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Summary

The increased fuel efficiency makes electric propulsion systems particularly suitable
when large ∆V increments are required, such as during orbital transfers around a
central body. On the other hand, low thrust systems operate for a significant amount
of mission time, producing long thrusting arcs that have to be designed through
appropriate continuous optimization techniques. The corresponding optimal control
problem is indeed strongly nonlinear and it is much harder to solve than conventional
high-thrust trajectory optimization.

In this work, a flexible approach for the optimization of low thrust trajectories
is presented. The orbit transfer problem is addressed, introducing a two-stage
technique to produce continuous spacecraft trajectories that satisfy initial and
terminal conditions defined along two different orbits while minimizing the fuel
consumption and/or time of flight (TOF). The devised method takes into account
the impact of external perturbations in order to generate a reliable solution. The
multi-objective formulation of the optimization problem offers a practical way to
trade off fuel consumption and time of flight, providing an adaptable framework
able to deal with several use-cases.

The proposed optimization strategy relies on a method that combines Lyapunov
control guidance algorithms with direct collocation approaches, offering lower
computational demands with respect to existing techniques. A peculiar feature
of this work is the single-phase formulation of the optimal control problem that
requires no prior information about the solution structure. The Q-law results,
already close to the global optima, are then used to warm up the optimization
routine, that employs direct collocation techniques to transcribe the optimal control
problem (OCP) into a nonlinear programming problem (NLP). The transcription
process is particularly effective when paired with the Q-law output because of the
direct collocation capability of exploiting the entire initial guess, relying on the
computed path and controls to produce optimal trajectories while satisfying desired
endpoint constraints. The resulting NLP is easily solved with a general-purpose
solver such as IPOPT or SNOPT.
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Chapter 1

Introduction

1.1 Problem definition
Electric propulsion is gaining popularity for both planetary and interplanetary
space missions, offering appealing efficiency for a wide variety of applications. Even
though these systems provide a lower thrust magnitude, their specific impulse
improvement of approximately one order of magnitude compared to chemical
propulsion allows a greater total change in velocity (∆V ) with smaller propellant
mass, making these systems suitable for many missions, such as many-revolution
transfers in Earth orbits when changes in one or more orbital elements are desired,
exploiting solar radiation as an external power source through photovoltaic panels.

Based on their low-thrust characteristics, solar electric propulsion (SEP) systems
are the object of many research for their potential use on small satellites and
Cubesats, whose use has constantly grown in recent years. This particular term
refers to a miniaturised satellite made up of cube units with 10 cm sides, such
that 1 U = (10 × 10 × 10) cm3 with mass of no more than 2 kg [1]. Cubesats
were initially developed by universities to facilitate access to space for educational
purposes, targeting students. After some years, they have gained popularity
and they are now widely used and studied in countless companies worldwide,
thanks to low cost of developing, building and launching associated to them. In
addition, the opportunity of having these satellites work together in constellations
along with the continuous technological improvements of miniaturised components,
lead to numerous advantages in performances related to Earth observation and
telecommunications, such as coverage and revisit rate, often at lower cost compared
to regular satellites. However, the small size causes drawbacks too, such as limits on
data downlink capability or picture resolution. For now, only a limited amount of
Cubesats have been equipped with a propulsion system, most of which were chemical
cold gas solution. Meanwhile, the research and the technological development of
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miniaturized electric propulsion systems is improving, leading to in-orbit validation
for some of these systems such as Hall effect thrusters [2]. The possibility for
Cubesats to have on-board propulsion paves the way to new opportunities, allowing
orbital correction maneuvers that are extremely useful to improve performances
or to enable new missions, that can be, taking as example an Earth observation
mission:

• Orbit raising to augment coverage

• Orbit lowering to improve picture resolution

• Inclination corrections

• Station keeping to counteract perturbations and augment satellite lifespan

Another important operation that electric propulsion allows is the end-of-life
disposal, in order to propel the satellite back into the atmosphere at the end of
the mission, essential to mitigate the space debris issue especially when LEO (Low-
Earth Orbit) Cubesats constellations are considered. Indeed, in case of collision not
only the satellite and the mission are lost, but the entire orbit becomes unusable
for a long time. It is therefore essential to include this maneuver when designing a
mission, mainly because the number of active satellites is set to increase significantly
in the future, providing improved services but at the same time complicating the
challenge of space debris removal.

Finally, propulsion on Cubesats also allows to plan a more flexible launch
strategy, using rideshare launches to a parking orbit followed by maneuvers in
order to reach the operational orbit. It is demonstrated that this strategy leads to
a reduction of the total cost of the mission [3].

However, the use of low-thrust electric propulsion is associated with a higher
need of electric power, typically generated by deployable solar arrays, and a longer
time of flight due to small values of acceleration compared to chemical propulsion
systems, which work through impulsive high-thrust maneuvers. Moreover, the
system operates for a significant amount of mission time, leading to long continuous
thrusting arcs. Therefore, one of the main challenges is to accurately design these
arcs, since the thrust magnitude and its direction have to be defined for each
instant. These elements can be determined, given a desired transfer from a specified
initial state, through an optimization of the orbital trajectory that consists in
the determination of a control law that either maximizes or minimizes a defined
performance index, returning a time history of the thrust magnitude and direction
vector.

The optimization of mission design gets more difficult considering LEO Cubesats
constellations. Because of its low distance from Earth’s surface that advantages
operations related to global monitoring, telecommunications and astronomical
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observations, and because of the lower cost for a low-altitude launch compared
to any other space mission, most of the existing satellites orbits in this region
[4]. However, LEO is also the most dynamical perturbed environment for Earth
satellites, so the presence of perturbations must be taken into account in order
to obtain significant solutions but, at the same time, it further complicates the
mission design optimization.

1.2 State of the art
The three most important categories of low-thrust trajectory optimization methods
are indirect methods, direct methods and dynamic programming approach. In the
following section a brief overview about these methods, based on [5], is presented.

An indirect method discretizes the system in its dualized form: the states and
costates are both solved. These approaches rely on the calculus of variations,
and the necessary conditions of optimality require the solution of a multi-point
boundary value problem (MPBVP) that results from applying the Pontryagin
minimum principle (PMP) [6]. Even if these types of methods are really accurate,
there are a lot of diffculties in the implementation, such as that analytical forms of
the optimal control necessary conditions must be expressed, including the costate
differential equations, the Hamiltonian, the optimality condition, and transversality
conditions. Numerically speaking, this also makes the problem size large due to
discretization of the costates. Furthermore, the mission analyst must guess certain
aspects of the optimal control solution, such as the portion of the time domain
containing constrained or unconstrained control arcs, when using a gradient-based
methods, and since these approaches also require initial guesses for the costates,
the domain of convergence may be very small and highly sensitive to the initial
costates.

In a direct method instead, the system is discretized in its original form without
the need to express the optimal control necessary conditions and costate equations.
The state and control variables are discretized, and the optimal control problem is
converted into a nonlinear programming (NLP) problem [7], where the objective
function is directly optimized. The transcription process requires the discretization
of the control variables in a time-grid. The goal of a NLP problem is to determine
a vector of unknown decision variables that comply with a set of non-linear con-
straints, including equality and inequality restrictions. These methods are easier to
implement than indirect methods and generally robust, having a larger domain of
convergence. Moreover they can easily accomodate path constraints, maintaining
a reduced problem size. On the other hand, they are less accurate than indirect
methods and computationally sensitive and expensive.

The last optimization method is the Dynamic Programming Approach, either
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based on the Bellman’s principle of optimality [8] for discrete-time systems, or based
on the Hamilton-Jacobi-Bellman theorem [9] for continuous-time systems. The
whole state space is searched, so the optimal solution is also the global optimum.
On the other hand, dimensionality is the main drawback of these methods: memory
expense and computational time grow quickly with the number of state variables
and thus these methods become impractical for high-dimensional state space.

Historically, low-thrust many-revolution problems have been solved with indirect
and direct optimal control methods. These typically involve one of the following
techniques to impose the dynamical equations in the solution:

• Single shooting: The trajectory is integrated using time-marching methods
[10] from the initial time t0 upon reaching the final time tf . Initial states are
unknowns to be determined, and boundary constraints are imposed at the
end of the integration.

• Multiple shooting: The time interval [t0, tf ] is broken up into subintervals, and
the trajectory is integrated over each subinterval. Initial states of subintervals
are unknowns to be determined, and continuity conditions have to be imposed
at the interface of each subinterval.

• Collocation: The states are discretized over a predefined time-grid, such that
they are known only at discrete points. The equations that describe the system
are transformed into discrete defect constraints, which relate the values at the
beginning to the values at the end of each subinterval. Collocation methods
can be divided in local and global, depending on the rule to approximate
differential equations between adjacent subintervals.

These approaches are used to convert the optimal control problem to the problem
of determining a vector of decision variables. Methods for solving NLP problems,
resulting from direct approaches, and MPBVP, resulting from indirect approaches,
are iterative methods that use a different set of rules for evolving, and they can be
classified as follows:

• Gradient-based: An initial guess is made of the unknown decision vector z. At
each kth iteration, a search direction pk and a step length αk are defined. The
former provides a direction in Rnz along which to change the current value zk,
while the latter provides the magnitude of the change, such that the update
has the form zk+1 = zk + αkpk. The procedure continues until optimality
conditions are reached.

• Heuristic: The search is performed in a stochastic manner with no need
of gradient information. The most known examples of these methods are
evolutionary algorithm and heuristics based on Lyapunov control.
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• Hybrid: This approach is based on combining a set of rules that exploits
gradient information and a set of rules based on heuristic searches to iteratively
operate over a candidate solution. Gradient information is used to drive the
constraints to zero, while heuristic methods are applied to explore wide design
domains.

It is interesting to also introduce direct methods that approximate the control
law by predefined guidance schemes. These methods have been developed in order
to rapidly generate sub-optimal trajectories. A class of these utilizes closed form
feedback control laws derived from Lyapunov functions. One of the most known
method is the Proximity Quotient guidance law (Q-law), presented by Petropoulos
[11]. This concept relies on the calculation of a proximity quotient Q, that is
an assessment of the proximity of the osculating orbit to the target orbit. The
algorithm is a closed loop Lyapunov-based control method that determines the
instantaneously optimal thrust direction to reduce Q at each point along the
trajectory towards the target orbit. The advantage of this law lies in the speed of
computation, which can be orders of magnitude greater than that for direct and
indirect optimization methods, while the disadvantage is that the solutions are
non-optimal, even though Genetic Algorithms can be exploited to optimize Q-law
free parameters, as seen in Chapter 2.

1.3 Objectives of the thesis
The possibility to maneuver satellites paves the way to the opportunity of exploiting
orbit changes such that mission requirements, in terms of orbital parameters as
altitude and eccentricity, can be satisfied also starting the mission from a different
orbit than the operational one, rather than starting and remaining on the same
orbit throughout the mission. As a matter of fact, most of Cubesats and small
satellites exploits rideshares of larger satellites for a parking orbit injection, using
launch broking company such as ISIS or Spaceflight Industries [3]. These companies
generally offer launches opportunity between 450 km and 650 km of altitude on Sun-
Synchronous Orbits, with the majority of these being around 550 km SSO, associated
with an orbital inclination of 97.5977°. From the parking orbit, propulsion allows
to maneuver the satellite in order to improve selected performances, as discussed
in section 1.1. In this particular case, the mission will start from the parking orbit
described above and the operations will be:

• Orbit raising in order to improve revisit rate and augment satellite coverage

• Inclination correction maneuver in order to reach a SSO

• Disposal maneuver, reaching a perigee of 400 km and an apogee of 800 km
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Direct methods Indirect methods

Pros

Easier to initialize, thanks to a
larger domain of convergence
and a physically intuitive
optimization variable

Offer theoretical insight into
mathematical and physical
problem characteristicsRobust, larger domain of

convergence, at least a
sub-optimal solution is reached
Can easily accomodate
complex control, state or path
constraints, with no need to
know a priori the sequence
of constrained and free arcs

Greater accuracy than direct
methods when convergence
is met

Reduced problem size

Cons

Strongly dependent on the
initial guess, may not converge
often to the global optimal

Explicit derivations of the
costate and control equations
required, not flexible
Small domain of
convergence, accurate initial
guess of the costates
required to converge

Often require much
computational effort

Not intuitive, costates do not
have physical interpretations
More difficult to reformulate
in case new states, constraints
or dynamics are given
Not suitable to solve highly
constrained optimization
problems

Table 1.1: Direct and indirect optimization methods: pros and cons

Sun-Synchronous Orbits are nearly polar orbits, i.e. with inclination around 90°,
that have the particular characteristic to have a 360° nodal precession (presented
when perturbations are deeply discussed in section 2.3.3) in one year, so it always
maintains the same position relatively to the Sun, as seen in Fig. 1.1, where a SSO
is compared to an unperturbed orbit to better grasp the difference in the relative
position of the orbits with respect to the Sun.

This characteristic is given by the J2 perturbation effect, that causes the arise
of a shift in the value of the right ascension of the ascending node (RAAN, also
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Figure 1.1: Sun-synchronous orbits position relatively to the Sun

known as Ω), such that:

∆RAAN
C

rad
s

D
= −3πJ2

A
RE

p

B2 cos i
τ

(1.1)

where J2 is the coefficient for the zonal harmonic term related to Earth oblateness,
RE is Earth radius, p is the orbit semilatus rectum, i is the orbital inclination and
τ is the orbital period. For quasi-circular orbits, i.e. the majority of LEO orbits,
p ≈ a where a is the semi-major axis of the orbit. These elements will be further
discussed in Chapter 2, but considering that:

∆RAANSSO = 2π
1 sidereal year = 1.9909869 · 10−7 rad

s (1.2)

they are now introduced just to highlight the fact that for a SSO there is a
direct relationship between orbit altitude, expressed by means of the semi-major
axis, and orbital inclination. This relation is derived equaling Eq. 1.1 and Eq. 1.2:

i [rad] = arccos
−

A
a [km]

12350.23 km

B 7
2
 (1.3)
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and it is shown in Fig. 1.2. If this relation is respected, the orbit results to be a
Sun-Synchronous orbits.

Figure 1.2: Relation between altitude and inclination for a SSO

The advantage of orbiting in a SSO is given by the main characteristic of always
maintaining the same position with respect to the Sun. Based on the orbit RAAN
value that determines the orbit position relatively to the Sun, different properties
can be achieved: a mission can be designed in a way that, for example, the satellite
never passes during its lifetime through eclipse arcs, crucial issue for solar electric
propulsion since the propulsion system, when not illuminated by solar light, cannot
generate thrust. This issue is further discussed in section 2.4. Another example of
use-case scenario is a mission whose goal is to have a spacecraft that always orbits
following the terminator line, i.e. the moving line that divides a planetary body’s
surface in sunlight side and dark side. This is done knowing that the terminator
line, as well as a SSO, rotates of 360° around the Sun in 1 sidereal year.

This SSO introduction is important especially to calculate the orbital inclination
correction that represents the second desired operation for the objective mission.
However it is essential to note that the first two maneuvers will be conducted
in a combined way, since, as it is successively proven in section 3.3, combined
maneuvers always cost less than the respective separate maneuvers. From Eq. 1.3,
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the inclination of a 800 km SSO is 98.6081°.
The last maneuver is conducted as an end-of-life disposal after 5 years of in-

orbit operations, in order to comply with IADC regulations and recommendations
on space debris mitigation [12] that give a 25-years limit for the presence of a
deactivated space system in LEO region. It is demonstrated in [3] that, after
carrying out this maneuver, the satellite will de-orbit in a bit more than 13 years.
To reach this target orbit a combined change of altitude and eccentricity has to be
planned.

These operations are summed up in Table 1.2. Classical orbital elements,
described in section 2.2.3, are used to define the initial and the target orbit of
the transfers. Values of not targeted orbital elements are considered arbitrary for
simplicity and because they have not a significant impact on the transfer, so their
initial values are conventionally set to zero. Initial values of orbital elements for
the second transfer are derived and discussed in Chapter 5.

Orbit change Disposal
Orbital
element

Initial
value

Target
value

Initial
value

Target
value Unit

a 6928 7178 7178 6978 km
e 0.01 0.01 0.01 0.02866151 -
i 97.5977 98.6081 98.6081 Free °
Ω 0 Free 12.5416 Free °
ω 0 Free 23.1151 Free °
θ 0 Free 0 Free °

Table 1.2: Objective mission of the thesis

The goal is to have an optimal transfer between these orbits, either in terms of
time or cost. Therefore, the objective of this thesis is to investigate on the most
suitable optimization methods for orbital transfers design.

After comparing the advantages and disadvantages of direct and indirect ap-
proaches, briefly summed up in Table 1.1, it has been decided to focus the attention
on direct optimization methods. Moreover, the introduced Q-law is thoroughly
analyzed in this work too: it is surely worth to explore how much the advantage of
having a quicker solution is balanced to the disadvantage of having a sub-optimal
trajectory, observing the difference compared to a direct-optimized trajectory.

Finally, after analyzing these different types of orbital trajectory generation,
the objective is trying to understand if any benefits may derive from a two-phase
hybrid optimization in which the sub-optimal method and the direct optimization
method are combined. In this case, the sub-optimal method is represented by
the Q-law algorithm, deeply presented and discussed in Chapter 3, while the
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direct optimization is implemented using PSOPT, an open source optimal control
solver based on direct collocation methods, presented in Chapter 4. This hybrid
optimization is conducted by using, either for minimum time solution or for optimal
fuel solution, the sub-optimal trajectory generated by the Q-law algorithm as an
initial guess input in the solver, that will optimize the already close to optimal
solution, minimizing a certain performance index that varies with respect to the
objective of the problem: if a minimum time problem is defined, the total time of
flight will represent the performance index, whereas an optimal fuel problem is
considered, the final mass value, with negative sign, will be the performance index.

Analyzing the objective scenario, the goal is to examine the performances
together with the ease of use of these different guidance laws approaches, with the
possibility of achieving significant optimal results for minimum time solutions while
obtaining, for optimal fuel solutions, an appropriate trade-off between total time of
flight and fuel consumption.

1.4 Main contributions
The main contributions of this thesis are:

• A deep analysis of a Lyapunov control-based guidance for LEO transfers,
with the possibility of integrating a mechanism for fuel optimal solution. The
results are then compared with state-of-the-art optimal maneuvers results.

• An examination of the most suitable ways to integrate the main LEO per-
turbation, that is the J2 zonal harmonic effect, in the Q-law algorithm and
in the direct optimization process, after a GMAT validation of the assumed
perturbation model.

• The integration of eclipse constraints in the Q-law procedure, after the deriva-
tion of a logistic eclipse model.

• An analysis of the effectiveness of direct collocation optimization methods for
low-thrust trajectory problems, reaching a trade-off for optimal fuel transfers
and comparing the optimized results with the ones obtainable through a faster
strategy such as the Q-law.

• An investigation on the benefits deriving from combining a sub-optimal rapidly
generated trajectory, through the Q-law, with a direct collocation optimization
for low-thrust trajectory problems.

• A validation of the controls given in output by the Q-law algorithm through
GMAT.
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1.5 Structure of the thesis
This discussion is presented as follows:

• Chapter 1: An introduction to the problem is presented, together with an
overview on state-of-the-art of electric propulsion systems. The available
approaches to deal with the design of their trajectories are discussed and the
objective of the thesis is then defined.

• Chapter 2: The orbital transfer problem is introduced, with a discussion on
orbital perturbations, and the main modelling choices are described.

• Chapter 3: The Q-law mechanisms are deeply studied for both minimum
time and optimal fuel scenario, together with example results and analysis in
order to illustrate the benefits of the chosen Lyapunov control guidance. Then,
an overview on eclipses integration and effects on this method is presented.

• Chapter 4: The adopted direct optimization technique is addressed, focusing
on the optimizer setup and presenting some results in order to prove the
effectiveness of the proposed optimization method.

• Chapter 5: The objective scenario of this thesis is deeply analyzed. Minimum-
time and fuel optimal results for the objective scenario are shown and compared,
demonstrating the suitability of a hybrid approach to address the low thrust
trajectory design problem.

• Chapter 6: Conclusions and a discussion on future work are presented.

11



Chapter 2

System dynamics model

The following chapter will focus on the presentation of the fundamentals of orbital
mechanics, essential to better understand the contents of this thesis. The employed
spatial model will be presented and discussed, with the explanation of used reference
frames and equations of motions. After that, the considered perturbations will be
introduced and the spacecraft model will be defined.

For an even deeper understanding and for further details on orbital mechanics
not reported in this discussion, precise and in-depth explanations can be found in
[13], from which most of the following summarizing sections are excerpted.

2.1 Orbital mechanics
The basis of orbital mechanics is described by Kepler’s laws of planetary motion
described below:

• First Law The orbit of each planet is an ellipse, with the Sun at a focus.

• Second Law The line joining the planet to the Sun sweeps out equal areas
in equal times.

• Third Law The square of the period of a planet is proportional to the cube
of its mean distance to the Sun.

Together with these, to better comprehend the influences between masses in
orbital motion, it is essential to keep in mind Newton’s law of universal gravitation:

F⃗g = −GMm

r2
r⃗

r
(2.1)

where M and m are two masses, F⃗g is the force on mass m, and r⃗ is the vector
from M to m, that can be written in cartesian coordinates as [x, y, z]T based on
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the origin of the defined reference system. G represents the universal gravitational
constant and it is equal to 6.67 · 10−11 Nm2/kg2 .

The most basic spacecraft trajectory occurs in the two-body problem, following
the assumption of bodies deemed as points with constant mass. Furthermore, only
the gravitational force between bodies is considered for now in this presentation.

Figure 2.1: Two-body problem

The two-body problem is derived from the N-body problem, when one body has
negligible mass and the other is a point mass central body, and it describes the
motion of a body relative to another one. As demonstrated in [13], the equation of
motion in the two-body problem is expressed as:

¨⃗r = −GM +m

r3 r⃗ (2.2)

where ¨⃗r is the acceleration of m relative to M . To take the studied case as an
example, the mass m could be a spacecraft orbiting around Earth, that represents
the mass M . In this equation, the gravitational forces acting between the two
masses and all of the other bodies (i.e. Sun, Moon, other planets) are neglected,
since the force between the spacecraft and Earth is much bigger than others.

When M ≫ m, as in the defined example, a simplifying assumption can be
made by totally neglecting m such that:

G(M +m) ≈ GM = µ (2.3)

where µ is called gravitational parameter, and it depends on the mass of
the considered central body. The Earth gravitational parameter is µEarth =
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398600.4419 km3/s2.
Following this assumption, the equation of motion (Eq. 2.2) for the two-body

problem can now be rewritten as:

¨⃗r + µ

r3 r⃗ = 0 (2.4)

2.1.1 Energy and relation to the geometry of an orbit

Figure 2.2: m moving from point 1 to point 2 under the gravitational force of M

The mechanical work per unit mass done by the gravitational force of the
primary mass M to achieve a change of position from point 1 to point 2 of the
secondary body m is expressed as:

L12 =
Ú 2

1

F⃗g

m
· ds⃗ =

Ú 2

1
¨⃗r · ds⃗ =

Ú 2

1
− µ

r2
r⃗

r
· ds⃗ =

Ú 2

1
− µ

r2dr = µ

r2
− µ

r1
(2.5)

It can be seen from this result that the mechanical work does not depend on
the trajectory. Therefore the gravitational field is conservative, as the mechanical
work is zero if a closed path in which initial and final point coincide is taken
into consideration. A body moving in this field does not increase or reduce its
mechanical energy, but only transfers it from potential to kinetic energy and vice
versa. Moreover, in a conservative field the mechanical work can be expressed as
the variation of potential energy from the initial point to the final point:

L12 = −∆εg = εg1 − εg2 (2.6)
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Comparing Eq. 2.5 and Eq. 2.6, a new definition of the potential energy per
unit mass (also called specific potential energy) can be obtained:

εg = −µ

r
+ c (2.7)

where c is an arbitrary constant representing the potential energy of a reference
point. Knowing that this choice is arbitrary, c is conventionally set to zero, as the
reference point is considered at r → ∞ from the primary body, so the equation
becomes:

εg = −µ

r
(2.8)

After that, the energy constant of motion can be derived as seen in [13]. Firstly,
Eq. 2.4 is scalar multiplied by ˙⃗r, leading to:

˙⃗r · ¨⃗r + ˙⃗r · µ
r3 r⃗ = 0 (2.9)

Knowing that for scalar product a⃗ · ˙⃗a = aȧ, v⃗ = ˙⃗r and ˙⃗v = ¨⃗r:

vv̇ + µ

r3 rṙ = 0 (2.10)

and noticing that:

d

dt

A
v2

2

B
= vv̇ (2.11)

d

dt

3
−µ

r

4
= µ

r2 ṙ (2.12)

it can be written that:

d

dt

A
v2

2 − µ

r

B
= 0 (2.13)

When the time rate of change of an expression is zero, the expression must
be constant. In this case the constant is called specific mechanical energy (or
mechanical energy per unit mass), and it is expressed as:

ε = v2

2 − µ

r
= const. (2.14)

The first term is the specific kinetic energy of the body, while the second is the
specific potential energy as seen in Eq. 2.8. This energy remains constant along the
orbit, the energy exchange takes place only between potential and kinetic energy.
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This formulation is very important since the mechanical energy can be related
to the geometry of the orbit. As a matter of fact, every orbit is a conic section, i.e.
a curve obtained from the intersection of a plane and a right circular cone, as seen
in Fig. 2.3.

Figure 2.3: Conic sections

As thoroughly demonstrated in [13], a relation between the mechanical energy
and orbit geometry can be found, and it is expressed through the following:

ε = − µ

2a (2.15)

where a is called semi-major axis of the orbit, and its value depends on the type
and on the size of the orbit. The different values of a associated to the respective
type of conic sections are presented in Fig. 2.4, together with the other geometrical
properties: p is a geometrical constant of the conic section known as semilatus
rectum; 2c is the distance between the two foci (F and F ′) of the conic section; b
is the semi-minor axis, defined for elliptical orbits.

This equation is valid for all conic orbits and tells that the semi-major axis of
an orbit depends only on the specific mechanical energy of the body, which in turn
depends on r⃗ and v⃗ at any point on the orbit. Studying the Eq. 2.15 together with
Fig. 2.4, it can be seen that for closed orbits (ellipse and circle) a is positive and
so ε is negative; for a parabolic orbit a is infinite, and so ε is zero; for a hyperbolic
orbit a is negative, and so ε is positive. Therefore, the specific mechanical energy
of the body alone defines the geometry of the orbit in which the body is moving.
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Figure 2.4: Geometrical properties of conic sections

Another important geometric relation is defined as follows:

e =
ó

1 + 2εh2

µ2 (2.16)

where e is called eccentricity of the conic section, and h is the magnitude of
h⃗ = r⃗ × v⃗, which is the specific angular momentum that, as demonstrated in [13],
remains constant along the orbit for any type of conic section and it is equal to:

h = √
µp (2.17)

The eccentricity is a non-negative geometrical property that characterizes every
conic section, and it can be interpreted as a measure of how far a conic section is
from being a circle: for a circle e = 0, for an ellipse 0 < e < 1, for a parabola e = 1
and for a hyperbola e > 1. As a matter of fact, these values are consistent with the
mechanical energy values seen above: if ε is negative, either e is positive and less
than 1 (ellipse), or ε = −µ2/2h2 and e = 0 (circle); if ε is zero, e is 1 (parabola);
if ε is positive, e is greater than 1 (hyperbola). It is important to note that, if
h = 0 the eccentricity will be e = 1 yet the orbit will not be a parabola, but it will
be a degenerate conic, such as a point or a straight line. As a matter of fact, all
parabolas are characterized by e = 1, but an orbit with e = 1 is not necessarily a
parabola, as it could be a degenerate conic.

Every orbit studied in this work will be elliptical orbits.
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2.2 Coordinate systems
The first requirement to describe an orbit in a three dimensional space is a suitable
inertial reference frame, that’s a coordinate system whose axes point in a fixed
direction with respect to the fixed stars. This choice strongly depends on the
mission type. In the case of planets, asteroids and deep space probes orbiting
around the Sun, the heliocentric-ecliptic coordinate system is the most suitable.
However, orbits around the Sun are not the object of this work so the mentioned
coordinate system will not be presented here. For spacecrafts orbiting around Earth
instead, the Earth-centered inertial (ECI) system is convenient. The elements
that fulfill the description of a coordinate system are the position of the origin,
the orientation of the fundamental plane (X-Y plane), the principal direction (the
direction of X-axis) and the positive direction of the Z-axis, perpendicular to the
fundamental plane. Following the right hand rule, the Y-axis is automatically
defined after these elements.

2.2.1 Earth-centered inertial system

Figure 2.5: ECI frame

The Earth-centered inertial coordinate system, also known as Geocentric-
Equatorial coordinate system, has its origin at the Earth’s center of mass. This
coordinate frame is inertial with respect to the fixed stars, neglecting the precession
of the equinoxes, so it does not rotate with Earth’s surface. Its fundamental plane
is the equatorial plane and the positive X-axis is permanently fixed pointing in the
direction of vernal equinox. The Z-axis is perpendicular to the fundamental plane
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and points in the direction of the north pole. The Y-axis is defined by completing
a right handed set. This reference system is described, as seen in Fig. 2.5, by the
unit vectors Î, Ĵ and K̂ that respectively lie along the X,Y, and Z axes, and it is
useful to describe the body motion relatively to the Earth.

2.2.2 RTN frame

Figure 2.6: RTN frame

Another set of coordinates that is extremely useful to describe the orbital motion
of a satellite is its local frame. As a matter of fact, the equations of motion that
will be presented and discussed in the following section and that will be used to
model the system dynamics are described by variational equations defined in this
local frame. This coordinate system has its origin at the spacecraft’s center of
mass, and it is formed by the unit vectors r̂, t̂ and n̂, defined as:

r̂ = r⃗

||r⃗||
, n̂ = r⃗ × v⃗

||r⃗ × v⃗||
, t̂ = n̂× r̂ (2.18)

The set of unit vectors gives the name to this reference frame, that is called Radial-
Tangential-Normal (RTN) frame, also known as Local-Vertical-Local-Horizontal
(LVLH) frame.

The principal direction is given by the unit vector r̂, that goes along the
instantaneous radius vector r⃗, from Earth to the spacecraft. The fundamental
plane is the instantaneous orbital plane, such that the unit vector t̂ is rotated 90°
in the orbital plane with respect to r̂ in the instantaneous direction of motion. The
unit vector n̂ is perpendicular to the fundamental plane, and its direction is defined
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by completing a right handed set. It is important to note that this reference frame
is not influenced by the spacecraft attitude and rotation, since it is defined from the
spacecraft’s center of mass. It is the reference frame that will be used throughout
this entire work to describe the spacecraft’s center of mass motion relatively to the
instantaneous orbit, as it also allows to define a pair of thrusting angles through
which the thrusting spatial components will be derived. As seen in Fig. 2.7, the
thrust angles are defined as α and β. The first is measured in the orbit plane off
of the tangential direction t̂, positive away from the gravitational centre and it is
defined in the interval [−π, π]; the latter is measured off of the orbital plane and
perpendicular to it, positive in the direction of the angular momentum and defined
in the interval [−π/2, π/2].

Figure 2.7: Thrusting angles

2.2.3 Classical orbital elements
The classical orbital elements (COE), also known as Keplerian orbital elements,
are very useful to describe the fundamental properties of the orbit and represent
the most used method for description and visualization of orbits around celestial
bodies. This set is composed by six parameters, among which five are independent
quantities sufficient to completely describe the size, shape and orientation of an
orbit. The sixth element is essential to identify the spacecraft position on the
orbit at a certain time. These parameters are dependent on r⃗ and v⃗ and can be
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Figure 2.8: Classical orbital elements

determined directly from them. This set of orbital elements is presented in Fig.
2.8, and they are defined as:

• a, semi-major axis. It defines the size of the orbit, and it is calculated as the
sum of periapsis and apoapsis distance divided by two, or as:

a = p

1 − e2 (2.19)

knowing that

p = h2

µ
(2.20)

h = ||⃗h|| = ||r⃗ × v⃗|| (2.21)

• e, eccentricity. It defines the shape of the orbit, defining the conic sections
geometrical property already discussed in section 2.1. It can be calculated as:
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e = ||e⃗|| =
------
------ v⃗ × h⃗

µ
− r⃗

||r⃗||

------
------ (2.22)

• i, inclination. It is the angle between the orbital plane and the fundamental
plane of the coordinate system, i.e. the equatorial plane in this case, in the
intersection identified by the ascending node. Its value can vary between 0
and π, and can be calculated as:

i = arccos (K̂ · ŵ) (2.23)

where:

ŵ = h⃗

||⃗h||
(2.24)

Orbits are categorized as direct when i < π/2 and retrograde when π/2 < i < π

• Ω, also known as RAAN, right ascension of the ascending node. It is defined
as the angle in the fundamental plane between the X-axis of the coordinate
system, in this case Î that points to the vernal equinox, and the line of nodes,
that is the line of intersection between the orbital plane and the fundamental
plane that points towards the ascending node. This angle is measured eastward
from X-axis, it varies between 0 and 2π, and it is defined as:

Ω =
arccos (Î · n̂) if Ĵ · n̂ ≥ 0

2π − arccos (Î · n̂) if Ĵ · n̂ < 0
(2.25)

where

n̂ = (K̂ × h⃗)
||K̂ × h⃗||

(2.26)

• ω, argument of periapsis. It is the angle between the ascending node and the
periapsis of the orbit, so it defines the orientation of the conic section in the
orbital plane. It is measured from the line of nodes in the direction of motion,
it varies from 0 to 2π, and it is defined as:

ω =
arccos (n̂ · ê) if ê · K̂ ≥ 0

2π − arccos (n̂ · ê) if ê · K̂ < 0
(2.27)
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• θ, true anomaly. It is the angle between periapsis and the current position of
the spacecraft. It is measured from the periapsis in the diretion of motion, it
varies from 0 to 2π and it is defined as:

θ =
arccos ( r⃗

||r⃗|| · ê) if r⃗ · v⃗ ≥ 0
2π − arccos ( r⃗

||r⃗|| · ê) if r⃗ · v⃗ < 0
(2.28)

In some particular cases this set of orbital elements is undefinable [13]: when
i = 0° (equatorial orbit) the line of nodes is not defined and consequently Ω and
ω are undefined too; when e = 0 (circular orbit) periapsis cannot be defined, and
consequently ω and θ are also undefined. However, the scenarios studied in this
work do not include any of these identified cases, so the classical orbital elements
are chosen as a suitable representation for the adopted model.

Finally, in Fig. 2.9 a comparison between the two discussed frames, together
with the classical orbital elements, is presented to better grasp the correlation
between these reference system.

Figure 2.9: Correlation between classical orbital elements, ECI and RTN frames
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2.2.4 Modified Equinoctial Elements
The modified equinoctial elements (MEE) [14][15][16] are another set of orbital
elements that can be useful for trajectory analysis and optimization, as reported in
the following section. They are suitable for circular, elliptic and hyperbolic orbits.
Plus, singularities discussed for classical orbital elements when i = 0° or e = 0 do
not arise in this set. However, two of the components are singular (infinite) for
i = 180°. In this work they will be useful for the determination of the eclipses
model.

These elements are defined as a function of classical orbital elements, and they
are given by:

p = a(1 − e2)
f = e cos (ω + Ω)
g = e sin (ω + Ω)

h = tan( i2) cos Ω

k = tan( i2) sin Ω

L = Ω + ω + θ

(2.29)

The inverse equations that give the values of classical orbital elements as a
function of modified equinoctial elements can be found in [16].

2.3 Perturbations
The previous dissertation about the two-body problem has been based on some
assumptions presented at the beginning of the section, such as the one that stated
that only gravitational forces between the two masses are considered to describe
their relative motion. So, no form of perturbations has been taken into account
until now. While under the action of gravity alone the only orbital element that
varies is true anomaly, a real spacecraft orbiting around Earth is subjected to
perturbations that lead to variations in all of the six orbital elements throughout
its trajectory, changing the trajectory predicted by the two-body problem. Because
of perturbations that are always present, the orbital elements slightly change at
any instant, therefore the spacecraft continuously goes from one Keplerian orbit
to another. To indicate an orbit, its geometrical properties or its orbital elements
that, given a certain time, refer to a real trajectory in which all the perturbations
are included, the term "osculating" is used [13].

The restricted two-body equation of motion (Eq. 2.4) can be rewritten as:
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¨⃗r = µ

r3 r⃗ + δ⃗P (2.30)

where δ⃗P is the perturbing acceleration vector in the considered coordinate
system, in this case ECI frame.

Generally, the perturbations acting on orbiting bodies are due to thrust from
spacecraft’s propulsion system, gravitational attraction by third bodies, atmospheric
drag and lift, asphericity of the attracting body, solar radiation pressure and
magnetic effects. These perturbations are usually associated with three categories
of effects:

• Short-period variations: oscillating perturbations with a period similar or
less than the orbital period

• Long-period variations: oscillating perturbations with a period greater
than the orbital period

• Secular variations: aperiodic variations that vary as a function of the
osculating orbital elements and that are associated with long-term effects on
the orbit

Depending on the mission, some perturbations becomes more relevant than
others, as seen in Fig. 2.10.

Figure 2.10: Orbital perturbations at low altitudes [4]

Considering that the work in this thesis is focused only on LEO-LEO transfers
(altitude below 2000 km) the included orbital perturbations will concern the
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Earth’s oblateness, associated with the J2 zonal harmonic, and of course the thrust
acceleration given by the propulsion system and Earth’s gravitational attraction.
Furthermore, considered altitudes are not low enough to make drag a relevant
perturbation, so it is neglected. All the other perturbations are considered negligible
too.

2.3.1 Gauss’s Variational Equations
Perturbations can be applied to the classical orbital elements through a set of
variational equations, defined in the spacecraft’s local frame presented in section
2.2.2, that describes how orbital elements vary with time through an analytical
definition of the rate of change of elements due to perturbations. The equations
used throughout this work is the Gauss’s Variational Equations, also known as
Gauss’s Planetary Equations. Their derivation is accurately presented in [17].
These equations provide the instantaneous rates of change of the orbital elements
for an assigned acceleration vector in the RTN frame, as a function of the osculating
orbital elements. The rates of change are expressed as [18]:

da

dt
= 2a2

h

3
e sin θfr + p

r
ft

4
de

dt
= 1
h

{p sin θfr + [(p+ r) cos θ + re] ft}

di

dt
= r cos (θ + ω)

h
fn

dΩ
dt

= r sin (θ + ω)
h sin i fn

dω

dt
= 1
eh

[−p cos θfr + (p+ r) sin θft] − r sin (θ + ω) cos i
h sin i fn

dθ

dt
= h

r2 + 1
eh

[p cos θfr − (p+ r) sin θft]

(2.31)

where t is the time, p is the osculating semilatus rectum, h = √
µp is the magni-

tude of the specific orbital angular momentum, µ is the gravitational parameter of
Earth. r is the radius from Earth and it is defined using the general equation of
any conic section in polar coordinates [13]:

r = p

1 + e cos θ (2.32)

fr, ft, and fn are the three spatial components of the perturbations acceleration
expressed in the RTN frame, respectively in the radial, tangential (circumferential)
and normal (out of plane) directions.
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The discussed equations exhibit singularities for equatorial orbit (i = 0°) and
for circular orbit (e = 0). To avoid these singularities, a set of variational equations
as a function of osculating modified equinoctial elements can be used. This set is
introduced in [14][15], and can be reformulated using matrix notation as seen in
[19]. However, since the cases that cause singularities are not cases of interest in
this work as already discussed in section 2.2.3, the equations expressed through
classical orbital elements (Eq. 2.31) will be used.

2.3.2 Propulsion
The spacecraft’s propulsion system is able to generate thrust, that can be used
as an active control to achieve the desired rates of change of orbital elements. As
stated in section 1.1, a low-thrust electric propulsion system is used throughout
this thesis.

Following the thrust angles discussion in section 2.2.2, the thrust acceleration
components can be expressed as:fr

ft

fn


thrust

=

f cos β sinα
f cos β cosα
f sin β

 (2.33)

where:

f = T

m
(2.34)

is the thrust acceleration magnitude, being T the thrust value equal, and m the
total mass of the body subjected to the acceleration.

The thrust value T can be modulated and it mostly depends on the mission
objective: in general, when a minimum time optimization is desired, the thrust
value is always set to T = Tmax, whereas for optimal fuel optimization the thrust
value is 0 ≤ T ≤ Tmax. The thrust can be then formulated as:

T = Tmaxη (2.35)

where 0 ≤ η ≤ 1 is the thrust throttle and its value depends on the optimization
problem.

The fuel mass flow rate due to thrust is also dependent on the on the throttle.
Based on the model presented in [20] and assuming no mass leakage, it is modeled
as:

ṁ = − T

g0Isp

= −Tmaxη

g0Isp

(2.36)
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where g0 = 9.80665 m/s2 is the standard Earth gravitational acceleration, and
Isp is the specific impulse of the propulsion system. Consequently, it can be seen
that the value of ṁ only depends on the optimization problem by means of the
throttle η, and:

0 ≤ ṁ ≤ ṁmax (2.37)

where ṁmax is the fuel mass flow rate associated to η = 1 and Tmax.

2.3.3 Asphericity of the Earth
Generally it is assumed that Earth is a perfect sphere, however it is well known that
this is an approximation. The assumption of geometrical and mass symmetry of
Earth cannot stand when real perturbed trajectories are considered in the problem.
As a matter of fact, Earth is an oblate body called "Geoid", flattened at the poles and
bulged at the equator, and it is characterized by asymmetrical density variations.
The excess of mass at the equator produces a slight torque on the satellite, which is
exposed to effects not included in the expression for the gravitational potential of
the Earth seen in Eq. 2.8. Thus, the latter has to be reformulated introducing new
terms that represent this perturbation. Several gravitational models of increasing
fidelity have been employed in the past to describe the gravitational field of the
Earth (WGS-84, JGM-2, EGM-2008 are some examples [21][22]). All of them are
based upon using the expression of the gravitational potential written in terms of
harmonics, associated with Legendre polynomials.

The gravitational potential of the Earth using the WGS-84 model can be
expressed as [23][24]:

εg = µ

r
− µ

r

∞Ø
n=2

Jn

3
RE

r

4n

Pn sinϕ

− µ

r

∞Ø
n=2

nØ
m=1

Jn,m

3
RE

r

4n

Pm
n sinϕ cos [m(λg − λn,m)] (2.38)

where ϕ is the latitude, λg is the geographical longitude of the point at which
the potential is evaluated. Jn is the coefficient associated with harmonics n, called
zonal harmonics, and are associated with the North-South deviation; Jn,m and
λn,m are coefficients associated with harmonics of degree n and order m, which are
called tesseral harmonics if n /= m and sectorial harmonics if n = m, and they are
associated with the deviation in the East-West direction.

The function Pn is the Legendre’s polynomial of degree n and order 0, defined
by:
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Pn(x) = 1
n!2n

dn

dxn
[(x2 − 1)] (2.39)

while the function Pm
n is the associated Legendre’s polynomial of degree n and

order m, expressed as:

Pm
n (x) = (−1)m(1 − x2)m

2
dm

dxm
[Pn(x)] (2.40)

where x = sinϕ.
Accuracy of the Earth gravitational model depends on the accuracy of the

coefficients Jn and Jn,m. With EGM-2020 set to be a new release, the latest
introduced gravitational model is EGM-2008 [25].

As seen in [23], the term related to Earth’s oblateness, that is J2 = 1.082639·10−3,
dominates among all harmonics being at least three orders of magnitude greater than
the other harmonics. Furthermore, the effect of tesseral and sectorial harmonics is
not important in LEO, since their effect is compensated by the relative rotation
of the Earth with respect to the spacecraft frame (the relevance of this effect is
proportional to the spacecraft altitude). These elements therefore explain the
choice of including Earth asphericity in the considerations, throughout the entire
work, by integrating the effect of J2 zonal harmonic only.

As studied in [26], the acceleration acting on the spacecraft due to the considered
zonal harmonic can be defined in the RTN frame as:

a⃗J2 = 3µJ2R
2
E

2r4

3 sin2 i sin2 (ω + θ) − 1
− sin2 i sin 2(ω + θ)

− sin 2i sinω + θ

 (2.41)

As already presented above in this section, the change in orbital elements due to
J2 effect through this acceleration can be divided into three categories: short period,
long period and secular variation. In literature, the first two are often neglected
since they are cyclical, meaning that the orbital element return to its original value
after a certain period of oscillation. The secular variation instead is not negligible,
since it produces long-term effects on the orbit’s RAAN and argument of periapsis.

In the first attempt, J2 effect has been implemented adding the three acceleration
components to Eq. 2.33, so the total acceleration acting on the spacecraft through
Eq. 2.31 becomes:

f⃗ =


f⃗r

f⃗t

f⃗n


thrust

+ a⃗J2 (2.42)

However, as also seen in [27], it has been found out that this formulation is not
appropriate for the optimization problem, since the algorithm that generates the
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orbital trajectory might spend propellant and time to fight the periodic terms of
the perturbation, instead of taking advantages of the secular variations.

So the following step has been to try to make the algorithm work by including
only the secular variations due to J2 perturbation, which are expressed as [28]:

A
dΩ
dt

B
J2

= −3πJ2

A
RE

p

B2 1
τ

cos i (2.43)
A
dω

dt

B
J2

= 3
2πJ2

A
RE

p

B2 1
τ

(5 cos2 i− 1) (2.44)

where:

τ = 2π
ó
a3

µ
(2.45)

represents the orbital period of the osculating orbit.

The first variation causes the nodal precession (or regression), the most relevant
perturbation effect for LEO. For direct orbits (i < 90°) the line of the nodes regresses
(∆Ω/∆t < 0), while for retrograde orbits (i > 90°) it precesses (∆Ω/∆t > 0). This
effect is enhanced as inclination approaches 0° or 180°, and/or as altitude decrease.

The second variation causes the apsidal precession (or regression), not as relevant
as nodal precession since studied LEO orbits are in most cases circular or near
circular. In this case the line of apsides regresses (∆ω/∆t < 0) for 63.4◦ < i < 116.6◦

and it precesses (∆ω/∆t > 0) for i < 63.4° and i > 116.6°. For i = 63.4° and
i = 116.6° there is no effect on the line of apsides: in fact these two values are
exploited for the particular Molniya orbits [29].

Thus, the model that includes secular variations due to J2 can be described
rewriting the Eq. 2.31 with the integration of the secular variations expressed in
Eq. 2.43 and Eq. 2.44:
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(2.46)

To justify this assumption and to demonstrate its validity, a GMAT orbit
propagation has been carried out, considering the JGM-2 gravitational model
already integrated in the software, and not including any other perturbations (such
as thrust, drag and SRP) to focus the attention on the J2 effect throughout the
propagation. Then, the GMAT propagation results and the results of a propagation
carried out using the GVEs secular model described in Eq. 2.46 are plotted together
in Fig. 2.11, using the parameters listed in Table 2.1.

Parameter Value Unit
ainitial 6928 km
einitial 0.01 -
iinitial 97.5977 °
Ωinitial 0 °
ωinitial 0 °
θinitial 0 °
Propagation time 25 days
Gravitational harmonics model JGM-2 -
Gravitational harmonics max degree 2 -
Gravitational harmonics max order 0 -

Table 2.1: Simulation parameters and initial orbital elements for propagation

It is interesting to highlight the fact that, as seen in Fig. 2.11, the cyclical
behavior does not imply that the orbital element value of the model is the mean
value of the oscillation. In fact the semi-major axis corresponds to the superior
limit of the oscillation, while the inclination is the inferior limit of the oscillation.
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Figure 2.11: Orbital elements evolution: GMAT propagation vs J2 secular effect
propagation

The propagation results however confirm that it is reasonable to consider only
the secular variation when considering J2 perturbation, since this leads to a model
that is faithful to reality.
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(a) Ideal transfer

(b) J2 perturbed transfer

Figure 2.12: Ideal vs J2 perturbed scenario. 400 km altitude increase transfer
with fixed eccentricity
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2.4 Eclipses
To accurately model the solar electric propulsion system it is necessary to take into
account trajectory arcs in which the spacecraft passes through the shadow of the
Earth, where there is no available solar energy, considering the worst case in which
batteries are not planned for the mission. Therefore, when the vehicle is in eclipses
the propulsion is unavailable and thrust is zero. This phenomenon is not included
among perturbations, since it does not cause any variation in orbital elements.

An accurate dissertation is presented in [30] and [31] where, with the assumption
of spherical shapes of the Sun and the occulting body, in this case Earth, a standard
definition for the shadow is proposed as:

Ψ =
0 if aD ≤ aBR + aSR

1 if aD > aBR + aSR
(2.47)

where Ψ = 0 means that the spacecraft is shadowed, Ψ = 1 means that it is in
solar light. aD, aBR and aSR are angles defined as:

aSR = arcsin
A

R⊙

||r⃗⊙/sc||

B

aBR = arcsin
A

RB

||r⃗B/sc||

B

aD = arccos
A
r⃗B/sc · r⃗⊙/sc

||r⃗B/sc|| r⃗⊙/sc

B (2.48)

with RB and R⊙ that are respectively the radius of Earth and the radius of Sun;
r⃗B/sc and r⃗⊙/sc are respectively the Earth and Sun position vectors relative to the
spacecraft, as seen in Fig. 2.13, such that:

r⃗⊙/sc = r⃗s(t) + r⃗B/sc (2.49)

where r⃗s(t) is the instantaneous ECI position vector of the Sun, available from
ephemeris data, and r⃗B/sc is analytically available knowing orbital elements, and
further discussed in [31].

Another eclipse model is derived in [32], and it relies on the calculus of the
instantaneous position of the spacecraft relatively to Earth and Sun using the
modified equinoctial elements described in section 2.2.4 and the current date
expressed as Julian Date relative to J2000 [33]. The function l is defined as:
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Figure 2.13: Eclipse model

l = − p{[(h2 − k2 + 1) cosL+ 2hk sinL] cos θS+
+ [(k2 − h2 + 1) sinL+ 2hk cosL] sin θS cos εs+
+ 2(h sinL− k cosL) sin θs sin εS}+

− (h2 + k2 + 1)
ñ
p2 −R2

E(1 + f cosL+ g sinL)2

(2.50)

such as when l ≤ 0 the spacecraft is in eclipses. RE is Earth radius and it is
equal to 6378 km; εS is the ecliptic obliquity and it is equal to 23.4°; θS is the
instantaneous angular position of the Sun with respect to the Earth, and it is
defined as:

θS = θS0 + ωSt (2.51)
where ωS is the constant angular rate of the Sun in its apparent motion relative

to Earth, that is:

ωS = 2π
1 sidereal year = 2π

365.2563 days = 1.9909869 · 10−7 rad
s (2.52)

t is the time in seconds from the reference time t0, and θS0 denotes the value of
θS at the reference time. In this case J2000 has been taken as reference time, so:

t [days] = JDcurrent − J2000 = JDcurrent − 2451545.0 (2.53)
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θS0 = θS(J2000) = 280.460° (2.54)

Combining this formulation with the one presented in Eq. 2.47, a new shadow
function can be modeled as:

Ψ =
0 if l ≥ 0

1 if l < 0
(2.55)

For the purpose of numerical optimization, Eq. 2.55 has been smoothed by
using the following logistic function [30][31]:

ψl = 1
1 + ecl

(2.56)

where c is an arbitrary assignable gain greater than zero and l is defined in Eq.
2.50. The transformation from step function to logistic function does not involve a
decrease of modeling accuracy, since eclipse transitions are truly smooth physical
events. In Fig. 2.14 the gain influence on the eclipse transition can be examined.
Throughout this work c = 298.78 has been defined, in accordance with [30] and
[31] which refer to it as a realistic value for Earth orbital transfers.

Figure 2.14: Eclipse logistic function
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As introduced, when the spacecraft is in eclipses arcs thrusting is not available.
Therefore when this phenomenon is included in the problem, it influences the thrust
value such that Eq. 2.35 can be rewritten as:

T = TmaxηΨl (2.57)

Using this formulation, thrust value is zero in eclipses arcs (Ψl = 0) and it
depends only on the throttle when the spacecraft is illuminated (Ψl = 1). The
same measure is taken for the fuel mass flow rate expression (Eq. 2.36).

2.5 Spacecraft model
Throughout this thesis, following the assumptions made in this chapter, the space-
craft will be modeled as a point mass, coincident with its center of mass.

The values of mass, Tmax and Isp have been defined in accordance with state of
the art cubesats and small satellites’ electric propulsion systems [34][35][36][37][38].
These values are reported in Table 2.2.

Parameter Value Unit
mdry 12 kg
mfuel 3 kg
Total mass m 15 kg
Max thrust Tmax 2.5 mN
Specific impulse Isp 1200 s

Table 2.2: Spacecraft parameters

mdry is the structural mass, and it is constant, while mfuel decreases throughout
the transfer. Their sum represents the spacecraft’s total mass m. Isp remains
constant throughout the transfer.

The other parameters that represent the assumed dynamical model and that
are used throughout this work, are summed up in Table 2.3.

Parameter Value Unit
Gravitational parameter µ 398600.4419 km3/s2

Gravitational acceleration g0 9.80665 m/s2

J2 coefficient 1.082639 · 10−3 -
Earth radius RE 6378 km

Table 2.3: Model parameters
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Chapter 3

Q-law

In this chapter the proposed approach for the generation of a feasible orbital
trajectory given a desired mission will be introduced. It consists of a closed-loop
guidance algorithm, that is the Q-Law procedure. This approach can be modeled
to achieve minimal time solutions, optimal fuel solutions or an hybrid between
these two. Some example results will be shown and analyzed, and analysis will be
carried out to explore the influence of Q-law parameters on the results.

3.1 Control Lyapunov Functions and Q-law
In control theory, Control Lyapunov Function (CLF) is a concept that associate
the idea of Lyapunov functions to the non-linear system synthesis. While the
ordinary Lyapunov function is used to test whether a dynamical system is stable, or
asymptotically stable, the CLF is used to test whether a system is asymptotically
stabilizable, that is whether for any state x there is a set of controls u(x, t) such
that the non-linear system can be brought to the zero state asymptotically applying
controls u.

For example, let’s assume a dynamical system expressed as:

ẋ = f(x,u) (3.1)

where x ∈ Rn is the state vector that identify the current system state through
n variables, u ∈ Rm is the control vector of m control variables, and the objective
is to drive the states to an equilibrium, that in the studied case may be represented
by the target orbit defined by the associated orbital elements x = xtarget, from
every initial state in a domain D ⊂ Rn. A CLF is a function V : D ⊂ R that is
continuously differentiable, positively definite (so always positive except for the
equilibrium state where it is zero), such that:
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∀x /= xtarget,∃u : V̇ (x,u) = ∇V (x) · f(x,u) < 0 (3.2)

So in other words, a CLF of a non-linear system is a positively definite function
of states such that there always are, for each state x, some control inputs which
make its derivative, function of states and controls, negative. This means that, if a
suitable CLF for the non-linear problem can be found, it is mathematically possible
to reach a reduction of V in each state, meaning that the state is asymptotically
brought to the equilibrium where V (x) = 0 [39].

The proximity quotient concept [18] relies on the calculation of a proximity
quotient Q, that is an assessment of the proximity of the osculating orbit to the
target orbit, and it represents the candidate CLF chosen for this work. It is
essentially a systematic encapsulation of the principles of the time-to-go concept,
explained in Petropoulos’ studies [11], and it captures the complexity of a wide
variety of orbit transfers, including those involving multiple coast arcs, with few
input parameters. In this work the proximity quotient is expressed as:

Q = (1 +WPP )
Ø
oe

WoeSoe

C
d(oe, oeT )
ȯexx

D2

for oe = a, e, i, ω,Ω (3.3)

We note that the true anomaly θ is not considered in the orbital elements,
because a variation of it would just require a coasting phase without any kind of
thrusting action, unlike the other elements. Furthermore, it is not in this work’s
interest to consider scenarios with a target on argument of periapsis, so for simplicity
only four parameters will be considered from now on as targets, i.e. [a, e, i,Ω].
WP and Woe are scalar weights greater than or equal to zero, typically unitary

if there is no interest in weights optimization; the subscript T denotes the target
orbit element value, and the osculating value is indicated without any subscript;
ȯexx indicates the maximum rate of change of the orbital element oe due to thrust,
over thrust direction and over true anomaly on the osculating orbit, and its value
will be discussed hereafter for every orbital parameter considered; P is a penalty
function and it is used to impose a minimum-periapsis radius constraint, taking
the form:

P = exp
C
k

A
1 − rp

rmin
p

BD
(3.4)

where k is a scalar, usually set in concert with the value of rp, that is the
osculating periapsis radius.rmin

p indicates the lowest permissible value of rp, chosen
by the mission designer. This is very important to take into consideration when
a mission includes low semi-major axis and/or high eccentricity values, since the
risk of impact with Earth’s surface may arise with these conditions. The size of k
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determines how steeply the exponential barrier rises at rp = rmin
p : typical values

for it are 102 ÷ 103.

Figure 3.1: Influence of k parameter on penalty function P , with rmin
p = 6578 km

As it can be seen in Fig. 3.1, the penalty function is positive, causing a potential
increase of Q, when rp goes below the minimum value: since Q-law procedure,
following the definition of CLF seen in Eq. 3.2, aims to always find an action that
reduces of Q, the actions that would cause the periapsis to go below its minimum
value, and so to increase Q, are automatically avoided. Moreover, the further the
periapsis is from its minimum value, the less the penalty function influences the
value of Q and the whole procedure. A very high value of k indicates that only in
the nearest proximity of the minimum periapsis value the procedure would start to
be influenced by the penalty function.
Soe is a scaling function used principally to prevent non-convergence to the

target orbit and in this work it is expressed as:

Soe =

è
1 +

1
a−aT

maT

2né 1
r for oe = a

1 for oe = e, i,Ω
(3.5)

where m,n and r are scalars, whose typical values are 3,4 and 2 respectively.
d(oe, oeT ) is a distance function that intuitively indicates the distance form the

osculating orbital parameter to the target orbital parameter, and it is defined as:
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d(oe, oeT ) =
oe− oeT for oe = a, e, i

cos−1 [cos (oe− oeT )] for oe = Ω
(3.6)

where the distance function for Ω is defined in a more particular form: being
a difference between two angles, this function is needed to provide the shortest
angular measure of the distance between these two positions on a circle. To make
it clearer, if ΩT = 1° and Ω = 359°, the distance must be the shortest, that is 2°,
and using the distance function written in Eq. 3.6 it is possible to always have the
short way round the circle, having a distance that varies in the interval [0,π], in the
quickest and simplest way possible. Apart from this, the function thus expressed is
differentiable with respect to oe (except when it is equal to π) and the sign of the
derivative indicates whether oe leads or lags oeT , and so the sign of the variation
needed, based on the shortest angular distance.

Regarding ȯexx values, analytical expressions are available. They identify the
maximum variation achievable for each orbital parameter over thrust direction
and over true anomaly of the osculating orbit. Every orbital parameter’s rate of
change depends indeed on the true anomaly θ and on the thrust direction, by
means of thrust acceleration components expressed through thrust angles. This
can also be seen in Eq. 2.46, used to model orbital elements’ changes throughout
this procedure.

In this work, the following expression is used for ȯexx:

ȯexx = max
α,β,θ

(ȯe) for oe = a, e, i,Ω (3.7)

that is, for each orbital parameter:

ȧxx = 2f

öõõôa3(1 + e)
µ(1 − e)

ėxx = 2pf
h

i̇xx = pf

h
1√

1 − e2 sin2 ω − e| cosω|
2

Ω̇xx = pf

h sin i
1√

1 − e2 cos2 ω − e| sinω|
2

(3.8)

It is interesting to note that Q captures the best possible rate of change for
each of the osculating orbital elements through the ratio [d(oe, oeT ) / ȯexx] that
is, for each orbital element, a ratio between the distance from the target at that
moment and the maximum rate of change achievable for that element in that
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precise osculating orbit: in other words, it indicates the time it would take that
orbital element to reach the target value if the maximum possible variation could
be achieved at the considered point of the transfer. So, to make it more general,
the value of Q may be considered as an approximation of the square of the time
it would take to reach the target orbit from the osculating orbit if the maximum
rate of change for every orbital element could be achieved. Actually such change
is not concretely possible considering that elements’ variations depend on thrust
angles, so a pair of thrust angles that implies the maximum rate of change for one
orbital element is most likely not the same pair that implies maximum variation
for another element.

3.1.1 Minimum time solution
The proximity quotient Q is zero when the osculating orbit equals the target orbit,
in accordance to the Control Lyapunov Functions definition. So, the goal of this
approach is to drive Q to zero. Doing this, for the minimum time solution the goal
is to do it, and so to reach the target orbit, in the quickest way. Knowing that the
time variation of the proximity quotient is:

Q̇ =
Ø
oe

∂Q

∂oe
ȯe (3.9)

where the expressions for ȯe are available from the Gauss’s variational equations,
while the term ∂Q/∂oe has to be calculated analytically for every orbital element.
It is important to note that this term has to be calculated for each of the five
orbital elements, even for the ones which are unconstrained i.e. do not have a
target value to reach, because the term ȯexx may be dependent on unconstrained
elements too, causing Q to vary as a function of them.

We can also note that Q is a function of the five orbital elements and the thrust
acceleration; unlike it, its derivative Q̇ is also a function of the thrust angles and
the true anomaly, since both of these terms appear in the Gauss’s variational
equations. Knowing this, the minimum time solution can be reached by finding,
at each instant, the thrust angles αn and βn that identifies the Lyapunov-optimal
thrust components, minimising the variation Q̇ (i.e. maximize its magnitude, since
the searched value is negative):

Q̇n = min
α,β

Q̇ (3.10)

Rewriting the Q̇ equation as seen in [27]:

Q̇ = D1 cos β cosα +D2 cos β sinα +D3 sin β (3.11)
where:
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D1 =
Ø
oe

∂Q

∂oe

∂ȯe

∂ft

D2 =
Ø
oe

∂Q

∂oe

∂ȯe

∂fr

D3 =
Ø
oe

∂Q

∂oe

∂ȯe

∂fn

(3.12)

and differentiating Q̇ with respect to α and β:

∂Q̇

∂α
= −D1 cos β sinα +D2 cos β cosα

∂Q̇

∂β
= −D1 sin β cosα−D2 sin β sinα +D3 cos β

(3.13)

the thrust angles that make the derivative most negative can be obtained
equaling the system of the two equations to zero:

α∗ = arctan2(−D2,−D1)

β∗ = arctan
 −D3ñ

D2
1 +D2

2

 (3.14)

Thrust components resulting from this pair of angles make sure that Q is being
driven to zero as quickly as possible at any point of the transfer. This does not
mean that every orbital element will be sent to its corresponding target value
uniformly during the transfer: in fact, one of the strengths of this approach is
that it understands when an "overshooting" is beneficial for the transfer, i.e. an
osculating orbital element value that moves away from the target value instead
of moving towards it. This happens because reducing Q does not only involve
the reduction of the distance function, but also the increase of ȯexx values. So,
far-from-target changes in one orbit element may be automatically made (increasing
the distance function for oe1) if this leads to a greater benefit for another element
(increase of ȯe2xx) and so a larger reduction of Q.

The procedure is stopped when Q goes below a defined tolerance value, which
must be defined in accordance with the integration step as it strongly depends on
it: the greater is the integration step, the greater must be the tolerance on Q to
satisfy the stopping criterion, and so the less is the accuracy that can be reached
on targets.
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3.1.2 Optimal fuel solution
The Q-law approach also has an optional mechanism for coasting through an
effectivity cutoff. In fact, the thrust angles αn and βn described before are chosen
to make the reduction of Q the quickest possible at the current true anomaly,
without taking into consideration how effective the action is compared to the same
action in other locations of the osculating orbit. So, two thrust effectivities at the
current true anomaly are defined as:

ηa = Q̇n

Q̇nn

(3.15)

ηr = Q̇n − Q̇nx

Q̇nn − Q̇nx

(3.16)

where:

Q̇nn = min
θ
Q̇n (3.17)

Q̇nx = max
θ
Q̇n (3.18)

This concept relies on the choice of these values, in order to completely turn off
thrusting actions at the points where the effectivity would be below these chosen
values. The mission designer is free to choose whether to use the relative effectivity
ηr or the absolute effectivity ηa, even with possibility of having a variable cut-off
value depending on the proximity to the target orbit. As explained in [18], the
relative approach is most suited to planar transfers involving circular orbits, since
the absolute effectivity will be close to unity around the whole orbit. In general,
consistently with the definition of effectivity, the greater these cutoff value, the
less the fuel mass consumed during the transfer: thrust takes place only when its
effectivity is above a certain value, causing a reduced waste of fuel but also a longer
time of flight, since this process will lead to multiple coasting arcs.

The values of Q̇nn and Q̇nx are not analytically available. The minimum value
of Q̇ over α and β with a fixed true anomaly is determined as:

Q̇n = Q̇(α∗, β∗) = −
ñ
D2

1 +D2
2 +D2

3 (3.19)

but D1, D2 and D3 are also a function of true anomaly, making the minimum
and maximum values of Q̇n over true anomaly not as simple to find, so a numerical
approach must be employed. In this work, following the example of [20], this
is done calculating for each integration step (and respective osculating orbital
elements) Q̇n values over a grid of 90 equally spaced true anomaly points, along the
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interval [0,2π]. Then, the minimum and the maximum among these 90 values of
Q̇n respectively identify Q̇nn and Q̇nx of the osculating orbit. This number of true
anomaly points has been defined as a compromise between computational time
and precision of the results for these two values: a more refined grid would lead
to an unnecessary addition of computational expense, since the improvement of
results becomes negligible. In order to avoid useless time waste and computational
expense, this whole procedure is set to take place only when a non-zero cut-off
value is specified.

3.1.3 Asphericity of the Earth
As introduced in section 2.3.3 and in [27], the implementation of J2 perturbation
effects through RTN acceleration components (Eq. 2.41) causes oscillatory be-
haviours on orbital elements evolution that are not suitable for the Q-law procedure,
that still leads to a solution, yet too affected by the periodic terms and quite far
from optimal. That is the reason why the model with only secular variations on
RAAN and argument of periapsis has been adopted for the implementation in the
Q-law approach, through the equations Eq. 2.46.

It is important to draw attention to a strong limit that arises when this per-
turbation is included in the optimization problem. Considering the formulation of
the Q-law approach, the only way to obtain changes in RAAN, different from the
variation due to J2 perturbation, is by having an out-of-plane thrust component as
provided by Eq. 2.46. However, considering the available state-of-the-art Cubesat
and small satellites thrust acceleration values, it is not possible to exploit Q-law to
develop an orbital transfer optimization in which a target on RAAN is imposed, as
it can be done for a, e and i. As a matter of fact, the J2 acceleration (∼ 10−5 km/s2)
is much higher than the achievable out-of-plane thrust acceleration component
fn (∼ 10−7 km/s2), so actions provided by the Q-law algorithm are not able to
counteract the perturbation effect.

Following other procedures it is however possible to adjust the RAAN [40][41][3],
that is imposing a certain ∆Ω between the spacecraft orbit and the orbit that would
result from a propagation without thrust. The latter would present Ω = Ω0 + ∆Ω
after a certain period of propagation time, due to J2 effect only, while the former
presents Ω′ = Ω0 + ∆Ω′. However, changing Ω at a rate different from the natural
drift rate using out-of-plane thrusting arcs is very costly in terms of propellant.
That is why the preferred method for adjusting Ω takes advantage e of the natural
rate of nodal regression and its dependence on altitude and inclination. The
procedure is carried out by maneuvering from the initial target orbit to a coasting
orbit, with a different semi-major axis and/or a different inclination, where the
regression rate changes relatively to the initial orbit. After an optimal coasting
duration a maneuver can be performed again to bring the spacecraft from the
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coasting orbit to the final orbit, that may also be characterized by the same a, e
and i as the ones of the initial orbit. A shift in Ω will build up with time during
these three phases following Eq. 2.43, making the RAAN of the spacecraft’s orbit
slowly drift with respect to the RAAN of the initial orbit.

The discussion and the optimization of this maneuver is not an object of this
thesis’ work, however it still was worth studying and introducing this method to
integrate the phasing maneuver in possible future works, since it can be significant
for SSO problems.

3.2 Example results
In order to show Q-law results in terms of orbital elements trends and orbit
visualization, the transfer presented in Table 3.1 has been analyzed:

Parameter Value Unit

Initial orbit

a 6928 km
e 0.01 -
i 97.5977 °
Ω 0 °
ω 0 °
θ 0 °

Target orbit

aT 7078 km
eT 0.04 -
iT 98 °
ΩT Free -
ωT Free -
θT Free -

Simulation parameters

Integration time step dt 120 s
Integration method RK45 -
Q-law tolerance 104 s2

Wa 1 -
We 1 -
Wi 1 -
rmin

p 6578 km
k 1000 -

Table 3.1: Q-law transfer parameters for example scenario

The spacecraft model and the relative parameters are presented and discussed
in section 2.5, while simulation parameters has been discussed when Q-law has
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been introduced in section 3.1.

The initial and target orbital elements have been chosen in accordance with the
objective scenario, presented in section 1.3. As a matter of fact, the initial orbit
is the same, but it has been decided to test here a transfer that, differently from
the objective scenario in which the eccentricity is fixed, includes changes in semi-
major axis, eccentricity and inclination in order to capture as much information as
possible and at the same time to not differ so much from the objective scenario. It
is important to carry out a simulation that allows to obtain as much information
as possible on the results of this approach, especially because it then becomes
more relevant to conduct more in-depth investigations about the changes in results
as a function of certain parameters or about the comparison with other type of
maneuvers, as it can be seen in the following sections. For example, using a scenario
that includes a fixed eccentricity for the Q-law weights analysis would lead to an
incomplete examination, as the weight associated to eccentricity WE would not
influence the procedure at all.

3.2.1 Minimum time

The first results are studied for the minimum time problem, for which the thrust is
active in every point of the transfer (ηcut = 0) and is equal to Tmax.
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Figure 3.2: Orbital elements and mass evolution for Q-law minimum time solution

Figure 3.3: Orbit visualization for Q-law minimum time solution
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Figure 3.4: Thrust directions for Q-law minimum time solution

The results show that the mission is completed with a total time of flight of
324.73 hours, consuming a total fuel mass of 0.2483518837 kg. With the defined
stopping tolerance (Q = 104 s2), the target orbit is reached with aerror = 0.00249
km, eerror = 3.25 · 10−6, and ierror = 4 · 10−13 °.

3.2.2 Optimal fuel
When considering an optimal fuel optimization problem, there is not a unique
absolute solution to it. As a matter of fact, using the described effectivity cutoff
approach, it is possible to generate different results in terms of time and fuel
consumption that do not vary linearly. Analyzing these results, a trade-off between
fuel consumption and time of flight is critical. Since there is not an absolute best
solution to this problem, the mission designer has to essentially choose which of the
proposed solution is the best-fit for the specific interests. That is the reason why
it is interesting to propose here an analysis of Q-law results as a function of the
effectivity cutoff value, for both relative and absolute approaches. Other examples
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of this analysis can be found in [18].
The analyzed transfer is the same as the one analyzed for the minimum time.

The first analysis has been carried out following the relative cutoff approach, the
second one has been done following the absolute cutoff approach. In both cases, a
grid of equally spaced values of ηcutoff has been generated, with [0, 0.999] as grid
extremes (included) and step size equal to 0.001. The analysis is essentially the
transfer simulation repeated with every cutoff value in the grid, and leads to the
results showed in Fig. 3.5 and in Table 3.2.

Figure 3.5: Time of flight and fuel mass consumption as a function of ηacut and
ηrcut

The maximum displayed time of flight has been set to be 2000 hours, enough to
have significant results and to not make the plot illegible, especially for the plot
area relative to short time of flight. The largest cutoff values that produce results
within this time of flight are ηrcut = 0.975 that generates a solution with a total
time of flight of 1973.97 hours, and ηacut = 0.975 that leads to a solution with a
total time of flight of 1982.83 hours. As expected, the case with ηrcut = ηacut = 0
yields the same results seen in the minimum time solution, and it is the one that
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ηacut
ToF [h] mfuel [kg] ηrcut

ToF [h] mfuel [kg]
0 324.733 0.2483518837 0 324.733 0.2483518837
0.1 324.733 0.2483518837 0.1 325.267 0.2485048411
0.3 342.733 0.2357328955 0.3 343.7 0.2351720516
0.5 424.7 0.2098321037 0.5 425.6 0.209500696
0.7 555.133 0.1942049528 0.7 557.2 0.1939755166
0.9 809.9 0.1928538288 0.9 818.867 0.192802843

Table 3.2: Examples of time of flight and fuel mass consumption resulting as a
function of ηacut and ηacut

generates the shortest time of flight as thrust is applied continuously, however
not the one associated with the absolute maximum fuel consumption, as seen for
instance in the case with ηrcut = 0.1 (Fig. 3.6) that leads to an increase in both
time of flight and fuel consumption. This highlights the fact that a higher value of
ηcutoff does not always imply a saving of fuel, despite the increase in time of flight.

Figure 3.6: Zoom on results as a function of cutoff for low ηacut and ηacut values

Hereafter, an example of how the effectivity cutoff acts throughout the transfer
can be seen, either in the orbit visualization (Fig. 3.9) or in the orbital elements
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plots (Fig. 3.7 and Fig. 3.10) as well as in the thrust magnitude and directions (Fig.
3.8). For this specific case and to have enough enhanced cutoff effects, ηa cut = 0.6
has been defined.

Figure 3.7: Orbital elements and mass evolution for Q-law optimal fuel solution
with ηacut = 0.6

52



Q-law

Figure 3.8: Thrust magnitude and directions for Q-law optimal fuel solution with
ηacut = 0.6

Figure 3.9: Orbit visualization for Q-law optimal fuel solution with ηacut = 0.6
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Figure 3.10: Details of inclination evolution due to cutoff effects with ηacut = 0.6

3.3 Q-law vs optimal thrust angles maneuvers
The following section provides a benchmark of the implemented Q-law approach
with a well-known approach that derives the instantaneous optimal optimal thrust
angles α and β to obtain a certain change in the orbital elements. Also, the
advantages of the chosen CLF are discussed and presented.

The Table 3.3 shows, for each orbital element, the thrust angles providing the
highest instantaneous rate of change [42]. Furthermore, the thrust angles cause a
change only for the respective orbital element, while the others remain constant
or are subjected to negligible changes. It is worth mentioning the definition of E,
that is the osculating eccentric anomaly and it is expressed as:

E = arccos
A
e+ cos θ

1 + e cos θ

B
(3.20)

In a more general case, more than one orbital element differ from the initial to
the final orbit, so a combined change of all orbital elements involved has to take
place, since it is well known that combined changes lead to a save of time and fuel
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Thrusting angles

a α = arctan
1

e sin θ
1+e cos θ

2
β = 0

e α = arctan
1

sin θ
cos θ+cos E

2
β = 0

i α = 0 β = sgn (cos (ω + θ)) · π
2

Ω α = 0 β = sgn (sin (ω + θ)) · π
2

ω α = arctan
1

1+e cos θ
2+e cos θ cot θ

2
β = arctan

1
e cot i sin (ω+θ)

sin (α−θ)(1+e cos θ)−cos α sin θ

2
Table 3.3: Optimal thrust angles for the maximum instantaneous change of each
orbital element

consumption with respect to separate changes of the same quantity. This combined
change has been implemented as seen in [42], where the thrust direction vector is
expressed as:

u =
Ø

COE

(1 − δCOE,COE1) COE1 − COE

COE1 − COE0
uCOE (3.21)

where COE, COE1 an COE0 are respectively the instantaneous osculating, the
target and the initial value of the specific orbital element; uCOE is the instantaneous
thrust directions vector of the optimal thrusting for the modification of the specific
orbital element; δCOE,COE1 is the Kronecker delta. The fraction works as a self-
adaptive weight for each orbital element assuring the completion of all maneuvers
at the same time. The procedure stops when the tolerance, defined by the mission
analyst, is satisfied for each of the target orbital elements. Moreover, it is important
to note that the resulting thrust directions vector is not normalized, so it has to be
divided by its own norm if a vector with unit magnitude is desired.

Along with this, a script that estimates ∆V for any transfer has been imple-
mented based on formulation studied in [42][43] and defined in the Table 3.4, where
the marked-above variables (ā, ē, ī) represent the mean value of the specific orbital
element.

It is essential to highlight the fact that, for combined maneuvers, the total
∆V is ∆Vtotal,comb =

òq
oe

(∆Voe)2 and it is always less than the total ∆V of the
corresponding separate maneuver, which is ∆Vtotal,sep = q

oe
∆Voe. That is the reason

why combined maneuvers are always more convenient than separate maneuvers.
However, the goal here is to demonstrate that Q-law controls lead to results not so
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∆V

a
---ñµ

a
−
ñ

µ
aT

---
e 2

3

ñ
µ
ā
| arcsin e− arcsin eT |

i π
2

ñ
µ
ā
|i− iT |

Ω π
2

ñ
µ
ā
|Ω − ΩT | sin ī

ω 2
3

ñ
µ
ā

ē√
1−ē2 |ω − ωT |

Table 3.4: Estimates of velocity increment required to obtain a change in each
orbital element

different from this quicker and simpler estimate. Better results are not expected in
all cases, since this method may underestimate the necessary ∆V .

As said before, it has been decided to implement this comparison testing the
same scenario proposed in the example results above with the same parameters,
integration method and integration time step. The chosen stopping tolerances are
defined in accordance with the integration time step, and they are the following:

atol = 30m
etol = 10−4

itol = (2 · 10−4) ◦
(3.22)

The results of the benchmark maneuver procedure are then showed in Fig. 3.11
and in Table 3.5.

It is immediate to say that Q-law performance leads to better results in terms of
time of flight, and consequently fuel consumption since thrust is always active and
equal to Tmax in minimum time problems. These results are achieved with a very
slight increase in computational expense in terms of CPU time, and with way better
reached tolerances (in the form of target errors) by the Q-law procedure. Moreover,
the combined maneuver method described in Eq. 3.21 is not suitable when an
orbital element is fixed to its initial value: when a certain orbital element has
coincident target and initial value, if the osculating element changes due to thrust
actions that are specific to other orbital elements, the numerator (COE1 − COE)
assumes a non-zero value but at the same time the denominator (COE1 − COE0)
is zero, so the division is not possible and the procedure stops. However, as
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Figure 3.11: Comparison between Q-law and benchmark results in orbital elements
evolution

highlighted before, these maneuvers make sure that changes only happen for the
specific orbital element, with zero or just slight changes on other orbital elements.
This means that the problem described can be settled by not defining a target value
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Benchmark estimate Q-law
ToF [h] 342.5 324.73
mfuel [kg] 0.2619396022 0.2483518837
∆V [km/s] 0.190359068 0.196470990
aerr [m] 24.208 2.490
eerr 7 · 10−5 3.25 · 10−6

ierr [°] 2 · 10−4 4 · 10−13

CPU time [s] 17.1175785 18.8279157

Table 3.5: Q-law vs benchmark: comparison of procedure results, target errors
and computational time

on orbital elements for which the target value coincides with the initial value. By
means of this procedure, the achieved results are still acceptable with reasonable
tolerances. Other reasons why the choice of using Q-law has been made for this
work are the possibility to include path constraints, such as the minimum periapsis
constraint, the possibility to have an effective way to implement an optimal fuel
problem through the cutoff mechanism as seen in the previous section, and the
possibility to conduct an optimization on orbital elements weights (Woe), that may
lead to results improvement, as briefly showed in the next section.

3.4 Q-law weights analysis
One of the advantage of exploiting Q-law is the possibility to optimize weights. An
example of this work can be found in Shannon’s studies [20], where the optimization
of Q-law weights causes a significant improvement in total time of flight. In fact,
simulating the same transfer with an integration step of 5 minutes, first with
unitary weights and then with optimized weights, respectively leads to 135.38 days
and 118.56 days of time of flight, so almost a 12.5% improvement. Therefore it
seemed interesting to perform a preliminary analysis of Q-law results as a function
of weights also for LEO transfers, that represent the object of this work. However it
is important to preface that the analysis described below is quite far from an actual
optimization. As a matter of fact, the goal of this section is just to demonstrate
how Q-law weights tuning affects the results both improving or worsening them.
The tested transfer is the one already chosen and discussed in the example results
section. The analysis has been carried out generating a grid of equally spaced
values for Wa, We and Wi, that are the weights related to the orbital elements
that are associated with a target value. Then, after the extremes and the step
associated with each grid is defined, the analysis starts and it is essentially the
transfer simulation repeated for every possible combination of (Wa,We,Wi).
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Unitary
weights I II III

Wa 1 [1:3] [1:3] [1:3]
We 1 [1:3] [1:3] [1:3]
Wi 1 [6:10] [1:3] [1:3]
Grid step - 0.25 0.25 0.2
N° of iterations - 1378 729 1331
CPU time [h] - 6.99 3.877 6.836
N° of better comb. - 0 20 42
Best (Wa, We, Wi) - [1,1,1] [2.25, 2.75, 2.5] [1.8, 2.2, 2]
Best ToF [h] 324.733 324.733 324.300 324.300

Table 3.6: Weights analysis results

Firstly, the analysis has been carried out setting the three grids extremes
suggested in [20] and a grid step size equal to 0.25. No combination of weights has
produced better results than the unitary weights simulation results. This, together
with the very good results achieved instead in Shannon’s work, suggests that the
choice of grid extremes, which delimit the optimal weights research area, strongly
depends on the transfer type and/or the total time of flight, so it is not possible
to define standard extremes values that enclose for sure optimal weights values.
In a second attempt, the analysis has been conducted with different extremes for
WI and the same step size. In this case, some combinations produce better results
compared to the results given by unitary weights, yet the best result leads to a save
in the total time of flight of just 0.433 hours, that equals an improvement of 0.133%.
To see if better results are achieved, a third attempt has been done slightly refining
the three grids, through a reduction in step size. The number of combinations
that produce better results than the unitary weights increase proportionally with
the number of iterations, no results were found to be better than the one already
found in the second attempt, in spite of the increase in number of iterations and
computational time.

As stated before, these analysis have been disclosed just to demonstrate that
weights tuning leads to different results on the same transfer with equal integration
step. Obviously the analysis results would be more significant and different from
each other with a reduced integration step, staying in the scope of preliminary
analysis such as the one conducted, at the cost of an increase in the already huge
amount of computational time. Genetic Algorithms optimizations seem the most
suitable for this problem, as suggested in [20][27]. However this is a work that is
not in the interest of this thesis, and considering that the results obtained with this
preliminary analysis show that, in this type of transfers, unitary weights produce a
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(a) First analysis, 1378 weights combinations (b) Second analysis, 729 weights combinations

(c) Third analysis, 1331 weights combinations

Figure 3.12: Weights analysis results - Time of flight result for each Q-law weights
combination in the three analysis

solution that does not significantly differ from the optimal one, it is reasonable to
continue with the unitary weights approach throughout this entire work. In the
case of longer transfers, the research of optimal weights becomes crucial to achieve
an efficient problem optimization, since, based on this preliminary analysis together
with Shannon’s results analyzed before, the total time of flight improvement due to
optimized weights is likely proportional to the total time of flight of the transfer.

3.5 Eclipses
As presented in section 2.4, the integration of eclipses constraints is important in
the analysis of low-thrust orbital transfers due to the solar radiation power source.
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In the same section, a model to implement these constraints has been proposed.
In this section a transfer will be examined to analyze the impact of the eclipses

constraints on the mission. Given an initial date, fundamental to identify the
correct relative position of the Sun with respect to Earth, a Q-law minimum time
trajectory will be generated and eclipses effects will be discussed. Successively a
mesh refinement procedure, important especially when the trajectory is used as an
initial guess for optimization processes, will be proposed.

It is important, however, to note that eclipses constraints will be analyzed
only for Q-law transfers in this work. The integration of this constraint in the
optimization process described in Chapter 4 has led to non-convergence in each
of the studied cases, using every possible optimization methods. This issue likely
derives from the fact that the optimization problem is set up to be a single-phase
problem in this work. As a matter of fact, when events that cause changes in the
dynamics of the problem are included, such as the forced coasting arcs when the
spacecraft is in eclipses, a multi-phase problem, where only non-eclipsed arcs are
optimized, is suggested. Another feasible way to meet the constraints without
adding significant computational time is suggested in [20], and it is the use of a
gain-tuned Q-law as a means to identify eclipses while quickly producing an initial
solution close to the optimal, successively performing an optimization of the Q-law
trajectory just after the last eclipse to increase the solution optimality. However,
this is not suitable for LEO transfers, since the orbital period is very short: the
trajectory between the end of the mission and the last eclipse arc would represent
a small percentage of the total mission, so its optimization would not produce
relevant improvements in results, unlike what occurs in a GTO-GEO transfer [20].

Nevertheless, also following the latest suggestion, it is significant to show how
the Q-law algorithm identifies eclipses arcs without adding much computational
expense, in order to discuss the eclipses effects in an orbital transfer using Q-law
generated trajectories and to analyze their impact on the mission.

The studied transfer in this section is purposely not associated to the objective
mission, especially regarding the inclination value, in order to enhance the impact
of eclipses effects. Indeed, eclipses do not influence missions equally: in some
transfers they may even be absent. By defining an initial RAAN in accordance
with an initial date, the orbit can always be illuminated by solar light. That is
one of the main reasons why SSO are exploited: by always maintaining the same
relative position to the Sun and thanks to the inclination values (near-polar orbits),
some orbits are defined in order to have the fewer passages possible in eclipses arcs
during the year (dawn-dusk orbits) [44]. Taking as an example the first transfer of
the objective mission of this thesis, this occurs if the mission starts on January 1st,
2020 at 00:00:00 with an initial RAAN value of Ω = 18.05° [37].

The analyzed transfer is summed up in Table 3.7, and the results in terms of
orbital elements evolution and orbit visualization are reported in Fig. 3.13 and
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Fig. 3.15. It is interesting as well analyzing the difference between this transfer
and the same one where eclipses are not included, to highlight the impact of the
integration of this constraint in the problem. This can be seen either in the orbits
visualization in Fig. 3.15 and Fig. 3.16, or in Table 3.8.

Parameter Value Unit

Initial orbit

a 6928 km
e 0.01 -
i 40 °
Ω 0 °
ω 0 °
θ 0 °

Target orbit

aT 7078 km
eT 0.01 -
iT 40 °
ΩT Free -
ωT Free -
θT Free -

Simulation

Integration time step dt 600 s
Integration method RK45 -
Starting date 2020/01/01 00:00:00 -
Q-law tolerance 105 s2

Wa 1 -
We 1 -
Wi 1 -
rmin

p 6578 km
k 1000 -

Table 3.7: Parameters for eclipses example transfer

Eclipses No eclipses
ToF [h] 291.167 134.833
mfuel [kg] 0.14174055 0.10311880

Table 3.8: Eclipses impact on time of flight and fuel consumption
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Figure 3.13: Orbital elements evolution for the transfer summarized in Table 3.7
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Figure 3.14: Thrust direction for the transfer summarized in Table 3.7
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Figure 3.15: Orbital trajectory for the transfer summarized in Table 3.7 with
eclipses

Figure 3.16: Orbital trajectory for for the transfer summarized in Table 3.7
without eclipses
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3.5.1 Mesh refinement
The transition phases associated with entering and exiting eclipses arcs represent
moments where the system dynamics are inherently stiff, so additional mesh points
in the trajectory time grid are required to accurately model these transitions [20][31].
This is useful for a more accurate modeling of the orbital trajectory generated by
the Q-law algorithm, leading to improved results, and for optimization processes in
which these trajectories are used as initial guesses. Focusing on the latter, generally
the optimization process, when eclipses are taken into consideration, is carried out
optimizing the non-eclipsed arcs: if eclipse transitions are not accurately modeled,
the non-eclipsed arcs may start or end in points that are not even close to the real
points of transitions, leading to a solution that is not representative of the real
situation.

The objective is therefore to have a finer time grid in correspondence of eclipse
transitions. ∆L is the mesh refinement interval and it is arbitrary, but since eclipse
transitions for LEO spacecrafts occur in some seconds, it is worthless to consider
it to be over a minute. To avoid useless mesh points that are too far from the
transitions, a procedure to have a symmetrical refinement has been conducted. The
mesh refinement has been carried out as follows:

• During the main Q-law algorithm with the predefined integration time step
dt, the transition is detected by means of a value change of the logistic eclipse
function (section 2.4).

• The state calculated after the transition is removed. The algorithm comes
back to the point before the transition, and the Q-law procedure restarts with
a finer time step dtsearch ≪ dt, without saving the state variables computed,
until the transition point is found again.

• From the last computed state at the time t, the algorithm calculates the low
extreme of the mesh refinement interval as tleft = t − ∆L/2. Every state
previously saved by the main Q-law algorithm at t > tleft is removed.

• The last point computed by the main Q-law algorithm before tleft is tlast.
From this point, using a time step of dt′ = tleft − tlast, the Q-law algorithm
provides the states at tleft, point from where the real refinement occurs.

• tleft is the starting point of the transition interval on which the refine-
ment is desired. The Q-law procedure continues from tleft with a time
step dtrefinement ≪ dt, that is the actual step of the refined region, until
t = tleft + ∆L.

• The main Q-law algorithm with integration time step dt restarts, until a new
transition is found.
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To have a symmetrical refinement it is crucial to define the values of ∆L, dtsearch

and dtrefinement in accordance with each other, such that:

• The fraction ∆L/dtrefinement is an integer odd number, leading to an even
number of points (Npoints = (∆L/dtrefinement) + 1) in the refinement interval

• dtsearch ≤ dtrefinement/2, if the procedure described above is followed, this rela-
tion governs the symmetrical distribution of the points around the transition

For dtrefinement it is recommended to choose a value in the order of a few seconds,
to accurately identify the moment of transition. Consistently, ∆L must be choose
in order to have not so many points around the transition, since this may lead to a
useless memory overload.

The transfer chosen to present mesh refinements effects is the same as the one
analyzed before, described in 3.7, and the additional parameters are chosen as
follows:

∆L = 25 s
dtsearch = 2.5 s

dtrefinement = 5 s
(3.23)

A clear improvement in eclipse transitions detection can be seen in Fig. 3.17,
with respect to the unrefined trajectory shown in Fig. 3.15.

Figure 3.17: Orbital trajectory for the example transfer with mesh refinement
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The details of the mesh refinement are further presented in Fig. 3.18 and in Fig.
3.19, where a piece of the thrust profiles of the unrefined and refined trajectory
at the same moment are shown. It is clear to see how in the unrefined case, the
transition is not accurately identified due to the large integration time step (600
s), while in the refined scenario, the small refinement integration time step (5 s)
improves the accuracy of the transitions detection.

Figure 3.18: Thrust and eclipse function profiles without mesh refinement

Figure 3.19: Thrust and eclipse function profiles with mesh refinement

Furthermore, at the cost of added computational time and memory footprint,
the refinement also enhance the performances of the algorithm, as seen in Table
3.9: a coarse integration time step may cause the coasting arcs to go far beyond
the real eclipses regions, so the refinement allows to exploit thrust for as long as
possible, leading to a save in total time of flight.
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With refinement No refinement
ToF [h] 262.326 291.167
mfuel [kg] 0.12757712 0.14174055
Mesh nodes 3398 1748
CPU time [s] 33.768744 5.691874

Table 3.9: Mesh refinement impact on Q-law algorithm performance
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Chapter 4

Direct optimization

Low-thrust trajectory optimization belongs to the class of the optimal control
problems for continuous time systems. No analytical solutions exist for this problem,
even under two-body dynamics assumption. Therefore, numerical methods must
be used.

One of these numerical methods consists in converting the continuous optimal
control problem into a NLP problem, solving it for a set of discretized states and
controls variables. This procedure is called direct transcription and the approach
is known as direct method. In this chapter a discussion on these methods will be
presented, focusing on the ones used for this work. Then the setup of PSOPT
solver, employed in the optimization routines, will be discussed and some example
results will be shown to highlight the effectiveness of this method.

4.1 Optimal trajectory design problem
In the more general form, given a set of n first-order differential equations, the
classical optimal control problem (OCP) is expressed as follows [45]:

ẋ = f(x,u, t) (4.1)
where x(t) ∈ Rn is the state variables vector of n dimension, u(t) ∈ Rm is the

control variables vector of m dimension, t ∈ [ti, tf ] represents the independent time
variable. The objective of the optimization is to minimize the following performance
index:

J = φ (x(tf ), tf ) +
Ú tf

ti

L(x,u, t) dt (4.2)

while satisfying q-dimensional final boundary conditions:

ψ(x(tf ),u(tf ), tf ) = 0 (4.3)
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An optimal trajectory design problem is a specialization of the classical OCP.
The problem can be stated in a more convenient way for the use of direct approaches.
Considering that the dynamics incorporate a set of constant parameters p, the
equation 4.1 can be rewritten as:

ẋ = f(x(t),u(t),p, t) (4.4)

while initial and final conditions can be defined within certain lower and upper
bounds, as:

ψi,L ≤ ψi(x(ti),u(ti),p, ti) ≤ ψi,U

ψf,L ≤ ψf (x(tf ),u(tf ),p, tf ) ≤ ψf,U

(4.5)

Furthermore, the solution may include path constraints expressed as:

gL ≤ g(x(t),u(t),p, t) ≤ gU (4.6)

and simple boundaries on the state and control variables:

xL ≤ x(t) ≤ xU

uL ≤ u(t) ≤ uU

(4.7)

The trajectory optimization is based on the determination of the control variables
vector u(t) to minimize the performance index, rewritten here in the Mayer form
[46] as:

J = Φ(x(tf ), tf ) (4.8)

4.2 NLP
The direct optimization approaches rely on the conversion of the OCP into a
NLP problem, in which dynamics are not involved. This is essentially a decisional
problem concerning a scalar objective function and a constraints vector [47][48].
Suppose that the n variables of the states vector x must be defined to solve:

min
x
F (x) (4.9)

with m equality constraints:

c(x) = 0 (4.10)
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where m ≤ n. The Lagrangian of this problem is a function of the n variables x
and the m Lagrange multipliers λ:

L(x,λ) = F (x) − λTc(x) (4.11)

A point (x∗, λ∗) is a constrained optimum of the problem only if the following
system is solved: ∇xL(x,λ) = ∇xF −GT (x)λ = 0

∇λL(x,λ) = −c(x) = 0
(4.12)

where G is the Jacobian of the equality constraint vector c(x). Given an initial
guess (x, λ), its corrections (∆x, ∆λ) to construct the new solution (x + ∆x,
λ+ ∆λ) result from solving the following linear system, also called Karush-Kuhn-
Tucker (KKT) system [49][50]:C

HL −GT

G 0

D C
∆x
∆λ

D
=
C
−∇xF

−c

D
(4.13)

where HL is the Hessian of equations 4.12 in x, that is:

HL = ∇2
xF −

mØ
i=1

λi∇2
xci (4.14)

The NLP problem can be generalized also for the case that occurs when inequality
constraints are involved, in the form of:

c(x) ≥ 0 (4.15)

Therefore, in the most general case, the objective is to find n variables x to
solve equation 4.9, taking into account the m constraints defined as:

cL ≤ c(x) ≤ cU (4.16)

where equality constraints cj can be expressed imposing cj,L = cj,U , and state
variables bounds:

xL ≤ x ≤ xU (4.17)

4.3 Direct transcription and collocation
Collocation methods are used to transcribe differential dynamic constraints into
a set of algebraic constraints. The basic idea of these methods is to define a
polynomial up to a certain degree with a number of points in the time domain
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(collocation points), and to enforce these polynomials to satisfy the equations of
motion and the constraints at the collocation points [51].

The differential equations can be transcribed into a finite set of equality con-
straints. If these constraints are respected, then the optimal trajectory design
problem is solved within the degree of accuracy of the adopted numerical scheme
[47][52]. The time domain can be discretized as:

ti = t1 < t2 < ... < tN = tf (4.18)

where each time label is also called mesh point or node. The discretization is
assumed to be uniform in this work, where the fixed step size is defined as:

h = tN − t1
N − 1 (4.19)

The states and control variables can be treated as a set of NLP variables,
discretizing them over the time mesh as:

xk = x(tk)
uk = u(tk)

(4.20)

Therefore, a whole variables vector for the problem may be defined as:

y = {x1,u1, . . . ,xN ,uN}T (4.21)

In direct approaches the solution to the OCP is strictly connected to the
numerical integration of the differential equations governing the motion of the
spacecraft. These equations are replaced by a set of defects constraints, whose values
depend on the adopted numerical integration scheme. The numerical integration
influence the robustness of the method and the solution accuracy, so usually
methods with high accuracy are likely to be used for practical applications. For
now, just to proceed with a simple example, let’s assume that a forward Euler
scheme is used. In this case the defects are defined as:

ζk = xk+1 − xk − hfk (4.22)

where:

fk = f(xk,uk,p, tk) (4.23)

The transcription also involves the optimal control constraints described in Eq.
4.5 and Eq. 4.6, replaced by the following NLP constraints:

cL ≤ c(y) ≤ cU (4.24)
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with:

c(y) = {ζ1, ζ2, . . . , ζN−1,ψi,ψf , g1, g2, . . . , gN}T

cL = {0,0, . . . ,0,0,0, g1,L, g2,L, . . . , gN,L}T

cU = {0,0, . . . ,0,0,0, g1,U , g2,U , . . . , gN,U}T

(4.25)

This set of constraints shows that the first (n · (N − 1)) constraints are equality
constraints on the defects ζk for k = 1,2, . . . , N − 1, which means that they satisfy
the differential equations expressed in Eq. 4.4 within the accuracy of the adopted
numerical integration scheme. The boundary conditions of Eq. 4.5 are imposed by
the equality constraints on ψi and ψf and the inequality path constraints expressed
in 4.6 are enforced at the mesh points. In a similar way, the objective function 4.8
is rewritten in terms of y as:

F = F (y) (4.26)

and the optimal trajectory design problem can now be solved as a standard
NLP problem using Eq. 4.9 - Eq. 4.14. The distinctive trait of each collocation
method relies in the way the state and control variables are discretized and how
the constraints are satisfied [53]. Some examples of collocation methods, accurately
explained in [45][54], are trapezoidal, Hermite-Simpson, high order Gauss-Lobatto,
pseudospectral and control parametrization methods.

4.3.1 Local discretization methods
When the problem requires a large number of nodes the NLP algorithm may have
problems to converge if global collocation methods, such as pseudospectral methods
[45], are used. This may be due to numerical difficulties within the NLP solver as
the Jacobian and Hessian matrices may be too dense [54]. When faced with this
problem, feasible solutions are either to split the problem into multiple segments
to increase the sparsity of the derivatives, or to use local collocation methods.

Since the transfers studied in this work generally last many days, a step size
defined in accordance with the maximum number of nodes (around 200 [54]) for
an appropriate effectiveness of global optimization methods would be too large to
achieve good results, especially for LEO missions. Therefore, global optimization
methods are not suitable to perform a transfer optimization in this work. Because
of that, local optimization methods are further analyzed and successively exploited
to achieve a trajectory optimization in the studied transfers.

74



Direct optimization

Direct collocation methods that use local information to approximate the func-
tions associated with an optimal control problem are well established [46]. The
main impact of a local discretization method as opposed to a global method is
that, as the number of mesh points increases, the resulting Jacobian and Hessian
matrices needed by the NLP solver are more sparse, which makes the NLP solution
simpler. On the other hand, the disadvantage is that spectral accuracy in the
discretization of the differential constraints by global methods is lost. Local mesh
refinement methods are also possible: these methods concentrate more mesh points
in areas of greater complexity in the function, which helps to improve the local
accuracy of the solution.

The most used local discretization methods are trapezoidal method and Hermite-
Simpson method. The former has an accuracy of O(h2), while the latter has an
accuracy of O(h4), where h is the local interval between mesh points [54]. Both of
these methods are widely used and have solved many challenging optimal control
problems [46], and they differ on the way the defect constraints are computed.

In the trapezoidal method the defect constraints are defined as follows [46]:

ζk = xk+1 − xk − hk

2 (fk + fk+1) (4.27)

where ζk ∈ Rn is the vector of differential defect constraints at the mesh node k,
hk = tk+1 − tk is the local step size, with k = 0, . . . , N − 1, and the other variables
are introduced in section 4.3.

In the Hermite-Simpson method the defect constraints are computed as follows
[46][54]:

ζk = xk+1 − xk − hk

6 (fk + 4f̄k+1 + fk+1) (4.28)

where:

f̄k+1 = f [x̄k+1, ūk+1,p, tk + hk

2 ]

x̄k+1 = 1
2(xk+1 + xk) + hk

8 (fk − fk+1)
(4.29)

where ūk+1 = ū(tk+1) is a vector of midpoint controls, which are also decision
variables. In this case a collocation point, over which state and control variables
are calculated, appears also in the middle of the two adjacent mesh nodes (tk, tk+1)
[45].

In both cases, the number of differential defect constraints is n ·N , where n is
the number of the x state variables, and N the number of mesh points.
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4.4 PSOPT setup
In order to implement a local optimization method in this work, the optimal control
solver PSOPT has been used [54].

PSOPT is an open source optimal control package written in C++ that uses
direct collocation methods. Through these methods, optimal control problems are
solved by approximating the time-dependent variables using global (Legendre and
Chebyshev pseudospectral methods) or local (trapezoidal and Hermite-Simpson
methods) polynomials [54]. This allows to discretize the differential equations and
continuous constraints over a grid of nodes, and to compute any integrals associated
with the problem using quadrature formulas. A NLP solver is then used to find
local optimal solutions. The used NLP solver is IPOPT, an open source C++
package for large-scale nonlinear optimization, which uses an interior point method
[55]. PSOPT is able to deal with either single or multiphase problems, as well as
problems with many other characteristics described in [54].

4.4.1 Problem formulation
The trajectory optimization problem to be implemented in PSOPT is formulated
as a single phase problem, and it is defined as follows.

The objective of the optimization is to minimize a performance index J solving:

min
u(t),η(t),tf

J = αtf − (1 − α)mf (4.30)

subject to:

x(0) = xi, m(0) = mi, t(0) = ti

ẋ(t) = {ȧ(t), ė(t), i̇(t), Ω̇(t), ω̇(t), θ̇(t), ṁ(t)}T

x(tf ) = xtarget

tmin
f ≤ tf ≤ tmax

f

||u(t)|| = 1
− 1 ≤ ur(t) ≤ 1
− 1 ≤ ut(t) ≤ 1
− 1 ≤ un(t) ≤ 1
0 ≤ η(t) ≤ 1
0 ≤ α ≤ 1

(4.31)

where x(t) is the state variables vector and u(t) is the control variables vector
in the RTN frame, respectively expressed as:
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x(t) = {a(t), e(t), i(t),Ω(t), ω(t), θ(t),m(t)}T

u(t) = {ur(t), ut(t), un(t)}T
(4.32)

It is important to note that the mass is included in the state variables vector
together with the classical orbital elements. The variables that appear in the
problem formulation (4.31) are explained as follows:

• ẋ(t) represents the differential constraints of the problem, expressed through
the rates of change of classical orbital elements and the fuel mass consumption.
For the same reasons discussed in section 2.3.3 and in section 3.1.3, the model
that is used to integrate the J2 zonal harmonic perturbation effects is the
secular variations model. Therefore, the first six elements of the vector ẋ(t)
are the rates of change of classical orbital elements defined in Eq. 2.46. The
mass consumption ṁ(t) is modeled as described in Eq. 2.36.

• mf = m(tf) is the final mass value, from which fuel consumption can be
derived.

• ti and tf are respectively the initial and final time. The final time found by
the optimization process is defined in an interval between a minimum and a
maximum boundary values, respectively tmin

f and tmax
f .

• η(t) is the thrust throttle that governs the thrust magnitude as well as the
mass consumption: it is fixed to 1 in minimum time problems, while it is a
control variable together with the thrust directions in optimal fuel problems.

• α is the parameter that defines the nature of the problem: with α = 1 the
objective function becomes J = tf , leading to a minimum time solution,
whereas with α = 0 the objective function is J = −mf and an optimal fuel
solution is computed. Intermediate values in [0,1] could be used for a trade-off
solution between time of flight and fuel mass consumption.

For the reasons presented in section 4.3.1 the optimization procedure is carried
out by using local discretization methods, that are, in PSOPT , trapezoidal and
Hermite-Simpson methods. Since, after different studied cases, no significant
improvements were found by using the more accurate Hermite-Simpson method
compared to results given by the less accurate but quicker trapezoidal method, the
latter is employed to optimize the studied transfers shown in this thesis.
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4.5 Example results
In order to show and analyze PSOPT example results in terms of orbital elements
trends, a transfer of the same type as the first one of the objective scenario has
been chosen, i.e. change of altitude and inclination with fixed eccentricity. It is
however a shorter transfer, in order to reduce the computational expense and time
while, at the same time, grasp sufficient information about the optimization of
this type of transfer, essential to proceed with the more expensive analysis of the
objective mission transfers. The transfer is described in Table 4.1, with initial orbit
values discussed in section 1.3. The initial guess trajectory needed by the solver to
start the optimization is generated by the Q-law algorithm, whose parameters vary
depending on the desired optimization: for minimum time solution, a minimum
time Q-law trajectory is given; for optimal fuel solution different Q-law trajectories
are given in input to obtain and analyze a trade-off as seen in 4.5.2.

Parameter Value Unit

Initial orbit

a 6928 km
e 0.01 -
i 97.5977 °
Ω 0 °
ω 0 °
θ 0 °

Target orbit

aT 7078 km
eT 0.01 -
iT 97.9 °
ΩT Free -
ωT Free -
θT Free -

Table 4.1: Transfer for solver example results

The spacecraft model and the relative parameters are presented and discussed in
section 2.5. The solver parameters are defined in accordance with the information
found in PSOPT manual [54].

4.5.1 Minimum time
The first results are studied for the minimum time optimization problem. Thrust is
always active, so the optimization parameters are the three thrust spacial directions
in RTN frame {ur, ut, un}. The initial guess given in input is a Q-law minimum
time trajectory, whose settings are summed up together with the chosen PSOPT
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algorithm options in Table 4.2. The solver options that are not specified in the
table are set to their default values. In the presented state variables evolution,
the Q-law and solver results are plotted together to better catch the improvement
given by the optimization method.

Parameter Value Unit

Initial guess parameters

Integration time step 600 s
Integration method RK45 -
Q-law tolerance 105 s2

ηcut 0 -
Wa 1 -
We 1 -
Wi 1 -
rmin

p 6578 km
k 1000 -

PSOPT parameters

Nodes 1500 -
Control variables 3 -
α 1 -
NLP max iterations 1500 -
NLP tolerance 10−4 -
Collocation method Trapezoidal -
ODE tolerance 10−5 -
Mesh refinement Automatic -
Defects scaling Jacobian-based -

Table 4.2: Algorithm options for solver minimum time example results

After an optimization carried out by using the trapezoidal collocation method,
the mission is completed with a clear improvement in results for both total time of
flight and fuel mass consumption, as also seen in Fig. 4.1. The improvements are
proportional since a minimum time solution is considered, where thrust is active at
each moment. The results and the comparison between solver and initial guess are
summed up in Table 4.3.

PSOPT Q-law Improvement
ToF [h] 175.276 182.333 3.87 %
mfuel [kg] 0.134049 0.139446 3.87 %

Table 4.3: Comparison between Q-law and PSOPT results
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Figure 4.1: State variables evolution: minimum time optimization vs minimum
time Q-law
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Figure 4.2: Thrust directions: minimum time optimization vs minimum time
Q-law

4.5.2 Optimal fuel
As described in section 3.2.2, when considering an optimal fuel problem there is
not an absolute best solution to the problem. In the same section, it has been
presented how in the case of the Q-law the variation of the parameter ηcutoff

leads to a trade-off solution between time of flight and fuel mass consumption. A
similar situation arises when considering direct optimization. In section 1.2 direct
optimization methods have been presented and discussed. One advantage of these
methods is that, compared to indirect methods, they are associated to a large
domain of convergence. This is an advantage because convergence does not depend
on the accuracy of the initial guess, but on the other hand this also leads to the
fact that the achieved solution is often not the global optimum, since it strongly
depends on the initial guess. That is the reason why a trade-off must be conducted
also for optimized results in case of optimal fuel solution.

To achieve a reasonable trade-off in this work, optimization processes with
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several initial guesses are conducted. In particular, the case studied in this section
are:

• 1. Minimum time optimization with minimum time Q-law as initial guess

• 2. Optimal fuel optimization with minimum time Q-law as initial guess

• 3. Optimal fuel optimization, Q-law with ηcutoff = 0.9 as initial guess

• 4. Optimal fuel optimization, minimum time Q-law with halved maximum
thrust as initial guess [45]

The Q-law generated initial guesses have been computed with the same parame-
ters presented in Table 4.2, except for the trajectory 3 for which ηcut = 0.9. The
control variables for optimal fuel problems are four, since the thrust throttle η is
also a control parameter together with the three thrust direction in RTN frame
{ur, ut, un}.

The solver options are described in Table 4.4. The ones that are not reported are
already presented in Table 4.2, and they are the same also for these optimization
processes.

Solutions with intermediate values of α, parameter that define the objective
function of the optimization (Eq. 4.31), have not been included since the consequent
optimization has led to either not significantly improved results, or to an increased
consumption associated with an increased time of flight.

1 2 3 4
Nodes 1500 1500 1000 1200
Control variables 3 4 4 4
α 1 0 0 0

Table 4.4: Optimization parameters for optimal fuel trade-off

1 2 3 4
ToF [h] 175.276 183.662 217.751 363.387
mfuel [kg] 0.1341 0.1240 0.1220 0.1162

Table 4.5: Solutions for optimal fuel problem

The results confirm that convergence is found for each one of this initial guesses,
even when the achieved optimal solution is not a global optimal. The state variables
evolution is shown in Fig. 4.3 and the results are summed up in Table 4.5.
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Figure 4.3: Optimal fuel solutions and initial guesses

These results also confirm that an absolute best solution does not exist. The
mission designer must define which one of the possible solutions, that are many
more than these presented, represents the best for the objective of the mission:
through the mass plot in Fig. 4.3 it is clear that, also after the direct optimization
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process, a reduction in fuel mass consumption is associated with an increase in
time of flight. The bigger is the fuel saving and the less is the increase in time, the
better is the found solution.

However, since in this work there are no constraints on maximum time of flight
or maximum fuel consumption, the most suitable solution has been chosen by
analyzing how much fuel is saved against how much time of flight is added to the
mission. Taking the minimum time optimized solution as a reference (optimization
1), a comparison is carried out in Table 4.6 between the three optimal fuel results
in terms of time of flight and fuel mass consumption.

2 3 4
ToF increase vs 1 [%] 4.785 24.233 107.323
mfuel reduction vs 1 [%] 7.532 9.023 13.348

Table 4.6: Comparison between solutions for optimal fuel problem

Weighing up the pros and cons of each optimization, it has been chosen that
the most suitable solution for this work is the optimization 2, i.e. the optimal
fuel optimization (α = 0 → J = −mf ) with minimum time Q-law as initial guess,
because a significant improvement in fuel consumption is achieved at the cost of a
very low increase in time of flight. This choice defines also the optimization that
will be carried out for the objective mission of this thesis, since obtaining such
a trade-off for the defined transfers (section 1.3) would be too computationally
expensive.
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Simulation results

This chapter will be focused on the results of the objective scenario transfers
optimization, presented in section 1.3. The chosen method will be based on the use
of a direct trapezoidal collocation method that optimizes a sub-optimal initial guess
provided by the Q-law algorithm. First there will be a discussion about minimum
time results, and then the optimal fuel results will be presented. After that, the
validation of Q-law controls will be carried out using the software General Mission
Analysis Tool (GMAT).

5.1 Minimum time

Parameter Value Unit

Q-law parameters

Integration time step 600 s
Integration method RK45 -
Q-law tolerance 105 s2

ηcut 0 -
Wa 1 -
We 1 -
Wi 1 -
rmin

p 6578 km
k 1000 -

Table 5.1: Q-law parameters for initial guess generation

The objective of this optimization is to obtain, for both the orbit change and the
disposal, a set of control variables that leads to the quickest possible trajectory. As
presented in Chapter 4, in this type of optimization the control variables are the
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three thrust directions {ur, ut, un}, while the thrust magnitude is always fixed to
the maximum value.

For both maneuvers, the Q-law minimum time trajectory will be generated using
the parameters presented in Table 5.1.

5.1.1 Orbit change

An optimized solution through the direct trapezoidal collocation method has been
achieved, using 1200 mesh nodes. The state variables initial and final values are
presented in Table 5.2. The trajectories of the state and control variables as a
function of time are shown in Fig. 5.1 and Fig. 5.2, and the performance results
are summed up in Table 5.3.

Orbital
element

Initial
value

Final
value Unit

a 6928 7178 km
e 0.01 0.01 -
i 97.5977 98.6081 °
Ω 0 17.8121 °
ω 0 -58.2096 °
θ 0 132.3259 °
m 15 14.6656 kg

Table 5.2: Minimum time orbit change: initial and final state variables

Since a minimum time solution is considered, thrust is always active and it
is equal to its maximum value. Therefore, the reduction in fuel consumption is
proportional to the decrease in time of flight with respect to the Q-law initial guess,
as seen in Table 5.3.

PSOPT Q-law Improvement
ToF [h] 437.210 441.667 1.00 %
mfuel [kg] 0.3344 0.337781 1.00 %

Table 5.3: Minimum time orbit change: results
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Figure 5.1: Minimum time orbit change: state variables
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Figure 5.2: Minimum time orbit change: thrust directions
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5.1.2 Disposal

As disclosed in Chapter 1, on-orbit operations for the assumed satellite are set
to take place for 5 years. After this period, the goal is to reach an orbit where
the satellite naturally decays, due to atmospheric drag, in less than 25 years. The
initial values of this transfers depend on the evolution of the orbital elements
during the operational period: apart from a, e and i that, for how the problem
is modeled in this work, do not vary in absence of thrust, Ω, ω and θ change
under the other perturbations effects. The first two of these vary due to the J2
zonal harmonic, while the true anomaly θ is modified because of the gravitational
attraction of Earth. That is the reason why the initial values of Ω and ω have
been defined in accordance with a 5-years propagation carried out in GMAT, in
which J2 effects have been considered, and they are summed up in Table 5.4. It is
important however to note that this is meant to just be an approximation, since
many station-keeping maneuvers may occur in such a period, and they can affect
the rate of change of orbital elements as well as modify the other elements. On
the other hand, the definition of a precise θ is not considered of relevance, since in
LEO this element changes very quickly (orbital periods are around 90 minutes), so
the initial value can be considered arbitrary and it is conventionally set to zero.

Orbital
element

Initial
value

Final
value Unit

a 7178 7178 km
e 0.01 0.01 -
i 98.6081 98.6081 °
Ω 17.8121 12.5416 °
ω 301.7904 23.1151 °
m 14.6656 14.6656 kg

Table 5.4: 5 years propagation: initial and final state variables

Since thrusting actions do not take place during on-orbit operations and station-
keeping maneuvers are not considered, the mass initial value is the same as the
final value of the first transfer of the mission, presented in Table 5.2.

In this case, the optimization carried out through the direct trapezoidal colloca-
tion method has converged to a solution using 900 mesh nodes. The state variables
initial and final values are presented in Table 5.5. The trajectories of the state and
control variables as a function of time are shown in Fig. 5.3 and Fig. 5.4, and the
performance results are summed up in Table 5.6.
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Orbital
element

Initial
value

Final
value Unit

a 7178 6978 km
e 0.01 0.02866151 -
i 98.6081 98.6081 °
Ω 12.5416 24.2574 °
ω 23.1151 5.3486 °
θ 0 354.1335 °
m 14.6656 14.4597 kg

Table 5.5: Minimum time disposal: initial and final state variables

Also for this transfer, a minimum time solution is achieved, so the improvement
in fuel consumption is strictly related to the improvement in time of flight, as seen
in Table 5.6. The slight difference in the improvement percentages is only due to
numerical approximation in PSOPT results.

PSOPT Q-law Improvement
ToF [h] 269.175 273.5 1.58 %
mfuel [kg] 0.2059 0.209167 1.56 %

Table 5.6: Minimum time disposal: results
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Figure 5.3: Minimum time disposal: state variables
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Figure 5.4: Minimum time disposal: thrust directions
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5.2 Optimal fuel
The objective of the optimization presented in this section is to obtain, for both
the orbit change and the disposal, a set of control variables that leads to an
optimized fuel consumption. In this case the thrust throttle may vary in the
interval [0,1], so it becomes an optimization control variable together with the
three thrust directions {ur, ut, un}. As explained in section 4.5.2 there is not an
absolute minimum for fuel consumption, since it strongly depends on how much
additional time is accepted by the mission requirements. In the same section the
solution adopted for this work has been defined: the direct method is a minimum
fuel optimization (α = 0 → J = −mf ) and takes a Q-law minimum time trajectory
as initial guess. Therefore, for both maneuvers, the Q-law trajectory is the same as
the one given in input for the minimum time optimization, defined in Table 5.1.

5.2.1 Orbit change

An optimized solution through the direct trapezoidal collocation method has been
achieved for this scenario, using 900 mesh nodes. The state variables initial and final
values are presented in Table 5.7. The trajectories of the state and control variables
as a function of time are shown in Fig. 5.5 and Fig. 5.6, and the performance
results are summed up in Table 5.8.

Orbital
element

Initial
value

Final
value Unit

a 6928 7178 km
e 0.01 0.01 -
i 97.5977 98.6081 °
Ω 0 17.9592 °
ω 0 -56.5823 °
θ 0 67.0087 °
m 15 14.7213 kg

Table 5.7: Optimal fuel orbit change: initial and final state variables

As seen in Table 5.8, the solution of this case is particularly convenient since the
formulation of an optimal fuel problem, and the consequent use of the thrust throttle
as a control variable, not only lead to an expected reduction in fuel consumption
but also to a reduction in time of flight, whereas most of the time a saving of fuel
is related to an increase in time of flight.
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Figure 5.5: Optimal fuel orbit change: state variables
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Figure 5.6: Optimal fuel orbit change: thrust throttle and directions

PSOPT Q-law Improvement
ToF [h] 437.751 441.667 0.89 %
mfuel [kg] 0.2787 0.337781 17.49 %

Table 5.8: Optimal fuel orbit change: results

5.2.2 Disposal

Noticing the very slight differences between the final values of Ω and ω at the end
of the optimal fuel orbit change transfer and the respective values obtained for
the minimum time transfer, it is reasonable to assume the same initial values for
the disposal maneuver that starts after the 5-years period of on-orbit operations.
An option for the definition of the mass initial value is to choose it in accordance
with the final value of the first transfer, as done in the minimum time scenario.
However, the mass initial value is here considered the same as the initial mass of
the minimum time disposal maneuver, to more clearly visualize the comparison in
the performance results.

In this scenario, the optimization conducted through the direct trapezoidal
collocation method has converged to a solution using 1100 mesh nodes. The state
variables initial and final values are presented in Table 5.9. The trajectories of the
state and control variables as a function of time are shown in Fig. 5.7 and Fig. 5.8,
and the performance results are summed up in Table 5.10.
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Orbital
element

Initial
value

Final
value Unit

a 7178 6978 km
e 0.01 0.02866151 -
i 98.6081 98.6081 °
Ω 12.5416 24.4071 °
ω 23.1151 5.3514 °
θ 0 285.9769 °
m 14.6656 14.4919 kg

Table 5.9: Optimal fuel disposal: initial and final state variables

The results summed up in Table 5.10 show that the significant saving of fuel
is associated to a very slight increase in time of flight, so such a solution may be
really convenient if a trade-off between the two parameters is considered.

PSOPT Q-law Improvement
ToF [h] 274.671 273.5 -0.43 %
mfuel [kg] 0.1737 0.209167 16.96 %

Table 5.10: Optimal fuel disposal: results
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Figure 5.7: Optimal fuel disposal: state variables
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Figure 5.8: Optimal fuel disposal: thrust throttle and directions
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5.3 GMAT validation
In this section the focus will be on the validation of the set of control variables given
in output by the analyzed method. A method to validate the controls generated by
the Q-law algorithm is discussed and presented; however, the same procedure has
been tried on the PSOPT controls, but since no good results have been achieved
and further investigation on the solver functioning are needed, the validation of
the controls given by the optimization process is still underway.

In order to perform the validation of the Q-law generated set of controls, the
software General Mission Analysis Tool (GMAT), an open source space mission
analysis software developed by NASA [56], has been used. The two Q-law trajecto-
ries that provide the orbit change and the disposal maneuver, and that are used
as initial guesses for both minimum time and optimal fuel optimizations in the
previous sections, have been chosen as the transfers to validate. The two transfers
are presented in Table 1.2 and the Q-law parameters are shown in Table 5.1).
Significant results on the validation of these trajectories would allow to consider
validated the implementation of the Q-law algorithm and the definition of the
system and orbital dynamics model.

The goal is to prove that the control variables defined by using the chosen
perturbation model (J2 secular effects) produce the desired trajectory also in a
real scenario with long-period, short-period and secular effects of the considered
perturbations: in this case only J2 zonal harmonic effects are included. In order
to do so, the spacecraft model parameters as well as the initial values of orbital
elements have been imported in GMAT. Then, the control variables, that are the
three thrust directions in the RTN frame {ur, ut, un} and the thrust magnitude,
are enforced. However, it is crucial to note that each set of control variables given
in output by the Q-law is associated to a time instant and a true anomaly value:
in order to properly perform the validation in such a perturbed environment, it
is necessary to enforce these actions at the respective true anomaly values, and
not at the time instants. As a result, since the two compared dynamic models are
not the same, there will be a slight difference in final time between the trajectory
to validate and the validated GMAT solution, just like a subtle difference in true
anomaly would be generated if actions were enforced at the respective time instant.

5.3.1 Orbit change
The orbital elements evolution presented in Fig. 5.9 show that, imposing the thrust
controls as described above, the trajectories of the elements in the model to validate
follow the trajectories of the elements in a real perturbed scenario, modeled by
GMAT. Therefore, it is reasonable to consider validated the Q-law solution for this
case and the assumed dynamics model.
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Figure 5.9: Orbit change: GMAT validation on orbital elements evolution

5.3.2 Disposal

In Fig. 5.10 it is shown that, also for the disposal transfer, the evolution described
by the model to validate accurately follow the secular variation due to the thrusting
actions in a real perturbed scenario. Thus, the Q-law solution and the model
dynamics are validated for this case as well.
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Figure 5.10: Disposal: GMAT validation on orbital elements evolution
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Chapter 6

Conclusions

Analyzing the results obtained in Chapter 4 and in Chapter 5, it is clear that an
improvement on results can be obtained through the proposed approach, which
achieves an optimization employing a direct collocation method with the use of a
Q-law generated initial guess trajectory.

It is interesting however to finally sum up the performances of the two types of
optimization for the two transfer of the objective mission (section 1.3): the orbit
change optimized transfer is performed with a 1% reduction in time of flight and
fuel consumption employing a minimum time optimization (Table 5.3), whereas,
using the same initial guess, the optimal fuel problem exploit the thrust throttle
control to achieve a 17.49 % reduction of fuel consumption, even with a very slight
reduction in time of flight (Table 5.8). This represents a very convenient solution,
since generally a fuel consumption reduction requires an increase in time of flight,
as also seen in the effectivity cutoff mechanism described for the Q-law algorithm
(Fig. 3.5). The disposal maneuver optimization presents a similar behaviour: a
slight improvement in both time of flight and fuel consumption is achieved with a
minimum time optimization method (Table 5.6), while an optimal fuel problem
leads to a much wider improvement of 16.96% in fuel consumption at the cost of a
very subtle increase in time of flight with respect to the Q-law initial guess (Table
5.10).

Proceeding with the same reasoning discussed in section 4.5.2 and weighing up
the pros and cons of each optimization, it is sensible to say that an optimization on
fuel consumption, for these type of transfers with a Q-law generated initial guess,
seems to be more convenient in terms of a global result. It is however reasonable
to consider minimum time optimization, especially if a constraint on maximum
time of flight is specified, since it also leads to an improvement with respect to
the initial guess. Of course these results strongly depend on how the initial guess
is generated: as a matter of fact, they confirm that the Q-law mechanism is well
established for the generation of a rapid close to optimal minimum time trajectory.
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6.1 Future work
In this section some suggestions for future works are given to further improve the
accuracy of the proposed methods.

First of all, the implementation of RAAN and true anomaly phasing maneuvers,
introduced in section 3.1.3, would be relevant for this work [40][41][3]. The first one
is important especially when dealing with Sun-Synchronous orbits, since RAAN
value is essential to define how much the orbit is exposed to eclipses and sunlight
throughout the year: for example, dawn-dusk orbits are commonly designed to
maximize the exposure to sunlight, crucial for electric propulsion systems. The
second one is crucial when an optimized design of rendezvous maneuvers is desired.

Another significant addition to this work would be represented by the implemen-
tation of eclipses in the optimization procedure: as presented in Chapter 4, this
process may require a multi-phase problem implementation [20] and can lead to
more realistic results in terms of orbital elements evolution, time of flight and fuel
consumption. The possibility to implement an eclipse model in the optimization
process would consequently allow to exploit the eclipse model, discussed in section
2.4, in the Q-law algorithm, together with the effective symmetrical mesh refinement
(section 3.5.1).

The proposed method may also be generalized in order to perform an opti-
mization of longer trajectories, such as GTO to GEO transfers. In this case,
an optimization on Q-law weights becomes relevant, as seen in [20]: the Q-law
trajectory given as initial guess can be even closer to the optimal solution, so it
improves the performance of the proposed optimization, which strongly depends
on the accuracy of the initial guess. For this reason, Genetic Algorithms may be
implemented in order to perform the Q-law weights optimization [27][20].

Lastly, another important addition to this work would be the possibility to
consider a target on the argument of periapsis: an optimization may be achieved
for other type of trajectories, such as transfers to Molniya orbits [29], that are
commonly exploited for communications services and remote sensing coverage over
high latitudes thanks to their property of not having an apsidal precession (section
2.3.3).
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