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Abstract

The efficiency of a lifting surface depends, among various things, on the downstream
wake. In addition, the overall efficiency of an aircraft is strongly influenced by the
wake of the lifting surfaces itself. This effect is evident if we consider the topic
of propeller-based vehicles, which is nowadays widely gaining momentum in the
community. Due to this increasing interest in the electric distributed propulsion
for urban air mobility and UASs, it is relevant to find a fast yet reliable tool, to
evaluate the performance of such propellers. Nevertheless, analyzing of the flow
field downstream of the propeller is a complex and time-demanding task, especially
in the early stages of the design process, where an incorrect evaluation of these
effects may have repercussions on many aspects of the project.

This thesis proposes a relatively fast yet accurate algorithm to evaluate the flow
field downstream of the propeller, based on the Vortex Particle Method, which
became popular in the early 90s. The calculation performed by this method, the N
body problem, involves a computational cost of O(N2

p ), where Np is the number of
particles. In order to reduce the computational cost to O(Np), I implemented a
Fast Multipole Method algorithm (FMM). FMM represents a vital tool to achieve
acceptable computation times and possibly represents the key feature that makes
this code a great compromise between the accuracy and the computational time.

I have studied the integration of the FMM algorithm, written in C++, and the
VPM code, written in MATLAB, to ensure that the communication between both
codes does not represent a problem. In addition, I performed several simulations
to check both the temporal advantage in the usage of the FMM and the method’s
accuracy.

Moreover, throughout the entire work, I did a thorough validation and verification
to ensure the best accuracy of the models used and the correct behavior of the
code under all the possible configurations, both for the VPM code itself and the
FMM integration.

I am currently working on coding the tool into a stand-alone APP with a simple
and understandable graphic user interface (GUI) to easily allow any user to use
this code, even without a MATLAB license. This will help the diffusion of the code
in the scientific community.
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Chapter 1

Introduction

The purpose of the following dissertation is to explain the work done behind the
development of a viscous Vortex Particle code, to evaluate the downstream wake of
a lifting surface (propellers, rotors, wings, etc.), and the performances of the latter.
The code is a Vortex Particle Method version of a pre-existing one, which has been
developed by Alì[1] and which uses the Lifting Line Theory instead of VPM to
evaluate the downstream wake.
The main goal of the thesis has therefore been the development of a suitable
alternative routine that can be implemented in the code of Alì. The reader is
anyway suggested to refer to Alì’s thesis to have a complete overview of the LLT
and his version of the code.

The main reason for using the Vortex Particle Method instead of others relies upon
the following advantages:

• It is a direct and meshless method.

• It is immune to numerical diffusion.

• The number of particles is easily adapted to the flow complexity.

• It is suitable for both internal and external flows.

• It has a considerable calculation speed (if FMM is implemented).

• It is GPU and CPU parallelizable and scalable.

It has a few major drawbacks, such as the divergence-free condition of the flowfield
which is not automatically satisfied, but in the following chapters, there will be
presented adequate methods to avoid or mitigate those drawbacks.
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Introduction

As previously stated, a good calculation speed is achieved through the usage
of a particular acceleration algorithm, named Fast Multiple Method. The FMM is
considered to be one of the top 10 algorithms of the 20th century by the Society
for Industrial and Applied Mathematics (SIAM). Therefore, an FMM code has
been implemented, to reduce the computational complexity to O(N2

p ) to O(Np),
where Np is the number of particles whose interaction due to all of them has to be
computed.

The VPM code is written in MATLAB, the FMM code implemented is the ex-
aFMM[2] (although it has been also investigated the possibility to use another one,
called "BBFMM3D"[3]), so an ad hoc and suitable interaction between VPM and
FMM have been developed, to ensure both the correct behavior of the calculation
(with a relative error wrt the exact calculation of a few millesimal point) and that
the link does not add so much time to the global computation.

1.1 Theoretical background
The first key topic which needs to be discussed is, to correctly understand the
functioning and the potentiality of a VPM code, the theoretical background behind
the governing equations that will be derived and discussed in the chapter 3.

1.1.1 Navier Stokes equations for an incompressible flow
The governing equations in a three-dimensional incompressible flow are the Navier
- Stokes equations: the continuity scalar equation 1.1 and the momentum vectorial
equation 1.2.

∇ · u⃗ = 0 (1.1)

∂u⃗

∂t
+ (u⃗ · ∇)u⃗ = −∇p

ρ
+ ν∇2u⃗ (1.2)

In those equations, the fluid velocity u⃗ is the unknown quantity, where p is the
pressure, ρ the density, and ν the kinematic viscosity.

However, as will be explained in the following chapters, the VPM describes the
motion of the fluid through a Lagrangian approach, so it is necessary to write
equation 1.2 in a Lagrangian form.
Remarking that the so-called lagrangian derivative is

D

Dt
= ∂

∂t
+ u⃗ · ∇

2



Introduction

Where, the eulerian derivative is ∂
∂t

, we can write equation 1.2 as

Du⃗

Dt
= −∇p

ρ
+ ν∇2u⃗ (1.3)

Calling vorticity the curl of velocity vector ω⃗ = ∇ × u⃗ and using the identity of

u⃗ × ω⃗ = ∇u⃗2

2 − u⃗ · ∇u⃗

It can be written that, from 1.2

∂u⃗

∂t
+ ∇u⃗2

2 − u⃗ × ω⃗ = −∇p

ρ
+ ν∇2u⃗ (1.4)

After some trivial algebraic manipulations, one can obtain the following equation.

∂u⃗

∂t
= u⃗ × ω⃗ − 1

ρ
∇
3

p + 1
2ρu⃗2

4
+ ν∇2u⃗ (1.5)

By taking the curl and using the identities ∇ × (∇ϕ) = 0 (where ϕ is a scalar) and
∇ × (∇2A⃗) = ∇2(∇ × A⃗), we are left with the following equation.

∂ω⃗

∂t
= ∇ × (u⃗ × ω⃗) + ν∇2ω⃗ (1.6)

Lastly, applying the identity ∇ × (u⃗ × ω⃗) = ω⃗ · ∇u⃗ − u⃗ · ∇ω⃗ + u⃗(∇ · ω⃗) − ω(∇ · u⃗)
and recalling that the last two terms goes to zero due to the incompressibility
assumption (which implies that velocity and vorticity fields are divergence-free), it
can be obtained the vorticity transport equation.

Dω⃗

Dt
= ω⃗ · ∇u⃗ + ν∇2ω⃗ (1.7)

This is the Navier-Stokes momentum equation in the so-called vorticity-velocity
formulation, and it can be noticed that the pressure term does not explicitly appear
in that form. It could have been derived also taking the curl of equation 1.3, using
the aforementioned identities to get equation 1.7.

Equation 1.7 describes the "lagrangian" evolution of vorticity field, when appro-
priately coupled with the vorticity-velocity relationship ω⃗ = ∇ × u⃗ and the flow
position-velocity relationship u⃗ = ∂x⃗

∂t
.
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1.1.2 Brief discussion of the vorticity-velocity equation
terms

Let’s take a closer look to equation 1.7. It says that the vorticity evolution in time
(in a Lagrangian way) is governed by the two terms on RHS:

• The first term, ω⃗ · ∇u⃗, is the so-called vortex stretching term. The vortex
stretching is a phenomenon that is peculiar to three-dimensional flows, as it
goes mathematically to zero in the two-dimensional flow representation.

Stretching is also often seen to be at the basis of the turbulent energy cascade
whereby energy is transferred to the smaller scales, and it thus forms an
important modeling aspect of the 3D VPM, as stated by Berdowski[4].

The vortex stretching is unfortunately a source of numerical instabilities for the
numerical VPM scheme and therefore its handling has to be widely discussed,
during this thesis work.

• The second term, ν∇2ω⃗, is instead the so-called viscous diffusion term. It
becomes important in turbulent flows and, since VPM is considered particularly
suited for describing such flows, it appears natural to account for this term in
the VPM numerical formulation.

As will be seen, intense vortex stretching will form prohibitive small scales of
complexity within the flow, and viscous diffusion provides the only mechanism
for dissipating these small scales energies[5].

1.1.3 Next steps

The Vortex Particle methods for modeling fluid dynamics are based on solving the
discretized version of equation 1.7, so it will be shown in chapter 3 the complete
derivation of the numerical governing equation of the VPM code, taking into
account several issues that can arise from the correct linking of the numerical
formulation with the physical correct behavior of the flowfield.

The most important feature that should be noticed right away is that, due to the
Lagrangian description of the flowfield, which implies that the motion of a (finite)
number of particles is followed through both space and time, the Vortex Particle
method does not require a grid generation.

It is indeed one of the major strengths of the VPM since grid generation is
certainly one of the most complex and time-demanding tasks of a CFD simulation.
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1.2 Document roadmap
In this chapter, a brief overview of the dissertation goals and fluid dynamics back-
ground has been presented, to get the reader familiar with the topic and to set the
path for this journey along with the study of a propeller wake and its performance.

Chapter 2 deals with a brief literature survey of the Vortex Particle Method
and its applications in the past few decades since the VPM has been developed. It
also gives an overview on the general topic of other methods (both Vortex Methods
and others, such as LLT or BEM), their applications, and the main differences
from VPM.

Chapter 3 gives a detailed description of the VPM from a theoretical point of
view and also gives a brief explanation of the VPM code that has been devel-
oped through this work, with particular attention to how the VPM formulation
has been written, to correctly and conveniently match the FMM input requirements.

Chapter 4 gives instead a detailed description of the FMM from a theoretical
point of view and through that is briefly explained how the acceleration method
has been implemented in the VPM code, as also previously stated in the previous
chapter.

Chapter 5 present a strong and detailed validation of the VPM and FMM codes,
using the most common and useful tools which have been largely discussed by
various authors ([6],[7] et al.).

Chapter 6 deals with the overall results of the code implementation on the rotor,
after a short validation on a simple wing geometry.
Conclusions, remarks, and possible future works are finally discussed in the final
chapter 7.
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Chapter 2

Literature survey of vortex
methods and their
applications

The following chapter deals with a bibliographical survey on the vortex methods,
especially the VPM, and their applications in the flowfield simulations. Firstly, a
complete and brief overview of vortex methods is presented.

When treating the problem of completely evaluating the flowfield downstream
of the wake, several methods can be used, with several orders of accuracy, depend-
ing on their complexity and assumptions.

• Blade Element Momentum (BEM) methods are based on blade discretization
and the momentum balance over the flow. However, with BEM theory is
assumed a two-dimensional description of the rotor and the wake is therefore
not explicitly modeled. To include transient aerodynamics and 3D flow effects,
it is necessary to divert to empirical models and corrections.

• Computational Fluid Dynamics (CFD) was born at the same time as the rise
of computational power. It is based on the discretization of the flow on a
regular grid, in whose cells the Navier-Stokes equations (in an Eulerian form)
are solved numerically.
CFD is suitable in the case of wall-boundary conditions, but the Eulerian
description poses problems over the whole flow domain as a large range of flow
scales persist over the wake. Therefore a very fine mesh is required at locations
of small vortical structures at the blade, and a mesh that is decreasing in
coarseness in the wake, where larger scales of eddies dominate.

6



Literature survey of vortex methods and their applications

• The wake can be described more physically by applying a Lagrangian vortex
method. The Lagrangian description makes the vortex method auto-adaptive,
which means that the range of flow scales is automatically accounted for
and that the flow is only described there where information is present. The
aforementioned family of methods has, as previously stated, the major of being
meshless, not requiring the highly time-demanding and complex task of grid
generation.

If on the one hand, the CFD is more suitable for wall-bounded flow, on the other
hand, the vortex methods are both more accurate and faster in turbulent wakes.
Since the topic of this thesis concerns the performance of a propeller, that is largely
influenced by the downstream (turbulent) wake, it appears natural to focus on this
last family of methods in the following section.

2.1 Overview of vortex methods
Vortex methods represent the bridge between Blade Element Method (BEM) and
Computational Fluid Dynamics (CFD).
They describe the flowfield in terms of vorticity, since the presence of a body in
the field induces a vorticity variation, due to the boundary condition; the body is,
therefore, a vorticity source within the domain.
Vorticity can be subsequently concentrated in vortex lines and surfaces.

2.1.1 Body modeling
Based on the location of the vortex structure, several vortex methods can be
distinguished:

• Panel methods: vortex structures fit the body geometry and they are dis-
tributed on its surface. This allows us to take into account also the effects of
blade thickness on the flowfield.

• Lifting surface methods: airfoil’s camber line is split into several segments each
of which corresponds to a vortex element. This does not take into account the
thickness effects, as the panel method instead does.

• Lifting line methods: the entire body is replaced by a single vortex line, located
at the quarter of the chord.

2.1.2 Wake modeling
It can also be done another differentiation, based on the treatment of the wake.
The so-called prescribed vortex wake methods assign an a priori position to the
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vortex elements. On the other hand, the so-called free vortex methods allow a free
wake evolution.

The last family of the aforementioned vortex methods can be further split into free
vortex wake and free vortex particle methods.

• In the free vortex wake methods the wake is modeled through vortex elements,
such as filaments or rings. The first step to do so is to compute the vor-
tex elements’ strength Γ, which remains constant, as stated by Helmholtz’s
theorem.
Then, the wake is identified through several grid nodes (in which local velocity
is computed as the sum of free-stream velocity and induced velocity from the
other vortex elements) and it is therefore convected, so every temporal step
the wake is updated with the new vortex elements from the body.

• In the free vortex particle methods the wake is modeled through lagrangian
vortex particles. This particular family of vortex methods has been, as
previously stated, implemented in the following dissertation, so the reader is
referred to all the following chapters for a detailed description of them.

On one hand, free vortex wake methods implicitly ensure the connection between
vortex elements, resulting in fewer terms to be computed through the algorithm.
One of the major drawbacks that can be encountered during the modeling of a
problem such as the one discussed in this dissertation is that, even though the
wake structure can be deformed (due to local velocity variations caused by induced
velocity on grid nodes), it cannot mix with other wakes.
Therefore, this family of vortex methods can still be used to simulate the interaction
between two wakes, but it is not so suitable to simulate its mixing.

On the other hand, projecting the vorticity field through vortex particles (also
called vortons[6]) does not pose any limit on the wake topology, resulting in larger
modeling freedom (several phenomena such as turbulence, viscous diffusion, and
blade-wake interactions are more naturally incorporated in the model).
However, this lack of connectivity can represent an important obstacle, since that
can be developed numerical instabilities, which takes the form of a not divergence-
free flowfield, as it instead must be.

2.1.3 Conclusions
Remarking on the potentially turbulent and "mixed-wake" nature of the flowfield
that will be computed through this thesis work, it appears natural that the most
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suitable vortex methods family to correctly and conveniently calculate the wake
downstream of the propeller/propellers is the Vortex Particle Method.
They offer computational and accuracy advantages over both CFD and free vortex
wake methods, due to the reasons explained in the previous paragraph.

However, the VPM schemes imply the resolution of a so-called N-body prob-
lem, that has a computational cost proportional to the square of the number of
particles in the simulation.
Since this number grows every time step (blade rotation of a fixed angle), the
computational time of the entire simulation is proportional to the cube of Np.
To reduce the computational cost of the VPM from O(N2

p ) to O(Np), the applica-
tion of FMM (Fast Multipole Method) should be foreseen.
As it will be more detailedly explained through chapter 4, the FMM approximately
calculates the far-field interactions through clusters of particles.

2.2 Current applications of VPM
The following section provides a brief overview of the current applications of VPM
in several fields, such as wind turbines, aircraft wakes, or even structural purposes.

2.2.1 VPM in the wind turbines topic
One of the main fields that have been permeated by the usage of VPM is the
wake modeling of wind turbines or wind farms (clusters of wind turbines). In this
sense, the works of Berdowski[4] and Seetharaman[8] from TU Delft provide good
documentation on the topic.

However, a purely Lagrangian approach for the treatment of three-dimensional
flows of wind turbine wakes is relatively not so used yet, since the vast majority
of these works have been focused on either CFD or Eulerian-Lagrangian vortex
methods. Other possibilities are represented by the application of BEM or LLT, but
all of these methods result in several inaccuracies, for example in the kinetic energy
recovery (BEM) or for prediction of the wind farm power, due to the dispersion of
different turbulence models (CFD).

As reported by Seetharaman[8], several strategies of simulating the wake of a
wind turbine through VPM can be cited.

• Using a GENUVP (GENeralized Unsteady Vortex Particle) code to study the
rotor aerodynamics and aeroacoustic. It uses the Helmholtz decomposition

u⃗(x⃗, t) = u⃗free−stream(x⃗, t) + u⃗body(x⃗, t) + u⃗wake(x⃗, t)
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Where the second term is modeled through the panel method, while the third
one uses the Biot-Savart law. For further details, the reader is referred to the
work of Voutsinas et al[9].

• Discretizing the blade into aerodynamics segments and then calculating the
airloads with the help of the angle of attack at that segment, the Mach
number, and dynamic pressure. Using the Kutta-Jukowski theorem and the
aforementioned loads, the blade-bound circulation is then calculated (and
assumed to be constant over each blade segment). The vorticity source is
finally shed into the wake after being created at the blade segments.[10]

• Doublets at the center of trailing edge segments. It is assumed to have a
constant doublets distribution over the rotor surface, previously discretized
into several panels. Then a linear system of N equations (where N is the
number of panels) is solved for the doublet strengths µ, which is subsequently
converted to its equivalent vorticity at the center of every trailing edge segment
that is emitted[11].

• Panel and VPM for modeling stationary propeller wake wash. The wake of
a propeller has been modeled using the VPM while the aerodynamics of the
blade itself has been modeled using a panel method. As these panels are shed
into the wake they are converted into vortex particles[12].

2.2.2 VPM for aeronautical applications
From the aeronautical point of view, a great work has surely been made by Cal-
abretta[7], Alvarez[13][14] and Singh[15], who developed several VPM codes to
model and treat the wake of a rotor or a propeller and its interaction with another
one or with the airframe.

However, as reported by Calabretta, the Vortex Particle Method has been used
for a variety of applications, such as the evaluation of structural aerodynamics of
various buildings and structures or the evaluation of aircraft and helicopter rotor
wakes.
Also, the work made by Singh, who focuses precisely on coaxial rotor helicopters,
provides both massive documentation on the topic and represents evidence itself of
a VPM application.
About this, as reported by Singh himself, and as stated before, the usage of
VPM to evaluate the wake of one or more rotors of helicopters is starting to catch
on, also helped by the growing interest in the topic of electric distributed propulsion.

For what is useful to this thesis work, it appears natural to further concentrate on
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the usage of VPM as a complement to a traditional three-dimensional panel code,
keeping in mind that the circulation on the blade will be still computed as done by
Alì[1], with the Lifting Line theory.
One of the main goals of this work has been therefore the research of a suitable
way to link the panel discretization of the rotor geometry and the subsequent
aforementioned circulation calculation that have already been done in the work of
Alì[1], to the new evaluation of the wake.

In this way, the work of Singh presents a clear procedure to effectively convert the
panels into particles, as they are shed into the wake. Also, the work of Calabretta
represents a good reference, regarding the complex and delicate topic of correctly
evaluating the mutual interaction between panels and particles.

2.2.3 Conclusions

As stated by Calabretta himself, VPM has several advantages over traditional panel
wakes, such as the lack of connectivity (which is both a good opportunity and an
important drawback of the method), allowing a more physical and accurate descrip-
tion of the flowfield. Additionally, treating the wake with VPM avoids the high
user interactivity required in selecting wake position and wake-body intersection
issues. An example of the aforementioned idea can be found in the FASTAERO
work, done by Willis et al[16], also giving evidence of the fact that is possible for a
satisfactory integration of panel method and VPM.

Moreover, it can be seen that one could (pseudo) independently choose how to
model the induced velocity component related to the presence of the body in the
Helmholtz decomposition, depending on the particular application and its resulting
necessities.
What is clear is that VPM could represent a powerful and novel tool to correctly,
more accurately, and faster accomplish several steps in the initial phase of the aero-
nautical project, especially when it involves topics such as wake mixing, turbulent
flows, etc.

All the aforementioned works implicitly or explicitly remark the necessity of using
an acceleration algorithm such as the FMM, which may represent a further source
of complexity, but that is needed to make the overall code fast and suitable, while
not losing accuracy.
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2.3 Literature review
The following section provides a detailed list of the works that have been consulted
for the development of this dissertation.
The correct development of both theoretical basis and code implementation skills
comes from massive documentation through master thesis and scientific papers.

A detailed mathematical description of the VPM can be found in the works
of Wincklemans[6] and Cottet[5]. Also, the work of Calabretta[7] represents a
strong linchpin, especially in the code validation and the mutual interaction between
panels and particles topics.

For the development of the VPM code, instead, the works of Seetharaman[8],
Berdowski[4] and Alvarez[17], in addition to the aforementioned others, have been
consulted. More specifically, to correctly ensure the link between the panel dis-
cretization from Alì’s code[1] and the VPM, the works of Singh[15] and Martin[12]
have been consulted too.

During the development of the VPM code, to correctly implement the low-storage
third-order Runge-Kutta scheme, the works of Niegemann[18], the NASA Tech-
nical Memorandum 109111[19] and the NASA Report 99-22[20] have been consulted.

Meanwhile, during the strong and rigorous validation phase of the code and in
addition to the aforementioned works, scientific papers from Alvarez[13][14], Knio
& Ghoniem[21], Sullivan[22] and Konstantinov[23] have been reviewed. Regarding
the specific topic of particle relaxation, the works of Beale[24] and Pedrizzetti[25]
have been consulted.

The development of the FMM algorithm, both through theoretical basis and actual
application has been possible thanks to the works of Cheng[26], Greengard[27],
Sheel[28], Fong[3], Chen[29], and Wang et al.[2].
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Chapter 3

The Vortex Particle Method

In the following chapter, it will be explained the theory above the implementation
of a VPM code, involving both fundamentals and other topics that are more
numerically related to the latter.

3.1 Fundamental theory
To begin with, one can see a vortex particle p (also called vorton or vortex stick)
as an element which has a position, denoted with x⃗p(t), a strength, denoted with
α⃗p(t) and a volume, denoted with volp. Strength is defined as the product between
the vorticity and the volume of the vorton.

α⃗p(t) = ω⃗p(t)volp (3.1)

The vorticity field can be further seen as the resulting one due to the influence of
Np vortex particles.
The vorticity field in a point x⃗ due to the presence of a vortex particle located
at x⃗p(t) is defined as the product between the vorton strength and the Dirac
distribution at x⃗ − x⃗p(t).
Therefore, the vorticity field in x⃗ due to the presence of all the Np vortons with
which it has been discretized itself is a linear combination of all the fields generated
by each vorton.

ω⃗(x⃗, t) =
NpØ
p=1

α⃗p(t)δ(x⃗ − x⃗p(t)) (3.2)

Recalling that the vorticity field in an incompressible three-dimensional flow satisfies
the equation below

ω⃗(x⃗, t) = −∇2Ψ(x⃗, t) (3.3)
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Where Ψ(x⃗, t) is the so-called streamfunction and recalling that the velocity field
can be therefore obtained as the curl of the aforementioned streamfunction, then
the problem can be traced back to finding Ψ(x⃗, t).

According to Wincklemans[6], the Green’s function G(x⃗) for −∇2 in an unbounded
three-dimensional domain is

G(x⃗) = 1
4π|x⃗|

(3.4)

Therefore, the streamfunction solution of equation 3.3 can be evaluated as the
convolution product between the Green’s function and the vorticity field.

Ψ(x⃗, t) = G(x⃗) ∗ ω⃗(x⃗, t) (3.5)

Substituting both Green’s function and vorticity field as previously explained, it
can be obtained that

Ψ(x⃗, t) =
NpØ
p=1

G(x⃗ − x⃗p(t))α⃗p(t) = 1
4π

NpØ
p=1

α⃗p(t)
|x⃗ − x⃗p(t)| (3.6)

Now we have obtained the streamfunction Ψ of the flowfield due to the influence of
all the vortons with which the latter itself has been discretized.

To obtain the velocity field it is sufficient to compute the curl of the stremfunction
which has been previously evaluated.

u⃗(x⃗, t) = ∇ × Ψ(x⃗, t) (3.7)

Replacing Ψ with the one obtained in equation 3.6 it can be found that

u⃗(x⃗, t) =
NpØ
p=1

∇[G(x⃗ − x⃗p(t))] × α⃗p(t) (3.8)

Finally replacing the Green’s function with the one prescribed by Wincklemans,
one can obtain the velocity field due to the influence of all the vortons.

u⃗(x⃗, t) = − 1
4π

NpØ
p=1

1
|x⃗ − x⃗p(t)|3 (x⃗ − x⃗p(t)) × α⃗p(t) (3.9)

It can be written more simply defining the Biot-Savart kernel K⃗ as

K⃗ = 1
|x⃗ − x⃗p(t)|3 (x⃗ − x⃗p(t)) (3.10)
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So equation 3.9 becomes

u⃗(x⃗, t) =
NpØ
p=1

K⃗ × α⃗p(t) (3.11)

The previous equation is one of the two evolution equations of the VPM, since
u⃗(x⃗, t) can be seen as the velocity in a point x⃗ at time t due to the influence of all
the Np vortons, so the velocity of each vorton q can be written as

u⃗p(x⃗p(t), t) = − 1
4π

NpØ
q=1

1
|x⃗p(t) − x⃗q(t)|3 (x⃗p(t) − x⃗q(t)) × α⃗q(t) (3.12)

Thus the position of each vorton p can be updated solving

dx⃗p(t)
dt

= u⃗p(x⃗p(t), t) (3.13)

The last evolution equation involves the strength update and it can be derived by
recalling the vorticity-velocity form of the governing equation, the discretization of
vorticity and velocity fields, and multiplying all the terms by volp.

Dα⃗p

Dt
= α⃗p · ∇u⃗p + ν∇2α⃗p (3.14)

However, one of the major drawbacks of this method is that the flowfield isn’t
guaranteed to be divergence-free, since

∇ · Ψ(x⃗, t) = − 1
4π

NpØ
p=1

x⃗ − x⃗p(t)
|x⃗ − x⃗p(t)|3 · α⃗p(t) (3.15)

Therefore, the vorticity field isn’t guaranteed to be divergence-free, while the
velocity field is, because it’s the curl of a streamfunction.
However, as stated by Wincklemans, it can be written a divergence-free vorticity
field adding to the one in equation 3.2 a term which is needed to close the vortex
lines.

ω⃗N(x⃗, t) =
NpØ
p=1

C
α⃗p(t)δ(x⃗ − x⃗p(t)) + ∇

A
α⃗p(t) · ∇

A
1

4π|x⃗ − x⃗p(t)|

BBD
(3.16)

After calculating the gradient terms, Wincklemans rewrites this as

ω⃗N (x⃗, t) =
NpØ
p=1

53
δ(x⃗ − x⃗p(t)) − 1

4π|x⃗ − x⃗p(t)|3

4
α⃗p(t) + 3(x⃗ − x⃗p(t)) · α⃗p(t)

4π|x⃗ − x⃗p(t)|5 (x⃗ − x⃗p(t))
6

(3.17)
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3.2 Particle regularization
Another issue can be encountered considering that the Biot-Savart kernel 3.10
is singular when x⃗ → x⃗p(t). Such a singularity is not physical and can lead
to numerical instabilities, so it is necessary to regularize the Biot-Savart kernel
introducing the regularization function

ζσ(x⃗) = 1
σ3 ζ

A
|x⃗|
σ

B
(3.18)

Where σ is the smoothing radius and ζ is a smoothing function.

Figure 3.1: Biot-Savart kernel (singular and regularized)

Therefore, the regularized vorticity field becomes

ω⃗σ(x⃗, t) = ζσ(x⃗) ∗ ω⃗(x⃗ − x⃗p(t)) =
NpØ
p=1

ζσ(x⃗ − x⃗p(t))α⃗p(t) (3.19)

It can be found the regularized streamfuncion Ψσ(x⃗, t) as the one which satisfies
the equation below.

∇2Ψσ(x⃗, t) = −ω⃗σ(x⃗, t) (3.20)
Therefore

Ψσ(x⃗, t) = Gσ(x⃗) ∗ ω⃗σ(x⃗, t) =
NpØ
p=1

Gσ(x⃗ − x⃗p(t))α⃗p(t) (3.21)

Where, according to Wincklemans[6]

Gσ(x⃗) = 1
σ

G

A
|x⃗|
σ

B
(3.22)
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The regularized velocity field is then obtained the same way as the singular velocity
field was.

u⃗σ(x⃗, t) = ∇ × Ψσ(x⃗, t) =
NpØ
p=1

∇[Gσ(x⃗ − x⃗p(t))] × α⃗p(t) (3.23)

Evaluating the gradient term, it can be written that

u⃗σ(x⃗, t) = −
NpØ
p=1

qσ(x⃗ − x⃗p(t))
|x⃗ − x⃗p(t)|3 (x⃗ − x⃗p(t)) × α⃗p(t) (3.24)

Where
qσ(x⃗) =

Ú x⃗

0
ζ(t)t2dt (3.25)

Therefore, it can be seen that the new regularized Biot-Savart kernel is

K⃗σ = −qσ(x⃗ − x⃗p(t))
|x⃗ − x⃗p(t)|3 (x⃗ − x⃗p(t)) (3.26)

So that

u⃗σ(x⃗, t) =
NpØ
p=1

K⃗σ × α⃗p(t) (3.27)

The regularized flowfield suffer from the same lack of divergence-free as the singular
one, so the regularized and divergence-free vorticity field can thus be written as

ω⃗N
σ (x⃗, t) =

NpØ
p=1

[α⃗p(t)ζσ(x⃗ − x⃗p(t)) + ∇[α⃗p(t) · ∇(Gσ(x⃗ − x⃗p(t)))]] (3.28)

Wincklemans rewrites this as

ω⃗N
σ (x⃗, t) =

NpØ
p=1

CA
ζσ(x⃗ − x⃗p(t)) − qσ(x⃗ − x⃗p(t))

|x⃗ − x⃗p(t)|3

B
α⃗p(t)+

+
A

3qσ(x⃗ − x⃗p(t))
|x⃗ − x⃗p(t)|3 − ζσ(x⃗ − x⃗p(t))

B
(x⃗ − x⃗p(t)) · α⃗p(t)

|x⃗ − x⃗p(t)|2 (x⃗ − x⃗p(t))
D (3.29)

3.3 Particle strength modeling
The particle strength evolution equation, as previously stated, can be written as

Dα⃗p

Dt
= α⃗p · ∇u⃗p + ν∇2α⃗p

The following section will be discussed the methodologies to discretize both vortex
stretching and viscous diffusion terms.
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3.3.1 Vortex stretching term
As reported by Wincklemans[6], there are three formulations for the vortex stretch-
ing term in the above equation.

• The classical formulation, where α⃗p · ∇u⃗p = (α⃗p · ∇)u⃗p
σ.

• The transpose formulation, where α⃗p · ∇u⃗p = (α⃗p · ∇T )u⃗p
σ.

• The mixed formulation, where α⃗p · ∇u⃗p = 1
2 [αp · (∇ + ∇T )]u⃗p

σ.
It has been shown that the regularized particle method converges to the solution
of the respective formulation of the momentum equation selected[5].
However, as stated by Wincklemans[6], the transpose scheme is the only one that
conserves vorticity, so it’s the one implemented in this thesis work.

Substituting into the transpose scheme the regularized velocity from equation
3.24 and computing the gradients it can be found that

α⃗p · ∇u⃗p =
NpØ
q=1

C
1
σ3

q(ρ)
ρ3 α⃗p(t) × α⃗q(t)+

+ 1
σ5ρ

d

dρ

A
q(ρ)
ρ3

B
(α⃗p(t) · (x⃗p(t) − x⃗q(t)) × α⃗q(t))(x⃗p(t) − x⃗q(t))

D (3.30)

Where ρ = |x⃗|
σ

.
Applying the Wincklemans’ high order algebraic regularization functions

ζ(ρ) = 15
8π

1
(ρ2+1)

7
2

q(ρ) = 1
4π

ρ3(ρ2+ 5
2)

(ρ2+1)
5
2

(3.31)

One can obtain that

α⃗p · ∇u⃗p = 1
4π

NpØ
q=1

C
|x⃗p(t) − x⃗q(t)|2 + 5

2σ2

(|x⃗p(t) − x⃗q(t)|2 + σ2) 5
2
α⃗p(t) × α⃗q(t)+

+3
|x⃗p(t) − x⃗q(t)|2 + 7

2σ2

(|x⃗p(t) − x⃗q(t)|2 + σ2) 7
2
(α⃗p(t) · (x⃗p(t) − x⃗q(t)) × α⃗q(t))(x⃗p(t) − x⃗q(t))

D (3.32)

It has been chosen as the high order algebraic regularization because, as stated by
Calabretta[7], it has similar convergence properties to the more commonly used
Gaussian regularization, but with much simpler G and q functions, resulting also
in a gradient that is easier to analytically evaluate.
Additionally, it is the only known regularization for which analytical equations for
total vorticity, linear impulse, angular impulse, kinetic energy, and enstrophy can
be derived, as will be seen in the section 3.7.

18



The Vortex Particle Method

3.3.2 Viscous diffusion term
One of the major strengths of VPM is its possibility to easily account for viscous
diffusion, which also has been demonstrated to help maintain a nearly divergence-
free vorticity field, that is necessary to obtain a valid physical solution.
Thus, it appears peremptory to correctly model the viscous diffusion term in equa-
tion 3.14.

There are conventionally three possible schemes to numerically account for viscous
diffusion.

• Random walk method. The particles in the domain are made to undergo a
Brownian movement to simulate diffusion. To simulate the Brownian movement
the particles are made to experience random position updates every time step
∆t, adding to position at the previous time step xn

p a random generated
number, which follows a Gaussian distribution.

xn+1
p = xn

p + ξn
p (3.33)

ξn
p = 1ñ

(2πε)d
e− x2

2ε (3.34)

Where d is the dimension and ε = 2ν∆t is the variance.
This method, however, does not seems to be a valid option to simulate viscous
diffusion, since it did not account for any changes in the magnitude of the
vorticity due to diffusion.

• Core spreading method. The core radius is changed on account of stretching
and diffusion separately and, after, a new blob replaces the vorton.
Unfortunately, this method does not converge to the Navier-Stokes equations,
since the core can grow beyond the characteristic length scales.
Rossi[30] provided a correction that ensures the convergence of the method,
allowing the particles to split and reposition in the cross-sectional plane, as
soon as the initial particle grows beyond a specific threshold core size.

• Particle Strength Exchange (PSE). Unlike the previous two schemes, here the
particles’ position and the core size are not updated, but it is the circulation
strength α⃗p(t) itself, which is exchanged with neighboring particles to simulate
viscous diffusion.
Thereby, particles are so allowed to represent numerical volumes of vorticity,
instead of cores. This, on the other hand, requires the ability to diffuse
vorticity for neighboring particles.
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As reported in the work of Berdowski[4], the implementation of the PSE scheme
always gives the most satisfactory results in the end, particularly regarding the
stability of the simulation.
It mitigates instabilities as stresses resulting from intense stretching, sharp curva-
tures, and vortex roll-up; moreover, entanglement is effectively dealt with.
Due to the aforementioned reasons, it will be implemented the PSE scheme during
this thesis work, as will hereafter be detailed explained.

The idea behind this method relies upon the assumption that is possible to approxi-
mate the diffusion operator (the Laplacian) with an integral operator, that is further
discretized using the particle representation. As reported by Wincklemans[6], this
is valid in Rn, but it will be shown only in R3 during this work.

The Laplacian of some function f(x⃗) can be thereby discretized as

∇2f(x⃗) ≃ 2
Ú

[f(y⃗) − f(x⃗)]ησ(x⃗ − y⃗)dy⃗ (3.35)

Where ησ is essentially, as stated by Wincklemans, an approximation to the kernel
for heat equation. It is defined as

ησ = 1
σ5 η

A
|x⃗|
σ

B
(3.36)

With η(ρ) defined as

η(ρ) = −ζ ′(ρ)
ρ

(3.37)

Here ζ is a radially symmetric regularization function that satisfies the equation
below (ζ ′ = dζ

dρ
). Ú ∞

0
|ζ ′(ρ)|ρ3+rdρ < ∞ (3.38)

The approximation done in equation 3.35 is a good one since, as reported by
Wincklemans, the difference between ∇2f(x⃗) and the 3.35 is, in the appropriate
norm, O(σr).
Still, Wincklemans showed that the lower algebraic smoothing does not satisfy the
constraint given by equation 3.38, therefore it is a poor choice to model diffusion
with.

Let’s consider now the following convection-diffusion equation.

∂f

∂t
+ ∇ · (fu⃗) = ν∇2f (3.39)
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As stated before, it can be approximated as

∂f

∂t
+ ∇ · (fu⃗) = 2ν

Ú
[f(y⃗) − f(x⃗)]ησ(x⃗ − y⃗)dy⃗ (3.40)

Consider now a particle approximation to f(x⃗, t) as

fσ(x⃗, t) =
NpØ
p=1

fp(t)volp(t)ζσ(x⃗ − x⃗p(t)) (3.41)

This allows for a particle solution to the convection-diffusion equation 3.39, leading
to

dx⃗p

dt
= u⃗p(x⃗p, t)

d

dt
volp = volp(t)∇ · u⃗p(x⃗p, t)

d

dt
(fpvolp) = 2νvolp(t)

NpØ
q=1

volq(t)[f q(t) − fp(t)]ησ(x⃗p(t) − x⃗q(t))

(3.42)

Then, replacing fp(t) with ω⃗p(t) leads to the final discretization of viscous diffusion
term. -----dα⃗p(t)

dt

-----
visc

= 2ν
NpØ
q=1

(volp(t)α⃗q(t) − volq(t)α⃗p(t))ησ(x⃗p(t) − x⃗q(t)) (3.43)

According to Wincklemans, the double approximation done to discretize the diffu-
sion operator results in an error of O(ν(σr + hm

σm+1 )), where h is the spacing between
the particles.
Only for small values of ν this error is lower than the one due to the convective
term discretization (i.e vortex stretching), which is O(σr + hm

σm ).
Anyway, these errors are valid in the assumption that η(ρ) > 0 ∀ρ, which further
requires regularization functions of the second order, such as the HOA functions.
Although, Wincklemans states that η(ρ) not positive for all values of ρ still implies
an error lower than the one due to the discretization of the convective term. This
error is O(ν(σr−2 + hm

σm+1 )).

An important remark is that ζ(ρ) not positive for all values of ρ implies that
η(ρ) is not positive for all values of ρ, but ζ(ρ) > 0 ∀ρ does not guarantee that
η(ρ) > 0 ∀ρ.
Hence, it is a further reason to choose the HOA regularization, since it leaves the
freedom to have any value of viscosity.
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Although not investigated in this work, it can be possible to generalize the formu-
lation to not constant values of ν.

Lastly, it has to be noticed that the particle discretization of the integral ap-
proximation of the Laplacian is conservative, i.e, for the viscous part

d

dt

NpØ
p=1

α⃗p(t) = 0 (3.44)

This implies that only the treatment of the convective term in the vorticity-velocity
equation can affect the total vorticity qNp

p=1 α⃗p(t).
As previously stated and as it will be further explained in section 3.7, the only
scheme that conserves total vorticity is the transpose one.

3.4 Complete evolution equations
Substituting in the previously derived final equations the high order regularization
functions 3.31, it can be derived the final system of evolution equations which has
to be solved for particles’ position and strength.

dx⃗p

dt
= − 1

4π

NpØ
q=1

|x⃗p(t) − x⃗q(t)|2 + 5
2σ2

(|x⃗p(t) − x⃗q(t)|2 + σ2) 5
2
(x⃗p(t) − x⃗q(t)) × α⃗q(t) (3.45)

dα⃗p

dt
= 1

4π

NpØ
q=1

C
|x⃗p(t) − x⃗q(t)|2 + 5

2σ2

(|x⃗p(t) − x⃗q(t)|2 + σ2) 5
2
α⃗p(t) × α⃗q(t)+

+3
|x⃗p(t) − x⃗q(t)|2 + 7

2σ2

(|x⃗p(t) − x⃗q(t)|2 + σ2) 7
2
(α⃗p(t) · (x⃗p(t) − x⃗q(t)) × α⃗q(t))(x⃗p(t) − x⃗q(t))+

+105ν
σ4

(|x⃗p(t) − x⃗q(t)|2 + σ2) 9
2
(volpα⃗q(t) − volqα⃗p(t))

D
(3.46)

Solving the system made by equations 3.45 and 3.46 every time-step it can be
traced the position of every vorton which composes the discretized flowfield, so it
has to be evaluated x⃗p(t) and α⃗p(t) for all p = 1, . . . , Np.

3.5 Particle relaxation
As previously stated, the particle representation leads to a vorticity field that is
generally not divergence-free, even if the regularization is applied. This appears to
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be one of the major drawbacks of VPM, so in the following section the possibility
of making the flowfield divergence-free is discussed.

Cottet[5] noted that the classic scheme in the vortex stretching modeling manages
to keep the flow divergence-free reasonably well by construction. As long as the
particles maintain sufficient overlap, the initial disturbance at time zero of the
divergence is not significantly amplified.
Additionally, viscous diffusion seems to have a very positive effect on the treatment
of divergence.
However, the here implemented transpose scheme does not seems to have the same
properties, so the handling of divergence has to be considered.

In the following paragraph are further discussed two possible methods to help the
flowfield have a divergence-free property.

3.5.1 Relaxation of the particle divergence by Beale
This method relies upon the assumption that each particle’s circulation strength is,
at initial simulation time t = 0, given by

αp(0)old = ω⃗p(x⃗p,0)volp (3.47)

The vorticity field ω⃗σ is not a good representation of the exact vorticity field ω⃗ so,
in order to obtain the latter, it has to be imposed that ω⃗σ = ω⃗, writing that

ω⃗p
σ(x⃗p, t) =

NpØ
q=1

α⃗p(0)newζσ(x⃗p(0) − x⃗q(0)) = α⃗p(0)old

volp
(3.48)

This is essentially equivalent to a linear system in the form of

[A]α⃗p(0)new = α⃗p(0)old (3.49)

Since α⃗p(0)new is really close to α⃗p(0)old, then the coefficient matrix [A] is almost
equal to the identity matrix [I], so the system quickly becomes impossible to be
solved simply inverting matrix [A], as the number of particles grows.

Taking advantage of the fact that α⃗p(0)old are good guesses for α⃗p(0)new, it can
be easily implemented an iterative scheme, as proposed by Beale[24], that recasts
equation 3.49 as

([A] − [I])α⃗p(0)new + α⃗p(0)new = α⃗p(0)old (3.50)
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And then provides the following iterative scheme

α⃗p,n+1(0)new = α⃗p(0)old + α⃗p,n(0)new −
NpØ
q=1

α⃗p,n(0)newvolqζσ(x⃗p(0) − x⃗q(0)) (3.51)

Since Apq = ζσ(x⃗p(0) − x⃗q(0)).

It has been shown as this method converges with a number n of iteration of
the order between 5 (Wincklemans[6]) and 15 (Calabretta[7]).

Although this has been shown for t = 0, it is possible to adjust the vorticity
field to make it divergence-free for all values of t.

3.5.2 Relaxation of the particle divergence by Pedrizzetti
A more practical approach, that does not require the iterative solution of a linear
system of equations, can be found in the work of Pedrizzetti[25], named the Diver-
gence Filtering Method (DFM).

Each time-step ∆t the particles’ circulation strength is updated accorting to

α⃗p(t)new = (1 − f∆t)α⃗p(t)old + f∆t ω⃗p
σ(x⃗p, t)

----- α⃗p(t)old

ω⃗p
σ(x⃗p, t)

----- (3.52)

Where f is a time-step dependent frequency factor.
As stated by Pedrizzetti itself, this method does not explain other than a mathe-
matical relaxation (so it does not justify it physically), but in practice, the results
obtained seem to be satisfactory.
The frequency factor f has to be manually tuned along the time step size used,
but it turns out that a very small value (such as f ≈ 0.2) often already provides
desirable results.

Modification by Alvarez

As pointed out by Alvarez in his work[17], the divergence relaxation by Pedrizzetti
unintentionally tends to decrease the circulation strength magnitude.
This effect is more evident as α⃗ and ω⃗ are prone to be orthogonal to each other.
Moreover, this could be considered a key part of the numerical stability that this
relaxation is capable to achieve.
However, it might be necessary to minimize all the effects of a numerical diffusion,
so Alvarez himself provided a new version of the Pedrizzetti’s relaxation, which a
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more detailed explanation can be found in [17], which calculates the new circulation
strength as

α⃗p(t)new = |α⃗p(t)old|
(1 − f∆t) α⃗p(t)old

|α⃗p(t)old| + f∆t ω⃗p
σ(x⃗p,t)old

|ω⃗p
σ(x⃗p,t)old|ò

1 − 2(1 − f∆t)f∆t
1
1 − α⃗p(t)old

|α⃗p(t)old| · ω⃗p
σ(x⃗p,t)old

|ω⃗p
σ(x⃗p,t)old|

2 (3.53)

However, as stated by the author[17], this new relaxation is not able to damp the
instabilities that arise when the vorticity of the lifting surface is evaluated with the
lifting line theory (which is the case of this thesis work) or with surface models,
while the original Pedizzetti’s formulation instead it is.

For this reason, the present work makes usage of the original Pedrizzetti’s re-
laxation.

3.6 Particle remeshing
In the regularized vortex particle description of the flow-field, the error norms for
the vorticity ω⃗σ and velocity v⃗sigma fields go to zero as the number of particles
increases, and the smoothing radius decreases, subject to the so called overlapping
condition[6]

hres

σ
< 1 (3.54)

To satisfy this requirement, particle splitting and particle merging are applied.

Since the VPM is completely mesh-free, it is interesting to implement a remeshing
method that is mesh-free too.
To address this, it has been implemented the remeshing method presented by
Wincklemans and Leonard[31].

The particle splitting is necessary to ensure that the vorticity field is well dis-
cretized at every time-step. When the circulation strength module of the particle
is twice the one at initial time, then the particle is split in two particles along the
direction of the original vorticity.

x⃗1,2
split(t) = x⃗p(t) ± 1

4σ
α⃗p(t)
|α⃗p(t)| (3.55)

The circulation strength of the 2 new particles is half the one of the splitted particle.

α⃗1,2
split(t) = 1

2 α⃗p(t) (3.56)
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The particle merging instead is used both to maintain a uniform vorticity distribu-
tion and to speed-up the calculation, since it reduces the number of particles in
the field.
The merging is applied when two particles are closer than a prescribed distance
and when their circulation strengths are nearly aligned.|x⃗p(t) − x⃗q(t)| < 1

4σ

1 − α⃗p(t)·α⃗q(t)
|α⃗p(t)||α⃗q(t)| ≥ 10−4 (3.57)

When these two conditions are simultaneously matched, then the two particles
merge in a single one with position

x⃗merge(t) = |α⃗p(t)|x⃗p(t) + |α⃗q(t)|x⃗q(t)
|α⃗p(t)| + |α⃗q(t)| (3.58)

And circulation strength

α⃗merge(t) = α⃗p(t) + α⃗q(t) (3.59)

3.7 Performance parameters
One of the major components of verifying that the VPM scheme is correctly imple-
mented is defining a measurement tool to use for comparison. This can be assessed
through the so-called invariants of the flow, which fall into two categories: linear
and quadratic.
Linear ones are the total vorticity Ω⃗, the linear impulse I⃗ and the angular impulse
A⃗.
Quadratic ones instead are enstrophy ε, kinetic energy E and helicity H.

Invariants, as the name indicates, are conserved for a real fluid, but for a dis-
cretized field they can divert from the real solution. As it will be further seen in the
validation chapter (chapter 5), the more these terms are close to the real solution,
the more is accurate the VPM scheme.
However, to distinguish the real and the discretized cases, the invariants in the
discretized case are called diagnostics.

Moreover, it is important to correctly account for diagnostics (both linear and
quadratic) because they represent a valuable tool to assess the level of numerical
error in the implemented scheme, since the simple confront between the actual
behavior of diagnostics and the expected one from the real solution can be a good
representation of the scheme’s accuracy.
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In addition, the performance of each diagnostic is dependent on specific attributes
of the quality of the simulation, so it is important to have a clear picture of the
entire diagnostics set, to quickly ensure the maximum possible fidelity of the VPM
scheme concerning the physical reality.

The diagnostics explicit relations are dependent on the regularization function
chosen, so this dissertation will be examined the ones relative to the high order
algebraic regularization function.

The linear diagnostics should all be conserved while the discretized vorticity field
remains a good approximation of the true one.
The transpose scheme in particular should conserve the total vorticity, and is indeed
the scheme utilized in this work.
Moreover, the linear impulse should be conserved as long as the discretized vorticity
field approximately remains divergence-free, and so tracking its evolution over time
is a good way to monitor the divergence-free condition of the discretized field, as it
should correctly be.
The quadratic diagnostics have two formulations, one of which is for the theo-
retical divergence-free field, and the other is instead for the regularized particle
approximation.

3.7.1 Linear diagnostics
The linear diagnostics should be conserved for both inviscid and viscous flow
conditions but, it is not guaranteed since the discretized flowfield can be not
divergence-free.
However, it has been shown that the (nearly) divergence-free condition implies
that linear diagnostics should be (nearly) conserved, so one can retain the latter
to quickly observe if the implemented scheme is a good approximation of the real
divergence-free flowfield or not.

Total vorticity

Total vorticity is simply defined as the summation of all the particles’ circulation
strengths.

Ω⃗(t) =
NpØ
p=1

α⃗p(t) (3.60)

It turns out that only the transpose scheme conserves the total vorticity over time
by construction, but only in the singular case. This implies that the latter scheme is
preferred over the other two in the singular case when there isn’t still a well-defined
best practice in the regularized case.
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However, it is still applied the transpose scheme, also to remain coherent with the
other works that have been reviewed during the realization of this thesis.

As can be easily seen, the total vorticity definition is the same both for singular
and regularized particle discretization.

Linear impulse

Linear impulse is defined as

I⃗(t) = 1
2

NpØ
p=1

x⃗p(t) × α⃗p(t) (3.61)

As in the previous diagnostic term, also linear impulse is independent of the
discretization technique (singular or regularized).

Angular impulse

Angular impulse is defined as

A⃗(t) = 1
2

NpØ
p=1

x⃗p(t) × (x⃗p(t) × α⃗p(t)) − 1
3Cσ2Ω⃗(t) (3.62)

Where
C = 4π

Ú ∞

0
ζ(ρ)ρ4dρ (3.63)

Differently from the previous two, this diagnostic term depends on the regulariza-
tion, as in C appears the regularization function ζ(ρ).
In case the high order algebraic regularization is chosen, then C can be easily
computed as C = 3

2 ; this is not straightforward in other cases.

However, on the assumption that the flowfield maintains the divergence-free con-
dition, the term that multiplies C vanishes, as Ω⃗ goes to zero (total vorticity is
conserved and at time t = 0 it has to be nullus), so in that case also angular
momentum can be considered independent from the eventual regularization.
If the aforementioned hypothesis stands for, then the angular impulse is simply
given as

A⃗(t) = 1
2

NpØ
p=1

x⃗p(t) × (x⃗p(t) × α⃗p(t)) (3.64)
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Another formulation of angular impulse can be found in several works, and is
further written to completeness, although the one which will be used in this work
is the first one (equation 3.62).

A⃗(t) = 1
3

NpØ
p=1

x⃗p(t) × (x⃗p(t) × α⃗p(t)) − 2
9Cσ2Ω⃗(t) (3.65)

3.7.2 Quadratic diagnostics
The quadratic diagnostics represent a more challenging problem to be solved since
they are defined as the integral of a product between vorticity and velocity fields,
which are difficult to analytically integrate with the case of regularized particles.

As stated by Wincklemans[6], it’s possible to make an approximation, evaluating
the integrals considering that only one of the two terms is relative to the regularized
case, while the second one remains to be singular.
However, this assumption has several levels of validity, depending on the diagnostic
term to be evaluated; in particular, the hypothesis is good for kinetic energy,
moderately appropriate for helicity, and poor for enstrophy.

Moreover, Wicklemans believes that the HOA regularization function is the only
one that allows an analytical integration, always on the assumption that only one
term of the product is regularized.

In the following section, it will be presented, both for kinetic energy and en-
strophy, two forms. The first one accounts for the eventual not divergence-free
condition of the flowfield, while the second one is technically valid only if the
flowfield satisfies the divergence-free condition instead.
Moreover, the comparison between these two terms can be a useful tool to quickly
see how well the divergence-free condition is preserved over time. This check further
indicates the eventual presence of numerical error and can be carried out through
the validation phase, as it will be seen in chapter 5.

This assumption cannot be done considering the helicity, so it turns out to be less
useful due to this impossibility itself. For this reason, helicity is not accounted for
in the validation step.

Helicity

It is defined as
H =

Ú
ω⃗ · u⃗d vol (3.66)
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Substituting the vorticity and velocity fields, in the singular case, one obtains

H = 1
4π

NpØ
p,q=1

1
|x⃗p(t) − x⃗q(t)|3 [(x⃗p(t) − x⃗q(t)) · (α⃗p(t) × α⃗q(t))] (3.67)

While in the so-called semi-regularized case it can be written as

Hσ = 1
4π

NpØ
p,q=1

|x⃗p(t) − x⃗q(t)|2 + 5
2σ2

(|x⃗p(t) − x⃗q(t)|2 + σ2) 5
2
[(x⃗p(t) − x⃗q(t)) · (α⃗p(t) × α⃗q(t))] (3.68)

Helicity is a measure of net linkage of vortex lines; since vortex lines can reconnect
in a viscous VPM flow, helicity is then not conserved, whereas it is in an inviscid
flow.

Kinetic energy

It is defined as
E = 1

2

Ú
u⃗ · u⃗d vol (3.69)

In the singular case it can be obtained that

E = 1
16π

NpØ
p,q=1,p /=q

1
|x⃗p(t) − x⃗q(t)|3 [|x⃗p(t) − x⃗q(t)|2α⃗p(t) · α⃗q(t)+

+(x⃗p(t) − x⃗q(t)) · α⃗p(t)(x⃗p(t) − x⃗q(t)) · α⃗q(t)]
(3.70)

The summation is done over p /= q since the velocity field is singular.
In the semi-regularized case instead, one can obtain (recalling that ρ = |x⃗p(t)−x⃗q(t)|

σ
)

Eσ = 1
16π

NqØ
p,q=1

C
2 ρ√

ρ2 + 1
α⃗p(t) · α⃗q(t)+

+ ρ3

(ρ2 + 1) 3
2

A
(x⃗p(t) − x⃗q(t)) · α⃗p(t)

|x⃗p(t) − x⃗q(t)|
(x⃗p(t) − x⃗q(t)) · α⃗q(t)

|x⃗p(t) − x⃗q(t)| − α⃗p(t) · α⃗q(t)
BD
(3.71)

On the potentially incorrect assumption that the vorticity field is divergence-free,
the regularized kinetic energy can be written as

Ef
σ = 1

8π

NpØ
p,q=1

|x⃗p(t) − x⃗q(t)|2 + 3
2σ2

(|x⃗p(t) − x⃗q(t)|2 + σ2) 3
2
α⃗p(t) · α⃗q(t) (3.72)

The kinetic energy is conserved in inviscid flow, while in viscous flows it decays as
dE

dt
= −νε (3.73)

This makes the kinetic energy a good indicator for viscous flow simulations.
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Enstrophy

It is defined as
ε =

Ú
ω⃗ · ω⃗d vol (3.74)

This integral cannot be analytically evaluated for singular particles, since the
integral of the square of the delta distribution is undefined[15].
However, the semi-regularized enstrophy is

εσ = 1
8π

NpØ
p,q=1

σ3

(|x⃗p(t) − x⃗q(t)|2 + σ2) 9
2C

(|x⃗p(t) − x⃗q(t)|2 + σ2)

(2|x⃗p(t) − x⃗q(t)|4 + 7σ2|x⃗p(t) − x⃗q(t)|2 + 20σ4)α⃗p(t) · α⃗q(t)+
−3(4|x⃗p(t) − x⃗q(t)|4 + 18σ2|x⃗p(t) − x⃗q(t)|2 + 7σ4)

(x⃗p(t) − x⃗q(t)) · α⃗p(t)(x⃗p(t) − x⃗q(t)) · α⃗q(t)
D

(3.75)

Since in the original work of Wincklemans[6] the enstrophy relationship seems to
be incorrect, in this work it has been reported the correct one, that can be found
in the work of Singh[15] and, as the author states, it has been obtained through
personal communication with Wincklemans.

Moreover, incorrectly assuming that the vorticity field is divergence-free, one
can obtain

εf
σ = 1

4π

NpØ
p,q=1

15
2

σ4

(x⃗p(t) − x⃗q(t)|2 + σ2) 7
2
α⃗p(t) · α⃗q(t) (3.76)

Enstrophy is a measure of stretching and is therefore not conserved whenever
stretching is manifested. Since stretching is present both in viscous and inviscid
cases, enstrophy is not conserved.

3.8 Code implementation
Now that they have been explained the theoretical basis of the Vortex Particle
Method, it is necessary to implement the evolution equations in a Matlab code, to
finally evaluate the performances of rotors.

As previously mentioned, the developed code is a substantial modification of
the code made by Alì[1] in his work.
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Specifically, it has been modified the wake evaluation, since the VPM treats the
wake as a set of particles that evolves following the VPM evolution equations.
Therefore, every particle’s position is updated according to evolution equations, also
considering the induced velocity by the panels in which every blade is discretized
and the eventual inflow velocity.

The code is a stand-alone tool where the user can insert several data as nu-
merical input and can choose along a few settings to best match its necessities in
terms both of accuracy and computational cost.
Both direct and FMM computations are parallelized and vectorized, to achieve the
best computational speed possible.
The output are produced as plots of the desired performances as selected by the user
and it is possible also to plot the geometry of both blades and wake every time-step,
with the eventual aim of producing a video animation of the wake topology.

The user has to insert also the blade geometry and the polar function, so the
code can discretize the first one and can use the second one to calculate the
circulation distribution every time step.

3.8.1 Code flowchart
As indicated in the flowchart in figure 3.2, after the data acquisition and the following
discretization and initialization of the problem, a temporal loop is performed, in
which the code calculates the circulation on the blade, generates the particles,
performs a divergence relaxation, performs the remeshing, updates the position
and the circulation strength of the particles and, finally, rotates the blade of the
corresponding angular step.

The evolution equations are solved with a direct calculation if the number of
particles is less than a specified threshold (the verification study in chapter 5
provides a correlation between the number of particles and the elapsed time for
both direct and FMM calculations), otherwise, it uses the FMM algorithm.

3.8.2 MATLAB functions
Every task in the temporal loop is addressed by a specific Matlab function.
The following paragraphs deal with the main ones.

Circulation calculation

The circulation is evaluated with an iterative calculation, as explained by Alì[1] in
his work.
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Figure 3.2: Code flowchart

This is addressed calculating the circulation according to the following equation

Γ =
cl(α)1

2

51
V⃗ · a⃗1

22
+
1
V⃗ · a⃗3

22
6

dAòè1
V⃗ × d⃗l

2
· a⃗1

é2
+
è1

V⃗ × d⃗l
2

· a⃗3
é2 (3.77)

where the velocity V⃗ is the velocity calculated on the control points, a⃗j is the j-th
versor of the panel, according to van Garrel[32] notation, dA is the area of the
panel and d⃗l is the filament length. The panel geometry is calculated according to
van Garrel work[32].
The velocity is seen as the sum of three contributions:

• Wind velocity

33



The Vortex Particle Method

• Induced velocity by:

– Panels
– Particles

• Rotational velocity
So it can be evaluated as

V⃗ = V⃗wind + V⃗ind,pan + V⃗ind,part − Ω⃗ × r⃗ (3.78)

where Ω⃗ is the angular velocity of the blade and r⃗ is the vector radius of the panel
control point from the axis origin.
The local incidence α is calculated as

α = arctan
 V⃗ · a⃗3

V⃗ · a⃗1

 (3.79)

So it is the angle that the velocity vector V⃗ forms with the airfoil chord in the
plane identified by the vectors a⃗1 and a⃗3.
The lift coefficient is calculated by interpolating data from an aerodynamics database
or XFoil/CFD results.

Equation 3.77 is obtained by equaling two expressions for the lift on a blade
panel; the first one, following the definition of lift force is

dL = cl(α)1
2ρ
51

V⃗ · a⃗1
22

+
1
V⃗ · a⃗3

22
6

dA (3.80)

while the second, following the Kutta-Jukowski theorem is

dL = ρΓ
òè1

V⃗ × d⃗l
2

· a⃗1
é2

+
è1

V⃗ × d⃗l
2

· a⃗3
é2

(3.81)

The circulation is calculated every iteration and, if the guessed value differs from
its more than a specified tolerance, then the previously guessed value is updated as

Γk+1 = Γk + RF (Γ − Γk) (3.82)
Where RF is a relaxation factor, which is necessary to avoid instability due to
oscillations of Γk.
The convergence criterion is

| max(Γ − Γk)|
| max Γ| + 1 ≤ toll (3.83)

The guessed value is 1 if the circulation is calculated for the first time in the
temporal loop, otherwise, it is represented by the distribution at the previous time
step.
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Calculation of the induced velocity by the panels

To evaluate the induced velocity by the panels on both control points and particles
coordinates it has been implemented the Biot-Savart law’s regularized calculation
presented by van Garrel[32] in his work, so, referring to his notation, the velocity
is

V⃗ind(Pc) = Γ
4π

(|r⃗1| + |r⃗2|)(r⃗1 × r⃗2)
|r⃗1||r⃗2|(|r⃗1||r⃗2| + r⃗1 · r⃗2) + (δl0)4 (3.84)

Where l0 is the filament length and δ is a percentage damping factor that is
arbitrary.

Figure 3.3: Biot-Savart law for the panel induced velocity calculation[32]

Thrust and torque calculation

In the same function as the previous, they are also calculated thrust and torque as
the sum of every panel contribution.

The thrust on each panel is calculated as the sum of the vertical component
of both lift and drag; the drag is calculated, as well as the lift, as

dD = cd(α)1
2ρ
51

V⃗ · a⃗1
22

+
1
V⃗ · a⃗3

22
6

dA (3.85)

Then, considering that the angle between the lift (perpendicular to the velocity in
the plane individuated by vectors a⃗1 and a⃗3) and the vertical axis is

β − α

where β is the angle between a⃗1 and the horizontal axis, it can be calculated that

dTh = dL cos(β − α) − dD sin(β − α) (3.86)
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since the drag is perpendicular to the lift.

The torque is calculated instead as the one due to the horizontal component
of both lift and drag with respect to the vector radius of the control point r⃗ (of
components rx, ry and rz in the cartesian xyz reference frame).

dT =
ñ

r2
x + r2

y[dL sin(β − α) + dD cos(β − α)] (3.87)

Figure 3.4: Scheme for thrust and torque calculation

Particles generation

The particle generation is done according to the formulation presented by Singh[15]
in his work.
The first set of particles is shed in the wake, to account for the spatial variation
of circulation on the blade, then a second set is shed, to account for temporal
variation of circulation instead.
The first set is shed chordwise, while the second one is shed spanwise. Both of
them are shed from the trailing edge position, which is obtained by translating the
control point positions to the corresponding trailing edge coordinates.

To ensure the overlapping condition, the spatial resolution of the particles is
calculated as

hres = σ

1.5
Since, as stated before, it is necessary, due to numerical stability issues, that the
particles’ smoothing radius is greater than the spatial resolution.

A more detailed explanation on how the particles are generated can be found
in appendix D.
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Particle position and circulation strength update

The position of every particle is computed by integrating its velocity with the low
storage four stages third-order Runge-Kutta method discussed in appendix C.
The velocity of every particle is evaluated as the sum of several contributions:

• The velocity induced by all the particles in the field (equation 3.45).

• The velocity induced by all the panels in which the blades are discretized
(equation 3.84).

• The eventual inflow velocity (given as input).

Instead, the circulation strength is updated according to equation 3.46.

Here, only the first contribution can be evaluated with FMM, since the second
one will result in a useless overhead using the FMM algorithm (the number of
panels - sources - is much less than the number of particles - targets). The third
contribution is instead constant for every particle, so is added lastly.

3.9 Conclusions
Through this massive chapter, they have first presented the regularized VPM
evolution equations, according to the HOA regularization, which has also dealt with
the correct modeling of the vortex stretching term (with the transpose formulation,
as it is the only one that conserves vorticity) and the viscous diffusion term.

Then, it has been addressed the difficult task of providing the code to be sta-
ble and also providing the velocity field to be as much as possible divergence-free;
has been possible thanks to the introduction of particle remeshing and divergence
relaxation.

Lastly, they have been presented with the so-called diagnostics (both linear and
quadratic) tools to check and ensure the correct behavior of the code, and it has
been shown a detailed code flowchart with further details on issues that have not
been treated explicitly in the previous or next chapters.
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Chapter 4

The Fast Multiple Method

As stated before, the Vortex Particle Method has a computational cost of O(N2
p ),

so it is mandatory to scale it to a better one, especially intending to produce
simulations that involve several revolutions (i.e a considerably high number of
particles).
In particular, it is necessary to speed up the calculation of the influence, in terms
of both induced velocity and circulation strength update, that every particle has
on the others. This can be achieved, in general, with a so-called fast summation
method, which the Fast Multipole Method is part of.

The Fast Multipole Method makes it possible to reduce the computational cost of
the summation from O(N2

p ) to O(Np log Np) or even to O(Np).
In this work have been investigated two routines that have a computational cost of
O(Np) and are discussed in the sections below.

4.1 Fundamental theory
The basic idea behind the Fast Multipole Method is that the influence of all particles
at a point is approximated by the influence of several clusters (at their center) of
particles at the same point, in the form of multipole moments.
They are divided into clusters of only particles which are well separated from the
point where it is necessary to calculate the influence of all particles, otherwise, the
method will not converge.
The discrimination between well-separated and not well-separated zones (far-field
and near field) is achieved by dividing the computational domain into cells (for
a tridimensional problem, it is used an octree data structure). Then, the direct
calculation is performed only for particles that are on the so-called nearest neighbor
cells, while the FMM calculation is performed for the others.
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For a more detailed explanation of this topic, the reader is referred to [27] and [26].
This section makes use of figures and notations that are the same as the ones used
by Berdowski[4] in his work.

4.1.1 Summary of the steps
This method requires deep bookkeeping of the computational domain into a complex
data structure, so it is mandatory to split the algorithm into several subsequent
steps.

1. Construction of the tree: The computational domain is divided into refine-
ment layers, with an increasing number of boxes, depending locally on the
particle density.

2. Local Multipole expansions: They are calculated at the centers of the finest
level’s boxes.

3. Translation of Local Multipole expansions: The Local Multipole expan-
sions are subsequently translated to the centers of coarser boxes. Now the
field induced by the sources is completely described by multipole expansions.

4. Computing far-field potential: It is, therefore, possible to evaluate the far-
field potential at each target point.

5. Direct calculation of near field potential: As previously mentioned, the
near field is computed directly.

In the next lines, they will be discussed more in detail these steps. Figure 4.1
depicts what was just briefly explained. Although the next figures will show a 2D
case of the Fast Multipole Method, it will be described as a 3D version instead.

Figure 4.1: Flow of the FMM calculation

Construction of the tree

Firstly, the computational domain is subdivided into an octree; this means that,
for each level, the domain is cut in a half, resulting in equally sized boxes. The
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boxes obtained at a finer level from the same box at the coarser one are called
children. Each box, therefore, holds 4 children in 2D and 8 children in 3D.

Until a certain condition is not satisfied (usually it is based on the maximum
amount of particles in a box or a prescribed level of refinement), the subdivision
continues. This step goes on until every box has reached the prescribed conditions.
The child box at his finest division is called a leaf box and is shown in green in
figure 4.2.

Figure 4.2: Generation of a 2D quadtree structure (octatree in 3D)

Local Multipole expansion

Let’s now concentrate on the finest level of the octree structure. There, the mul-
tipole expansions of the potential of all the particles in each box are calculated
about the box center. This is shown in figure 4.3a.

Then, they are shifted and translated to the centers of the parent boxes, so
that each box at the coarser level holds a combination of 8 multipole expansions
from its children. This is shown in figure 4.3b.

Far field computation

In this step, is firstly required to discriminate the far-field from the near field.
To achieve that it can be shown how the ratio θ between the diameter d of the
circle in which is inscribed the box for that we want to evaluate the influence on
the target and the distance x between the target and the box center has to be
greater than 1. This is shown in figure 4.4

4.1.2 Calculation of the potential
In this paragraph is afforded the calculation of the laplacian potential Φ = q 1

||x⃗||
induced by a source of charge q in x⃗ = x⃗p on a target point in x⃗ = x⃗q, in terms of
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(a) Calculation of the potential
about the box center

(b) Translation of the expan-
sions to parent box

Figure 4.3: Local Multipole expansion

Figure 4.4: Far field discrimination

the Fast Multipole Method.

Let us firstly consider the coordinates of source and target points in a spheri-
cal reference frame, so that

x⃗ = {ρ, θ, ϕ} (4.1)

Then, it is recalled that the solution of the Laplace equation for the potential can
also be expressed in the form

Φ(x⃗p, x⃗q) =
∞Ø

n=0
q

ρn
q

ρn+1
p

Pn(u) (4.2)

Where the Pn terms are the Legendre polynomials.
Equation 4.2 is indeed the far field potential on target x⃗p due to a unit-strength
charge in x⃗q.

The Legendre polynomial can be further expressed in terms of spherical harmonics
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Figure 4.5: Spherical coordinates with respect the Cartesian reference frame

Y m
n as

Pn(cos γp→q) =
nØ

m=−n

Y −m
n (θq, ϕq)Y m

n (θp, ϕp) (4.3)

where γp→q is the angle between the points p and q.

The spherical harmonics, in their turn, can be expressed as

Y m
n (θ, ϕ) =

öõõô(n − |m|)!
(n + |m|)!P

|m|
n cos θeimθ (4.4)

It must be highlighted that the superscripts here does not represent a power but
they indicate the order, both for Legendre polynomials and spherical harmonics.

Another important remark that needs to be done is that the P m
n terms in equation

4.4 are independent from the Pn terms in equation 4.3, since they can be expressed
as

P m
n (u) = (2n − 1)uP m

n−1(u) − (n + m − 1)P m
n−2(u)

n − m
(4.5)

With the boundary conditions

P m
m+1 = (2m + 1)uP m

m (u) (4.6)

P m
m (u) = (−1)m(2m − 1)!!(1 − u2)m

2 (4.7)
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Here the "!!" operator denotes the double factorial operation, that is the product of
odd integers only.

By writing Pn(u) in equation 4.2 as indicated in equation 4.3 and generalizing all
to a set of Npart particles, it is possible to describe the far field potential at the
point p due to the Npart particles centered around q as

Φ(x⃗p, x⃗q) =
∞Ø

n=0

nØ
m=−n

NpartØ
i=1

qi
ρn

i

ρn+1
p

Y −m
n (θi, ϕi)Y m

n (θp, ϕp) (4.8)

The terms

Mm
n =

NpartØ
i=1

qiρ
n
i Y −m

n (θi, ϕi) (4.9)

are the multipole expansion coefficients and they account for the set of particles
centered around p.
It can be therefore written that

Φ(x⃗p, x⃗q) =
∞Ø

n=0

nØ
m=−n

Mm
n

ρn+1
p

Y m
n (θp, ϕp) (4.10)

The latter equation allows to describe the solution of the potential in terms of each
multipole expansion of each source in a leaf box with respect the center of the box
itself.

The last step that needs to be carried out is the translation of each particle
expansion to the center of its box and from a certain level to the subsequent level
(parent to children or vice versa).
In this way, the far field potential at x⃗p due to a set of particles translated to the
center of their box and subsequently from that box to another box can be expressed
as

Φ(x⃗p, x⃗Q1) =
∞Ø

l=0

lØ
j=−l

Dj
l (x⃗Q)Om

n (x⃗p − x⃗Q) (4.11)

Where

Dj
l (x⃗Q1 , x⃗Q0) =

lØ
n=0

min(j+n−l,n)Ø
max(j+n−l,−n)

Cm
n (x⃗Q0 , x⃗qi)Ij−m

l−n (x⃗Q1 − x⃗Q0) (4.12)

Om
n (x⃗p − x⃗Q1) = (−1)ji|j|Y m

n (θQ1→p,ϕQ1→p)

Aj
l ρ

j+1
Q1→p

(4.13)

With

Cm
n (x⃗Q0 , x⃗q) =

NpartØ
i=1

qiρ
n
i Y m

n (θi, ϕi)(−1)−ni−|m|Am
n (4.14)
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Ij−m
l−n (x⃗Q1 − x⃗Q0) = (−1)l−nAj−m

l−n ρl−n
Q0→Q1Y j−m

l−n (θQ0→Q1 , ϕQ0→Q1) (4.15)

Am
n = (−1)nñ

(n − m)!(n + m)!
(4.16)

The I and O functions are the so called inner and outer translation functions.
To have a clear overview on the notation used in this work the reader is referred to
figure 4.6.

Figure 4.6: Explanation of the notation used in this paragraph

What just discussed is valid for a scalar potential, i.e a potential due to a scalar
charge. The VPM evolution equations are, on the other hand, vectorial equations,
so they could be all extended to a vectorial charge q⃗, to subsequently obtain a
vectorial potential, which is, in our case, the streamfunction Ψ⃗ such that u⃗ = ∇×Ψ⃗,
as explained in chapter 3.
Unfortunately, the FMM does not provide any derivatives of the computed potential,
so it would be necessary to evaluate them as a post-processing operation, adding
computational effort to the calculation. This is further worsened considering that
it would be also necessary to describe the aforementioned derivatives in spherical
coordinates and then compute the same in cartesian ones and also considering that
it would be required to regularize the laplacian kernel, as done in the evolution
equations in chapter 3.

44



The Fast Multiple Method

Due to this additional computational effort, in this work, it has been decided
to recast the evolution equations to obtain them in terms of scalar potentials, which
are directly computed with the Fast Multipole Method. Their complete derivation
is collected in appendix B.
This procedure has been carried out also by Seetharaman in his work[8] and, how
it will be highlighted in the next sections, this has produced a computational effort
that can be however considered more than acceptable.

Another way to treat this last issue could be using the so-called complex step
derivative approximation[33] (CSDA), which has been successfully used by Alvarez
in his work[13].

4.2 FMM algorithms
This section will briefly describe two investigated C++ routines to execute an
FMM calculation.
Both of them can calculate the potential Φ in a set of target points due to another
set of sources, with their coordinates and their charges.
In addition, they are theoretically kernel independent, so it can be afforded the
calculation of mostly every potential.

Both of them are available as open-source libraries, and they come with some
default routines to compute the potential with the most common kernels.
Since the kernels used in this work are not included in the default settings for any
of them, they have been modified to perform such a computation.
Moreover, the default routines generate random coordinates and charges, so they
have been further modified to take as input the set of coordinates and charges, and
then give as output the potential, which would not otherwise be collected in memory.

Both the two routines perform an error computation about the direct calcula-
tion and also a measurement of the computational time for both FMM and direct
calculation, highlighting the convenience of the first one from a certain number of
points.

The validation, the further modification of these algorithms, and the compari-
son between them are afforded in chapter 5.

4.2.1 The BBFMM3D algorithm
This algorithm is based on the work of Fong et al.[3], which used a different method-
ology to develop an FMM routine, concerning what was explained in the previous
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section.
This algorithm can be considered kernel independent since the elements of the
kernel matrix (the matrix where are stored the kernel values for all sources and
targets values) are obtained through Chebyshev nodes as interpolation basis .

The BBFMM3D, as stated by the authors, requires a small pre-computation
time and makes use of the minimum number of coefficients to represent the far-field
potential. This results in a suitable routine for complicated kernels, such as the
ones that come from the VPM evolution equations.

For a more detailed overview of this method, the reader is referred to the work of
Fong[3].

Routine explanation

The library comes with four different routines: two for the laplacian kernel and
the other two for a user-defined kernel. For each kernel, there is a routine for
random input and another one for external input, from a .bin file. This is particu-
larly suitable in Matlab since it is possible to generate such a file directly in the code.

The standard routine requires the definition of sources and targets coordinates,
sources’ charges, and a set of metadata, where are stored the length of the com-
putational domain (assumed to be a cube), the number of Chebyshev nodes per
dimension, the number of sources and target particles, the expansion level, the
number of sets of charges, and the desired precision.
For a user-defined kernel, the latter is stored in a class in the main program. There,
the user can modify the expression of the kernel and its properties, since the
BBFMM3D algorithm can benefit from an eventual lower pre-computation cost
depending on the kernel type.
Once are fulfilled these requirements it can be launched the routine according to the
provided makefile and perform the computation. The typical output of a default
routine is depicted in figure 4.7.

Figure 4.7: Output of BBFMM3D default routine
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It must be noticed that the pre-computation phase has to be performed only if the
kernel or its parameters change, allowing a faster calculation for multiple potential
evaluations based on the same kernel, as could happen in the application of the
FMM to the VPM evolution equations.

4.2.2 The exaFMM algorithm
This algorithm is based on the kernel-independent variant of FMM which can be
found in the work of Ying et al.[34].
The version that has been used in this work is a modification of the exafmm-t-master
one, since it is designed to be standard, minimal, and highly optimized, enabling a
ready-made and easier way to exploit the parallelizing capacity of modern comput-
ers.
Although exists a parallelized version of the BBFMM3D library (PBBFMM3D), it
is more difficult to implement it, also considering that this library relies upon a
not completely open-source library to execute part of the calculation.

For a more detailed overview of this method, the reader is referred to [34] and [2].

Routine explanation

The library comes with two different routines: one for the laplacian kernel and the
other for the Helmholtz kernel (although it is available a modified Helmholtz kernel
too).
Despite the BBFMM3D library, exafmm-t stores the kernel and the P2P operations
into a header file, which can be eventually modified to be adapted to almost every
kind of non-oscillating kernel.
In this way, the main of every different computation is mostly the same, differing
only for the correct header call in the "include" phase of the code.

The aforementioned main program of the code is therefore structured as follows:

1. Generation or input reading of source and target coordinates, charges, and
metadata.

2. Creation of an FMM instance for the desired kernel.

3. Building and balancing of the octree structure.

4. Building the lists and pre-computing invariant matrices.

5. Performing the effective FMM algorithm, through the upward and downward
pass.
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6. Sorting back the potential values from Hilbert indices to the original order of
targets.

The default routines implements also a direct calculation to evaluate the error
between FMM and the latter, and also a temporal measurement, as well as the
BBFMM3D routine. The typical output of a default routine can be found on figure
4.8.

Figure 4.8: Output of exafmm-t default routine

The metadata that has to be set is the order of the expansion P and the maximum
number of particles per leaf ncrit.
The first one is analogous to the order of a Taylor series expansion and is related
to the computational cost of the algorithm as O(P 4)[17].

4.3 Code implementation
Once the theoretical basis and the investigated routines have been discussed, it can
be afforded the actual implementation of the two routines on the VPM code.
Firstly, it has been rewritten the evolution equations in a form that is suitable to
be solved with a Fast Multipole Method algorithm; their complete derivation is
presented in appendix B. Then, it has been implemented its calculation on the
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investigated routines, as will be explained in the next lines.
Since the Fast Multipole Method relies upon several operations, as discussed in
the first section of this chapter, it starts to be more convenient than the direct
calculation for some thousands of particles.
To achieve the best computational time, it has been therefore implemented in the
code a flag that, depending on the threshold selected by the user, performs the
FMM calculations only for a certain number of particles, that is Np > Np,threshold.
However, the Vortex Particle code is written in Matlab, while the FMM routines
rely on C++, so it has been necessary to find a practical but efficient solution to
link these two languages.
The idea behind this communication is that the Matlab code stores the required
variables by the FMM in text files, then the FMM routine is run directly from
Matlab (through a function that allows giving commands to the terminal), and it
takes them as input, and gives as output another text file, which is then read by
Matlab again, as indicated in the flowchart in figure 4.9.
It has been therefore modified the default routine to read the coordinates of sources
and targets, the charges values, and the metadata, and also to give as output the
result of the calculation.
It has also been modified the default routine to perform the calculation with the
evolution equations kernel discussed in appendix B, as stated before.

Although the file reading can represent a potential bottleneck, it can be seen
in figure 4.10 how actually the FMM starts to be faster than direct calculations for
about Np = 4000, which represents a satisfactory value for the code, although it
can be improved in a future work. This may be due to the usage of the ifstream
and ofstream functions in the C++ routines, which is demonstrated to be the
fastest way to perform a file I/O in C++.

The aforementioned scheme to link the Matlab VPM code with the C++ FMM rou-
tine has been generalized, allowing a simple and versatile usage of both BBFMM3D
and exaFMM, with a few modifications to the functions.
They have been therefore coded as two different, but analogous, Matlab functions
that execute the C++ routines; they are subsequently called by the main functions
which compute the induced velocity and the circulation strength update according
to the evolution equations formulation for FMM discussed in appendix B.

4.4 Conclusions
This chapter has presented a theoretical overview of the Fast Multipole Method,
which allows reducing the computational cost of a direct summation from O(N2

p )
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Figure 4.9: Flowchart for FMM integration with Matlab

to O(Np log Np) or to O(Np).
Then, they have been investigated two practical C++ routines that perform a
O(Np) computation, and how they have been implemented on the Vortex Particle
code to compute the induced velocity and the circulation strength update of every
particle due to all the particles in the field.

In the next chapter they will be also validated, both alone and into the VPM code,
and it will also be performed a comparison study to choose the best one in terms
of accuracy and computational speed.
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Figure 4.10: Computation time for the VPM routine (Direct vs exaFMM).
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Chapter 5

Validation of the code

To ensure the correct behavior of the code, it has been necessary to perform
a detailed verification study based on numerical results obtained by several au-
thors[6],[15],[8],[12][4].
They have recreated the simulations performed by these authors and the results
obtained in this study have been compared to them.

They have also been performed the verifications and validation studies of both
exaFMM[2] and BBFMM3D[3].
In addition, since they have been considered both the FMM algorithms, it has
been performed a comparison study between the two routines has been therefore
showing the convenience of one instead of the other.

5.1 Validation of the VPM code
The first step has been the validation of the VPM evolution equations discussed in
chapter 3.

The first one involves the simulation of a single vortex ring, discretized with
one vortex particle as its core, and can be used as a useful tool to investigate the
self-induced velocity over the circumference since analytical approximations are
available.

The second one involves the simulation of a single vortex ring, discretized with 4
layers of particles as its core, and represents the most used verification tool for a
VPM code.
Wincklemans[6] provided a wide choice of numerical results to validate every side
of the evolution equations.
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Here is also used the diagnostics, discussed in chapter 3, as a further verification tool.

Lastly, the third simulation involves the so-called "leapfrogging" problem, which is
useful to verify the correct behavior of vortex stretching.
In addition, this phenomenon can be encountered in the transition phase of the
wake to the turbulent breakdown, so it can be useful to further investigate it.

5.1.1 Single vortex ring with one particle on the core
Problem statement

It has been defined a vortex ring placing N vortex particles of core size σ in the
x − y plane on a circumference of radius R as shown in figure 5.1.
The initial vorticity ω⃗ of every vortex particle has been defined according to
Wincklemans[6] as

ω⃗(x⃗,0) = Γ
2πσ2 e⃗θ (5.1)

Γ is the circulation of the vortex ring. The circulation strength α⃗ can be obtained
multiplying ω⃗ by the corresponding volume of fluid associated to the particle, which
is defined as the volume of a curvilinear cylinder of radius rl which connects two
subsequent vortex particles.

vol = πR∆θrl (5.2)
Where rl is the radius of the circumference of fluid associated with the vortex
particle on x − z plane; it is defined as rl =

√
2σ, according to Wincklemans[6],

which highlight the correlation with the Hill’s spherical vortex.
The angle ∆θ is defined as in figure 5.1 and can be computed easily as

∆θ = 2π

N
(5.3)

Simulation parameters

A simulation with the input parameters shown in table 5.1 has been performed.
The validation has been done over the centroid position at every timestep. An
analytic expression for centroid velocity is available for this case (HOA regularization
function)[6][22].

UR = Γ
4πR

3
log 8R

σ
− 1

2

4
(5.4)

It has to be noticed that the cutoff radius σ in this expression, as well as the one
which has to be used for the regularization function, must be corrected as

σ = βσ (5.5)
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Figure 5.1: Single vortex ring with one particle on the core

Where β is a parameter that is related to the algebraic regularized kernel. Unfor-
tunately, Wincklemans provided a value only for the low-order algebraic kernel,
which is β = e−0.75, so the results might differ because of this difference.
This correction is necessary because, as reported by Wincklemans[6], computing
the velocity of a vortex ring with the centerline velocity yields the wrong result for
most vorticity distributions. However, if the asymptotically correct velocity of a
thin vortex ring of given core size σ1 is desired, it can be obtained by taking the
velocity of the ring as the Biot-Savart velocity applied on the centerline with a core
size σ1 = βσ2.
This occurs because otherwise, it will not be consistent with the expression obtained
by Leonard[35] for the thin ring.

N R Γ ν σ ∆t

200 1 m 1 m2

s
2.5 · 10−3 m2

s
0.1R 0.005s

Table 5.1: Input parameters for the single ring with one particle on the core
verification case

Results

It has been performed as a first simulation, where the centroid position over time
has been calculated every timestep. The results in figure 5.2 show a good agreement
between analytical ones, considering the aforementioned lack in Wincklemans’ work
about the β value for the HOA regularization function.
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Figure 5.2: Centroid position over time

Then, it has been performed a second simulation, which evaluates the centroid
velocity for several values of core size σ, from 0.1R to 1.4R, with a step of 0.2R.
The results can be compared with the analytical expression 5.4 and it can be
noticed that they sufficiently agree, as shown in figure 5.3.

It can be concluded that the aspects involved in this test case have been suc-
cessfully validated.
As previously stated, the differences between theoretical and numerical results may
rely upon the cutoff radius correction and also on the definition of rl, which is not
effectively clear from the work of Wincklemans[6].
However, the error involved in these cases is about 1.5%, which can be considered
sufficiently small to be addressed to minor issues, also considering that verification
studies are not so detailed and clear and do not provide precise instructions on
how to recreate the simulation.

5.1.2 Toroidal single ring with multiple particles on the
core

Problem statement

Here the ring’s core has been discretized with multiple layers, according to Winckle-
mans work[6]. The ring is therefore composed of Nθ disks, each of them composed
of Nϕ vortex particles, placed in nc layers.
Notice that in this work the notation regarding angles ϕ and θ is the opposite
concerning the Wincklemans’ one.
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Figure 5.3: Centroid velocity for several values of σ
R

The generation of a single disk is now discussed, since the entire torus can be
further obtained by simply applying a rotation matrix with respect z axis for every
value of the angle θ, from ∆θ to Nθ∆θ.
According to Wincklemans formulation[6], each particle is placed at the center
of a cell. The first particle is referred to a circular cell of radius rl, while the
others are referred to semi-circular crowns of angular width ∆ϕ = 2π

n
, where n

is the number of particles on the layer, and minimum and maximum radius of,
respectively, r1 = (2n − 1)rl, and r2 = (2n + 1)rl, so the maximum radius reached
through the discretization is rmax = (2nc + 1)rl.
It can be observed that the n-th layer is composed by 8n particles, since every
layer has 8 more particles than the previous one.

The radial position of every particle can be calculated as

r = 1 + 12n2

6n
rl (5.6)

The number of particles in the disk can be therefore computed as Nϕ = 1+4nc(nc+1),
so the total number of particles in the vortex ring is NθNϕ.

Each cell has an area that can be proven to be

A = πr2
l (5.7)
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Figure 5.4: Discretization of layers of particles into a 2D disk[6]. The angle
indicated as θ is here indicated with ϕ.

So the volume of fluid associated to a cell, i.e a vortex particle, can be computed
as

vol = ∆θ(r2 − r1)
5
(ϕ2 − ϕ1)R

3
r1 + r2

2

4
+ (sin ϕ2 − sin ϕ2)

3
r2

1 + r1r2 + r2
2

3

46
(5.8)

The proof of this expression can be found in the works of Wincklemans[6] and
Calabretta[7].

Once the initial disk has been generated, as shown in figure 5.5a, a revolution along
z axis is done, as shown in figure 5.5b.

Then, it has been necessary to assign an initial strength to the particles; it can be
done, according to Wincklemans’ formulation[6], as

ω⃗(x⃗,0) = Γ
2πσ2

3
1 + r

R
cos ϕ

4
e− r2

2σ2 e⃗θ (5.9)

It can be noticed that this formulation is a generalization of the previous validation
case, as it can be obtained simply by placing nc = 0, further obtaining ϕ = 2π and
r = 0.

However, the circulation strength α⃗ can be obtained simply multiplying ω⃗ by
the volume associated to every vortex particle.

α⃗p(0) = ω⃗(x⃗p,0)volp (5.10)
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(a) Initial disk (b) Complete vortex ring

Figure 5.5

With the above initial conditions, the initial enstrophy can be exactly evaluated,
as reported in the work of Wincklemans[6], integrating the square of ω⃗(x⃗,0).

ε(0) =
Ú

ω⃗(x⃗,0) · ω⃗(x⃗,0) dx⃗ = Γ2R

2σ2

A
1 + 3σ2

2R2

B
(5.11)

This value can be used to verify the correct kinetic energy initial decay, since it
can be calculated as

dE(0)
dt

= −νε(0) (5.12)

Therefore, it can be performed a simulation of three time-steps to calculate dE
dt

with a second order finite difference scheme.

dE(0)
dt

= −E(2∆t) + 4E(∆t) − 3E(0)
2∆t

(5.13)

This can be also used as a further way to adjust the core size σ, if the values of
dE(0)

dt
and −νε(0) does not agree.

Simulation parameters

It has been performed a simulation with the parameters shown in table 5.2. The
number of layers nc has been chosen as a compromise between the necessity of
recreating one of the cases in the work of Wincklemans[6] and memory constraints.
The parameters are equal to the ones used by Wincklemans in the nc = 4 case.
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Nθ nc R rmax Γ σ ν ∆t

80 4 1m 0.35m 1m2

s
0.1R 2.5 · 10−3 m2

s
0.025s

Table 5.2: Input parameters for the toroidal single ring case

Results

The results obtained have been reported in table 5.3, providing a comparison
between values obtained in this verification case and values obtained by several
authors[6][7][15][12] in their analogous validation phase of the VPM code.

Notice that the values of kinetic energy and enstrophy for the divergence-free

Study Wincklemans Calabretta Singh Martin
|I(0)| 3.2446 3.2139 3.1326 3.1654 3.274
E(0) 1.0548 1.0475 1.0128 1.0167 1.0407
Ef (0) 1.0549 1.0476 1.0129 1.0168 1.0408
ε(0) 61.2560 61.346 N/A 61.411 N/A
εf (0) 60.2560 62.3842 63.3821 60.412 63.52
dE(0)

dt
−0.1455 −0.1276 −0.1276 −0.1496 N/A

Table 5.3: Diagnostics comparison of the single toroidal vortex ring with several
authors[6][7][15][12].

assumption are considerably close to the more general ones, without the divergence-
free assumption. This is a clear indication that the implemented transposed scheme
ensures a sufficiently acceptable divergence-free condition of the velocity field.
The initial enstrophy value is greater than the theoretical one but, as highlighted by
Wincklemans, this difference becomes lower as the number of layers nc is increased.

It can be observed that the values obtained are consistently slightly different
from the ones obtained by the aforementioned authors. These differences may rely
upon several issues:

• Almost every verification study refers to Wincklemans’ one, but in his work,
some aspects are not clearly explained, such as the possibility of a core
size correction after the computation of the initial kinetic energy decay, the
programming language used, and the iterations used in Beale’s method for
initial condition relaxation.

• Singh and Martin do not explicitly mention the usage of Beale’s method for
particle relaxation.
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However, the error between this verification study and the others, especially Winck-
lemans’ one, can be considered acceptable and so the validation case was successfully
achieved.

(a) Angular impulse evolu-
tion

(b) Total vorticity evolu-
tion

(c) Normalized linear im-
pulse evolution

Figure 5.6: Linear diagnostics evolution

In addition to these initial values, it has been reported in figure 5.6 the evolution
of linear diagnostics, in terms of angular impulse A⃗ (figure 5.6a), total vorticity
Ω⃗ (figure 5.6b) and normalized (with respect its initial value) linear impulse |I⃗|

|I⃗(0)|
(figure 5.6c).
It can be observed that both angular impulse and total vorticity are conserved
(as the transpose scheme, correctly implemented, ensure), while the linear impulse
evolves as obtained by both Wincklemans and Calabretta.

In conclusion, the high amount of agreement for each investigated term, both
in initial values and throughout their evolution is a clear indication that the evo-
lution equations for velocity and stretching, as well as the time evolution scheme
employed, have been correctly implemented.

5.1.3 Leapfrogging of two single rings with one particle on
the core

Problem statement

They have been defined as two vortex rings that are both conceptually identical
to the one discussed in the previous test case; they are placed concentrically, as
shown in figure 5.7.
Since the core size has been considered constant, then the volume is not conserved,
and it varies because of the radius variation every time step.
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Figure 5.7: Leapfrogging rings with one particle on the core

Simulation parameters

The simulation is performed with the parameters reported in table 5.4, for an
inviscid case.
Since the smaller ring has a greater induced velocity than the bigger one, it tends
to rapidly expand, becoming bigger than the other.
Then, it begins to slow down, while the other ring tends now to expand and pass
through the other one, repeating this until the two rings merge and diffuse.
The expansion or contraction occurs because of the vortex stretching term, so it
can be expected that a correct behavior of vortex stretching causes a cyclically
varying radius of the two rings.

N1 N2 R1 R2 Γ1 Γ2 σ1 σ2

100 100 0.5 m 1 m 1 m2

s
1 m2

s
0.1R 0.1R

Table 5.4: Input parameters for the leapfrogging verification case

Results

The results obtained with the present simulation can be compared with the available
analytical expression, derived by Konstantinov[23] and also reported in the work of
Berdowski[4].
As shown in figure 5.8, they agree very close so it can be concluded that the
validation has been successfully done.

The vortex stretching term is not directly validated, but a correct evolution of this
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Figure 5.8: Evolution of ring radius over time for the two leapfrogging vortex
rings

problem can occur only when the stretching is correctly computed, so it can be
considered as implicit proof of its correctness on the code.

5.2 Validation of the BBFMM3D algorithm

After validating the direct VPM routine, it has been mandatory to validate the
FMM implemented algorithm, to ensure its correct behavior on the evolution
equations.

Firstly, it has been performed a study of the C++ routine with the default
Laplacian kernel K = 1

r
with random sources, targets, and charges values. This

allowed verification of the routine itself, but also of the Matlab coupling process.
In addition, it has been possible to investigate the effective time-saving feature
of this FMM algorithm and the correlation between the levels of the multipole
expansion and the computational cell length, since Seetharaman[8] reported in his
work such correlation, like the one that results in an evident decreasing of the root
mean square (RMS) error concerning the direct calculation.

Then, the evolution equations have been rewritten in a suitable form for the
algorithm, as the product of the kernel K(x, y) with the source weight q. Here, x
is the source and y is the target.
After that, it has been performed a verification study for the direct calculation (vali-
dated in the previous section) and the required time for both direct and accelerated
calculation has been investigated.
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5.2.1 Laplacian kernel

Firstly, it has been investigated the relative error trend, as several parameters are
changed; has made it possible to individuate the best parameters for the subsequent
simulations, to both ensure an acceptable error and a considerable time saving to
the direct calculation.
For these purposes, it has been chosen to use the default laplacian kernel 1

r
, provided

as an example in the BBFMM3D routine.

It has been slightly modified the C++ routine to give as output both sources
and targets coordinates, charges values, and potential ϕ values too. Then, it has
been performed the direct calculation in Matlab and then it has been computed
the relative error between FMM and direct calculation for every particle; this has
been done for Np = 10, Np = 100, Np = 1000, and Np = 5000. The resulting plots
can be seen in figure 5.9 and it can be observed that the error decreases as the
number of particles is increased.
Together with this error calculation, it has been measured the elapsed time for
both FMM and direct calculations and it can be seen in figure 5.10a that for about
Np = 2000 the FMM algorithm starts to be faster than the direct calculation.
It must be noticed that the FMM time here represented is considered also with
the generation of pre-computation files by BBFMM3D. This is necessary only if
the kernel changes, so if the implemented routine will have several calculations
involving the same kernel, then the elapsed time will be considerably lower.
It has been performed a calculation where only the first time are generated pre-
computation files and, as it can be observed in figure 5.10b, the FMM (with
laplacian kernel) starts to be faster mostly immediately.

Figure 5.9: Relative error between FMM and direct calculation (in Matlab) for
increasing number of particles. L = 1, level = 3
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After having checked the consistency of the algorithm, it has been performed the
calculation of the so-called root mean square error (RMS).

RMS =

öõõôq(ϕF MM − ϕdir)2q
ϕ2

dir

(5.14)

And they have been performed several simulations, where they have been variated
several parameters of the algorithm, to have a complete overview of the RMS error
trend with this variations.

(a) Precomputation every step (b) Precomputation only on first step

Figure 5.10: Elapsed time for FMM and direct calculation (in Matlab) for
increasing number of particles. L = 1, level = 3

The parameters that can be changed in the simulation are:

• The length of the computational cell (assumed to be a cube)

• The number of levels of the multipole expansion

It can be also changed other parameters, such as the precision ϵ value, but it has
to be decided to keep this value to its default one (10−9).

Therefore, they have performed calculations of RMS error between FMM and direct
calculation for several values of L, level, and, of course, Np.
In figure 5.11a is shown the RMS error trend with Np, for various level numbers.
Here L is fixed to L = 1. It can be observed that the algorithm, for Np > 1000,
tends to be not so sensible to the level number, as it is instead for a low value of
Np.
In figure 5.11b instead is shown the same plot, but where the L value has been
fixed to L = level; it can be seen that the RMS error decreases as level increases
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(a) L = 1 (b) L = level

Figure 5.11: RMS error between FMM and direct calculation (in Matlab) for
increasing number of particles and various level values

and, of course, as Np increases.

Finally, in figure 5.12 can be observed the most important result: there is a

Figure 5.12: RMS error between FMM and direct calculation (in Matlab) for
increasing L and various level values. Np = 1000

correlation between level and the lowest L value that ensures in the lowest RMS
error, and, as pointed by Seetharaman[8] in his work, it is

L = 2level−1 (5.15)

This may allow the automatic selection of L or level, given the other parameter, to
have the lowest RMS with the highest L or level, ensuring therefore both accuracy
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and time saving by this FMM algorithm.

Lastly, it has been plotted in figure 5.13 the elapsed time by FMM and direct
calculation for several values of L; it can be observed always a considerably time
saving using FMM of about one minute.

Figure 5.13: Elapsed time for FMM and direct calculation (in Matlab) for
increasing L. Np = 10000, level = 3

5.2.2 VPM evolution equations’ kernels
Now that they have investigated both the validity and the performances of the
BBFMM3D[3] algorithm for a standard case, it is necessary to perform a verification
of the modified routine.
The already modified routine for the laplacian kernel has been further modified
and repeated for all the kernels necessary for the calculation of induced velocity
and circulation strength update, according to evolution equations.
Since the FMM can only evaluate the result of a computation such

ϕj =
NØ

i=1
K(x, y)qi (5.16)

It has been necessary to rewrite the evolution equations 3.45, 3.46 in an analogous
form. The complete derivation of the FMM form of the evolution equations is
provided in appendix B.

After having done so, it has been performed a first check on the correctness
of the kernels, evaluating the RMS error with respect the direct Matlab calculation
for every kernel, with a random set of coordinates and charges; the RMS error for
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all the kernels is shown in figure 5.14 and it can be appreciated its negligibility,
probably mostly due to numerical precision differences between C++ and Matlab.

Figure 5.14: RMS error between FMM and direct calculation (in Matlab) for
evolution equations’ kernels. Np = 1000, L = 2level−1, σ = 0.1 m, ν = 0.0025m2

s

Then, they have been implemented two Matlab functions that evaluate induced
velocity and circulation strength update from the kernel formulation previously
mentioned and they have been performed several test simulations for increasing Np,
where they have been computed u⃗p and dα⃗p

dt
both with FMM and direct Matlab

calculation and, then, the RMS error, and the elapsed time.
In figures 5.15a and 5.15b are shown the results of these simulations.

(a) Induced velocity (Biot - Savart law) (b) Circulation strength update

Figure 5.15: RMS error between FMM and direct calculation (in Matlab) for
evolution equations. L = 2level−1, σ = 0.1 m,ν = 0.0025m2

s
.
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As it can be seen, there is a consistently high time saving for both the routines,
approximately for Np = 10000. The induced velocity routine is faster since its
equations involve a lower number of terms, while the circulation strength update
one involves the computation of the dot product of a further cross product, and
involves several different kernels in the computation of every component.
However, the error seems to be sufficiently low and the BBFMM3D[3] algorithm
can be therefore considered successfully validated and implemented in the code.

5.3 Validation of the exaFMM algorithm
Here is presented an analogous verification study of exaFMM routine[2].
It has been firstly performed a verification based on the default Laplacian kernel
K = 1

r
, to ensure the correctness of the routine and the linking phase in the Matlab

code, then it has been performed validation of all the evolution equations’ kernels.

In addition, several features have been investigated, such as the computational
time and the RMS error trend.
These investigations have been performed also in comparison to the ones done with
the BBFMM3D[3] routine. This has allowed the choice of one routine instead of
the other, as it will be shown in the next paragraphs.

5.3.1 Laplacian kernel
An analogous verification study on this FMM algorithm has been performed, eval-
uating the relative error for each particle and the elapsed time, for increasing Np,
with respect to the direct Matlab calculation.
In figure 5.16 it can be observed a similar relative error trend, with respect to the

Figure 5.16: Relative error between FMM and direct calculation for increasing
number of particles. P = 8, ncrit = 400
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BBFMM3D algorithm, while in figures 5.17a and 5.17b are shown the elapsed time
with and without pre-computation (for every step).
As it can be seen, the pre-computation step takes a considerable quantity of time,
even more than BBFMM3D, but it has to be considered that this pre-computation
is required more often in BBFMM3D than in exaFMM and, also, that the two
algorithms have conceptually different kind of inputs; while the BBFMM3D requires
the cut-off length from the far-field and near field, and the number of levels of the
expansion, the exaFMM requires the cut-off number of particles from the far-field
and near field, and the order of the expansion, so this difference may rely upon the
aforementioned differences.

(a) With precomputation every step (b) Without any precomputation

Figure 5.17: Elapsed time for FMM and direct calculation for increasing number
of particles. P = 8, ncrit = 400

After these two main verifications, they have been performed further simulations,
varying Np, P (expansion order) and ncrit (cut-off number of particles).

In figure 5.18 one can observe the RMS error for increasing Np, for various P . It
can be seen how, from P = 8, the error does not seems to evidently change.

In figure 5.19 is depicted the RMS error for increasing ncrit and various P ; here,
again, it can be seen that from P = 8 the RMS error does not appear to change.

Lastly, in figure 5.20 is shown the elapsed time with the same parameters as the
previous figure. It can be clearly seen how the ncrit represents such a cut-off number
of particles, and also how the expansion order gives more accuracy but, naturally,
also requires more computation time.
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Figure 5.18: RMS error between FMM and direct calculation for increasing
number of particles and various P values. ncrit = 400

Figure 5.19: RMS error between FMM and direct calculation for increasing ncrit

and various P values. Np = 1000

5.3.2 VPM evolution equations’ kernels
They have been performed the same verifications as the ones done for BBFMM3D
and in figure 5.21 it can be observed the RMS error with respect the Matlab direct
calculation for every evolution equations’ kernel. As can be seen, the error is slightly
lower than the BBFMM3D routine, but this may also be due to the conceptually
different inputs that the two routines must have.
It can be evinced that the ncrit number has been set to a fraction of Np (here is

25%) since it has been noticed that a lower value produces a significantly higher and
unacceptable error. This may be because ncrit should not be so different from Np

since it is a cut-off variable from far-field to near-field (where the direct calculation
is used).
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Figure 5.20: Elapsed time for FMM and direct calculation for increasing ncrit

and various P values (no precomputation)

Figure 5.21: RMS error between FMM and direct calculation for evolution
equations’ kernels. Np = 1000, P = 8, ncrit = Np

4 , σ = 0.1 m, ν = 0.0025m2

s

Finally, in figures 5.22a and 5.22b are shown the RMS errors and elapsed times
for Biot - Savart and circulation strength update calculations. As it can be seen,
the computation time is much lower than direct calculation and BBFMM3D ones,
as the error for induced velocity, while the one for circulation strength update is
essentially the same concerning BBFMM3D. Further considerations regarding this
verification study are the same as the ones done for BBFMM3D.
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(a) Induced velocity (Biot - Savart law) (b) Circulation strength update

Figure 5.22: RMS error between FMM and direct calculation for evolution
equations. P = 8, ncrit = Np

4 , σ = 0.1 m,ν = 0.0025m2

s
.

5.4 Comparison between BBFMM3D and ex-
aFMM

Once the two routines have been validated and it has been validated also its inte-
gration into the Matlab VPM code, it can be interesting to perform a comparison
between them, both in terms of RMS error and elapsed time for the Matlab direct
calculation.
Figures 5.23a and 5.23b show the aforementioned results and it can be seen that
exaFMM appears to be faster and even more accurate to BBFMM3D.

(a) BBFMM3D. L = 2level−1, level = 8 (b) exaFMM. ncrit = 400, P = 8

Figure 5.23: Comparison between BBFMM3D[3] and exaFMM[2]. Laplacian
kernel.
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The temporal difference can be addressed to the parallelization feature that only
exaFMM has, while the accuracy difference may be instead addressed to the actual
difficulty to set two simulations with the same parameters, since, as previously re-
marked, the two algorithms have conceptually different inputs and perform slightly
different kind of calculations.
However, the FMM procedures are mostly equivalent, since they can be all ad-
dressed to what is explained and discussed in chapter 4.

It is important to notice also that the pre-computation operation on the BBFMM3D
routine must take place every time that the calculation involves a different kernel
from the previous one, while the exaFMM routine requires a new pre-computation
only if the kernel’s parameters are changed concerning the previous code run, since
the first algorithm has a single pre-computation file, while the second one has a
pre-computation file for each kernel. This means that the exaFMM routine can
guarantee a further time saving since the pre-computation can occur only on the
first time step and can be skipped if a simulation is run not changing the core size
σ and the kinematic viscosity ν.

5.5 Conclusions
Here, both VPM code and FMM algorithm have been validated, successfully com-
paring results with ones obtained in standard test cases by several authors (VPM)
and with direct calculations of previously validated schemes (FMM).
All the differences between the verifications and the comparison cases result in neg-
ligible errors, that may rely upon minor differences, not however clearly discussed
in the investigated works.

In addition, it has been explicitly shown the advantage, both from computa-
tional and software points of view, of using the exaFMM algorithm[2] instead of
BBFMM3D one[3].
The BBFMM3D algorithm appears to be more intuitive and easily adaptable to
every kind of kernel, but its two main drawbacks are that it is not parallelized and
that it relies upon deprecated libraries, such as the version 2.1.5 of the FFTW
library, which is not available for Windows.
In the intention of developing a fast, intuitive, and wide usable application, this has
been one of the major points that influenced the choice of the exaFMM algorithm,
also considering the parallelization feature of the latter, which is not a secondary
point since the entire code has the aim of representing a fast but accurate numerical
tool.
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It has to be noticed, however, that a parallelized version of BBFMM3D actu-
ally exists, and it uses also more recent libraries, such as the FFTW3. This would
considerably improve the elapsed time, but it is not guaranteed that it will be
improved the accuracy.
In addition, the aforementioned routine uses an Intel library (Intel MKL) that is
not completely open-source; on the intention of a completely open-source code, this
has also been a discriminating factor for the choice of exaFMM.
However, as it will be indicated in the conclusion chapter 7, it can be an interesting
point to perform a further comparison between exaFMM and PBBFMM3D (the
parallelized version of BBFMM3D).
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Chapter 6

Results

The present chapter aims to present the main results of the entire thesis work, as a
high-level benchmark for future works both from the author and from the entire
scientific community.
They will be presented the results of two different simulations on a T-Motor 15 × 5′′

carbon fiber blade for which are available experimental results, CFD results, and
LLT results.

The VPM code discussed in the previous chapters has been additionally translated
into a stand-alone application, with a practical GUI (Graphical User Interface)
which is reported in figure 6.1.
As it can be seen, the application presents several tabs, where the user can easily
learn how to correctly set up the input files (the blade geometry and the polar
curve), where it can be configured the eventual Windows interface for the exafmm-t
code (which is written to be much more suitable for Unix systems), install the
exafmm-t library itself and where they can be chosen all the parameters for the
desired simulation.
The application, once run, provides a wake plot every time step and, when the
simulation ends, is also able to plot the lift coefficient, the thrust per unit length,
and the temporal trend of both thrust and torque.

6.1 Validating framework
In this section, it will be explained more in detail the genesis of the data that will
be used as a validation for the entire VPM code.

As previously mentioned, the simulations have been performed on a T-Motor
15 × 5′′ (figure 6.2) carbon fiber blade which has been translated to a CAD model
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(a) Welcome tab (b) Install dependencies tab

(c) Input data tab (d) Run and plot results tab

Figure 6.1: Graphical User Interface of the VPM code

using an optical precision measuring machine (OPMM).
To correctly build the aerodynamic database they have performed simulations
on several airfoil stations, which included a turbulent transition model above
Re = 15,000 that is a combination of a k − ω one[36] with the γ − Reθ transition
model[37].
For further details on this work, the reader is referred to [38], [39].
The experimental results are taken from[40], while the CFD results are taken
from[41].

6.2 VPM simulation parameters
In this section, it will be discussed the code setup that has been used for the
performed simulations.

The two simulations have been executed with two different types of paneliza-
tion: homogeneous and cosine law with tip thickening.
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Figure 6.2: Top and front views comparison between original blade (left) and
reconstructed CAD model (right)

The second one would have the aim of capturing more precisely the strong circula-
tion variations on the blade tip.

Excepting for this difference on the panelization type, both the simulations have
been performed with the same parameters, which are summarized in table 6.1. The

Parameter σ ∆α δ lmin Sc fpedr Vinflow

Value 0.015 m 10◦ 0.05 1 · 10−6 0.05 0.02, Hz −0.1 m
s

Table 6.1: Parameters of the two simulations

simulations have been performed with the FMM coupling that activates starting
from Np = 4000.
This value has been obtained by comparing the elapsed time with direct calculation
and with the exafmm-t library, as can be observed in figure 6.3.
The viscous model used for the evaluation of the induction due to the panels in
which the blade has been discretized is a constant cutoff radius.

6.3 Simulations results
In this section are presented the results for the two aforementioned simulations.
The results will be shown in terms of lift coefficient, thrust per unit length, thrust
and torque value, and wake plot.
As well as the experimental and CFD results, they have performed 10 revolutions
of the blade.

6.3.1 Homogeneous panelization
In figure 6.4 is shown the lift coefficient distribution on the two blades, while in
figure 6.5 it can be observed the thrust and torque trend over the simulation time
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Figure 6.3: Elapsed time for direct calculation and exafmm-t for the VPM
temporal loop

of 10 revolutions.
The final values of thrust and torque are Th = 13.67 N and T = 0.259 Nm.
In figure 6.6 is finally depicted the thrust per unit length.
The final wake in terms of vortex particles can be seen in figure 6.7.
The simulation ended up with a total amount of 23,089 particles.

It can be performed a comparison with the CFD results, which is shown in figure
6.8.
As it can be seen, the results only slightly differ from each other, and the thrust is
well resolved both for root, central, and tip stations.

6.3.2 Cosine law with tip thickening panelization
In figure 6.9 is shown the lift coefficient distribution on the two blades, while in
figure 6.10 it can be observed the thrust and torque trend over the simulation time
of 10 revolutions.
The final values of thrust and torque are Th = 12.94 N and T = 0.249 Nm.
In figure 6.11 is finally depicted the thrust per unit length.
The final wake in terms of vortex particles can be seen in figure 6.12.
The simulation ended up with a total amount of 32,086 particles.
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Figure 6.4: Lift coefficient for homogeneous panelization

Figure 6.5: Thrust and torque temporal trend for homogeneous panelization

It can be performed a comparison with the CFD results, which is shown in figure
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Figure 6.6: Thrust per unit length for homogeneous panelization

(a) Isometric view (b) Frontal view

Figure 6.7: Final wake plot for homogeneous panelization

6.13.
Here the tip seems to be not so well resolved, to the homogeneous panelization, as
it can be also seen in figure 6.14.
This might be addressed to the fact that, although the cosine law allows capturing
more accurately the circulation variations on the tip, it forces to generate a higher
amount of particles at the tip rather than at the root/central stations.
Since the thrust relies on how much induction there is nearby, and since the more
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Figure 6.8: Thrust per unit length comparison vs CFD for homogeneous panel-
ization

Figure 6.9: Lift coefficient for cosine law with tip thickening panelization
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Figure 6.10: Thrust and torque temporal trend for cosine law with tip thickening
panelization

Figure 6.11: Thrust per unit length for cosine law with tip thickening panelization
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(a) Isometric view (b) Frontal view

Figure 6.12: Final wake plot for cosine law with tip thickening panelization

induction is present, the lower will be the thrust, it can be hypothesized that a
major concentration of particles on the tip results in a lower thrust there, while
a minor concentration on the root stations will cause a higher thrust, as can be
ascertained on the graph.

Figure 6.13: Thrust per unit length comparison vs CFD for homogeneous panel-
ization
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Figure 6.14: Thrust per unit length comparison vs CFD for the two types of
panelization

6.4 Conclusions
From the two discussed simulations it can be concluded firstly that the code has
successfully been validated, since both the results agree with the CFD results in
an error range that can be considered above 5 − 10%.
Then, it can be concluded that the code seems to be stable, as a high amount
of particles has been shed and correctly evolved through a sufficient number of
time-steps.
The thrust and the torque starts to assume an asymptotic value that differs from
experimental and CFD results for an error that is above 5%.
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In table 6.2 are reported the thrust and torque values for the experimental
results[40], for the CFD results[41] for the current VPM code, and for the LLT
code[1] that has been widely cited through this work.
As it can be seen, the current VPM code produces satisfactory results, that can be
even compared to CFD, but with a much lower computational effort.
The two simulations have been indeed performed on a 2 core machine, resulting in
a computational time of 14 hours for the first one and 20 hours for the second one,
highlighting the significant timesaving, also thanks to the FMM integration on the
code.
The homogeneous panelization is more accurate on the thrust prediction, while the
cosine law with tip thickening is more accurate on the torque one.

In figure 6.15 is reported the thrust per unit length comparison between CFD,
VPM and LLT for both the types of panelization.
It can be observed that the LLT overpredicts the thrust at the tip station, while
the other ones are well resolved.
This highlight the effective conceptual difference between these two methods, espe-
cially through the fact that the VPM describes the flow field in terms of vortex
particles, avoiding eventual connectivity of the vortex structures.
Additionally, the VPM code uses a third-order accurate integration scheme, while
the LLT code[1] uses a first or second-order integration scheme, so eventual differ-
ences might rely also upon this.

(a) Homogeneous panelization (b) Cosine law with tip thickening pan-
elization

Figure 6.15: Thrust per unit length comparison with respect to CFD and LLT
results for both the panelization types
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Chapter 7

Conclusions and future
works

This chapter includes the main conclusions on the entire thesis work, since the
conclusions on every aspect that has been dealt with through the dissertation are
located at the end of each of them, and includes also several possible future works
that can originate from this thesis.

7.1 Conclusions
At this point, it can be stated that this thesis work achieved its major goals.
The code has been validated through both VPM evolution equations, FMM routine,
and the entire coupling with the LLT.
It has also ascertained the explicit integration scheme stability.

Moreover, the developed code represents a fast but accurate design tool to predict
the performances of rotors, propellers, and even wings.
The results, as seen in chapter 6, agree very well with CFD and experimental
data, with the advantage of a much lower computational effort, thanks also to the
implementation of the Fast Multipole Method.

However, this code has its unavoidable limitations:

• As stated by Alvarez in his work[17], the divergence relaxation by Pedrizzetti
in its original form has the drawback of reducing the circulation strength
magnitude.
Since it has been clarified in the same work that a modified formulation
provides instabilities to the code, it is still an open question of how to fix this
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problem.

• Due to the meager current literature on the topic, it is still unclear how to
correctly set up several parameters such as the particle core size, the divergence
relaxation frequency, etc.

• Although it has shown that the FMM coupling is still efficient, better alter-
natives might exist, mainly because the link occurs with a heavy alternation
between MATLAB and C++.

• To correctly predict the performances of the lifting surface, the code requires
an aerodynamic database. This can be achieved by simulating several blade
stations with CFD or XFoil.
The dependence on 2D simulations makes the code highly sensible to Re
variations, especially in low Re regimes.

7.2 Future works
As stated in the previous section, the developed code presents inescapable drawbacks
and limitations and can be therefore improved and optimized.

• It can be coupled with a Vortex Lattice Method (VLM), instead of the here
used Lifting Line theory, to compute a more accurate circulation distribution.
This could help since the particle generation itself relies mainly upon the
circulation distribution.

• It can be developed as an ad-hoc MATLAB FMM routine, to eliminate the
heavy interface between the two programming languages that are currently
implemented in the code.
This will also allow the same code speed on every operating system since the
Windows implementation of FMM relies on a further bridge that is represented
by the Windows Subsystem for Linux.
On the other hand, it may be thought to translate the entire VPM code into
a suitable programming language (for example Python) which can already
benefit from some FMM routine.

• The code could also benefit from further integration of a turbulence model, as
done by Alvarez in his work[17].
This will allow the computation of an eventual turbulent flow field.
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• The entire VPM code can be coupled with a 6DOF solver, allowing the
computation of critical maneuvers of multicopter, tilt-rotor, etc.
This will be particularly suitable since the VPM is meshless and does not
require any connectivity of the vortex structures, so the routine may simply
compute the performances of the blades every time step and further integrate
the state variables, according to governing equations, to accurately predict
the kinematics and dynamics of this complicated motions.

• Lastly, the work done in this thesis can be extended to other reduced-order
models (ROMs), allowing them to converge into a single stand-alone integrated
tool.
This would be a much more powerful solution to mostly every design phase,
since the user can choose the method that considers most suitable for that
specific phase, according mainly to the desired level of computational speed
and subsequent accuracy.
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Appendix A

General regularized VPM
evolution equations

In this appendix are presented the regularized VPM evolution equations, along
with the most common regularization functions.

A.1 Other regularization functions
In chapter 3 they have been presented the regularized evolution equations in a
general form, where the regularization functions q(ρ), ζ(ρ) and χ(ρ) appears.
In table A.1 are provided additional regularization functions which can be used to
rewrite evolution equations.
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General regularized VPM evolution equations

A.2 Classical and transpose formulation for vor-
tex stretching term

Another issue that can be afforded regards the formulations for modeling the vortex
stretching term in the circulation strength update equation (classical, transpose,
mixed).
The general formulation for circulation strength update equation for the 3 afore-
mentioned formulations are reported in equations A.1, A.2, A.3.

dα⃗p

dt

---
classic

=
NpØ

q=1

−
1

σ3
q(ρ)
ρ3 α⃗p(t) × α⃗q(t) +

1
σ5ρ

d

dρ

1
q(ρ)
ρ3

2
(α⃗p(t) · (x⃗p(t) − x⃗q(t)) · ((x⃗p(t) − x⃗q(t) × α⃗q(t)) (A.1)

dα⃗p

dt

---
transpose

=
NpØ

q=1

1
σ3

q(ρ)
ρ3 α⃗p(t) × α⃗q(t) +

1
σ5ρ

d

dρ

1
q(ρ)
ρ3

2
(α⃗p(t) · (x⃗p(t) − x⃗q(t)) × α⃗q(t))(x⃗p(t) − x⃗q(t)) (A.2)

dα⃗p

dt

---
mixed

=

NpØ
q=1

1
2σ5ρ

d

dρ

1
q(ρ)
ρ3

2
[α⃗p(t) ·(x⃗

p(t)− x⃗
q(t)) ·((x⃗

p(t)− x⃗
q(t)× α⃗

q(t)+ α⃗
p(t) ·(x⃗

p(t)− x⃗
q(t))× α⃗

q(t))(x⃗
p(t)− x⃗

q(t)]

(A.3)

It can be shown that the classical and the transpose schemes holds the same
informations since

[∇u⃗]ω⃗ = [∇u⃗]T ω⃗ (A.4)
Where

[∇u⃗] =


∂ux

∂x
∂uy

∂x
∂uz

∂x
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∂y
∂uy

∂y
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∂z
∂uz

∂z

 (A.5)

So that

[∇u⃗]ω⃗ − [∇u⃗]T ω⃗ =
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ωz
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1
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2
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1
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∂x

2
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1
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∂y
− ∂uy
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2
− ωx

1
∂uy

∂x
− ∂ux

∂y

2
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1
∂ux
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∂x

2
− ωy

1
∂uz

∂y
− ∂uy

∂z

2
 = ω⃗ × ∇ × u⃗ = ω × ω = 0

(A.6)

However, as stated through this work, the transpose formulation is the only one
that conserves vorticity.
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Appendix B

Complete derivation of
VPM evolution equation for
the FMM

The Fast Multipole Method is able to solve a problem in the form

ϕi =
NØ

j=1
K(xi, xj)qj

It has been therefore necessary to recast the evolution equations 3.45, 3.46 to
expression in the form

dx⃗p

dt
=

MØ
m=1

ϕm (B.1)

dα⃗p

dt
=

FØ
f=1

ϕf (B.2)

To do this, have been expanded all the vector and dot products and then they have
been considered separately the 3 components of every evolution equation.

B.1 Position update
Calling

dx⃗ = x⃗p(t) − x⃗q(t) (B.3)
It is possible to rewrite equation 3.45 as

dx⃗p

dt
= − 1

4π

NpØ
q=1

|dx⃗2| + 5
2σ2

(|dx⃗|2 + σ2) 5
2
dx⃗ × α⃗q(t) (B.4)
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Expanding the vector product and considering each component of dx⃗p

dt
one can

obtain
dxp

dt
= − 1

4π

NpØ
q=1

(Kyαq
z(t) − Kzαq

y(t)) (B.5)

dyp

dt
= − 1

4π

NpØ
q=1

(Kzαq
x(t) − Kxαq

z(t)) (B.6)

dzp

dt
= − 1

4π

NpØ
q=1

(Kxαq
y(t) − Kyαq

x(t)) (B.7)

Where xp, yp, and zp are the components of x⃗p(t) and αq
x, αq

y, and αq
z are the

components of α⃗q(t).
Instead, the kernels Kxj

are defined as

Kxj
= Kdxj (B.8)

Where K is the regularized Biot-Savart kernel |dx⃗2|+ 5
2 σ2

(|dx⃗|2+σ2)
5
2

and dxj is the j-th com-
ponent of the vector dx⃗.

Now we have obtained a set of equations in the form of B.1 that can be solved
with the FMM routine.

B.2 Circulation strength update
The circulation strength update equation can be firstly seen as

dα⃗p

dt
=

1
4π

NpØ
q=1

[K1(α⃗p(t) × α⃗q(t)) + K2(x⃗p(t) − x⃗q(t)) + K3volpα⃗q(t) − K3α⃗q(t)volq] (B.9)

Where

K1 =
|dx⃗2| + 5

2σ2

(|dx⃗|2 + σ2) 5
2

(B.10)

K2 = 3
|dx⃗|2 + 7

2σ2

(|dx⃗|2 + σ2) 7
2
α⃗p(t) · (dx⃗ × α⃗q(t)) (B.11)

K3 = 105ν
σ4

(|dx⃗|2 + σ2) 9
2

(B.12)
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By expanding all the cross and dot products and considering each component of
circulation strength update, one can obtain

dαp
x1

dt
= 1

4π

Ø
q=1

Np(K1α
p
yαq

z − K1α
p
zαq

y) (B.13)

dαp
y1

dt
= 1

4π

Ø
q=1

Np(K1α
p
zαq

x − K1α
p
xαq

z) (B.14)

dαp
z1

dt
= 1

4π

Ø
q=1

Np(K1α
p
xαq

y − K1α
p
yαq

x) (B.15)

dαp
x2

dt
=

1
4π

NpØ
q=1

(K2xy αp
xαq

z − K2xz αp
xαq

y + K2xz αp
yαq

x − K2xx αp
yαq

z + K2xx αp
zαq

y − K2xy αp
zαq

x) (B.16)

dαp
y2

dt
=

1
4π

NpØ
q=1

(K2yy αp
xαq

z − K2yz αp
xαq

y + K2yz αp
yαq

x − K2xy αp
yαq

z + K2xy αp
zαq

y − K2yy αp
zαq

x) (B.17)

dαp
z2

dt
=

1
4π

NpØ
q=1

(K2yz αp
xαq

z − K2zz αp
xαq

y + K2zz αp
yαq

x − K2xz αp
yαq

z + K2xz αp
zαq

y − K2yz αp
zαq

x) (B.18)

dαp
x3

dt
= 1

4π

NpØ
q=1

(K3volpαq
x − K3α

p
xvolq) (B.19)

dαp
y3

dt
= 1

4π

NpØ
q=1

(K3volpαq
y − K3α

p
yvolq) (B.20)

dαp
z3

dt
= 1

4π

NpØ
q=1
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So that
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dt
=

dαp
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dt
+

dαp
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dt
+

dαp
x3

dt
(B.22)

dαp
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dt
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dαp
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dt
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dαp
y2

dt
+

dαp
y3

dt
(B.23)

dαp
z

dt
=

dαp
z1

dt
+

dαp
z2

dt
+

dαp
z3

dt
(B.24)

Here the kernels K2xixj
are defined as

K2xixj
= 3

|dx⃗|2 + 7
2σ2

(|dx⃗|2 + σ2) 7
2
dxidxj (B.25)

Now we have also obtained a set of equations in the form of B.2.

95



Appendix C

Low-storage third order
Runge-Kutta scheme

The following scheme has been used to correctly calculate the position and circula-
tion strength update for the particles. It has been widely used in the bibliography,
maybe since it is the temporal integration scheme that Winclkemans[6] used in his
pioneering work.
It was firstly laid out by Williamson[42] and further investigated in several NASA
documents[20],[19].
The main advantage of this scheme is that it requires a storage equivalent to a
typical first-order Runge-Kutta scheme since it overwrites the solution at every
stage on the same variable.

To solve the initial value problem
dU

dt
= F [t, U(t)], U(t0) = U0 (C.1)

Williamson provided the following scheme for each stage. Assuming a M stage
scheme, it is dUj = AjdUj−1 + dtF (Uj)

Uj = Uj−1 + BjdUj

, ∀j = 1, . . . , M (C.2)

Here Aj and Bj are related to the traditional Butcher array variables ai,j, bj, and
cj as 

Bj = aj+1,j

BM = bM

Aj = bj−1−Bj−1
bj

, (j /= 1, bj /= 0)
Aj = aj+1,j−1−cj

Bj
, (j /= 1, bj = 0)

(C.3)
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Low-storage third order Runge-Kutta scheme

By writing down the Butcher array for a 4 stages scheme in terms of Aj and Bj

and considering all the additional constraints as reported in the NASA Technical
Memorandum 109111[19], it results in a one-parameter family of schemes; in
particular, the free parameter is the variable c3.
As reported in the aforementioned Technical Memorandum, the most used value of
this parameter, mainly for reasons of stability and accuracy, is

c3 =
1 + 3

ñ
5
4

3

Therefore, it has been chosen this value, resulting in the following values of Aj and
Bj, that are reported in table C.1, where X and Y are defined as

X = 12c3
3 − 24c2

3 + 16c3 − 3 (C.4)

Y = 6c2
3 − 6c3 + 1 (C.5)

j Aj Bj

1 0 3c3−2
6c3−3

2 −36c3
3−48c2

3+18c3−1
9(2c3−1)3

2(c3−1)2

6c3−4

3 (9c3−9)(2c3−13)
3c3−2 − c3−1

X

4 − 1
X

c3(12c2
3−18c3+7)

(6c3−6)Y

Table C.1: Aj and Bj coefficients for the implemented LSRK3 scheme

To check the effective correctness, accuracy and convergence of the implemented
scheme, it has been solved the test problem

dU

dx
= U cos(x), U(0) = 1

which has exact solution
U(x) = esin(x)

They have been performed multiple calculations for several values of the integration
step ∆x and the solution is reported in figure C.1a, while the error between exact
and numerical solution is reported in figure C.1b.
As it can be seen, the numerical solution tends to be the exact one as the integration
step is reduced and the error trend with the ∆x shows a satisfactory convergence
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Low-storage third order Runge-Kutta scheme

velocity.

However, since this is an explicit method, it must be addressed with consistent
attention to the integration step, to fulfill the stability condition every time step.

(a) Solution

(b) Error

Figure C.1: Test problem for LSRK3 scheme
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Appendix D

Particles generation

Because the correct generation of the particles, to model the wake as best as
possible, is one of the key points of a complete VPM code, it is necessary to further
investigate this topic.
The particle generation is governed by the conservation of vorticity. The change
in circulation over the blade generates new particles in the field such that the net
vorticity is conserved over time.
Although it is possible to model both attached and separated flow, this work has
implemented only the modeling of attached flow.

As explained during this work, the particles generation involves two different
kinds of phenomena:

• Trailing vortex particles, due to the span-wise varying circulation over the
blade.

• Shed vortex particles, due to the time-varying circulation over the blade.

Each one is then implemented in the particles generation function.

Before starting, it can be useful to establish some common issues:

1. The particle generation, in terms of position, is done at the blade trailing
edge. Since the circulation is calculated only at control points, it is considered
constant over the chord and then the shedding of both kinds of particles is
consequently done at trailing edge coordinates, starting from control point
ones, simply translating over the chord itself the latter.

2. For each kind of particle they are calculated their position, their circulation
strength, and their corresponding volume of fluid associated with each particle.

99



Particles generation

3. Due to the overlapping condition, the ratio between particles’ core size σ and
their spatial resolution hres is fixed to an arbitrary value, which has to be
strictly greater than 1, as previously mentioned.

In the following section, it will be referred to the airfoil cross-section area corre-
sponding to each control point coordinates as Ai. During the simulations it have
been used a value of Ai = citi, where ci is the chord length at station i, and ti is
the corresponding airfoil thickness, assumed to be the 1% of the chord at the same
station.

A schematic representation of what just explained can be found in figures D.1a,
D.1b, D.1c.

D.1 Trailing particles
Consider the line connecting each trailing edge point at times t − ∆t and t; this line
is uniformly divided into a set of mti

particles, where their number is calculated by
dividing the length of the line by the spatial resolution.

mti
= |T⃗Ei(t) − T⃗Ei(t − ∆t)|

hres

(D.1)

This has to be an integer number, so its result will be rounded to +∞.
Consequently, the distance between consecutive particles along the line is

dti
= |T⃗Ei(t) − T⃗Ei(t − ∆t)|

mti

(D.2)

Then, they are calculated the position, the circulation strength, and the associated
volume of fluid of the mti

particles as

x⃗j
it

(t) = T⃗Ei(t−∆t)+
3

j − 1
2

4
T⃗Ei(t) − T⃗Ei(t − ∆t)

mti

, ∀j = 1, . . . , mti
(D.3)

α⃗j
it

(t) = [Γi+1(t) − Γi(t)]
T⃗Ei(t) − T⃗Ei(t − ∆t)

mti

, ∀j = 1, . . . , mti
(D.4)

volj
it

= Aidti
, ∀j = 1, . . . , mti

(D.5)
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D.2 Shed particles
Shed particles are parallel to the trailing edge of the blade.
As the previous generation, they are firstly calculated the number of particles and
the distance between consecutive ones as

msi
= |T⃗Ei+1(t − ∆t) − T⃗Ei(t − ∆t)|

hres

(D.6)

dsi
= |T⃗Ei+1(t − ∆t) − T⃗Ei(t − ∆t)|

msi

(D.7)

Then, they are calculated the position, the circulation strength, and the associated
volume of fluid of the msi

particles.

x⃗j
is

= T⃗Ei(t − ∆t) +
3

j − 1
2

4 |T⃗Ei+1(t − ∆t) − T⃗Ei(t − ∆t)|
msi

(D.8)

α⃗j
is

= [Γj
i (t − ∆t) − Γj

i (t)]
|T⃗Ei+1(t − ∆t) − T⃗Ei(t − ∆t)|

msi

(D.9)

volj
is

=
C
Ai +

3
j − 1

2

4A
Ai+1 − Ai

msi

BD
dsi

(D.10)

Here, Γj
i is the circulation at the point j between the control point i and i + 1 and

it is calculated as

Γj
i (t) = Γi(t) +

3
j − 1

2

4 Γi+1(t) − Γi(t)
msi

(D.11)
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(a) Particles generation scheme

(b) Trailing particles generation (c) Shed particles generation

Figure D.1: Particles generation[15]
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