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Abstract

In last years, surface metrology has carried out numerous engineer-

ing applications (i.e., electronics, information technology, energy,

optics, tribology, biology, biomimetics, etc.). The majority of surface

measurements are used in industrial settings to check tolerances

and characterize component surface functionality, but they are also

useful for in-line quality control and to understand and govern addi-

tive manufacturing processes.

Measurementsmust be acquired and processed quickly, thus optical

instruments are being usedmore andmore frequently. Furthermore,

a reliable acquisition should also be accompanied by an uncertainty

factor, however, the available methods rarely provide a correct value

due both to the complexity of the measurement and the interaction

between the optical instruments and the component which is still not

clear.

Additionally, computational time has increased because of both the

complexity of the calculations and the size of the data; for this rea-

son cluster and parallel computing have recently become important

topics of research among academia and industry.

Hence, the purpose of this project is to handle the complexity of

such measurements by exploring the applicability and limitations of

automated machine-based methods to evaluate measurement un-

certainty. Moreover, it also aims to analyze the application of the

digital twin in this field in order to develop a model that is suitable

and adaptable to any kind of sample, and ultimately develop a work-

frame on clusters to handle these large amounts of data.

First of all, the surfaces are processed both with two commercial

software, Spip and MountainsLab, and the developed Matlab code

in order to remove the form and, only in the second case, to manage

possible non-measured points and/or spikes, to estimate the uncer-
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tainty value and to evaluate the covariance and correlation factor.

Afterwards, a Comsol random model is studied by changing its pa-

rameters and a configuration with Matlab code was established. At

the end, the work is imported onto DTU HPC clusters where the

power evaluation was higher and the computation faster.
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1 Introduction

1.1 Technical background and motivations

Micro- and nano-systems, such as surfaces’ features and structures,

are of central importance in the modern manufacturing industry, al-

lowing complex products’ functionalities. Precision engineering and

surface technologies often achieve the production of highly engi-

neered components for a variety of applications by altering surfaces

and controlling their topography: e.g., controlled drug release in

biomedical field, energy harvesting, advanced optics, tribo-mechanical

application, etc. Therefore, the quality assessment of the modern

products requires new and more capable methods. Because of

the continuous down-scaling, in fact, the products’ geometric knowl-

edge has become increasingly challenging, above all regarding the

evaluation of the measurement uncertainty and establishment of the

traceability.

The uncertainty is one of the most important parameters to be eval-

uated. The currently available methods have some limitations, such

as the ISO standards in the GPS system [1]. In addition, the current

framework based on the instruments’ metrological characteristics

provides an effective but limited description of uncertainty influence

factors and measurement errors, which cannot be thoroughly eval-

uated, corrected or compensated [2]. Therefore, new approaches

can be investigate, such as the frequentist approach, in order to

deal with the uncertainty of roughness parameters [2].

Moreover, different types of engineering software and digitalized

equipment are widely used throughout the product lifecycle. In this

way, massive amounts of data of different types are being produced,

but they are isolated from one another, which makes them inefficient
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and underutilized.

To solve the problem, new-generation information and digitalization

technologies has been developed to allow more data to be collected

and linked; consequently, the concept of digital twin has rapidly gained

traction.

The definition provides by the CIRP Encyclopedia of Production En-

gineering [3] is: “A digital twin is a digital representation of an active

unique product (real device, object, machine, service, or intangible

asset) or unique product-service system (a system consisting of a

product and a related service) that comprises its selected charac-

teristics, properties, conditions, and behaviors by means of models,

information, and data within a single or even across multiple life cy-

cle phases.”

In other words, a digital twin is a virtual model of a physical system;

in particular the term ’twin’ refers to a replica which can be either an

object or a process. This could further be broken down into many

sub-parts in order to identify and track a particular phenomenon. Its

role in themanufacturing phase involvesmodelling surfaces and cor-

recting their errors, improving processing quality and reducing pro-

duction costs in an efficient, dynamic, and intelligent manner that is

not possible with the traditional methods, [4].

In this context, metrology can be viewed as a key discipline in en-

abling the quality control of the industrial production. It implements

the process control of the components or of the manufacturing pro-

cess itself, and allows the correct definition of the required function-

alities through metrological characterizations. The interest in sur-

face areal characterization increased with the improvement of the

optical microscopes, being more suitable for relatively fast acqui-

sitions without damaging the soft surfaces of the specimens under

examination. The improvement of different measurement technolo-

gies also corresponded to a similar advance in the development of
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different types of commercial software for image processing, with a

multitude of directions for surface inspection.

Science and technology have made surface analysis increasingly

relevant; in fact, image processing has played a significant role in

metrology because it is able to transform observed measurements

into desired attributes of the object being studied. Furthermore,

large data sets have been an advantage in the analysis and char-

acterization of surfaces since they provide a broad view of all their

features (e.g. defects detection, evaluation of free-form structures

and topographies, evaluation of measurement uncertainty, etc.).

The creation of a digital twin model can be an effective way of deal-

ing with large data sets and simplifying calculations; in fact, as pre-

viously described, it can gather and replicate measurements for a

more accurate representation.

The transition from pixel-imaging to digital twin requires a large amount

of computing power and memory; for this reason, high-performance

computing (HPC) is necessary and beneficial to fully exploit big data.

In this view, the main purpose of this project was to develop a soft-

ware architecture for connecting the uncertainty evaluation and the

digital twin generation with the aid of HPC in order to speed up the

computation.

Therefore, the motivations behind the project lead the following re-

search questions:

• What are pros and cons of the commercial software in the anal-

ysis of measured micrographs?

• When analyzing complex surfaces, what are the limitations af-

fecting the computation of parameters andmeasurement uncer-

tainty?
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• Is it possible to reduce the computational demand? What are

the advantages of generating surfaces’ digital twin based on

measured data?

1.1.1 Structure of the thesis

This project is divided into two main parts.

The first one examines the new critical cases linked to newmanufac-

turing technique to understand what is required to develop them and

to achieve good results. Specifically, chapter 2 deals with general

information about surface metrology tasks in the project. In the sec-

ond part the developed software is introduced, taking into account all

the problems related to the traditional as well as the new technolo-

gies and methods. The flowchart in figure 1.1 displays its structure.

Namely, the chapter 3 introduces the usage of clusters, HPC and

Thinlinc platform, and a new approach to time and storage issues.

Useful array structures are also examined. Chapter 4 describes the

commercial softwares Spip and MountainsLab, and introduce the

samples analyzed in the thesis. Chapter 5 focuses on the digital twin

approach, the use of the software Comsol for a model the genera-

tion and the required configuration among COMSOLMultiphysiscs®,

Matlab® and HPC. Chapter 6 provide a comparison between outputs

obtained from the different types of software, and the use of a digital

twin model as possible kernel model. Finally, the conclusions are

drawn in chapter 7, where a brief outlook is also given.
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Figure 1.1: Structure of the thesis.
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2 Surface metrology

2.1 Characterization of surface topography

Metrology is the science of measurement, implementing both exper-

imental and theoretical determinations at any level of measurement

uncertainty in any field of science and technology.

The application of metrology to surface analysis can improve many

functions of mechanical components and manufactured items, in-

cluding wear reduction, increasing component life, and optimizing

efficiency. All of these functions can be achieved by designing, en-

gineering and controlling specific surface textures.

2.1.1 Plane correction

In most cases, surface texture specifications are defined on flat sur-

faces, regardless of their possible geometric form. Therefore, the

measuredmicrographs require preparatory procedures (pre-processing)

for the alignment of the software reference system (plane correction)

and, when required, for the extraction of the underline component’s

shape (form removal).

Both plane correction and form removal are usually based on the

least-squares fit (LS) of the micrographs’ height values (data points).

LS provides a relationship among the data points, which is a refer-

ence surface to be subtracted from the original micrographs. The

reference surface is a plane in the case of plane correction. When

the reference plane is subtracted from a micrograph, the data points

are centered with respect to this plane (center plane), and the rough-

ness parameters can be correctly evaluated (see fig. 2.1). The same

happens in the form removal, except that a generic reference sur-

face is instead used (e.g. portion of a sphere, lateral surface of a

cylinder, etc.).

Big data management in surface topography analysis 7



Figure 2.1: Simplified representation of the Least square method.

2.1.2 Uncertainty evaluation

The measurement uncertainty can be interpreted as the ’goodness’

of a measurement result. It is defined in the Guide to the Expres-

sion of Uncertainty in Measurement (GUM), and in the International

Vocabulary of Basic and General Terms in Metrology (VIM), as a

”parameter, associated with the result of a measurement, that char-

acterizes the dispersion of the values that could reasonably be at-

tributed to the measurand” [5]-[6].

Quantifying the uncertainty is a difficult process. Both the intrinsic

variability and an incomplete knowledge about a physical system are

source of uncertainty. For this reason it is fundamental to take the

measurement process into account, identify all possible errors, and

quantify their impact.

So far, several A and/or B type methods for estimating the uncer-

tainty have been developed such as the frequentist approach [5], the

PUMA method in manufacturing [7], etc. In this project the uncer-

tainty determination was not the main focus, therefore, it was eval-

uated as the combined standard uncertainty in eq. 2.1 multiplied by

a coverage factor as shown in eq. 2.2.

uc(y) =

√√√√ n∑
i=1

(
∂f

∂xi

)2

u2(xi) (2.1)
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U = k ∗ uc(y) (2.2)

The coverage factor k usually ranges between 2 and 3, correspond-

ing to a particular level of confidence p, such as approximately from

95 % to 99 %. Thus, the result is then expressed by the eq. 2.3.

Y = y ± U (2.3)

Since the project focused on the software architecture, as already

explained, the traceability was not addressed despite it is a funda-

mental property of the measurement uncertainty. The traceability

can be achieved by measurements of material measures as ex-

plained in [2], or by calibrating the metrological characteristics of

the optical instrument used [8]. The corresponding contributors are

then to be combined with the other contributors of the uncertainty

budget according to the formula 2.1.

2.1.3 The roughness parameters

Characterizing a surface topography entails the determination of pa-

rameters that can describe in a synthetic way the microgeometry

of a measured surface. Measurement parameters such as ampli-

tude and spacing contain information about the surface topogra-

phy. Whenmeasuring surface parameters and comparing themwith

specifications, there are some factors that must be taken into con-

sideration:

• Parameters may vary depending on the workpiece location and

on the direction of the measurement.

• The traceability and uncertainty of the measured coordinates

as well as uncertainties associated with the probe size, filtering,

sampling, reference line or surface, etc. must be considered.

Big data management in surface topography analysis 9



Furthermore, in the analysis, the effect due to the digitization should

also be taken into account because the digitizing step cannot be

infinitesimally short. For this reason, the pixel size should be suffi-

ciently small to provide meaningful results.

Two methods are available for this evaluation: the profile method,

which is based on a line (the profile) defined on a surface, and the

areal method, which is based on a portion of area on the surface.

Many parameters of the areal method are derived from the profile

method, thus there are some similarities (see fig. 2.2).

Profile roughness parameters are usually calculated on the profile

Figure 2.2: Qualitative comparison of the difference in information between the areal and

the profile method.

perpendicular to the main surface texture direction, and they can be

classified into four classes: amplitude, spacing, hybrid, and curves.

Profile parameters are listed and categorized in the series ISO 21920

[9]–[10]. For example, P-parameters (e.g. Pa, Psk, etc.) are calcu-

lated from primary profiles, R-parameters (e.g. Ra, Rsk, etc.) from

roughness profiles, and W-parameters (e.g. Wa, Wsk, etc.) from

waviness profiles.

Profiles alone have less significance, i.e. robustness and pertinence,

than an areal evaluation from the surface functionality point of view,

10 Big data management in surface topography analysis



which better describe the ”real surface”. A brief review on differ-

ences between the two type of parameters is in fig. 2.3.

The areal parameters are defined in the ISO 25178-2 [11] accord-

Figure 2.3: Summary of profile and areal parameters.

ing to a reference area selected by the application of specific spatial

filters (scale-limited surface). In addition, the surface is positioned

on the center plane (see section 2.1), which provides the basis for

calculating deviations of the height distribution and other parame-

ters. More details are in the ISO 25178-3 [12].

The arithmetical mean height, or Ra, is the the mean of the absolute

of the ordinate values of the scale-limited surface. It is evaluated

according to the eq. 2.4.

Sa =
1

l

∫∫
Ā

|z(x, y)| dxdy (2.4)
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The most common parameters are the root mean square height and

the root mean square gradient. The root mean square height, or Sq,

is the square root of the mean square of the ordinate values of the

scale-limited surface, and it is equivalent to the standard deviation

of height values. It is evaluated according to the eq. 2.5.

Sq =
√
(
1

A
)

∫∫
Ā

z2(x, y)dxdy (2.5)

The root mean square gradient, or Sdq, is the square root of the

mean square of the surface gradient of the scale-limited surface.

Sdq is evaluated according to the eq. 2.6.

Sdq =
√
(
1

A
)

∫∫
Ā

[(
δz(x, y)

δx

)2

+

(
δz(x, y)

δy

)2
]
dxdy (2.6)

Since the acquired micrographs are discrete sets of height values,

all the integrals are practically evaluated as summations.

In general, areal parameters are commonly evaluated due to the

wide range of applications. For example, in quality control, the pa-

rameters allow determining if the product meets the designer’s spec-

ification and to distinguish surfaces compliance with their function-

ality. In particular, they can also be used as a method to verify that

the manufacturing process has yielded the specifies texture, since

the roughness affects functions. Accordingly, they can be used in

research and development in order to optimize the design and pro-

duction of products according to the engineers’ needs.

2.1.4 Spikes, voids and outliers

The surface topography parameters are calculated using the refer-

ence plane, which is established with errors and imperfections from

the manufacturing process. Surface topography analysis errors can

usually be divided into measurement errors, object measurement

errors, and method errors, which may result in outliers and data

dropouts. Furthermore, noise, as well as disturbances in general,
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affect the instrument and contribute to the measurement uncertainty

[13].

Moreover, the interactions between the instrument’s light and the

sample can lead to the following problems in the micrographs: the

voids (or non-measured points) represent the absence of height val-

ues for the measured pixels; the spikes represent anomalous height

values that are very different from the neighboring pixels. Both coun-

teract the evaluation of micrographs, and need to be identified and

corrected to guarantee reliable results [14]-[15]. To accomplish this,

several techniques can be implemented: thresholding, filtering and,

according to a recent study [16], Gaussian process regression mod-

eling (GPR).

The thresholding and filtering methods are not considered in this

project since they are not suitable together with the frequentistic ap-

proach [2]. The GPR method, on the other hand, predicts the model

response by choosing an optimal kernel based on the surface to be

modeled. Consequently, the normal probability plot (NPP) identifies

and highlights the spikes, and such information on the acquisition is

compared with the GPR model to correct them. Similarly, the cor-

rection of voids was also examined by comparing it with a smoothing

spline algorithm.

2.1.5 Covariance and correlation factor

Covariance shows the difference between two variables, whereas

correlation shows how two variables relate and how strong is the

bond between them.

As shown in [2], it is suggested by the covariance that the correlation

between one pixel and its neighbors fades after a certain character-

istic length which mainly depends on the nature of the sensor.

According to this, the frequentist approach can only be applied un-

der specific conditions such as when the correlation is overcome by

calculating the average height values, and when the interaction be-
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tween influence factors is eliminated.

2.2 Instruments

The measurements for this study were acquired by a laser scanning

confocal microscope (Olympus LEXT 4100 (LSC)—figure 2.4).

Using dedicated lenses, it enables both 3D scanner and laser mea-

surement of samples at the same time.

Figure 2.4: Olympus LEXT laser scanning confocal microscope (LSC).

2.2.1 Steps

The LSC requires a warm-up time of about an hour for performing

stablemeasurements. This precaution was always respected before

the use, and also ensuring the absence of external vibration or other

sources of noise which could affect the measurement. Moreover,

exploiting the stage controls, a reference system on the component

under measurements was always defined before starting the mea-

surements. In this way the software controlled automatically several

defined acquisition areas. This feature was essential for the identi-
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fication and evaluation of several repeated measurements with the

”repositioning technique”, i.e. performing a random movement of

the stage in between two acquisitions to minimize their degree of

correlation.

Other available measurement parameters are: (fig. 2.5):

• The magnification: 5×, 10×, 20×, 50× and 100×.

• The brightness: to control light exposure.

• The number of pixels used: up to 4096.

• The vertical range to include the total height variation of the com-

ponent under measurement.

Figure 2.5: Screenshot of LSC user interface.

2.2.2 Parameters evaluation

The captured micrographs were post-processed and displayed with

different color palettes. This characteristic helped to understand the

components’ shape and geometry for an accurate analysis of the

target object.

Big data management in surface topography analysis 15



After the acquisition, the measurements of surface roughness, ab-

solute and relative height, and other features were obtained by a

commercial software (see chapter 4), which also provided the three-

dimensional views of the surfaces and enlarged images of the micro-

or nanoscale features shown in this thesis.

2.2.3 Advantages and disadvantages

Stylus instruments cannot measure narrow pits that smaller than the

stylus tip radius. Moreover, the measured ”mechanical surface” [17]

is affected by the interaction of the tip with the surface topography,

requiring additional processing step to possibly remove the tip ef-

fect, thus increasing the measurement uncertainty. Conversely, an

optical microscope, especially one using a laser source, can mea-

sure the surface roughness of micro geometries (”electromagnetic

surface [11]”) at a considerably higher resolution due to a minute

laser spot size.

Since a stylus instrument uses a hard needle-shape stylus, it is

Figure 2.6: Difference between white-light microscope and laser microscope.

more likely to scratch the surface of a soft specimen, damaging or

deforming it. In addition, with adhesive specimens, the stylus could

attach to the specimen and be damaged when pulled loose, mak-

ing it impossible to obtain correct results. Laser microscopes, which

are non-contact, can perform accurate and non-destructive surface

roughness measurement regardless of surface texture conditions.

This characteristic is useful for measuring nano-structured polymer
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samples without damaging them.

Figure 2.7: Difference between contact and non-contact instruments.

2.3 Specimens

Several specimens were measured, belonging to the following two

main groups:

• Additive-manufactured areal standards (as defined in the ISO

25178-70 [18]):

– Star-shape grooves (ASG) (5 component).

– Cross grating (ACG) (9 components).

• Surfaces replicated by a silicon-based impression material.

The different configurations and manufacturing methods were ana-

lyzed in order to emphasize and gather information about those sit-

uations where a commercial software is not suitable for an effective

analysis. In fact, in the cases analyzed (i.e. AM and manual replica-

tion), more flexibility would be needed locally on each component,

where imperfections and defects due to the manufacturing process

Big data management in surface topography analysis 17



may affect differently and in different portions. This work is assumed

to be preliminary however necessary for an effective evaluation of

the measurement uncertainty with a dedicated software.

2.3.1 Areal standard

In recent years additive manufacturing (AM) has spread rapidly, and

today it is used across awide range of applications. In fact, it achieves

complex geometries and creates layer by layer high quality compo-

nents. Furthermore, it reduces both wear and machine setup time

and it recycles the unused material to avoid wastes.

Despite the excellent properties, the overall cost decreases from

both time and material point of view making significant savings, and,

therefore, it has a great potential for actual production.

A complete generic process is shown in figure 2.8.

The areal standards have been manufactured by VAT photopoly-

Figure 2.8: Schematic of a generic AM process.

merization [19]-[20] according to specific layout normally adopted

for calibrating the metrological characteristics of surface topography

measuring instruments.

Three out of fifteen features present on each component were mea-

sured to expose possible manufacturing differences. The measure-

ment repeatability was also accounted by fifteen repeated acquisi-
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tions per each feature (see figure 2.9).

Figure 2.9: ASG features on a substrate.

ASG: star-shape grooves

Figure 2.10: Example of ASG layout.

The component in figure 2.10 has a ”star” layout, where a two-dimensional

array pattern is made up of constant-height elements and grooves

oriented to form equal angles among them (see figure 2.10). A for-

mal definition can be found in the ISO 25178-70 [18]. An exam-

ple of additive-manufactured component (AM-ASG) is shown in fig-

ure 2.11.

ACG: cross grating

The component in figure 2.12 has a two-dimensional array pattern

and is made up of equally spaced pillars. A formal definition can be

found in the ISO 25178-70 [18].
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Figure 2.11: Example of measured additive-manufactured ASG feature.

Figure 2.12: Example of ACG layout.

The analyzed additive-manufactured ACG (AM-ACG) were of two

types corresponding to different setting of manufacturing parame-

ters. They are named sequential and full in the following. Example

of additive-manufactured components (AM-ACG) are shown in fig-

ure 2.13 (sequential) and in figure 2.14 (full). Moreover, this type of

material measure can be identified by the following parameters:

• lx: pitch in the X axis

• ly: pitch in the Y axis

• θ: angle between the X and Y axis

• d: height of the pillars or depth of the pits

The settings were chosen as specified in the following:

20 Big data management in surface topography analysis



Figure 2.13: Example of measured additive-manufactured ACG feature (sequential).

Figure 2.14: Example of measured additive-manufactured ACG feature (full).

• magnification:

– AM-ASG: 20× and 50×

– AM-ACG: 20×

• brightness: 40

• number of pixels: 1024 × 1024

• field of view (FoV): 643 µm × 643 µm for 20× lens objective;

258 µm × 258 µm for 50× lens objective.

The AM measured components present several imperfection with

respect to the reference geometry. The comparison between the

measurements and their original layout in the figures 2.10 and 2.12

highlights that the contour is not uniform on the in-plane view, with

several defects along the lateral profiles. This affects the properties

of the component and represents a limiting factor against geometry
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accuracy, roughness and other properties.

2.3.2 Surface replication

Figure 2.15: Qualitative schema of the replication process.

Figure 2.16: Silicon cartridge and gun for impression.

The other group of analyzed specimens were replicas obtained by a

manual replication process. During a replication process, a mas-

ter geometry must be conveyed to a substrate material (see fig-

ure 2.15). Nonetheless, due to the manual replication, unevenness

of different nature can often be present on such surfaces, prevent-

ing a homogeneous analysis. The replication by impression media

has several fields of application, e.g. in forensics and in all the situa-

tions where the component under investigation cannot be measured

directly (pipes internal surfaces, industrial ovens, components on

bridges, etc.) [21]-[22].

In the case considered, the Rubert standard 528x [23] was repli-

cated by casting of the AccuTrans AB silicon-based impression ma-
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terial (figure 2.16) [24]. The Rubert standard 528x has sinusoidal

topography (type C according to ISO 25178-70 [18]) with nominal

Ra of 500 nm and period of 50 µm. Both Rubert standard and an

example of replica are in figure 2.17.

The replicated specimens were also measured by LSC. In fact, due

Figure 2.17: Acquired surfaces: master (left) and replicated surface (right).

to the soft nature of silicon-based replicas, a non-contact method for

measuring was necessary to preserve the topography.

An L-shaped mark on the surfaces was used as local reference sys-

tem (in fig. 2.18), allowing measurements of different replicated

specimens at the same location.

Figure 2.18: L-shaped mark in the reference surface (master).
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Figure 2.19: Example of replicated surface (3D view).

The figure 2.19 shows a 3D representation of the topography of the

replicated surfaces.
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3 Cluster

3.1 High performace computing (HPC)

The analysis of several replicated measurements, each consisting

of million of points, according to the methodology described in chap-

ter 2, and for the purpose of digital twinning, as it will be later dis-

cussed in details in chapter 5, requires massive memory and com-

putational capability. Therefore, to make the computation feasible

and having the results available in a reasonable time frame, high

performance computing (HPC) was required. Thus, it was needed

to change the structure of the matlab code and send it to cluster.

High-performance computing was resorted to analyze the measure-

ments from the microscope.

A computer cluster refers to a collection of interconnected comput-

ers performing as if they were a single system. These computers

are called nodes (or servers) and communicate through a local area

network (LANs).

Typical components of a cluster are the same that can be found on

a common laptop: CPUs (processors or cores), memory (or RAM),

and disk space. The CPUs run the programs and perform calcula-

tions, the memory stores all the information about a current task and

the disk is a computer’s long-term storage for information it will need

in the future.

3.1.1 Structure

Generally, the computing architecture is very complex. In fact, it con-

sists of several types of nodes, each with a specific function such as

disk storagemanagement, user authentication or other infrastructure-

related tasks. Regardless of the cluster sizes, which can greatly
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Figure 3.1: Cluster structure.

vary, clusters share the same basic framework (see figure 3.1). The

main node is known as head node which provides access to com-

puting resources. Normally, there is a relatively small number of

head nodes, just one or two, and a much greater number of com-

puting nodes. The heads nodes handle several functions including

uploading and downloading files, setting up software, compiling the

code, assigning and coordinating intensive tasks and jobs, running

quick tests and checking traffic among all system units.

The computing (or worker) nodes are responsible for all the heavy

duty operation in a cluster. While they may come in many shapes

and sizes, the most important part is that they implement orders and

follow the instructions as one powerful machine that executes them

all simultaneously.

3.1.2 Benefits

In the process of writing a code, various combinations of factors,

such as high volume of traffic, latency and downtime, can cause is-

sues.

A load balancing strategy needs to be deployed to solve these points.

The traffic is distributed among servers, allowing the system to scale
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horizontally and not to overwhelm any singlemachine. Consequently,

by using more than one server, each node can host a different set

of projects resulting in better and more efficient performance of the

carrying work. Moreover, all projects do not have to be run on each

server, but, at the end, the results will be available for the entire clus-

ter system.

Additional benefits of cluster are:

• Higher availability and flexibility: clusters provide fail-over sup-

port since, if one of the servers fails, the others will take on and

pick up the workload and prevent time and data loss.

• Higher performance: as already mentioned, it is possible to

work on more than one node simultaneously, distributing files

and operations and improving the performance.

• Greater scalability: thanks to the cluster’s faster evaluation, the

amount of work can be increasedwithout reducing the efficiency.

• Better data management: massive amount of data can be pro-

cessed more efficiently with cluster.

3.2 ThinLinc

ThinLinc is a cross-platform remote desktop server used to transfer

and upload data on DTU cluster. Using it, users can access their

Linux-based desktops and applications from anywhere with an in-

ternet connection.

3.2.1 Setting and commands

Access to the ThinLinc platform is the first step: each user can log

in with its own credentials as shown in figure 3.2. All files needed for

the calculation can be imported via an online drive or specific pro-

grams, and gathered into a folder.

In a following step, the terminal emulator must be opened from the

application or directly from the folder. Figure 3.3 shows the interac-
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Figure 3.2: ThinLinc login window.

tive session (xterm).

Several operations can be performed on the terminal: choose the

Figure 3.3: Linux prompt: xterm window.

directory, submit and check a job status, stop one or more jobs,

visualize memory usage and run time, view which nodes are in-

volved and their status. The corresponding commands are listed

in table 3.1.

3.2.2 Batch file

The Resource Manager is a software tool that provides efficient uti-

lization of cluster resources. In this way, the user does not have to

execute the code himself, but “asks” the cluster to run it. The Re-
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bsub submit a job

bstat check the job status (queue, job name, pend/run/done/exit

job status, stanting and total time)

bstat

with [-h,v,C,M, etc]
show message, version history, CPU usage, etc..

bkill remove a job from the queue

bacct display a summary of accounting statistic for all

finished job submitted by the user

module list show the list of loaded modules

module avail show the list of all the available modules

module load/unload load/unload a module

nodestat get a list of the resources that can be selected

Table 3.1: ThinLinc commands

source Manager is in charge of parsing the code, setting up servers,

scheduling work at different times, receiving and analyzing the job

script containing the users’ requirements and demands, and assign-

ing cores and resources to achieve the purpose.

Consequently, the user has to provide a job script, also called batch

file, containing all the information required from the cluster for han-

dling the different requests, while monitoring and running a large

number of jobs simultaneously without any interference.

An example of specification of a job script is in figure 3.4, while list-

ing 3.1 and listing 3.2 (at the end of the section) show the specific

batch files for running Matlab code and Comsol-Matlab configura-

tion code.

Resources refer to the number of processors, cores or nodes as-

signed to a job, memory usage and other specific features. The

main constraints are related mostly to the maximum time, but also

to cores and jobs. Constraints are necessary to share the cluster

among different users.
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Figure 3.4: Example of batch file.

3.2.3 Script execution

Once the batch job is ready, it can be executed on the terminal em-

ulator using the command: bsub batch_file_name. Afterwards, it is

also possible checking the status of the job just sent with the com-

mand: bstat.

The display will appear as shown in the figure 3.5.

The execution generates and stores three additional files in the

folder where user’s scripts (see figure 3.6):

• Error file

• Output file
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Figure 3.5: Command for running a script in xterm window.

• General review (which includes output and error)

Figure 3.6: Output files.

Additionally, the use of graphics is not possible, i.e. the desktop

GUI, plots, etc. on cluster evaluation. However, these files can be

saved, as well as other outputs (structures, variables, etc..) by in-

cluding specific commands in the main script.
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3.3 Parallel computing and Arrays

MATLAB provides useful tools for parallel processing from the Par-

allel Computing Toolbox. To optimize and speed up the work proper

data structure was required. In fact, by making use of parfor-loops

and spmd statement, and tall, distributed or codistributed arrays,

loop interactions can occur simultaneously on both personal com-

puters as well as on cluster.

The usage of these structures is shown in chapter 4. It requires

first to open the ”parallel pool” on matlab or on the cluster. In other

words, the client needs to open the communication line to get data

to the matlab workers (see figure 3.7).

Figure 3.7: Matlab parallel pool.

The parallel pool can be shut down once the computation is com-

pleted.

32 Big data management in surface topography analysis



3.3.1 Parfor-loop

Parfor-loop consists of a series of statements run over a range of

values and it can be useful when there is a slow for-loop.

Since each execution of a parfor-loop is an independent iteration

(see figure 3.8), there is no guarantee that they will be synchronized

with each other. Therefore, they elaborate at the same time certain

amount of jobs, and merge all the results at the end.

Figure 3.8: Schematic of a parfor-loop execution.

3.3.2 Tall arrays

Tall arrays are used to elaborate large data sets with one dimension

much greater than the others allocated in a datastore, as shown in

figure 3.9. Instead of loading all of the data into memory at once,

these arrays let you work with big sets of data in smaller blocks that

fit in memory. Moreover, the number of passes through the data is

minimized during calculations, allowing them to be processed with

common functions.

Essentially, it is the same procedure described previously; several

operations and functions work similarly, but the results are only eval-

uated when they are explicitly requested using the “gather” function.

The produced code did not utilize tall arrays because the data to

Big data management in surface topography analysis 33



be analyzed were micrograhs with a 1024 × 1024 number of pixels,

which were not ideal for the type of structure that tall arrays require.

Figure 3.9: Tall array structure.

3.3.3 Distirbuted and codistributed arrays

Several ways are available in Matlab for analysing a N × N matrix

(same dimension in both sides). As developed in the thesis Matlab

code, one can use distributed and codistributed arrays, figure 3.10.

The main difference between distributed and codistributed array is

that the former is distributed among workers in the parallel pool,

whereas the latter is distributed among the workers where the code

is executed. Codistributed can also be modified and manipulated

by the same main code. Moreover, it is possible to switch from one

type to the other through using the spmd (single program multiple

data) statement. In fact, a distributed array created on a client can

be accessed in spmd as a codistributed, and vice versa.

In the produced code, it is possible to see how the structure was cre-

ated and converted into distributed variables. Afterwards, according

to the needs, one could access them as codistributed with spmd.

Table 3.12 and in table 3.13 provide a general guide from Matlab
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documentation [25] to choose the arrays structure properly.

Figure 3.10: Distributed array

Figure 3.11: Codistributed array structure.

Figure 3.12: Guidelines for choosing arrays - 1° table.
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Figure 3.13: Guidelines for choosing arrays - 2° table.

1 #!/bin/sh

2 #BSUB -J ctJOB1

3 #BSUB -q hpc

4 #BSUB -W 24:00

5 #BSUB -n 4

6 ### -- reserve N cores on each machine, up to the total number of cores

requested with the-n flag --

7 #BSUB -R "span[hosts=1]"

8 #BSUB -R "rusage[mem=2GB]"

9 #BSUB -u s216984@student.dtu.dk

10 #BSUB -B

11 #BSUB -N

12 #BSUB -o _output%J.out

13 #BSUB -e _error_%J.err

14

15 module load matlab/R2021b

16

17 matlab -nodisplay -batch UI_codistr_new -logfile _UI_codistr_out

Listing 3.1: Batch file for running Matlab code.
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1 #!/bin/sh

2 #BSUB -J comsolmatlab

3 #BSUB -q hpc

4 #BSUB -W 05:00

5 #BSUB -n 4

6 ### -- reserve N cores on each machine, up to the total number of cores

requested with the-n flag --

7 #BSUB -R "span[hosts=1]"

8 #BSUB -R "rusage[mem=2GB]"

9 #BSUB -u s216984@student.dtu.dk

10 #BSUB -B

11 #BSUB -N

12 #BSUB -o _outputcomsol%J.out

13 #BSUB -e _errorcomsol_%J.err

14

15 module load comsol

16 unset JAVA_TOOL_OPTIONS

17

18 comsol mphserver matlab

19

20 CSCMD=random_surf

21 MLSCR=random_surf_matlab

22

23

24

25

26 ############################################

27 ### Don't monkey with the stuff below!!! ###

28 ...

Listing 3.2: Batch file running a Comsol model.
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4 Software

Three different types of software were used to analyze the micro-

graphs obtained by the LSC:

• Spip

• MountainLabs

• Matlab

In all cases, the micrographs were used as input and, after applying

the plane correction, it was possible to perform statistical analysis,

estimate the level of uncertainty, and provide graphical representa-

tions of the samples.

As anticipated, the number of repeated measurements and the sub-

sequent memory requirements necessitated the use of clusters to

process the data. Thus, some of the original Matlab code structure

and parameters had to be adapted and modified to work in parallel.

Moreover for optimum results, the three types of software provided

different plane correction settings.

(a) (b) (c)

Figure 4.1: Three types of software used in the project. a) SPIP [26]; b) MountainsLab

[27]; c) Matlab [28].
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4.1 Spip

Scanning probe image processor, also called SPIP, is a user inter-

face useful to process and analyze images at nano- and microscale.

It reads the measured micrographs, extracting data in different for-

mats, and includes several toolkit for plane correction and for report-

ing the analysis of results.

4.1.1 Steps

According to the previous section, the measured data were imported

and opened in Spip as input files and a 3D visualization of each ac-

quisition was built (see figure 4.2). The graphs provided a general

overview of the sample’s shape and characteristics, and were help-

ful in determining the type of plane correction to apply.

Spip allows applying both automatic and manual plane correction.

The manual one are managed by the user, instead automatic one is

divided into four further methods, shown in fig. 4.3 and in fig. 4.4.

They are:

• global leveling

• global bow removal

• linewise leveling

• linewise bow removal

They represent a quick access to 1st order plane correctionmethods.

It is possible to observe from the figures (4.3, 4.4, 4.6 and 4.7) that

sometimes the automatic plane correction does not work properly.

So, it is necessary to apply the manual leveling.

In that case, the cross section tool defines two main profiles on the

sample. Once entering in the plane correction set up and setting the

mean value of the height equal to zero, the plane can be twisted and
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Figure 4.2: 3D visualization in Spip of raw replicated surface measurement.

(a) (b)

Figure 4.3: Global plane correction of raw replicated surface measurement: a) Levelling;

b) Bow removal.

(a) (b)

Figure 4.4: Linewise plane correction of raw replicated surface measurement: a) Level-

ling; b) Bow removal.

the profile is adjusts until satisfied results are achieved.

In figure 4.8, it was possible to notice that the surface of the sample

appeared inclined from both axes views, so it was turned to the left-

/right or up/down to look flat from both sides as in fig. 4.9.

Once leveling has been performed, the surface topography pa-

rameters evaluation has been carried out, another 3D graph of the
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Figure 4.5: 3D visualization of ASG raw measurement in Spip.

(a) (b)

Figure 4.6: Global plane correction of ASG raw measurement: a) Levelling b) Bow re-

moval.

(a) (b)

Figure 4.7: Linewise plane correction of ASG raw measurement: a) Levelling b) Bow

removal.

modified surfaces after the plane correction was generated, and, at

last, the corrected surfaces were saved in new files to be used or

modified in the future.
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(a) (b)

Figure 4.8: Profiles on the measurement surface before plane correction: a) x axis b) y

axis.

(a) (b)

Figure 4.9: Profiles on the measurement surface after plane correction: a) x axis b) y axis.

4.2 MountainsLab

Figure 4.10: Main window of MountainsLab software.
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Data and parameters of the specimens were collected, analyzed

and extracted also from MountainsLab, another commercial soft-

ware that can perform advanced processing and evaluation. This

software is able to performed 2D and 3D model generation from

imaging data, measure any structure, execute particle analysis and

manipulate datasets with several layers. Moreover, each informa-

tion is gathered on a series of pages and it is possible to review the

steps done thanks to the workflow window.

4.2.1 Steps

As with Spip, the acquisitions were opened within the software and

visualized in the 3D view, fig 4.11.

A variety of plane correction options are available in the software

Figure 4.11: 3D visualization of raw measurement in MountainsLab.

(see figure 4.12):

• Polynomial of n-th degree evaluated by least square method:

the polynomial function is automatically created by the software

and it is possible to choose from the first to the thirteenth degree.

• Sphere or cylinder evaluated by least square method.
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Figure 4.12: Plane correction set up in MountainsLab.

• Application of the following by fitting the models on user defined

of automatically identified, i.e. by structure exclusion, portion of

the surface.

In the considered cases, simple plane leveling was applied to the

samples. By the comparison of the results obtained by the different

methods, this choice is the most suitable.

After the plane correction, a 3D visualization was provide and it was

also possible to perform the parameters evaluation of surface with

dedicated tools. To conclude, the new files were saved.

4.3 Matlab

In addition to commercial software used to perform post-processing

and parameter evaluation, a Matlab code created for a previous

MSc project was used [29]. In particular, the code was optimized

for cluster computing and augmented in its characterization capa-

Big data management in surface topography analysis 45



bilities. Thanks to the upgrades, this software package was able to

control acquisitions of big dimension samples (1024×1024 pixels)

and offered more extensive post-acquisition image processing, in-

cluding 3-D rendering. In order to handle these type of samples,

changing the whole structure was necessary.

4.3.1 Code

In the first part of the code, it was possible to choose or not the plane

correction, handle spikes and voids, and print the output images.

The acquisition of the files (see listing 6.4) involved four different

formats: .lext, .daxt, .asc, .txt, (adopted by some microscope manu-

facturers), and the code worked also with ASCII files. The data were

imported and stored as distributed arrays in a dedicated structure.

Once all data have been gathered and are ready to be elaborated,

the next step is the detection and the management of spikes and

voids (see listing 4.2). This is achieved by a Gaussian process re-

gression performed by a subroutine, i.e. the ”gpr function”. It seeks

an ideal surface fitting with the samples, also known Kernel, which

has to be compared to the acquired original surfaces. Once the ker-

nel is estimated, the residuals of the model are studied, and each

residual point is considered as an extreme value, i.e. an outlier, can

be regarded as a spike, hence, detected and managed accordingly.

Subsequently, the plane correction is performed, script in listing 4.3.

Based on the least square method, a surface fitting is created and

processed and the resulting model is subtracted from the original

surface. At current state, the code implements two types of poly-

nomial plane correction distinguished only by the way in which they

are constructed:

• surface leveling: the form is modeled as a polynomial surface

with first degree both in x and y axis, i.e. a plane; based on the

library model poly11.
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1 %% Input

2 data=struct('XIn',[],'YIn',[],'ZIn',[],'Zpc',[],'Zv',[],'Z_thr',[],'Z_gpr

',[],'Z',[],'parameters ',[],'Ix',[],'Iy',[],'time',[],'C',[],'Cf',[]); %

Xin,Yin,Zin: initial coordinates (before any correcion)

3 load('saveVar.mat'); %simplify names and directory 's files

4

5 for q=1:lCount

6 [data.XIn,data.YIn,data.ZIn(:,:,q),...

7 data.Zv(:,:,q),data.parameters ,...

8 data.Ix,data.Iy,data.time(q,1)] = lext_import(strcat('L',num2str(

lCount),'.lext')); %define parameters

9 data.Zv=logical(data.Zv);

10 end

11 for q=lCount+1:lCount+dCount

12 i=1;

13 [data.XIn,data.YIn,data.ZIn(:,:,q),...

14 data.Zv(:,:,q),data.parameters ,...

15 data.Ix,data.Iy,data.time(dCount ,1)] = datx_import(strcat('D',num2str(

i),'.datx')); %define parameters

16 data.Zv=logical(data.Zv);

17 i=i+1;

18 end

19 for q=lCount+dCount+1:lCount+dCount+aCount

20 i=1;

21 [data.XIn,data.YIn,data.ZIn(:,:,q),...

22 data.Zv(:,:,q),data.parameters ,...

23 data.Ix,data.Iy,data.time(dCount ,1)] = asc_import(strcat('A',num2str(i

),'.asc'));

24 i=i+1;

25 end

26 for q=lCount+dCount+aCount+1:lCount+dCount+aCount+tCount

27 i=1;

28 [data.XIn,data.YIn,data.ZIn(:,:,q),...

29 data.Zv(:,:,q),data.parameters ,...

30 data.Ix,data.Iy] = txt_import(strcat('T',num2str(i),'.txt'));

31 data.Zv=logical(data.Zv);

32 i=i+1;

33 end

34 %data.Zv=logical(dt.asc.Zv);

35 data.XIn=distributed(data.XIn);

36 data.YIn=distributed(data.YIn);

37 data.ZIn=distributed(data.ZIn);

38 data.Zv=distributed(data.Zv);

39 clear i

40 fprintf('Acquisition OK \n');

Listing 4.1: Matlab code for the acquisition of files.
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1 % GPR method

2 [data,Sa,Sq,fit_grp] = dist_gpr(data,tot,m);

3 fprintf('dist_gpr OK \n');

4 %

5 fit_grp=fitrgp(SPos,Sresp,'BasisFunction ','constant ','

OptimizeHyperparameters ',{'KernelFunction ','KernelScale ','Sigma '},...

6 'HyperparameterOptimizationOptions ',struct('UseParallel ',1));%,'

ActiveSet ',(ones(size(Sresp),'logical ')));

Listing 4.2: Matlab code for spike and voids correction.

• surface curvature removal: the form is modeled as a polynomial

surface with second degree both in x and y axis; based on the

library model poly22.

Once the form correction has been applied, the acquisitions should

consistently appear uniform andwithout systematic form errors. There-

fore, the surface parameters and statistical indexes can be eval-

uated with the previous formulas, as shown in 4.4. Furthermore,

uncertainty (script 4.5) and covariance and correlation factor (script

6.9) evaluation are computed. This is an additional feature that only

the Matlab code is able to provide compared to the other commer-

cial software.

As a last step, the 3D representation of samples will be created for

each micrograph using almost the same function (4.7), with the only

difference being the input variable.

4.3.2 Memory management

In accordance with expectations, due to the large amount of time

and memory required, the entire code had to be uploaded and run

on a cluster with appropriate architecture. In fact, the whole code

presents references to the parallel computation, such as parfor, dis-

tributed or codistributed, parpool, etc.

When converting data in distributed arrays, a different type of struc-

ture was required in order to run certain functions, such as ”pre-

pareSurfaceData” and ”fit”; to execute these functions, the com-
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1 %% Plane Correction

2 [data] = planecorrection_menu(tot,data,indx_pc,tf_pc); %choose the type and

apply the correction

3

4 % cases

5 ...

6 switch indx

7 case 1

8 [XOut,YOut,ZOut]=prepareSurfaceData(XIn,YIn,ZIn); %transforms

data for surface fitting with the fit function

9 sf=fit([XOut,YOut],ZOut,'poly11 '); %create a

surface model

10 Zsf=sf(XIn,YIn);

11 Zpc=ZIn-Zsf; %difference

between the surfaces

12 ...

13 case 2

14 [XOut,YOut,ZOut]=prepareSurfaceData(XIn,YIn,ZIn);

15 sf=fit([XOut,YOut],ZOut,'poly22 ');

16 Zsf=sf(XIn,YIn);

17 Zpc=ZIn-Zsf;

18 ...

19 ...

20

21 fprintf('Plane correction OK \n');

Listing 4.3: Matlab code for plane correction.
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1 %% Statistical Indexes and Surface Parameters

2 %mean, median, variance , standard deviation

3 %Sq and Sa

4 statIndx=struct('M',[],'Me',[],'V',[],'S',[]);

5 % Statistical Indexes for files .asc

6 [statIndx.M,statIndx.Me,statIndx.V,statIndx.S] = stat_indx(data.Zpc);

7 fprintf('Statistical indexes OK \n');

8

9 % statistical indexes

10 M = mean(Zpc,3);

11 Me = median(Zpc,3);

12 V = var(Zpc,0,3);

13 S = sqrt(V);

14 % surface parameters

15 coord=[X Y Z(:,q)];

16 A=max(coord(:,1))*max(coord(:,2));

17 px=abs((max(coord(:,1))-min(coord(:,1))))/m;

18 py=abs((max(coord(:,2)))-min(coord(:,2)))/m;

19 Sq_pc(q)=(sqrt(sum((coord(:,3).^2).*(px*py),'omitnan ')/A))*10^3; %nm

20 Sa_pc(q)=(sum(abs(coord(:,3)).*(px*py),'omitnan ')/A)*10^3; %nm

Listing 4.4: Matlab code for statistical indexed and surface parameters evaluation.

1 %% Uncertainty evaluation

2 uncertainty=struct('q',[],'U',[]);

3 % Uncertainty evaluation for files .asc

4 [uncertainty.q,uncertainty.U] = uncertainty_evaluation(data.Zpc);

5

6 % Expected value

7 q = mean(Z,3);

8

9 % Experimental standard deviation of the mean

10 s_q = std(Z,0,3)/sqrt(numbObs);

11

12 % Expanded uncertainty

13 k = 2; % Confidence level

14 U = k*s_q;

15

16 fprintf('Uncertainty evaluation OK \n');

Listing 4.5: Matlab code for uncertainty evaluation.

1 %% Covariance and Correlation factor

2 data.C(:,:,q)=cov(Zpc(:,:,q));

3 data.Cf(:,:,q)=corrcoef(Zpc(:,:,q));

Listing 4.6: Matlab code for covariance and correlation factor estimation.
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1 %% 3D Visualization

2 v = '3D visualization of the imported surface ';

3 ind=1; %original data

4 file_visualization(tot,data,v,ind);

5 clear v

6 ...

7 ind=2 %plane correction

8 ind=3 %spikes and voids

9 ind=4 %covariance

10 ind=5 %correlation factor

11 ...

12 U_visualization(uncertainty); %uncertainty

Listing 4.7: Matlab code for 3D visualization of raw measurements.

1 %% Plane correction

2 ...

3 XIn=gather(XIn);

4 YIn=gather(YIn);

5 ZIn=gather(ZIn);

6 m=length(XIn);

7 [XOut,YOut,ZOut]=prepareSurfaceData(XIn,YIn,ZIn);

8 sf=fit([XOut,YOut],ZOut,'poly11 ');

Listing 4.8: Function ”gather”.

mand ”gather” was used to turn the arrays into double and to allow

the code to work properly, script 4.8.

To speed up the computation, the commands ”parfor” or ”spmd”

were used, script in listing 4.9; both allowed to reduce the work-

ing time, as it is possible to see in listing 6. However, the first one

allocated the work evenly across all the workers, while spmd en-

abled access to the distributed (or double) arrays as codistributed,

and allocated work unevenly.
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1 %% Extraction of image parameters from the file

2 ...

3 spmd

4 codist=codistributor1d(2,codistributor1d.unsetPartition ,[parameters(2)

,parameters(3)]);

5 Z=zeros(parameters(2),parameters(3),numlabs,codist);

6 Z=Z+array(1:1:parameters(3) ,1:1:parameters(2)).*scala;

% Definition of the matrix

with all the measurement data.

7 Zin=getLocalPart(Z);

8 end

9 ...

10 Zin=[Zin{:}];

11 ZIn=Zin(:,:,1);

12 ...

13 data.ZIn=distributed(data.ZIn);

Listing 4.9: Example of codistributed structure and spmd command.
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5 Digital Twin

The concept of digital twin was introduced the first time in 2002 by

Michael Grieves at the University of Michigan. Since then, the con-

cept has evolved and today is much more widespread.

Digital twin is a digital representation, or abstraction, of real physical

objects, processes or systems. A computer program uses real-world

data as input to generate predictions or simulations about how ob-

jects will behave and be affected before they are actually produced

and deployed.

Until some years ago, the process of building a digital twin has been

difficult because most of the steps are non-linear. However, ma-

chine learning, big data, and artificial intelligence have made it more

achievable, even if still elaborate. This is explained in details in fig-

ure 5.1.

In comparison to the traditional simulation, in fact, the digital twin is

based on real equipment; it is constantly in contact with real-world,

in real-time connection, providing stablemeasurement conditions for

a more accurate representation and trying to replicate uniform sur-

face characteristics. A conventional simulation, instead, tends to be

a static representation of a system or one of its part; it is modeled

using CAD software and it cannot meet the requirements of real-time

because it only represents real objects, without a direct connection

and update to the real world.

In short, the benefit of creating a digital twin model is that it can facili-

tate analysis, enhance strategic technology trends, prevent failures,

reduce the cost of system verification, perform tests on processes

and plan future updates or new developments.
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Figure 5.1: Overall scheme of digital twin.

5.1 Digital twin generation

The creation of a digital twin requires several considerations. As

previously stated, this model requires bidirectional exchange of data

from the real world to the digital software and vice versa, which is not

always easy. In fact, everything has to be replicated in the software,

so it is necessary to transfer those data over the cloud, where they

can be more easily stored, accessed and manipulated by several

users for the purposes of managing information and running simu-

lations.

The process to create a digital twin can be broken down into several

stages, figure 5.1.

To begin with, selecting the right technology and device is crucial

to successfully managing the flow of information; they must be able

to authenticate, provision, configure, monitor, and manage each de-

vice and information. At the same time, it is important to understand

the type of data required, where it is stored, if it is correctly struc-

tured and how it can be accessed and used quickly.

The function of a digital twin must also be determined, because the

final aim, such as controlling, analyzing, or simulating, affects the

previous decisions, as well as the preparation of the data and man-

agement requirements [30].
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As soon as the acquisition mode and the types of data have been

established, it is possible to move forward with the implementation of

the digital twin. In this phase more sophisticated capabilities, func-

tionality and boundary conditions are added so that high-quality re-

sults can be achieved.

Now that the model is constructed and optimized, it is time to run the

simulation and compare the solutions until a satisfactory digital twin

is created.

5.2 Digital Twin for Surface topography

According to the previous studies, a further goal of this project was

to develop a digital twin model of the measured surfaces, which

represents and predicts the characteristics and parameters of the

samples, in order to estimate their measurement uncertainty and

achieve the other objectives described above. Comsol software and

Comsol-Matlab interface were used for the model creation and for

the connection with the developed code.

Comsol Multiphysics is a platform for modelling and simulating sci-

entific and engineering problems using advanced numerical meth-

ods. It offers an interactive environment with a broad range of tools

that can be used to create models and simulate application in elec-

trical, mechanical, fluid flow, and chemical field (see figure 5.2).

5.2.1 Model

It is possible to create randomized geometric surfaces with detailed

control of the spatial frequency components that affect the surface’s

roughness. Technological surfaces show self-affinity because they

seem smooth at large observation scales and rougher at lower ob-

servation scales. In particular, roughness can be interpreted as a

geometrical irregularity that can be modelled by both fractals or har-
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Figure 5.2: Windows of Comsol Multiphysics.

monic functions [31]. Changing the parameters related to the gen-

eration scale, different degree of approximation can be obtained.

A few parameters must be defined before the model can be deter-

mined.

Firstly, the spatial frequency (eq. 5.1) replaced the frequency over

time and corresponds to the oscillation frequency through space; it

is usually expressed by wave numbers (eq. 5.2) and it is related to

wavelengths (eq. 5.3).

cos(2πft) → cos(2πvx) (5.1)

k = 2πv (5.2)

λ =
1

v
(5.3)

There are a number of elementary waves that form the surface, each

represented by the eq. 5.4 where φ is the phase angle; in random

surfaces, such as this one, latter oscillates between 0 and π to reach
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the maximum and the minimum peak of the wave.

cos(kx+ φ) (5.4)

Furthermore, the amplitude for each elementary wave is represented

by A in the eq. 5.5; this is typically a uniform or Gaussian distribution,

usually the simplest choice, and it is connected to the spectral expo-

nent β, eq. 5.6, which indicates how quickly high frequencies decay.

f(x) =
∑

Acos(kx+ φ) (5.5)

A =
1

|m2 + n2|β

m = vx

n = vy

(5.6)

Finally, is necessary to choose the geometry of the model and ap-

ply the parameters; all these information enable the creation of the

random surface as shown is figure 5.3.

Figure 5.3: Random surface exported by Comsol. [32]
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Essentially, the model is built around the function defined by the pre-

vious parameters; changing the parameters will change the struc-

ture of the function and therefore the information related to the sur-

face. This entails that simply adjusting some parameters value of

the model, it can result in different random surfaces generation and

representation.

A practical example is provided in figure 5.4 where surfaces have

generated on the square [0,1] × [0,1] by superimposing 20 frequency

components with amplitude spectral exponents β = 0.5, β = 1.0, and

β = 1.8.

(a) (b)

(c) β=1.8

Figure 5.4: Random surfaces with different β values: a) β=0.5 b) β=1 c) β=1.8.
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5.2.2 Configuration Comsol-Matlab

LiveLink is a tool that integrates Comsol Multiphysics with MATLAB

to extend its modeling with scripting programming in theMatlab envi-

ronment. Through it, it is possible to exploit most of the functionality

of MATLAB and its toolboxes for pre-processing, modeling, as well

as post-processing.

As shown in fig. 5.5, the Comsol server communicates with both

Figure 5.5: LiveLink connection scheme.

software simultaneously and, once the parameters have been de-

fined and the model has been created, the server is called from Mat-

lab using the script 5.1. This code allows establishing the connection

and opening the protocol to use (in this case the 2036),fig.5.6, while

retaining the original directory where the model script was stored.

The function with the structure is in the main .m file, as in 5.2, with

the following sections:

• Parameters description

• Geometry shape

• Features

• Boundary conditions

• Material
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1 %% Launch comsol server

2 currentdir=pwd; %keep the directory of the function

3 cd('C:\Program Files\COMSOL\COMSOL60\Multiphysics\bin\win64'); %open Comsol

Multiphysics server with Matlab

4 system('comsolmphserver.exe &');

5 cd(currentdir); %return on the directory

6

7 %% Establish connection to the server

8 currentdir=pwd;

9 cd('C:\Program Files\COMSOL\COMSOL60\Multiphysics\mli');

10 mphstart(2036);

11 cd(currentdir);

Listing 5.1: Code for configuration between Comsol-Matlab.

Figure 5.6: Comsol server window.

• Datasets

At this point, it was possible run the program and get the result about

the model, fig. 5.7. Similar to the Matlab software developed for

Figure 5.7: Matlab output of Comsol model.

the analysis of samples, in this case, the main limitation was the
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1 function out = model

2 % randomized_surface_structural.m

3 % Model exported on Apr 20 2022, 20:07 by COMSOL 6.0.0.354.

4

5 import com.comsol.model.* %library

6 import com.comsol.model.util.*

7 model = ModelUtil.create('Model'); %name of the model

8 model.modelPath('C:\CRI\MATLAB-COMSOL '); %the folder

9 model.comments(['Untitled\n\n']);

10 model.component.create('comp1', true);

11 model.component('comp1').geom.create('geom1', 3); %geometry

12 model.component('comp1').mesh.create('mesh1'); %mesh

13 model.param.set('N', '20', 'Spatial frequency resolution '); %physics

14 ...

15 model.func.create('rn1', 'Random ');

16 ...

17 model.component('comp1').geom('geom1').create('ps1', 'ParametricSurface ');

18 ...

19 model.component('comp1').mesh('mesh1').run;

20 model.label('randomized_surface.mph');

21 ...

22 model.component('comp1').material.create('mat1', 'Common ');

23 model.component('comp1').material('mat1').label('Aluminum ');

24 ...

25 model.component('comp1').physics.create('solid', 'SolidMechanics ', 'geom1');

26 ...

27 model.study.create('std1');

28 model.study('std1').create('stat', 'Stationary ');

29 ...

30 model.sol.create('sol1');

31 model.sol('sol1').study('std1');

32 ...

33 model.result.create('pg1', 'PlotGroup3D ');

34 ...

35 out = model;

Listing 5.2: Matlab script of imported Comsol model.

Big data management in surface topography analysis 61



computation time. In fact, although LiveLink optimized the process,

it still consumed a substantial amount of computational time when

compared to a non-LiveLink solution; therefore, the entire running

process needed to be moved onto clusters.

As before, the steps were the same: to summarize, it was necessary

to create the batch file, run the code on cluster and extrapolate the

results, or, in this case, the digital twin model.
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6 Results

In this chapter, the outputs generated by the two commercial soft-

ware, Spip and MountainsLab, and Matlab code are analyzed and

compared.

Ten acquisitions of 1024 × 1024 pixels were examined, but some

steps and evaluations analyzed only a small portion of them (100 ×
100 pixels) due to time and memory limitation.

6.1 Sofware outputs

According to the discussion in chapter 2, the several types of plane

and shape correction methods were considered, and the output from

each software can be seen in in fig. 6.1 for Spip, in fig. 6.2 for Moun-

tainsLab and in fig. 6.3 for Matlab. The differences between meth-

ods are not always substantial, like in these graphs, but to achieve

optimum results, more than one plane correction needs to be tried.

On the contrary, the evidence comes in when there is a slight dif-

(a) (b)

Figure 6.1: 3D visualization after plane correction in Spip:a) Replicated surface b) ACG

sample.

ference among acquisitions; in fig. 6.4 acquisitions 1, 2, 5 and 10

are compared. In fact, when the spikes and voids of the surface are

removed as well as when the plane correction is applied, fig. 6.6,
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(a) (b) Polynomial degree=5

(c) Least square sphere

Figure 6.2: 3D visualization after plane correction in MountainsLab: a) Polynomial degree

= 2 b) Polynomial degree = 5 c) Least square sphere.

(a) (b) surface curvature removal

Figure 6.3: 3D visualization after plane correction in Matlab: a) Surface levelling b) Sur-

face curvature removal

the contrast is more visible, affecting consistently parameter values

and results.

In Matlab software, the GPR function detects and correct spikes and

voids in different position from one acquisition to another, as in figure

6.5. After that, the plane correction was applied with several results;

in fig. 6.6 are shown reduced acquisitions after plane correction, and

therefore the full acquisition were as in fig. 6.7.

Due to time and memory limitations, reduced acquisitions were
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(a) (b)

(c) (d)

Figure 6.4: 3D visualization raw measurement. Acquisition number: a) 1 b) 2 c) 5 d) 10.

used for testing the code with the GPR correction and, thereby, for

detecting and correcting spikes and voids. The plane correction, in-

stead, was shown both on reduced and full acquisitions.

The gathered data were used to evaluate the parameters introduced

previously by the application of topographical characterization as in-

troduced in chapter 2. The gathered data regarding the Sq parame-

ter, refer to the sample in fig. 4.2, are collected in tables 6.1.

The results allow a comparison of different plane and shape correc-

tion method and characterization software. Hypothesis test based

on t-Student distribution [16] was performed to pairwise compare the

obtained average results at a confidence level of 95%. In particular,

a systematic difference could be highlighted between the parameter

evaluated after a global leveling and a global bow removal and all
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(a) (b)

(c) (d)

Figure 6.5: 3D visualization with spike and voids detection. Acquisition number: a) 1 b) 2

c) 5 d) 10.

the other alternatives. Moreover, no systematic differences could be

highlighted between Mountains Lab, SPIP and MATLAB software.

In average, it is possible to see how the values do not differ one

from the other; by this logic, the obtained values can be considered

reliable.

6.1.1 Uncertainty evaluation

Furthermore, unlike the commercial software, the Matlab code pro-

vided the uncertainty evaluation, in figure 6.8, and the covariance

and correlation factor graphs in figure 6.9.
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(a) (b)

(c) (d)

Figure 6.6: 3D visualization after plane correction of reduced acquisitions. Acquisition

number: a) 1 b) 2 c) 5 d) 10.

6.2 Clusters

The limitations related to the computing power made it necessary

to transfer all the work to the DTU cluster; the tables 6.4 and 6.5

summarise of all the findings related to the time evaluation on both

the personal computer and the cluster, and memory requirement

(average and maximum values) on cluster. The specification are:

• Personal computer: 6 cores, 2.70GHz, 8GB RAM, 500GB SSD

• DTU clusters: more than 120 computer, 48-912 cores, 2.20-

2.90GHz, more than 500GB RAM each, more than 500GB SSD

The study considered simulation both with and without GPR evalua-

tion; in the latter case it was not much convenient to use the clusters

Big data management in surface topography analysis 67



(a) (b)

(c) (d)

Figure 6.7: 3D visualization after plane correction of full acquisitions. Acquisition number:

a) 1 b) 2 c) 5 d) 10.

because the number of data were relatively small and so the com-

putation was faster; however, when GPR was applied, to reduced

sample on cluster, the computation time was almost 66% less. On

the other hand, when full acquisitions were processed, neither the pc

nor the cluster was able to optimize the GPR function and provide

results. In fact, the local evaluation was ineffective due to limited

memory resource, whilst the cluster could not complete the execu-

tion and hence uptput results because the time limit resource for the

DTU cluster is set at 24 hours.

To summarize, the matlab software was demonstrated to work prop-

erly, to compute surface parameters compatible with state-of-the-art

commercial software, and to source 3D visualizations, but no opti-
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Figure 6.8: 3D visualization of uncertainty evaluation.

(a) (b)

Figure 6.9: Visualization of covariance (a) and correlation factor (b).

mization could be developed for the fitting GPR function despite use

of clusters.

A possible solution exploited fitting the GPR model on the first ac-

quisition and exploit it to correct measurement disturbances on all

the replicated measured micrographs. However, it could be noticed

that the correction of spikes and voids gradually lost their benefits

from the first to the last sample, thus suggesting a systematic drift

Big data management in surface topography analysis 69



superimposed to measurement disturbances, i.e. spikes and voids,

which cannot be modeled by GPR.

6.3 Digital twin

According to the obtained results, it was crucial to attempt to develop

a digital twin model of the measured surface on Comsol.

A random model was imported from the Comsol website [32] which

allowed tomodify some parameters to better understand their impact

on the visualization. A cluster was also necessary in this case due to

the largememory and time requirements. In fact, the framework was

created on the cluster after the Matlab and Comsol configurations.

The digital twin model was supposed to correspond to a function that

should be used after a surface acquisition to model the deterministic

surface, and that could be exploited later on for measurement error

identification and corrections.
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Sq

1 547,11

2 547,75

3 547,43

4 547,99

5 548,00

6 547,67

7 548,09

8 547,99

9 547,92

10 548,13

Average 547,81

St.dev. 0,33

(a) Global leveling

Sq

1 545,32

2 545,83

3 545,62

4 546,29

5 546,38

6 546,92

7 546,19

8 546,56

9 546,59

10 546,92

Average 546,26

St.dev. 0,53

(b) Global bow removal

Sq

1 546,17

2 546,73

3 546,37

4 546,95

5 546,95

6 546,69

7 547,01

8 547,14

9 546,92

10 547,19

Average 546,81

St.dev. 0,33

(c) Linewise leveling

Sq

1 543,94

2 544,56

3 544,40

4 545,04

5 545,20

6 545,61

7 544,87

8 545,25

9 545,34

10 545,62

Average 544,98

St.dev. 0,54

(d) Linewise bow removal Spip

Sq

1 547,11

2 547,75

3 547,43

4 547,99

5 548,00

6 548,09

7 547,67

8 547,99

9 547,92

10 548,13

Average 547,80

St.dev. 0,33

(e) Manual plane correction

Table 6.1: Parameters evaluation in Spip
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Sq

1 547,30

2 547,80

3 547,40

4 548,00

5 548,00

6 547,70

7 548,00

8 547,90

9 547,10

10 547,10

Average 547,81

St.dev. 0,33

Table 6.2: Parameters evaluation in MountainsLab

Sq

1 546,84

2 547,49

3 547,16

4 547,72

5 547,74

6 547,40

7 547,72

8 547,65

9 547,86

10 547,82

Average 547,54

St.dev. 0,33

Table 6.3: Parameters evaluation in Matlab

Time computation [sec]

without GPR with GPR

Reduced acquisitions
PC 41,72 1974,56

DTU cluster 172 672

Full acquisitions
PC 115,92 not supported

DTU cluster 3041 more than 24h

Table 6.4: Time computation
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Memory [GB]

without GPR with GPR

Reduced acquisitions
Average 15,49 33,72

Maximum 12,58 22,39

Full acquisitions 5
Average 18,03 not supported

Maximum 17,31 not supported

Table 6.5: Memory computation
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7 Conclusion

Surface topography characterisation is relevant because it provides

a better representation of the surface based on qualitative as well

as quantitative information, such as shape, size, volume, etc.

The current application requires big data because of time and mem-

ory requirements.

This thesis addressed a comparison of current alteranitve software

for characteisation showing strenght and weaknesses in regards of

current characterization needs. Additionally, this thesis developed

and demonstrated a framework for metrological characterisation of

big data surface topography measurements based on DTU.

This thesis shows that the commercial software are suitable for the

acquisition, elaboration and analysis of data, and parameters eval-

uation. However, some limitations are evident regarding the spikes

and voids identification and correction, plane correction, whilst un-

certainty, covariance and correlation factor evaluation cannot be per-

formed at all.

An in-house developed MATLAB code was validated against state-

of-the art software. The code allows importing a variety of formats.

The code features effective plane correction and enhanced and ma-

chine learning-based spikes and voids correction methodology. In

fact, commercial software rarely provide spikes and voids detection

and correction, or other specific functions, such as uncertainty eval-

uation or covariance and correlation factor estimation.

Consequently, the software has been developed to address some

of these issues and to meet the requirements.

This thesis shows that thoroughmetrological management and char-

acterization of surface topography measurements is resource inten-
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sive and requires critical computational resources to process the re-

lated big data. The critical point to consider is the time and memory

requirement; in fact, the large number of pixels in the samples re-

quire a big amount of memory for analysis and elaboration, thereby

forcing a long computation time. Because personal computers have

limited memory, to satisfy these requirements it is necessary to use

clusters whose processing is much faster and whose computation

power is higher.

Despite the fact that the code speeds up the process, some tasks

require alternative approaches. In particular spikes and voids detec-

tion and correction by GPR model provides poor results because it

still requires unavailable time and memory and the kernel modeled

on the first acquisition is not general to multiple replicated acquisi-

tions.

This results, which is not trivial, indicates the presence of a system-

atic error in measurement and different surface modeling approach

is required.

Hence, digital twinning of the measured surface is address to create

a mathematical representation of the deterministic measured sur-

face which could be updated to describe the measurement error.

However, the creation of a surface topography digital twin is un-

precedented, and requires first the development of a methodolog-

ical and computational framework. This thesis work has demon-

strated the methodology to create a parametric model describing the

measured surface by Comsol. Essentially, the function represents

the digital twin model and it is capable of describing and represent-

ing several classes of surface by analyzing different samples and

changing parameters in the new function.

The integration of the parametricmodel inMATLABwas implemented

and the successful demonstration of the evaluation of the model

based on empirical data was achieved by importing theComsolmodel
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into Matlab to enable configuration with developed code. Because

of model and data size, this computation requires the use of a clus-

ter.

The developed framework is a powerful result of the present work

that will be exploited in future research to create the digital twin of a

measured surface. In conclusion, this study has focused on the cre-

ation of an HPC framework that can be expanded in the future with

machine learning and digital twin for the metrological management

and characterization of the measurement of surface topography by

thoroughly exploiting big data.
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