
Corso di Laurea Magistrale in
Ingegneria Aerospaziale

A.a 2021/2022

Study, Implementation and Test of a
Navigation Architecture for an
Autonomous Lunar Nano Drone

Relatore:
Prof. Paolo Maggiore

Candidato:
Giuseppe Bortolato

Correlatori:
Dott. Stefano Pescaglia
Prof. Piero Messidoro

Abstract

The Lunar Nano Drone (LuNaDrone) mission concept was conceived in light of the
Artemis Accords signed by Italy and USA in 2020 and is associated with Italy’s
call to contribute to the development of enabling technologies for lunar surface
exploration. The long term vision involves permanent or semi-permanent outposts
on the moon, which require new approaches and solutions involving the study of
lunar caverns and lava tubes. The goal of this mission is to explore possible entrances
to lava tubes via an autonomous spacecraft, for which the Politecnico di Torino has
been leading the feasibility and preliminary design studies since early 2020.

The focus of this thesis is on the design of the navigation system for LuNaDrone.
First, the importance and characteristics of lunar lava tubes, their entrances (sky-
lights), an overview of the discoveries to date and a description of the LuNaDrone
mission, spacecraft and flight profile are briefly presented. After studying the re-
quirements for the mission and the state of the art of navigation systems in a similar
space application, the object of this thesis becomes the implementation of a visual
navigation algorithm in MATLAB in the form of an Extended Kalman Filter. The
algorithm makes use of a minimal set of sensors (Camera, IMU and Rangefinder)
to operate as a fully self-contained system in difficult environments where no ex-
ternal assistance might be available and within the strict requirements of mass and
volume of LuNaDrone. After an introduction to Kalman filters, there follows the
description of the mathematical equations necessary for the implementation of the
navigation algorithm. These include inertial propagation time update equations and
camera and rangefinder measurement update equations involving a hybrid SLAM
and MSCKF paradigm, as well as details of state management and vision processing
routines. Finally, a prototype of the sensor package along with a mini computer, to
record datasets, is developed and built and the data gathered is used for qualitative
testing and validation of the algorithm implementation.

1

Acknowledgements

I would like to thank all the people that supported and guided me in the creation
of this work: my thesis supervisor, Prof. Paolo Maggiore, without whom nothing in
this thesis would have been possible, Dr. Stefano Pescaglia, for the help during this
long and arduous work, and Prof. Piero Messidoro, for the invaluable and continued
support of the LuNaDrone project.

I’d also like to thank my family, friends and relatives. They allowed me to reach
this milestone with their patience, support, kindness and wisdom through all these
years.

2

Contents

1 Introduction 6

1.1 Importance of lava tubes . 6

1.2 Characteristics of lunar pits . 7

1.2.1 Impact melt pits . 7

1.2.2 Mare and higland pits . 8

1.3 Mission site . 11

2 LuNaDrone mission 14

2.1 Challenges and related works . 15

2.2 Concept of operations . 16

2.3 Propulsion system . 18

3 Navigation architecture 19

3.1 Mars Helicopter Ingenuity system . 20

3.1.1 Hardware architecture . 20

3.1.2 Algorithm . 21

3.1.3 Vision processing . 23

3.1.4 Limitations . 25

3.2 LuNaDrone system . 25

4 Filter basics 27

4.1 Kalman filter . 29

3

4.2 Extended Kalman Filter . 31

5 State definition and time propagation 34

5.1 Notation . 34

5.2 State definition . 34

5.2.1 Inverse depth parametrization 36

5.2.2 Error states . 36

5.3 Time propagation . 37

5.3.1 State time propagation . 38

5.3.2 Covariance time propagation 39

6 Measurement Update 42

6.1 The hybrid approach . 42

6.1.1 Image measurement model . 43

6.2 SLAM Update . 44

6.2.1 Model . 44

6.2.2 Method . 46

6.3 MSCKF update . 47

6.3.1 Feature estimation . 47

6.3.2 Model . 49

6.3.3 Method . 52

6.4 Range Update . 53

6.4.1 Model . 53

6.4.2 Method . 56

6.5 Outlier rejection . 56

6.6 Joseph form and symmetry . 57

7 State and filter management 59

4

7.1 Inserting a pose . 59

7.1.1 Feature reparametrization . 61

7.2 Feature initialization . 62

7.2.1 Unknown-depth initialization 63

7.2.2 MSCKF initialization . 63

7.2.3 Method . 66

7.3 Filter loop . 67

7.3.1 Vision management and tracking 67

8 Experimental tests and conclusions 70

8.1 Dataset acquisition . 72

8.2 Results . 73

5

Chapter 1

Introduction

Interest in lunar exploration is rising again and several plans are being made to
restart human exploration on the Moon, involving collaborations between different
countries and space agencies. A Gateway station in cislunar orbit is planned to serve
as an outpost for human exploration and other missions such as the ESA European
Large Logistic Lander are in study. There is a future vision of permanent or semi-
permanent outposts on the moon, which will bring many challenges requiring new
approaches and solutions involving the study of lunar caverns and lava tubes. Much
of the knowledge and technology could be one day used to extend human exploration
further into the solar system and on other planets such as Mars.

1.1 Importance of lava tubes

The absence of an atmosphere and intrinsic magnetic field makes the lunar surface
vulnerable to impacts of meteorites as well as energetic particles and radiations
and gives place to extreme temperature variations during the day. Thus, places
suitable for human settlement on the Moon could be underground volcanic tubes
and rille systems [1]. A rille is a remnant of the volcanic tube, whose roof has
capsized creating a valley, but at places the roofs of such tubes has not collapsed
and remains intact, with a hollow interior.
While extremes at the lunar surface range from −180 ◦C to 100 ◦C in its diurnal
cycle, a lava tube interior is estimated to provide a constant −20 ◦C relatively benign
temperature [1]. It offers the potential for a dust-free environment by sealing off
entrances and the opportunity to use extremely lightweight construction materials,
since radiation shielding mass would not be required and inflatable structures could
take advantage of lighter fabrics and thin foil materials.

Lava tubes are common in basalt flows on the Earth, but whether they formed on
the moon has been a subject of scientific discussion in the past[2, 3, 4]. It was
suggested that sinuous rilles originated as lava-fed channels, some of which formed
tube-like structures, based on their similarity to terrestrial lava channels and tubes.
In 2011 a lunar spacecraft, Chandrayaan-1, detected with its Terrain Mapping Cam-

6

era a buried, uncollapsed and near horizontal lava tube in the vicinity of Rima
Galilaei, estimating the roof thickness in the range of 45-90 meters [5]. More re-
cently, the existence and entity of other such voids has been measured and inferred
to be up to hundreds of meters in height and tens of kilometers in length by gravity
mass deficits with GRAIL mission [6] and radar sounder measurements with SE-
LENE mission [7]. Their stability has been studied with models, suggesting that
under lunar gravity conditions voids up to 1 km across can be stable under only few
meters-thick roofs [8]. In terms of scientific importance, observation of these voids
and their entrances would reveeal the layered sequence of lava flows, piled one on
top of another, which preserves a record of the composition and mineralogy of the
domains in the Moon’s mantle that melted over time.

The only known possible access to these voids are vertical shafts called skylights,
which are the objective of the LuNaDrone mission.

1.2 Characteristics of lunar pits

The first lunar pit, a 60m of diameter hole in Marius Hills region, was discovered in
2009 by SELENE cameras and identified as a possible opening to a lava tube under
the surface [9]. In 2010, two more pits were identified by the same mission in mare
regions [10]. Lunar Recoinassance Orbiter Camera NAC pictures at 1m resolution
were used to confirm lateral openings to subsurface voids.
Following these discoveries, a search for other pits revealed 228 previously unknown
pits with diameters ranging from 5m to 900m. The majority of these newly dis-
covered pits are located in impact melt deposits, though five of the new pits are
found in mare materials outside of impact melt deposits and two are located in non-
impact-melt highland materials [11]. The number of mare pits rose after more of
them were discovered in subsequent studies [12, 13, 14], bringing the total number
to 16 (plus one more highland pit for a total of three).

1.2.1 Impact melt pits

Impact melt pits are frequently irregular in outline, as shown in figure 1.1, and their
sizes range from a few meters to almost a kilometer across, but most of them are at
the small end of that range, resulting in a median maximum diameter of 16m [11].
Lava tube skylights on Earth and collapse pits on other planetary bodies are fre-
quently arranged in chains or clusters, likely corresponding to the shape of the
underlying void space [15, 16]. Pits within impact melt deposits are only rarely
found in chains or clusters when not associated with fractures. Usually, impact melt
pits do not occur in organized geometric patterns within their host craters. One of
the few patterns that does occur is seen in at least six craters, most notably Coper-
nicus, where pits form within long sinuous depressions [11].
King crater impact melt pits are distinctive in several regards: the melt pond that
contains most of the pits is located outside the crater and has the highest concen-
tration of non-fracture pits found in any melt pond to date and presents unusual

7

pits formed in positive relief features. In one such case, two pits formed adjacent to
each other in a dome over the same subsurface void, separated by an 8 m wide, 5 m
thick rock bridge [17, 18]. Slewed imaging of this feature revealed an overhang that
extends at least 5 m south from the south end of the bridge. It is possible that many
of the positive relief features host voids, with their surfaces occasionally perforated
with pits.
The impact melt deposit on the floor of Tycho crater exhibits a high density of
fractures, fracture pits, and pits and there are numerous wide linear collapses. Fur-
thermore, this deposit contains both chains of pits in straight lines, which have little
or no sagging in between them, and lone pits. Much like in the King melt pond, the
fractures and linear collapses in Tycho crater generally correlate with the perimeters
of kilometers-wide subtle topographic depressions [11].
Impact melt pits reside in areas with great changes in elevation and presence of
boulders and craters and generally uneven terrain.

1.2.2 Mare and higland pits

All the known mare pits are generally circular to elliptical in shape and larger in
diameter as shown in in figure 1.2.
Marius Hills and Mare Tranquillitatis pits were both confirmed to have overhangs
with void space going back more than 12m and 20m respectively [17]. A void space
going back at least 7m has been identified in the Southwest Mare Fecunditatis pit
and a one going back at least 20m under the west wall of the Ingenii pit has been
found, although there is no overhang to the east. The Lacus Mortis pit does not
have overhangs on any side. The remaining mare pits either have not been imaged
with appropriate geometry to identify an overhang or are too shallow for any void
space to be identifiable with the resolution constraints of the NAC [11].
Two mare pits have been found near known volcanic structures. The Marius Hills
pit is situated inside a rille, which was likely formed by high-discharge effusive flows
from the Marius Hills volcanic complex, and the Mare Tranquillitatis pit is near the
center of the Cauchy shield volcano, which is proposed to cover the eastern half of
Mare Tranquillitatis [19]. Four of the mare pits occur within 10 km of large-scale
tectonic features. The Lacus Mortis pit lies adjacent to, but not within, a graben,
perhaps indicating a tectonic origin. The two Mare Fecunditatis pits and the Mare
Tranquillitatis pit are each located approximately 10 km from a graben or wrinkle
ridges, too far to immediately suggest a tectonic origin [11].
Wagner and Robinson [11] also suggest that, since the maria are generally older than
2 Ga [20], pits that formed as primary features have been erased, which is consistent
with the number and size of pits discovered within the maria. The 100m diameter
Mare Tranquillitatis pit and the 58m diameter Marius Hills pit both formed in
maria older than 3.3 Ga, a surface age with a crater equilibrium diameter [21] of
290m [22]. They propose that the mare pits could not have survived in their current
state of preservation if they are primary features of mare emplacement. Therefore,
the mare pits were almost certainly formed when the area above subsurface voids
collapsed at some point after the maria were emplaced. These collapses may have
been triggered by impacts [23, 24], by single or cumulative seismic events, or by a
combination thereof. Because the mare pits did not form in active lava tubes, they

8

are not strictly speaking skylights, but rather collapse pits.
The mare pits are surrounded by relatively flat terrain compared to highlands and
impact melt pits. Only three highland pits were identified that are not related to
impact melt craters and they are circular in shape with large funnels, but unlike
mare pits they reside in uneven and cratered terrain like impact melt pits.

Figure 1.1: Examples of impact melt pits. Credits: [11]

Figure 1.2: Mare and are and highlands pits. Credits: [9, 10, 11]

9

Figure 1.3: New mare and highlands pits. Credits: [12, 13, 14]

Figure 1.4: Locations of some of the pits. Credits: [11]

10

1.3 Mission site

A possible location for the mission must be selected in accordance with different
needs, namely:

1. The scientific relevance of the site, primarily the possibility of the pit present-
ing an opening to a lava tube beneath the surface, also known as skylight.

2. The possibility of landing and delivering the spacecraft on the surface around
the pit without excessive risks or technical challenges

3. Maximizing the probability of mission success by easing the task of entering
and navigating to the pit

Given the first-of-its-kind quality of the LuNaDrone mission, the third criteria ac-
quires a higher importance, since the goal for the first mission will be demonstrating
the feasibility of the concept. Larger pits impose less stringent requirements on the
precision of positional control of the spacecraft and regular round holes with sharp
and short funnels and vertical walls, being in clear contrast with the rest of the
surface, make it easier for the guidance system to identify the position and contour
of the pit opening and reach the true bottom while avoiding collisions and the use
of complex maneuvers.
A flat and regular terrain around the pit, free of dips and sharp edges, like a mare
is preferred for an easier and safer landing and delivery of the LuNaDrone and a
smaller latitude of the site is favored because it avoids complex and costly maneu-
vers to be reached. A location closer to the equator also offers a higher maximum
elevation angle of the sun, allowing the interior of the pit to be illuminated, making
visual navigation easier and allowing scientific observations in the visible region of
the spectrum with reduced or no use of artificial light. A location on the near side of
the moon could simplify the earth communication architecture of the mission and,
in this regard, it is worth noting that there is a direct view from Earth from the
bottom of Mare Tranquillitatis Pit. Positions of notable pits are in figure 1.4.
No pits have been definitively confirmed to be openings to extended lava tubes, but
the best chance is represented by those with observed overhangs or cavities on their
side and in proximity of features that indicate a volcanic origin. According to [25],
the Marius Hills pit, being located within a lunar rille, represents the best candi-
date for a true skylight (collapsed lava tube ceiling), although the article is old and
pre-date the discovery of new pits in [12, 13, 14].
[26] indicates Mare Tranquillitatis pit as the most compelling case for exploration
from a geological standpoint, given the morphology of surrounding flood basalts,
it’s distance from the highlands and proximity to an internal mare boundary, the
straightforward interpretation of its morphology and the likely exposed lava types
being spectrally linked to basalt fragments in the Apollo 11 sample collection.

From the previous considerations, a reference site should be picked from the mare
pits. In particular, three pits that present the most favorable features of size and
shape (Mare Ingenii, Mare Tranquillitatis and Marius Hills) have confirmed over-
hangs of their side walls. The first of these three, Mare Ingenii pit, is located on the

11

far side of the moon and at a higher absolute latitude (although still at a modest
36°S), while the other two sites are at 8°N and 14°N, respectively. Mare Tranquil-
litatis and Marius Hills are also the most studied pits in the literature and the
objectives of current mission proposals: they are among the oldest discovered and
are in proximity to volcanic features that make them the best candidates for entries
to lava tubes.
Marius Hills is the target of the five mission scenarios selected by ESA, one of which
(DAEDALUS) [27] developed a hazard map of the area surrounding the pit and
identified a possible landing ellipse, as seen in figure 1.5.
If Marius Hills pit is chosen as the reference site, being the smaller of the two and
very similar to the other, a spacecraft capable of operating on Marius Hills would
be able to do the same on Mare Tranquillitatis. Lacking better information specific
to LuNaDrone mission, the landing ellipse from DAEDALUS [27] is taken as a ref-
erence indication of the distance to traverse between the landing site and the pit,
about 300m to 600m.

Location Latitude Longitude
Central pit Outer funnel (approx.)

Size [m] Depth [m] Size [m] Depth [m]

Marius Hills 14.091 303.230 58x49 40 70x80 4-10
Mare Tranquillitatis 8.335 33.222 100x88 105 170x150 5-9

Figure 1.5: Marius Hills hazard map and landing ellipse from DAEDALUS study.
Credits: [27]

12

Chapter 2

LuNaDrone mission

The LuNaDrone mission concept [28] was conceived in light of the Artemis Accords
signed by Italy and USA in 2020. The work behind this project is associated with
Italy’s call to contribute to the development of enabling technologies for lunar surface
exploration. In order to best meet these technological challenges, the Politecnico di
Torino, which has been leading the feasibility and preliminary design studies since
early 2020 [29, 30], has decided to collaborate with different SMEs operating in
the most challenging fields of space industry. Indeed, as demonstrated in the past,
universities, with the involvement of start-ups and SMEs, can effectively contribute
through low-cost approaches to simpler missions in parallel to large institutional
initiatives. The idea behind the LuNaDrone project is to follow the same approach
adopted for CubeSats in terms of standardisation and modularity, i.e. to meet the
need for standard, flexible and low-cost spacecraft for lunar exploration and for
supporting future human infrastructure on the Moon.

The main mission objective is to explore the interior of a lunar pit to assess the
existence of an opening to a lava tube and its accessibility for future robotic and
human exploration missions. LuNaDrone is a compact spacecraft smaller than 12U
and with a wet mass lower than 15 kg, delivered on the lunar surface by a host
spacecraft (HSC). During those phases of the mission that precede the LuNaDrone
operational phase (e.g., launch, orbital transfer and moon landing), LuNaDrone re-
lies on the HSC to provide power, a communication link with Earth, shielding from
micrometeoroids and a suitable thermal environment. The HSC is also responsible
for deploying LuNaDrone at a minimum distance from the designated lunar pit.
Once detached from the HSC, the drone is commanded via radio link. In partic-
ular, the communications architecture envisages the HSC to behave as a relay in
communication between LuNaDrone and mission controllers. After the flight profile
has been uploaded to the on-board computer, LuNaDrone performs an autonomous
flight that takes it above the skylight. Then, the spacecraft starts its descent into
the pit while collecting images of the bedrock lava layers in the pit wall. Once it has
almost reached the bottom of the skylight, the drone hovers a few metres above the
surface and begins scanning the surrounding environment with the aim of verifying
the presence of an opening to a lava tube. Then, it egresses from the skylight and
lands in the closest area assessed to be safe for landing and in line of sight to the

13

HSC, to which the drone transmits the mission data that will then be relayed to
ground operators.

Although LuNaDrone was conceived for the exploration of lunar lava tubes, its
inherent capabilities could lend themselves to other space exploration tasks. As
NASA’s helicopter Ingenuity did for Mars [31, 32], LuNaDrone could add an aerial
dimension to the Moon exploration. The ability to quickly traverse difficult terrain
that rovers can’t roam and acquire close-ups that orbiters can’t provide (e.g. craters,
lunar pits and permanently shadowed regions) makes this type of spacecraft an
ideal forward reconnaissance platform that would offer a broad range of scouting
possibilities.

2.1 Challenges and related works

In [33, 34] several concepts for lunar pit exploration were considered, including:
leaping into the pit with a robot, tethered rappel descent, robotic descent of a scree
slope, descent from a Tyrolean line and precision landing on the bottom of the pit
with subsequent deployment of an exploration rover. Of these solutions, the latter
is the most similar to that of the LuNaDrone since in both cases a powered descent
into the pit is required. However, LuNaDrone will not have to deploy any rover as
it will perform scouting activities on its own. Furthermore, the drone will not land
autonomously on the Moon surface from orbit, as it will be carried aboard an HSC,
meaning that LuNaDrone’s dimensions can be significantly smaller. Finally, since
no mission requirements mandates a landing on the pit floor, which is classified as
highly risky in [34], LuNaDrone will hover above the bottom of the pit, thus being
able to scan the underground void without needing to land in it (the final landing
will only take place once LuNaDrone has emerged from the skylight and is in a safer
position outside the pit and in line of sight to the HSC).

Among the most studied approaches are tethered systems, such as the Moon Diver
mission concept proposed in 2019 by NASA’s JPL [35]. This approach relies on a
50 kg two-wheeled rover that would egress from the lander and, while anchored to it,
would pay out its 300-metre tether as it traverses toward the pit, crosses the steep
slopes of the pit funnel, and rappel down its vertical walls. Since LuNaDrone is not
constrained by a tether, if compared to this solution it would have the significant
advantage of imposing less stringent requirements on the landing ellipse. Indeed, the
feasibility of the Moon Diver mission concept hinges on a critical space technology,
i.e. pinpoint landing, that would enable the lander to land within less than 100m
from the edge of the MTP. Another critical aspect is related to the fact that lunar pits
are generally characterised by a sloping funnel with loose regolith. Consequently, as
reported in [36], any activity along this funnel would create mechanical instabilities
in the regolith and underlying loose rock fragments, causing dust avalanches and
rockfalls. In the case of LuNaDrone, by avoiding contact with the pit wall, this
issue would be entirely prevented. On the other hand, by maintaining contact with
the pit wall, the JPL rover would be able to perform otherwise impossible analyses
such as collecting microscopic imagery for mineralogy and acquiring spectroscopic

14

measurements for elemental composition. Nevertheless, LuNaDrone would still be
able to acquire context images of the pit wall to study the morphology of the exposed
bedrock lava layers.

Following ESA’s 2019 call for ideas to address the detection, mapping and explo-
ration of lunar caves, five projects were selected [37]. Among them, two were further
selected to take part in ESA CDF study, one concerning a spherical mapping unit,
called DAEDALUS, to be deployed inside the lunar pit [27], and the other concern-
ing a rover-mounted robotic crane that would be responsible for the deployment
of DAEDALUS, or other exploring units [36]. In [36], the LuNaDrone project is
also mentioned and in the comparison it is stated that only the crane would al-
low the controlled, slow descent needed to scientifically document the pit. Actually,
LuNaDrone would be able to perform a controlled slow descent too, although propel-
lant consumption would be higher the slower the descent, effectively placing a limit
on the descent rate. Anyway, the LuNaDrone mission concept does not necessarily
have to compete with systems such as RoboCrane, as it places itself in a different
mission scenario. Since the mass of the rover-mounted crane would be more than
500 kg [36], this system will be compatible only with large lunar landers, such as the
future European Large Logistics Lander. On the contrary, LuNaDrone’s design is
conceived to be compatible also with smaller landers, such as Astrobotic’s Peregrine
(whose first mission is planned for 2022 [38]) and other landers of NASA’s CLPS
program. This makes LuNaDrone suitable for a wider range of missions, including
those planned in the near future. LuNaDrone could therefore be used to scout ahead
and assess which lunar pits actually present an opening to a lava tube, thus being
able to guide the more complex and expensive missions to sites that have proven to
be worthy of interest.

2.2 Concept of operations

The LuNaDrone design is intended to make the spacecraft suitable for embarking on
different missions aimed at distinct skylights (or even other lunar features), provided
that the HSC deploys the drone at an acceptable distance from the mission target. If
the lunar lander leverages terrain-relative navigation techniques, it may be possible
to achieve a landing ellipse of less than 100m [35, 39]. Nevertheless, with the goal
of making LuNaDrone compatible with a broad spectrum of mission architectures
and HSC designs, and at the same time not to oversize the spacecraft systems, a
maximum of 1 km distance between the drone deployment site and the centre of
the skylight has been considered. If the actual distance were to be significantly less
than this maximum value, the extra propellant could be used to make additional
flights inside the lunar pit, thus increasing the amount of scientific data that can be
acquired. The depth the drone shall reach inside the pit can be up to 50m as in the
case of MHH or 120m as in the case of MTP [11].

The LuNaDrone mission flight profile will be updated prior the drone’s detachment
from the HSC according to the landing site and its position relative to the mission
target. The detachment will take place through a robotic deployment of the drone on

15

the lunar surface or through a controlled take-off directly from the HSC. LuNaDrone
will fly on a fixed altitude trajectory, the height of which will be the result of a trade-
off analysis taking into account the surface topography, the propellant consumption,
and the performance and operational requirements of the GN&C system. Once
above the skylight, the drone will starts a vertical descent during which images of
the pit walls will be acquired. The drone will then hover above the pit floor at an
appropriate height to avoid hazardous plume surface interactions and still manage to
perform a detailed survey of the interior environment to identify a possible opening.
Then, the drone will re-emerge from the lunar pit with a vertical ascent manoeuvre
and fly up to the landing site. The latter will be chosen based on data provided by
lunar satellite imagery and will be selected to be as close to the pit as safely possible
and in line of sight to the HSC. After landing outside the lunar pit, LuNaDrone
will have to survive in the lunar surface environment for a time sufficiently long to
transmit to the HSC the scientific and telemetry data collected during the flight.
This data will then be processed on ground and, if the status of the drone’s on-board
systems allows it, a second flight could be performed. Otherwise, the disposal phase
will be initiated in order to ensure safety and not to impede any future missions
that might head for that site of interest. If the amount of residual propellant allows
it, the LuNaDrone may be commanded to perform one last flight that would take
it away from the skylight. To maximise the range of this manoeuvre, it would
be possible to command the LuNaDrone to fly until the propellant is completely
drained. However, this would result in an uncontrolled crash of the drone on the
lunar surface which, although occurring far from the skylight, would cause further
concern. A safer alternative would involve the use of dedicated drain valves that
would empty the pressurant gas and propellant tanks without the need for additional
flights. Similar strategies would be adopted to make other safety-critical components
(such as batteries) inert.

Figure 2.1: Flight profile of the LuNaDrone mission to lunar skylights

16

2.3 Propulsion system

The LuNaDrone propulsion system relies on a main hydrogen peroxide monopro-
pellant thruster. This solution was the result of a trade-off analysis that saw 90%
H2O2 prevail over potentially better contenders in terms of propulsive performance
(such as Hydrazine), mainly due to its non-toxicity, which translates into easier
and safer propellant handling in ground operations, and to its high volume specific
impulse, which plays a significant role in stringent volume constraints applications
such as that of the LuNaDrone. The main thruster has a nominal rating of 50N
which resulted to be the optimal value for the maximum continuous thrust. This
value has been obtained by means of a careful analysis of the mission flight profile.
This analysis was conducted on the basis of flight manoeuvre simulations that were
developed in the MATLAB environment. The development of these scripts has also
been essential for assessing the mission feasibility, defining the concept of operations
and guiding the design choices about the LuNaDrone on-board systems.
The propulsion feeding system is pressure-regulated as it resulted to be the best de-
sign solution in terms of mass and footprint. The pressure regulator is the most crit-
ical fluidic element for which studies are underway to develop an optimal customized
version of the valve. Thrust modulation is achieved through a bang-bang control
technique, while the attitude of the spacecraft is controlled by small thrusters, pow-
ered by the same system as the one of the main thruster. Given the high propellant
mass to spacecraft total mass ratio, the sloshing phenomenon needs to be prop-
erly managed. For this reason, a custom anti-sloshing system based on a piston
separating the pressurant gas from the H2O2 has been designed.

Figure 2.2: Representative CAD model of the LuNaDrone’s propulsive system

17

Chapter 3

Navigation architecture

LuNaDrone requires its navigation system to be compact, light and able to offer
precise estimation over the course of the flight, which is relatively short but includes
critical phases like the descent into the pit. Sufficient accuracy is needed to avoid
collisions and complete mission objectives in confined spaces as pits, which also make
communication difficult or impossible, discouraging the use of external aids for nav-
igation. Furthermore, reliance on external systems would increase the complexity of
the mission and reduce the versatility of the LuNaDrone concept compared to fully
self-contained architectures. A spacecraft of similar size and flight profile, although
fundamentally different in the type of mission and mechanical architecture, is the
Mars Helicopter Ingenuity, which was successfully flown with a vision based navi-
gation system. This system is fully self contained and takes advantage of the recent
technological advancements in miniaturization of integrated circuits and commercial
electronic sensors to reduce mass and size to a minimum.

An array of approaches to vision-based navigation exist. The key concept is to
recognize features in camera frames to recover information about the position and
motion of the camera. Features can be pre-mapped landmarks, whose existence and
position is known beforehand, or they can be generated on the fly. While the first
approach can be very reliable, it cannot work when the area of operation is unde-
fined or can’t be mapped with sufficient accuracy. The second approach, generating
features during navigation, is more generally known as SLAM (Simultaneous Local-
ization And Mapping) and several algorithms exist which address the problem [40].
However, real time implementations of SLAM algorithms are challenging due to
computational requirements in managing a large number of filter states that include
the features themselves, each represented by at least three coordinates. Further-
more, as the number of features increase to improve the accuracy of the filter, the
numerical stability decreases.

Before discussing LuNaDrone’s navigation architecture, Ingenuity’s solution is pre-
sented here as an insight into the state of the art of navigation systems of this type
used for space exploration.

18

3.1 Mars Helicopter Ingenuity system

3.1.1 Hardware architecture

Figure 3.1: Ingenuity navigation architecture. Credits: [41]

Ingenuity employs a vision based system which makes use of the following sensors
(an inclinometer is included for pre-flight calibration and initialization, but is not
involved in the real-time navigation processing):

� A Bosch Sensortech BMI-160 inertial measurement unit, for measuring 3-axis
accelerations and angular rates

� A Garmin Lidar-Lite-V3 laser rangefinder (LRF), for measuring distance to
the ground

� A downward-looking 640x480 grayscale camera with an Omnivision OV7251
global-shutter sensor, providing images of the ground below the vehicle

� A muRata SCA100T-D02 inclinometer, for measuring roll and pitch attitude
prior to flight

These are all commercial off-the-shelf (COTS) miniature sensors largely developed
for the cell phone and lightweight drone markets. Camera images are read directly
into the Nav Processor which also uses cell-phone technology and can directly ingest

19

video image sequences. The dedicated Nav Processor (Snapdragon 801) allows the
CPU-intensive Vision Processing and State Estimation functions to be handled very
efficiently using COTS cell phone technology. The Nav Processor serves to offload
the FC and FPGA allowing them to more reliably handle important helicopter
guidance and control functions. As seen in figure 3.1, the navigation processor and
flight computer communicate asynchronously, so IMU propagation is intentionally
made redundant between the two. The Flight Computer runs integration of IMU
data at a fixed rate, propagating the state from the last navigation filter update,
and receives new state and sensor bias updates from the Nav Processor when such
are ready. This increases robustness in presence of dropouts and latency, allowing
non-real-time operation of the navigation filter.
While using COTS components for most of the avionics poses additional risk, this
choice was essential for meeting tight mission cost, mass, and power constraints.
Moreover, all components underwent vibration, thermal, and radiation tests to make
sure that risks are consistent with a NASA Class D technology demonstration [41].

Figure 3.2: Mars Helicopter Ingenuity

3.1.2 Algorithm

In the case of Ingenuity, Mars surface is observed predominantly from orbiting satel-
lites which don’t offer the necessary point of view or resolution for mapping land-
marks to use in close ground proximity with visual navigation systems that rely
on pre-mapped features. This and the challenges of pure real-time SLAM imple-
mentations motivated an alternative approach based on velocimetry called MAVeN.
It avoids augmenting the state with feature vectors and uses a novel method of
projecting image features onto a shape model of the ground surface, achieving full
6-DOF pose estimation with a relatively low-order 21-state filter. The inclusion of a
rangefinder which directly measures altitude is critical to avoid ground collision and
makes scale observable in camera frames, providing the ability to maintain a stable
hover condition. In velocimetry, the vision system is used to characterize relative

20

motions of the vehicle from one image to the next, rather than to determine its
absolute position. The navigation solution will drift with time but this is offset by
the short (approximately 90 second), flights for the Mars Helicopter. For the Mars
Helicopter application, a facet model of the terrain or digital elevation map (DEM)
is not available, so that the shape model of the ground must be taken simply as a
single facet. While this facet could be defined as a tangent plane approximation to
local terrain as informed by satellite data, it is instead just assumed to be flat (i.e.
normal to local gravity) for simplicity. This assumption is justifed by flying over
terrain that is expected to have sustained slopes of only 1-3 degrees[41].

MAVeN is mechanized as an Extended Kalm Filter (EKF) which is updated by
comparing a base image taken at time tB with the current search image from camera.
The state includes position vector pS, velocity vector vS and attitude quaternion qS
which form the search state, cloned position pB vector and attitude quaternion qB
at time tb which form the base state, and accelerometer ba and gyroscope bg biases.
This process is briefly sketched here[41]

1. Identify the first image as a base image

2. Use the current estimate of base pose pb, qb to map features in the base image
onto the planar surface model e.g., f1, f2, f3 in figure 3.3. These feature
positions will serve as pseudo-landmarks.

3. Identify the next image as a search image

4. Match search image features to the pseudo-landmarks mapped from most re-
cent base image. Assume that there are m matches.

5. Combine the m pseudo-landmark matches with current geometry to form a
measurement that is a function of both the current base and Search states

yi = hi (pS, qS, pB, qB) + vi, i = 1, ...,m

Perform Kalman filter measurement and time updates.

6. If the number of matched features drops below a threshold (or other relevant
logic), declare the next image as a new base image and go to step 1. Otherwise
declare the next image as a search image and go to step 3. In reality, the
new base image in figure 3.3 is also used simultaneously as a search image
associated with the previous base frame. This intentional overlap minimizes
the drift incurred between base frames since it avoids a purely IMU-only period
of integration.

In a motionless hover condition, MAVeN is capable of sitting on the same base image
indefinitely which leads to very stable behavior. Algorithms based on the more
computationally intensive EKF-SLAM are generally able to hover [42][43], while
this property is usually not possible with non-SLAM approaches to velocimetry
[41][44][45], at least those using few filter states like MAVeN. This capability follows
directly from the novel approach of projecting image features onto a shape model

21

of the ground surface to use as pseudo-landmarks. During a test performing a 200
second hover, MAVeN accumulated only 0.6 m of position error[41].

Figure 3.3: MAVeN base and Search frames. Credits: [41]

3.1.3 Vision processing

Vision processing involves: detection of features in a base frame, tracking of fea-
tures in the following frames and outlier rejection to avoid passing invalid tracks
to the navigation filter. For performance, processing is executed on distorted (non-
rectified) images and a features are identified with a modified FAST (Features from
Accelerated Segment Test) corner detector[46, 47]. FAST explores the differences in
brightness between an evaluated center pixel and neighboring pixels that are located
on a circle around the center pixel and achieves a significant speed-up compared to
other detectors, being one of the fastest [48]. Tracking is done frame-to-frame with a
Kanade-Lucas-Tomasi (KLT) tracking framework, which uses an iterative gradient-
descent search algorithm. KLT could get caught in a local minimum, resulting in
false matches, so an outlier rejection step is implemented through a homography-
based RANSAC algorithm to identify the largest feature inlier set. This further
enforces the ground plane assumption of the navigation filter since only features
that are located on a common ground plane between a base frame and a Search
frame survive the outlier rejection. Additionally, this scheme guarantees that all
features that are detected on non-static texture like the helicopter shadow are also
eliminated by the outlier rejection step under vehicle translation (but not pure ro-
tation) [41].

After detection, all features pass through a final sorting step to only select the
strongest features for ingestion into the navigation filter. The image gets divide
in a 3x3 grid and the selected number of strongest features in each tile get chosen
as features for the base frame. This distributes them over all the image to avoid

22

having all features clustered in few locations. When the total number of features
drops below a parameter m or the number of tiles that do not contain any features
exceeds a value k, a new base frame is requested. To help minimize drift induced
by tracking over non-flat terrain, there is a maximum of n frames between two
consecutive base frames. This follows from the fact that locally, over short distances,
terrain tends to look planar. These numbers are chosen as m = 40 and k = 3 and
the track lengths are limited to n = 10 frames. ”Generally, larger values for n
best support hovering since there will be fewer base-frame updates and therefore
less drift, while lower values best support forward flight since shorter base-to-base
intervals act to reduce navigation errors induced by traversing terrain that is not
reasonably flat” [41].

To help deal with wind gusts, the Mars Helicopter was designed to handle up to
80 deg/s rotation rates. This ended up being a challenge for the navigation system,
since the KLT tracker works best for small movements between frames. To achieve
the desired performance, the software is sped up to process frames at 30Hz, but this
resulted insufficient, so gyro derotation is also used. ”Delta-angles from the gyro are
incorporated into the vision tracking algorithms to predict future feature locations
through large rotations. KLT linearizes the optical flow search around the initial
feature position and becomes sensitive when the search position is initialized far
from the true feature location. Gyro-based derotation has been found to significantly
reduce the chance of tracking outliers and makes the vision processing more robust”
[41].

The use of commercial electronics was critical to achieve the performance requested:
”The Mars Helicopter would not have been possible without the low size, weight and
power functionality offered by COTS hardware. The Snapdragon processor’s four
cores were assigned such that an entire core was dedicated to vision processing and
an entire core to the navigation filter. This turned out to be essential for achieving
the 30 Hz image frame rate needed to track features through wind-gust-induced
vehicle rates of up to 80 deg/s” [41].

(a) (b)

Figure 3.4: New base frame with detected features on a 3x3 tile grid (a) and the
surviving tracks after 10 frames (b). Credits: [41]

23

3.1.4 Limitations

The vertical altitude measured from an inertial frame of reference is of course dif-
ferent from the AGL altitude, and the two are the same only when the ground is
perfectly flat. When traversing non-flat or irregular terrain, MAVeN can not dif-
ferentiate between the two, so the filter is intentionally detuned to produce AGL
estimation of vertical position and inertial estimation of vertical velocity. AGL al-
titude is critical to avoid collision with terrain, while inertial velocity is critical for
controlling helicopter dynamics. Filter tuning is performed by increasing LRF and
camera weighting in the vertical position, and IMU weighting in the vertical veloc-
ity. However, this compromise still produces noticeable errors in vertical velocity
estimates when flying over rough terrain. Furthermore, since there is no absolute
attitude sensors and the gyro error is too big to obtain precise attitude using only
IMU integration, it was necessary to augment the state with attitude states. In
doing so the attitude estimate becomes sensitive to non-flat terrain. For example,
when flying forward over a long uphill stretch, the pitch error converges to the slope
of the hill [41].
Everything considered, the MAVeN algorithm is limited to fairly flat terrain and, as
a matter of fact, the operational terrain of Mars helicopter Ingenuity is expected to
have sustained slopes no larger than 1-3 deg.

3.2 LuNaDrone system

Given the level of miniaturization of the sensors used for Ingenuity, which reduces
total mass and volume of the spacecraft; the availability of sensors as COTS hard-
ware, which reduces costs and time of development; the self-contained nature of
the system and the non-necessity of pre-mapped landmarks, which offers maximum
flexibility of the mission, it follows that a navigation system like the one of In-
genuity would be ideal also for LuNaDrone. Unfortunately, LuNaDrone will not
operate in an environment where the flat terrain assumption is respected. Indeed,
LuNaDrone’s goal entails entering pits with funnels and vertical walls taller than
100m [13, 11]. A faceted terrain model, known before the flight, could be used in-
stead of a flat plane (in fact, this was in the original concept behind MAVeN, which
was originally developed for comet exploration [49]) but such model is not available
for LuNaDrone mission, given the highly irregular and often unknown morphology
of pits and skylights.

With future mars helicopters missions in mind, JPL developed a new navigation
framework called xVIO that, using the same type of sensors of Ingenuity, drops the
assumption of a flat terrain among other advantages [50, 51, 52]. It is stated that
this new system has been tested in real-time operations on 1 core of a Qualcomm
Snapdragon 820, which is the successor of the Snapdragon 801 used on Ingenuity
[50, 52]. Instead of lying on a plane, the visual features in xVIO form a faceted
geometry over the terrain. IMU, camera and rangefinder data is fused together
by an extended Kalman filter (EKF). During the prediction step of the filter, the
state of the system is propagated forward in time by integration of accelerometer

24

and gyroscope data at high frequency (hundreds of Hz). In the update steps of the
EKF, camera frames and rangefinder data are processed at a lower frequency to
correct this estimate. Features are tracked between frames and used for the visual
update through a hybrid approach that uses both multi-state constraint kalman
filter (MSCKF) [45] and simultaneous localization and mapping (SLAM) paradigms
to optimize computational cost and accuracy [53][52]. Like in Ingenuity, the presence
of the rangefinder allows state estimation in absence of accelerated motion, as in a
steady hover or constant speed traverse.

JPL’s xVIO framework represent the optimal solution also for LuNaDrone mission
and as such in the rest of this thesis the framework is studied and a MATLAB
implementation is developed for initial validation and testing.

Figure 3.5: xVIO architecture. Credits: [51]

25

Chapter 4

Filter basics

In robotics, localization problems at their core are problems of state estimation. The
robot maintains an internal belief with regards to the state of its environment and
can sense it through its sensor and influence it through its actuators. Sensors carry
only partial information, and their measurements are corrupted by noise, while the
actuators can be influenced by several and often random factors in the environment.
State estimation seeks to recover the state from this data
The state is the collection of all the variables describing the robot and the environ-
ment which can influence the robot in the future and is called complete if it is the
best predictor of the future. Completeness entails that knowledge of past states,
measurements, or controls carry no additional information that would help us to
predict the future more accurately. This doesn’t imply that the future is determin-
istically derived from the state, it could be stochastic but with no variables prior
to the current state that influence the stochastic evolution. This property is called
Markov assumption and processes that meet these conditions are known as Markov
chains. In reality, it is impossible to specify a complete state for a robot, since
this would include all aspects of the environment, including the internal dynamics
and data of the robot itself and of external actors (natural or artificial) operating
in the same environment. Practical implementations therefore use a subset of the
variables, an incomplete state, which is enough for state estimation in the required
operating conditions.

A robot interacts with the environment through sensor measurements, often called
observations, which provide information on a momentary state of the environment,
or trough control actions (often called process), like motion, which change the state
of the environment. These interactions carry a certain grade of unpredictability.
Probabilistic algorithms model this uncertainty explicitly and for this reason are
more robust in the face of sensor limitations, sensor noise, environment dynamics,
often scaling much better to complex and unstructured environments [54].
In a discrete representation, at the time t, let’s call the state of the system xt, the
measurements zt and the control actions ut. The probabilistic distribution of the
state xt can be expressed in terms of all the past states, controls and measurements
but, if the state is complete (the Markov assumption is true), it is dependent only

26

on the state xt−1 and the control actions ut, in mathematical terms:

p (xt|x0:t−1, z1:t−1, u1:t) = p (xt|xt−1, ut)

Also if the state is complete, xt is sufficient to predict the measurement zt:

p (zt|x0:t−1, z1:t−1, u1:t) = p (zt|xt)

p (xt|xt−1, ut) and p (zt|xt) represent the state transition probability and the mea-
surement probability, respectively.

A distinction has to be made between the true state xt and the belief x̂t.The belief
is the robot’s internal knowledge of the environment state and it is expressed as a
probability distribution conditioned on all the past measurements z1:t and controls
u1:t:

x̂t = p (xt|z1:t, u1:t)

It assign a probability to every possible hypothesis regarding the true state after all
the measurements and controls are known and is also called the posterior distribu-
tion. If it is calculated before incorporating the last measurement zt, it is referred
to as the prediction or prior :

x̂−
t = p (xt|z1:t−1, u1:t)

Calculating the posterior x̂t from the prior x̂−
t is called correction or measurement

update.

The more general algorithm for calculating beliefs from control and measurements
is the Bayes filter. It is a recursive estimator that calculates the belief at time t from
the belief at time t − 1 and the most recent control ut and measurement zt. The
Bayes filter is based on the Markov assumption. However, this category of filters
has been found to be surprisingly robust to violations of the assumption in practical
applications with incomplete state representations, particularly so if the effects of
unmodeled variables are close to random.
The most popular family of recursive state estimators are the gaussian filters, a type
of Bayes filter in which beliefs are represented by a multivariate normal distribution:

p(x) = det (2πΣ)−
1
2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(4.1)

Like in a single variable normal distribution there is a scalar mean value and a
scalar variance, in a multivariate normal distribution there is a mean vector µ and
a covariance matrix Σ. The representation of a gaussian by these two parameters is
called the moments representation. The covariance matrix between the components
of a vector x is defined as:

Σ(x, x) = Σxx = E
[
(x− E[x])(x− E[x])T

]
(4.2)

where E denotes the expected value. The covariance matrix is square, symmetric,
positive-semidefinite and its dimensionality is the square of the dimension of x.

27

4.1 Kalman filter

Perhaps the best studied among Bayes filters is the Kalman filter (KF) [55], a linear
gaussian estimator. In addition to the Markov assumption of the Bayes filter, the
beliefs are gaussians if the following properties are true [54]:

� The state transition probability p (xt|xt−1, ut) is a linear function of its argu-
ments, plus gaussian noise with zero mean and covariance Q.

xt = Axt−1 +But + wt (4.3)

p(wt) = N(0, Q) (4.4)

This means the system dynamics are linear and the randomness in the state
transition is modeled by the gaussian term. The state transition probabil-
ity is given by substituting (4.3) as the mean term in the definition of the
multivariate normal distribution (4.1), and R as Σ:

p(xt|ut, xt−1) = det (2πQt)
− 1

2 exp(−1

2
(xt−Axt−1+But)

TQ−1
t (xt−Axt−1+But))

� The measurement probability p (zt|xt) is a linear function of its arguments,
plus gaussian noise with zero mean and covariance R.

zt = Hxt + vt (4.5)

p(vt) = N(0, R) (4.6)

This means the measurements are linear with respect to the state and the
noise of the sensor is modeled by a gaussian. The measurement probability is
given by substituting in (4.1):

p(zt|xt) = det (2πRt)
− 1

2 exp

(
−1

2
(zt −Hxt)

TR−1
t (zt −Hxt)

)
� The initial belief at t = 0 is normally distributed:

p(x0) = det (2πΣ0)
− 1

2 exp

(
−1

2
(x0 − µ0)

TΣ−1
0 (x0 − µ0)

)

Under these assumptions, the Kalman Filter is optimal. If the noise is not gaussian,
the KF is the optimal linear estimator in the minimum mean-square-error sense
[56].
The KF algorithm is an iterative method which alternates between a prediction step
and a correction step. In the former, the filter projects forward in time the current
state of the system to obtain a prior estimate of the state, along with the uncertain-
ties, while in the latter a feedback is obtained in the form of noisy measurements
and is incorporated in the prior estimate to obtain an improved posterior estimate
of the state and uncertainties. Being a recursive algorithm, it is suitable for real
time applications.

28

Prediction step

The discrete time update (or propagation) equations are:

x̂−
t = Axt−1 +But (State prediction)

P−
t = APt−1A

T +Q (Covariance prediction)

A, B are the matrices that describe the dynamics of the process in (4.3) while Q is
the process noise covariance matrix in (4.4). In general, these matrices do not have
to be constant on each step. These equations bring the system forward in time from
t− 1 to t.

Correction step

The discrete measurement update (or simply update) equations are:

ỹt = zt −Hx̂−
t (Innovation or residual)

St = HP−
t HT +R (Innovation covariance)

Kt = P−
t HTS−1

t (Kalman gain)

x̂t = x̂−
t +Ktỹt (State update)

Pt = (I −KtH)P−
t (Covariance update)

First, the real measurements zt are compared with the expected value from the mea-
surement model in (4.5) to obtain the residuals, and the covariance of the innovation
is calculated taking into consideration the covariance R of the noise of the sensors
in (4.6). To obtain a posterior estimate of the state which weights the prediction
against the measurement, the Kalman gain is calculated, which takes into account
both the process noise (through the effect of Q on P−

t) and the measurement noise
(through the effect of R on St). For example, in the presence of sensors which are
very noisy, the terms in the covariance of the measurements R are very large, which
results in large terms in S and consequentially a small gain K which gives a small
weight to the measurement innovation in the state update equation.

While the covariance of the measurements R is of easy definition, since it comes
directly from the noise variances of the sensors which can be known through testing,
the covariance of the process noise Q often changes in time and depends on a process
that we usually cannot be observed directly. As a result, these matrices are often
obtained by a process of tuning. In some cases a poor model of the process can be
used in a Kalman filter and produce acceptable results if the shortcomings of the
model are ”masked” by large values in Q (high uncertainty).

29

4.2 Extended Kalman Filter

the Kalman filter addresses the general problem of trying to estimate the state of
a discrete-time controlled process that is governed by a linear stochastic difference
equation. Some of the most successful applications of the filter, however, have been
in situations where the process to be estimated and/or the measurement model is
not linear. A Kalman filter that linearizes about the current mean and covariance
is referred to as an Extended Kalman filter or EKF. This time, the state changes by
a non-linear process:

xt = f (xt−1, ut, wt)

with measurement:
zt = h (xt, vt)

where wt and vt again represent the process and measurement noise. When calculat-
ing the predicted state x̂t and measurement ẑt, the noise term is obviously assumed
zero, since it is unknown:

x̂−
t = f (x̂t−1, ut, 0) (4.7)

ẑt = h
(
x̂−
t , 0

)
(4.8)

The fundamental flaw of the Extended Kalman Filter lies in the fact that the normal
distribution of the variables is no longer normal after undergoing a non-linear trans-
formation. Therefore, EKF employs linearization, which approximates a function by
a linear function that is tangent to it at the mean of the Gaussian. By projecting the
Gaussian through this linear approximation, the posterior is Gaussian. In fact, once
g and f are linearized, the mechanics of belief propagation are equivalent to those
of the Kalman filter [54]. EKF uses a first order Taylor expansion which linearize
an estimate about (4.7) and (4.8):

xt ≈ x̂−
t + F (xt−1 − x̂t−1) +Wwt

zt ≈ ẑt +H
(
xt − x̂−

t

)
+ V vt

In this model, the true state xt differs from the estimated prior x̂−
t by a term which

is linear with respect to the error at the previous step (the difference between the
true state at the previous step xt−1 and the best estimate at the previous step x̂t−1)
and whose slope is defined by the jacobian F . The measurement zt differs from the
estimated ẑt by a term which is linear with respect to the prediction error at the
current step (the difference between the true state xt and the predicted state at the
current step x̂−

t) and whose slope is defined by the jacobian H. In both there is an
added noise term which is the process noise wt or measurement noise vt multiplied
by their respective jacobians W or V .

The difference between the true state and the estimated state is called the error
state and, depending on whether it is relative to a posterior or a prior estimate, is
indicated as:

δxt = xt − x̂t

δx−
t = xt − x̂−

t

30

The difference between measurement and prediction of the measurement (the resid-
ual) is indicated as:

δzt = zt − ẑt

so the model can be written as:

δx−
t ≈ Fδxt−1 +Wwt (4.9)

δzt ≈ Hδx−
t + V vt (4.10)

In the first equation, the model describes he evolution of the error state as a linear
function of the previous error state and the process noise. In the second equation
it describes the residual as a linear function of the current error state and the mea-
surement noise.
The rationale behind writing (4.10) is that the state error is not known but the resid-
ual is, which means information about the state can be recovered (probabilistically
because of the presence of noise).

Prediction step

The discrete time update (or propagation) equations become:

x̂−
t = f (x̂t−1, ut, 0) (State prediction)

P−
t = FPt−1F

T +WQW T (Covariance prediction)

In general, the matrices F , H, W andQ are not constant on each step. The subscript
t is dropped to maintain a lighter notation.

Correction step

The discrete measurement update (or simply update) equations become:

ỹt = zt − h
(
x̂−
t , 0

)
(Innovation or residual)

St = HP−
t HT + V RV T (Innovation covariance)

Kt = P−
t HTS−1

t (Kalman gain)

x̂t = x̂−
t +Ktỹt (State update)

Pt = (I −KtH)P−
t (Covariance update)

The matrices V and R are also in general not constant on each step, but the subscript
t is dropped to maintain a lighter notation.

The EKF strength is its simplicity and computational efficiency (each update re-
quires time O (k2.8 + n2) where k and n are the dimensions of the measurement and
the state vector, respectively) and EKFs have been applied with great success to a

31

number of state estimation problems that violate the underlying assumptions [54].
The advantages come from the representation of beliefs through multivariate gaus-
sian distributions. However, this is also the limit of this type of filters in applications
where the real world distributions are multimodal, for example when two distinct
hypotesis of the machine state exist whose mean is not a likely candidate.

32

Chapter 5

State definition and time
propagation

5.1 Notation

pba and vba are the position and acceleration of frame of reference {b} with respect to
frame of reference {a}. When the coordinates are expressed in the axis of {a}, for
example, they are written as apba and avba. If not indicated, they are represented by
default by their coordinates in the origin frame:

pba =
a pba

vba =
a vba

qba is the quaternion describing the rotation from {a} to {b} and C(qba) is the coor-
dinate change matrix associated to that quaternion, such that:

bx = C(qba)
ax

The coordinate change matrix is the transpose of what is commonly called the
rotation matrix.

5.2 State definition

In xVIO, the state vector x is divided between the IMU states xI and the vision
states xV :

x =

[
xI

xV

]
The IMU state contains information about the position piw, velocity viw and orien-
tation qiw of the system, and the bias terms of the gyroscope bg and accelerometer

33

ba.

xI =

piw
viw
qiw
bg
ba

The notation used in piw, as an example, means that the variable represents the
position of the IMU frame {i} with respect to the world frame {w}. The world
frame is the inertial frame fixed to the terrain, with the z axis pointing upward.
The IMU frame is the reference frame fixed to the body of the system, its axis are
the same as the accelerometer and gyroscope measurements.
The position, velocity and the bias terms are each represented by a 3 × 1 vector,
while the orientation is a 4 × 1 quaternion, for a total IMU state size of 16 × 1.
It might seems strange that biases are introduced into the state vector when their
estimation is not requested as an output of the navigation system, but remember
from the previous chapter that the state has to include ideally all variables that can
influence it in the future and, sure enough, the biases have a relevant effect on the
system and can be quite large for commercial MEMS IMUs.

The vision states include N feature states in inverse depth parametrization and the
camera poses (position and orientation) during the last M camera frames, called the
sliding window states. For every new frame, the oldest camera pose is removed from
the state vector, the remaining poses are slid one position and a new pose is added
to the state. Poses are used for both the MSCKF update and the SLAM update,
while features are only used for SLAM.

xV =

pc1w
...

pcMw

qc1w
...

qcMw

f1
...
fN

pCi
w and qCi

w are the position and orientation of the i-th most recent camera frame of
reference {Ci} with respect to the IMU frame {i}. The origin of the camera frame
is in the optical center of the lens with the z axis pointing outward along the optical
axis, the x axis pointing right in the image plane and the y axis pointing down in
the image plane. A pose necessitates of 7 states (3 for the position vector and 4
for the orientation quaternion), while the features in inverse depth parametrization
need 3, so the total size of the vision states is (7M + 3N)× 1.

34

5.2.1 Inverse depth parametrization

Inverse depth parametrization is a way to represent point features that was intro-
duced in [57, 58]. It offers improved convergence properties, can cope with features
over a huge range of depths and even at infinity and permits efficient and accu-
rate representation of uncertainty during undelayed initialization (when features are
added to the state vector after a single observation).

Applied to xVIO, the feature point j is described by the anchor pose (position p
cij
w

and orientation p
cij
w) of the camera when the feature was first observed, two param-

eters αj and βj which are the coordinates of the projection of the feature in the
image plane, and ρj which is the inverse of the distance between the optical center
and the the plane, parallel to the image plane, which contains the feature. This way,
the point is defined by the ray that starts from the optical center and goes through
the projection of the point on the image plane and from the inverse of the distance
along this ray, as in figure 5.1. The cartesian coordinates in world frame become:

wpj =

wxj
wyj
wzj

 = p
cij
w +

1

ρj
C(q

cij
w)T

αj

βj

1

As it is apparent, a point at infinite distance has ρj = 0, a property that will come
useful later. The anchor pose for each feature in the state vector is one of the sliding
window states; for this reason when a pose that is an anchor for some features is
about to leave the state vector, the associated features need to be reparametrized
with respect to a more recent pose, a procedure that is detailed in section 7.1.1.

Figure 5.1: Inverse depth parametrization in the pinhole camera model

5.2.2 Error states

The model of the EKF in equations (4.9) and (4.10) is linearized with respect to the
error states, which in this case are defined with a peculiarity. The error states are:

δx =

[
δxI

δxV

]
35

where the inertial error states are:

δxI =

δpiw
δviw
δθiw
δbg
δba

Position, velocity and biases error states are simply the difference between the true
and estimated vector, for example:

δpiw = piw − p̂iw

The quaternion error could be δq, defined such that the quaternion product between
the estimate and the error gives the true orientation quaternion:

q = q̂ ⊗ δq

However, using the small angle approximation (in Hamilton notation):

δq ≃
[

1
1
2
δθ

]
Therefore, δθ can be used as a correct minimal representation of the error quaternion
which also increases numerical stability [59]. The size of the inertial error states is
then reduced to 15× 1.

Likewise, for the vision error states:

δxV =

δpc1w
...

δpcMw

δθc1w
...

δθcMw

f1
...
fN

whose size becomes (6M + 3N)× 1.

To avoid any confusion, let’s specify that error states here presented are a mathe-
matical definition and, unlike system states, do not correspond to actual variables
in memory in the filter implementation.

5.3 Time propagation

Referring to the KF and EKF models presented before, the ”control term” in this
case is represented by the angular rates and linear accelerations on the spacecraft,

36

as measured by the IMU. Therefore, the time propagation happens according to an
inertial model, which is the same as in [60]:

ṗiw = viw
v̇iw = aiw
q̇iw = 1

2
Ω(iωi

w)q
i
w

where:

Ω(ω) =

[
0 −ωT

ω −⌊ω×⌋

]

⌊ω×⌋ =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⌊ω×⌋ is the skew-symmetrix matrix which represent the cross product as a matrix
multiplication.

The acceleration aiw and angular rates viw are not directly known, but are related to
the measured values from the IMU:

ωIMU =i ωi
w + bg + ng

aIMU = C(qiw)(a
i
w −w g) + ba + na

g is the gravity vector, ng and na are zero-mean gaussian white noises.
The biases do not change if not for a random walk process driven by zero mean
gaussian white noises nbg and nba : {

ḃg = nbg

ḃa = nba

5.3.1 State time propagation

The final inertial state propagation model in continuous time is (note: C(qiw)
T =

C(qwi)):

ṗiw = viw
v̇iw = C(qiw)

T (aIMU − ba − na) +
w g

q̇iw = 1
2
Ω(ωIMU − bg − ng)q

i
w

ḃg = nbg

ḃa = nba

(5.1)

The vision states do not have any dynamics since they refer to static poses or features
on the terrain, so:

ẋV = 0

37

The state is propagated forward in time by taking the expected value (i.e. removing
the noise terms) and integrating in time at first order as detailed in [59]. The discrete
time update becomes, for the inertial states:

ât = aIMU − b̂a,t−1

ω̂t = ωIMU − b̂g,t−1

q̂−t =

(
exp

(
1

2
Ω

(
ω̂t + ω̂t−1

2

)
∆t

)
+

1

48
∆t2 (Ω(ω̂t)Ω(ω̂t−1)− Ω(ω̂t−1)Ω(ω̂t))

)
q̂t−1

v̂−t = v̂t−1 +

(
1

2

(
C(q̂−t)

T ât + C(q̂t−1)
T ât−1

)
+w g

)
∆t

p̂−t = p̂t−1 +
1

2

(
v̂−t + v̂t−1

)
b̂−a,t = b̂a,t−1

b̂−g,t = b̂g,t−1

and for vision states:
x̂−
V,t = x̂V,t−1

5.3.2 Covariance time propagation

In continuous time, the inertial error states evolve according to:

˙δxI = FcδxI +GcnIMU (5.2)

nIMU =

nT
a

nT
ba

nT
g

nT
bg

whose matrices are obtained from the inertial propagation model in continuous time
(5.1) as such:

Fc =

03×3 I3 03×3 03×3 03×3

03×3 03×3 −C(q̂−t)
T ⌊ât×⌋ 03×3 −C(q̂−t)

T

03×3 03×3 −⌊ŵt×⌋ −I3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

Gc =

03×3 03×3 03×3 03×3

−C(q̂−t)
T 03×3 03×3 03×3

03×3 03×3 −I3 03×3

03×3 03×3 03×3 I3
03×3 I3 03×3 03×3

38

Considering only the portion of the covariance relative to the inertial states, the
discretization follows the method in [60]. The discrete time update step is:

P−
t = FdPt−1F

T
d +Qd (5.3)

with the matrix Fd obtained by solving the ordinary matrix differential equation
(5.2) and discretizing assuming Fc and Gc as constant over ∆t:

Fd = exp (Fc∆t) = Id + Fc∆t+
1

2!
F 2
c ∆t2 + . . .

However, for small values of |ω|, the expression leads to numerical instability [59].
By using the small angle approximation for which |ω| → 0 and applying L’Hopital’s
rule, the following solution is obtained:

Fd =

I3 ∆t A B −C(q̂−t)

T ∆t2

2
03×7

03×3 I3 C D −C(q̂−t)
T∆t 03×7

03×3 03×3 E F 03×3 03×7

03×3 03×3 03×3 I3 03×3 03×7

03×3 03×3 03×3 03×3 I3 03×7

07×3 07×3 07×3 07×3 07×3 I7

A = −C(q̂−t)
T ⌊ât×⌋

(
∆t2

2
− ∆t3

3!
⌊ω×⌋+ ∆t4

4!
⌊ω×⌋2

)

B = −C(q̂−t)
T ⌊ât×⌋

(
−∆t3

3!
+

∆t4

4!
⌊ω×⌋ − ∆t5

5!
⌊ω×⌋2

)

A = −C(q̂−t)
T ⌊ât×⌋

(
∆t · I3 −

∆t2

2!
⌊ω×⌋+ ∆t3

3!
⌊ω×⌋2

)
D = −A

E = I3 −∆t⌊ω×⌋+ ∆t2

2!
⌊ω×⌋2

F = −∆t · I3 +
∆t2

2!
− ∆t3

3!
⌊ω×⌋2

The discrete time noise covariance matrix can then be calculated as:

Qd =

∫
∆t

Fd(τ)GcQcG
T
c Fd(τ)

Tdτ

where the covariance matrix of the noise in continuous time is:

Qc =

σ2
na

σ2
nba

σ2
ng

σ2
nbg

39

The practical algorithm and code for calculating of Qd is obtained from the work of
[61, 62].

Let’s remember that (5.3) is only relative to the propagation of the covariance of
inertial states. Vision error states have no dynamics just like vision states:

˙δxV = 0

For this reason, the covariance of the whole state can be easily calculated by subdi-
viding it into four parts:

P =

[
PII PIV

PV I PV V

]
PII corresponds to the covariance of inertial error states only, as in equation (5.3),
and has size 15 × 15. PV V is the covariance of vision states only and has size
(6M + 3N)× (6M + 3N). The time update of the covariance blocks is:

P−
II,t = FdPII,t−1F

T
d +Qd

P−
IV,t = FdPIV,t−1

P−
V I,t =

(
P−
IV,t

)T
P−
V V,t = PV V,t−1

40

Chapter 6

Measurement Update

6.1 The hybrid approach

Simultaneous Localization And Mapping within an EKF provides a filter update
when it observes a feature in the world that corresponds to one of the features
included in the state vector. Due to the augmentation with these feature states, not
only an estimate of the position of the vehicle (localization) is recovered from the
observations, but also the position of the features themselves (mapping), hence the
name. This is one of the most used and studied method for visual navigation [42],
but it has been found challenging for real time application due to a computational
cost which scales as the cube of the number of features N in the state. While
SLAM algorithms have been indeed used in applications where obtaining a map of
the environment is part of the goals, in xVIO the ultimate objective is limited to
the current estimation of the vehicle position, velocity and attitude. Because of this
and to keep the computation bounded, the algorithm removes the features from the
state as soon as they are lost by the visual tracker, rendering the mapping only
temporary and limited to the part of the scene which is currently in the field of
view. Obviously, without a persistent map, no loop closure is considered.

The Multi-State Constraint Kalman Filter is a paradigm for visual navigation which
makes use of the geometric constraints that arise from the observation of features
from multiple camera poses. It was originally presented in [45] and it has since
gained major importance in the field of visual navigation due to its advantages,
most importantly that features do not have to be included in the states (only camera
poses have to), which allows efficient tracking of a large number of features without
the computational costs associated with large filters states of different paradigms
such as EKF-SLAM. In MSCKF, the cost is only linear with respect to the number
of features N , and cubical in the number of poses M in the sliding window[45].
The measurements of a single feature in consecutive camera poses (the track) are
processed as a batch either when the feature is lost or after the length of the track
exceeds the length of the sliding window of poses included in the state vector. This
is one of the shortcomings of MSCKF, since it introduces a delay from the first
appearance of a feature to the processing of its track, the other being the necessity

41

of a minimum camera translation between poses, which means that MSCKF can’t
constrain the state when the vehicle is not moving. On the contrary, SLAM can
provide an update at image rate and in hovering. In addition, the mapping of
features in SLAM is also essential for performing the range measurement update
because the SLAM features being estimated constitute the vertices of triangular
facets which form a polygonal surface approximating the shape of the terrain. The
measurement model of the range update involves estimation of the impact point of
the ray coming from the laser rangefinder onto these facets.

MSCKF vs SLAM then becomes a trade-off problem, hence both paradigms are
used in a hybrid fashion with the logic described in [53][63]. Since MSCKF has a
computational cost which is cubic in the number of poses M , while EKF-SLAM is
cubic in the number of features M , it follows that if a small number of features are
tracked for a large number of frames, it is convenient to use EKF-SLAM, while if a
large number of features are tracked for a short time it is more convenient to employ
MSCKF. In real world scenarios most of the features are tracked only for short
times, with only few surviving over a large number of frames. The optimal strategy
in terms of computational requirements, according to the results of [53], is to process
a feature using MSCKF if it is lost after fewer than M frames while, instead, if it is
still being tracked after M images, the M measurements are used to triangulate it,
compute its initial covariance, compute the cross-correlation with other filter states
and initialize it into the state vector, for subsequent use with SLAM. The only
parameter to optimize is the size of the sliding window, M . The best value at any
given moment depends on the future behavior of the feature tracks. Clearly, it is
impossible to obtain such information, but it is possible to collect statistical data
about tracks during runtime and to use this information to minimize the expected
cost of the EKF updates by actively adjusting the parameter M . In two test with
synthetic datasets, [53] claims that the optimal hybrid filter has a runtime 37.17%
smaller than that of the MSCKF, and 72.8% smaller than EKF-SLAM in one case
and a runtime 45.8% smaller than the MSCKF, and 55.6% smaller than SLAM in
the other. As a simpler, but clearly sub-optimal alternative, M can also be a fixed
value of compromise chosen beforehand by a process of tuning.

6.1.1 Image measurement model

To construct an update, we have to formulate the model of the EKF in equation
(4.10) for the specific system. The matrix H is the jacobian of the function h
in equation (4.8), a non-linear function which expresses the measurement zt as a
function of the state xt. In both measurement model of SLAM and MSCKF, the
observation of a single feature corresponds to the (x, y) coordinates of the normalized
projection in the plane which sits at z = 1 in the camera frame of reference. The
position of a feature j in Cartesian coordinates in the frame of reference of the
camera frame i is:

cipj =

cixj
ciyj
cizj

42

which can be recovered from the position in world frame and the current pose of the
camera:

cipj = C(qciw) (
wpj − pciw) (6.1)

so the observation is:
izj =

1
cizj

[
cixj
ciyj

]
+i nj (6.2)

with inj being the noise term which, by hypothesis of the EKF, is gaussian with
zero-mean.

inj ∼ N (0, iRj)

The covariance of this noise is a matrix:

iRj = σ2
V · I2 (6.3)

meaning that the noise in the x and y direction of the image is uncorrelated and
with the same standard deviation σV , which depends on the performance of the
visual front-end. The noise is also assumed to be uniform in all the image.

The feature position in Cartesian coordinates in world frame wpj, however, is not
part of the state vector. To express the measurement as a function of only states
and noise, SLAM and MSCKF use different strategies.

6.2 SLAM Update

6.2.1 Model

In (6.1) the feature appears in Cartesian coordinates, but the feature in the states
is represented by inverse-depth parameters, as described in section 5.2.1, so there’s
need to translate from one representation to another tanks to:

wpj = p
cij
w +

1

ρj
C(q

cij
w)T

αj

βj

1

 (6.4)

where cij refers to the anchor pose for the feature in inverse-depth parameters fj:

fj =

αj

βj

ρj

By substituting (6.4) into (6.1):

cipj = C(qciw)

p
cij
w +

1

ρj
C(q

cij
w)T

αj

βj

1

− pciw

 (6.5)

The coordinates of cipj are substituted in (6.2) to estimate the observation. This
defines a non-linear measurement model which is a function of the state only (plus
noise).

izj = h
(
pciw , q

ci
w , p

cij
w , q

cij
w , fj,

inj

)
= h

(
x, inj

)
43

This model is linearized to write the residuals as a linear combination of the error
states:

iδzj ≈
∂h

∂pciw
δpciw +

∂h

∂p
cij
w

δp
cij
w +

∂h

∂(δθciw)
δθciw +

∂h

∂(δθ
cij
w)

δθ
cij
w +

∂h

∂fj
δfj +

∂h

∂inj

inj (6.6)

∂h

∂pciw
=

∂izj
∂cipj

· ∂
cipj
∂pciw

= Jj · Jpi = Hpi

∂h

∂p
cij
w

=
∂izj
∂cipj

· ∂
cipj

∂p
cij
w

= Jj · Jpij = Hpij

∂h

∂(δθciw)
=

∂izj
∂cipj

· ∂cipj
∂(δθciw)

= Jj · Jθi = Hθi

∂h

∂(δθ
cij
w)

=
∂izj
∂cipj

· ∂cipj

∂(δθ
cij
w)

= Jj · Jθij = Hθij

∂h

∂fj
=

∂izj
∂cipj

· ∂
cipj
∂fj

= Jj · Jfj = Hfj (6.7)

∂h

∂inj

=
∂izj
∂inj

= Vj

The demonstration of the expressions of these jacobians can be found in [51], while
the results are:

Jj =
∂izj
∂cipj

=

[
1/ci ẑj 0 −ci x̂j/ci ẑ2j
0 1/ci ẑj −ci ŷj/ci ẑ2j

]
(6.8)

Jpi =
∂cipj
∂pciw

= −C(q̂ciw) (6.9)

Jpij =
∂cipj

∂p
cij
w

= C(q̂ciw) (6.10)

Jθi =
∂cipj
∂(δθciw)

= ⌊ci p̂j×⌋ (6.11)

Jθij =
∂cipj

∂(δθ
cij
w)

= − 1

ρ̂j
C(q̂ciw)C(q̂

cij
w)T

α̂j

β̂j

1

×
 (6.12)

Jfj =
∂cipj
∂fj

=
1

ρ̂j
C(q̂ciw)C(q̂

cij
w)T

1 0 −α̂j/ρ̂j
0 1 −β̂j/ρ̂j
0 0 −1/ρ̂j

 (6.13)

Vj =
∂izj
∂inj

= I2

44

The model (6.6) can be rewritten in the form of (4.10):

iδzj ≈
∂h

∂(δx)
δx+

∂h

∂inj

inj

iδzj ≈ Hjδx+ Vj
inj

or, given that Vj is the identity matrix:

iδzj ≈ Hjδx+ inj

by assembling the jacobians relative to the different error states (δpciw , δq
ci
w , δp

cij
w ,

δq
cij
w , δfj) into a single jacobian Hj, which multiplies the whole error state δx.

Assuming M camera poses and N features in the state:

Hj =
∂h

∂(δx)
= Jj ·

∂cipj
∂(δx)

= (6.14)

Jj · [02×15, Jpi , 02×3(ij−2), Jpij , 02×3(M−ij), Jθi ,

02×3(ij−2), Jθij , 02×3(M−ij), 02×3(j−1), Jfj , 02×3(N−j)]

Batch update

The equations described so far are relative to a filter update regarding a single
observation of a single feature j. However, N observations of N features can be
processed as a batch with measurement model:

iδz ≈ Hδx+ in (6.15)

by stacking the residuals, jacobians and noises of every feature j:

iδz =

δz1
δz2
...

δzN

 H =

H1

H2
...

HN

 in =

in1
in2
...

inN

The covariance of the whole noise vector is now:

R = E
[
inin

T
]
= σ2

V · I2N (6.16)

since the noise variance is the same for every feature.

6.2.2 Method

In practice, to construct an update:

1. For each feature in the state:

45

(a) Estimate the feature position ci p̂j in camera frame with (6.5)

(b) Estimate the observation with (6.2)

(c) Compute the residual iδzj between the real observation of the feature and
the estimation of in the previous step

(d) Calculate the jacobian Hj in (6.14)

(e) Create Rj with (6.3)

(f) Check if the observation is an outlier with a validation gate based on
the Mahalanobis distance, as described in section 6.5, with degrees of
freedom equal to the size of the residual (2 DOF)

2. Stack the residuals and jacobians of all features that passed the outlier check
into iδz and H of model (6.15)

3. Create the noise covariance matrix R with (6.16)

4. Perform the update of the EKF according to the correction step equations
described in 4.2, but applying the Joseph form explained in section 6.6.

6.3 MSCKF update

While in SLAM the measurement prediction is computed starting from the feature
parameters which are the state (6.5), in MSCKF all measurements from several
frames are processed together to obtain a first estimate of the feature position wpj,
which is then used to evaluate the residual in each frame.

6.3.1 Feature estimation

To obtain a feature estimate, the Gauss-Newton least-squares minimization algo-
rithm is employed, starting from an initial value found by triangulation with the
techniques of Direct Linear Transformation.

Direct Linear Transformation

In a pinhole camera model with camera matrix P , the world point X gets projected
onto the image plane as point x. Using homogeneous coordinates for both points,
the relationship is:

x = PX

P = KTC(qciw)

1 0 0 −xci
w

0 1 0 −yciw
0 0 1 −zciw

46

with K being the camera intrinisc matrix. It follows that:

x× PX = 0

or:
⌊x×⌋PX = 0

The matrix that results from the cross product x× P does not have full row rank,
so the previous system is equivalent to[

1 0 0
0 1 0

]
⌊x×⌋PX = 0

or:

AiX = 0

Ai =

[
1 0 0
0 1 0

]
⌊x×⌋P

The same world point X viewed by two distinct camera poses projects two points
x1 and x2 on the image plane. If the measurement were perfect with zero noise,
the rays passing through x1 and x2 would intersect at X, which could be found by
solving: [

A1

A2

]
X = 0 → AX = 0

In real scenarios the rays do not intersect, so the system does not have an exact solu-
tion, but the point X can be found as the linear least square solution by calculating
the Singular Valued Decomposition of A:

UΣV ∗ = A

and taking the column of V that corresponds to the smallest singular value. Then,
to obtain Cartesian coordinates:

x =
1

X4

X1

X2

X3

Figure 6.1: Noisy measurements of the same point in two camera poses. Credits:
[64]

47

Gauss-Newton method

While DLT solves the linear least-squares problem, Gauss-Newton method is em-
ployed to solve the non-linear problem by iteration, starting from the linear solu-
tion. For better convergence properties [43], the DLT result is translated to inverse-
depth parameters f anchored to the last camera pose, then:

1. For each camera frame i in the track of a feature j:

(a) Estimate the feature position ci p̂j with (6.5)

(b) Estimate the observation with (6.2)

(c) Calculate the residual iδzj between the real observation of the feature
and the estimation in the previous step

(d) Calculate the jacobian of the residual with respect to the inverse-depth
parameters fj = [α β ρ]T , which is identical to (6.7):

iJr,j =
∂iδzj
∂fj

= iJj · iJfj

2. Stack the residuals and the jacobians of all m observations:

δzj =

1δzj
2δzj
...

mδzj

 Jgn,j =

1Jr,j
2Jr,j
...

mJr,j

3. Apply the update to fj:

fj,new ← fj −
(
JT
r,j · Jr,j

)−1
JT
r,j · δzj

4. If either the difference between the norm of the residuals at the previous step
and the current step is smaller than a specific value or the number of iterations
reached the maximum, stop the algorithm and return fj,new, otherwise repeat.

6.3.2 Model

The observation model is a function of type:

izj = h
(
pciw , q

ci
w ,

wpj,
inj

)
which can be linearized to express the residuals as:

iδzj ≈
∂h

∂pciw
δpciw +

∂h

∂(δθciw)
δθciw +

∂h

∂wpj
δwpj +

∂h

∂inj

inj (6.17)

48

∂h

∂pciw
=

∂izj
∂cipj

· ∂
cipj
∂pciw

= iJj · iJpi = iHpi

∂h

∂(δθciw)
=

∂izj
∂cipj

· ∂cipj
∂(δθciw)

= iJj · iJθi = iHθi

∂h

∂wpj
=

∂izj
∂cipj

· ∂
cipj

∂wpj
= iJj · iJpj = iHpj

∂h

∂inj

=
∂izj
∂inj

= iVj

The demonstration of the expressions of these jacobians can be found in [51]. Jj,
Jpi and Jθi are the same of (6.8), (6.9) and (6.11):

iJj =
∂izj
∂cipj

=

[
1/ci ẑj 0 −ci x̂j/ci ẑ2j
0 1/ci ẑj −ci ŷj/ci ẑ2j

]
iJpi =

∂cipj
∂pciw

= −C(q̂ciw)

iJθi =
∂cipj
∂(δθciw)

= ⌊ci p̂j×⌋

iJpj =
∂cipj
∂wpj

= C(q̂ciw)

iVj =
∂zj
∂inj

= I2

The model (6.17) cannot be expressed in the form of (4.10), because wpj is not part
of the state. First, by assembling the jacobians iHpi ,

iHθi , into a single jacobian Hj

which multiplies the whole error state δx, the model is rewritten as:

iδzj ≈
∂h

∂(δx)
δx+

∂h

∂wpj
δwpj +

∂h

∂inj

inj

iδzj ≈ iHjδx+ iHpjδ
wpj +

iVj
inj

or, given that iVj is the identity matrix:

iδzj ≈ iHjδx+ iHpjδ
wpj +

inj (6.18)

where, if there are M camera poses and N features in the state:

iHj =
∂h

∂(δx)
= iJj ·

∂cipj
∂δx

= iJj · [02×15,
iJpi , 02×3(M−1),

iJθi , 02×3(M−1+N)]

So far, the model is valid for a single observation in frame i of a single feature j,
but all residuals, matrices and noise terms of a single MSCKF track can be stacked
to create the model relative to all observations of a single feature j in mj frames:

δzj ≈ Hjδx+Hpj
wδpj + nj (6.19)

49

with:

δzj =

1δzj
2δzj
...

mjδzj

 Hj =

1Hj
2Hj
...

mHj

 Hpj =

1Hpj
2Hpj
...

mjHpj

 nj =

1nj
2nj
...

mjnj

Since the residuals are not expressed as a function of only error states and noise,
an EKF update cannot be applied as is. To get to a model in a usable form, both
sides of (6.19) are multiplied by a basis of the left null-space (or cokernel) of Hpj ,
indicated as Aj. By definition:

AT
j Hpj = 0

so
AT

j δzj ≈ AT
j Hjδx+ AT

j nj

which can be written as
δz0,j ≈ H0,jδx+ n0,j (6.20)

where:
δz0,j = AT

j δzj H0,j = AT
j Hj n0,j = AT

j nj

The dependency from wδpj has disappeared, so this new model can be used to update
the EKF.

Hpj has size 2mj × 3 and has full rank 3, so Aj has rank 2mj − 3 and size 2mj ×
(2mj − 3) per rank nullity theorem. This means by the multiplication with AT

j the
number of rows of δz0,j, H0,j and n0,j has been reduced to 2mj − 3. To find Aj, it’s
possible to perform a QR decomposition on Hpj and then take the last (2mj − 3)
columns of Q.

Hpj = QR

Q =
[
U AT

]
A ∈ R2mj×(2mj−3)

The covariance of noise vector nj is:

Rj = E
[
njn

T
j

]
= σ2

V · Imj

and of noise vector n0,j is:

R0,j = E
[
AT

j njn
T
j Aj

]
= AT

j E
[
njn

T
j

]
Aj = AT

j RjAj (6.21)

but since Aj is unitary:
R0,j = σ2

V · I2mj−3

50

Batch update

Nt features can be initialized together as a batch by stacking residuals, jacobians
and noise terms of each track j into:

δz0 =

δz0,1
δz0,2
...

δz0,Nt

 H0 =

H0,1

H0,2
...

H0,Nt

 n =

n0,1

n0,2
...

n0,Nt

and using the model:

δz0 ≈ H0δx+ n (6.22)

The covariance of the noise vector n is:

R = E
[
nnT

]
= σ2

V · I[2(m1+···+mNt)−3Nt] (6.23)

6.3.3 Method

1. For each feature track j:

(a) Obtain a linear least square estimate of the feature position by the DLT
method using two observations in two poses, for example the first and
the last in the track.

(b) Obtain a non-linear least square estimate of the feature by the Gauss-
Newton method using all the observations

(c) For each camera frame and observation i in the track:

i. Estimate the feature position ci p̂j with (6.5)

ii. Estimate the observation with (6.2)

iii. Compute the residual iδzj between the real observation of the feature
and the estimation in the previous step

iv. Calculate the jacobians iHj and
iHpj in (6.18)

(d) Stack residuals and jacobians iδzj,
iHj,

iHpj of all observations i into δzj,
Hj, Hpj of model (6.19)

(e) Find the left nullspace Aj of Hpj

(f) Calculate the new residuals and jacobians δz0,j and H0,j of model (6.20)

(g) Create the noise covariance matrix R0,j with (6.21)

(h) Check if the feature estimate is an outlier with a validation gate based
on the Mahalanobis distance, as described in section 6.5, with degrees of
freedom equal to the size of the residual ((2 ∗mj − 3) DOF)

2. Stack the residuals and jacobians of all features that passed the outlier check
into δz0 and H0 of model (6.22)

3. Create the noise covariance matrix R with (6.23)

4. Perform the update of the EKF according to the correction step equations
described in 4.2, but applying the Joseph form explained in section 6.6.

51

6.4 Range Update

The measurement model considers a rangefinder which is projecting a ray to a
triangular surface in front of the camera, defined by three SLAM features as vertices.
The terrain is assumed locally flat along this surface, but the different triangular
facets between all features in view form a 3D mesh which approximates the shape
of the terrain. There is no assumption of a globally flat terrain like in the case of
Mars Helicopter Ingenuity’s navigation system [41].

6.4.1 Model

The ray coming from the rangefinder is assumed to originate from the optical center
of the camera and is oriented along the unit vector ur parallel to the camera optical
axis. It intersect in pI the triangle with features pj1 , pj2 e pj3 as vertices. In inverse
depth parametrization, the features are fj1 , fj2 and fj3 and anchored to camera poses
i1, i2 and i3. A vector normal to the triangle facet can be found by taking the cross
product of two vectors between any two pairs of vertices in Cartesian coordinates:

wn = (wpj1 −w pj2)× (wpj3 −w pj2) (6.24)

This normal vector is not generally a unit vector. The distance between the inter-
section point pI and the camera can be formulated using any pair out of the tree
vertices:

zr =
(wpI − pciw)

T · wn
wur · wn

=
(wpI − wpj2 +

wpj2 − pciw)
T · wn

wur · wn

↓

zr =
(wpj2 − pciw)

T · wn
wur · wn

(6.25)

The position of features wpj can be retrieved from the state thanks to (6.4), which
means the model is in the form

zr = h (x, n)

as a function of states and noise only, and can be employed for an EKF update.
This model can be linearized to write the residuals as a linear combination of the
error states and noise:

iδzr ≈
∂h

∂pciw
δpciw +

∂h

∂(δθciw)
δθciw +

∂h

∂p
ci1
w

δp
ci1
w +

∂h

∂p
ci2
w

δp
ci2
w +

∂h

∂p
ci3
w

δp
ci3
w +

∂h

∂(δθ
ci1
w)

δθ
ci1
w +

(6.26)

+
∂h

∂(δθ
ci2
w)

δθ
ci2
w +

∂h

∂(δθ
ci3
w)

δθ
ci3
w +

∂h

∂fj1
δfj1 +

∂h

∂fj2
δfj2 +

∂h

∂fj3
δfj3 +

∂h

∂inr

inr

52

where:

∂h

∂pciw
=

∂izr
∂pciw

= Hpi

∂h

∂(δθciw)
=

∂izr
∂(δθciw)

= Hθi

∂h

∂p
ci1
w

=
∂izr

∂p
ci1
w

=
∂izr

∂p
cj1
w

= Jpj1 = Hpi1

∂h

∂p
ci2
w

=
∂izr

∂p
ci2
w

=
∂izr

∂p
cj2
w

= Jpj2 = Hpi2

∂h

∂p
ci3
w

=
∂izr

∂p
ci3
w

=
∂izr

∂p
cj3
w

= Jpj3 = Hpi3

∂h

∂(δθ
ci1
w)

=
∂izr
∂wpj1

· ∂wpj1
∂(δθ

ci1
w)

= Jpj1 · Jθi1 = Hθi1

∂h

∂(δθ
ci2
w)

=
∂izr
∂wpj2

· ∂wpj2
∂(δθ

ci2
w)

= Jpj2 · Jθi2 = Hθi2

∂h

∂(δθ
ci3
w)

=
∂izr
∂wpj3

· ∂wpj3
∂(δθ

ci3
w)

= Jpj3 · Jθi3 = Hθi3

∂h

∂fj1
=

∂izr
∂wpj1

· ∂
wpj1
∂fj1

= Jpj1 · Jfj1 = Hfj1

∂h

∂fj2
=

∂izr
∂wpj2

· ∂
wpj2
∂fj2

= Jpj2 · Jfj2 = Hfj2

∂h

∂fj3
=

∂izr
∂wpj3

· ∂
wpj3
∂fj3

= Jpj3 · Jfj3 = Hfj3

∂h

∂inr

=
∂izr
∂inr

= V

The demonstration of the expressions of these jacobians can be found in [51], while
the results are:

Hpi =
∂izr
∂pciw

= −1

b̂
n̂T

Hθi =
∂izr

∂(δθciw)
=

â

b̂2
(⌊ciur×⌋C(q̂ciw)

wn̂)T

Jpj1 =
∂izr
∂wpj1

=
1

b̂
(⌊(wp̂j3 − wp̂j2)×⌋ (wp̂j2 − wp̂Ii))

T

Jpj2 =
∂izr
∂wpj2

=
1

b̂
(wn̂+ ⌊(wp̂j1 − wp̂j3)×⌋ (wp̂j2 − wp̂Ii))

T

53

Jpj3 =
∂izr
∂wpj3

=
1

b̂
(⌊(wp̂j2 − wp̂j1)×⌋ (wp̂j2 − wp̂Ii))

T

Jθi1 =
∂wpj1
∂(δθ

ci1
w)

= − 1

ρ̂j1
C(q̂

ci1
w)T

α̂j1

β̂j1

1

×

Jθi2 =
∂wpj2
∂(δθ

ci2
w)

= − 1

ρ̂j2
C(q̂

ci2
w)T

α̂j2

β̂j2

1

×

Jθi3 =
∂wpj3
∂(δθ

ci3
w)

= − 1

ρ̂j3
C(q̂

ci3
w)T

α̂j3

β̂j3

1

×

Jfj1 =
∂wpj1
∂fj1

=
1

ρ̂j1
C(q̂

ci1
w)T

1 0 −α̂j1/ρ̂j1
0 1 −β̂j1/ρ̂j1
0 0 −1/ρ̂j1

Jfj2 =
∂wpj2
∂fj2

=
1

ρ̂j2
C(q̂

ci2
w)T

1 0 −α̂j2/ρ̂j2
0 1 −β̂j2/ρ̂j2
0 0 −1/ρ̂j2

Jfj3 =
∂wpj3
∂fj3

=
1

ρ̂j3
C(q̂

ci3
w)T

1 0 −α̂j3/ρ̂j3
0 1 −β̂j3/ρ̂j3
0 0 −1/ρ̂j3

V =

∂izr
∂inr

= 1

a = (wpj2 − pciw)
T · wn

b = wur · wn

izr =
a

b

wp̂Ii = q̂ciw + wur · izr

With the same logic that has been used for SLAM and MSCKF, the jacobians
relative to the different error states can be assembled in the corresponding positions
into a single jacobian Hj which multiplies the whole error state vector. This way it
is possible to rewrite the model (6.26) in the form of (4.10):

iδzr ≈
∂h

∂(δx)
δx+

∂h

∂inr

inr

iδzr ≈ Hδx+ V inr

or, given that V is equal to 1:

iδzr ≈ Hδx+ V inr (6.27)

54

In this case, the H matrix is just a row vector and the noise covariance matrix is
just a scalar:

iRr = E
[
inr

inr
T
]
= σ2

R

6.4.2 Method

1. Perform a Delaunay triangulation in image space over the features in the
state (SLAM features). Delaunay maximizes the smallest angle of all possible
triangulations [65], resulting in less thin triangles, which do not provide strong
planar constraints.

2. Find the triangle that intersect with the rangefinder ray. Since the ray is
aligned with the camera optical axis and is assumed to originate from the
optical center, the triangle is the one that contains the principal point in image
space. Find the features at the vertices j1, j2 and j3 anchored to camera poses
i1, i2 and i3

3. Predict the measurement with (6.24) and (6.25)

4. Compute the residual iδzr between the real measurement of the rangefinder
and the prediction in the previous step

5. Calculate the jacobians in (6.26)

6. Assemble the jacobians into the matrix H, according to the model (6.27) and
to definition of the error states in section 5.2.2.

7. Create the matrix R, in fact just a scalar equal to σ2
R

8. Check if the observation is an outlier with a validation gate based on the
Mahalanobis distance, as described in section 6.5, with degrees of freedom
equal to the size of the residual (1 DOF).

9. If the outlier check is passed, perform the update of the EKF according to the
correction step equations described in 4.2, applying the Joseph form in 6.6.

6.5 Outlier rejection

Measurements that are too much in disagreement with the prediction get rejected
and not employed for an update. To determine whether a sensor measurement is an
outlier, it is passed through a validation gate based on the Mahalanobis distance.
Generally, the Mahalanobis distance is a metric of the separation between a point x
and a distribution with mean µ covariance S, taking into account the correlations
that exist in the data:

d =

√
(x− µ)T S−1 (x− µ)

55

Applied to our case, it is used to compute the distance between the sensor measure-
ment and the predicted value:

d2 = (z − ẑ)T S−1 (z − ẑ) = δzTS−1δz

Where S is the innovation (residual) covariance from 4.2:

S = HP−HT + V RV T

Since S is the covariance of the whole term δz, then d is the distance between the
two distributions of z and ẑ taking into account both covariance matrices.
The distance is compared to a threshold and the test is passed if:

d2 < γ (k, α)

The threshold γ (k, α) is the inverse cumulative distribution function, evaluated at
probability α, of the χ2 distribution with k degrees of freedom. χ2 is defined as the
distribution of the sum of the squares of k independent standard normal random
variables:

k∑
i=1

x2
i ∼ χ2

k (6.28)

By a change of variables, it is shown that The Mahalanobis distance is itself a sum
of squares of randomly distributed values:

S = CCT

y = C−1 (x− µ) ∼ N (0, I)

↓

d2 = yT I−1y =
k∑

i=1

yi

This means that the validation gate for the test (6.28) is a region of acceptance such
that 100(1− α)% of true measurements are rejected.

6.6 Joseph form and symmetry

The covariance matrix P in the EKF must remain symmetric and positive definite.
The time update equation adds two positive definite quantities together, ensuring
the result is positive definite:

P−
t = FPt−1F

T +WQW T

Theoretically, also the measurement update equation preserves a positive definite
result, but due to the subtraction operation it is possible for round-off errors to
result in a non-positive-definite solution.

Pt = (I −KtH)P−
t

56

The Joseph form of the measurement update equation makes the subtraction occurs
in the squared terms, guaranteeing a positive definite result

Pt = (I −KtH)P−
t (I −KtH)T +KtV RV TKT

t

To ensure symmetry it is possible to simply substitute the covariance at any moment
with:

Pnew ←
P + P T

2

If the matrix ever becomes negative definite, it can be substituted with the nearest
positive definite by first obtaining the Singular Value Decomposition:

P = USV T

then:

J = V SV T

Pnew ←
P + P T + J + JT

4

which also ensures symmetry

57

Chapter 7

State and filter management

7.1 Inserting a pose

The state includes a sliding window of M camera poses. Each time a new camera
frame gets acquired, the oldest pose is removed from the state, the remaining ones
get shifted one slot and the new camera pose is added to the free first slot. For
example, if a state vector with a sliding window of length M is written like:

xti =

xI,ti

xS,ti

xF,ti

 where: xS =

pcMw
...
p1w
qcMw
...
qc1w

when camera frame M + 1 is inserted the sliding window states get updated as:

xS,new ←

p
cM+1
w

...
pc2w

q
cM+1
w

...
qc2w

The new pose of the camera is calculated knowing the relative pose of the camera
with respect to the IMU (pci , q

c
i), which is a fixed value that depends on the locations

of the sensors.

pcM+1
w = p̂iw + C(q̂iw)

T ipci

qcM+1
w = q̂iw ⊗ qci

The covariance matrix must be updated to reflect the changes. From [51], with M
as the length of the sliding window and N as the number of features in the state,

58

the new error states for the new camera pose are:

δpcM+1
w = δpiw − C(q̂iw)

T ⌊pci×⌋δθiw

δθcM+1
w = C(qci)δθ

i
w

↓

δpcM+1
w =

[
I3, 03×3, −C(q̂iw)

T ⌊pci×⌋, 03×6(M+1)+3N

]
δx

δθcM+1
w =

[
03×6, C(qci), 03×6(M+1)+3N

]
δx

Considering this change and also the translation of the error states of camera poses
from 2 to M by three rows down to the next slots, the updated error states after
inserting a pose are:

δxnew = Jδx

where:

J =

I3
I3

I3
I6

I3 −C(q̂iw)
T ⌊pci×⌋ 03×3

I3(M−1)

C(qci) 03×3

I3(M−1)

I3N

By definition (4.2), the covariance matrix is:

P = E
[
δxδxT

]
so its update becomes:

Pnew = E
[
δxnewδx

T
new

]
= E

[
JδxδxTJT

]
= JE

[
δxδxT

]
JT = JPJT

Pnew ← JPJT

Initial frames

For the initial frames M , when there are less poses in the state vector than the
maximum size of the sliding windowM , the new posem+1 is inserted by augmenting
the sliding window states:

xS,aug ←

pcm+1
w

pcmw
...
pc1w
qcm+1
w

qcmw
...
qc1w

59

and the covariance:
Paug ← JPJT

where:

J =

I3
I3

I3
I6

I3 −C(q̂iw)
T ⌊pci×⌋

I3m
C(qci)

I3m
I3N

7.1.1 Feature reparametrization

As the oldest camera pose in the sliding window gets removed from the state to insert
a new pose, all features that were anchored to it need to be reparametrized for a
different anchor pose and the covariance matrix needs to be updated accordingly.
To maximize the time between two reparametrizations for a given feature, the new
anchor is chosen as the newest pose.

For a single feature j, anchored to camera pose ij, that needs to be reparametrized
to the latest pose i, the feature position in the latest frame cipj is obtained from
(6.4):

cipj = C(qciw)

p
cij
w +

1

ρj
C(q

cij
w)T

αj

βj

1

− pciw

Then, as can be deduced from the geomtry in figure 5.1, the new inverse depth
parameters are just:

fj ← f ′
j =

cixj/cizj
ciyj/cizj
1/cizj

 (7.1)

The equations above can be linearized to obtain the updated error states for j:

δf ′
j ≈

∂f ′
j

∂cipj
· ∂

cipj
∂(δx)

· δx = J0,j · J1,j · δx

where:

J0,j =
∂f ′

j

∂cipj
= iρ̂j

1 0 iα̂j

0 1 iβ̂j

0 0 iρ̂j

 (7.2)

J1,j =
∂cipj
∂(δx)

= [03×15, Jpi , 03×3(M−2), Jpij , Jθi , (7.3)

02×3(M−2), Jθij , 02×3(j−1), Jfj , 02×3(N−j)]

60

Jpi , Jpij , Jθi , Jθij and Jfj are the same as (6.9), (6.10), (6.11), (6.12) and (6.13).
The error states update then is:

δx′ ≈ Jj · δx

where Jj is a identity matrix of size 15+6M+3N , whose rows from 16+6M+3(j−1)
to 16 + 6M + 3j have been substituted by the product J0,jJ1,j

Jj =

 [
I15+6M+3(j−1) 0[15+6M+3(j−1)]×3(N−j+1)

]
J0,j · J1,j[

03(N−j)×(15+6M+3j) I3(N−j)

]
 (7.4)

By definition (4.2) of the covariance:

P = E
[
δxδxT

]
so the updated matrix is:

P ′ = E
[
δx′δx′T] = E

[
Jjδxδx

TJT
j

]
= JjE

[
δxδxT

]
JT
j = JjPJT

j

P ← P ′ = JjPJT
j

The demonstrations of the expressions of the jacobians can be found in [51].

Batch reparametrization

If there are multiple features that need to be reparametrized, their states are updated
individually with (7.1). However, a single matrix J is built by initializing an identity
matrix of size 15 + 6M + 3N and substituting, for each feature j, the rows from
16+ 6M + 3(j − 1) to 16 + 6M + 3j with the product J0,jJ1,j of the jacobians (7.2)
and (7.3), as in shown in (7.4) for a single feature. Then, the covariance is updated
with a single operation:

P ← P ′ = JPJT

7.2 Feature initialization

To employ SLAM, the state needs to be augmented with feature states. Usually this
happens after MSCKF measurements, when the conditions explained in section 6.1
are met, meaning that a previous estimate of the feature depth with respect to the
camera is available. If such MSCKF measurements are not obtainable, for lack of a
minimum translation between frames, or because it’s the first frame, or if there’s a
need to immediately provide constraints to the system after a loss of tracking, then
the initialization of features occurs with unknown-depth.
Initializing a feature does not only entail augmenting the state with feature pa-
rameters, but also augmenting the covariance matrix with appropriate values of
uncertainty and cross correlations.

61

7.2.1 Unknown-depth initialization

During initialization, the 95% acceptance region for the depth from the camera is
assumed to be between infinite and a parameter dmin. Even though it extends to
infinity, thanks to inverse-depth parameterization [43], the region is defined by finite
bounds:

0 ≤ ρ ≤ 1

dmin

The expected value of the inverse depth is the average:

ρ̂ =
1

2dmin

with standard deviation:

σρ =
1

4dmin

The other two parameters α and β, as it is apparent in figure 5.1, are simply the
observation in the image plane of the anchor frame ij:[

α̂j

β̂j

]
= ijzj

with the standard deviation σV of the vision front.
The state is then augmented as:

x← x′ =

x̂
α̂j

β̂j

ρ̂j

 =

 x̂
ijzj

1/2dmin

And the covariance:

P ← P ′ =

P

σ2
V

σ2
V

(1/4dmin)
2

7.2.2 MSCKF initialization

When a feature track exceeds the length of the sliding windowM , it is initialized into
the state to be used for SLAM. [53] showed this is computationally advantageous
if M is chosen appropriately and proposed a method to augment the state and
covariance matrix with the new feature. The idea is to include it into the state
vector, anchored to the last camera pose, and adding corresponding infinite variances
in the covariance matrix, then using all m observations simultaneously to perform
an EKF update. After the new pose has already been inserted:

xaug ←
[
x
fj

]

xaug ←
[
P

µI3

]

62

The model is:
δzj ≈ Hjδx+Hfjδfj + Vjnj

where Vj is the identity matrix I2, while Hj is the matrix of size 2mj × 3 made by
stacking the jacobians iHj for every observation i:

iHj = (7.5)

Jj ·
[
02×15 Jpi 02×3(ij−2) Jpij 02×3(M−ij) Jθi 02×3(ij−2) Jθij 02×3(M−ij) 02×3N

]
where Jj, Jpi , Jpij , Jθi and Jθij are (6.8), (6.9), (6.10), (6.11) and (6.12), into:

Hj =

1Hj
2Hj
...

mjHj

Hfj is the matrix of size 2mj × 3 made by stacking the jacobians iHfj from (6.7) for
every observation i into:

Hfj =

1Hpj
2Hpj
...

mjHpj

The new feature is included in the augmented state so the model can be used for an
EKF update by rewriting it as:

δzj ≈
[
Hj Hfj

] [δx
δfj

]
+ nj

δzj ≈
[
Hj Hfj

]
δxaug + nj (7.6)

Because of the fact that the variances µ of the feature parameters are infinite, fj
could in theory be chosen randomly. However, since it is used to calculate the
jacobians, a good estimate is needed and is obtained by triangulation from the
observations in different frames, employing the methods in 6.3.1. It remains the
problem of choosing a value for µ. Simply picking a large value would lead to nu-
merical problems, so instead the limit of the EKF update is computed for µ→∞.
The complete demonstration is explained in [63], what follows is only the results
which are needed for a practical implementation.

U and A are two matrices which are basis, respectively, for column space and left
nullspace of Hfj . They can be calculated from the QR decomposition:

QR = Hfj

Q =
[
U A

]
U ∈ R2mj×rank(Hfj

)

A ∈ R2mj×(2mj−rank(Hfj
))

63

Model (7.6) is left multiplied on both sides by W =
[
A U

]
:

W T δzj ≈ W T
[
Hj Hfj

]
δxaug +W Tnj[

AT

UT

]
δzj ≈

[
AT

UT

] [
Hj Hfj

]
δxaug +

[
AT

UT

]
nj[

AT δzj
UT δzj

]
=

[
ATHj ATHfj

UTHj UTHfj

]
δxaug + nc,j[

δz0,j
δz1,j

]
=

[
H0,j

H1,j H2,j

]
δxaug + nc,j (7.7)

The covariance matrix of noise vector nj is:

Rj = E
[
njn

T
j

]
= σ2

V · Imj

and of noise vector nc,j is:

Rc,j = E
[
W Tnjn

T
j W

]
= W TE

[
njn

T
j

]
W = W TRjW

but since W is unitary:

Rc,j = σ2
V · I2mj

=

[
R0,j

R1,j

]
=

[
σ2
V · I2mj−rank(Hfj

)

σ2
V · Irank(Hfj

)

]
= σ2

V · I2mj

(7.8)
The state and covariance are updated as:

xaug ←
[
x0

x1

]
(7.9)

Paug ←
[
P11 P12

P21 P22

]
(7.10)

Where x0 and P11 are the state and covariance that result from the standard MSCKF
update:

x0 = x+ PHT
0,j

(
H0,jPHT

0,j +R0,j

)−1
δz0,j

P11 = P − PHT
0,j

(
H0,jPHT

0,j +R0,j

)−1
H0,jP

and the rest is:

x1 = −H−1
2,jH1,jPHT

0,j

(
H0,jPHT

0,j +R0,j

)−1
δz0,j +H−1

2,j δz1,j

P22 =
(
H−1

2,jH1,j

)
P11

(
H−1

2,jH1,j

)T
+R1,j

P21 = −H−1
2,jH1,jP11

P12 = P T
21

64

Batch initialization

Nt features can be initialized together as a batch by stacking residuals, jacobians
and noise terms of each track j into:

δz0 =

δz0,1
δz0,2
...

δz0,Nt

 δz1 =

δz1,1
δz1,2
...

δz1,Nt

 nc =

nc,1

nc,2
...

nc,Nt

H0 =

H0,1

H0,2
...

H0,Nt

 H1 =

H1,1

H1,2
...

H1,Nt

 H2 =

H2,1

H2,2
...

H2,Nt

and using the model: [

δz0
δz1

]
=

[
H0

H1 H2

]
δxaug + nc (7.11)

The covariance of the noise vector nc is:

Rc = E
[
ncn

T
c

]
=

[
R0

R1

]
= σ2

V · I2m1+···+2mNt

where:

R0 =

R0,1

. . .

R0,Nt

 R1 =

R1,1

. . .

R1,Nt

 (7.12)

7.2.3 Method

1. For each feature track j:

(a) Obtain a linear least square estimate of the feature position by the DLT
method using two observations in two poses, for example the first and
the last in the track.

(b) Obtain a non-linear least square estimate of the feature by the Gauss-
Newton method using all the observations

(c) For each camera frame and observation i in the track:

i. Estimate the feature position ci p̂j with (6.5)

ii. Estimate the observation with (6.2)

iii. Compute the residual iδzj between the real observation of the feature
and the estimation in the previous step

iv. Calculate the jacobians iHj and
iHfj with (7.5) and (6.7)

(d) Stack residuals and jacobians iδzj,
iHj,

iHfj of all observations i into δzj,
Hj, Hfj of model (6.19)

65

(e) Find the left nullspace Aj and column space Uj of Hfj

(f) Calculate the residuals δz0,j, δz1,j and jacobians H0,j, H1,j, H2,j of model
(7.7)

(g) Create the noise covariance matrices R0,j and R1,j with (7.12)

(h) Check if the feature estimate with residuals is an outlier with a validation
gate based on the Mahalanobis distance with residuals δz0,j, as described
in section 6.5, with degrees of freedom equal to the size of the residual
((2 ∗mj − rank(Hfj)) DOF)

2. Stack the residuals and jacobians of all features that passed the outlier check
into δz0, δz1, H0, H1 and H2 of model (7.11)

3. Create the noise covariance matrices R0,j and R1,j with (7.12)

4. Perform the updates and augment state and covariance as in (7.9) (7.10)

7.3 Filter loop

The main loop simply waits until either new IMU measurement or camera and
rangefinder measurements are available.

� If IMU measurements are available, the time update step in chapter 5.3 is
executed

� If new camera and rangefinder measurement are available (always together),
then:

1. The vision management and tracking routine is executed, which updates
the feature tracks (SLAM and MSCKF), perform redetection of features if
the conditions are met and removes SLAM features from the state whose
tracks have been lost

2. MSCKF update is performed with the MSCKF tracks that have been
lost. This is done before the new camera pose is inserted in the state
since the oldest pose has to be used in MSCKF before being removed.

3. The new camera pose is inserted in the state, removing the oldest one
and possibly triggering reparametrization of some feature states

4. SLAM update is executed with the new observations of SLAM features

7.3.1 Vision management and tracking

This routine has the task to process the image, match features between frames,
redetect new features, remove features from states, and update feature tracks with
the latest observations. A track is the memory of all observations of a feature
in the image plane and is strictly needed for MSCKF, but is maintained also for

66

SLAM features for practical reasons and statistical purposes. The routine takes the
new image, converts it to grayscale, undistorts it thanks to the camera instrinsics
parameters obtained from calibration, then:

1. Removes SLAM features from the state that failed the outlier gate test more
times than a chosen parameter

2. Executes the tracking and detection step, which matches feature from the pre-
vious frame to points in the current frame and, if conditions are met, redetects
new features

3. Removes SLAM features that have been lost from state and covariance

4. Initializes features from MSCKF. It is possible to know that a track is longer
than M only when it reaches length M + 1. If that happens, the previous
M observations are used to initialize the feature in the state, while the last is
used later for SLAM update.

5. Update tracks with the new observations

6. Return tracks (SLAM and MSCKF)

The tracker used in our implementation is a Kanade-Lucas-Tomasi (KLT) algorithm
[66][67] to track point features, which is quite standard in computer vision problems
and is fast. The feature type used was mostly corners, detected with Shi-Tomasi
algorithm, a modification of Harris and Stephens corner detector where only the
minimum eigenvalue is considered, hence the name minimum eigenvalue features.
The image is divided in a grid and the number of features in each tile are counted.
A redetection is triggered when either:

� The total number of features in the whole image is lower than a parameter

� The number of empty tiles in the image is greater than a parameter

When one of the two conditions is met, a feature detector is run on the previous
image, on each tile that contains a number of features n less than a set amount
nmax. New features detected in a tile are ordered from strongest to weakest and the
distance of each one from every feature that was already existing in that image is
calculated. If the distance from any feature is lower than a neighborhood parameter,
the feature is discarded. This avoids redetecting features too close to others or even
the same features that have been lost in the following (current) image. In each
tile, the strongest nmax − n features are selected, providing a set of points that are
reasonably distributed in the whole image. These features are then tracked from
the previous image to the current image.
The reason for performing detection on the previous image is a smoother operation
of the filter, since in the current frame there would be observations already available
for EKF updates. During redetection, existing features are preserved. Features are
detected only in tiles where n < nmax to bound the computational complexity by

67

limiting the number of features. However, since features can move from a tile to
another with camera movement, there might be tiles where n > nmax. This means
the total number of features in the image after redetection could be greater than the
number of tiles times nmax, and potentially limitless. If this happens, old features
are removed one by one from the richest tile at the moment, until the total number
of old and new features is the same as the maximum number of total features allowed
(the number of tiles times nmax).

Figure 7.1: Example of corner features detected in an image. The number of features
in each tile is indicated in the lower left

68

Chapter 8

Experimental tests and
conclusions

The filter was implemented in MATLAB, with more than 2300 lines of code. The
implementation is modular and uses objects, making it easy to change or extend its
capabilities later. The kalman filter itself is very suitable for a modular approach
since multiple updates with data from different sensors can be provided indepen-
dently from each other.

The program takes as input a video file, text files for IMU and rangefinder data and
text files for timestamps of camera and IMU. The rangefinder timestamps are the
same as those of the camera. The parameters of the filters are loaded from a table
and are:

� Starting position, velocity and orientation of the IMU

� Gravity vector

� Pose of the camera with respect to the IMU

� Intrinisc parameters of the camera

� Noise density and random walk of accelerometer and gyroscope

� Standard deviation of the visual front end noise in image plane

� Standard deviation of rangefinder noise

� Confidence of the χ2 gate test for outlier rejection in SLAM, MSCKF and
range update

� Number of consecutive times a SLAM feature is an outlier that make the
tracker drop it

� Minimum depth for unknown depth initialization

� Minimum distance between rectified poses to allow triangulation for MSCKF

69

� Number of poses in the sliding window

� Number of horizontal and vertical tiles in an image

� Maximum number of features detected in a tile nmax

� Number of total features under which redetection is triggered

� Number of empty tiles which triggers redetection

� Neighborhood parameter for the redetection

� Parameters of the KLT tracker, which are the number of pyramidal levels,
maximum bidirectional error, block size and maximum iterations

� Parameters for feature detector, namely the minimum quality and filter size

The output is the estimation of position, velocity, and orientation of the IMU frame
of reference. While running, a window shows the current and past position and the
current orientation. The current camera frame is displayed overlaid with all features,
the mesh of triangles between them, and the rangefinder measurements. The colors
indicate the type of feature and whether it’s valid or has been rejected as an outlier
in the last update. Information on the side shows the number of features in each
tile.

Figure 8.1: Still image from a run of the MATLAB program on a recorded dataset

70

8.1 Dataset acquisition

The program doesn’t run in real time with live sensor data, but on a PC while
being fed a datasets that has been recorded previously. To gather the data required
as input for the MATLAB program, a platform was built which included the three
sensors needed (camera, IMU and rangefinder) and a Raspberry Pi4b computer to
record and store this data. The sensors were:

� Monochrome global shutter 1280Ö800 resolution OV9281 camera sensor on
an Arducam B0224 board with 110◦ of horizontal FOV (after the image gets
undistorted the FOV is reduced). In cameras that do not have a mechanical
shutter, the function of the shutter is done by starting and ending integration
of pixels electronically (when the charge is read from the pixels). Electronic
shutter can be of two types: rolling shutter, which means pixel integration
happens progressively in lines, or global shutter which means it happens for all
pixels simultaneously. Rolling shutter, which is the most common in consumer
electronics, distorts scenes or objects when they are moving. Obviously, for
visual navigation this is undesirable because a correct measurement of the
position of features in the image is critical, so a global shutter sensor is of
utmost importance.

� SF22/C LiDAR rangefinder from Lightware. This is a single point LiDAR
which measures the distance from a point in front of it with a range of over
100m

� IMU: LSM9DS1 MEMS IMU in a Raspberry Sense HAT board. It includes ac-
celerometer, gyroscope and magnetometer on a single chip (the magnetometer
was not used).

The camera was calibrated to obtain its intriniscs parameters, which account for
lens characteristics and distorsion, to allow the transformation a real camera image
into an equivalent image taken by a perfect pinhole camera. The sensors and com-
puter were mounted onto 3D printed PLA frame. Attention was given to place the
rangefinder parallel and as close as possible to the camera, since in the filter model
it is assumed to be coincident with the camera optical center. The position and
orientation of the camera in the reference frame of the IMU chip was measured.

The program for acquisition running on the Raspberry Pi4b was written in Python
and controlled with the joystick and leds of the Sense HAT board. The script com-
municated via I2C protocol to IMU and rangefinder, while the camera was controlled
through a library that uses MIPI. The script initializes the sensors with the nec-
essary settings, then starts the video capture of the camera at 30Hz. Every time
a frame is captured, the rangefinder is polled to get the most recent measurement
(internally, the rangefinder updates its measurement at 1000Hz). Meanwhile, the
IMU is polled as fast as possible, which is about 200Hz.
The program writes IMU and rangefinder measurements and their timestamps in
four differnt text files (the camera timestamps are the same of the rangefinder),

71

while camera frames are written on a video file. Because of bandwidth limitations
in writing to a SD card, the video is saved in H264 compressed form.

Figure 8.2: Sensor platform with computer for dataset recording

8.2 Results

The datasets were gathered by simply holding the platform by hand and walking in
mostly indoor areas of Politecnico di Torino. No ground truth was recorded. The
intent was just a qualitative test to assess the correct operation of the implemen-
tation and as a starting point for future developments of the navigation system. A
proper tuning of the many parameters of the filter was not possible due to lack of
the ground truth, instead parameters were chosen manually by running parameter
sweeps in batches over datasets, until a configuration that was stable and had sat-
isfactory result was found. For example, we’d expect the output of the filter from
a dataset gathered on a long hallway to be a straight line, or the output from a
dataset of the sensors spinning in one place to show no translation, etc. For the
noise variances of the sensors, the values were taken from datasheets, then tuned
manually to account for aditional errors and uncertainties in the platform or in the
acquisition.

Some difficulties were encountered with the compressed video, to find the right bal-
ance of data bandwidth and quality. Compressed video has noise and artifacts that
raw frames obviously don’t have, but raw video couldn’t be saved because of SD
bandwidth. Another problem was the fact that the reflection of the rangefinder in-

72

frared laser on some surfaces was visible by the camera sensor. The vision processing
algorithm sometimes detected features on the reflection point, creating the problem
that these features would move with respect to the rest of the scene. However,
the outlier rejection steps in the filter could exclude these features from the update
if there were enough other features in the scene. Controlling the exposure of the
camera during recording and without changing framerate was also found difficult
though the available libraries from the manufacturer. Finally, time synchronization
of sensors suffered from a lack of a common reference clock between IMU and camera
due to limitations of the IMU chip.

Figure 8.3: Features detected on the reflection of the laser beam moves with respect
to the rest of the scene, but they get correctly identified as outliers (in red)

73

Notwithstanding all of that, the filter performed satisfactory most of the time and,
if anything, these qualitative tests showed the capabilities of the navigation archi-
tecture, which worked even in unfavorable conditions. They also showed the clear
influence of parameters on filter performance and, most evidently, on stability. This
navigation architecture is promising for the LuNaDrone mission, for his ability to
function without receiving external of any kind.

Currently, a new version of the sensor platform is being developed. It has an up-
graded MEMS IMU, not only in terms of precision, but also in capabilities that
allow faster measurement rate and better synchronization of timestamps with the
camera. An SSD, with much better bandwidth, allows recording of raw image data,
while a new lens for the camera doesn’t let infrared light through to avoid seeing
reflections of the rangefinder beam. The script for recording is being rewritten for
better time synchronization between sensors and for parallelization using the mul-
tiple cores of the Raspberry Pi processor, dedicating, for example, an entire core
for writing data on disk and another for listening to interrupts. A new library for
controlling the camera sensor is available which makes possible to control and tune
several parameters, allowing full control of the autoexposure algorithm. This new
platform is encased in a 3D printed structure made to be mounted on a remote con-
trolled drone that will fly on realistic trajectories closer to those of the LuNaDrone
mission.

Figure 8.4: New sensor platform in development

74

Bibliography

[1] F. Horz. “Lava tubes - Potential shelters for habitats”. In: Lunar Bases and
Space Activities of the 21st Century. Ed. byW.W. Mendell. Jan. 1985, pp. 405–
412.

[2] V. R. Oberbeck, W. L. Quaide, and R. Greeley. “On the Origin of Lunar
Sinuous Rilles”. In: Modern Geology 1 (Jan. 1969), pp. 75–80.

[3] Ronald Greeley. “Lava Tubes and Channels in the Lunar Marius Hills”. In:
Moon 3.3 (Dec. 1971), pp. 289–314. doi: 10.1007/BF00561842.

[4] Cassandra R. Coombs and B. Ray Hawke. “A Search for Intact Lava Tubes
on the Moon: Possible Lunar Base Habitats”. In: Lunar Bases and Space
Activities of the 21st Century. Ed. by Wendell W. Mendell et al. Sept. 1992,
p. 219.

[5] A.s Arya et al. “Detection of potential site for future human habitability on
the Moon using Chandrayaan-1 data”. In: Current science 100 (Feb. 2011),
pp. 524–529.

[6] Loic Chappaz et al. “Evidence of Large Empty Lava Tubes on the Moon using
GRAIL Gravity: Evidence of Lunar Lava Tubes from GRAIL”. In: Geophysical
Research Letters 44 (Jan. 2017). doi: 10.1002/2016GL071588.

[7] Tetsuya Kaku et al. “Detection of intact lava tubes at Marius Hills on the
Moon by SELENE (Kaguya) Lunar Radar Sounder”. In: Geophysical Research
Letters 44 (Oct. 2017). doi: 10.1002/2017gl074998.

[8] Audai Ed Theinat et al. “Lunar lava tubes: Morphology to structural stabil-
ity”. In: Icarus 338 (Oct. 2019), p. 113442. doi: 10.1016/j.icarus.2019.
113442.

[9] Junichi Haruyama et al. “Possible lunar lava tube skylight observed by SE-
LENE cameras”. In: Geophysical Research Letters - GEOPHYS RES LETT
36 (Nov. 2009). doi: 10.1029/2009GL040635.

[10] J. Haruyama et al. “New Discoveries of Lunar Holes in Mare Tranquillitatis
and Mare Ingenii”. In: Mar. 2010.

[11] Robert Wagner and Mark Robinson. “Distribution, formation mechanisms,
and significance of lunar pits”. In: Icarus 237 (July 2014), pp. 52–60. doi:
10.1016/j.icarus.2014.04.002.

[12] R. V. Wagner, A. Deran, and M. S. Robinson. “Habitability and Radiation En-
vironment Within Lunar Pits”. In: Lunar and Planetary Science Conference.
Lunar and Planetary Science Conference. Mar. 2017, 1201, p. 1201.

75

https://doi.org/10.1007/BF00561842
https://doi.org/10.1002/2016GL071588
https://doi.org/10.1002/2017gl074998
https://doi.org/10.1016/j.icarus.2019.113442
https://doi.org/10.1016/j.icarus.2019.113442
https://doi.org/10.1029/2009GL040635
https://doi.org/10.1016/j.icarus.2014.04.002

[13] Y. Yokota et al. “Formation Scenario of Continuous Slopes Associated with
Lunar Mare Pit/Hole Structures”. In: Lunar and Planetary Science Confer-
ence. Lunar and Planetary Science Conference. Mar. 2018, 1907, p. 1907.

[14] R. V. Wagner and M. S. Robinson. “What to Expect in Lunar Pits”. In: Lunar
and Planetary Science Conference. Lunar and Planetary Science Conference.
Mar. 2020, 1163, p. 1163.

[15] Chris Okubo and Stephen Martel. “Pit crater formation on Kilauea volcano,
Hawaii”. In: Journal of Volcanology and Geothermal Research 86 (Nov. 1998),
pp. 1–18. doi: 10.1016/S0377-0273(98)00070-5.

[16] G. Cushing et al. “THEMIS observes possible cave skylights on Mars”. In:
Geophys. Res. Lett 34 (Sept. 2007). doi: 10.1029/2007GL030709.

[17] M Robinson et al. “Confirmation of sublunarean voids and thin layering in
mare deposits”. In: Planetary and Space Science 69 (Apr. 2012). doi: 10.
1016/j.pss.2012.05.008.

[18] J. Ashley et al. “Geology of the King crater region: New insights into impact
melt dynamics on the Moon”. In: Journal of Geophysical Research 117 (Nov.
2012), E00H29. doi: 10.1029/2011JE003990.

[19] Paul Spudis, Patrick McGovern, and Walter Kiefer. “Large Shield Volcanoes
on the Moon”. In: Journal of Geophysical Research: Planets 118 (May 2013).
doi: 10.1002/jgre.20059.

[20] Don Wilhelms, John McCauley, and Newell Trask. “The Geologic History of
the Moon”. In: U.S. Geol. Surv. Prof. Pap. 1348 (Jan. 1987).

[21] Donald Gault. “Saturation and Equilibrium Conditions for Impact Cratering
on the Lunar Surface: Criteria and Implications”. In: Radio Sci. 5 (Mar. 1970).
doi: 10.1029/RS005i002p00273.

[22] H. Hiesinger et al. “How old are young lunar craters?” In: Journal of Geo-
physical Research 117 (Feb. 2012). doi: 10.1029/2011JE003935.

[23] R. Greeley, V. Oberbeck, and W. Quaide. “On the origin of lunar sinuous
rilles”. In: 1 (Feb. 1969).

[24] Elena Martellato, B. Foing, and Johannes Benkhoff. “Numerical modelling of
impact crater formation associated with isolated lunar skylight candidates on
lava tubes”. In: Planetary and Space Science 86 (Sept. 2013), pp. 33–44. doi:
10.1016/j.pss.2013.06.010.

[25] J. Ashley et al. “Voids in Lunar Mare and Impact Melt Deposits — A Common-
sense Expedient to the Expansion of Humans into Space”. In: Oct. 2013. doi:
10.13140/2.1.1231.5528.

[26] L. Kerber et al. “The Geologic Context of Major Lunar Mare Pits”. In: Lunar
and Planetary Science Conference. Lunar and Planetary Science Conference.
Mar. 2019, 3134, p. 3134.

[27] Angelo Pio Rossi et al. DAEDALUS - Descent And Exploration in Deep Au-
tonomy of Lava Underground Structures. Mar. 2021. isbn: 978-3-945459-33-1.
doi: 10.25972/OPUS-22791.

[28] Stefano Pescaglia et al. “LuNaDrone: nano drone for Lunar Exploration”. In:
IAC-22,A3,IP,61,x71889. unpublished. IAF, 2022.

76

https://doi.org/10.1016/S0377-0273(98)00070-5
https://doi.org/10.1029/2007GL030709
https://doi.org/10.1016/j.pss.2012.05.008
https://doi.org/10.1016/j.pss.2012.05.008
https://doi.org/10.1029/2011JE003990
https://doi.org/10.1002/jgre.20059
https://doi.org/10.1029/RS005i002p00273
https://doi.org/10.1029/2011JE003935
https://doi.org/10.1016/j.pss.2013.06.010
https://doi.org/10.13140/2.1.1231.5528
https://doi.org/10.25972/OPUS-22791

[29] Stefano Pescaglia. “Preliminary design of a Lunar Nano Drone for a mission
of exploration of lava tubes on the Moon: study of the Mission Flight Profile
and identification of the most suitable Energy Storage System”. MA thesis.
Politecnico di Torino, 2020. url: https://webthesis.biblio.polito.it/
17036/.

[30] Gabriele Podesta. “Lunar Nano Drone for a mission of exploration of lava
tubes on the Moon: Propulsion System”. MA thesis. Politecnico di Torino,
2020. url: https://webthesis.biblio.polito.it/17038/.

[31] Shannah Withrow et al. “Mars Science Helicopter Conceptual Design”. In:
(Nov. 2020). doi: 10.2514/6.2020-4029.

[32] H̊avard Fjær Grip et al. “Flight control system for nasa’s mars helicopter”.
In: AIAA Scitech 2019 Forum. American Institute of Aeronautics and Astro-
nautics Inc, AIAA, 2019. isbn: 9781624105784. doi: 10.2514/6.2019-1289.

[33] Red Whittaker and Steven Huber. Exploration of Planetary Skylights and Tun-
nels NASA Innovative Advanced Concepts (NIAC) Phase II. 2012.

[34] William Whittaker, Uland Wong, and Steven Huber. Exploration of Planetary
Skylights and Tunnels. Tech. rep. NASA, 2014.

[35] Issa Nesnas et al. “Moon Diver: A Discovery Mission Concept for Understand-
ing the History of Secondary Crusts through the Exploration of a Lunar Mare
Pit”. In: Mar. 2019, pp. 1–23. doi: 10.1109/AERO.2019.8741788.

[36] Pablo F. Miaja et al. “RoboCrane: A system for providing a power and
a communication link between lunar surface and lunar caves for exploring
robots”. In: Acta Astronautica 192 (Mar. 2022), pp. 30–46. issn: 0094-5765.
doi: https://doi.org/10.1016/j.actaastro.2021.11.023.

[37] ESA plans mission to explore Lunar caves. url: https://www.esa.int/
Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/

ESA_plans_mission_to_explore_lunar_caves.

[38] Peregrine Mission 1. accessed: 2022-01-08. url: https://nssdc.gsfc.nasa.
gov/nmc/spacecraft/display.action?id=PEREGRN-1.

[39] Junichi Haruyama et al. “Exploration of Lunar Holes, Possible Skylights of
Underlying Lava Tubes, by Smart Lander for Investigating Moon (SLIM)”.
In: Transactions of the Japan Society for Aeronautical and Space Sciences,
Aerospace Technology Japan 10.ists28 (2012), pp. 7–10. issn: 1884-0485. doi:
10.2322/tastj.10.pk_7.

[40] Baichuan Huang, Jun Zhao, and Jingbin Liu. A Survey of Simultaneous Lo-
calization and Mapping with an Envision in 6G Wireless Networks. 2019. doi:
10.48550/ARXIV.1909.05214. url: https://arxiv.org/abs/1909.05214.

[41] David Bayard et al. “Vision-Based Navigation for the NASAMars Helicopter”.
In: Jan. 2019. doi: 10.2514/6.2019-1411.

[42] Andrew J Davison et al. “MonoSLAM: Real-time single camera SLAM”. In:
IEEE transactions on pattern analysis and machine intelligence 29.6 (2007),
pp. 1052–1067.

[43] J. Montiel, Javier Civera, and Andrew Davison. “Unified Inverse Depth Parametriza-
tion for Monocular SLAM”. In: Aug. 2006. doi: 10.15607/RSS.2006.II.011.

77

https://webthesis.biblio.polito.it/17036/
https://webthesis.biblio.polito.it/17036/
https://webthesis.biblio.polito.it/17038/
https://doi.org/10.2514/6.2020-4029
https://doi.org/10.2514/6.2019-1289
https://doi.org/10.1109/AERO.2019.8741788
https://doi.org/https://doi.org/10.1016/j.actaastro.2021.11.023
https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/ESA_plans_mission_to_explore_lunar_caves
https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/ESA_plans_mission_to_explore_lunar_caves
https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/ESA_plans_mission_to_explore_lunar_caves
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=PEREGRN-1
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=PEREGRN-1
https://doi.org/10.2322/tastj.10.pk_7
https://doi.org/10.48550/ARXIV.1909.05214
https://arxiv.org/abs/1909.05214
https://doi.org/10.2514/6.2019-1411
https://doi.org/10.15607/RSS.2006.II.011

[44] Dimitrios Kottas, Kejian Wu, and Stergios Roumeliotis. “Detecting and deal-
ing with hovering maneuvers in vision-aided inertial navigation systems”. In:
Nov. 2013, pp. 3172–3179. doi: 10.1109/IROS.2013.6696807.

[45] Anastasios Mourikis and Stergios Roumeliotis. “AMulti-State Constraint Kalman
Filter for Vision-Aided Inertial Navigation”. In: vol. 22. May 2007, pp. 3565–
3572. doi: 10.1109/ROBOT.2007.364024.

[46] Edward Rosten and Tom Drummond. “Machine Learning for High-Speed Cor-
ner Detection”. In: vol. 3951. July 2006. isbn: 978-3-540-33832-1. doi: 10.
1007/11744023_34.

[47] Edward Rosten, Reid Porter, and Tom Drummond. “FASTER and better: A
Machine Learning Approach to Corner Detection”. In: IEEE transactions on
pattern analysis and machine intelligence 32 (Jan. 2010), pp. 105–19. doi:
10.1109/TPAMI.2008.275.

[48] Tarek Mouats et al. “Performance Evaluation of Feature Detectors and De-
scriptors Beyond the Visible”. In: Journal of Intelligent & Robotic Systems 92
(Sept. 2018), pp. 1–31. doi: 10.1007/s10846-017-0762-8.

[49] Miguel A San Martin et al. “A minimal state augmentation algorithm for
vision-based navigation without using mapped landmarks”. In: (2017).

[50] Jeff Delaune et al. “Extended Navigation Capabilities for a Future Mars Sci-
ence Helicopter Concept”. In: Mar. 2020, pp. 1–10. doi: 10.1109/AERO47225.
2020.9172289.

[51] Jeff Delaune, David Bayard, and Roland Brockers. xVIO: A Range-Visual-
Inertial Odometry Framework. Tech. rep. Oct. 2020.

[52] Jeff Delaune, David Bayard, and Roland Brockers. “Range-Visual-Inertial
Odometry: Scale Observability Without Excitation”. In: IEEE Robotics and
Automation Letters PP (Feb. 2021), pp. 1–1. doi: 10 . 1109 / LRA . 2021 .

3058918.

[53] Mingyang Li and Anastasios Mourikis. “Optimization-Based Estimator Design
for Vision-Aided Inertial Navigation”. In: July 2012. doi: 10.15607/RSS.
2012.VIII.031.

[54] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents). The MIT Press, 2005. isbn:
0262201623.

[55] Rudolph Emil Kalman. “A New Approach to Linear Filtering and Predic-
tion Problems”. In: Transactions of the ASME–Journal of Basic Engineering
82.Series D (1960), pp. 35–45.

[56] Ian Reid and Hilary Term. Estimation II. 2001. url: https://www.robots.
ox.ac.uk/~ian/Teaching/Estimation/LectureNotes2.pdf.

[57] J. Montiel, Javier Civera, and Andrew Davison. “Unified Inverse Depth Parametriza-
tion for Monocular SLAM”. In: Aug. 2006. doi: 10.15607/RSS.2006.II.011.

[58] Javier Civera, Andrew Davison, and J. Montiel. “Inverse Depth Parametriza-
tion for Monocular SLAM”. In: Robotics, IEEE Transactions on 24 (Nov.
2008), pp. 932–945. doi: 10.1109/TRO.2008.2003276.

78

https://doi.org/10.1109/IROS.2013.6696807
https://doi.org/10.1109/ROBOT.2007.364024
https://doi.org/10.1007/11744023_34
https://doi.org/10.1007/11744023_34
https://doi.org/10.1109/TPAMI.2008.275
https://doi.org/10.1007/s10846-017-0762-8
https://doi.org/10.1109/AERO47225.2020.9172289
https://doi.org/10.1109/AERO47225.2020.9172289
https://doi.org/10.1109/LRA.2021.3058918
https://doi.org/10.1109/LRA.2021.3058918
https://doi.org/10.15607/RSS.2012.VIII.031
https://doi.org/10.15607/RSS.2012.VIII.031
https://www.robots.ox.ac.uk/~ian/Teaching/Estimation/LectureNotes2.pdf
https://www.robots.ox.ac.uk/~ian/Teaching/Estimation/LectureNotes2.pdf
https://doi.org/10.15607/RSS.2006.II.011
https://doi.org/10.1109/TRO.2008.2003276

[59] Nikolas Trawny and Stergios I Roumeliotis. “Indirect Kalman filter for 3D
attitude estimation”. In: University of Minnesota, Dept. of Comp. Sci. & Eng.,
Tech. Rep 2 (2005), p. 2005.

[60] Stephan Weiss and Roland Siegwart. “Real-time metric state estimation for
modular vision-inertial systems”. In: June 2011, pp. 4531–4537. doi: 10.1109/
ICRA.2011.5979982.

[61] S Lynen et al. “A Robust and Modular Multi-Sensor Fusion Approach Applied
to MAV Navigation”. In: Proc. of the IEEE/RSJ Conference on Intelligent
Robots and Systems (IROS). 2013.

[62] ETH Zurich - Autonomous Sytems Lab. MSF - Modular framework for multi
sensor fusion based on an Extended Kalman Filter (EKF). https://github.
com/ethz-asl/ethzasl_msf.git.

[63] Mingyang Li and Anastasios Mourikis. “Optimization-Based Estimator Design
for Vision-Aided Inertial Navigation: Supplemental Materials”. In: July 2012.

[64] Kris Kitani. Triangulation. 2017. url: https://www.cs.cmu.edu/~16385/
s17/Slides/11.4_Triangulation.pdf.

[65] Bernd Gärtner and Michael Hoffmann. “Computational geometry lecture notes
HS 2013”. In: Dept. of Computer Science, ETH, Zürich, Switzerland (2013).

[66] Bruce Lucas and Takeo Kanade. “An Iterative Image Registration Technique
with an Application to Stereo Vision (IJCAI)”. In: vol. 81. Apr. 1981.

[67] Carlo Tomasi and Takeo Kanade. “Detection and tracking of point”. In: Int J
Comput Vis 9 (1991), pp. 137–154.

79

https://doi.org/10.1109/ICRA.2011.5979982
https://doi.org/10.1109/ICRA.2011.5979982
https://github.com/ethz-asl/ethzasl_msf.git
https://github.com/ethz-asl/ethzasl_msf.git
https://www.cs.cmu.edu/~16385/s17/Slides/11.4_Triangulation.pdf
https://www.cs.cmu.edu/~16385/s17/Slides/11.4_Triangulation.pdf

	Introduction
	Importance of lava tubes
	Characteristics of lunar pits
	Impact melt pits
	Mare and higland pits

	Mission site

	LuNaDrone mission
	Challenges and related works
	Concept of operations
	Propulsion system

	Navigation architecture
	Mars Helicopter Ingenuity system
	Hardware architecture
	Algorithm
	Vision processing
	Limitations

	LuNaDrone system

	Filter basics
	Kalman filter
	Extended Kalman Filter

	State definition and time propagation
	Notation
	State definition
	Inverse depth parametrization
	Error states

	Time propagation
	State time propagation
	Covariance time propagation

	Measurement Update
	The hybrid approach
	Image measurement model

	SLAM Update
	Model
	Method

	MSCKF update
	Feature estimation
	Model
	Method

	Range Update
	Model
	Method

	Outlier rejection
	Joseph form and symmetry

	State and filter management
	Inserting a pose
	Feature reparametrization

	Feature initialization
	Unknown-depth initialization
	MSCKF initialization
	Method

	Filter loop
	Vision management and tracking

	Experimental tests and conclusions
	Dataset acquisition
	Results

