consist in methods to mitigate the performance drop that occurs
when a model trained on source data is used on target data, and these data
do not follow the same probability distribution. However, such techniques
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require some knowledge of the target distribution, in form of (unlabelled)
target data. This requires that target data is available during training, and
such assumption is often too strong: indeed the presence of multiple source
or target domains further complicates the problem. This motivates to seek
for a different approach that can generalize among domains without requiring
access to a target distribution, that is in fact unknown. Domain General-
ization techniques tackle this kind of scenario but, while for related tasks
like image classification several methods exist, the literature in video domain
generalization is still scarce. This work focuses on Domain Generalization in
first person action recognition, by leveraging the multi-modal nature of the
perceptual input.

1.2 Main Contributions
We propose an approach that takes advantage of the multi-modal nature of
the perceptual input, obtaining models that can better leverage the comple-
mentarity among modalities, and so are more robust with respect to diverse
domain shifts. Moreover it can be used also in Unsupervised Domain Adap-
tation scenario, taking further advantage from the availability of target data.
It builds upon a recent approach for audio-visual domain generalization in
first person action recognition, that has been proved to be promising [16].
In particular, we extend the approach to account for multi-modal domain
generalization, proving its effectiveness in a much more challenging and real-
world scenario: both the presence of different environments and the fact
that the source and target domains are captured in different temporal mo-
ments make it a multi-shift problem ideal for proving the effectiveness of our
method. This is the setting of the challenge released with the Epic-Kitchens-
100 dataset, namely the Unsupervised Domain Adaptation challenge we face
[17].

1.3 Thesis structure
This thesis is organized as follows:

• The first part analyzes the background knowledge of the field of study,
namely the theoretical basics of machine learning, the basic concepts of
deep learning as well the recent algorithms and techniques, with special
attention to the computer vision field (chapter 2). Then we will present
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the state of the art in first person action recognition (chapter 3), from the
formal description of the task, to multi-modal learning, the known archi-
tectures and the problems of Unsupervised Domain Adaptation (UDA)
and Domain Generalization (DG).

• The second part is about our contributions: in chapter 4 we present the
relative norm alignment (RNA-Net) approach, describing an implemen-
tation as a loss function. We further propose an extension that guides the
norm alignment towards higher feature norm regions; our experiments
show that RNA-Net++ is able to effectively enhance the performance
of the model it is applied to by leveraging a learn to re-balance task. We
motivate our approach in light of recent progress in understanding the
problems and challenges of multi-modal training as a valuable technique
to leverage multi-modal correlations in input streams and as a valid
regularizer. In chapter 5 we validate the method through extensive ex-
periments in first person action recognition, using the EPIC-KITCHEN
dataset, commonly used as benchmark in this field of study. In chap-
ter 6 we additionally show qualitative results analyzing the features in
the embedding space resulting from our approach with respect to the
baseline and extracting the class activation maps from the classifier, to
prove that our method helps at attending the relevant parts of the input
video.

• The last part describes the conclusions and the possible future directions
of this work.
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Part I

First part: Background
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Chapter 2

Machine Learning and
Deep Learning

This chapter and its subsections provide an overview of deep learning in
general, starting from an historical perspective to understand why the de-
velopment of methods and algorithms have lead us to the technology used
nowadays. This first part is covered in Section 2.1, then the following chap-
ters will focus on the concepts most relevant to this work. Then the next
chapters will cover the neural networks, with specific focus on the the kind
of ones used in this work. In Section 2.2, starting from the perceptron al-
gorithm, the concept of feedforward neural network and the learning algo-
rithm of backpropagation will be explained, following the demonstration in
[18]. Starting from the simple neural network, in sections 2.3 and 2.4 the
motivations behind the development of more advanced architectures will be
examined, so the technologies of convolutional neural networks and residual
neural networks. Finally, since analyzing videos involves considering prop-
erly the temporal dimension or, more in general, taking into account not
only the spatial correlation of pixel in a image but also the correlation of
different images, Section 2.5, starting from the recurrent neural networks,
will introduce the cutting-edge Transformer architecture, that is emerging as
promising approach in a variety of deep learning tasks.
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Machine Learning and Deep Learning

2.1 AI, Machine Learning and Deep Learning

2.1.1 AI
Despite the tremendous speedup of recent progress in the field of artificial
intelligence, the idea of making machinery that would allow automatic and
intelligent behaviour is as old as the idea of automatic computation. In fact,
as soon as humans figured it out how to make a machine to expand the
human capabilities to compute, the idea of having machines able to act in-
telligently had been becoming compelling. However defining what intelligent
means is as fascinating as intricate: the most straightforward answer would
identify something as intelligent in relation of a human being, so in terms of
fidelity to human performance. The fact is that, even limiting the concept to
humans, giving a definitions of intelligence is still an open question without
one definitive and precise answer.

Historically, definitions for intelligent has been concerned with thinking
and acting, and measuring the success in terms of fidelity to human perfor-
mance, or against an ideal performance measure, called rationality. In Figure
2.1 we see eight definitions of AI, laid out along the different combinations of
thinking and acting. History of AI is pretty complex and outside the scope
of this work, but there is an important historical passage that is worth to
be highlighted: initial works on AI embodied the "physical system hypoth-
esis", which states that “a physical symbol system has the necessary and
sufficient means for general intelligent action”. Programs proving mathemat-
ical theorems and integrals solvers were successfully developed during this
stage of AI. The limitation of such an approach became evident when many
predictions about what computers would be able to do did not match the
expectations. Motivated by the fact that programs did not know anything
about the entities they were manipulating, in the ’70 expert systems were
born: they leveraged a set of domain-specific rules encoded by humans to
solve the task.

2.1.2 Machine Learning
Nowadays the approach taken by machine learning is quite different, more fo-
cused on learning from the data itself than by any human-encoded knowledge.
In practice modern algorithms look at pattern into the data to extract useful
information: just as an example, in the classification task an algorithms tries
to identify the relation between the features, that is the characteristics the
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Figure 2.1. Possible definitions of intelligence, laid out into four
categories . Image taken from [1]

sample, and the true label. The knowledge extracted from the data in the
training set is the used to infer the true label on new unlabelled data.

More in general, the statistical learning framework of machine learning is
based upon assumes the learner has access to a finite training set of instances
S = {(x1, y1), ..., (xm, ym)} in the space X × Y (where X is the domain set
and Y is the label space) that follow an unknown data distribution D, and
the goal of a learning algorithm is to output a predictor hS that achieves the
lowest possible error with respect to D. The true error of a prediction rule h
is defined as:

LD(h) def= P(x,y)∼D[h(x) /= y] def= D({(x, y) : h(x) /= y}) (2.1)

Because the learner has limited access to D, the true error is not available,
so the definition of error being used is called Empirical Risk, defined as:

LS(h) def= |{i ∈ [0, m) : h(xi) /= yi}|
m

(2.2)

Given this framework the best predictor any learning algorithm can output
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is the Bayes Optimal Predictor (here in the case Y = {0,1}):

fD(x) =
1, if P[y = 1|x] ≥ 1/2

0, otherwise
(2.3)

In general the definition of the risk function depends on the learning task at
hand, and it is defined as the expected value of a loss function l : H × Z →
R+:

LD(h) def= Ez∼D[l(h, z)]

LS(h) def= 1
m

mØ
i=1

l(h, zi)
(2.4)

Finally, the notion of PAC learnability gives information about both a
lower bound for the lowest achievable error and the sample complexity of the
hypothesis class H:

Definition 2.1. A hypothesis class H is agnostic PAC learnable with respect
to a set Z and a loss function l : H × Z → R+, if there exist a function
mH : (0,1)2 → N and a learning algorithm with the following property: for
every ϵ, δ ∈ (0,1) and for every distribution D over Z, when running the
learning algorithm on m ≥ mH(ϵ, δ) i.i.d. examples generated by D, the
algorithm returns a hypothesis class h such that, with probability of at least
(1 − δ) over the choice of m training examples:

LD(h) ≤ min
h′∈H

LS(h′) + ϵ (2.5)

Particularly useful for this work form know on is to notice that any guaran-
tee on the error with respect to an underlying distribution D for an algorithm
that has access only to a sample S depends on the relationships between D
and S: the common assumption in statistical machine learning is the i.i.d.
assumption, by which the examples in S are independently and identically
distributed according to D. This is important for this work because, when
training any machine learning algorithm, the error we can expect when new
unlabelled instances are fed to the predictor depends on the fact that the
training set has been drawn from the same distribution or, equivalently, that
the domain we are applying the predictor is similar to the one it has been
trained on. Given these assumptions, machine learning has been proved to
be the state-of-the-art tool for automatic learning.
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2.1.3 The Bias-Complexity tradeoff

An important result in machine learning theory is the so-called No-Free-
Lunch theorem, by which is it possible to state that no universal learner exist:
more formally, modelling a task as an unknown distribution D over X × Y ,
there not exist a learning algorithm A and a training set size m, such that for
every distribution D, if A receives m samples from S ∼ Dm, there is a high
probability to obtain a predictor with low LD(h). This phenomenon is related
as overfitting, the situation in which the predictor h perfectly fits the training
data, with very low or even zero LS(h), but achieves high error on unseen
instances (see figure 2.6(a) for a graphical example). To overcome such a
problem, the learner is restricted to choose a predictor from a hypothesis class
H that is believed to contain a predictor that achieves low error: the choice
of H incorporates a prior knowledge of the task, that biases the learning
algorithm, and for this reason it is also called inductive bias. A fundamental
problem is how to properly restrict H such that it contains a predictor with
low risk and it does not lead to overfitting. In fact, restricting the richness
of H could lead to the opposite problem, called underfitting, in which the
predictor chosen by the learning algorithm lacks the expressive power to
effectively model the distribution D, the learning task at hand. Let hS be
an hypothesis obtained using the ERM approach on H, the true error of this
predictor can be decomposed into:

LD(hS) = ϵapp +ϵest where: ϵapp = min
h∈H

LD(h), ϵest = LD(hS)−ϵapp (2.6)

In this decomposition, the approximation error is the minimum risk achiev-
able by a predictor in the hypothesis class, and it is an indicator of how much
inductive bias it is introduced by restricting the hypothesis class. The lower
bound for this term is the error of the Bayes predictor, the minimal error
possible. The estimation error is the difference between the approximation
error and the error achieved by the ERM predictor, and it results from the
fact that the empirical risk is only an estimate of the true risk. This term
depend on the training size (the larger the training size the lower the error)
and on the complexity or richness of H (the more complex is H, the higher
the error). The objective of learning is to minimize the total risk, for this
reason this is referred as bias-complexity tradeoff.
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2.1.4 Loss functions
As previuosly said, a loss function is a function l : H × Z → R+, and its
choice strongly depend on the task at hand.

0-1 Loss

This loss function is used in binary or multiclass classification problems, and
the random variable z ranges over the set of pairs X × Y .

l0−1(h, (x, y)) def=
0, if h(x) = y

1, if h(x) /= y
(2.7)

Square Loss

This loss is used in regression problems, namely when Y = R.

lsq(h, (x, y)) def= (h(x) − y)2 (2.8)

Cross-Entropy Loss

Cross-entropy loss, or log loss, measures the performance of a classification
model whose output is a probability value between 0 and 1, and it is the most
widely adopted in multiclass classification problems. Usually the true label is
encoded as a one-hot vector containing only one 1, at the index corresponding
to the category the instance is belonging to. The output of the classifier is
encoded as a probability distribution over the set of classes by applying the
softmax function, defined as

s : RK → {o ∈ RK |oi > 0,
KØ
i

oi = 1}

s(o)j = exp ojqK
k=1 exp ok

for j = 1, ..., K

(2.9)

The cross-entropy loss increases as the predicted probability diverges from the
actual label. The cross-entropy loss penalizes more severely those predictions
that are confident and wrong. Additionally, the error on some classes can
be non-uniformly penalized by incorporating a weight vector w ∈ RC in the
definition: this is usually used when the dataset is unbalanced.

lce(h, (x, y)) def= −
CØ

c=1
wc(yc log(s(h(x))c) (2.10)
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2.1.5 Deep Learning

Deep Learning is a subset of machine learning that has neural networks as
core components: the term "deep" refers to an architecture made of several
layers of networks to extract useful representations for the task at hand. In
practice if machine learning generally uses shallow architectures in which, for
example, the features used by a classier are hand-designed or anyway require
a human intervention, deep architectures extract the relevant features from
the data and use them as input to the final classifier. In such an approach,
the features extracted by a layer are based on the ones extracted from the
previous one, so from the bottom to the top of the network, the output
captures higher-level features of the data, resulting in a hierarchy from which
the name deep learning. The reasons behind the explosion of deep learning
in real world applications in the last ten years lie in the recent progress of
GPUs, that enable the massive computation needed to train deep learning
models, and the availability of great amount of data to be used for training.
This approach has been proved superior in fields like computer vision and
natural language processing, in which is particularly difficult and unclear
how to extract suitable features from the data for the task at hand. Because
neural networks are the base of deep learning algorithms, it is necessary to
describe how they are made, starting from the most basic building block, the
perceptron.

2.2 From Perceptron to Feedforward neural
networks

The perceptron has been introduced in 1958 by the scientist Frank Rosenblatt
[19], who defined them as entities consisting of an input layer and an output
layer. It is the archetype of an artificial neuron used in neural networks, and
it is defined as a unit that characterized by being "on" and "off" based on
the input it receives. The concept of an artificial neuron has been strongly
inspired by the cognitive science area. From the mathematical point of view,
the perceptron is an algorithm for learning the class of halfspaces, that is the
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Algorithm 1 Perceptron Learning Algorithm
Require: a training set (x1, y1), ..., (xm, ym), w(1) randomly initialized

for t = 1, 2, ... do
if ∃i s.t. yi⟨w(t), xi⟩ ≤ 0 then ▷ Classification error

w(t+1) = w(t) + yixi

else
output w(t)

end if
end for

hypothesis class designed for classification problems, that is:

Ld = {hw,b : w ∈ Rd, b ∈ R}

hw,b(x) = ⟨w, x⟩ + b = (
dØ

i=1
wixi) + b

HSd
= sign ◦ Ld = {x → sign(hw,b(x)) : hw,b ∈ Ld}

(2.11)

Given this formulation, the goal of an algorithm learning this hypothesis
class is to find the set of weights w ∈ Rd and b ∈ R such that the classification
error is the lowest possible: this means that the weight are changed only
in there is at least one sample in the training set that is misclassified. If
the image of the domain is Y = {−1, +1}, then a sample is misclassified
if sign(⟨w, x⟩) /= yi, or equivalently yi⟨w, x⟩ ≤ 0. The Perceptron is an
iterative algorithm that, starting from any vector w(0), updates each time the
weights such that at the next iteration t + 1 the sample xi will be correctly
classified, repeating this process until convergence.

The perceptron convergence theorem (Block et al., 1962) says that, in the
realizable case, the learning algorithm converges with all sample points cor-
rectly classified, with a bound on the number of steps needed equal to (RB)2,
where R = maxi(||xi||) and B = min{||w|| : ∀i ∈ [0, m), yi⟨w(t), xi⟩ ≥ 1}.
Restricting the problem to be realizable means assuming that the samples
are linearly separable, meaning that a zero error solution does exist. In real
world scenario, this assumption often does not hold, and the reason why the
perceptron was revised after long time it was invented is because its expres-
sive power is very limited, and this obstacle were overcome with multilayer
networks and by the backpropagation learning algorithm.

A feedforward neural network can be described as a directed acyclic graph
(from this the term feedforward) whose nodes correspond to neurons and
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edges correspond to links between them: in such networks the information
passes onward from the input x, through intermediate calculations in the so
called hidden layers, and finally to the output y. Each neuron is modelled
as scalar function σ : R → R of the inputs, that is a weighted sum of the
outputs of the neurons connected to its incoming edges. The function σ is
called activation function and it is similar in idea to how a human brain
is modelled, by neuron that "fire" when an appropriate input arrives. The
activation function is responsible for the nonlinear behaviour of the network
predictor, that is the characteristics that gives the expressive power needed to
learn complex tasks: in fact is worthy to remind that a combination of linear
functions is itself linear, so to model a nonlinear function of inputs a linear
model is not sufficient. This makes also the loss function highly non convex,
making it hard to train to find the global optima. In practice the key to
train such models is still to use heuristics like SGD and the backpropagation
algorithm to compute the gradients of the hidden layers from the output with
respect to the inputs. A neural network is defined by a DAG G = (V, E) and
a weight function w : E → R and the activation function σ, where V is the
set of nodes (or neurons) and E is the set of edges. Fixed the architecture
of the network as the triplet (V, E, σ), the hypotheses of its hypothesis class
are represented by the set of combination of weights over the edges of the
network. This means that learning a neural network predictor consists in
learning the w parameters that optimize the loss function of the output with
respect to the input.

HV,E,σ = {hV,E,σ,w : w is a mapping from E to R } (2.12)

2.2.1 Activation functions
As said before, an activation function is a function σ : R → R present in each
neuron: it is loosely inspired by how human neurons works, that fires only
if their input is appropriate. In the context of neural networks, the output
of the neuron is determined calculating σ(a) where a is the weighted sum
of the inputs to the neuron. Because a linear combination of neurons would
lead to a linear function, thus not expanding the expressive capabilities of
the network, activation function are designed to be non-linear: in this way
the function implemented by the network is not linear anymore, so it can
fit complex distributions. There are various activation functions commonly
used:
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Figure 2.2. Graphical representation of a multilayer perceptron. Image
taken from enlight.nyc

Binary Step Function

It is the most simple activation function (see figure 2.3(e)), it makes the
neuron a threshold-based classifier, determining whether the neuron fires or
not: the linear combination of the inputs should be in that case above the
threshold for the neuron to fire. Given a threshold t, the expression of this
function is:

σstep(x) =
1, if x ≥ t

0, if x < t
(2.13)

Step function is commonly used in primitive neural networks without hid-
den layer. In the context of more complex neural networks, the binary step
function is usually not used, because its derivative computed during back-
propagation is zero, and the weights would not be updated.

Sigmoid

The sigmoid function, from the class of logistic functions, is a non-linear
function commonly used in place of binary step function, because its deriva-
tive is easy o demonstrate. Whatever the input is, it produces an output in
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[0,1].

σsig(x) = 1
1 − e−x

d

dx
σsig(x) = σsig(x)(1 − σsig(x))

(2.14)

A drawback of this function for the sake of learning is that the graph
becomes significantly flatter in other places (see figure 2.3(a)). This implies
that for values large in modulus, the gradients will be extremely small: this
is undesirable because gradient values approaching zero indicate that the
network is not truly learning. Additionally, this function is asymmetrical
around zero, so the output of all neurons will have the same sign.

Hyperbolic Tangent

Differently from the sigmoid, the hyperbolic tangent function is symmetric
around the 0 and its output ranges in [−1,1]. Moreover it has a steeper
gradient than the sigmoid function, while its derivative being as simple as
the sigmoid’s one. For this reasons, it is generally chosen over the sigmoid
(see figure 2.3(b)).

σhtan(x) = tanh(x)
d

dx
σhtan(x) = 1 − tanh(x)2 (2.15)

ReLU and Leaky RELU

Perhaps the most widely used activation function, the REctified Linear Unit
(RELU) is defined as the postive of its argument (see figure 2.3(c)). Used
since the ’60 in the context of visual feature extraction in hierarchical neural
networks, more recent researches show it has strong biological motivations
and mathematical justifications. It has been proved itself more efficient in
training deep neural networks. Due to the fact that it does not simultane-
ously stimulate all neurons (sparse activation), it is more efficient to calculate
(only comparison, addition and multiplication), and it is scale invariant. As
drawbacks, because neurons that are never excited will have zero gradient
on their weight and biases, this can result in the death of neurons that are
never stimulated (a case of vanishing gradient problem).
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σrelu(x) =
x, if x ≥ 0

0, if x < 0
(2.16)

To mitigate this problem and avoid the fact that it is not differentiable
around 0, a linear variant called Leaky RELU can be used: it allows a small,
positive gradient when the unit is not active (see figure 2.3(d)).

σleaky−relu(x) =
x, if x ≥ 0

0.001x, if x < 0
(2.17)

2.2.2 Optimizing a neural network: GD and SGD
It has been demostrated that implementing the ERM rule with respect to
HV,E,sign is an NP hard problem even for small networks; indeed such a
problem cannot be circumvented by choosing a different σ or changing the
structure of the network. For this reason, even if it cannot guarantee to
converge to a global minimum, a widely used heuristics is to use the SGD
procedure to learn the weights in conjunction with the backpropagation algo-
rithm. The concepts behind the Gradient Descent procedure is to iteratively
improve the solution of, for example, a min(·) problem by taking a step along
the negative of the gradient of the function at the current point. Since the
underlying distribution of the training data is not known, it is not possi-
ble to calculate the true gradient so, to circumvent this problem, stochastic
gradient descent allows the optimization procedure to take a step along a
random direction, as long its expected value is the negative of the gradient.
More formally, the gradient of a differentiable function f : Rd → R at w
is the vector of partial derivatives of f , namely ∇f(w) = (∂f(w)

∂w1
, ..., ∂f(w)

∂wd
),

and gradient descent iteratively updates the weights following the negative
direction of the gradient, leading to the following update rule:

w(t+1) = w(t) − η∇f(w(t)) (2.18)

The parameter η > 0 is called learning rate and determines the step size
toward the minimum: it is a common hyperparameter of neural networks
that can be constant or can change according a scheduling strategy during
the training procedure. When the problem is convex, the Gradient Descent
procedure guarantees to find the global optimum, while when the problem is
not convex it can find any of the local optima, for this reason it is important
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Figure 2.3. Commonly used activation functions in neural networks

to correctly configure the learning rate, and there is not a standard opti-
mal value for it. Gradient descent applies to differentiable convex functions:
indeed another way to motivate gradient descent is to rely on Taylor’s approx-
imation of the function being learnt. In fact, the approximation of a function
f around a point w can be expressed as f(u) ≈ f(u) + ⟨u − w, ∇f(w)⟩, and
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Algorithm 2 Stochastic Gradient Descent (SGD) for minimizing f(w)
Require: scalar η > 0, integer T > 0

w(0) = 0
for t = 1, 2, ..., T do

choose vt at random from a distribution such that E[vt|w(t)] ∈ ∂f(w(t)

w(t+1) = w(t) − ηvt

end for
output w̄ = 1

T

qT
t=1 w(t)

in case the function is convex this approximation lower bounds f . Indeed,
this is a possible characterization of convexity:

f(u) ≈ f(u) + ⟨u − w, ∇f(w)⟩ (2.19)

In this way the problem of minimizing a function become the problem of
jointly minimizing the approximation of f at w(t) and the "goodness" of this
approximation, that relies on the distance between w and w(t), leading to
the following formula:

w(t+1) = arg min
w

1
2 ||w − w(t)||2 + η(f(w(t)) + ⟨u − w, ∇f(w)⟩) (2.20)

The solution of this problem can be obtained by taking the first derivative
with respect to w(t+1) and comparing it to zero, leading to the update rule
in equation 2.18. It can be proved that, if the function is convex and ρ-
Lipschitz and w∗ ∈ arg minw:||w||≤B f(w), then the output vector w̄ of the
Gradient Descent algorithm is a good approximation of the true minimum
point, and the the extend of this approximation is bound to the number of
steps T taken:

f(w̄) − f(w∗) ≤ ϵ → T ≥ B2ρ2

ϵ2 (2.21)

As previously said, the Gradient Descent algorithm requires the loss func-
tion to be differentiable, and often it is not the case. In such cases, instead
of the true gradient of the function, a subgradient v ∈ ∂f(w) is used, that
is a vector that satisfies equation 2.19. This principle is used in stochastic
gradient descent, in which the direction of the update of equation 2.18 is
allowed to be a random vector whose expected value is a subgradient of the
function at the current vector v(t+1).

In the context of neural networks, the SGD algorithm is used, but with
some modifications to account for the non convexity of the learning problem:
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1. The vector w is randomly initialized;

2. Instead of a fixed step size, ηt is variable during the training;

3. The vector in output by the algorithm is the best performing on a vali-
dation set;

Most importantly, the subgradient used in algorithm 2 is calculated by the
backpropagation algorithm.

Figure 2.4. Graphical representation of gradient descent of a multidimen-
sional function. Image taken from sciencesprings.wordpress.com

2.2.3 The backpropagation algorithm
The idea of backpropagation came around 1970, but its significance wasn’t
fully appreciated until David Rumelhart, Geoffrey Hinton, and Ronald Williams
published a seminal paper [20] in 1986 when backpropagation was formally
introduced as the learning procedure to train neural networks. In its essence,
the backpropagation algorithm allows to calculate the gradients of a layer of
the network as function of the next layer from bottom to top in a recursive
manner, thus requiring only the final output and the current weights of the
network. To explain how such computation works, it is necessary to recall
the definition of the Jacobian of a function f : Rn → Rm at w ∈ Rn to be
Jw(f) ∈ Rm×n such that Jw,(i,j) = ∂f(w)

∂wij
. Moreover, the chain rule allows to

compute the jacobian of the composition of two functions f : Rn → Rm and
g : Rk → Rn as Jw(f ◦ g) = Jg(w)(f)Jw(g) ∈ Rk×m.
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For analysis convenience, instead of viewing the parameters of the net-
works as long row vectors as done previously, it is possible to decompose the
network into the set of its layers V = ⊎T

t=0Vt, where each layer is composed
by a set of vertices (neurons) Vt = {vt,1, ..., vt,kt} kt = |Vt|, the set of edges
E = ∪T −1

t=0 (Vt × Vt+1) and the set of weights associated to each edge between
Vt and Vt+1, Wt ∈ Rkt+1×kt.

Now the problem is how to calculate the (partial) derivative of this weights
matrix Wt−1 for all the layers between input and output. It is possible to
notice that, since when calculating the partial derivative of the weights in
Vt−1 all other weights are fixed, it follows that the outputs of all the neurons
in Vt−1 denoted by ot−1 do not depend on the weights in Wt−1. Then, the
input to the neurons of Vt can be written as at = Wt−1ot−1 and ot = σ(at),
where σ is the activation function. Thus the loss, as a function of Wt−1, can
be written as:

gt(Wt−1) = lt(ot) = lt(σ(at)) = lt(σ(Wt−1ot−1) (2.22)

It is possible to define wt−1 ∈ Rkt−1 kt as the column vector obtained by
concatenating the rows of Wt−1 and then taking the transpose of the resulting
long vector, and Ot−1 ∈ Rkt×kt−1 kt as:

Ot−1
def=


o⊤

t−1 0 ... 0
0 o⊤

t−1 ... 0
... ... . . . ...
0 0 ... o⊤

t−1

 (2.23)

So Wtot−1 = Ot−1wt−1, and equation 2.22 can be rewritten as:

gt(wt−1) = lt(σ(Ot−1wt−1) (2.24)

Therefore, applying the chain rule, it is possible to write the Jacobian of the
weights at layer t − 1 of the loss function at layer t:

Jwt−1(gt) = Jσ(Ot−1wt−1)(lt)diag(σ′(Ot−1wt−1))Ot−1

= Jot(lt)diag(σ′(at))Ot−1
(2.25)

So it is left to calculate the vector δt = Jot(lt) for every t, that is the
gradient of lt at ot: this can be accomplished by noting that the loss at layer
t can be calculated using the loss at layer t + 1, and that ultimately the loss
at the last layer T is straightforward to calculate having the desired output
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Algorithm 3 Backpropagation [18]
Require: example (x, y), weight vector w, layered graph (V, E)

denote layers of the graph V0, ..., VT where Vt = {vt,1, ..., vt,kt}
define Wt,i,j as the weight of (vt,j, vt+1,i), where Wt,i,j = 0 if (vt,j, vt+1,i) /∈
E

set o0 = x
for t = 1, ..., T do

for i = 1, ...kt do
set at,i = qkt−1

j=1 Wt−1,i,jot−1,j

set ot,i = σ(at,i)
end for

end for

set δT = Jot(lT )
for t = T − 1, T − 2, ..., 1 do

for i = 1, ...kt do
δt,i = qkt+1

j=1 Wt,j,iδt+1,jσ
′(at+1,j)

end for
end for
output : foreach edge (vt,j, vt+1,i) ∈ E set the partial derivative to
δt,iσ

′(at,i)ot−1,j

and the result of the previous layers:
lt(ot) = lt+1(σWtot))

Jot(lt) = Jσ(Wtot)(lt+1)diag(σ′(Wtot))Wt

= Jot+1(lt+1)diag(σ′(at+1))Wt

= δt+1diag(σ′(at+1))Wt

(2.26)

So, by calculating {at, ot} during the forward pass from the bottom to the
top of the network, it is possible to calculate δt backwards and use them for
calculating the partial derivatives according to equation 2.25.

2.2.4 Regularization
An alternative learning rule to minimize the empirical error in formula 2.2 is
to jointly minimize the empirical error and a regularization function (Regu-
larized Loss Minimization), that is a mapping R : Rd → R, that intuitively
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Figure 2.5. Example of dropout effect

measures the complexity of hypotheses, namely:

arg min
w

(LS(w) + R(w)) (2.27)

One of the most simple yet widely used and effective class of regularization
functions is called Tikhonov regularization, and it is defined by R(w) =
λ||w||2. The parameter λ is usually called weight decay, and it is a common
hyperparameter to be tuned.

Another well-known strategy in neural networks is dropout, which consists
in "turning off" some neurons, so that they not influence the result during
the forward and backward pass. More precisely, during each training stage,
a random set of nodes is removed from the network with probability 1 − p,
by cutting down the the incoming and outgoing edges of those nodes.

2.2.5 Batch Normalization
In 2015 two researchers from Google, Sergey Ioffe and Christian Szegedy,
published a paper that highlighed a complication that occurs in training
deep neural networks, namely the fact that the distributions of input to
each layer are affected by the parameters of all preceding layers – so that
small changes to the network parameters amplify as the network becomes
deeper. Because of this change of distribution of layers’ input, the layers
need to continuously adapt to the new distribution. The change in the input
distributions to a learning system is called covariate shift, and because this
consideration is made for each part of the network, the researches referred to
this phenomenon as internal covariate shift.

The proposed approach aims at eliminating it and, by doing so, acceler-
ating the training: it consists in a normalization step that fixes the means
and variances of layer inputs. Based on the fact that the network converges
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(a) Decision boundaries of an underfitted, fitted and overfitted model

(b) Trend of training and validation error as function
of training iterations

Figure 2.6. Representation of how underfitting and overfitting affect the
model. Images taken from ibm.com

faster if its input are whitened, so linearly transformed to have zero means
and unit variances, and decorrelated, and on the observation that each layer
observes the inputs produced by the layers below, whitening the inputs to
each layer would remove the drawbacks of internal covariate shift.

The approach taken consists in integrating in the learning process the
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fact that input are being normalized, and ensuring that, for any parameter
values, the network always produces activations with the desired distribu-
tion so that the gradient of the loss with respect to the model parameters
to account for the normalization, and for its dependence on the model pa-
rameters. Within this framework, the normalization is seen as a transforma-
tion of the a layer input x relative to the set of inputs X over the training
data set x̂ = Norm(x, X). This would require an expensive calculation of
Cov[x] = Ex∈X[xx⊤]−E[x]E[x]⊤, its inverse square-root and the derivatives
for backpropagation.

As an alternative, it has been proposed to adopt two simplifications:
• instead of whitening the features in layer inputs and outputs jointly, to

normalize each scalar feature independently;

• since the above formulation requiring the entire dataset to normalize
activations is impractical in the context of stochastic optimization, the
mean and variance values used for normalization are the estimates com-
puter over a mini-batch.

Such an approach is hence called Batch Normalization. For a d-dimensional
input x = (x(1), ..., x(d)), each dimension is normalized as:

x̂ = x(k) − E[x(k)]ñ
V ar[x(k)]

(2.28)

Moreover, because only introducing this normalization would possibly change
the expressive power of the network, since it could constrain the inputs to
the same region of the loss function, additional parameters γ(k) and β(k) are
learnt to scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k) (2.29)
During inference, because it is not desiderable to have the normalization of

activations to depend on mini batch, i.e. the output must depend determin-
istically only on the input, the statistics are computed over the population
rather than over a mini batch. In practice, this is usually implemented by the
model keeping moving averages of minibatch means and variances, and use
them during inference in place of the mini batch statistics. Since the means
and variances are fixed during inference, the normalization is simply a linear
transform applied to each activation. In [21] authors have discussed the use
of moving average also during training, arguing that their use in place of
actual mini batch statistics would cause the gradient optimization and the
normalization to counteract each other.
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Algorithm 4 Batch Normalization
Require: example x over a mini-batch B = {x1, ..., xm}

parameters to be learned: γ, β

µβ = 1
m

qm
i=1 xi

σ2
β = 1

m

qm
i=1(xi − µβ)2

x̂i = xi−µβ√
σ2

β+ϵ

output :
yi = γx̂i + β ≡ BNγ,β(xi)

Effects of Batch Normalization

• Batch Normalization allows to use much higher learning rates
without the risk of divergence: by normalizing activations through-
out the network, it prevents small changes to the parameters from am-
plifying into larger and suboptimal changes in activations in gradients.
Large learning rates may also increase the scale of layer parameters,
which then amplify the gradient during backpropagation, leading to
model explosion. In this case, using batch normalization the backprop-
agation trought a layer is unaffected by the scale of its parameters

• Batch Normalization acts as a regularizer, reducing the need
for Dropout: it has been experimentally noted that in a batch-normalized
network the need of dropout to reduce overfitting is reduced, due to the
fact that in training the output of an example depends also on the mini
batch.

• Batch Normalization makes it possible to use saturating non-
linearities by preventing the network from getting stuck in the
saturated regime of nonlinearity: this saturation problem and the
resulting vanishing gradients are addressed by means of non saturating
nonlinearities such as ReLU and small learning rates. Batch Normal-
ization ensures that the distribution of nonlinearity inputs to a layer
remains more stable as the network trains, hence accelerating the train-
ing.
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Variations: Batch Renormalization

A more recent paper suggest a variation of the batch normalization partic-
ularly effective when dealing with a small or non iid minibatches: in fact
an important assumption when moving batch normalization in the context
of stochastic optimization is that each mini batch produces estimates of the
mean and variance of each activation. This assumption may not hold with
small or non iid mini batches: in fact, the estimates become less accurate,
affecting the resulting model. Moreover, as each example is used to compute
the variance used in its own normalization, the normalization operation is
less well approximated by an affine transform, which is what is used in in-
ference. When dealing with non iid mini batches, because with batch norm
the normalization of each example depends on examples in its mini batch,
the examples interact at every layer, which can cause the model to overfit to
the specific distribution of mini batches, while without it the loss computed
for the mini batch decouples over the examples.

To ensure that the activations computed in the forward pass of the train-
ing step depend only on a single example and are identical to the activations
computed in inference, [22] proposed an extension to Batch Normalization
called Batch Renormalization: the aim is to unify the normalization pro-
cedure between training and inference while retaining the benefits of batch
norm. It consists in a correction to the normalization, by noting that nor-
malizing a particular node x using either the minibatch statistics or their
moving averages, the result of these transformations are related by an affine
transformation:

xi − µ

σ
= xi − µβ

σβ
· r + d, where r = σβ

σ
, d = µβ − µ

σ
(2.30)

Taking σ = E[σβ] and µ = E[µβ] is falling back to batch norm, which
sets r = 1, d = 0. The authors in [22] propose to treat parameters r and
d as constants for the purpose of gradient computation, even if they were
calculated from the mini batch itself. In this approach, the fixed r and d
correct for the fact that the mini batch statistics differ from the population
ones. This allows the above layers to observe the “correct” activations –
namely, the ones that would be generated by the inference model. In practice
usually the model is trained for a certain number of iterations with batchnorm
alone, then the correction is introduced by imposing r = 1 and d = 0, and
then relaxing the constraint gradually.

29



Machine Learning and Deep Learning

Batch Normalization and Internal Covariate Shift

Even though the reduction of the internal covariate shift has been widely
accepted as explanation of Batch Normalization indisputable success, a more
recent work [23] has rediscovered the underpinnings principles of how batch
normalization helps optimization. Researchers have discovered that the link
between the gain of batch normalization and the internal covariate shift is at
most tenuous, and that the true reason of its success relies on how it affects
the loss function. More specifically, batch normalization has been proved to
make the landscape of underlying optimization problem significantly more
smooth, that ensures that the gradients are more predictive and thus allows
for use of larger range of learning rates and faster network convergence. More
formally, researchers demonstrated that batch norm improves the Lipschitz-
ness and Smoothness of the loss:

• (The effect of BatchNorm on the Lipschitzness of the loss). For a Batch-
Norm network with loss L̂ and an identical non-BN network with (iden-
tical) loss L, it holds:

||∇yj L̂||2 ≤ γ2

σ2
j

A
||∇yj L||2 − 1

m
⟨1, ∇yj L⟩2 − 1

m
⟨∇yj L, ŷj⟩2

B
(2.31)

• (The effect of BN to smoothness). Let ĝj = ∇yj L and Hjj = ∂L
∂yj∂yj

be
the gradient and Hessian of the loss with respect to the layer outputs
respectively. Then:

1
∇yj L̂

2⊤ ∂L̂

∂yj∂yj

1
∇yj L̂

2
≤ γ2

σ2

 ∂L̂

∂yj∂yj

⊤

Hjj

 ∂L̂

∂yj

− γ

mσ2 ⟨ĝj, ŷj⟩
...... ∂L̂

∂yj

......
2

(2.32)
If we also have that the Hjj preserves the relative norms of ĝj and ∇yj L̂:

1
∇yj L̂

2⊤ ∂L̂

∂yj∂yj

1
∇yj L̂

2
≤ γ2

σ2

ĝj
⊤Hjj ĝj − 1

mγ
⟨ĝj, ŷj⟩

...... ∂L̂

∂yj

......
2 (2.33)

As long as the Hessian and the term ⟨ĝj, ŷj⟩ are non-negative, the last theorem
implies more predictive gradients than those of the standard network.
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2.3 Convolution Neural Networks

Convolutional Neural Networks, or CNNs, are a subset of neural networks
used to analyze data with a known, grid-like topology, as stated by [24]. In
particular, CNNs have been proven effective to analyze visual imagery. In
fact the way a computer system can work with images is by encoding it as
the sequence of its pixels, where each pixel is commonly encoded as a inte-
ger number (greyscale images) or a tuple of three integers representing each
the primary color component component (colored images in RGB). So the
encoding of an image in usually a matrix in R3×H×W with H and W being
respectively the height and width of the image. Given that, usually images
are high dimensional and the completely connected structure of multiplayer
perceptrons introduces an enormous number of parameters. As described be-
fore, the number of parameters of a network is crucial in the bias-complexity
tradeoff: the higher the number of parameters the bigger is the hypothesis
class considered for learning the training set, so the higher the number of re-
quired samples during training to avoid overfitting. Conversely, reducing the
hypothesis class could lead to underfitting, because the best predictor in it
is not powerful enough to model the distribution to be learned. Indeed when
evaluating a learning algorithm two measures have to be taken into account:
its learning speed and its generalization performances. The main point of
[24] is that good generalization performance can be obtained if some a priori
knowledge about the task is built into the network: to this end, tayloring the
network structure to the task can be thought as a way of reducing the set
of possible functions that the network can implement without reducing too
much its expressive power. Hence the challenge is to minimize the number
of free parameters in the network, without reducing the size of the network
to the point it cannot implement the desired function.

Another issue in using an unstructured MLPs with images is that they they
have no built-in invariance with respect to translations, scale, or geometric
distortions of the input: variations in the absolute positions of distinctive
features in input are not relevant to the task. Using an MLP on handwritten
digit recognition task, it has been observed that the network develops a set
of matched filters to match an "average pattern" formed by superimposing
all the training examples, and the classification is based on the computation
of a weighted overlap between the input pattern and the "average prototype"
[24]. This results in very low error on the training set (meaning that the task
can be learned by the network) and high error on the test set. In principle,
it is possible for a fully-connected network of sufficient size to learn how to
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Figure 2.7. Overview of how a CNN works. Image taken from stanford.edu

produce outputs invariant to such variations, but this would probably result
in multiple units with similar weight patterns positioned at various locations
in the input, to detect the distinctive features wherever the appear on the
input and a much larger training set would be necessary to cover the space
of all possible variations [25]. Moreover, in fully connected architectures the
input variables can be presented in any (fixed) order without affecting the
outcome of the training, meaning that the topology is ignored, while images
have a strong 2D local structure: variables represent pixels, and pixels in a
spatial neighborhood are highly correlated. To this end, it is desirable to have
a set of feature detectors that can extract local features independently of the
position in input, and then use the hierarchical compositions of such features
to recognize objects. Convolutional Neural Networks take advantage of such
hierarchical feature extraction process to produce features that account for
some degree of shift, scale and distortion invariance and are able to capture
how local patterns interact to form the appearance of the image.

2.3.1 Convolutional Layer

In practice, convolutional layers perform a convolution on the input and
transmit the result to the following layer: they do it by performing a convo-
lution between a filter (or kernel) and the inputs received from the previous
layer, sliding over them. This operation produces a feature map, that is a
set of units whose weights are constrained to be identical. A complete con-
volutional layer is composed of several feature maps obtained with different
filters, so that multiple features can be extracted at each location. Each filter
has the same weights and bias when sliding on the input, and different filters
have different sets of weights and biases to extract different feature maps.
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Figure 2.8. Convolutional filters in a CNN. Image taken from stanford.edu

Mathematically, a feature map is obtained using the following formula:

Conv(p, q) =
Ø

i

Ø
j

f(i,j)x(i+p,j+q) (2.34)

where f is the filter, x is the input of the previous layer and Conv is the
resulting feature map. The indexes p and q are used to move on the input
image while i and j are used to iterate over the filter’s dimensions, multiplying
each weight by the corresponding value of the input unit. The learning
process for the convolutional layer then consists in learning the sets of weights
and biases of the different filters, such that the features extracted are useful
for the task. Three hyperparameters determine the output: depth, stride,
and padding. The depth specifies the number of filters, the stride parameter
determines of how many pixels is the filter moved while sliding across the
image; finally the padding is used to increase the dimensions of the input
with a variety of techniques (e.g. zero padding in images, adding zero pixels
to the input data). Given these hyperparameters, the dimension of the filter
(Hf × Wf ) and the dimension of the input (e.g. the matrix associated with
an image M ∈ RC×H×W , where C is the dimensionality of each pixel), the
following simple formula can be used to obtain the output’s dimensions:

Hout = H − Hf + 2P

S
+ 1

Wout = W − Wf + 2P

S
+ 1

Cout = D

(2.35)
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Figure 2.9. Convolutional operations in a CNN. Image taken from stanford.edu

2.3.2 Pooling layer
Once a features has been detected, its exact location becomes less important,
only its approximate position with respect to other features is relevant. A
simple way to reduce the precision with which the position of distinctive
features are encoded in a feature map is to reduce the spatial resolution of
the feature map. This can be achieved by using pooling layers, that compute
a statistic on the feature map, scale it by a trainable coefficient and add a
bias: widely used pooling operators are max pooling or average pooling, that
respectively perform a the max(·) and the avg(·) operation on a feature map.

2.3.3 Fully-connected Layer
In deep learning the components described so far constitute what is called
"(deep) feature extractor", that gathers relevant information from the in-
put and eliminates irrelevant variabilities. The final part of the network is
composed by a classifier, which discriminates the features representation ex-
tracted into the desired output categories. More in general, the classifier part
is implemented by a MLP capable of learning potentially non-linear functions
between high-level features.

2.3.4 Class Activation Maps (CAMs)
It has been demonstrated that the convolutional units of various layers of
convolutional neural networks (CNNs) behave as object detectors despite
the absence of supervision on the location of the object. The authors of
[2] showed that this behavior could be generalized in order to begin locating
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Figure 2.10. Fully connected layer in a CNN on higher level features.
Image taken from stanford.edu

precisely which areas of an image are being used for discrimination. By using
class activation maps, which are weighted activation maps created for each
image, this method makes it possible to visualize CNNs. Class activation map
for a particular category indicates the discriminative image regions used by
the CNN to identify that category. These activation maps are obtained by
by projecting back the weights of the output layer on to the convolutional
feature maps: intuitively, based on prior works, each unit is activated by
some visual pattern within its receptive field. In this way, the class activation
map is simply a weighted linear sum of the presence of these visual patterns
at different spatial locations. Finally the images in figure 6.2 are obtained
by up-sampling the class activation map to the size of the input image,
such that they translates to regions highlighting the regions most relevant
to the predicted category. More formally, given an image let fk(x, y) the
activation of unit k in the last convolutional layer at spatial location (x, y).
Then, for unit k, denote result of performing global average pooling as Fk =q

(x,y) fk(x, y): so for a given class c, the input to the softmax, Sc, is qk wc
kFk,

where wc
k is the weight corresponding to class c for unit k, and indicates the

importance of Fk for class c. Given that, we obtain:

Sc =
Ø
k

wc
k

Ø
(x,y)

fk(x, y) =
Ø

(x,y)

Ø
k

wc
kfk(x, y) (2.36)

Then the class activation map for class c is defined as: Mc(x, y) = q
k wc

kfk(x, y).
In this way it is evident that Sc = q

(x,y) Mc(x, y), and hence Mc(x, y) de-
terminates the importance of the activation at location (x, y) leading to the
classification of an image to class c.
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Figure 2.11. Graphical representation of how Class Activation Mapping
works. Image taken from [2]

2.4 Residual Neural Networks

Convolutional Neural Networks, if compared with unstructured fully-connected
networks, encode a prior knowledge about the task, namely the correlations
present in the input, such that the learning algorithm can leverage less com-
plex hypothesis classes to find the optimal predictor without overfitting the
training data. Most importantly, the goodness of the predictor depends on
the engineering of the network structure. More in detail, since the pattern
extraction from data is hierarchical, the depth of the networks has become of
paramount importance, especially with tasks of increasing complexity (e.g.
datasets with real-world variabilities and larger label space): more complex
tasks not only require bigger datasets but also demand for more powerful
architectures, capable of capturing those variabilities that are not present in
smaller tasks like handwritten digit recognition. The importance of CNNs
depth has become clear yet in 2012, when the authors of [3] showed the
potentialities of Deep Convolutional Neural Networks for large scale image
classification with their AlexNet model, and noted that removing any con-
volutional layer (each of which contains no more than 1% of the model’s pa-
rameters) resulted in inferior performance (about 2% loss). Other researches
investigated more in depth the effect of network depth to performance: [26]
fixed other parameters of the architecture, and steadily increased the depth
of the network by adding more convolutional layers (up to 19 weight layers),
keeping a small (3 × 3) convolution filters in all layers.

However, as models become deeper and more complex, they become more
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Figure 2.12. Architecture of AlexNet [3] (top) and corresponding
convolutional kernels

difficult to train. Driven by the result of increasing the network depth, the
authors of [4] started by this question: "Is learning better networks as easy
as stacking more layers?". As it was already known, deep networks tend to
suffer from vanishing or exploding gradients [27, 28], that has been largely
addressed by normalized initialization and intermediate normalization layers
[21], which enable networks with tens of layers to start converging using SDG
and backpropagation.

With these problems addressed, a degradation problem has been exposed:
with the network depth increasing, accuracy gets saturated and then degrades
rapidly: counterintuitively, this phenomenon is not caused by overfitting, be-
cause adding additional layers to a sufficiently deep model results in increased
training error. The degradation problem underlies the fact that there are un-
derlying difficulties with optimizing a deeper model: by constructing a deeper
model starting from a shallower architecture adding only identity mappings,
authors of [4] showed that the optimization of a deeper architecture did not
find a solution comparably good to the newly deeper model constructed from
the shallower one, that is a model with no worse training error. To address
this issues the authors proposed a deep residual learning framework, in which
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Figure 2.13. Graphical representation of a residual block (left) and com-
parison of error rates of the two networks without (left) and with resid-
ual blocks. Thin curves denote training error, and bold curves denote
validation error of the center crops [4]

instead of making a group of stacked layers fit a desired underlying mapping
H(x), the network is build in a way such that it fits a residual mapping
F (x) def= H(x) − x, by casting the original mapping into F (x) + x. [4] suggest
this change through the idea that optimizing the residual mapping is more
straightforward than optimizing the initial, unreferenced mapping.

This reformulation is motivated by the degradation problem and the afore-
mentioned construction of deeper network from a shallower one by adding
identity mappings. In particular, if the added layers can be constructed as
identity mappings, a deeper model should have training error no greater than
its shallower counterpart. With the residual learning reformulation, if iden-
tity mappings are optimal, the solvers may simply drive the weights of the
multiple nonlinear layers toward zero to approach identity mappings. If the
optimal function is closer to an identity mapping than to a zero mapping, it
should be easier for the solver to find the perturbations with reference to an
identity mapping, than to learn the function as a new one.

The formulation F (x) + x is achieved by shortcut connections, that skip
one or more layers: they perform identity mapping, and their outputs are
added to the outputs of the stacked layers, without requiring extra parameter
nor computational complexity. The entire network can still be trained end-
to-end by SGD with backpropagation.

2.5 Modern Architectures
This sections introduces two major modern architectures that have been used
and in NLP and computer vision and that in recent years have been proven
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theirselves effective in video processing: recurrent neural networks and trans-
formers. Their main importance in such fields is related to the encoding of
temporal dynamics: in NLP, words in sentences have an intrinsic temporal
dependence between each other, since sentences and groups of sentences have
their meaning encoded not only in the set of words used, but also in their
order. Similarly, frames in a video are tied together by the temporal causal-
ity imposed by the action being observed. For example, the actions "open
the fridge" and "close the fridge" may share the same set of frames, but their
order disambiguate the two actions, so the temporal information is useful to
be captured, and simple CNNs were not designed to accomplish this task.

To model sequences, some design criteria need to be met; among these,
an algorithm to be used to capture sequential information need to to:

• handle variable length sequences;

• track long-term relationships;

• mantain information about order;

• share parameters across the sequence.

Applications of sequence modelling can be characterized by the relationship
mapping the input to the desired output:

• the input is a sequence, but the output has not temporal dynamics
(many-to-one relationship): an examples of this class of problems is
sentiment classification, in which the input is natural language and the
output is a label representing the sentiment (e.g. positive, negative or
neutral)

• the input is not a sequence, but the desired output has a temporal
component (one-to-may relationship): an example of this kind is image
captioning;

• the input is sequential, as well as the output (many-to-may relationship):
an examples of this class of problems is machine translation, where the
input is text in a language and the output is the same text in another
language.

Two major architecture to handle such sequence modelling are Recurrent
Neural Networks (RNNs) and Transformers.
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2.5.1 Recurrent Neural Networks
The idea of RNNs can be build by starting analyzing the perceptron algo-
rithm, that is the foundation of MLPs, and adding the necessary components
to handle sequential data. It is possible to view a simple feedforward network
as a function that, given and input xt gives as output ŷt, for each time step t,
but the problem is that this model is unable to relate the prediction ŷt with
the predictions at previous time steps [ŷt, ˆyt−1, ..., ŷ1]. The idea of RNNs is
to relate the network’s computations at a particular time step to its prior
history and its memory of the computations from those prior time steps. In
RNNs this recurrent relation is modelled by having an internal memory, o
state, that is maintained time step to time step and passed forward the net-
work across time. In this way the output of the network depends not only
on the input at a particular time step but also on the state from the prior
time step Ht−1, in functional form ŷt = f(Xt, Ht−1); the state Ht is updated
at each time step as the sequence is processed. So it is possible to describe
this process of passing information from the previous iteration to the hidden
layer with the following mathematical notation: let it be he the hidden state
and the input at time step t respectively as Ht ∈ Rn×h and Xt ∈ Rn×d where
n is number of samples, d is the number of inputs of each sample and h is the
number of hidden units. The network will have weight matrices from input
to hidden state Wxh ∈ Rd×h, from hidden state to hidden state Whh ∈ Rh×h,
from hidden state to output Who ∈ Rh×o and bias parameters bh ∈ R1×h

and bo ∈ R1×o, where o is the output dimensionality. Then, being ϕ an ac-
tivation function, the following equations describe the update of the hidden
state and the output:

Ht = ϕh(XtWxh + Ht−1Whh + bh)
Ot = ϕo(HtWho + bo)

(2.37)

Since the recursive definition of Ht, the output includes traces of the hidden
states at all previous time steps.

Backpropagation through time (BPTT)

The standard backpropagation algorithm described in 3 is adapted to the
case of RNNs by unfolding the structure of the net to resamble a simple
feedforward network. In practice, when forwarding Xt through the network
the hidden state Ht and the output state Ot is computed one step at a time,
and the loss function is computed as the sum of every loss term for each time
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step lt:

L(O, Y) =
TØ

t=1
lt(Ot, Yt) (2.38)

Since there are three weight matrices Wxh, Whh and Who, it is needed to
compute the partial derivative w.r.t. to each of them:
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(2.39)

Since Ht depends on the previous time step, it is possible to explicit this in
the above equations:
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(2.40)

From these equations it is evident that the optimization algorithm needs to
store the powers of Wk

hh as each term lt is calculated, and L can become
large. For this reason, a common issues is exploding gradients: a common
solution is to use a Truncated BPTT, that consists in truncating the sum
at certain size, limiting in fact the number of the time steps considered
for gradient computation, and doing so dynamically limiting the number
of hidden layers. Another problem is vanishing gradients: in fact, if there
are small values (< 1) in Whh this causes the gradient to decrease going
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deeper in the hidden layer, limiting the contribution of states far from the
last time step. This problem motivated the introduction of the long short
term memory units (LSTMs), that are more complex recurring units, using
gates to selectively add or remove information within each recurring unit.

LSTMs

Long Short-Term Memory Units (LSTMs) [29] were designed to properly
handle the vanishing gradient problem, allowing for a longer-term memory
(over 1000 time steps). To this end, LSTMs store more information outside
of the traditional neural network flow in structures called gated cells: there
is an output gate Ot to read entries of the cell, an input gate It to read data
into the cell and a forget gate Ft to reset the content of the cell. Being Wxi,
Wxf , Wxo ∈ Rd×h and Whi, Whf , Who ∈ Rh×h the weight matrices and
bi, bf , bo ∈ R1×h their respective biases and σ the sigmoid function, the
computations performed by each gate are:

Ot = σ(XtWxo + Ht−1Who + bo)
It = σ(XtWxi + Ht−1Whi + bi)

Ft = σ(XtWxf + Ht−1Whf + bf )
(2.41)

Moreover there is a candidate memory cell æCt ∈ Rn×h, having its own
weights Wxc ∈ Rd×h, Whc ∈ Rh×h and biases bc ∈ R1×h:

æCt = tanh(XtWxc + Ht−1Whc + bc) (2.42)

Finally the new memory content depends on the content at previous time
step, on the forgetting gate and on the input gate:

Ct = Ft ⊙ Ct−1 + It ⊙ æCt

Ht = Ot ⊙ tanh(Ct)
(2.43)

In this way, LSTMs make the backpropagation through time algorithm more
stable, mitigating against the vanishing gradient problem having a smoother
flow of gradients.

Limitations of RNNs

Despite all the advantages and the practical success of recurrent models,
there are some drawbacks:
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Figure 2.14. Illustration of computations in a LSTM cell. Image
taken from d2l.ai

• Encoding bottleneck: all the content to be passed forward the net-
work must be first encoded into a suitable representation, and in this
process information can be lost, especially in case of long sequences;

• Slowness, poor exploitation of parallelization algorithms: RNNs
are not computationally efficient, mostly because by construction they
require sequential computations, time step by time step, so they can’t
fully exploit the parallelization available by using GPUs;

• Not so long-term memory: RNNs do not scale with sequences longer
than thousands of elements.

In response for these limitations, the attention mechanism has been devel-
oped and used as a principle for an architecture called Transformer.
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2.5.2 Transformers
Transformers [5] were introduced in 2017, and it is a model architecture
eschewing recurrence and instead relying entirely on an attention mechanism
to draw global dependencies between input and output. Specifically, they
rely on self-attention for relating different positions of a single sequence in
order to compute a representation of the sequence.

Transformers are based on a encoder-decoder structure, where recurrence
units are completely dismissed. Each element of the input sequence is trans-
formed in an embedding similar to how it is done with RNNs, but additionally
the consumed representation is enriched with positional information, that en-
codes the notion of order in the input sequence (position-aware encoding).
Having these features, the attention function can be described as mapping a
query and a set of key-value pairs to an output. The output is computed as
a weighted sum of the values, whose weight depends on a similarity function
between the query and the key. The attention function is computed on a
set of queries, keys and values simultaneously, represented by matrices Q, K
and V, with the following operation:

Attention(Q, K, V) = softmax(QK⊤
√

dk
)V (2.44)

Where dk is the dimension of queries and keys and dv is the dimension of
values. These operations form what is called "scaled dot-product attention",
and in the transformer architecture this structure is repeated h times by
linearly projecting the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. The attention
mechanism is then computed in parallel and at the end the resulting features
are concatenated and fed to a linear layer, forming what is called "Multi-
Head Attention". Multi-head attention allows the model to jointly attend to
information from different representation subspaces at different positions.

MultiHead(Q, K, V) = Concat(head1, ..., headh)WO , where
headi = Attention(QWQ

i , KWK
i , VWV

i )
(2.45)

Where the projections are parameter matrices WQ
i ∈ Rdmodel×dk , WK

i ∈
Rdmodel×dk , WV

i ∈ Rdmodel×dv and WO ∈ Rhdv×dmodel (dmodel = 512).

Encoder and decoder stacks

The encoder is composed of a stack of N = 6 identical layers. Each layer
has two sub-layers: a multi-head self-attention block, and a position wise
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Figure 2.15. Transformer overall architecture, image from [5]

Figure 2.16. Scaled Dot-Product Attention (left) and Multi-Head Attention
(right) blocks in the transformer architecture, image from [5]

fully connected feed-forward network. Additionally, around each of these
sub-layers it is added a residual connection and a layer normalization. The
decoder is also composed of a stack of N = 6 identical layers, with the addi-
tion of a third sub-layer, which performs multi-head attention over the output
of the encoder stack, with similar residual connections and layer normaliza-
tions. The self-attention is modified to prevent positions from attending to
subsequent positions. Transformers have been used mostly on NLP tasks
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(like in BERT [30] and GPT-3 [31] architectures) but also on biological se-
quences (like in Alpha Fold 2) and most recently even in computer vision,
with the introduction of Vision Transformers [32].
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Chapter 3

First Person Action
Recognition

This chapter introduces the main task that is been treated in this work,
starting from the main solutions of the state-of-art to the proposed enhance-
ment in the context of multi-modal learning. This chapter introduces the
background of this work on First Person Action Recognition in multi-modal
context. The first section describes the task of first person action recognition,
the second will introduce a recently released large-scale dataset commonly
used as benchmark in this field, while the fourth introduces the concept of
multi-modal learning. The latter sections will describe the state of the art
architectures for dealing with video processing and introduce the concepts
of Domain Adaptation and Domain Generalization, with particular focus on
how they apply to video action recognition.

3.1 Task
Action Recognition is a multiclass classification problem, where the objective
is to assign the correct action label to input videos. The domain set X =
{V0, ..., VN} is the the set of videos, while the label set Y is the (fixed) set of
actions any video can belong to. In principle the task is similar to classical
classification, however there is a significant difference in the input data, and
consequently in how to fully exploit them to obtain best performances. To
this end, two factors must be taken into account:

• a video could be represented by means of the (ordered) sequence of
frames that constitutes it, e.g. Vi = {F0, ...FM} and so falling back to

47



First Person Action Recognition

image classification on these frames, but there are additional perceptual
inputs that can be used to perform classification (multi-modal learning);

• with respect to classical image classification, a video contains also a
temporal dynamics that is often crucial to perform the classification, so
the need to ad-hoc solutions to effectively incorporate this information.
Resorting to an example, frames in a video are tied together by the
temporal causality imposed by the action being observed. For example,
the actions "open the fridge" and "close the fridge" may share the same
set of frames, but their order disambiguate the two actions.

In addition to this, First Person Action recognition belongs to the egocentric-
vision world, in which the recording equipment is worn by the observer: this
means that the viewpoint is the observer’s one, and that the recording shows
higher degree of change with respect to fixed third person camera: environ-
ment and lighting conditions, occlusions caused by the observer interaction,
viewpoint changes. At the same time, the possibility to extract value from
these data opens interesting opportunities due to the recent spread of wear-
able devices:

• Having wearable technologies capable of collecting fine-grained data means
that it is possible to further exploit deep approaches, that usually require
a great amount of data;

• Being able to develop mature technology for first person action recog-
nition enables such devices to be equipped with additional intelligence,
with benefits in human-robot interaction or human assistance as well in
automatic video segmentation for a variety of human centered actions.

To this end, here we summarize the principal desiderata for first person
action recognition:

• Deal with egomotion, a phenomenon arising from the rapid and involun-
tary motion of the wearable device, which inevitably moves around with
the user;

• Effectively encode the temporal dimension and generalize to variable
sequences length and speed;

• Work with fine-grained actions: this is the problem of distinguishing
very specific actions such as "unscrew filter from aeropress" or "remove
packaging from salmon" instead of coarse-grained interactions such as
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"preparing a meal". This requires reasoning not only about the general
action performed and the principal object of interest but also consider-
ing how the participant is interacting with the environment and with
surrounding items;

• Generalize to different environments: given the complexity of the task,
it is unmanageable to have enough samples to account for any possible
variation of the same action, since environment the high variability of the
environment. This means that a good algorithm should also be invari-
ant of the environment in which the action is performed, which implies
that the model should not rely on environmental characteristics but on
the relevant part of the input. This issue is also refereed as extracting
discriminative yet domain invariant features, and it is a problem we will
discuss more in detail later.

• Exploit multi-modal information to make predictions stronger and more
reliable: as humans, it has been known that different perceptual stimuli
are often combined in a way that enhance our understanding of the
environment, adaptively relying on perceptual information from other
senses when the considered one is not sufficient. The current state of
the art has not yet found an optimal way to leverage different perceptual
inputs; this problem of multi-modal learning will be discussed more in
detail later.

3.2 EPIC-KITCHEN Dataset
In this section we provide a detailed description of the EPIC-Kitchens dataset
[13], which a recent released large-scale, multi-modal dataset of fine-grained
actions recorded in first person, that has been commonly used as benchmark
in this field. The availability of a good dataset is crucial for research in
deep learning: in recent years significant progress in many domains such as
image classification and object detection are due not only to advances in
the theory of deep learning, but also to the availability of large-scale image
benchmarks, such as ImageNet [33], ADE [34] or VOC [35]. However, in the
video understanding field only a small number of annotated video datasets
were available to the research community, and this has been a reason for
slower success.

Various datasets have been released recently: most of these consisted of
a collection of short videos, each recording a single action performed by
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the user. Hollywood in Homes [36] was the first attempt to collect longer
videos showing humans performing various tasks at their home: videos were
recorded in a scripted way (meaning that participants sequentially follow
a series of instructions), causing them to be less natural and lacking the
progression and multi-tasking of actions that occur in real life. Thus, EPIC-
KITCHENS seeks to be a dataset that reflects the demands of egocentric
vision, including rich annotations, the capacity to perform multiple tasks on
it, and multi-environment recorded. It is made up of 55 hours of recorded
video, 11.5 million frames, bounding boxes around the objects the user in-
teracts with, and other data that was gathered in the native kitchens of 32
participants from 10 different nationalities. The participants were instructed
to record all of their routine kitchen tasks, regardless of the sequence length.
The recordings, which combine sound and video, also demonstrate the nat-
ural multitasking that people engage in, such as washing a few dishes while
they cook, increasing the realism and difficulty.

Participants were instructed to record every time they went into the
kitchen for at least three days straight, stopping the recording only when
they left the kitchen. To ensure that the camera only records one person’s
activities, they were asked to spend the entirety of the recordings alone in
the kitchen. The tool used was a head-mounted GoPro with a mounting
that could be adjusted to control the angle for various environments and
participant heights. Stereo audio was captured from the Go-Pro’s built-in
microphone, at a sampling rate of 48000kHz and a bit rate of 128kb/s. The
camera was set to linear field of view (fov), 59.94 fps and Full HD resolution
of 1920 × 1080. Considering how difficult it is to crowdsource annotations
for such lengthy videos, participants contributed a rough initial annotation
themselves. Then, after the recording, they were asked to narrate the actions
taken using a hand-held recording device. The authors attempted to group all
of the collected verbs into semantic classes in order to adhere to the standard
multi-class approach in which each sample is assigned to a single class. First,
they attempted to achieve automatic clustering using WordNet/Word2Vec
combined with Part-of-Speech techniques to distinguish nouns and verbs,
as well as turning to manual correction when the results of applying these
techniques were unsatisfactory. The dataset was divided into two main splits:

• Seen Kitchens (S1): each kitchen is seen in both training and testing,
with a proportion of training/test set of 80%-20%.

• Unseen kitchens (S2): this divides the participants/kitchens so that
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all sequences of the same kitchen are either in training or testing. Com-
plete sequences for 4 participants are hold out for the testing purposing,
accounting for the 7% of the split.

The challenges defined by the dataset’s authors are:

• Action Recognition: it consists in assigning a (verb, noun) label to
a trimmed video segment. The evaluation metrics are top-1/5 accuracy
for verb, noun and action (verb+noun), calculated for all segments as
well as unseen participants and tail classes.

• Action Detection: it consists in detecting the start and the end of
each action in an untrimmed video, and assigning a (verb, noun) label
to each detected segment. The evaluation metric is the Mean Average
Precision (mAP) @ IOU 0.1 to 0.5.

• Action Anticipation: it consists in predicting the (verb, noun) label
of a future action observing a segment preceding its occurrence. The
evaluation metric is the top-5 recall averaged for all classes, as defined
here, calculated for all segments as well as unseen participants and tail
classes.

• Domain Adaptation for action recognition: it consists in assigning
a (verb, noun) label to a trimmed segment, following the Unsupervised
Domain Adaptation paradigm, meaning that the training is performed
on a labelled source domain, and the model needs to adapt to an unla-
belled target domain. The evaluation metrics are top-1/5 accuracy for
verb, noun and action (verb+noun), on the target test set.

• Multi-instance Retrieval:

– Video to text: given a query video segment, rank captions such
that those with a higher rank are more semantically relevant to the
action in the query video segment.

– Text to video: given a query caption, rank video segments such
that those with a higher rank are more semantically relevant to the
query caption.

The evaluation metric is the normalised Discounted Cumulative Gain
(nDCG) and Mean Average Precision (mAP).
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3.2.1 EPIC-KITCHENS-100 Dataset
The first version of the EPIC-KITCHENS dataset was released in 2018: from
its release it has been successful and many researchers took up the various
challenges it enables. As result of it success, the authors of [13] extended
this dataset, that will be called from here on EK-55 for brevity, leading to
the release of EK-100, a collection of 100 hours, 20M frames, 90K actions
in 700 variable-length videos, capturing long-term unscripted activities in
45 environments, adopting a similar procedure used for EK-55. New data
was collected in the following way: the 32 participants of EK-55 project
were contacted to record additional footage, 16 of them agreed to participate
and half of them had moved house during the two years period from EK-55.
Other than using a refined annotation pipeline, that allowed denser and more
complete annotations of actions in untrimmed videos, the value of this new
dataset for our purposes is in the investigations that authors of [17] carried
out:

• Test of time: This challenge involves evaluating how models trained on
EK-55 videos perform on videos collected two years later. It has been
noted that when new data is evaluated, the performance of the same
model suffers noticeably. This issue, known as a domain gap, results from
discrepancies between the test set used to evaluate the models and the
dataset on which they were trained. This domain gap can be explained
by a variety of factors, including shifting contexts, labels, participants,
and locations (even the same person’s behavior can change over time),
as well as shifting data collection techniques (hardware has changed) or
shifting environmental conditions (some participants have moved house).

• Scalability test: It involves assessing how model performance scales
with additional annotated data. According to analyses, when 50% of
new data is added to training, results show a significant improvement,
albeit saturating, especially for participants who cannot be seen. These
findings suggest that better models must be created and that having
more diverse data is advantageous over simply having more data.

To better explore this concept of compound domain gap, rather then lever-
aging domain labels for each factor accountable for change (e.g. recording
camera, location, time-of-day), which anyway are provided, because it is also
difficult to provide these labels for other change factors (e.g. appearance
changes, change in participants behaviour), authors propose a new challenge
on unsupervised adaptation for action recognition.
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Unsupervised Domain Adaptation (UDA) for Action Recognition

This is the challenge we use to evaluate our results, so we provide some de-
tails. The action recognition task is similar to how it has been described
above, but with some difference in the data available for training and test.
In particular, it consist in using a labelled source domain classical for super-
vised learning with the possibility to use unlabelled target domain samples
to perform domain adaptation. Specifically the following splits are provided,
in such a way the this challenge tackles the test of time issue:

• Source: labelled training data from 16 participants (collected in 2018)
and

• Target: unlabelled footage from the same 16 participants of EK-55,
further splitted into:

– Target Train: it is composed by unlabelled videos used during
domain adaptation;

– Target Test: it is composed by videos used for evaluation.

The challenges of this task stem from the source and target domains belong
to distinct training distributions due to the collection of videos two years
later. The differences in these distributions account for all the variabilities
mentioned earlier, and constitute what is called domain shift. In the liter-
ature, this kind of task is usually performed by using two different dataset
for representing the source and target distributions (e.g. UCF and Olympics
datasets): in practice one of them is used in supervised way (e.g. exploit-
ing the class labels), while the other is use to perform adaptation, with-
out using the class labels. EPIC-KITCHENS-100 is the first to propose a
within-dataset domain adaptation challenge in video. Some of the additional
challenges of video UDA with respect to image UDA are: aligning temporal
information across domains, attending to relevant transferable frames, and
avoiding non-informative background frames.

3.3 Multimodal FPAR
Recent advances in sensors, mobile computing, wearable devices and deep
learning techniques have lead to the idea of efficiently using more than one
data source to improve the performance of learning algorithms. As it is
known in biology, perceptual information coming from different senses can
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be combined to have a more complete understanding of the environment. As
compared with uni-modal learning, multi-modal learning has several advan-
tages:

• Data complementarity: This is due to the fact that cues from vari-
ous modalities can augment or complement one another. It is possible
to comprehend this by examining various learning domains: it is im-
portant to take into account both the literal meaning of the words as
well as the nonverbal contexts in which these words appear. Nonver-
bal contexts include vocal patterns and facial expressions. To this end,
[37] leverages multiple modalities (video, audio and text) to capture the
dynamic nature of nonverbal intents by shifting word representations
based on the accompanying nonverbal behaviors. A similar idea is used
in Multi-modal Emotion Recognition (MER) [38, 39] and in sentiment
analysis for learning how the context affect the prediction [40, 41, 42].

• Model robustness: models leveraging more than one modalities can
show robustness against a modality missing at test time by leveraging
the remaining ones, or taking advantage from the data complementary
to not be confounded by similar inputs in one modality belonging to
different label class.

• Performance superiority: for the above motivations, multi-modal
models often exhibits better performances

In the context of first person action recognition, several studies have been
conducted in an attempt to improve the performances by taking advantage of
two or more data sources (e.g., audio and video) [43, 44, 45]. To this extend,
it is possible to model the domain space X = {V0, ..., VN} by characteriz-
ing the video instances as the set of (ordered) sequences of corresponding
modalities, Vi = {V M0

i , ..., V MZ
i }, where Mj represent the modality in use.

In our case we use RGB, (Optical) Flow and Audio modalities, so a video
segment, that is a portion of a video with in which there is an action, can be
represented by Vi = {V R

i , V F
i , V A

i }, being V R
i , V F

i and V A
i the sequences of

instances of the corresponding modality belonging to the same segment. As
belonging to different perceptual kind, different modality inputs come from
different distributions, so the problem of multi-modal learning consists in
how to effectively extract features from these different data stream, so learn-
ing the proper embedding, such that the classification task can benefit from
it. In a domain adaptation perspective, this means finding feature represen-
tations that are discriminative, such that the classificator can more easily
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distinguish among classes, and domain invariant, so that they capture only
the characteristics of input that are relevant for the task and not irrelevant
domain-dependant features. In fact this kind of characteristics of the input
can harness the model performance when it is deployed to the real-world, be-
cause the model may will rely on features encountered during training that
are different when actually using the model. An example of this issue is re-
lying on appearance characteristics of an object (e.g. the colour of a mug)
to predict the class it belongs to: clearly such a model is biased to what en-
countered during training, and special care is needed to "guide" the network
to search for other characteristics that instead are domain-invariant, so they
are distinctive of the object, without the need of exposing the model to the
too wider range of variabilities needed to learn the best representation. An-
other challenge of integrating multiple modalities to the same classification
task is leveraging their complementarity, isolating possible noise and avoid
conflicts, so optimizing not only with respect to the single modality, but
jointly finding the feature extraction that works best considering the data as
a whole. The multi-modal approach has been widely employed in literature
[8, 12, 46, 47, 48]. RGB data streams are usually combined with optical flow
ones since the latter encode motion information which can be complemen-
tary to the former, and the same time potentially more domain-invariant,
since lacks the appearance details from the RGB stream. Moreover, recently
also audio modality has been demonstrated itself effective in the egocentric
context [7, 49, 50]. The next sections will describe the principal architecture
for video processing and the principal strategies for fusing modality repre-
sentations.

3.3.1 Fusion strategies for multi-modal learning
As studies on the development of embodied cognition suggest, simultaneous
multi-modal stimuli are crucial in human perceptual learning. However, with
deep learning models, numerous factors are to be faced when dealing with
fusing multiple modalities: the representations extracted by a neural network
can be very different as different is the encoding of each modality in the input
data. For the task at hand, one modality may have more informative content
than another, and one modality can be more or less challenging to network
to be learned.

For this reason, fusion strategies define how a joint embedding for multi-
modal inputs is created. There are three common techniques [51] used to
tackle the fusion of different data streams.
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• Early fusion: low-level modality-specific features are extracted from
modality streams, and fused together before being fed to the final (shared)
classifier. The representations of modalities can be very different but,
being fused before the final classification layer, features from different
modalities can interact by means of the part of the network that is after
the fusing point;

• Late fusion: each stream is separate and perform all the operation
from the inputs to the classification, and at the end all the classifications
scores are fused together.

• Hybrid fusion: in this case the different modalities are first treated
with an early fusion approach and then with a late fusion one. As a result
different predictions scores are created and they are finally combined
together.

In addition to decide where to fuse the features being extracted from the
different streams, another issue is how to perform fusion. In [7] three mid-
level fusion mechanisms are compared:

• Concatenation: the feature maps of each modality are concatenated
and a fully-connected layer is used to model the cross-modal relations;

f concat = ϕ(W[V M0
i , ..., V MZ

i ] + b) (3.1)

• Context gating: it aims at recalibrating the strength of the activations
of different units with a self-gating mechanism;

f context = σ(Wh + b) ⊙ h (3.2)
where h is the multi-modal fusion with concatenation

• Gating fusion: a gate neuron takes as input the features from all
modalities to learn the importance of one modality w.r.t. all modalities.

hi = ϕ(Wimi + bi)∀i

zi = σ(Wzi[V M0
i , ..., V MZ

i ] + bzi)∀i

f gating =
MØ

i=1
zi ⊙ hi

(3.3)

However there are also more complex fusion methods that aim at enhanc-
ing the information sharing across modalities, like [52] that makes use of a
transformer-based architecture that uses "fusion bottlenecks" for modality
fusion at multiple layers.
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3.3.2 Opportunities and pitfalls
Multi-modal inputs give the opportunity to exploit a wider range of char-
acteristics of the task at hand: while the different inputs share the same
semantic, they offer a different perspective that can complement each other,
recognizing discriminative signals from the most appropriate input, enhanc-
ing confidence in the predictions, hence leading to a more robust model.
However, from an architectural perspective, there is no clear winner about
the optimal way to train on multi-modal inputs: considering an end-to-end
training of a multi-modal and a uni-modal network on a task with mul-
tiple modalities, the multi-modal network should match or outperform its
uni-modal counterpart, because it is given more information. Surprisingly,
often this is not the case, and it has been observed in multiple works on
video classification. In fact, training multi-modal classification networks is
harder than training their uni-modal counterparts: having multiple modal-
ities opens the possibility to leverage data complementarity, but networks
tend to be more complex, i.e. with much more trainable parameters. For
this reason, multi-modal networks are often more prone to overfitting due to
their increased capacity. Moreover, different modalities overfit and generalize
at different rates, so their joint training with a unified optimization strategy
can be sub-optimal. This motivates the need of finding effective architecture
and regularization techniques designed ad-hoc for multi-modal tasks, like the
one proposed in [53] .

3.4 Architectures
One of the first deep architectures for action recognition [6] extends the deep
convolutional networks, that has been proven effective in image classifica-
tion, to action recognition in video data by employing a two stream model,
decoupling the part that recognizes the spatial information from the one that
encodes temporal relationships. The spatial stream is dedicated to the ap-
pearance of the video, and performs image recognition from still frames, while
the temporal stream is trained to recognise action from motion in the form
of dense optical flow. The two streams are then fused following a late-fusion
approach. Both networks are base on Convolutional Neural Networks, and
the spatial net is pretrained on ImageNet to leverage the availability of large
amounts of annotated image data. This idea behind this architecture stems
the two-streams hypothesis, according to which the human visual cortex con-
tains two pathways: the ventral stream (which performs object recognition)
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Figure 3.1. Structure of the two-stream convolutional network proposed in [6]

Figure 3.2. Illustration of optical flow. From left to right: a pair of consec-
utive video frames with the area around a moving hand outlined with a cyan
rectangle; a close-up of dense optical flow in the outlined area; horizontal an
vertical component of the displacement vector field. Image taken from [6]

and the dorsal stream (which recognises motion). However this two-stream
network fail in modeling long-range temporal structure. This is mainly due to
their limited access to temporal context as they are designed to operate only
on a single frame (spatial networks) or a single stack of frames in a short
snippet (temporal network) [46]. To this end, different deep architectures
have been developed in recent years.

3.4.1 Temporal Segment Networks (TSN)
According to the authors of [46], the simple two-stream network fails in
modeling long-range temporal structure, since their limited access to tempo-
ral context as they are designed to operate only on a single frame (spatial
networks) or a single stack of frames in a short snippet. Approaches that rely
on intensive temporal sampling at a fixed interval (dense sampling) usually
incur in excessive computational cost when used on long video sequences, so
limiting their application in context where the temporal dynamic is longer
than the maximum sequence extend and introducing the risk of missing use-
ful information. To address this issue, Temporal Segment Network (TSN)
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[46], aims to utilize the visual information of the entire videos to perform
video-level prediction, by operating on a sequence of short snippets sparsely
sampled from the entire video and computing a consensus among the individ-
ual snippets’ predictions as final video-level prediction. In such a framework,
the model parameters are optimized calculating the loss function on video-
level predictions, other than on snippet-level predictions which were used
in two-stream ConvNets. Formally, being Vi a video that has been divided
in K segments S1, ..., SK of equal duration, the results of the prediction is
computed as follows:

TSN(T1, T2, ..., TK) = H(G(F(T1; W), F(T2; W), ..., F(TK ; W))) (3.4)

where:

• [T1, T2, ..., TK ] is the sequence of snippets, each of which has been sam-
pled from its corresponding segment Sk;

• F(Tk; W) is the function represented by the ConvNet with parameters
W, that takes as input a short snippet Tk and outputs a prediction score
for the snippet;

• G is the segmental consensus function, that takes as input the prediction
score for the snippets and outputs a consensus of class hypothesis;

• H is the prediction function for the video-level scores from the consensus
function, in this case the widely used softmax function.

Combining with standard categorical cross-entropy loss, the final loss func-
tion regarding the segmental consensus is:

L(y, G) = −
CØ

i=1
yi

Gi − log
CØ

j=1
exp Gj

 (3.5)

with C being the number action classes and yi the ground truth for sample
i. Although the choice of K and G is free, authors of [46] have chosen K = 3
and a evenly averaging functions as segmental consensus function.

Choosing properly the segmental consensus function, the temporal seg-
ment network is differentiable, allowing for the simultaneous optimization of
model parameters utilizing all snippets via the following loss function:

∂L(y, G)
∂W

= ∂L
∂G

KØ
k=1

∂G
∂F(Tk)

∂F(Tk)
∂W

(3.6)
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3.4.2 Temporal Binding Network (TBN)
Authors of [7] took a different perspective in dealing with multi-modal net-
works. The potential temporal asynchrony between the discriminative cues
in different streams are the core of the work: previous multi-modal fusion ar-
chitectures for action recognition perform temporal aggregation within each
modality before fusing them or, when fusing them before temporal aggrega-
tion, they synchronize the input across modalities [54]. Nevertheless in some
actions, for example "breaking an egg into a pan", the distinct sound of crack-
ing the egg, the motion of separating the egg and the change in appearance
of the egg occur at different frames/temporal positions within the video [7].
For this reason fusing modalities with synchronized output may not capture
this kind of dynamics. To this end, authors propose fusing inputs within a
Temporal Binding Window (TBW), by allowing asynchronous inputs from
the different modalities withing the TBW, implementing a mid-level fusion
approach. The concept of TBW is inspired by the evidence in neuroscience
in how humans perceive the world across different perceptual stimuli. More
formally, using the same notation of equation 3.4 restricting the notation to
the case of two modalities, synchronous fusion approaches like [54] perform
classification using a feature extractor that produces a representation for
each time step j and a segmental consensus function that perform temporal
aggregation over all time steps.

SyncNet(Tm1, Tm2) = H(G(Fsync(Tk,m1, Tk,m2; W))) k =
9
j
r2

r1

:
(3.7)

This approach also need to take into account modalities with not matching
frame rates, by sampling at time steps multiple of all modalities frame rate,
therefore approximating an exact synchronous fusion. TBN in contrast fuses
modalities within a range of temporal offset, with the constraint of being
contained within a finite time window (TBW):

TBN(Tm1, Tm2) = H(G(Ftbw(Tk,m1, Tk,m2; W))) k ∈
C9r2

r1
− b

:
,
9r2

r1
+ b

:D
(3.8)

where Ftbw is a multi-modal feature extractor that combines inputs within
a binding window of width ±b. According to authors, this sampling within
the temporal window:

• enables straightforward scaling to multiple modalities with different frame
rates;
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Figure 3.3. Architectural differences between TSN and TBN: in TBN
modalities are fused within a window and following a mid-fusion ap-
proach, then the score logits are averaged. In TSN instead each modal-
ity is trained individually and then score logits are averaged in a
late-fusion fashion. Image taken from [7]

• allows training with a variety of temporal shifts, accommodating, say,
different speeds of action performance;

• provides a natural form of data augmentation.

Inside each TBW, a per-modality ConvNet extracts mid-level features, that
then fused by concatenation, and then fed to a fully-connected layer, making
multi-modal predictions per TBW. All the predictions of multi-modal rep-
resentations are then aggregated for video-level predictions. The size of the
temporal window b is variable, specifically calculated relative to the action
video length, but can be set independently of the number of segments the
actions is divided into, allowing for overlapping temporal windows.

3.4.3 Inflated 3D (I3D) Convolutional Network
Authors of [8] have taken a rather different approach towards video modelling,
by directly modifying the structure of convolutional layers, encoding the
temporal dynamics as an additional dimension in kernels. As such, I3D
builds on existing image classification architectures, but inflates their filters
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Figure 3.4. Illustration of a single TBN block. Image taken from [7]

and pooling kernels (and optionally their parameters) into three dimensions,
resulting in deep spatio-temporal classifiers. Since in image classification
relying on ConvNets pretrained on ImageNet has been proved an effective
approach, the authors of [8] provide a way of bootstrapping 3D filters from
2D filters. Note that inflating a 2D model into a 3D one presents notable
advantages with respect to directly using a 3D ConvNet: they do create
hierarchical representation of spatio-temporal data, but the resulting model
has many more parameters than 2D ConvNets, and they seem to preclude
the benefit of ImageNet pretraining. For these reasons, previous works have
defined shallower architectures retrained from scratch, but results were not
competitive again the state of the art.

On the contrary, an I3D model share the parameters for the inflated di-
mension, so can benefit from an (implicit) ImageNet pretraining. To this
extend, by noting that an image can be converted into a video by copying
it repeatedly into a video sequence, 3D models can be implicitly pretrained
on ImageNet by satisfying what they call "the boring-video fixed point": the
pooled activations on a boring video should be the same as on the original
single-image input. This is achieved by repeating the weights of the 2D filters
N times along the time dimension, and rescaling them by dividing by N . In
addition to the RGB stream, the authors found valuable to keep the two-
stream architecture and use also Optical Flow using another I3D network,
perhaps because the flow keeps a recurrent information that the RGB stream
lacks.
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Figure 3.5. Top: Video architectures considered in this paper, where K is
the total number of frames in a video and N is the subset of neighboring
frames of the video. Bottom: from left to right, the Inflated Inception-V1
architecture and its detailed inception submodule. Images taken from [8]

3.4.4 Temporal Shift Module (TSM)

Altought 3D CNNs can jointly learn spatial and temporal features, their
computational cost is large, and this makes their deployment on edge de-
vices difficult, since they cannot be applied to real-time video recognition.
On the opposite, 2D CNNs operate independently over the time dimension,
so they lack proper temporal modelling but are computationally cheaper.
The authors of TSM [9] propose a module that can achieve the performance
of 3D CNNs mantaining 2D CNNs’ complexity. The intuition behind the
TSM method is the fact that the convolution operation consists of shift and
multiply-accumulate operations. Taking as an example a convolution with
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kernel W = (wi, w2, w3) over an infinite 1D input X, the convolution opera-
tion can be written as Yi = w1Xi−1 + w2Xi + w3Xi+1. Hence it is possible to
decouple the shift operation from the multiply-accumulate:

X−1
i = Xi−1, X0

i = Xi, X+1
i = Xi+1

Y = w1X
−1 + w2X

0 + w3X
+1

The method of TSM consists in shifting the channels along the temporal
dimension forward and backward by ±1 (that computes the shift operation
mentioned above), and computing the multiply-accumulate operation with a
standard 2D convolutional layer. When applied in an online context, since
frames at future time steps are not available, TSM performs the shift only
backward. However, simply applying the shift to all or most of the channels
there are negative effects with respect to the baseline (TSN):

• Decreased efficiency due to significant data migration: the shift,
while requiring no computing, involves data movement, that increases
the memory footprint and inference time on the hardware;

• Performance deterioration due to a reduced ability to model
spatially: the relocation of a portion of the channels to neighboring
frames causes the information contained in the channels to be inaccessi-
ble for the current frame, which may impair the 2D CNN spatial mod-
eling capabilities;

The authors address the first issue by a partial shift approach (e.g. 1/8 of
the channels), to reduce data movement, and the second issue by placing the
shift module inside the residual branch in a residual block (residual shift)
rather than inserting the module in-place, to balance the model’s capacity
for spatial and temporal feature learning.
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Figure 3.6. Top: the basic TSM block in its online and offline version; the
conceptual structure of in-place TSM and residual TSM. Bottom: from left
to right, latency overhead of TSM due to data movement; comparison of
accuracy reached by in-place TSM and residual TSM. Images taken from [9]

3.5 Unsupervised Domain Adaptation (UDA)
As mentioned earlier, Unsupervised Domain Adaptation (UDA) refers to the
task of adapting a model trained in a supervised manner in a domain to
another, different domain without being provided with the class labels, so
without being able to use the ground through in a supervised way. Different
approaches present in the domain adaptations literature, more often in the
field of image classification, can be grouped by the kind of techniques used:

• self-supervised learning: this kind of approaches often exploit the
data used for the main classification task to generate a different task,
that is believed to to enhance the generalizability of the network with
respect to the main task, without requiring additional annotations. This
auxiliary task in called pretext task, that exploits inherent data attributes
to automatically generate surrogate labels: part of the knowledge of the
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input data is removed, and the learning task consists in recovering it.
Possible pretext tasks are those that rely on original visual cues and
involves geometric transformations (translation, scaling, rotation, ecc.),
like [55]. More importantly, the pretext task is used to transfer its
knowledge to the main I, for example supervised classification.

• adversarial learning: this kind of approaches aim at helping the fea-
tures extractor of a deep architecture to extract features that are dis-
criminative for the main learning (supervised) task on the source domain
and invariant with respect to the shift between the source and target do-
main. The techniques usually consist in challenging the feature extractor
with an adversarial task: [56, 57, 58] use a gradient reversal layer paired
with a domain classifier. The parameters of the domain classifier are
optimized in order to minimize their error on the training set, while the
parameters of the underlying deep feature mapping are optimized for
jointly minimizing the loss of the label classifier and maximizing the loss
of the domain classifier.

• data augmentation: this kind of approaches work at data-level, ex-
ploiting variants of GANs [59] to synthesize new images or using an
adversarial data augmentation procedure [60], with the aim of reducing
the domain gap.

• contrastive learning: this kind of approaches aim at minimizing the
distance between source and target domain in the feature space by push-
ing closer cross-domain inputs belonging to the same label class and
pulling apart those that do not. In particular, given an anchor image
from one domain, the objective is to minimize its distances to cross-
domain samples from the same class relative to those from different
categories, like in [61].

• feature alignment strategies: methods that belongs to this category
focus on learning domain invariant data representations by minimiz-
ing different domain shift measures [62, 63, 64, 65], or on feature norm
matching between source and target domains [66].

3.5.1 UDA in Action Recognition
With respect to unsupervised domain adaptation for images, videos are more
challenging because of the temporal dynamics, and the problem remains
largely unexplored. The state of the art methods can be however grouped
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Figure 3.7. Overview of Comix approach (left) and the the con-
trastive cross-modal learning approach proposed in [10] (right). Im-
ages taken from [11, 10]

into the categories above outlined. CoMix [11] belongs to the contrastive
learning framework, and aims at learning discriminative invariant feature
representations by utilizing temporal contrastive learning to maximize the
similarity between encoded representations of an unlabeled video at two dif-
ferent speeds as well as minimizing the similarity between different videos
played at different speeds. The temporal contrastive objective is further en-
riched with background mixing of a video from one domain to a video from
another domain, allowing additional positives examples per anchor. In addi-
tion, it also integrates a supervised contrastive learning objective, enhancing
the discriminability of the latent space by using target pseudo-labels. This
approach however does use multi-modal inputs, therefore not accounting for
the multi-modal nature of action videos. MM-SADA [12] is one of the state
of the art in multi-modal domain adaptation for action recognition: it uses
a two-stream model that uses RGB frames and optical flow, leveraging ad-
versarial and self-supervised approaches to extract domain invariant features
and to learn modality correspondence. More in detail, the architecture em-
ploys per modality feature extractors, with domain classifiers trained in an
adversarial manner like in [56], incorporating a self supervision alignment
classifier that determines whether modalities are sampled from the same or
different actions, finally merging the modality prediction scores following a
late fusion scheme. Both the alignment techniques are trained on source and
unlabeled target data, while the action classifier is only trained with labelled
source data. A more recent approach [10] leverages a contrastive approach
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Figure 3.8. Proposed architecture of MM-SADA approach. Image taken from [12]

using multiple modalities of videos, by regularizing cross-modal and cross-
domain feature representations, enriching the feature space with additional
connection across modalities and better alignment across domains. More in
detail, the cross-modal contrastive pushes together feature representation of
the same video of different modalities and pulls apart features of different
videos of different modalities, while the cross-domain loss (separately for each
modality) pushes together the features of videos sharing the same action la-
bel for both domains and pulls apart the features of videos having different
action labels, leveraging pseudo-labels for the target domain.

3.6 Domain Generalization
Domain Generalization (DG) refers to the task of learning a model from data
belonging to one or more domains in a supervised manner, but at the same
time having this model not to degenerate when tested with data coming from
a different domain. With respect to Unsupervised Domain Adaptation, in
a DG setting the target domain in unknown at training time: in particular
the data distribution of the target domain in not available. This makes it
a more challenging scenario, and some of the approaches used for UDA are
therefore not applicable. For example, approaches like the ones proposed
in [55, 60] can still be used, while other approaches need to use the some
knowledge of the target domain. Among the methods for image DG, [67]
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aims at optimizing the feature space such that its semantic structure is in-
sensitive to different training domains, and generalize better to new unseen
domains. The approach proposed in [68] uses adversarial autoencoders to
learn a generalized latent feature representation across domains for domain
generalization, by imposing the Maximum Mean Discrepancy (MMD) mea-
sure to align the distributions among multiple seen source-domain. [69] uses
a meta-learning approach to improve feature extractor training, and deliver
a better model for both homogeneous and heterogeneous DG problems.

3.6.1 DG in First Action Recognition
The literature in DG for video processing is scarce, and in general presents
additional challenges with respect to image DG. The key finding is that in
videos the spatial and temporal domain shift coexist: while the domain shift
caused by the variations of the appearance in video frames can be partially
solved by image domain generalization methods, the temporal domain shift
remains to be explored. Authors of [70] claim that the temporal shift is due
to unexpected absence or misalignment of short-term video events (called
also local temporal relations) across distant domains, so they propose to use
the short-term video relations to generate adversarial examples to augment
the source set, using an approach similar to [60], and then exploiting them
along with the global-relation features to maintain the discriminability. Nev-
ertheless such an approach do not consider the multi-modal nature of actions,
lacking the ability to exploit additional perceptual cues.
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Chapter 4

Multi-Modal Domain
Generalization via
Relative Norm Alignment
(RNA)

In this chapter we will describe our contribution to the research of domain
generalization in multi-modal learning, focusing on application in first person
action recognition. More concretely, we will describe the intuition behind the
Relative Norm Alignment (RNA) when training a deep multi-modal feature
extractor, and then present an implementation of the idea as a loss function.
We will show how the approach is domain agnostic, meaning that it can be
used as a off-the-shelf component for multi-modal learning, and how it can
easily extended to the UDA scenario, achieving additional gain. We will
discuss how adding a relative norm alignment affects the training, and why
it can be interpreted as a regularization technique for multi-modal streams.
Finally we show how it is possible to induce RNA to work in the higher norm
feature space, and the rationale behind this choice.
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4.1 Intuitions and motivations

4.1.1 Domain generalization and regularization
As stated earlier in this work in section 2.1.3, any machine learning is affected
by what is called the bias-complexity tradeoff: there exist a relation between
the inductive bias introduced in choosing the hypothesis class the learning
algorithm will learn the predictor from and the training set. Specifically, this
takes form in the estimation error, that is the difference between the error
achieved by the chosen predictor hS and the best possible predictor belong-
ing to the hypothesis class, with respect to the underlying (and unknown)
distribution from which training and test data are drawn. Using this kind of
error decomposition, overfitting occurs when the estimation error is high.

In a practical scenario, estimating the ϵapp from equation 2.6 is difficult,
so another error decomposition is used:

LD(hS) = (LD(hS) − LV(hS)) + (LV (hS) − LS(hS)) + LS(hS) (4.1)

where

• the first term is bounded by
ò

log(2|H|/δ)
2mV

with probability (1− δ) over the
choice of mV samples of validation set, sampled independently of H;

• the second term is the estimate of the estimation error ϵ̂est: if large, the
algorithm suffers from overfitting;

• the third term is the estimation of the approximation error ϵ̂app: if large,
the algorithm suffers from undefitting. In case it is small and we known
that the hypothesis class is powerful enough, this means that it is a
good estimate of LD(h∗), having defined ϵest = LD(hS) − LD(h∗), where
h∗ ∈ arg minh∈H LD(h).

However, this scheme refers to the standard setting in statistical learning,
namely the fact that training and test set are drawn from the same underlying
data distribution, so that the empirical error is a proxy for the true error that
the predictor will achieve when tested with new data. In domain adaptation,
the objective is to learn a predictor that not only considers a source training
set made of labelled data, but also a target domain for which labels are not
available. A rigorous model of domain adaptation has been formalized by
[62], by bounding the error with respect to the target distribution with a
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measure of divergence between them, in fact for any hypothesis h, h′ ∈ H:

|LS(h, h′) − LT (h, h′)| ≤ 1
2dH∆H(DS , DT ) (4.2)

where

dH∆H(DS , DT ) = 2 sup
h,h′∈H

|Px∼DS [h(x) /= h′(x)] − Px∼DT [h(x) /= h′(x)]|

= 2 sup
h,h′∈H

|LS(h, h′) − LT (h, h′)|

≥ 2|LS(h, h′) − LT (h, h′)|
(4.3)

In domain generalization this is not applicable, since any statistics on the
target domain is unavailable. So in our setup we seek to find a predictor that
"generalize enough" to take into account samples drawn from a distribution
different from, but somehow linked to, the one seen in training. To better
understand the problem, we can rephrase the problem of generalization into
an overfitting problem. In a classical setup, overfitting is detected when,
during training, the error on the training set keeps decreasing, while the
error on a validation set starts increasing. Most notably, assuming that the
hypothesis class the algorithm can learn the predictor from to is large enough,
observing a very low training error and high validation error means that we
have two choices:

• getting more examples: recalling the standard assumption of the statis-
tical learning by which the training set is drawn i.i.d. from the a data
distribution D, having a larger training sample means capturing more
information about the distribution so the training error increases, intu-
itively because it becomes more difficult for a predictor to "explain" the
diversity of the instances;

• reducing the complexity of the hypothesis class H: it practically means
decreasing the number of free parameters, and this is commonly achieved
with the help of regularization techniques.

However to frame the problem of generalization as overfitting with respect
to an unknown distribution, it is not possible to only look at the common val-
idation error: the validation set would be drawn from the same distribution
as the source domain, so we would not notice a drop in the generalization
performance of the algorithm. To this extend, it is possible to refer to the
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validation set of the target domain, and define the "lack of generalization"
as "overfitting on the source domain", with respect to the target. In this
context the first choice above corresponds to the ability to access the target
domain, which is not possible as per the definition of domain generaliza-
tion, so the other way is to regularize the learning objective, such that we
restrict the hypothesis class in such a way we still preserve those predictors
that are optimal for the task. Indeed one interpretations on our approach
is as a (multi-modal) regularization technique: we constrain the learning al-
gorithm to search for a predictor that, other than minimizing the empirical
error on the source domain training set, satisfies the relative norm alignment
constraint, that we will explain the section 4.2.

4.1.2 Multi-Modal optimization

As highlighted in section 3.3.2, training multi-modal networks is harder than
training the uni-modal counterparts. One of the identified reasons is overfit-
ting: a multi-modal has usually more free parameters than a uni-modal one;
in fact, because of inputs multi-modal inputs have different nature, usually
architectures use at least a dedicated feature extractor per modality, and
sometimes even more (e.g. those one using late-fusion approaches). Another
issue, not related to architectural choices but rather related to the nature of
data of different modalities, is due to the fact that different modalities sepa-
rately overfit and generalize at different rates, so the joint optimization of the
related branches is sub-optimal. However, architectures that do not use joint
training by using pre-trained uni-modal features will most likely have sub op-
timal performances, due to the fact that the inter-modality correlations are
not captured, thus missing to fully exploit data complementarity. To this
extend, authors of [53] have proposed a metric to quantitatively describe the
problem of overfitting of multi-modal networks, namely the overfitting-to-
generalization ratio (OGR): their Gradient-Blending solution aims at finding
optimal weights for the loss functions associated to the single modalities, to
re-weight them into a multi-modal loss that ensures an equal rate of over-
fitting and generalization of all modalities. Here we spot the same problem
from a different perspective: because different modalities overfit and gener-
alize at different rates, it could happen that the easier-to-converge network,
associated with the modality containing the most of the informative content,
became predominant for the classification task: this means that the classifier
will mostly rely on the corresponding perceptual input, not exploiting the
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complementary information from other modalities. The amount of informa-
tion content with respect to other modalities is given by their mean feature
norm: a strong correlation between the mean feature norms and the infor-
mative content for classification has been noted in [71, 72, 73]. In particu-
lar, in [72] authors show that the cross-entropy loss promotes well-separated
features with a high norm value. The Smaller-Norm-Less-Informative as-
sumption used in [74] implies moreover that a modality representation with
a smaller norm is less informative during inference. Based on these findings,
we conjecture that a norm imbalance between different modalities affects
the classifier to prefer the higher mean feature norm modality, affecting the
performance of smaller mean feature norm modalities as well as the global
classification task, that misses important cues from other modalities, leading
to a less robust, so less generalizable model. We believe that the relative norm
alignment approach enjoys both the aforementioned advantages: it ensures
an equal rate of learning from all modalities and constraints the learning
algorithm such that the model extract features with rebalanced mean norm,
with clear improvement in taking advantage of data complementarity.

4.2 Proposed approach
To constrain the different features to be norm-aligned we introduce a new
task for the feature extractors of the different modalities. Specifically we want
the network to learn how extract features whose expected values is the same
across modalities because it is in doing do that the network is constrained to
leverage multi-modal norm correlations. To do so, our approach is based on
a loss function that penalizes a norm misalignment between feature norms,
applied to the features out of the deep feature extractor, before modality
fusion. Formally we denote h(xm

i ) def= (|| · ||2 ⊙ fm)(xm
i ) as the L2-norm of the

features fm of the m-th modality, and define the mean-feature-norm distance
between two modality norms fmi and fmj as:

δ(h(xmi
k ), h(xmj

k )) def= |E[h(Xmi)] − E[h(Xmj )]| (4.4)

To minimize the δ distance of all the modalities we propose the Relative
Norm Alignment (RNA) loss. Let it be M = {m1, ..., mm} the set of available
modalities, ordered by their mean feature norm E[h(Xmi)], then:

LRNA
def=

Ø
i<j

A
E[h(Xmi)]
E[h(Xmj )] − 1

B2
(4.5)
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where the expected value of the feature norm can be approximated by its
unbiased estimator, the mean over the batch: E[h(Xmi)] = 1

B

q
xm

i ∈X m h(xm
i )

for the m-th modality and B is the batch size. Finally, the total loss function
optimized by the learning algorithm is:

L = Lcross−entropy + λLRNA (4.6)

4.2.1 Discussion and variations
The rationale behind the norm alignment is to force the network to full
exploit the features of various modality; the advantage is twofold:

• Imposing this constraint to the learning algorithm means restricting the
hypothesis class H to the subset of hypotheses that extract equally in-
formative features from different modalities, relying on the evidence that
a modality representation with a smaller norm is less informative during
inference;

• The part of the network after the feature extractor has the chance to
learn to work in the normalized feature space during training.

For these reasons a static normalization, without any learning objective
would not achieve the same result; there are two points in the architec-
ture stack in which one could place a normalization operator that would
achieve a norm balancing: at input level or at feature level. A normaliza-
tion at input level simply won’t work: it is not feasible in a DG context
because of missing information about target domain statistics and would be
not suitable with the use of pretrained models. On the other hand, sim-
ply normalizing the feature norms just after their extraction does not work
equally well, because only the second aspect is achieved: there could be an
advantage just for the classifier to be presented with normalized features,
but there would be no alignment of learning from multiple modalities and no
regularization of individual streams. Besides these downsides, static feature
re-balance would contrast with the Smaller-Norm-Less-Informative assump-
tion: the higher norm of a feature would not result from having extracted
additional informative content, but as a result of an affine transformation.
Moreover, we believe that a learning induced re-balance leverages networks’
non-linearities to extract features in a embedding space where they are more
discriminative and yet more generalizable. For this reasons it is crucial that
the network learns how to re-balance the feature norms by itself.
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Not only it is important to learn how to re-balance feature norms of differ-
ent modalities, but also how to induce this learning objective. More specif-
ically, the learning objective in equation 4.5 mathematically requires the
ratio of the feature norms to be equal to one, that means that there must
an optimal feature norm value, that RNA loss achieves as consensus on the
ratio. The existence of such value would mean that an alternative and equal
performing loss formulation satisfying equation 4.4 is:

LHNA
def=

Ø
mi∈M

(E[h(Xmi)] − k)2 (4.7)

being k the optimal value just mentioned. This formulation however have a
few downsides:

• The optimal value k is unknown, it depends on the data and on the
network, so it becomes an hyperparameter difficult to tune properly;

• Being k fixed, E[h(Xmi)] for some mi ∈ M can be far away from it,
especially at the beginning of the training. This means a potentially
high loss value, to be counteract with a proper weight for the loss, that
for this reason is a hyperparameter difficult to tune;

• Modalities do not explicitly interact: applying equation 4.7 to the joint
training is equal to apply it to the single stream network corresponding
to the modality mi, being k fixed and not dependent on the observed
batch.

An alternative valid formulation of the constraint in equation equation 4.4
is the following:

Lsub
RNA

def= (E[h(Xmi)] − E[h(Xmj )])2 (4.8)

However this formulation has some of the problems mentioned earlier: high
discrepancy in mean feature norm corresponding to different modalities would
reflect in higher loss value, requiring a careful tuning of the loss weight, with
consequent sensitivity on that value. The structure of equation 4.5, other
than inducing an optimal equilibrium between the two embeddings, pushes
the network to take larger steps when the ratio of the two modality norms is
too far from one, resulting in faster convergence.
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4.2.2 Extension to UDA scenario
Under the UDA setting it is possible to take advantage of unlabelled target
data, so RNA loss can be applied also to target data. More formally, given
the input data from source and target domains respectively denoted as XS

and XT , it is possible to extend the definition in equation 4.4 also to target
data instances xs,i ∈ XS and xt,i ∈ XT and use the same formulation in
equation 4.5 to apply RNA loss to source and target samples, resulting in:

LRNA = Ls
RNA + Lt

RNA (4.9)

Applying RNA loss also on target data gives the network the opportunity to
learn how the information content is distributed on the different modalities
for the target distribution, by means of a different norm unbalance. The
output predictor is hence able to account for a variety of unbalance and,
because seeing also target means that the "learn to re-balance" task is harder,
it has a stronger regularization effect.

4.3 Further variations
The loss formulation introduced in equation 4.5 adaptively incrementally re-
balances the mean feature norm associated with features of multiple modality,
reaching a consensus among them. However, sometimes it is possible that
one of the network accomplishes this task more easily than the others: the
scenario we are in is domain agnostic, features can come from input of very
diverse nature and in principle each modality employs the feature extractor
works best with it. In such a complex case, it is possible that the problem
of a network to learn faster than the other can reoccur for the RNA task,
and this can result in networks associated with modalities with lower feature
norms to move the common feature norm at convergence to a lower value.
Recalling that larger norm convey more information, it is desirable to avoid
such decrease of the consensus mean feature norm. To this extend, it is possi-
ble to combine RNA loss with the Stepwise Adaptive Feature Norm approach
of [66], that encourages a feature norm enlargement at the step size of ∆r
with respect to individual examples, based on their feature norms calculated
by the past model parameters in the last iteration. In particular, since the
introduction of this loss would contrast with RNA and would encourage an
unbounded increase to the mean feature norms, we applied this loss only
to the features associated with the lowest mean norm, doing so encourag-
ing a rebalance towards an higher mean feature norm. More formally, given
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optimal k

suboptimal k

RNA++

RNA

learn to 
rebalance

Figure 4.1. RNA-Net++ induces the network not only to rebalance mean
feature norms of different modalities, but also to push the consensus mean
feature norm towards higher norm feature space.

M = {m1, ..., mm} the set of available modalities, ordered by their mean
feature norm E[h(Xmi)], the SAFNmin loss is defined as:

LSAF Nmin

def= 1
B

BØ
i=1

(h(xm1
i ) − ∆r)2 (4.10)

As result of our experiments, we found that RNA benefits from this in-
tegration, showing superior performance over applying RNA or SAFNmin

losses alone.
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Chapter 5

Experimental Results

In this chapter we will present the experimental results that confirm the
intuition behind the relative norm alignment approach described in chapter
4. The first part of the chapter presents the main results, starting from the
approach applied to EK-55 dataset, demonstrating its effectiveness against
the state of the art, although in a simplified scenario, where the actions are
less fine-grained and only three domain shifts are considered. From these
results, we extend the approach porting it to the more complex scenario of
the EK-100 Unsupervised Domain Adaptation challenge described in section
3.2.1. The second part of the chapter consist in an ablation study on the
algorithmic and architectural choices that lead us to the final formulation of
proposed method: in particular we will compare the learn to re-balance task
to a simple feature alignment, demonstrating that the value of the method in
primarily in the induced task. Finally we will evaluate the robustness of our
approach against the state of the art, demonstrating that the RNA-Net++
is better at optimizing with respect to a single modality even when trained
with multi-modal input.

5.1 Experimental setting

5.1.1 Dataset

Along the experiment we used two datasets: the EK-55 dataset in the first
part, where we show that RNA is a promising multi-modal learning method
domain generalization in first person action recognition. From those re-
sults, we consider extending it to a more complex scenario using the EK-100
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dataset, and competing for the corresponding Unsupervised Domain Adap-
tation challenge.

EK-55

State of the art algorithms compare themselves against top-1 verb classifi-
cation in two different settings: cross-domain, meaning that the training set
and the test set belong to different domains, so different kitchens, and super-
vised, meaning that training set and test set belong to the same domain, so
the same underlying data distribution. In practice, among the 32 kitchens
(considered as different domains), the three biggest are selected: kitchen P08
is referred as D1, kitchen P01 as D2 and kitchen P22 as D3. Given these tree
subset of the dataset, 9 combinations can be defined: 6 of them are referred
as cross-domain, while the remaining 3 describe a supervised setting. For
example the wording Di → Dj referred to a model means that Di is treated
as source domain and Dj as target domain. In UDA context, in means that
the training set of Di has been used to train the model in a supervised way,
while the training set of Dj has been used in an unsupervised way during
the training: finally the model’s performance are evaluated on the test set of
Dj.

EK-100

The aforementioned setting, however challenging, is simplified and unrealis-
tic: performance are measured only against verb prediction, the considered
domains are few and the label space is relatively small, in fact the predic-
tion is made among only 8 verbs. The first version of the EPIC-KITCHENS
dataset was released in 2018: from its release it has been successful and many
researchers took up the various challenges it enables. As result of it success,
two years later EK-100 was released, a collection of 100 hours, 20M frames,
90K actions in 700 variable-length videos, capturing long-term unscripted
activities in 45 environments. Along with the dataset, authors of [17] pro-
posed the Unsupervised Domain Adaptation challenge (see section 3.2.1).
The training sets are additionally split into source and target: the difference
lies in the fact the target training set in not annotated, so it is used to per-
form domain adaptation with respect to the test set domain. Specifically, the
splits provided as source and target corresponds to the same participants of
EK-55 dataset, but the target splits are the same actions recorded two years
later.
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The scenario of the UDA challenge is a much more challenging test case:
performances are evaluated in terms of top-1/5 test accuracy on verb, noun
and action prediction, on 16 different domains. Importantly the verb label
and noun label spaces are composed respectively by 94 and 300 different
values, making the action prediction task much more fine-grained. Addition-
ally, the dataset presents variabilities due to changes in locations, viewpoints,
labels and participants (the behaviour of the same person can change over
time), but also differences in data recording methodology (the hardware has
changed) or changes in the environment over time (some participants have
moved house).

5.1.2 Implementation details
Experiments on EK-55

For the experiments on EK-55, the network is composed of two streams,
one for each modality m, with distinct feature extractor Fm and classifier
Gm . The RGB stream uses I3D [8] as done in [12], while the audio feature
extractor uses the BN-Inception model pretrained on ImageNet, which proved
to be a reliable backbone for the processing of audio spectrograms [7]. Each
feature extractor produces a 1024-dimensional representation fm, then fed to
the classifier Gm. The modalities are fused following a late-fusion approach
by summing the score logits, and the cross entropy loss is used to train the
network. We compare our approach considering the base loss formulation and
the complete method in DA, made by the RNA loss, the GRL and attentive
entropy, that we refer to as RNA-Net.

The network is trained for 9k iterations using the SGD optimizer. The
learning rate for RGB is set to 1e − 3 and reduced to 2e − 4 at step 3k, while
for audio, the learning rate is set to 1e − 3 and decremented by a factor of
10 at steps {1000, 2000, 3000}. The batch size is set to 128, and the weight
λ of LRNA (see equation 4.5) is set to 1.

Experiments on EK-100

The EK-100 UDA challenge is based on pre-extracted features publicly re-
leased and available to contestants. In practice, this data come from ap-
plying state of the art architectures (like the ones described in this work in
section 3.4) to different modality streams of the dataset, to extract single
modality features, and the task of contestants is to further process these fea-
tures to enhance the performance of the base model. Feature splits follow
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the same logic of the dataset’s ones: source and target train and validation
sets are provided with labels, while target test data are provided unlabelled.
We used the officially provided extracted features from TBN and TSM (see
section 3.4.2 and 3.4.4), comparing the two best temporal aggregation ap-
proaches: the one referred as TBN consist in an average pool of temporal
features, the one referred as TBN-TRN uses the same features but using the
temporal aggregation method described in [75]. On those architectures, we
compare different methods: source-only refers to no domain adaptation strat-
egy adopted; TA3N refers to the approach proposed in [76]. Our approach
builds upon TA3N by adding an extra SE [77] layer per modality, that per-
forms feature norm alignment of multi-modal stream. We further propose
to extend the approach by pushing the norm alignment towards higher fea-
ture norms region, using the formulation in equation 4.10: we refer to such
formulation as RNA-Net++.

The weight for RNA-Net has been searched in {0.1, 0.5, 1, 2, 3, 4, 5, 10, 15,
20} when using the SE layer [77] or SMR [78] for norm alignment and in {0.05,
0.1, 1, 2, 3, 4, 5} when using a simple linear layer, and λ = 10 and λ = 0.1
have been chosen respectively. Additionally, for RNA-Net++ the search
additionally involved the two hyperparameters for equation 4.10, namely
∆r ∈ {0.3, 0.5, 1} and its weight in the final loss formulation λSAF Nmin ∈
{0.1, 0.5, 1, 2, 3}: the chosen values are finally λSAF Nmin = 2 and ∆r = 1.

5.1.3 Results section structure
In this section we describe how we compare our approach to the state of the
art methods and how we validate our choices. In section 5.2 we present our
main results both on EK-55 and on the setting of the EK-100 UDA challenge.
More in detail, in section 5.2.1 we propose comparisons both in DG and UDA
scenario, grouping the algorithms we compare our method to in: image-
based domain adaptation and multi-modal approaches. As common practice
in the literature, each method is compared against a baseline consisting of
the same backbone with no domain adaptation strategy adopted. In section
5.2.2 we present the results of our approach across several combinations of
modalities, in the setting of EK-100 UDA challenge, comparing each method
with the two best performing architectures. Section 5.3 explores more in
depth some aspects of our approach: in section 5.3.1 we compare the various
architectures across different modality combinations, while in section 5.3.2
we evaluate the choice of the additional architectural part added to perform
norm-alignment, across the best architectures. Moreover, to prove the point
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of section 4.2.1 about the contribution of a mere feature normalization, in
section 5.3.3 we compare the performance of RNA with an approach that
statically (e.g. without a learning task) aligns the mean norm of modality
features. In particular, we define a Static Norm Alignment (SNA) as a input
level re-normalization on pre-trained input features as follows:

SNA = Xmi

||Xmi||2
· k (5.1)

where k is the final value of the feature norms of Xm. The optimal value
of k is unknown, so in the experiment we searched it into three values: the
feature norm corresponding to the modality having respectively the minimum
or maximum norm or the average of all modalities’ feature norms. Hence we
define:

SNAmin = Xmi

||Xmi||2
· min

mj
||Xmj ||2 ∀mi

SNAmax = Xmi

||Xmi||2
· max

mj
||Xmj ||2 ∀mi

SNAavg = Xmi

||Xmi||2
· 1

M

MØ
j=1

||Xmj ||2 ∀mi

(5.2)

To end the ablation study, in section 5.3.4 we propose an experiment aimed
at demonstrating that our approach leads to a more robust model, in fact it
less suffers from a perturbation of input consisting in a missing modality at
test-time.

5.2 Main Results

5.2.1 EK-55
All the results reported in this section refer to a multi-modal scenario in which
RGB and Audio modalities are used. Table 5.1 refers to a multi-DG scenario,
in which more than one domain is used as source domain, while the target
is always one different domain at a time. We refer to the baseline as Deep
All, that is when the backbone architecture is used without employing other
domain adaptive strategies, and all the source domains are fed to the network.
We compared our approach with methods of different type: IBN-Net and
Gradient Blending belong to image-based domain generalization approaches,
while MM-SADA is a multi-modal UDA approach, but we adapted here to
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the DG scenario by retaining only the self-supervised task so (refer to section
3.5.1 for details about MM-SADA). The second group in table 5.1 refer to
methods that exploit multi-modality of input data. Results show that RNA
outperforms the mentioned approaches by a large margin, achieving a +6.4%
accuracy with respect to the baseline.

Table 5.2 shows comparison with popular domain adaptation methods
in UDA scenario: GRL challenges the feature extractor with an adversar-
ial task to extract domain invariant features; MMD is based on minimizing
a discrepancy measure between distributions; and AdaBN consists in mod-
ulating the statistics from the source domain to the target domain in the
batchNorm layers across the network. It is possible to see that adopting our
approach alone, performance are similar to the ones of the complete MM-
SADA method, while our complete DA method gives additional performance
gain, making RNA-Net the best in class method.

Method D2, D3 → D1 D3, D1 → D2 D1, D2 → D3 Mean
DeepAll 43.19 39.35 51.47 44.67
IBN-Net 44.46 49.21 48.97 47.55
MM-SADA (Only SS) [12] 39.79 52.73 51.87 48.13
Gradient Blending [53] 41.97 48.80 51.43 47.27
TBN [7] 42.35 47.45 49.20 46.33
Transformer [79] 42.78 47.38 51.79 47.32
Cross-Modal Transformer [80] 40.87 43.57 54.88 46.44
SE [77] 42.82 42.81 51.07 45.56
Non-Local [81] 45.72 43.08 49.49 46.10
RNA loss 45.65 51.64 55.88 51.06

Table 5.1. Top-1 accuracy (%) of RNA in Multi Source DG scenario, com-
pared to other methods of the state of the art

5.2.2 EK-100
The results reported in this section refer to the setting of the EK-100 UDA
challenge. As previously anticipated, this setting consist in 16 different do-
mains, corresponding to participants, and the shift between source and target
domains consist in having recorded the actions of the same participants two
years later.

Table 5.3 shows the performance of RNA-Net++ against the state of the

85



Experimental Results

Method Mean
Source-Only 41.87
GRL [56] 43.67
MMD [63] 44.86
AdaBN [82] 41.92
MM-SADA (only SS) [12] 46.44
RNA loss 47.71
MM-SADA (SS+GRL) [12] 47.75
RNA-Net 48.30

Table 5.2. Top-1 accuracy (%) of RNA-Net in UDA scenario, compared to
other methods of the state of the art

art methods, across various combination of the three modalities. We compare
each method against its source-only approach (that is training on source and
testing directly on target data). For RGB-Flow modality combination, we
report also the results using the pre-extracted features from TSM. In this case
we note more moderate gains from using the Temporal Attentive Alignment
strategy of TA3N : this could be motivated by the fact that TSM more
explicitly takes into consideration the encoding of the temporal dimension.
Overall, results indicates that our approach consistently outperforms the
other methods across different modalities and architectures combinations.
In particular, we obtain a +1.62% (TBN) and +1.52% (TBN-TRN) with
respect to the source-only in the most complete scenario where all the three
modalities are used. This shows that the temporal attentive alignment as
well as the methods used to fuse frame level features into video level ones are
complementary to the norm alignment objective.
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Modality Method Architecture Top-1 Accuracy(%)
verb noun action

R+F+A

source only TBN 47.10 28.30 18.66
DAAA [83] TBN 47.96 29.08 19.19
source only TBN 47.11 27.95 18.44
TA3N TBN 47.22 29.04 18.94
RNA-Net++ TBN 48.65 30.04 20.06
source only TBN-TRN 46.58 27.97 19.09
TA3N TBN-TRN 47.48 28.35 19.25
RNA-Net++ TBN-TRN 49.37 29.51 20.61

R+F

source only TBN 41.51 25.13 14.27
TA3N TBN 43.03 28.10 16.36
RNA-Net++ TBN 43.49 28.18 16.64
source only TBN-TRN 43.79 26.36 16.34
TA3N TBN-TRN 44.56 27.15 17.25
RNA-Net++ TBN-TRN 45.80 27.53 17.76
source only TSM 48.49 28.19 18.32
TA3N TSM 48.63 28.63 18.44
RNA-Net++ TSM 48.56 28.56 18.54
source only TSM-TRN 47.16 26.97 17.73
TA3N TSM-TRN 48.28 27.44 18.34
RNA-Net++ TSM-TRN 47.63 27.59 18.41

R+A

source only TBN 40.64 24.80 14.84
TA3N TBN 40.72 25.75 15.18
RNA-Net++ TBN 41.70 26.20 15.91
source only TBN-TRN 40.61 24.47 15.31
TA3N TBN-TRN 40.56 25.03 15.74
RNA-Net++ TBN-TRN 41.93 25.42 16.45

Table 5.3. Top-1 (%) of RNA-Net in UDA scenario on EK-100, com-
pared to the source-only
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5.3 Ablation study
In this section we analyze different aspects of our method in the context of
EK-100 UDA challenge.

5.3.1 Comparing temporal aggregation methods
We started from an initial study about temporal aggregation methods: in
the base architecture, 5 frames per action video are sampled for different
modalities, then the corresponding features are concatenated along the last
dimension to form multi-modal features. After being fed to a linear layer,
the features are temporally aggregated. Table 5.4 shows the results for dif-
ferent architectures: TBN refers to the standard average pooling of temporal
features, TBN-TRN uses the temporal aggregation described in [75], APN
use a multi-level adversarial pyramid network of attention blocks and RNN
uses a recurrent neural network. From these results, we selected the two
best performing architectures, namely TBN and TBN-TRN, to carry out
our study.

Modality Architecture Top-1 Accuracy(%)
verb noun action

R+F+A

TBN 47.22 29.04 18.94
TBN-TRN 47.48 28.35 19.25

APN 46.15 26.74 17.95
RNN 46.43 23.61 16.03

R+F

TBN 43.03 28.10 16.36
TBN-TRN 44.56 27.15 17.25

APN 42.78 25.52 15.84
RNN 41.46 22.32 13.13

R+A

TBN 40.72 25.75 15.18
TBN-TRN 40.56 25.03 15.74

APN 39.76 23.80 14.88
RNN 40.87 21.20 13.24

Table 5.4. Comparison of different temporal aggregation methods across
different combination of input modalities in UDA context
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5.3.2 Adding a feature interaction module
Our architectural changes refer to part of the network before the temporal
aggregation module, in fact the loss formulation in 4.5 requires a network
that accomplishes the norm alignment task. Most importantly, because in
the base architecture multi-modal features are fed into a linear layer before
the temporal aggregation, we cannot rely on tail components of the network
to specifically take into account the activations of single modalities.

For this reason we evaluated different layers to be added to perform RNA.
"Linear" refers to a simple linear layer per modality, SENet [77] consist in a
squeeze-and-excitation module per modality, that interact by means of RNA,
while SMR refers to the Semantic Mutual Refinement module described in
[78], by which modality streams already interact via self-cross modal gating,
in a way similar to [77]. When applying RNA, we consider the output features
of the added layer after a dropout when using SENet or the simple linear
layer, while when using SMR we apply the loss only features out of cross-
gating, namely the modality features refined by transferable knowledge from
other modalities.

As it is possible to see from table 5.5, the relative norm alignment always
enhances the performances with respect to the base added layer, confirming
that it is always beneficial to re-align modality norms. Adding a linear layer
degrades the performance and even adding RNA-Net does not bridge the gap.
Using SMR, performances are already good in source only, meaning that the
module effectively makes modalities interact, but integrating RNA-Net gives
additional gain.

5.3.3 Comparing norm alignment techniques
In this section we compare different strategies to obtain a feature norm
alignment between different modality features. In particular we first com-
pare approaches that introduce a learn to re-balance task with approaches
that achieve the same objective by static input-level re-normalization. Then
among those approaches, we compare plain RNA-Net with its Hard formu-
lation and finally with the formulation coming from equation 4.10.

Results in table 5.6 confirm the intuitions in section 4.2.1: the static
norm alignment approach gives some gain over the base method, resulting
from having the classifier working in normalized space, with slightly higher
gain using the SNAmax approach, consistently over the choice of the archi-
tecture. However the induced norm alignment task performs better: HNA
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Added layer Method Architecture Top-1 Accuracy(%)
verb noun action

SE [77]

source only TBN 47.11 27.95 18.44
TA3N TBN 48.09 29.40 19.37
RNA-Net TBN 48.43 29.45 19.63
source only TBN-TRN 46.58 27.97 19.09
TA3N TBN-TRN 48.72 28.56 19.78
RNA-Net TBN-TRN 48.72 28.76 20.01

Linear

source only TBN 45.31 20.86 13.70
TA3N TBN 47.32 28.23 18.67
RNA-Net TBN 47.42 28.24 18.70
source only TBN-TRN 46.87 25.00 17.18
TA3N TBN-TRN 47.46 27.59 19.01
RNA-Net TBN-TRN 47.66 27.67 19.05

SMR [78]
source only TBN 48.51 29.80 20.14
TA3N TBN 48.50 30.05 20.28
RNA-Net TBN 48.64 30.01 20.30

Table 5.5. Comparison of different modules for RNA-Net, in UDA context
using all three modalities (RGB-Flow-Audio)

performs slightly better than RNA-Net, at the cost of having carefully and
extensively searched the best combination of hyperparameters; conversely,
RNA-Net achieves good performances with little parametrization. Finally,
by encouraging a rebalance towards an higher mean feature norm with loss
formulation in equation 4.10, RNA-Net++ achieves even higher performance
with respect to HNA.

5.3.4 Evaluating robustness
Training multi-modal networks is harder than training the uni-modal coun-
terparts: as discussed in section 3.3.2, different modalities separately overfit
and generalize at different rates, so the joint optimization of the related
branches is sub-optimal. To test how different methods deal with this prob-
lem, here we propose an ablation study in which a model trained on all
three modalities is being tested with only two modalities. Intuitively, a more
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Architecture Method Top-1 Accuracy(%)
verb noun action

TBN [7]

source only 47.11 27.95 18.44
TA3N 47.22 29.04 18.94
SNAmin 47.33 29.55 19.28
SNAavg 47.22 29.56 19.24
SNAmax 47.23 29.53 19.31
RNA-Net 48.43 29.45 19.63
HNA 48.13 29.75 19.71
RNA-Net++ 48.65 30.04 20.06

TBN-TRN [76]

source only 46.58 27.97 19.09
TA3N 47.48 28.35 19.25
SNAmin 47.26 28.84 19.38
SNAavg 47.52 28.81 19.38
SNAmax 47.61 28.71 19.40
RNA-Net 48.72 28.76 20.01
HNA 48.80 28.96 20.18
RNA-Net++ 49.37 29.51 20.61

Table 5.6. Ablation on different choices of feature norm alignment:
RNA-Net, HNA and different variations of SNA, using all three modalities

robust method is able to guarantee higher performances in such situation
in which part of the training information is missing. This implicitly means
that the network is able to better optimize each modality stream separately,
so avoiding to relying too much on the stronger modality. Table 5.7 shows
the results of this experiment: how it is possible to see, RNA-Net is consis-
tently more robust than the baseline, achieving higher accuracy over all the
modality combinations.
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Dropped Modality Method Architecture Top-1 Accuracy(%)
verb noun action

R

source only TBN 43.58 21.35 14.67
TA3N TBN 44.70 21.74 14.60
RNA-Net TBN 46.13 22.86 15.80
source only TBN-TRN 43.07 20.78 14.63
TA3N TBN-TRN 44.59 20.78 14.89
RNA-Net TBN-TRN 46.78 22.41 16.42

F

source only TBN 36.99 23.78 13.51
TA3N TBN 36.74 24.08 13.41
RNA-Net TBN 37.96 24.69 14.38
source only TBN-TRN 35.95 22.81 13.41
TA3N TBN-TRN 36.09 22.95 13.71
RNA-Net TBN-TRN 37.49 23.24 14.08

A

source only TBN 40.22 23.63 13.25
TA3N TBN 40.89 24.83 13.51
RNA-Net TBN 41.03 24.48 13.93
source only TBN-TRN 41.46 24.22 14.29
TA3N TBN-TRN 41.65 24.67 14.43
RNA-Net TBN-TRN 42.23 24.29 14.50

Table 5.7. Testing the robustness of RNA-Net with respect to baseline meth-
ods. The models have been trained on all three modalities (RGB-Flow-Au-
dio), and at test time one modality has been dropped.
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Chapter 6

Qualitative Results and
Visualization

In this chapter we show qualitative results of the application of our approach
on a two-stream network trained on RGB and Audio streams, referring to
the setting of the experiments on EK-55 dataset. We propose two qualitative
ways of evaluating the contributions: the first one is by analyzing how well
separable are the features of source and target samples in the embedding
implemented by the deep feature extractors; the second one is by noting how
the class activation maps (CAMs [2]) change after introducing the learn-to-
rebalance task.

6.1 Analysis of the alignment of source and
target videos in the action embedding

As previously mentioned, one of the problems in first person action recogni-
tion is that the actions’ surrounding environment frequently introduces bias
into the dataset (environmental bias) and, as a result, a domain shift in the
feature space, with consequent drop in performance. To this extend, the
objective of an algorithm tackling the domain shift problem is to extract fea-
ture that are discriminative of the action, so that the classifier can achieve
good performances, and yet domain invariant, so that the model’s perfor-
mance won’t drop as consequence of using it with data following a different
data distribution. A common way to qualitatively evaluate the feature ex-
tractor capabilities is to perform a dimensionality reduction in two or three
dimensions and plot the points in the resulting subspace.
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For our purposes, we used UMAP on the features of source and target
data extracted by a two-stream model trained on source data, and colored
the points based on the fact that the corresponding data is from source or
target dataset. What we search for is a situation of maximal homogeneity:
this would mean that the distribution of the samples is very similar, hence
that there is no domain shift; conversely, a clear separation of those features
indicates the presence of domain shift. Figure 6.1 refers to features extracted
by a two stream model trained in a multi-DG scenario, separately per modal-
ity. As it is possible to notice, figures on the right tend to depict a situation
in which source and target features are less separable from each other. This
qualitatively indicates a mitigated domain shift in the feature space as a re-
sult of leveraging multi-modal correlations via relative norm alignment. The
effect is even more glaring in figure 6.2, where the model is trained on a
single source: this could be motivated by the fact that the model in multi-
DG scenario, having seen more than one different domain during supervised
training, has an inherently enhanced generalization capability. Indeed, in
this last setting there is more room for improvement, hence our approach
bridges the gap between the two distributions.
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Figure 6.1. UMAP embedding of features extracted by the feature extractors
of: the baseline two-stream network (left) and our method (right), using mul-
tiple sources (D1, D2) and one target (D3). From top to bottom: embeddings
corresponding to RGB and Audio features.
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Qualitative Results and Visualization

Figure 6.2. UMAP embedding of features extracted by the feature extractors
of: the baseline two-stream network (left) and our method (right), using
a single source (D3) and multiple targets (D1, D2). From top to bottom:
embeddings corresponding to RGB and Audio features.
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Qualitative Results and Visualization

6.2 Analysis of network’s attention
As previously mentioned, environmental bias result in a domain shift in the
feature space makes often the network to focus on irrelevant parts of the input
frames to predict the action label. A commonly used method in the literature
to visualize the attention a convolutional neural network is analyzing the
Class Activation Maps (CAMs, described in section 2.3.4).

The images in figure 6.2 clearly show that our approach, by leveraging the
learn-to-rebalance task, improves the network’s ability to correctly identify
the image regions that correlate best with the represented action. This effect
results from the network’s tendency to "choose" which features to favor (i.e.,
those that are more general) when it unifies the norms. As a result, it tends
to reduce those features it deems irrelevant, i.e., those more domain-specific
(such as the background) that have a negative impact on generalization.
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Qualitative Results and Visualization

Figure 6.3. Class activation maps corresponding to: the baseline two-
stream network (second row) and our method (third row), trained on
D1 and D2, applied to target (D3).
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Chapter 7

Conclusions

In this work we tackled the problem of domain shift in first person action
recognition by exploiting the multi-modality of input data of this task, adopt-
ing the Epic-Kitchens dataset [13] for experiments. In particular, our ap-
proach stems from two observations: the first one is that domain shifts are
not all of the same nature, and their impact can vary significantly across
modalities, affecting each modality in its own unique way; the second one
is that, when training a multi-stream model, different modalities separately
overfit and generalize at different rates, so the joint optimization of the re-
lated branches is suboptimal.

To this extend we proposed an approach that takes advantage of the multi-
modal nature of the perceptual input, to obtain models that can better lever-
age the complementarity among modalities, and so are more robust with
respect to diverse domain shifts. It belongs to domain generalization meth-
ods, but it can be used also in Unsupervised Domain Adaptation scenario,
taking further advantage from the availability of target data. In particular,
in this work we extended a recent promising approach for audio-visual do-
main generalization to multi-modal domain generalization in a much more
challenging and real-world scenario, that is the setting of the Unsupervised
Domain Adaptation challenge released with the Epic-Kitchens-100 dataset.
The method ensures a consensus mean feature norm among modality streams,
so an equal rate of learning from all modalities, and improves the network’s
capabilities to leverage data complementarity present in perceptual inputs
corresponding to the different modalities. Furthermore, our extension guides
the norm alignment towards higher feature norm regions, relying on the larger
norm more transferable assumption [66]: the experiments validate this intu-
ition, in fact RNA-Net++ is able to effectively enhance the performance of
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Conclusions

the model. As an ablation study, we showed the importance of learning-to-
rebalance: a static feature normalization, even allowing the feature extractor
to work in the normalized feature space during training, does not have any
regularization effect. Qualitative results on the feature space show that our
approach effectively helps at bridging the domain gap and that, as a result,
improves the network’s ability to correctly identify the image regions that
correlate best with the represented action.

Our approach is simple to implement, requires little parametrization and
has been demonstrated itself effective and of potential interest for many other
research fields. Furthermore, it represents a novel approach towards domain
adaptation in multi-modal learning from the theoretical point of view, as it
exploits the feature norm of different modalities as correlated information
content. In particular, their relative magnitude during training has been
proved to affect how the networks can exploit the shared semantic between
modalities, leverage complementarity and enhance robustness.
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