
POLITECNICO DI TORINO

Master Degree course in Mechanical Engineering

Master Degree Thesis

Analytical modelling and experimental
analysis of functionalized nonlinear link

for jointed structures

Supervisors

Prof. Alessandro Fasana

Prof. Nicolas Peyret
Candidate

Giuseppe Lo Iacono

Academic Year 2021-2022



Contents

List of Figures 5

1 State of art 15

1.1 Threaded links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Choice of beam geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Mathematical models for contact modelling . . . . . . . . . . . . . . . . . 17

1.4 Micro sliding friction model . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Macro models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5.1 Coulomb (Quasi-static friction model) . . . . . . . . . . . . . . . . 20

1.5.2 Viscous friction model (Quasi-static friction model) . . . . . . . . 21

1.5.3 Integrated Coulomb and friction model (Quasi-static friction model) 22

1.5.4 Stribeck friction model (Quasi-static friction model) . . . . . . . . 23

1.5.5 Dahl friction model (Dynamic model) . . . . . . . . . . . . . . . . 24

1.5.6 LuGre friction model (Dynamic model) . . . . . . . . . . . . . . . 26

2 Experimental protocol 29

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Tools preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Configurations description . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.1 Configuration 2: coupling with Type1 damper, configuration of 2
dampers, one on each side . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.2 Configuration 3: coupling with Type 1 damper, configuration of 4
dampers, two on each side, in phase . . . . . . . . . . . . . . . . . 35

2



2.3.3 Configuration 4: coupling with Type 1 damper, configuration of 4
dampers, two on each side,in counterphase . . . . . . . . . . . . . . 36

2.3.4 Configuration 5: coupling with Type 1 damper, configuration of 4
dampers, two on each side, stacked . . . . . . . . . . . . . . . . . . 37

2.3.5 Configuration 6: coupling with Type 1 damper, configuration of 6
dampers, three on each side, stacked . . . . . . . . . . . . . . . . . 38

2.3.6 Configuration 7: Type2 damper coupling, 3 damper configuration . 38

2.3.7 Configuration 8: Type3 damper coupling, 3 damper configuration . 39

2.4 List of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 FEM and Experimental Tests 45

3.1 Ansys and Experiments comparison (Config.1, without dampers) . . . . . 45

3.1.1 Ansys Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.2 Experiment frequency sweep . . . . . . . . . . . . . . . . . . . . . 48

3.1.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.4 Conclusion: Ansys-Experiment comparison . . . . . . . . . . . . . 51

3.2 Experimental results (configurations with dampers) . . . . . . . . . . . . . 54

3.3 Comparison 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 First mode shape, frequency responce, 0,8g . . . . . . . . . . . . . 56

3.3.2 First mode shape, frequency responce, 1,6g . . . . . . . . . . . . . 57

3.3.3 Second mode shape, frequency responce, 0,8g . . . . . . . . . . . . 58

3.3.4 Second mode shape, frequency responce, 1,6g . . . . . . . . . . . . 59

3.3.5 First mode shape (12,8 Hz), Acceleration 0,8g 1,6g . . . . . . . . 60

3.3.6 Second mode shape (71 Hz), Acceleration 0,8g 1,6g . . . . . . . . 61

3.3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Comparison 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.1 First mode shape, frequency responce, 0,8g . . . . . . . . . . . . . 63

3.4.2 First mode shape, frequency responce, 1,6g . . . . . . . . . . . . . 64

3.4.3 Second mode shape, frequency responce, 0,8g . . . . . . . . . . . . 65

3.4.4 Second mode shape, frequency responce, 1,6g . . . . . . . . . . . . 66

3.4.5 First mode shape (12,8 Hz), Acceleration 0,8g-1,6g . . . . . . . . . 67

3.4.6 Second mode shape (71 Hz), Acceleration 0,8g-1,6g . . . . . . . . . 68

3



3.4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Extraction of modal parameters 71

4.1 "-3dB" Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 "Dahl" method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.1 Result Mode shape 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.2 Result Mode shape 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2.3 Displacement computation . . . . . . . . . . . . . . . . . . . . . . 88
4.2.4 Computation of the damping factor . . . . . . . . . . . . . . . . . 93

5 Conclusions 99

Bibliography 101

4



List of Figures

1 Assembled beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Coupling between base and beam . . . . . . . . . . . . . . . . . . . . . . . 12

1.1 Pressure distribution in a threaded joint [Eugenio Brusa, Machine design,
DIMEAS, Politecnico di Torino, Italia, 2020] . . . . . . . . . . . . . . . . 16

1.2 Configuration of the joint interface surfaces . . . . . . . . . . . . . . . . . 17
1.3 Rheological scheme of configurations a) b) c) . . . . . . . . . . . . . . . . 17
1.4 FRF variation as a function of tightening and exitation level [5] . . . . . . 18
1.5 Micro sliding friction model [3] . . . . . . . . . . . . . . . . . . . . . . . . 19
1.6 Coulomb model scheme [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.7 Viscous model scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.8 Integrated Coulomb and viscous model [5] . . . . . . . . . . . . . . . . . . 23
1.9 Stribeck model [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.10 Dahl generic cycle [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.11 Shape of Dahl hysteresis cycle as function of different parameters [5] . . . 26
1.12 Deformation of the asperity in the interface [4] . . . . . . . . . . . . . . . 27

2.1 Shaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Vibrating table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3 Shaker position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Figures/Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Base position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Fastening Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7 Block position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.8 Characteristics and Positions of the accelerometrs . . . . . . . . . . . . . . 32

5



List of Figures

2.9 Thermo Couple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.10 Top of the beam assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.11 Bottom of the beam assembly . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.12 Beam assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.13 Beam fastening position . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.14 Type1 damper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.15 Damper position experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . 36

2.16 Damper position configuration 3 . . . . . . . . . . . . . . . . . . . . . . . 36

2.17 Damper position configuration 4 . . . . . . . . . . . . . . . . . . . . . . . 37

2.18 Damper position experiment 5 . . . . . . . . . . . . . . . . . . . . . . . . 38

2.19 Damper position experiment 6 . . . . . . . . . . . . . . . . . . . . . . . . 39

2.20 Type2 damper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.21 Damper position experiment 7 . . . . . . . . . . . . . . . . . . . . . . . . 40

2.22 Type3 damper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Lower part of the beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Upper part of the beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Real beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Ansys: Simulation of the constraint . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Ansys: Simulation of the constraint . . . . . . . . . . . . . . . . . . . . . . 47

3.6 First natural frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 Second natural frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.8 Third natural frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.9 Fourth natural frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.10 Spectrum of a non linear system, [Oscillateur non linéaire à un dégrée de
liberté Stefania LO FEUDO, Jean-Luc DION 2021/2022] . . . . . . . . . 50

3.11 Sweep 0-500 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.12 Zoom in the peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.13 Sweep 0-900 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.14 Frequency and Module of Acceleration of the mode shapes . . . . . . . . . 52

3.15 Spectrum of Configuration 1 with different tightening torque . . . . . . . 55

3.16 First mode shape, frequency responce, 0,8g . . . . . . . . . . . . . . . . . 56

6



List of Figures

3.17 First mode shape, frequency responce, 1,6g . . . . . . . . . . . . . . . . . 57

3.18 Second mode shape, frequency responce, 0,8g . . . . . . . . . . . . . . . . 58

3.19 Second mode shape, frequency responce, 1,6g . . . . . . . . . . . . . . . . 59

3.20 Configuration 1,2,3,4, FRF "Mode shape 1" compared under different input
excitations (Acc 0,8g-1,6g) . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.21 Configuration 1,2,3,4, Spectrum "Mode shape 1" compared under different
input excitations (Acc 0,8g-1,6g) . . . . . . . . . . . . . . . . . . . . . . . 60

3.22 Configuration 1,2,3,4, FRF "Mode shape 2" compared under different input
excitations (Acc 0,8g-1,6g) . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.23 Configuration 1,2,3,4, Spectrum "Mode shape 2" compared under different
input excitations (Acc 0,8g-1,6g) . . . . . . . . . . . . . . . . . . . . . . . 61

3.24 FRF first mode shape, frequency responce, 0,8g . . . . . . . . . . . . . . . 63

3.25 FRF first mode shape, frequency responce, 1,6g . . . . . . . . . . . . . . . 64

3.26 FRF second mode shape, frequency responce, 0,8g . . . . . . . . . . . . . 65

3.27 FRF second mode shape, frequency responce, 1,6g . . . . . . . . . . . . . 66

3.28 Configuration 1,5,6,7,8, FRF "Mode shape 1" compared under different
input excitations (Acc 0,8g-1,6g) . . . . . . . . . . . . . . . . . . . . . . . 67

3.29 Configuration 1,5,6,7,8, Spectrum "Mode shape 1" compared under differ-
ent input excitations (Acc 0,8g-1,6g) . . . . . . . . . . . . . . . . . . . . . 67

3.30 Configuration 1,5,6,7,8, FRF "Mode shape 2" compared under different
input excitations (Acc 0,8g-1,6g) . . . . . . . . . . . . . . . . . . . . . . . 68

3.31 Configuration 1,5,6,7,8, Spectrum "Mode shape 2" compared under differ-
ent input excitations (Acc 0,8g-1,6g) . . . . . . . . . . . . . . . . . . . . . 68

4.1 Best solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 FRF of mode shape 1, configuration 1,4,8 . . . . . . . . . . . . . . . . . . 72

4.3 FRF of mode shape 2, configuration 1,4,8 . . . . . . . . . . . . . . . . . . 73

4.4 FRF mode shape 2, configuration 1, "-3dB" Method, 0,8g . . . . . . . . . 74

4.5 FRF mode shape 2, configuration 1, "-3dB" Method, 1,2g . . . . . . . . . 75

4.6 FRF mode shape 2, configuration 1, "-3dB" Method, 1,6g . . . . . . . . . 75

4.7 Typical graphs obtained for different values of the p coefficient [6] . . . . . 76

4.8 Hystereic cycle [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7



List of Figures

4.9 Beam scheme [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.10 Mass-Spring-Damper system . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.11 Mass-Spring-Non-Linear Spring system . . . . . . . . . . . . . . . . . . . . 82
4.12 Position of the added masss . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.14 Mode shape 1 without added mass . . . . . . . . . . . . . . . . . . . . . . 85
4.15 Mode shape 1 with added mass . . . . . . . . . . . . . . . . . . . . . . . . 85
4.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.17 Mode shape 2 without added mass . . . . . . . . . . . . . . . . . . . . . . 87
4.18 Mode shape 2 with added mass . . . . . . . . . . . . . . . . . . . . . . . . 87
4.19 Low pass filter effect, configuration 8 . . . . . . . . . . . . . . . . . . . . . 89
4.20 Real and filtered Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.21 Free end coordinate 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.22 Base coordinate 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.23 Free end coordinate 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.24 Base coordinate 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.25 Free end coordinate 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.26 Base coordinate 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.27 Hysteresis cycle Conf. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.28 Hysteresis cycle Conf. 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.29 Hysteresis cycle Conf. 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.30 Average of damping ratios between minimum and maximun modal stiffness 95
4.31 Average damping factor for a value of modal stiffness between 1.7 · 104 N

m

and 1.72 · 104 N
m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.32 ∆ηavg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8



Preface

“Il divertimento della ricerca scientifica è anche trovare sempre altre frontiere
da superare, costruire mezzi più potenti d’indagine, teorie più complesse, cercare
sempre di progredire pur sapendo che probabilmente ci si avvicinerà sempre di più a
comprendere la realtà, senza arrivare mai a capirla completamente.”

MARGHERITA HACK

La scelta di portare avanti questo progetto di ricerca fonda le radici nella mia volontà
di dare un contributo alla comunità scientifica mettendo in gioco le conoscenze acquisite
durante il percorso di studi.

Dedicherò ampio spazio alla descrizione dei temi trattati, perciò approfitto di questo
breve paragrafo per ringraziare tutte le persone che mi hanno sempre sostenuto con-
sentendomi di raggiungere questo traguardo a testa alta, perché ognuno di voi ha
contribuito ad essere la persona che sono oggi.

Mi ritengo fortunato perchè so di avere al mio fianco molte persone che ripongono in
me grande affetto e stima, ma non amo gli encomi, e dunque, fra tutti, ritengo doveroso
citare i miei genitori per la fiducia e il sostegno riposto in me sin dal principio, ancor prima
di intraprendere il mio percorso universitario, lasciandomi libero nelle scelte e facendomi
sentire sempre sicuro di me stesso.

Grazie a tutti voi.

9



10



Introduction

The aim of this study is to investigate the possibility of increasing the damping of a struc-
ture composed of two elements connected by threaded joints, by interposing mechanical
dampers at the interface of the contact surface.

Indeed, one of the technological design problems engineers are faced with is undoubt-
edly the need to connect two or more elements together.

To this aim, engineers can rely essentially on three main mechanical joining processes:
welding, gluing and mechanical fixing.

Mechanical fixing (screws, bolts, rivets, etc.), in particular, differs from the other
two solutions because it is necessary to drill holes in the components before the joining
process.

This operation inevitably causes a weakening of the component, since in the area close
to the hole there is a concentration of stresses due to the high notching effect. For this
reason, if the use of screws or bolts is not strictly necessary, the mechanical components
are joined mainly by welding (joints obtained by gluing are not used when the applied
loads increase considerably).

Thanks to scientific research, however, it has been realised that mechanical joints can
be used to increase the damping capacity of structures, especially in working conditions
characterised by large frequency ranges and high temperatures.

So why use mechanical joints to increase the damping of structures?

Damping induced by elastic and viscous materials is more effective than dry frictional
damping, but it should be noted that this statement is consistent if you are in the right
frequency and temperature range for which the coupling was designed, since the heat
transferred to the coupling midifies the viscoelastic properties of the coupling, causing it
to be useless for the task for which it was designed.

11



Introduction

Figure 1: Assembled beam

Figure 2: Coupling between base and beam

Having clarified the reasons that drive research in this area, it is possible to define
the two main types of mechanical joints:

• Structural joints (Main joints), which have the task of connecting components in
a purely structural sense;

• Dissipative joints (Secondary joints), which, in addition to physically connecting
components, have the task of increasing the damping of the structure by improving
its ability to absorb vibrations.

The objective of the study is firstly to compare the resonance frequency values ob-
tained through numerical FEM simulation with the results obtained through laboratory
experiments, than to estimate the damping factor of different beam configurations (beam
in Figure 1) obtained by modifying the type and position of the dampers, and finally to
understand which configuration provides the greatest increase in the damping factor.

About the organisation of the text, it has been divided into three macro sections:

• First Section: Within the first section, the main technological problems to be
faced when dealing with a threaded joint are discussed. Furthermore, since the
aim of the study is to evaluate the variation of the damping of the structure due

12



Introduction

to frictional dissipation, the main information concerning the mathematical models
used when modelling contact in the presence of relative motion between two bodies
has been summarised;

• Second Section:The second section is firstly dedicated to the description of the
experimental tests carried out in the laboratory, and to the comparison between the
simulation results carried out on Ansys and the experimental ones regarding the
first four resonance frequencies of the system. Finally, this section is dedicated to
the discussion of the results obtained with the different configurations of dampers
inserted in the beam.

• Third Section : The third section corresponds to the last chapter, which is dedi-
cated to conclusions is devoted to conclusions.

13
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Chapter 1

State of art

1.1 Threaded links

When it is necessary to join two or more components, it is possible to use, among other
methods, screws or bolts.

This type of joint modifies the stiffness of the structure as the tightening torque varies
and, therefore, if the structure is very stiff, it becomes more sensitive to resonance. In
order to attenuate this phenomenon by improving the damping effect of the structure,
it is possible to modify the working conditions of the joint at the interface between the
contact surfaces of the components by interposing an elastic metal material that acts as
a damper and does not further stiffs the structure.

Before going into the mathematical modeling of the problem, could be useful remem-
bering how a mechanical joint works.

As can be seen in Figure 1.1, different pressure distributions may occur by varying
the tightening torque or the thickness of the plates. These differences in the pressure
distribution result in a different stiffness of the joint and consequently in the total stiffness
of the structure, in fact, generally, it is possible to consider the joints as a series of springs
in compression:

1
K

=
∑︂

i

1
ki

(1.1)

15



State of art

Figure 1.1: Pressure distribution in a threaded joint [Eugenio Brusa, Machine design,
DIMEAS, Politecnico di Torino, Italia, 2020]

ki = πEd tan ϕ

2 ln (l tan ϕ+dw−d)(dw+d)
(l tan ϕ+dw+d)(dw−d)

(1.2)

It is therefore easy to understand that as the contact area between the two surfaces
varies, so does the static and dynamic behaviour of the joint.

1.2 Choice of beam geometry

In order to assess the stiffness of the joint, several fixing solutions were considered.

Of the different solutions proposed, the solution in Figure 1.2c was chosen, as this
configuration does not significantly increase the stiffness of the structure but at the same
time allows the dampers to work with a large contact surface.

What is expected from the experimental evidence is a decrease in the amplitude of
the resonance peak as shown in Figure 1.4 due to the friction between the dampers and
the beam.

16



1.3 – Mathematical models for contact modelling

(a) Full contact i the interface

(b) Insertion of patch

(c) Insertion flexible friction damper, green element

Figure 1.2: Configuration of the joint interface surfaces

(a)

(b)

Figure 1.3: Rheological scheme of configurations a) b) c)

1.3 Mathematical models for contact modelling

In the system analysed (two beams joined by using of three bolts) the main causes of
energy dissipation and consequently of the increase in damping of the structure are es-
sentially two, namely the deformation of the dampers and the friction generated at
the interface between the dampers and the two beams.

17
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Figure 1.4: FRF variation as a function of tightening and exitation level [5]

Given the presence of the two jointed elements, it is evident that in correspondence of
the interface between the two beams and the interface between the beam and the dampers,
dynamic friction is generated due to the relative displacement between the bodies.

Effectively, what happens during the excitation of the system is a variation of the
oscillation phase angle between the lower portion of the beam, which is wedged, and the
upper portion, which is bound to it; this is due to the presence of the joint, which is a
discontinuity zone between the two bodies.

The consequence of this displacement is the relative motion between the two bodies
and consequently the presence of the friction force that absorbs energy from the system.

This phenomenon is called "stick-slip" (the name derives the relative motion and by
the modulus of the velocity, which alternatively is equal to zero).

To study the stick-slip phenomenon, the scientific literature proposes a number of
mathematical models that can be classified into two macro groups:

• Micro sliding friction models
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1.4 – Micro sliding friction model

• Macro models.

The modelling of friction for the prediction and control of such a system is quite
complicated. The difficulty arises from the fact that the direction of movement on the two
contact surfaces can change the friction effect. There are numerous friction models studied
in the context of micro and macro-motion, such as the Coulomb friction model, viscous
friction model, Stribeck friction model, Dahl model, LuGre model and the elastoplastic
friction model, but despite this, the complexity of the phenomenon makes it difficult to
correctly interpret the results obtained through these models.

1.4 Micro sliding friction model

This class of models is based on the distribution of shear and normal stresses according
to the contact plane and the contribution of tangential displacement in order to describe
the effect of contact. The literature suggests that the main improvements to this type
of model can be several, the main ones being the creation of a tensile stress at the rear
of the contact zone, related to the direction of movement assuming that the maximum
shear point moves forward into the new contact zone; at the front of the contact zone, on
the other hand, the addition of a compressive constraint much larger than the calculated
maximum Hertz pressure is considered. Tangential reciprocating loading causes wear and
fatigue in the contact zone, so it is essential to recognise the slip zone and the stick zone.

Figure 1.5: Micro sliding friction model [3]
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1.5 Macro models

The set of the main macro-models can be divided into the following sub-groups:

• Quasi-static friction models: they are generally considered as classical friction
models, since the main assumption is that the friction force depends on the relative
velocity between the two bodies in the contact zone;

• Dynamic models: In order to model the force-slip dependence, the shape function
of the stress-strain curve is used (this is the theory on which Dahl’s model is based);

• Hysteretic models: related to the dissipation of energy in the material and the
theory of elasticity.

1.5.1 Coulomb (Quasi-static friction model)

The Coulomb model can be summarised using the following system of equations:

F =

⎧⎪⎨⎪⎩
Fc · sgn(ẋ) if ẋ /= 0

Fapp if ẋ = 0 and Fapp < Fc

where:

• F is the friction force

• ẋ is sliding velocity

• Fapp is applied force

• Fc is the Coulomb friction force, defined as Fc = µFN

• µ is the Coulomb friction coefficient (or dynamic friction coefficient)

• FN is the normal load acting between the two surfaces in contact

A graphical representation of the Coulomb model is presented in Figure 1.6.
As can be seen in the plot, when Fapp < Fc, there is no sliding between two contact

surfaces, and therefore the static friction force can assume any value as long as it is
between 0 and Fc.
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1.5 – Macro models

Figure 1.6: Coulomb model scheme [5]

If ẋ /= 0 , the Coulomb friction force assumes only Fc or −Fc values, depending on
the direction of sliding.

Being rather simple, the Coulomb friction model can be used in applications such as
the prediction of temperature distribution in bearings design and the calculation of shear
force in machine tools.

However, due to fact that in absence of relative displacement between the two courses
the static friction force remains undefined, it is generally not used in applications where
the "Stick-slip" phenomenon is persistent.

1.5.2 Viscous friction model (Quasi-static friction model)

The viscous friction model is given by:

F = kvẋ, (1.3)

Where:

• F is the friction force;

• kv the viscous coefficient;

• ẋ the sliding velocity.
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Figure 1.7: Viscous model scheme

The viscous friction model is illustrated in Figure 1.7 and, as is possible to detect
from the plot, the friction force is a linear equation of the sliding velocity.

1.5.3 Integrated Coulomb and friction model (Quasi-static friction model)

The Coulomb and viscous friction models can be combined in two different ways.
The first method involves modelling the phenomenon using the following system of

equations:

F =

⎧⎪⎨⎪⎩
Fc · sgn(ẋ) + kvẋ if ẋ /= 0

Fapp if ẋ = 0 and Fapp < Fc

The problem with this model, Figure 1.8a, is that the frictional force remains "un-
defined" when the relative velocity is zero. To overcome this problem, the idea is to
integrate the Coulomb model and the viscous model near ẋ = 0.

F =

⎧⎪⎨⎪⎩
min(Fc, kvẋ) if ẋ ≥ 0

max(−Fc, kvẋ) if ẋ < 0

Through this model, the speed of the friction force transition (from negative to posi-
tive) is determined by the viscous friction coefficient (Figure 1.8b).
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(a) (b)

Figure 1.8: Integrated Coulomb and viscous model [5]

1.5.4 Stribeck friction model (Quasi-static friction model)

The Stribeck model is described by:

(︂
Fc + (Fs − Fc)(e− ẋ

vs )i · sgn(ẋ) + kvẋ
)︂

(1.4)

where:

• F is the friction force;

• ẋ is the sliding velocity;

• F c = µN the Coulomb friction force;

• Fs the static friction force;

• vs the Stribeck velocity;

• kv the coefficient of viscous friction;

• i an parameter.

The singular feature of this model,Figure 1.9, is that when the velocity is zero, the
force can range from Fs as the upper limit and −Fs as the lower limit. Thanks to this
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Figure 1.9: Stribeck model [5]

model it is possible to appreciate a decrease of the friction force when the movement
starts and then an increase when the speed increases.

1.5.5 Dahl friction model (Dynamic model)

Dahl’s model is of great interest because thanks to his theory it is possible to describe the
friction force in the pre-slip phase, which remained unknown in Stribeck’s model. This is
one of the models that will be used to estimate the damping factor.

The two main equations which describe the model are:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
dF (x)

dt
= dF (x)

dx

dx

dt
dF (x)

dx
= σ0

⃓⃓⃓⃓
1 − F

Fc
sgn(ẋ)

⃓⃓⃓⃓i
sgn(1 − F

Fc
sgn(ẋ))

Where:

• F is the friction force
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Figure 1.10: Dahl generic cycle [5]

• σ0 the stiffness coefficient

• i is the exponent determining the shape of the hysteresis.

In the literature, Dahl’s model is often simplified with the exponent i=1 and given
by:

dF (x)
dx

= σ0

(︃
1 − F

Fc
sgn(ẋ)

)︃
(1.5)

The generic shape of Dah’l hysteresis loop is s shown in Figure 1.10, but as the
parameters of the system vary, it can vary considerably. Some examples of the hysteresis
loop are shown in Figure 1.11.

However, as the parameters of the equation describing the model change, the curve
can assume different shapes
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(a) Variation of contact force "Fc"

(b) Variation of maximum desplacement

Figure 1.11: Shape of Dahl hysteresis cycle as function of different parameters [5]

1.5.6 LuGre friction model (Dynamic model)

Lugre’s model can be expressed as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
F = σ0z + σ1ż + σ2ẋ

ż = ẋ − σ0
ẋ

g(ẋ)z

g(ẋ) = Fc + (Fs − Fc)(e− ẋ
vs )j

where:

• F is the frictional force

• σ0 the contact stiffness

• z the mean deflection of contact asperities
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Figure 1.12: Deformation of the asperity in the interface [4]

• σ1 the bristle damping coefficient

• σ2 the coefficient of viscous friction

• x the relative displacement

• Fc the Coulomb friction force Fs the static friction force

• ẋ the sliding velocity

• g(ẋ)the Stribeck effect

• vs the Stribeck velocity

• j the Stribeck form factor

The LuGre model integrates pre-slip friction σ0z, viscous friction σ2ẋ and the Stribeck
effect g(ẋ) into a single model and is therefore used in the modelling of mechanical
couplings.
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Chapter 2

Experimental protocol

2.1 Introduction

The aim of the experimental tests is to obtain the frequency responce function and the
acceleration signal in time domain of the beam wedged in an oscillating base.

At the interface between the two parts of the beam some dampers will be inserted in
order to modify the frequency response of the system by changing the damping effect of
the structure.

2.2 Tools preparation

This section details all the steps required to prepare the equipment:

• The shaker Figure 2.1 shall be positioned horizontally so that the vibrating table
Figure 2.2 can vibrate in a direction parallel to the floor Figure 2.3;

• The base Figure 2.4 must be fixed to the vibrating table by means of four M10
threaded screws in the position described in Figure 2.5;

• The fastening block Figure 2.6 must be positioned, and not yet completely fixed
waiting for the beam to be inserted, in the position described in Figure 2.7 ( !! Pay
attention to the orientation of the component Figure 2.7 !!) by means of 4 bolts
M10;
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Figure 2.1: Shaker

Figure 2.2: Vibrating table

• The two accelerometers must be connected to the instrumentation and ready to be
connected to the two beams (In Figure 2.8a and Figure 2.8d is represented the final
position of the two accelerometers);

• A thermocouple Figure 2.9 is added to evaluate the temperature variation of the
beam
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Figure 2.3: Shaker position

Figure 2.4: Figures/Base

Figure 2.5: Base position

Figure 2.6: Fastening Block
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Figure 2.7: Block position

(a) Characteristics accelerometer 3 (b) Position accelerometer 3

(c) Characteristics accelerometer 2 (d) Position accelerometer 2

Figure 2.8: Characteristics and Positions of the accelerometrs
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2.3 – Configurations description

(a) Thermo-couple position (b) Thermo-couple display

Figure 2.9: Thermo Couple

2.3 Configurations description

This section concerns the description of all the configurations used in the experiments.

Configuration 1: coupling without damper

• The uppert part of the beam in Figure 2.10 have to be fixed to the bottom part
Figure 2.11 using three M10 bolts with a tightening torque of 15Nm per bolt (Figure
2.12);

• The assembled beam have to be wedged between the base and the fastening bloc
using four M10 bolts, in the position shown in Figure 2.13, at a distance of 50mm
from the beam’s base;

• The two accelerometers must be fixed in the position described in Figure 2.8.

2.3.1 Configuration 2: coupling with Type1 damper, configuration of 2
dampers, one on each side

• The Type1 damper in Figure 2.14 have to be positioned as in Figure 2.15;

• The upper part of the beam in Figure 2.10 have to be fixed to the bottom part Figure
2.11 using three M10 bolts with a tightening torque of 15Nm per bolt (Figure 2.12);

• The assembled beam have to be wedged between the base and the fastening bloc
using four M10 bolts, in the position shown in Figure 2.13, at a distance of 50mm
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Figure 2.10: Top of the beam assembly

Figure 2.11: Bottom of the beam assembly

from the beam’s base;

• The two accelerometers must be fixed in the position described in Figure 2.8.
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Figure 2.12: Beam assembly

Figure 2.13: Beam fastening position

Figure 2.14: Type1 damper

2.3.2 Configuration 3: coupling with Type 1 damper, configuration of
4 dampers, two on each side, in phase

• The Type1 damper in Figure 2.14 have to be positioned as in Figure 2.16;
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Figure 2.15: Damper position experiment 2

Figure 2.16: Damper position configuration 3

• The upper part of the beam in Figure 2.10 have to be fixed to the bottom part Figure
2.11 using three M10 bolts with a tightening torque of 15Nm per bolt (Figure 2.12);

• The assembled beam have to be wedged between the base and the fastening bloc
using four M10 bolts, in the position shown in Figure 2.13, at a distance of 50mm
from the beam’s base;

• The two accelerometers must be fixed in the position described in Figure 2.8.

2.3.3 Configuration 4: coupling with Type 1 damper, configuration of
4 dampers, two on each side,in counterphase

• The Type1 damper in Figure 2.14 have to positioned as in Figure 2.17;
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Figure 2.17: Damper position configuration 4

• The upper part of the beam in Figure 2.10 have to be fixed to the bottom part Figure
2.11 using three M10 bolts with a tightening torque of 15Nm per bolt (Figure 2.12);

• The assembled beam have to be wedged between the base and the fastening bloc
using four M10 bolts, in the position shown in Figure 2.13, at a distance of 50mm
from the beam’s base;

• The two accelerometers must be fixed in the position described in Figure 2.8.

2.3.4 Configuration 5: coupling with Type 1 damper, configuration of
4 dampers, two on each side, stacked

• The Type1 damper in Figure 2.14 have to be positioned as in Figure 2.18;

• The upper part of the beam in Figure 2.10 have to be fixed to the bottom part Figure
2.11 using three M10 bolts with a tightening torque of 15Nm per bolt (Figure 2.12);

• The assembled beam have to be wedged between the base and the fastening bloc
using four M10 bolts, in the position shown in Figure 2.13, at a distance of 50mm
from the beam’s base;

• The two accelerometers must be fixed in the position described in Figure 2.8.
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Figure 2.18: Damper position experiment 5

2.3.5 Configuration 6: coupling with Type 1 damper, configuration of
6 dampers, three on each side, stacked

• The Type1 damper in Figure 2.14 have to be positioned as in Figure 2.19;

• The upper part of the beam in Figure 2.10 have to be fixed to the bottom part Figure
2.11 using three M10 bolts with a tightening torque of 15Nm per bolt (Figure 2.12);

• The assembled beam have to be wedged between the base and the fastening bloc
using four M10 bolts, in the position shown in Figure 2.13, at a distance of 50mm
from the beam’s base;

• The two accelerometers must be fixed in the position described in Figure 2.8.

2.3.6 Configuration 7: Type2 damper coupling, 3 damper configuration

• The Type2 damper in Figure 2.20 have to be positioned as in Figure 2.21;

• The upper part of the beam in Figure 2.10 have to be fixed to the bottom part Figure
2.11 using three M10 bolts with a tightening torque of 15Nm per bolt (Figure 2.12);

• The assembled beam have to be wedged between the base and the fastening bloc
using four M10 bolts, in the position shown in Figure 2.13, at a distance of 50mm
from the beam’s base;
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Figure 2.19: Damper position experiment 6

Figure 2.20: Type2 damper

• The two accelerometers must be fixed in the position described in Figure 2.8.

2.3.7 Configuration 8: Type3 damper coupling, 3 damper configuration

• The Type2 damper in Figure 2.22 have to be positioned as in Figure 2.21;

• The upper part of the beam in Figure 2.10 have to be fixed to the bottom part Figure
2.11 using three M10 bolts with a tightening torque of 15Nm per bolt (Figure 2.12);

• The assembled beam have to be wedged between the base and the fastening bloc
using four M10 bolts, in the position shown in Figure 2.13, at a distance of 50mm
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Figure 2.21: Damper position experiment 7

Figure 2.22: Type3 damper

from the beam’s base;

• The two accelerometers must be fixed in the position described in Figure 2.8.

2.4 List of experiments

This section will explain all the experiments carried out:

Experiment 1, Frequency scan 0-900Hz 900-0Hz 0-500Hz 500-0Hz, Configu-
ration 1 - Configuration 2

Aim of the experiment: To obtain a precise visualisation of the beam’s vibration
modes.
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Balayage croissate (Hz) Balayage dècroissante (Hz) octave/minutes Acceleration

0-900 900-0 0,5 1g
0-500 500-0 0,5 1g

Table 2.1: Experiment 1: Experimental parameters

Experiment 2, Frequency scan 0-23Hz, Configuration 1 - Configuration 2 -
Configuration 3 - Configuration 4 - Configuration 5 - Configuration 6 - Con-
figuration 7 - Configuration 8

Aim of the experiment: Comparison of the peak of the Spectrum (where the spectrum
represent the module in frequency domain of the output only) and FRF (where the FRF
represent the module in frequency domain of the output/input ratio) of the damping
factor for the first mode shape.

Configuration Frequency range (Hz) octave/minutes Acceleration

ALL 0-23 0,5 0,8g-1,6g

Table 2.2: Experiment 2: Experimental parameters

Experiment 3, Frequency scan 55-85Hz, Configuration 1 - Configuration 2
- Configuration 3 - Configuration 4 - Configuration 5 - Configuration 6 -
Configuration 7 - Configuration 8

Aim of the experiment: Comparison of the peak of the Spectrum (where the spectrum
represent the module in frequency domain of the output only) and FRF (where the FRF
represent the module in frequency domain of the output/input ratio) in order to evaluate
the variation of the damping factor for the second mode shape.

Configuration Frequency range (Hz) octave/minutes Acceleration

ALL 55-85 0,5 0,8g-1,6g

Table 2.3: Experiment 3: Experimental parameters
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Experiment 4, Frequency scan 0-23Hz, Configuration 1 - Configuration 4 -
Configuration 8

Aim of the experiment: Compare the peaks of the Spectrum and FRF of the best
configurations related to the first mode shape. More specifically, the best results are
obtained by using configuration 4 and configuration 8.

Configuration Frequency range (Hz) octave/minutes Acceleration

1 0-23 0,5 0,8g-1,2g-1,6g
4 0-23 0,5 0,8g-1,2g-1,6g
8 0-23 0,5 0,8g-1,2g-1,6g

Table 2.4: Experiment 4: Experimental parameters

Experiment 5, Frequency scan 55-85Hz, Configuration 1 - Configuration 4 -
Configuration 8

Aim of the experiment: Compare the peaks of the Spectrum or FRF of the best
configurations related to the second mode shape). More specifically, also for the second
mode shape, the best results are obtained by using configuration 4 and configuration 8.

Configuration Frequency range (Hz) octave/minutes Acceleration

1 55-85 0,5 0,8g-1,2g-1,6g
4 55-85 0,5 0,8g-1,2g-1,6g
8 55-85 0,5 0,8g-1,2g-1,6g

Table 2.5: Experiment 4: Experimental parameters
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Summary of experiments:

Configuration Frequency range (Hz) octave/minutes Acceleration

ALL 0-23 0,5 0,8g-1,6g
ALL 55-85 0,5 0,8g-1,6g

1 0-23 0,5 0,8g-1,2g-1,6g
4 0-23 0,5 0,8g-1,2g-1,6g
8 0-23 0,5 0,8g-1,2g-1,6g
1 55-85 0,5 0,8g-1,2g-1,6g
4 55-85 0,5 0,8g-1,2g-1,6g
8 55-85 0,5 0,8g-1,2g-1,6g

Table 2.6: List of experiment
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Chapter 3

FEM and Experimental Tests

3.1 Ansys and Experiments comparison (Config.1, without

dampers)

This section is dedicated to the description of the results obtained through finite element
method carried out on Ansys and the results obtained in the laboratory, concerning
the identification of four modes shapes of the beam. The beam is made of aluminium,
the bolts used are M10 and the global assembly weight is around 0.7 kg. The effect of
gravity is not taken into account because the beam oscillates in a vertical position and
the displacement of the centre of mass is negligible.

The images in Figure 3.1, Figure 3.2 and Figure 3.3 show the technical drawing of
the beam and the real assembled beam

3.1.1 Ansys Simulation

The simulation on Ansys was carried out starting from the beam model produced by
CAD on SolidWorks Figure 1. As far as the boundary conditions are concerned it should
be pointed out that, as can be read in the experimental protocol, the beam is wedged
between the base (Figure 2.5) and the fixing block (Figure 2.7) at a depth of 50 cm,
therefore in order to realize a simulation of the wedging as similar as possible to the
real condition, the constraint was applied to the two faces of the lower part of the beam
starting from the lower side and up to a height of 50 cm (Figure 3.4).

At the interface between the two beam sections, since the configuration analysed is the
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Figure 3.1: Lower part of the beam

Figure 3.2: Upper part of the beam

Figure 3.3: Real beam

one without dampers, an interlocking boundary condition was applied in all directions.
The next step was to simulate the sinusoidal sweep, imposing a base displacement along
the z-axis Figure 3.5.

Simulation Results:
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Figure 3.4: Ansys: Simulation of the constraint

Figure 3.5: Ansys: Simulation of the constraint
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Figure 3.6: First natural frequency

Figure 3.7: Second natural frequency

Mode 1 (Hz) Mode 2 (Hz) Mode 3 (Hz) Mode 4 (Hz)

14,9 92,71 257,39 501

Table 3.1: Ansys simulation results

3.1.2 Experiment frequency sweep

As shown in Table 2.1, four experiments are carried out at a fairly small scanning speed
in order to clearly identify and separate the mode shapes of the beam. It can also be
noted that, in order to assess the degree of non-linearity of the system, the scanning is
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3.1 – Ansys and Experiments comparison (Config.1, without dampers)

Figure 3.8: Third natural frequency

Figure 3.9: Fourth natural frequency

carried out in both increasing and decreasing frequency directions.

The physical reason for this choice is due to the assumption of "non-linearity" of the
system; in this case it is necessary to evaluate the spectrum obtained in the two scanning
directions because, despite being the same component and so the same system, the results
can be very different.

To be more precise an example of spectrum of a non-linear system is shown below:
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Figure 3.10: Spectrum of a non linear system, [Oscillateur non linéaire à un dégrée de
liberté Stefania LO FEUDO, Jean-Luc DION 2021/2022]

The rising sweep is characterised by a very sharp drop after the resonance peak, on
the other hand, the descending sweep is characterised by a more gradual rise.

3.1.3 Experimental results

The graphs shown in this section represent the spectrum of the acceleration signal ob-
tained at the free end. Moreover, within the graphs there are two curves, one blue and
one red, which refer to the increasing and decreasing frequency sweep respectively.

By zooming in on the peaks of the first mode and the second mode shapes Figure
3.12, it can be seen that for both, the red curves are shifted to the right with respect to
the blue curves and this result confirms the non-linearity of the system.

The graph in Figure 3.13 is shown because it can be seen a slight peak at around 900
Hz, but this is completely negligible compared to those obtained at lower frequencies

Mode 1 (Hz) Mode 2 (Hz) Mode 3 (Hz) Mode 4 (Hz)

12,74 71,48 201,3 417,8

Table 3.2: Experimental results
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3.1 – Ansys and Experiments comparison (Config.1, without dampers)

Figure 3.11: Sweep 0-500 Hz

(a) Zoom first natural frequency, Sweep 0-500 Hz (b) Zoom second natural frequency, Sweep 0-500
Hz

Figure 3.12: Zoom in the peaks

3.1.4 Conclusion: Ansys-Experiment comparison

It can be concluded from the results obtained that the simulation returns bigger
frequency values than those obtained by simulation for some reasons:

• The simulation model does not include the bolts which, being made of steel, cause
a large percentage increase in the weight of the beam, which in the meantime
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Figure 3.13: Sweep 0-900 Hz

Figure 3.14: Frequency and Module of Acceleration of the mode shapes
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3.1 – Ansys and Experiments comparison (Config.1, without dampers)

- Mode 1 (Hz) Mode 2 (Hz) Mode 3 (Hz) Mode 4 (Hz)

EXPERIMENT 12,78 71,35 201,3 417,7
ANSYS 14,9 92,71 257,39 501

Table 3.3: Ansys-Experiment comparison

contributes to a change in the resonance frequency of the system (the k
m ratio

increases);

• The three-bolt joint simulated on Ansys is a perfect wedge and therefore tends to
increase the stiffness of the structure by shifting the frequency response curve on
the right;

• The tightening conditions at the interlocking between the base and the beam can
never be perfect wedge and therefore this causes a variation in the stiffness of the
system.

Note that the effect of resonance frequency variation increases as the excitation fre-
quency of the base increases.
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3.2 Experimental results (configurations with dampers)

The results shown in this section refer to the experiments listed in the chapter "Experimental
protocol" of which the following table is provided:

Configuration Frequency range (Hz) octave/minutes Acceleration

ALL 0-23 0,5 0,8g-1,6g
ALL 55-85 0,5 0,8g-1,6g

Table 3.4: Experiment performed on the 8 configurations

Before showing the results, it is essential to point out that, due to the great sensitivity
of the system to variations in experimental conditions, all the curves represented in each
graph refer to experimental tests conducted on the same day at a well-defined temperature
of the beam maintained around a range of "±5°C" and controlled by the thermocouple
Figure 2.9. Therefore, it may not make sense to compare the absolute values of the
various graphs with each other, but it is necessary to evaluating the curves in relation to
the configuration without dampers present on each graph. Moreover, is recommended to
apply a tightening torque of at least 15Nm, as any lower torque could result in unscrewing
during the experimental tests.

The effect of varying the tightening torque was evaluated on configuration 1 and led
to the results shown in Figure 3.15:

As can be seen from the graph in Figure 3.15, as the tightening torque increases, the
curve shifts to the right since at the same time an increase occurs in stiffness and thus
the natural resonance frequency of the system increases.

Brief remind of the confgurations:

• Configuration 1: Coupling without dampers;

• Configuration 2: Coupling with Type1 damper, configuration of 2 dampers, one
on each side;

• Configuration 3: Coupling with Type 1 damper, configuration of 4 dampers, two
on each side, in phase;
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Figure 3.15: Spectrum of Configuration 1 with different tightening torque

• Configuration 4: coupling with Type 1 damper, configuration of 4 dampers, two
on each side, in counterphase;

• Configuration 5: Coupling with Type1 damper, configuration of 4 dampers,two
on each side, stacked;

• Configuration 6: Coupling with Type 1 damper, configuration of 6 dampers,
three on each side, stacked;

• Configuration 7: coupling with Type 2 damper, configuration of 3 dampers;

• Configuration 8: coupling with Type 3 damper, configuration of 3 dampers;
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3.3 Comparison 1

3.3.1 First mode shape, frequency responce, 0,8g

Mode Shape Configuration Frequecy Range (Hz) Acceleration (g)

1 1,2,3,4 3-23 0,8

Table 3.5: First mode shape, frequency responce, 0,8g

Figure 3.16: First mode shape, frequency responce, 0,8g
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3.3.2 First mode shape, frequency responce, 1,6g

Mode Shape Configuration Frequecy Range (Hz) Acceleration (g)

1 1,2,3,4 3-23 1,6

Table 3.6: First mode shape, frequency responce, 1,6g

Figure 3.17: First mode shape, frequency responce, 1,6g
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3.3.3 Second mode shape, frequency responce, 0,8g

Mode Shape Configuration Frequecy Range (Hz) Acceleration (g)

2 1,2,3,4 55-85 0,8

Table 3.7: Second mode shape, frequency responce, 0,8g

Figure 3.18: Second mode shape, frequency responce, 0,8g
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3.3 – Comparison 1

3.3.4 Second mode shape, frequency responce, 1,6g

Mode Shape Configuration Frequecy Range (Hz) Acceleration (g)

2 1,2,3,4 55-85 1,6

Table 3.8: Second mode shape, frequency responce, 1,6g

Figure 3.19: Second mode shape, frequency responce, 1,6g
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3.3.5 First mode shape (12,8 Hz), Acceleration 0,8g 1,6g

Figure 3.20: Configuration 1,2,3,4, FRF "Mode shape 1" compared under different input
excitations (Acc 0,8g-1,6g)

Figure 3.21: Configuration 1,2,3,4, Spectrum "Mode shape 1" compared under different
input excitations (Acc 0,8g-1,6g)
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3.3.6 Second mode shape (71 Hz), Acceleration 0,8g 1,6g

Figure 3.22: Configuration 1,2,3,4, FRF "Mode shape 2" compared under different input
excitations (Acc 0,8g-1,6g)

Figure 3.23: Configuration 1,2,3,4, Spectrum "Mode shape 2" compared under different
input excitations (Acc 0,8g-1,6g)
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3.3.7 Conclusions

From the results obtained, it can be stated that:

• For both vibration modes, a greater decrease in response is obtained by exciting
the system with an acceleration of 0.8g;

• The graphs in Figure 3.23 and Figure 3.22 show that the system’s response varies
as the input changes, and this behaviour is typical of a non-linear system;

• As regards the experiments carried out with an acceleration equal to 1.6g, it is
evident that there is a reduction in the resonance frequency rather than a reduction
in the response amplitude;

• In all comparisons, except Second mode shape (71 Hz) Acceleration 1.6g 0.2 oc-
t/min, configuration 4 is the most effective as it provides the greatest reduction
of both resonant frequency and peak response.
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3.4 Comparison 2

3.4.1 First mode shape, frequency responce, 0,8g

Mode Shape Configuration Frequecy Range (Hz) Acceleration (g)

1 1,5,6,7,8 3-23 0,8

Table 3.9: First mode shape, frequency responce, 0,8g

Figure 3.24: FRF first mode shape, frequency responce, 0,8g
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3.4.2 First mode shape, frequency responce, 1,6g

Mode Shape Configuration Frequecy Range (Hz) Acceleration (g)

1 1,5,6,7,8 3-23 1,6

Table 3.10: First mode shape, frequency responce, 1,6g

Figure 3.25: FRF first mode shape, frequency responce, 1,6g
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3.4.3 Second mode shape, frequency responce, 0,8g

Mode Shape Configuration Frequecy Range (Hz) Acceleration (g)

2 1,5,6,7,8 55-85 0,8

Table 3.11: Second mode shape, frequency responce, 0,8g

Figure 3.26: FRF second mode shape, frequency responce, 0,8g
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3.4.4 Second mode shape, frequency responce, 1,6g

Mode Shape Configuration Frequecy Range (Hz) Acceleration (g)

2 1,5,6,7,8 55-85 1,6

Table 3.12: Second mode shape, frequency responce, 1,6 g

Figure 3.27: FRF second mode shape, frequency responce, 1,6g
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3.4.5 First mode shape (12,8 Hz), Acceleration 0,8g-1,6g

Figure 3.28: Configuration 1,5,6,7,8, FRF "Mode shape 1" compared under different input
excitations (Acc 0,8g-1,6g)

Figure 3.29: Configuration 1,5,6,7,8, Spectrum "Mode shape 1" compared under different
input excitations (Acc 0,8g-1,6g)
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3.4.6 Second mode shape (71 Hz), Acceleration 0,8g-1,6g

Figure 3.30: Configuration 1,5,6,7,8, FRF "Mode shape 2" compared under different input
excitations (Acc 0,8g-1,6g)

Figure 3.31: Configuration 1,5,6,7,8, Spectrum "Mode shape 2" compared under different
input excitations (Acc 0,8g-1,6g)
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3.4.7 Conclusions

From the results obtained, it can be stated that:

• Regarding the first mode shape, all the configurations do not have a significant
effect on the variation of the FRF peak;

• For the second mode shape the Type 3 damper (configuration 8) is the
most effective, in fact, the FRF peak of the curves obtained with an input of
0.8g and 1.6g are much smaller than the respective responses obtained through the
other configurations.

Finally, it can be concluded that the two best configurations are configuration 4
and configuration 8.

Post-processing of the data will be performed on these two configurations to extract
the modal parameters and thus obtain an estimate of the damping factor.
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Chapter 4

Extraction of modal parameters

Introduction

Once the best configurations were chosen, new experiments were performed in order to
have further results on which apply the modal parameter extraction methods.

The configurations analysed, in addition to the configuration without damper, are
configuration 4 and configuration 8.

The tests were carried out on different days in order to ensure that the shaker worked
under the best possible conditions. For each simulation with damper, reference is made
to the simulation without the damper carried out on the same day under the most similar
working conditions possible.

(a) Configuration 4 (b) Configuration 8

Figure 4.1: Best solutions
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Extraction of modal parameters

Mode shape 1, Configuration 1,4,8

FRF

(a) Global result

(b) Acceleration 0,8g (c) Acceleration 1,2g (d) Acceleration 1,6g

Figure 4.2: FRF of mode shape 1, configuration 1,4,8

Results

As can be seen from the graphs shown, the reduction in maximum acceleration amplitude
due to the presence of the dampers is very small compared to the maximum peak value,
so it is possible to conclude that an increase in damping has been achieved, but the effect
is not very significant. What can also be confirmed is the repeatability of the results, as
the trend of the curves is practically the same for the tests carried out on different days;
configuration 4 is the one that provides the best damping effect.
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Mode shape 2, Configuration 1,4,8

FRF

(a) Global result

(b) Acceleration 0,8g (c) Acceleration 1,2g (d) Acceleration 1,6g

Figure 4.3: FRF of mode shape 2, configuration 1,4,8

Results

The experiments performed on the second mode shape are particularly interesting, as it
can be seen that as the input acceleration varies and the configuration changes, both the
maximum acceleration amplitude and the resonance frequency vary considerably. Again,
configuration 4 provides maximum peak reduction.
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Extraction of modal parameters

4.1 "-3dB" Method

Introduction

The first method used to obtain a damping estimate is the so-called ’-3dB method’ or
’power halving method’.

It should be noted that this method gives an exact estimate of the damping when
the system is linear and the FRF curve is perfectly symmetrical. In the case studied, the
system is not perfectly linear and in fact the spectrum is not symmetrical with respect
to the resonance frequency. However, there are methods that can be used for non-linear
systems that allow, through a small correction, a more accurate estimate of the damping
while using the -3dB method [6]. To apply the method, the spectrum (output only) and
the FRF (output/input) was taken into account. To have an idea of the non-linearity
of the system and how the damping factor was evaluated, an example of the calculation
performed for configuration 1, on the second mode shape, is presented below:

Figure 4.4: FRF mode shape 2, configuration 1, "-3dB" Method, 0,8g
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4.1 – "-3dB" Method

Figure 4.5: FRF mode shape 2, configuration 1, "-3dB" Method, 1,2g

Figure 4.6: FRF mode shape 2, configuration 1, "-3dB" Method, 1,6g
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Extraction of modal parameters

The damping factor was obtained using the canonical formula of the ’-3dB’ method
Equation 4.1, and two other formulas suggested in the literature [6] in which corrections
are applied to account for the non-linearity of the system:

ζ1 = (ω2 + ω1)(ω2 − ω1)
2ω2

res

(4.1)

ζ2 = (ω2
2 − ω2

1)(1 + p)
(ω2

2 + ω2
1)

√︂
1
r2 − 1

(4.2)

ζ3 =

√︂
1+rp
1+p (ω2 − ω1)

ωres
(4.3)

Where:

• r is the factor equal to
√

2 for the -3dB method

• p is the term for the correction factor which can be obtained by means of the
following graph in Figure 4.7 (A value of p = 0.02 was taken into account in the
calculation.)

Figure 4.7: Typical graphs obtained for different values of the p coefficient [6]
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4.1 – "-3dB" Method

4.1.1 Results

The result of the calculation performed on both vibration modes of the beam for the
three configurations and for the three different input excitation levels is shown in Table
4.1, Table 4.2, Table 4.3, Table 4.4.

Mode Shape 1 "Spectrum" Acceleration (g) ζ1 ζ2 ζ3

0,8 3,5% 3,61% 3,5%
Configuration 1 1,2 4,5% 4,62% 4,5%

1,6 5,4% 5,54% 5,4%

0,8 3,7% 3,76% 3,7%
Configuration 4 1,2 4,7% 4,87% 4,7%

1,6 5,8% 5,95% 5,8%

0,8 3,7% 3,8% 3,7%
Configuration 8 1,2 4,6% 4,73% 4,6%

1,6 5,6% 5,72% 5,6%

Table 4.1: Mode shape 1 "Spectrum", Damping ratio, 0,8g-1,2g-1,6g

Mode Shape 1 "FRF" Acceleration (g) ζ1 ζ2 ζ3

0,8 2,59% 2,64% 2,59%
Configuration 1 1,2 2,03% 2,09% 2,04%

1,6 1,98% 2,03% 1,98%

0,8 2,58% 2,63% 2,58%
Configuration 4 1,2 1,77% 1,82% 1,78%

1,6 1,96% 2,01% 1,96%

0,8 2,5% 2,59% 2,52%
Configuration 8 1,2 1,9% 1,95% 1,9%

1,6 1,8% 1,89% 1,81%

Table 4.2: Mode shape 1 "FRF, Damping ratio, 0,8g-1,2g-1,6g
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Mode Shape 2 "Spectrum" Acceleration (g) ζ1 ζ2 ζ3

0,8 1,15% 1,18% 1,15%
Configuration 1 1,2 1,3% 1,33% 1,3%

1,6 1,45% 1,48% 1,45%

0,8 1,32% 1,35% 1,32%
Configuration 4 1,2 1,41% 1,45% 1,41%

1,6 1,56% 1,59% 1,56%

0,8 1,25% 1,28% 1,25%
Configuration 8 1,2 1,38% 1,41% 1,38%

1,6 1,50% 1,54% 1,50%

Table 4.3: Mode shape 2, "Spectrum", Damping ratio, 0,8g-1,2g-1,6g

Mode Shape 2 "FRF" Acceleration (g) ζ1 ζ2 ζ3

0,8 1,14% 1,17% 1,14%
Configuration 1 1,2 1,31% 1,33% 1,31%

1,6 1,44% 1,47% 1,43%

0,8 1,30% 1,33% 1,30%
Configuration 4 1,2 1,41% 1,44% 1,41%

1,6 1,56% 1,60% 1,56%

0,8 1,25% 1,28% 1,25%
Configuration 8 1,2 1,37% 1,40% 1,37%

1,6 1,51% 1,55% 1,51%

Table 4.4: Mode shape 2, "FRF", Damping ratio, 0,8g-1,2g-1,6g

Conclusions

From the results in the tables, it can be observed that the damping values obtained by
applying the method to the spectrum of the first mode shape are much higher than those
obtained by applying the method to the FRF of the first mode shape. The FRF, in fact,
was purposely evaluated with respect to the accelerometer placed at the interlocking in
order to filter out the response from the effect of the base damping.

The reason could be due to the fact that the first mode shape is strongly influenced
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4.1 – "-3dB" Method

by the presence of the constraint and therefore by the damping contribution of the base
(hence the reason for the higher values); there are some technical guidelines that even
prohibit the use of the first mode shape for the determination of the damping factor and
in this case there is good evidence in the discrepancy of the results. A relevant point
is that the result obtained using Equation 1 and Equation 3 is exactly the same even
though Equation 3 is written taking into account the correction factor p.

Concerning the second mode shape, the results obtained by applying the method to
the spectrum and FRF are quite similar.

The fact that the system is non-linear can be deduced from the fact that as the
excitation level changes for each configuration, the value of the damping factor changes,
and so, in order to assess the greatest increase in the damping factor, the average is taken
for each configuration.

The highest factor increase is achieved with configuration 4, and the result is following:

Mode Shape 2 ζavg

Configuration 1 1,30%
Configuration 4 1,43%

∆ζ 10%

Table 4.5: Mode shape 1, Damping ratio, 0,8g-1,2g-1,6g

Therefore, it can be concluded that through the ’-3dB’ method, the estimated damp-
ing increase is 10%. It must be noted that the difficulties experienced in applying the
"-3dB" method are various, and in particular one must take into account the fact that
the spectrum signal rather than the FRF obtained in the laboratory is the result of ap-
proximations due to the conversion from analogue to digital and from time domain to the
frequency domain through a Fourier Transform. This can result in an error in the deter-
mination of the resonance peak with a consequent error in finding the two frequencies at
-3dB. Furthermore, to obtain a more precise estimate, one would have to perform several
calculations by changing the dB number, but this is not always feasible, especially if the
curve is not perfectly symmetrical.

In a case like the one studied, it might also be a good solution to adopt a different
method of extracting modal parameters in order to be able to compare the results and
have a better estimate of the damping factor.
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4.2 "Dahl" method

Introduction

As already mentioned in chapter 1, Dahl’s method is a very effective method for estimating
the damping contribution generated by friction. In this case, in fact, it does not deal with
viscous damping, but with hysteretic damping, obtained through energy dissipation due
to relative motion between two surfaces. To evaluate the equivalent viscous damping
factor, the literature [2] suggests to consider the hysteresis cycle areas that identify the
energy dissipated and the work of the external force due to the friction between the
dampers and the beam.

In detail:

ηeq = Ediss

πWext
(4.4)

Where, as can be seen in Figure 4.8 :

• Ediss corresponds to an half of the hysteresis loop area (blue one);

• Wext corresponds to the maximum stored elastic energy ”0.5 · Fmax · xmax” (red
one).

Figure 4.8: Hystereic cycle [2]

Moving more specifically into the schematisation of the system, since the experiments
were carried out imposing as input the displacement of the base of the beam, a forced
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harmonic oscillator subjected to base excictation has been taken into account as a model.
One of the first steps in determining the damping factor is to find an analytical model
that can simplify the real system.

The beam we are dealing with can be schematised as follows (Figure 4.9), since the
joint can be supposed as "n" springs in parallel,

Figure 4.9: Beam scheme [1]

and therefore, since the system input is a horizontal sine sweep, a reasonable model
could be the mass-spring-damper system forced by a base displacement:

Figure 4.10: Mass-Spring-Damper system

The generic equation of motion the mass "m" fot this kind of system (Figure 4.10)
can be written as follows:

mz̈ + cż + kz = ky (4.5)

Where, referring to the real system :

• m is the modal mass;
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• k is the modal stiffness;

• z̈ is the acceleration of the free end;

• z is the displacement of the free end;

• y is the displacement of the base;

• cż is the dissipating term which, referred to the Dahl model, corresponds to the
friction force Ff .

So, the final equation of the system (Figure 4.11) can be written as:

Figure 4.11: Mass-Spring-Non-Linear Spring system

mz̈ + Ff + kz = ky (4.6)

The objective to be achieved is to know the trend of the force Ff as a function of
the displacement z, since the graphical representation of this is precisely the hysteresis
loop which allows the damping factor to be determined. About the Equation 4.6 the only
known term is the acceleration z̈ (as it was acquired during the experiments).

In order to determine the force Ff , one must first evaluate the modal mass and modal
stiffness, the displacement x and the displacement y, and at this point, it is possible to
isolate the friction force Ff and evaluate its trend as a function of displacement z.

Ff = ky − mz̈ − kz (4.7)
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4.2 – "Dahl" method

Extraction of Modal Mass and Modal Stiffness

In order to evaluate the modal mass and modal stiffness, configuration 1 of the beam
was considered and two experiments were performed for each mode shape, imposing two
different boundary conditions on the beam.

The first experiment was carried out as usual, exciting the system in the frequency
range close to resonance, thus obtaining a result practically equal to those obtained from
the experiments carried out previously; the second experiment was carried out within the
same frequency range, but positioning a mass of 57g at the free end.

(a) (b)

Figure 4.12: Position of the added masss

The result of the two experiments is necessarily different, as the addition of the mass
causes a decrease in the ratio k

m and thus a decrease in the resonance frequency compared
to the original configuration.

Assuming the modal stiffness constant in the two experiments, it is possible to solve
a system of two equations in two unknowns, where the unknowns are the modal mass
and modal stiffness, known the two resonance frequencies from the frequency response
function graph and the value of the added mass.

The system of equations is the following:
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⎧⎪⎨⎪⎩
f1 =

√︂
k
m

f2 =
√︂

k
m+∆m

(4.8)

with ∆m = 57g

Moreover, to have an idea of the accuracy of the experimental results, a simulation
was carried out on Abaqus to evaluate the resonance frequencies of the beam in the two
configurations (with and without mass in the free end) for the first and second modes
shapes.

4.2.1 Result Mode shape 1

Figure 4.13

The Abaqus simulation results are shown in figure:
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Figure 4.14: Mode shape 1 without added mass

Figure 4.15: Mode shape 1 with added mass

Modal mass and modal stiffness values have been derived from the following system
of equations

⎧⎪⎨⎪⎩
f1 =

√︂
k
m

f2 =
√︂

k
m+∆m

(4.9)
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- Added Mass Frequecy (Hz) Modal mass (kg) Modal stiffness (N
m)

Experiment NO 11.12 0.306 1.4 · 103

Abaqus NO 11.955 0.078 0.4 · 103

Experiment YES 10.20 0.306 1.4 · 103

Abaqus YES 9.0817 0.078 0.4 · 103

Table 4.6: First mode shape

4.2.2 Result Mode shape 2

Figure 4.16

The Abaqus simulation results are shown in figure:
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Figure 4.17: Mode shape 2 without added mass

Figure 4.18: Mode shape 2 with added mass

Modal mass and modal stiffness values have been derived from the following system
of equations:

⎧⎪⎨⎪⎩
f1 =

√︂
k
m

f2 =
√︂

k
m+∆m

(4.10)
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- Added Mass Frequecy (Hz) Modal mass (kg) Modal stiffness (N
m)

Experiment NO 69.2 0.101 1.9 · 104

Abaqus NO 68.893 0.058 1 · 104

Experiment YES 55.2 0.101 1.9 · 104

Abaqus YES 48.868 0.058 1 · 104

Table 4.7: Second mode shape

4.2.3 Displacement computation

At that point, knowing the mass and modal stiffness for the two mode shapes, to derive
the force expression Ff you must derive the displacement z of the free end and the
displacement of the base.

Considering a generic experiment of those performed, the calculation of the base and
free end displacement as a function of time must be based on the acceleration signal.

Actually, considering the acceleration signal locally as a sinusoidal signal with con-
stant amplitude and frequency, displacement and acceleration differ from each other by a
constant equal to ω2, where ω is the angular frequency of oscillation of the system. This
solution could be obtained by solving the following generic system of equations:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x(t) = x0eiωt

ẋ(t) = iωx0eiωt

ẍ(t) = −ω2x0eiωt

From the first and third equations it’s possible to obtain the desired formula:

ẍ(t) = −ω2x(t) (4.11)

To obtain the value of ω in the time interval considered, it is sufficient to know the
sampling frequency, which in the experiments performed is known and equal to 2048 Hz,
the number of periods taken into account and the total number of points of the interval.

The reason why it was possible to assume that the acceleration is a sinusoidal signal
with constant frequency and amplitude is due to the fact that, given the low sweep speed
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(0.5 octave/min for the first mode shape and 0.2 octave/min for the second mode shape),
selecting a sufficiently small number of oscillations, the signal respects the assumptions
already made.

A problem to be solved in order to make the above assumptions as close as possible to
the real condition, is related to the noise due to the higher order frequencies. As can be
seen from the image in Figure 4.20a, in fact, at the resonance peak a lot of noise perturbs
the signal and therefore in order to attenuate it a low pass filter at 120 Hz was used.

The filtered signal assumes the shape in Figure 4.20b and Figure 4.20d and thus,
selected an appropriate number of periods, the initial assumptions of constant frequency
and amplitude of oscillations are valid.

The graphs in Figure 4.19 show the effect of the low-pass filter applied to the free end
acceleration signal.

Figure 4.19: Low pass filter effect, configuration 8

89



Extraction of modal parameters

(a) Real free end Acceleration (b) Filtered free end Acceleration

(c) Real base Acceleration (d) Filtered base Acceleration

Figure 4.20: Real and filtered Acceleration

The results will be presented in the following order:

• Configuration 1: Free end acceleration and free end position, base acceleration
and base position (Figure 4.21 and Figure 4.22);

• Configuration 4: Free end acceleration and free end position, base acceleration
and base position (Figure 4.23 and Figure 4.24);

• Configuration 8: Free end acceleration and free end position, base acceleration
and base position (Figure 4.25 and Figure 4.26).
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4.2 – "Dahl" method

Configuration 1

(a) Acceleration free end (b) Position free end

Figure 4.21: Free end coordinate 1

(a) Acceleration of the base (b) Position of the base

Figure 4.22: Base coordinate 1
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Configuration 4

(a) Acceleration free end (b) Position free end

Figure 4.23: Free end coordinate 4

(a) Acceleration of the base (b) Position of the base

Figure 4.24: Base coordinate 4
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Configuration 8

(a) Acceleration free end (b) Position free end

Figure 4.25: Free end coordinate 8

(a) Acceleration of the base (b) Position of the base

Figure 4.26: Base coordinate 8

4.2.4 Computation of the damping factor

At that point, knowing the modal mass, modal stiffness, acceleration and displacements,
it is possible to calculate, for each configuration, the force Ff as a function of the dis-
placement z.

It should be noted that the damping factor was only estimated for the second mode
shape, as the simplification of the system in Figure 4.11 is only valid in the case of small
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oscillations. The first mode shape is characterised by a large free end displacement and
therefore the modelling of a base excitation is meaningless for it.

Below are represented the hysteresis cycles for the three configurations obtained con-
sidering a modal stiffness of 1.9 · 104 N

m

Figure 4.27: Hysteresis cycle Conf. 1

Figure 4.28: Hysteresis cycle Conf. 4
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Figure 4.29: Hysteresis cycle Conf. 8

The final calculation of the damping factor has taken into account the great sensitivity
of the system to varying modal stiffness. From Table 4.7 it can be seen that the real and
numerical modal stiffness values are significantly different. For this reason, in a first step,
it was decided to average the damping value obtained when the stiffness varies in the
range of values between the real and numerical value. The result is shown in Figure 4.30.

Figure 4.30: Average of damping ratios between minimum and maximun modal stiffness
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Configuration Modal stiffness (N
m) ηavg

1 1.7 · 104 2.91%
4 1.72 · 104 3.67%
8 1.72 · 104 3.58%

Table 4.8: Average damping ratio

At that point, by intersecting each mean value with the related curve, the new range
to average the three curves was set. In particular, the average was performed into a range
of stiffness between 1.7 · 104 N

m and 1.72 · 104 N
m . The result is shown in Figure 4.31.

Figure 4.31: Average damping factor for a value of modal stiffness between 1.7 ·104 N
m and

1.72 · 104 N
m

Within the new range, ∆ηavg was evaluated between configuration with damper and
without damper.The result is shown in Figure 4.32 and as can be read from the graph,
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the ∆η corresponds to 24.04% for configuration 4 and 21.5% for configuration 8.

Figure 4.32: ∆ηavg

Results

Mode Shape 2 ηavg ∆ηavg

Configuration 1 2.96% -%
Configuration 4 3.67% 24.04%
Configuration 8 3.59% 21.5%

∆ηavg,max - 24.04%

Table 4.9: Mode shape 2, Dahl method results

As can be seen from the table summarising the results, Table 4.9, configuration 4 is
the one that provides, as in the analysis using the ’-3dB Method’, the greatest increase
in damping, although configuration 8 returns values not far different.
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Chapter 5

Conclusions

The aim of this research project was to evaluate the variation of the damping factor of
a non-linear system in which friction dampers were introduced to dissipate energy and
reduce the vibrations transferred to the structure. A well-performed data analysis must
be based on strong assumptions under well-controlled experimental conditions. It must
therefore be taken into account that the experiments carried out to estimate the mass and
modal stiffness were performed on the beam at the end of its life. Due to the phenomenon
of fatigue damage, the beam exhibits a crack half the size of its thickness. This has
certainly caused a decrease in the stiffness of the structure and this is demonstrated by the
fact that the resonance peak of configuration 1 has decreased from 12.78Hz (experiment
with the uncracked beam) to 11.12Hz for the first mode shape and from 71.35Hz to
69.25Hz for the second mode shape. For these reasons, the calculation of the damping
factor using the Dahl method was calculated as the average of that obtained by varying the
modal stiffness over a wide range of values. Another result that is considered weak is the
large discrepancy between the resonance frequency value obtained between experiments
and simulation with the mass at the free end; this difference may be due to a difference
in the shape of the simulated mass which, due to inertia, modifies the response of the
beam. One solution to attempt to obtain more accurate results than the experimental
ones may therefore be to simulate a notch in the beam at the wedge and decrease the
size of the added mass by increasing its density.

A relevant detail is also the inappropriate use of the "-3dB Method" applied to non-
linear systems, since the dissymmetry of the FRF curve causes a great underestimation of
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the damping factor; the difference obtained with the two methods is in fact close to 100In
conclusion, given that the system responded consistently to the modifications made, it
would be interesting to extend this study to a real industrial application so that the real
structural effect of the solutions found can be assessed more appropriately.
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