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Abstract 

The design of reusable aerospace vehicles is a challenge that the 
aerospace industry has been pursuing for several years in order to 
reduce the cost of access to space and the environmental impact 
also in terms of orbital debris. The Space Rider program of the 
European Space Agency (ESA) falls within the framework of such 
initiatives. Among the greatest challenges for this type of mission is the 
design of the Guidance, Navigation & Control (GNC) subsystem for the 
atmospheric re-entry phase. This subsystem is responsible for 
collecting and processing data from onboard sensors so that the state 
of the spacecraft can be used to generate a feasible trajectory in 
compliance with mission requirements. The requirements for this kind 
of mission are generally expressed in terms of landing accuracy and 
touchdown velocity with further possible constraints related, for 
instance, to the presence of no-fly zones. The final descent and 
landing phase of the Space Rider mission consists of an autonomous 
flight under parafoil that must guarantee a smooth and precise 
landing. The GNC subsystem plays a key role in ensuring adequate 
performance for a safe landing that does not result in damage to the 
vehicle and allows it to be reused for subsequent launches. This task is 
quite challenging due to the limited control authority provided by the 
parafoil and the high sensitivity to environmental conditions. In 
particular, a medium-large parafoil is characterized by an airspeed of 
10-20 m/s, which may be of the same order of magnitude as the 
windspeed generating high uncertainty in trajectory generation and 
tracking. In addition, no propeller or thrusters are available for flight 
under parafoil, so the actuation is based exclusively on the 
asymmetric and symmetric air-brake deflection used for lateral and 
vertical control respectively. A further major limitation for trajectory 
generation is the very slow dynamics of the parafoil in the latero-
directional plane, which results in a limited maximum turning rate that 
for large parafoils can be in the order of 5-10 deg/s. Considering the 
numerous constraints that characterize parafoil re-entry, one of the 
most critical stages is what is commonly referred to as the Terminal 
Guidance (TERGUID) phase. This is the final part of the descent where 



 

 

the vehicle performs the final approach to the designated landing 
point (LP) trying to counterbalance the unknown effect of the wind.  

The study presented in this thesis was developed at the AOCS/GNC 
department of SENER Aeroespacial (Madrid, Spain) and the objective 
is to design a  complete solution for managing the Terminal Guidance 
phase of a Space Rider type case. This includes a guidance algorithm 
to generate an optimal solution for the TERGUID trajectory, a path 
tracking procedure, and a guidance logic that allows for a correct 
implementation within the whole GNC software. For trajectory 
generation, the approach presented in [1] was selected. The authors 
apply a direct method based on inverse dynamics in the virtual 
domain to select the optimal trajectory given a specific two-point 
boundary-value problem (TPBVP). This study proposes several 
modifications to the aforementioned method to adapt the algorithm 
to the specific case of Space Rider. The efficiency of such an algorithm 
allows frequent recalculation of the optimal trajectory guaranteeing 
the mitigation of the effects of the unknown wind. In addition, several 
possible approaches for trajectory tracking have been investigated, 
including a simple PID controller and a more accurate Model Predictive 
Control. The optimal terminal guidance algorithm has then been 
implemented within the 6DOF simulator developed by SENER 
Aeroespacial to verify its performance in terms of landing accuracy 
through a series of Monte Carlo simulations. For this purpose, it 
became necessary to plan a precise guidance strategy and design 
an ad hoc logic to manage the terminal guidance phase and the 
associated submode transitions.   

The results obtained demonstrated an excellent functioning of the 
guidance algorithm for the proposed problem especially when 
supported by a robust logic that takes into account various potential 
scenarios in terms of boundary conditions and environmental 
disturbances. 
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1. Introduction 
The purpose of this work is the analysis of possible solutions applicable 
to the design of the Guidance, Navigation, and Control (GNC) 
subsystem for the final phases of an autonomous flight under parafoil. 
The framework considered for this study is the one of the Space Rider 
mission conducted by the European Space Agency (ESA). In particular, 
this study is aimed at developing an effective guidance strategy for 
managing the delicate phase of the approach to the designated 
landing point, also referred to as terminal guidance (TERGUID). Such a 
strategy involves the design of a guidance algorithm capable of 
determining the optimal trajectory online, a specific control technique 
for trajectory tracking, and a dedicated logic for implementing these 
elements within the complete GNC software. Several challenges 
characterize this type of problem. Among them are certainly the 
strong influence of atmospheric conditions in terms of wind, the low 
control authority provided by parafoil systems, and the stringent 
requirements for landing accuracy. 
This research was carried out at the department of AOCS/GNC of 
SENER Aeroespacial, Madrid, Spain. Throughout the entire period in 
which the present study was conducted, the author worked in the 
aforementioned department as an AOCS/GNC Engineer. Although 
SENER Aeroespacial has provided technical support and the 
opportunity to use the simulator developed in-house for the Space 
Rider project, the work described in this thesis is to be considered solely 
as a student project with no commercial purpose and thus falls within 
the legal framework of student activities. All information provided in 
this dissertation is not related to the algorithms developed by SENER 
Aeroespacial for the Space Rider program, but rather possible 
alternative solutions applicable to that mission. Any reference to SENER 
Aeroespacial proprietary algorithms for the Space Rider flight under 
parafoils will be specifically referred to by the abbreviation SR-PGNC. 
Otherwise, the generic term PGNC will be used. 
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1.1. Thesis Overview 

The thesis is divided into the following chapters: 

• Chapter 1:   

A brief introduction including scope of work, description of Space 
Rider mission, and role of SENER Aeroespacial in order to provide an 
overview of the working background. 

• Chapter 2:  

Description of the mission sequence for the Space Rider re-entry 
mission with a focus on the GNC subsystem and the hardware 
available to that subsystem. 

• Chapter 3: 

Derivation of parafoil-payload system models with different DOF 
used for the development of PGNC algorithms. Model analytical 
and numerical linearization for control purposes. 

• Chapter 4: 

Description of the guidance problem at hand (TPBVP) and the 
algorithm selected for optimal trajectory generation with a focus 
on the modifications applied to adapt it to the Space Rider case. 

• Chapter 5: 

Overview of possible approaches for trajectory tracking, including 
PID, Model Predictive Control (MPC), and Linear Quadratic Regulator 
(LQR). 

• Chapter 6: 

Description of the strategy and the logic implemented for the 
terminal guidance phase to introduce the algorithms developed in 
the previous chapters within the complete GNC software. 

• Chapter 7: 

Main results of the Monte Carlo simulations carried out with the 
6DOF simulator developed by SENER Aeroespacial. 

• Chapter 8: 

Conclusions on the current state of the work, challenges faced, and 
suggestions for further investigation and improvement. 
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1.2. Space Rider Mission 

The Space Reusable Integrated Demonstrator for Europe Return 
(Space Rider) program was approved in December 2016 by the 
European Space Agency (ESA) as a follow-up to the Intermediate 
eXperimental Vehicle (IXV) mission that had flown in February 2015. 
Space Rider is an uncrewed spacecraft that “aims to provide Europe 
with an affordable, independent, reusable end-to-end integrated 
transportation system for routine access and return from low orbit. It 
will transport payloads for an array of applications, orbit altitudes, and 
inclinations” [3]. The objective of the program is to launch a vehicle 
capable of remaining in low Earth orbit (approximately 500 Km) for 
more than two months in order to conduct scientific experiments in 
microgravity and with radiation exposure (free flyer), educational 
activities, or in-orbit tests for demonstration and validation of new 
technologies. Thus, the purpose of the mission is also to provide 
access to space to entities and companies not directly involved in the 
aerospace sector. This is made possible by the presence of a Multi-
Purpose Cargo Bay (MPCB) with a volume of 1200 liters capable of 
carrying up to 800 kg providing a power service for up to 600 Watt 
along with thermal, data-handling, and telemetry capabilities [4]. The 
spacecraft will be launched from ESA’s Spaceport in Kourou, French 
Guiana, and will be able to perform a controlled re-entry with a ground 
landing on European soil. The design of the entire vehicle is focused on 
the ability to perform smooth reentry that allows the spacecraft to be 
reused for multiple flights. The re-entry phase is particularly delicate 
not only because of the challenges related to thermal protection 
during atmospheric flight in hypersonic and supersonic regimes but 
also because of the performance required for subsonic flight, 
especially related to safe landing and reusability of the spacecraft. The 
Space Rider project, however, can rely on knowledge gained from the 
IXV program, from which it inherits the design of a good number of 
subsystems. An innovation compared to the IXV, is the final flight under 
parafoil, the design of which was tackled from scratch and is a key part 
of the re-entry phase. Space Rider was developed to be fully 
integrated with the European launcher Vega-C, and the first flight is 
scheduled for 2023. 



Introduction 
  

 

 4  

 

 

Figure 1-1: Space Rider rendering CREDIT: ESA-Jacky Huart [5] 

This Space Rider spacecraft (shown in Figure 1-1) is composed of two 
different modules: 

• AVUM Orbital Module (AOM) 
• Re-entry Module (RM)  

The service module AOM of Space Rider consists of a modified version 
of the Vega-C Attitude Vernier Upper Module Plus (AVUM+) with the 
addition of the AVUM Life Extension Kit (ALEK). AVUM+ was designed by 
the Italian company Avio to place the launcher payload into orbit by 
providing propulsion and attitude control capabilities. Likewise, the 
AOM performs the attitude control and all the orbital maneuvers 
required until the separation of the two modules during the re-entry 
phase. The service module also ensures electrical power supply to the 
SR spacecraft for the entire duration of the orbital mission using a two 
wings deployable solar array as the energy source. Finally, the AOM 
ensures standard data link and thermal control services [6]. The re-
entry module RM is a lifting body based on the design of IXV and is 
equipped with the Multi-Purpose Cargo Bay which contains the 
mission payload. This is the reusable part of the spacecraft that during 
the reentry phase separates from the AOM to perform a controlled 
atmospheric flight culminating in the precision landing guaranteed by 
a parafoil. On the other hand, the AOM performs a safe destructive re-
entry in open ocean waters. 
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A possible mission sequence for Space Rider is presented in Figure 1-2. 
It shows an initial launch phase with Vega-C and ascent to the desired 
LEO orbit at an altitude of about 400 km. After the commissioning 
phase, which is completed thanks to AOM support, the core stage of 
the mission begins, the orbital phase. The first part of that phase 
(about 4 weeks) is the Microgravity Operational Mode in which the 
spacecraft is characterized by free drift motion in which attitude is not 
kept constant and the control effort is minimized [6]. This is followed by 
the Space Observation and Earth Observation phases, each lasting 
about two weeks. For the former, the typical attitude mode is Bay to 
Zenith while in the latter it is Bay to Nadir. In any case, for all operational 
modes listed above, the pointing to the sun of the solar arrays is 
ensured to guarantee sufficient energy supply. Next, the de-orbiting 
phase begins. The AOM provides a final boost to the RM before the 
separation of the two modules. Subsequently, the AOM begins the 
Collision Avoidance Maneuvers (CAM) phase, which allows safe 
reentry into oceanic waters. On the other hand, the RM begins the 
coasting phase which is followed by the descent & landing phase. For 
more details on the re-entry phase, please refer to Section 2.1 

 

Figure 1-2: Space Rider typical mission profile 
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1.3. SENER Aeroespacial 

On December 9, 2020, “Thales Alenia Space (Thales 67%, Leonardo 
33%), and AVIO as co-contractor, signed a contract with the European 
Space Agency (ESA) for the development of the automated reusable 
Space Rider transportation system, designed for deployment by the 
new Vega C light launcher into low Earth orbit (LEO). The total worth of 
the contract is 167M€” [7]. In May 2021, Thales Alenia Space, as the 
design responsible for the IXV-derived Re-entry Module, signed a 
contract with SENER Aeroespacial for the design of the GNC subsystem 
of the RM. Elecnor-Deimos and Deimos-Space Romania operate as 
subcontractors for this project. SENER Aeroespacial, as design authority 
for the full GNC of the Space Rider Re-entry Module, is in charge of 
coordinating all the activities of the entities participating in the GNC 
consortium in addition to the actual development of the software 
based on the heritage of IXV. Among others, SENER Aeroespacial is 
responsible for developing the GNC algorithms for the flight under 
parafoil (SR-PGNC) that was not present for the IXV mission. For this 
purpose, the company leverages a complex infrastructure to perform 
simulations and test campaigns. This tool has been developed in the 
MATLAB/Simulink environment and is named Design Simulation Facility 
(DSF). The DSF ensures quick setup of different types of simulations with 
different scenarios (including, for instance, Monte Carlo simulations) 
through a user-friendly interface. The simulator includes both a 3DOF 
and a 6DOF model. The latter is the simulator used within the scope of 
this work and henceforth we will refer to it simply as DSF. The tool also 
contains a set of built-in post-processing functions that enable 
comprehensive analysis of the results obtained from simulations.
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2. Space Rider Re-entry Phase 
This chapter describes a possible mission profile for the reentry phase 
of a Space Rider-type spacecraft. This operational sequence is not 
intended to represent the exact one planned for the Space Rider 
mission but is intended to provide an overview of the main re-entry 
phases useful for contextualizing the present work. An overall picture 
of the type of hardware and software architecture generally used for 
this type of mission is also provided.  

2.1. Re-entry Mission Profile 

This section describes the typical mission sequence for a mission such 
as Space Rider with a special focus on the flight phase under parafoil, 
which is the one being examined in this work. Figure 1-2 shows the 
aforementioned sequence. The re-entry phase begins with a de-
orbiting boost performed on the RM by the AOM just before separation. 
This maneuver allows the RM to insert itself into orbit with a specific 
perigee that ensures that the desired landing site is reached. The RM 
remains passive until Coasting begins. The objective of this phase is a 
controlled loss of altitude by maintaining a given attitude. Coasting 
must ensure the achievement of a specific final condition in terms of 
position, velocity, and attitude that coincides with the initial condition 
designated for the Entry phase. In the latter SR goes through a critical 
phase from the aerothermodynamic point of view. Around 120-100 km 
the atmosphere begins to become denser and the spacecraft, which 
is initially traveling at hypersonic speed, is slowed by its impact with it. 
This phenomenon generates shock waves and a plasma layer around 
the aircraft that prevents electromagnetic wave transmission. This 
proves to be critical from the point of view of the GNC subsystem 
because there is a time window (generally indicated between 100 and 
50 km of altitude) in which there is a blackout of the Global Positioning 
System (GPS) signal and telemetry data transmission. Once the 
supersonic low regime is reached (Mach equal to about 1.6), Terminal 
Area Energy Management (TAEM) phase begins. Here SR follows a 
specific trajectory designed to transform potential energy into kinetic 
energy going from supersonic to subsonic regime. When Mach 
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reaches a certain threshold (usually around 0.7), the Descent and 
Landing (D&L) phase is triggered. This can be split into two different 
main stages: 

• Drogue parachute deceleration 
• Parafoil flight 

The first part of the D&L is passive. A circular drogue parachute further 
slows down the spacecraft in order to avoid unwanted aerodynamic 
effects when opening the parafoil. Parafoil deployment coincides with 
the beginning of the final active phase of the mission. The flight under 
parafoil is certainly a particularly critical phase of the re-entry mission 
as it is subject to stringent requirements in terms of safety and 
accuracy. The entire design of the Space Rider program is based on 
the reusability of the RM thus, non-compliance with the landing 
requirements may jeopardize the entire program. The challenges 
associated with flying under parafoil are mainly related to the strong 
influence of the effect of disturbances and uncertainties (such as wind 
and sensor errors). In addition, the dynamics of large parafoils are in 
general quite slow and the control authority provided by them is rather 
low. Moreover, there are strict requirements for accuracy at landing 
both in terms of position precision and velocity components at 
touchdown. The latter are essential to reduce the risk of damage 
caused by ground impact. 

 

Figure 2-1: Space Rider possible re-entry mission profile 
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The main stages of the parafoil descent, which is the one examined in 
this thesis, are now outlined. The phases described here do not 
represent those adopted by SENER Aeroespacial for the Space Rider 
mission but are those typically employed for flights of this nature. The 
main purpose here is to place the Terminal Guidance phase, i.e., the 
subject of this study, within a realistic mission sequence so as to 
understand what its purpose is and the boundary conditions to be 
considered. In Figure 2-2 the main stages of the flight are shown, 
starting from the deployment of the parafoil to the touchdown instant 
near the landing point. The reference system used in the figure is Local 
Vertical (LV) centered at the Landing Point (LP) for which, as described 
in detail in Section 3.3.1, the x, y, and z axes point north, east, and down, 
respectively. Henceforth, the different phases of the parafoil flight will 
also be referred to as "submodes" since each of them is usually 
associated with a specific submode of the Parafoil GNC (PGNC) 
system.   

 

Figure 2-2: PGNC typical sequence 
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The main objectives of the PGNC are: 

• Landing in the vicinity of the LP with a certain precision 
• Minimization of velocity to touchdown 

An accuracy requirement of 150 meters from the LP is considered in 
this work. The approach used for the design of PGNC submodes 
associated with these phases is generally waypoint-based for most of 
the flight. Algorithms are thus designed to guide the spacecraft along 
a trajectory that connects a series of waypoints selected a priori as 
reference. The exception is generally the Terminal Guidance (TERGUID) 
phase for which different types of approaches can be selected. The 
one investigated in this work, for instance, is a path-based algorithm 
that relies on the continuous generation of a reference optimal 
trajectory given specific boundary conditions.  

The flight sequence under parafoil can be broken down into: 

• Parafoil deployment and trim:   
The drogue parachute is jettisoned and parafoil deployment takes 
place, which is associated with an inflation period in which the 
ram-air parachute goes from the stowed configuration within the 
RM to the nominal flight configuration. There is then a dynamic 
transition in which the payload-parafoil system compensates for 
the aerodynamic effects associated with parafoil deployment until 
the trimmed flight condition is reached in which the angular 
moments applied to the system are null. 

• Waypoint Acquisition:   
This is the first actual phase of PGNC i.e., the first submode. RM 
heads to the first of two waypoints (WP1). This reference point is 
chosen based on several factors including the geographic features 
of the landing site, the planned position for parafoil deployment, 
and the possible presence of no-fly zones (NFZ). They are generally 
related to security concerns such as the presence of buildings. In 
Figure 2-2, as an example, a couple of no-fly zones are shown in 
orange. 
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• Loiter:   
This submode involves a major loss of altitude following a spiral 
trajectory centered in WP1. Once enough altitude is lost, the 
triggering for the next phase is performed. This allows potential 
energy to be lost in a controlled manner while keeping the vehicle 
within a narrow ground area. 

• Homing:   
This is a maneuver similar to Waypoint Acquisition in which the 
PGNC guides the RM to the second waypoint (WP2). Again, the 
choice of waypoint depends on many parameters. For the purpose 
of this study, WP2 is considered to be coincident with the LP. This 
choice allows the RM to remain in close proximity to the LP when the 
Terminal Guidance phase is triggered so as to favor the presence 
of a solution for the TERGUID trajectory generation. 

• Energy Management:   
The Energy Management (ENEMNG) submodule performs a 
function quite similar to that of the loiter, namely, to lose altitude in 
a controlled manner. The difference with respect to the loiter lies in 
the exit conditions. They depend on the strategy adopted for 
TERGUID (for the present work, they are presented in Section 6.1). 

• Terminal Guidance:   
This is the core phase of parafoil flight as well as the most critical 
from a PGNC design perspective. If the previous phases were based 
on the acquisition of specific Earth-fixed waypoints, here the task is 
to head the RM toward the LP taking into account the final desired 
direction and compensating for all disturbance and uncertainty 
effects. In addition, not too restrictive time margins are allowed for 
the earlier phases whereas TERGUID is characterized by very strict 
time limitations. This is due to the fact that since it is the final phase 
of flight it must point exactly to the LP. Therefore, most of the 
accuracy requirements depend on it. For a better understanding, 
considering a horizontal velocity of 15 m/s, a time error of only 5 
seconds leads to a horizontal distance of about 75 meters which 
can lead to non-compliance with the landing accuracy 
requirement. In addition, the possible presence of wind, which can 
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have an order of magnitude of 5-10 m/s, can further worsen the 
performance.  The wind is indeed the major hurdle for the TERGUID 
phase. Its effects are unpredictable and the parafoil dynamics 
tend to be very sensitive to them. In some cases, such as the one 
under investigation in this work, the ground station provides a wind 
table generally based on data acquired shortly before the start of 
the re-entry mission. This table allows for the potential effects of 
wind to be accounted for, but with an accuracy that is always 
limited by the temporal variability of wind. In this study, however, 
the wind direction on the ground at LP will be considered as a 
known fixed parameter. This aspect is crucial to the development 
of TERGUID algorithms. Indeed, one of the mission requirements is 
to minimize velocity at touchdown, which results in the need for an 
upwind landing in order to minimize the ground speed.  For this 
reason, TERGUID algorithms often make use of the Landing Point 
Frame (LPF), an LP-centered reference system with x-axis direction 
coincident with that of the wind on the ground. Please refer to 
Section 3.3.1 for more details about LPF. There are several possible 
types of strategies for the TERGUID submode but generally, all fall 
into the path-based category, i.e., those relying on the continuous 
online computation of a trajectory that satisfies the conditions of 
the problem. 

• Final Corrections:   
Right after Terminal Guidance, sometimes a short corrective phase 
is included. During this phase, some final corrections can be made 
in terms of direction at landing, horizontal distance to be traveled, 
and lateral velocity, that is, the component of the horizontal 
groundspeed perpendicular to the x-axis of the Body-Fixed frame 
(BF). This provides a minimum margin of accuracy to the TERGUID.  

• Flare:   
The Flare is the last maneuver before touchdown. It consists of 
instantaneously commanding maximum symmetric deflection to 
take advantage of the dynamic response of the parafoil to 
minimize the vertical velocity at touchdown. This phase is generally 
associated with an earlier Pre-flare maneuver in which the parafoil 
is stabilized to prepare it for the flare. 
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2.2. GNC Physical Architecture 

This section briefly describes the typical hardware available to the 
GNC subsystem during the re-entry phase. The available sensors and 
actuators are shown in Table 1 [8]. 

Type Unit Number Comments 

Sensor GPS 2  

Sensor IMU 2  

Sensor RADALT 2  

Sensor Star Tracker 2 Only on AOM 

Actuator Elevon 2  

Actuator Thruster 4  

Actuator Parafoil 1  

Table 1: Summary of sensor and actuators for the re-entry phase 

Concerning sensors, the general presence of double redundancy is 
observed. The GPS receiver is intended to provide the horizontal 
position of the RM but also its altitude for a certain portion of the re-
entry phase. In fact, the radar altimeter (RADALT), equipment of 
aeronautic provenance, can provide sufficiently accurate altitude 
measurements below a certain altitude threshold, which generally 
varies between 750 and 1500 meters (about 2500 and 5000 feet). The 
RADALT then comes into operation in the final part of the flight under 
parafoil. A key element regarding GPS is the presence of a blackout 
temporal range between 100 and 50 km due to aerothermodynamic 
phenomena (see Section 2.1). In addition, partial loss, or degradation 
of performance due to the vibration environment may occur during 
TAEM. The GNC must therefore take into account these elements.  
Regarding the orientation of the RM in space, two IMU units in hot-
redundancy are installed on board. The latter typically provide 
measurements of acceleration, angular velocity, and attitude through 
the use of gyroscopes and accelerometers. For the purpose of attitude 
determination during the orbital phase, there are also two star trackers 
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units that are, however, mounted on the AOM. Therefore, the data 
provided by the star trackers are only available in the very early phase 
of re-entry where the separation between AOM and RM has not yet 
occurred. They can be used, for instance, for computations related to 
the boost maneuver performed by the AOM on the RM. An important 
aspect of the PGNC design is the total absence of airspeed sensors 
such as Pitot tubes. As a result, no direct measurement of airspeed is 
provided, which must therefore be estimated indirectly by navigation 
making use of data given by the other sensors. Furthermore, wind 
speed, given by the difference between airspeed and ground speed, 
likewise can only be estimated indirectly. However, for the purpose of 
the PGNC, the most important information is the one concerning the 
wind trend below the current flight altitude. This information is provided 
by the ground station through the wind table and enables the 
prediction of the effect of wind in terms of displacement from the 
conditions with the total absence of wind.  
As for the actuators, the RM is equipped with a pair of elevons inherited 
from IXV with some upgrades made using data collected during that 
mission. A similar discussion applies to thrusters. The RM will in fact 
mount the same type of unit but with a modified configuration based 
on lessons learned from the IXV mission. Both elevons and thrusters 
are disabled during the entire flight under parafoil, which is 
unpowered. While the drogue parachute plays a passive role without 
any kind of control authority, the parafoil constitutes a true actuator. In 
fact, the parafoil can be controlled by the PGNC through a deflection 
of the lines that connect it to the RM generating a dynamic response 
that is described in more detail in Section 3.2. However, the absence of 
other actuation systems during the flight under parafoil makes the 
control authority very low, which is one of the most impactful 
restrictions in the design of the PGNC. 
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2.3. PGNC Functional Architecture 

This section briefly describes the architecture of a typical Parafoil GNC 
(PGNC). Familiarization with its structure is required to understand the 
logic developed for the Terminal Guidance phase described in Section 
6.3. Depending on the design chosen, the PGNC may be integrated 
within the complete GNC code and considered as a standard 
submode or constitute a separate segment activated only during the 
flight phase under parafoil. In the latter case, which is the one 
considered here, the PGNC may have a different structure than the 
GNC. The architecture of the Parafoil GNC examined in this study is that 
shown in Figure 2-3. The hardware part consists of actuators and 
sensors. The latter provide the PGNC with flight data that is received 
and processed by the navigation (PNAV). The navigation output, 
describing the complete state of the system, is then sent to the 
submode manager (PMNG), which checks the condition of the running 
submode and verifies whether the conditions for triggering the next 
submode are met. System status information is also sent to guidance 
(PGUI) and control (PCON). Guidance algorithms aim to calculate the 
reference trajectory. These algorithms are naturally dependent on the 
flight phase, meaning the active submode. The output of the PGUI, in 
the case of the design under consideration, consists of only two 
elements: 

• Heading Rate (HDR) 
• Flight Path Angle (FPA) 

The output values of HDR and FPA are the target values to be selected 
to follow the intended trajectory, controlling the vehicle in the latero-
directional plane and longitudinal plane, respectively. These values are 
sent to the control, which processes them into appropriate command 
signals to be sent to the actuators. The input required by the latter can 
be of the type of symmetric/asymmetric deflection or left/right line 
deflection. The PCON must ensure that the values required by the 
guidance are physically feasible taking into account the dynamics of 
the system. This often requires a linearized model of the payload-
parafoil dynamic system. Section 3.6 discusses the topic of model 
linearization. The commands derived from the control are then sent to 
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the actuators, which with their action will influence the plant. These 
variations will then be detected by sensors and taken into account by 
navigation. The PGNC described here thus provides a classic close-
loop control. The presence of system state feedback is certainly 
necessary to ensure compliance with the requirements especially 
considering the strong impact of uncertainties and disturbances.  

 

Figure 2-3: PGNC architecture 

When implementing a simulator such as the Design Simulation Facility 
(DSF), it is required to take into account all the elements described 
above. For this reason, it is required to develop appropriate models to 
simulate the behavior of the hardware (sensors and actuators) and 
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the dynamic response of the system (plant). The latter is implemented 
through the so-called Dynamics, Kinematics, and Environment (DKE). 
Some possible models that can be employed for this purpose are 
described in Section 3.5.  
This study, however, focuses on the development of some possible 
solutions to be adopted for the PMNG, PGUI and PCON applied 
specifically to the Terminal Guidance phase. These elements, together 
with PNAV, collectively constitute the PGNC software. A crucial element 
in the development of such software is the CPU load budget, especially 
in the space sector where hardware with low computational capability 
is employed. One impactful factor for CPU load is the operating 
frequency. Guidance is generally the component with the highest 
computational cost, so it is common practice to allocate it a lower 
frequency compared to the remaining functions. The following 
frequencies were considered for this study: 

• PGUI frequency:     2.5 Hz  
• PGNC frequency:   25 Hz 

The use of different frequencies for PGNC functions leads to the need 
to develop special logic to manage their execution over time. Chapter 
6 discusses the approach used for the algorithms developed in this 
study. 

 

 

Figure 2-4: PGNC frequencies 
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3. Parafoil Dynamics 
This section provides a brief description of how to derive and linearized 
a dynamic model of the parafoil outlining the main steps and the 
assumptions made.  

3.1. Autonomous Precision Aerial Delivery Systems 

Precision aerial delivery systems (PADS) generally refer to aerospace 
systems designed to deliver airborne payloads while meeting specific 
requirements that depend on the type of mission. Among these, there 
are simple systems such as round canopies that allow uncontrolled 
re-entry at a constant rate of descent, or more complex systems such 
as parafoil parachutes. The latter guarantee a re-entry with controlled 
gliding and a certain degree of steerability. The first such systems were 
introduced in the first half of the 1960s. In the following years, the wide 
success of this technology, especially in military applications, led to the 
rapid development of a rather standard architecture consisting of a 
ram-air parafoil controlled by electrically driven actuators. Compared 
with an aircraft, this kind of system is generally devoid of propulsion 
systems and thus exhibits limited actuation capacity in terms of range 
of motion and dynamics speed. Despite this, these devices allow 
autonomous controlled re-entry by means of the design of a suitable 
GNC subsystem. GNC provides online trajectory planning based on 
data from sensors and in some cases on information sent from the 
ground station. There are multiple challenges to be faced in the 
development of such a subsystem. PADS are generally required to 
meet stringent requirements in terms of landing accuracy and 
touchdown velocity, taking into account disturbances such as wind, 
which can have a velocity of the same order of magnitude as the 
parafoil airspeed.  
Space Rider makes use of these kinds of systems for its final descent 
and landing phase. Another pivotal project that utilized parafoil 
parachute was NASA's X-38 program. Developed since 1995, despite its 
cancellation in 2022 due to budget cuts, X-38 has ensured the 
collection of a large amount of experimental data obtained through a 
long series of tests.  
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3.2. Parafoil Physical Operation 

The parafoil is controlled utilizing strokes that are applied through a 
system of winches. This system is able to convert the signal from the 
control input of GNC into a command to the parafoil lines. Two types 
of command can be applied to the parafoil: 

• Symmetric deflection  
• Asymmetric deflection  

The symmetric command  of the lines provides control in the 
longitudinal plane with an effect on the Flight Path Angle (FPA), while 
the asymmetric command guarantees control in the latero-
directional plane through the heading rate (HDR). It is noted that 
hereafter, unless otherwise stated, FPA and HDR refer to the Flight Path 
Angle and Heading Rate relative to the airspeed vector i.e., FpaAir and 
HdgAir, respectively (see Section 3.3.2 for further details). Although the 
PGNC works with symmetric and asymmetric stroke commands (  and 

), the input to the actuators must be translated into left and right 
strokes (  and ). A simplified scheme of the operation of the parafoil 
commands is shown in Figure 3-1 . 

 

Figure 3-1: Left to right, symmetric and asymmetric deflection 
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The control authority provided by the parafoil system is generally very 
limited and usually, for large parafoils, ensures a maximum HDR on the 
order of 5-10 deg/s. Longitudinal control, in the same way, is able to 
provide rather limited vertical velocity variations. It is also important to 
highlight that longitudinal and lateral control authority are mutually 
dependent. Hence, set a certain value of symmetric deflection 
(associated with a specific value of FPA) there will be a definite range 
of HDR values achievable with the asymmetric control. This concept is 
clearly expressed in Figure 3-2. Such a figure can be obtained by 
running a series of open-loop simulations in which, as the symmetric 
deflection (hence the FPA) varies, the symmetric deflection is also 
varied along the entire range of available deflections observing what 
value of HDR is obtained. This yields a map of the possible HDR values 
available once the FPA value is fixed. The values shown are those of a 
typical large parafoil (of the same type as that used by SR). Each point 
on the map corresponds to a pair of symmetric (𝛿𝑠) and asymmetric 
(𝛿𝑎) deflection values. All in-play values depend on parafoil dynamics 
but also the mass of the parafoil-payload system as well as air density. 
Varying these parameters results in a new map associated with 
different values of 𝛿𝑠 and 𝛿𝑎 . The relationship of FPA and HDR with the 
asymmetric deflection command is shown in Figure 3-3 by adding 𝛿�̅� 
as a third dimension to the graph in Figure 3-2, where 𝛿�̅� denotes the 
nondimensional asymmetric deflection:  

 
(1) 

It becomes clear that a trade-off is needed between the available 
control authority in terms of FPA and HDR. During the Terminal 
Guidance phase, for instance, it may be convenient to narrow the 
range of available FPAs (thus of ) in favor of expanding the range of 
HDRs. The low control authority provided by the parafoil is indeed one 
of the major challenges in PGNC design, especially for the Terminal 
Guidance phase. The TERGUID algorithms must in fact be able to 
generate a suitable trajectory taking into account the limitations in 
terms of HDR that severely restrict the spectrum of available paths. The 
maximum HDR constitutes a key design parameter (see Chapter 4).  
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Figure 3-2: Command domain in terms of FPA and HDR 

 

Figure 3-3: Relation HDR-FPA-Asymmetric deflection 
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3.3. Basic Definitions 

This section discusses the basic definitions and fundamentals 
required for the derivation of the dynamic model of the parafoil. 

3.3.1. Reference Frames 

To derive the parafoil dynamic model and in general for the scopes of 
this work, it is first necessary to define the set of right-handed 
reference frames listed below. 

• Local Vertical Frame: 

The Local Vertical (LV) frame is north-east-down (NED) Earth-fixed 
reference system with the origin in an arbitrary point on the ground 
and the axes  (or ) defined as follows: 

: Positive towards the true North along local meridian 
: Positive towards the East 
: Positive downwards along the ellipsoid Earth model normal 

• Navigational Frame: 

The Navigational Frame (NF) has the same orientation as LV, with the 
origin placed in the center of mass of the system (CoM) and axes: 

: Positive towards the true North along local meridian 
: Positive towards the East 
: Positive downwards along the ellipsoid Earth model normal 

• Landing Point Frame: 

The Landing Point Frame (LPF) is a coordinate system with the origin 
on the ground at the landing point (LP). The orientation of the axes 
depends on the direction of the horizontal component of the 
windspeed at LP (ground level). The axes are defined as follows: 

: Negative in the direction of the horizontal windspeed at LP 
: Positive direction to comply with the right-hand rule 
: Positive downwards along the ellipsoid Earth model normal 

 



Parafoil Dynamics 
  

 

 23  

 

• Body-Fixed Frame: 

The Body-Fixed (BF) frame is fixed with respect to the nominal 
geometry of the vehicle with origin in the CoM of the system. The x 
and z axes are contained in the symmetry plane of the system while 
the y axis is perpendicular to it. The direction of the axes is 
determined as follows: 

: Positive towards the nose of the vehicle 
: Positive direction to comply with the right-hand rule 
: Positive toward the lower part of the vehicle 

• Air-Path Frame: 

The Air-Path Frame (AF) is a reference frame with origin in the CoM 
of the system and orientation associated with the direction of the 
airspeed vector according to the following definitions: 

: Positive in the same direction as the airspeed vector 𝒗𝑎 
: Positive direction to comply with the right-hand rule 
: Positive downwards, contained in the symmetry plan 

• Canopy Frame: 

The Canopy Frame (CF) is a body-fixed reference frame with origin 
in the CoM of the parafoil system. The x and z axes are contained in 
the symmetry plane of the system while the y axis is perpendicular 
to it. The direction of the axes is determined as follows: 

: Positive forward, parallel to the parafoil aerodynamic ref. line 
: Positive direction to comply with the right-hand rule 
: Positive towards the RM  

Taking into account the fact that the parafoil model is used for the final 
stages of the descent and landing phase, some simplifications can be 
made due to limited variation in latitude and longitude throughout the 
entire trajectory and the short duration of the flight (the D&L phase 
under parafoil can typically take around 10-20 minutes). Under these 
assumptions, it is possible to consider LV as inertial and approximate 
the Earth as a flat surface.  
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Table 2 lists the reference systems described above and the related 
nomenclature, while Figure 3-4 offers a simplified visual representation 
of them. 

Name Abbreviation Symbol Axes nomenclature 

Local Vertical Frame LV LV  or  

Navigational Frame NF n  

Landing Point Frame LPF LPF 

Body-Fixed Frame BF b 

Air-Path Frame AF a 

Canopy Frame CF c  

Table 2: Reference frames nomenclature 

 

Figure 3-4: Reference frames simplified representation 

3.3.2. Frame Rotations 

This section describes the rotations between the major reference 
frames and the angles associated with them. Each set of angles will 
uniquely define the relative orientation between two specific reference 
systems. Listed below are the main reference frame transformations.  
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• Transformation:  BF → LV/NF  

The rotation from Body-Fixed Frame (BF) to Local Vertical (LV) or 
Navigational Frame (NF) is given by the following Euler 321 sequence: 

3)  :  yaw angle 
2)  :   pitch angle 
1 )  : roll angle 

• Transformation:  BF → AF  

The rotation from Body-Fixed Frame (BF) to Air-Path Frame (AF) is 
given by the following Euler 32 sequence: 

3)  :  angle of attack 
2)  :   sideslip angle 

 

• Transformation:  AF → LV/NF  

The rotation from Air-Path Frame (AF) to Local Vertical (LV) or 
Navigational Frame (NF) is given by the following Euler 321 sequence: 

3) :  heading angle air (HdgAir) 
2)  :   flight path angle air (FpaAir) 
1 )  : bank angle air 

It is also possible to define a reference frame analogous to the air-
path frame but with x-axis direction parallel to the groundspeed 
instead of airspeed. In the case of no wind, the two reference frames 
are coincident (see Section 3.3.3.). The three Euler angles for the 
transformation from such a reference system to Local Vertical (LV) or 
Navigational Frame (NF) will be simply named heading angle, flight 
path angle, and bank angle (  respectively). 
By means of the aforementioned Euler angles, the respective Direct 
Cosine Matrix (DCM) can be constructed. The DCM constitutes a 
geometric operation that projects the axes of the initial reference 
system onto those of the target system. The convention used in this 
work to denote the rotation matrix from a reference frame 𝑖 to a 
reference frame 𝑗  is as follows: 

 
(2) 
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Following the convention outlined above, it is possible to go from a 
frame  to a frame  by passing through an intermediate frame  with 
the following matrix operation: 

 
(3) 

The simplest way to construct DCMs is by appropriate multiplication of 
single-axis rotation matrices. As an example, below is the Navigational 
Frame (NF) to Body-fixed Frame (BF) rotation matrix:  

 

(4) 

where  and  denote the sine and cosine of angle , respectively. 
Similarly, it is possible to derive the rotation matrices for the other 
transformations listed above. 
An additional important step is the transformation of the angular rates 
from Local Vertical (LV) to Body-fixed Frame (BF) and vice versa. Taking 
into account that the Euler angles of yaw, pitch, and roll express the 
orientation of BF with respect to LV, the corresponding derivatives 
indicate the angular velocity of BF with respect to LV. The components 
of the angular velocity vector can then be projected into BF obtaining: 

 
(5) 

where , with components , denotes the angular rate of BF with 
respect to LV expressed in BF. By inverting the matrix in equation (5), it 
is possible to obtain the inverse transformation:  

 

(6) 
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3.3.3. Kinematic and Aerodynamic Variables 

This section lists and derives some of the main kinematic and 
aerodynamic variables used in this work in order to become familiar 
with the notation employed. The position vector is always expressed in 
LV, so subscripts are omitted. Furthermore, remembering that the z-
axis points downward, the variable z coincides with the opposite of the 
altitude value  (measured with respect to ground level at the origin 
chosen for LV): 

 
(7) 

The groundspeed vector is defined as follows: 

 
(8) 

where 𝑽𝑎 is airspeed and 𝑾 is the wind speed. It is important to remark 
that in the case of flight under parafoil, airspeed 𝑽𝑎 and wind speed 𝑾 
may have a comparable order of magnitude, so 𝑽𝑎 and 𝑽 may differ 
significantly from each other. As far as velocities are concerned, 
uppercase letters will be used for variables with components 
expressed in LV while lowercase letters will be used for those with 
components expressed in BF, as shown in Table 3. 
 

Variable name Components in LV Components in BF 

Groundspeed vector 

Airspeed vector 

Wind speed vector 

Table 3: Linear velocities nomenclature 

It is worth mentioning that airspeed expressed in Air-path Frame (AF) 
has only a component along the x-axis equal to its norm, i.e., . 
Now, recalling the definitions of Euler angles given in Section 3.3.2, it is 
possible to derive the components of the velocity vectors as a function 
of Euler angles. An overview of the velocities in play together with the 
sign convention used for  and  is shown in Figure 3-5. 
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(9) 

 

(10) 

 

(11) 

where  and  denote the vertical components of  and  in LV, 
while  and  denote the horizontal components of  and  in LV. 
In addition, the vertical component of V in LV corresponds to: 

 
(12) 

From equations (9),(10), and (11) it is then straightforward to obtain the 
value of the angles involved by reversing the equations. For instance: 

 
(13) 

 
(14) 

 

Figure 3-5: Velocity vectors overview
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3.4. Translational and Rotational Dynamics 

This section reports the main players and equations involved in the 
generation of a parafoil model.  

3.4.1. Dynamical Equations 

The starting equations for modeling parafoil dynamics are, as usual, 
the classical Newton's second law and Euler's equations. The following 
are, in order, the equations governing translational and rotational 
dynamics expressed in LV: 

 

(15) 

 

(16) 

where  and are the external force and momentum vectors 
expressed in LV, respectively.  is the inertia tensor, which generally for 
parafoils, given the hypothesis of symmetry with respect to the x-y 
plane, has the following form: 

 

(17) 

where the moments of inertia  and the product of inertia  can be 
computed by means of the following integrals: 

 
(18) 

 (19) 

Considering the noninertial BF, the translational equation (15) and the 
rotational equation (16) must take into account appropriate additional 
terms: 
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(20) 

 
(21) 

where  and  are the external force and momentum vectors 
expressed in BF, respectively. It is also possible to introduce the so-
called skew-symmetric matrix 𝑺(𝒙) in order to obtain more compact 
writing of the equations in the presence of cross products: 

 

(22) 

Applying definition (22) to the equations (20) and (21) gives: 

 
(23) 

 

(24) 

Keeping the derivative terms on the left-hand side of the equation and 
bringing the others to the right-hand side, we obtain the Newton-Euler 
equations in the compact form: 

 

(25) 

In the specific case of unpowered PADS, it is also possible to derive an 
additional form for Newton's second law. Considering the Air-path 
Frame (AF) and the expressions in Section 3.3.3, the equation (15) 
becomes [9] : 
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(26) 

where  is the lift and  the drag lying on the z-axis and x-axis of AF 
respectively (both in the negative direction). 

3.4.2. Forces and Moments 

This paragraph describes the main forces and moments acting on the 
parafoil-payload system considering the latter as a rigid body with 6 
degrees of freedom following the scheme shown in Figure 3-6 (in 
which airspeed is assumed to be contained in the plane of symmetry). 
The center of mass to be considered for the application of forces and 
moments is the one of the complete system and the mass of the 
system is given by: 

 
(27) 

 

Figure 3-6: Parafoil-payload system 6DOF model 



Parafoil Dynamics 
  

 

 32  

 

The gravity force vector expressed in BF is as follows: 

 

(28) 

Regarding aerodynamic forces and moments, there are contributions 
generated by both the payload and the parafoil. In the case of 
medium to large canopies, in general, the parafoil contributions are 
clearly predominant. However, considering BF and combining both 
contributions into a single aerodynamic model yields [10]: 
 

 

(29) 

 

(30) 

where  is the density,  the parafoil canopy area and  the span of 
the inflated parafoil canopy (see Figure 3-7). The parameter 𝑐̅ is the 
mean aerodynamic chord and is given by: 

 
(31) 

The coefficients  are the conventional aerodynamic coefficients 
used in flight mechanics. For their definition, please refer to any book 
on atmospheric flight and flight mechanics such as [2]. Their values 
are measured experimentally by specific flight tests. 𝛿�̅� and 𝛿�̅� are the 
control variables and constitute the non-dimensional asymmetric and 
symmetric deflection values, respectively. They are defined as follows: 

 
(32) 
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Figure 3-7: Main geometrical parameters of parafoil 

3.4.3. Apparent and Enclosed Mass 

In the specific case of the ram-air canopy of parafoils, there is the 
necessity to consider two additional effects for dynamic modeling: 

• Entrapped air in the ram-air canopy 
• Apparent mass forces and moments 

The special shape of the ram-air canopy causes a certain amount of 
air to be trapped within its structure and move inertially with it. The total 
mass of entrapped air depends on the size of the parafoil, cannot be 
neglected for medium to large parafoils, and is generally referred to 
as enclosed or included mass. There are several models for 
computing this mass that depend on the type of parafoil. In some 
cases, this value is provided by the manufacturer. Therefore, the total 
mass of the system, considering all contributions, becomes: 

 
(33) 

The second effect that must be considered is the one associated with   
the dynamics of the volume of air surrounding the canopy. When a 
body is in motion within a fluid, local and global accelerations set the 
fluid itself in motion generating a response in terms of force on the 
surface of the body, i.e., the so-called apparent mass pressure field. 
The magnitude of this effect depends on the ratio  between the 
body mass and the displaced fluid mass, thus on the type of vehicle. 
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For this reason, for conventional aircraft, where the ratio  is high, 
apparent mass pressure is typically assumed negligible. In contrast, 
for lighter-than-air vehicles, this effect must be taken into account 
because it has a significant impact on dynamics. In the specific case 
of parafoil, the canopy has a low mass density associated with an 
extensive surface that is capable of displacing a considerable amount 
of air. In addition, the application point of the apparent mass forces 
may be fairly distant from the center of mass of the system increasing 
the effects in terms of momentum. For parafoils, it is also possible to 
approximate the value of the mass ratio with the following formula [10]: 

 
(34) 

This value decreases with parafoil size and generally ranges from 0.5 
to 6. Computational Fluid Dynamics (CFD) numerical analysis or 
analytical models based on experimental data can be employed to 
evaluate the impact of apparent mass on parafoil dynamics. For a 
more detailed discussion of the topic, see [11] and [12]. A possible 
analytical formulation for modeling the apparent mass force and 
apparent inertia moment in CF is the one described in [10], that is: 

 

(35) 

 

(36) 

where the canopy airspeed vector in CF and the canopy angular rate 
vector in CF are respectively defined as follows: 

 (37) 

 (38) 

The matrices  and are named apparent mass matrix and 
apparent inertia matrix, respectively, and have a diagonal form: 
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(39) 

 

(40) 

 
For the calculation of the components  and of the two 
matrices above, please refer to the in-depth discussion by Lissaman 
and Brown [11]. 

3.5. Parafoil-Payload System Models 

This section draws some possible solutions for modeling the dynamics 
of a parafoil considering different degrees of freedom. Simplified 
models with 3 or 4 DOF are often adequate for design and verification 
of the functioning of guidance algorithms. In other cases, however, it 
proves necessary to use a more complex model with more degrees of 
freedom that can more accurately describe the dynamic evolution of 
the system. The Dynamics, Kinematics, and Environment (DKE) model 
of a simulator used for verification and validation of a GNC software, 
needs, for instance, a model with at least 6DOF. The simulator 
developed by SENER Aeroespacial employed for testing the algorithms 
described in this work contains a 6DOF model of the payload-parafoil 
system.  Table 4 shows the kinematic and dynamic variables taken into 
account for the different models proposed in this chapter (3, 4, 6 DOF). 
Translational motion is defined as the motion of the center of mass of 
the system in LV. Rotational motion, on the other hand, refers to the 
rotation of BF with respect to LV (or NF). The main assumptions made 
for each of them are also summarized in the same table. 

Model Translational motion Rotational motion Main assumptions 

3DOF ( ) ( ) 

4DOF ( ) ( ) ( ) �̇� ≈ 0

6DOF ( ) ( ) ( ) ( )  

Table 4: Dynamic and kinematic variables for different parafoil models 
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3.5.1. 3DOF Model 

The simplest flight mechanical model for the parafoil-payload 
systems is the 3-degree-of-freedom model, which is based on the 
kinematic equations alone. This model is useful for describing only the 
translational motion of the center of mass  of the system without 
providing any information about the attitude. The translational 
kinematics of a vehicle as a rigid body in 3 dimensions can be 
expressed as follows: 

 (41) 

Explicitly expressing the velocity components in the two reference 
frames LV and BF leads to the following: 

 

(42) 

with: 

 
(43) 

A typical assumption in PADS modeling is to neglect the sideslip angle 
so that the yaw angle coincides with the heading angle. A further 
common assumption concerns the norm of the horizontal and vertical 
airspeeds that are considered constant along the trajectory. Under 
this assumption, the L/D ratio is considered constant throughout the 
trajectory, neglecting elements such as variation in air density and 
dynamic effects of motion in the longitudinal plane. The dynamic 
effects of motion in the latero-directional plane are also disregarded 
in this discussion. The above assumptions are summarized in the 
expressions (44), (45), and (46) which are valid for the entire trajectory. 

 (44) 

 
(45) 

 
(46) 
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Considering the assumptions above, the equation (42) becomes: 

 
(47) 

It is then possible to improve the model by considering for latero-
directional dynamics the relationship between asymmetric deflection 
and yaw rate. Following the approach proposed by Jann in [13], the 
following first-order dynamics of the yaw rate can be introduced: 

 
(48) 

where  and  are weighting coefficients given by flight data. The 
equation (48) can also be expressed in the state-space form: 

 
(49) 

A final measure to improve the accuracy of the 3 DOF model includes 
considering the influence of turn rate (i.e., yaw rate) on vertical velocity 
by introducing an additional term in the (47): 

 

(50) 

where 𝐾�̇� is a coefficient given by flight data. Equations (49) and (50) 
provide a simplified 3DOF model for the parafoil-payload system. It is 
highlighted that, although the dynamical equations have not been 
considered, some dynamic effects were introduced with the two last 
steps described. In addition, the aerodynamics of the parafoil is 
included in the choice of parameters 𝐾𝜓, 𝑇𝜓, 𝐾�̇� and . In 
particular, for the airspeed, the values that characterize the trimmed 
flight under conditions similar to those intended to be simulated are 
chosen. Despite the simplicity of this model, there are several possible 
applications as, for instance, testing guidance algorithms such as the 
one described in Section 4. In fact, imposing the value of the yaw rate 
over time using the one provided by the guidance algorithm (�̇�𝑐), the 
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model allows to verify the correct generation of the control command 
by checking the response of the system: 

 
(51) 

3.5.2. 4DOF Model 

To improve the accuracy of the model, a possible further step is to add 
a degree of freedom consisting of roll angle  by including 
translational dynamics in the form of Newton's second law (23). For the 
sake of simplicity, the case of negligible crosswind will be considered, 
but it is straightforward to generalize the formulation to the case with 
wind in any direction. Keeping the assumption of negligible sideslip 
gives now: 

 (52) 

The equation (23), expressed in BF, thus becomes: 

 
(53) 

It is now assumed that the pitch angle and pitch rate are negligible: 

 (54) 

Under these assumptions, equation (5) becomes: 

 
(55) 

This leads to rewriting (53) as follows: 

 

(56) 

Neglecting the apparent mass force, with the other assumptions given 
above, the vector of external forces in BF will be: 
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(57) 

Substituting the (57) into the (56) yields: 

 

(58) 

 

and taking �̇�  to the left-hand side in the second equation: 

 

(59) 

 

The following simplified models, which do not take into account the 
angle of attack , can be employed for lift  and drag  [13] : 

 
(60) 

 

 

(61)  

Here again, the model can be made more accurate by considering a 
first-order dynamic model not only for yaw rate �̇� (as done in section 
3.5.1), but also for roll angle , that is introducing [13]: 

 
(62)  

 
(63)  

where  are coefficients determined from flight data that 
take into account the aerodynamic behavior of the parafoil. In 
conclusion, equations (59) through (63) provide a 4DOF model that, 
compared with that of Section 3.5.2, takes into account translational 
dynamics and roll angle, in addition to yaw angle. The vehicle attitude 
description is provided by the simplified expressions (62) and (63) 
where the pitch angle is considered negligible. 
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3.5.3. 6DOF Model 

A complete 6DOF model is now considered. The payload-parafoil 
system is assumed to be a rigid body (as shown in Figure 3-6) for 
which the relative motion between payload and parafoil is neglected. 
The starting point for the development of this model are the Newton-
Euler dynamical equations (25). In this case, in addition to gravitational 
and aerodynamic forces and moments, effects related to apparent 
mass will also be included. The expressions introduced in Section 3.4.3 
give the apparent mass forces and moments in Canopy Frame (CF). 
These contributions act in the apparent mass center  which 
generally does not coincide with the center of mass of the parafoil 

. Henceforth, for simplicity,  and  will be assumed 
to be coincident. Under this assumption, it is possible to express the 
apparent mass force (35) and apparent inertia moment (36) in BF [14]: 

 (64)  

 (65) 

where  is the vector from the system center of mass  to 
 and  is the rotation matrix from BF to CF. The latter represents 

a simple rotation in the plane of symmetry of the rigging angle  (see 
Figure 3-6): 

 

(66) 

 

To develop equations (64) and (65) (expressed in BF), it is first needed 
to derive the relationships between linear and angular velocities and 
accelerations in CF and BF, recalling that the system is a rigid body [14]: 
 

 

(67) 
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(68) 

 

(69) 

 

(70) 

where it is useful to recall the following two properties of the skew-
symmetric matrices that can be applied to the case at hand: 

 (71) 

 
(72) 

Using the expressions from (67) to (72) allows to develop equations (64) 
and (65) highlighting velocity and acceleration variables with their 
components expressed in BF: 

 

(73) 
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(74) 

where it was used: 

 (75) 

 (76) 

 
(77) 

In addition, for , one of the terms included in the equation (36) has 
been neglected since it is assumed [14] that the effects associated with 
it, are contained within the aerodynamic momentum contribution : 

 

(78) 
 

Keeping in mind that the total mass of the system includes the 
payload and parafoil mass and the enclosed mass (according to 
equation (33)), the Newton-Euler equations (25) are now rewritten 
considering all force and momentum contributions: 

 

(79) 
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By explicitly introducing the expressions (73) and (74) for  and , 
taking the terms that multiply  and to the left-hand side of the 
equation, the following result is obtained:  

 

(80) 

 

with: 

 

(81) 

 

(82) 

 
Equations (80) through (82) describe the translational and rotational 
dynamics of the 6DOF payload-parafoil model. Equations (41) and (6), 
which constitute the translational and rotational kinematics, complete 
the model. The model obtained, despite considering the system as a 
6DOF rigid body, is a reasonably accurate model in describing the 
translational motion and attitude of the system also given the 
absence of highly restrictive assumptions. With its implementation in 
a Simulink environment, for instance, it is possible to test complete 
GNC architectures applied to the flight under parafoils with good 
accuracy. For even more accurate results, additional degrees of 
freedom can be introduced in order to also describe the relative 
motion between parafoil and payload. Among the most widely used is 
the 9DOF model. The latter allows for relative free rotation between 
parafoil and payload while taking into account the couplings given by 
the torques generated by the lines connecting the two elements. A full 
description of these kinds of models is beyond the scope of this work. 
Please refer to [15] for a detailed discussion of this topic. 
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3.6. Linearized Models 

All models analyzed in Section 3.5 constitute nonlinear models of the 
parafoil-payload system. In some cases, such as for stability analysis 
or control purposes, the need arises to develop linearized models. For 
the intent of this study, this need is related to the use of Model 
Predictive Control (MPC) techniques for control sequence generation. 
As a matter of fact, for the use of MPC, it is required to provide the 
linearized system in the continuous-time state-space form: 

 
(83) 

 

where  is the state vector,  the output vector,  the control vector, 
and   are respectively the state matrix, the input matrix, the 
output matrix, and the feedforward matrix. This system will then be 
converted to discrete time as discussed in Section 5.2. The guidance 
strategy proposed in this work requires in particular a SISO-type 
system with the value of yaw angle as the output and the value of 
asymmetric deflection as the control variable. In Section 3.6.1, an 
analytical linearization of a simplified model is proposed. The resulting 
model, however, is adequate in terms of accuracy for the purposes of 
verification of guidance algorithms. A more accurate 6DOF linearized 
model is then briefly described in Section 3.6.2. 

3.6.1. Reduced-order Linearized Model 

In this section, a simplified analytical approach to obtaining a 
linearized model of the parafoil-payload system is presented. This 
model is based on the rotational kinematics and dynamics equations 
taking into account the following assumptions: 

• Slow turn rate: negligible sideslip and roll angles 
• No vertical wind 
• Constant horizontal airspeed norm 
• Constant vertical airspeed norm 
• No apparent mass effects 
• No enclosed mas effects 
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The hypotheses above translate into the following expressions: 

 (84)  

 (85) 

 (86) 

 (87) 

 (88) 

 (89) 

The chosen state variables are the angular values and rates 
describing the orientation of BF with respect to LV except for pitch 
angle and pitch rate. The output of the system is the yaw angle , and 
the control variable is asymmetric deflection 𝛿�̅� . The objective of the 
linearization process is then to derive the  and  matrices of the 
following system in state-space form (written in terms of variations): 

 

(90) 

 

The approach provided below is as described in [10]. It is a first-order 
linearization about the steady-state with zero roll angle, angular rates, 
asymmetric deflection, and pitch angle fixed: 

 
(91)  

The starting equations to obtain the linear model are the following: 

a. Rotational kinematics:  equation (6) 

b. Rotational dynamics:  rotational part of equation (80) 
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a. Analytical linearization of the kinematics equations 

The first step is to modify the starting kinematic equation by adding 
terms of infinitesimal variation to all the elements involved: 

 
(92) 

 

(93) 

Subtracting (92) to (93) gives: 

 

(94) 

 
It may be useful to recall that for trigonometric functions it is possible 
to treat infinitesimal variations as follows: 

 
(95) 

 
(96) 

 
(97) 

with: 

 
(98) 

Taking into account what above, it is possible to evaluate the matrix 
 at the reference steady-state : 
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(99) 

Hence, neglecting the second-order or higher terms, eq. (95) becomes: 

 

(100) 

From the second equation, it is noted that pitch motion depends only 
on the angular rate and is decoupled from yaw and roll motions. This 
justifies the use of only  and  variables for the reduced model under 
consideration. In particular, under the hypotheses taken, the variation 
of pitch rate 𝛿�̇� corresponds with that of the angular rate : 

 
(101) 
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b. Analytical linearization of the dynamic equations 

Here again, the starting point is adding infinitesimal variation terms to 
the original rotational dynamic equation: 

 

(102) 

 

(103) 

where the following notation was used: 

 
(104) 

The aerodynamic moment vectors and , considering null angle 
of sideslip , are given by the following expressions: 

 

(105) 
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(106) 

with the following notation for dynamic pressure: 

 
(107) 

The skew-symmetric matrix  applied to vector ( ), on the other 
hand,  results as follows:   

 

(108) 

Subtracting (102) to (103), neglecting the second-order terms,  gives: 

 

(109) 

where: 

 

(110) 
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The equation (109) then becomes: 

 

(111) 

with: 

 

(112) 

and 

      

(113) 

     (114) 

     

(115) 

Gathering with respect to the variables in the state vector and the 
control variable yields the following system: 

 

(116) 
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Finally, it is possible to combine the two expressions (100) and (116) by 
extracting only the equations involving the state variables (in both 
cases the first and third): 

 

(117) 

with: 

 
(118) 

The linearized system in the form (90) was obtained. In [16], the authors 
propose the introduction of two additional terms in A to remove the 
position of the center of pressure from the dynamic equations while 
maintaining the tendency to glide without roll during neutral control: 

 

(119) 

 



Parafoil Dynamics 
  

 

 52  

 

To verify the accuracy of the linearized model obtained in this section 
with an analytical method, a numerical linearization was performed by 
means of the tools available within the MATLAB/Simulink environment. 
For this purpose, a Simulink model (see Figure 3-8) was developed in 
order to implement the complete nonlinear rotational equations of 
kinematics and dynamics (equations (5) and (80)). Through MATLAB 
linmod function it is possible to obtain the continuous-time linear 
state-space model from the nonlinear Simulink model (in this case 
called 'NonlinSys') by indicating the operation point in the form of state 
vector  and input vector . The function call within the MATLAB script 
is as follows: 

[A,B,C,D] = linmod('NonlinSys',X0,U0); (120) 

In the current case study, for  and  values, the steady-state vector 
described by (91) was considered. In order to verify the analytical 
linearization, it was naturally required to consider a subset of the 
rotational variables shown in Figure 3-8, that is, those listed among the 
state variables, namely .  

 

Figure 3-8: Simulink NonlinSys model for numerical linearization 
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A MATLAB script was finally developed to derive the numerical values 
of the  and  matrices of the analytically linearized model to 
compare them with those given by the linmod function. For an initial 
comparative check between the analytical and numerical models, the 
geometric and aerodynamic parameters of the payload-parafoil 
system described in [1] were used. The results obtained show a good 
match between the two different models. Shown as examples, in the 
table are the  matrices obtained according to the procedure 
described above. 

Model Matrix 

Analytical model (matrix A) 𝐴 = [

0 0 1 0.08748866
0 0 0 1.00381983

−0.09382090 0 −0.75063026 −0.16528320
0.06603074 0 0.51421441 −1.95293961

] 

Numerical model (matrix A) 𝐴 = [

0 0 1 0.08748867
0 0 0 1.00381983

−0.09382090 0 −0.74998178 −0.16734532
0.06603075 0 0.52141116 −1.94949187

] 

Relative abs error (%) 𝐸 = [

0 0 1 0.000011
0 0 0 0
0 0 0.086391 1.247628

0.000015 0 1.399562 0.176541

] 

Table 5: Analytical and numerical linearization comparison 

For a more in-depth analysis of the accuracy of the two models, a test 
campaign within a complete 6DOF simulator is required to compare 
the performance of the two linearized models with that of the 
corresponding nonlinear one when considering an open-loop 
maneuver around the operation point at issue (steady-state vector). 
Such a study is beyond the scope of this work. It is also for this reason 
that the linearized 6DOF model shown in the next section was chosen 
to be used (primarily) for the algorithms illustrated in this thesis. In fact, 
this model has undergone an appropriate validation campaign that 
makes it reliable for the purposes of this work. It is noted that the 
numerical linearization method outlined above can also be used 
directly for generating the linear state-space model. This procedure is 
particularly useful in cases where analytical linearization is particularly 
complex or not applicable. An appropriate model validation 
campaign proves necessary in this case as well. 
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3.6.2. 6DOF Linearized Model 

A 6DOF continuous-time linear model courtesy of SENER Aeroespacial 
was employed to apply the Model Predictive Control techniques 
described in Section 5. This model was subjected to a specific 
validation campaign carried out by SENER Aeroespacial to verify its 
reliability. The state vector, in this case, consists of nine variables, viz.: 

• Attitude Euler angles of BF with respect to LV 

• Angular rates of BF with respect to LV in BF 

• Airspeed components in BF 

On the other hand, the control vector is composed of the following two 
control variables: 

• Symmetric deflection 

• Asymmetric deflection 

The operational point considered to obtain the model at hand is the 
one that characterizes the trim condition for the Terminal Guidance 
phase with constant symmetric deflection. The 6DOF state-space 
linear model will be of the form: 

 

(121) 
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4. Optimal Trajectory Design 
This chapter describes the guidance algorithm selected to generate 
the optimal trajectory to be employed during the Terminal Guidance 
phase. The guidance problem to be solved is the so-called Two-point 
Boundary Value Problem (TPBVP) for the solution of which a vast range 
of possible approaches are proposed in the literature. Some of the 
main solutions are discussed in Section 4.2. The core algorithm chosen 
is the one described by Slegers and Yakimenko in [1]. Several changes 
were then introduced to adapt it to the case at hand. 

4.1. Two-Point Boundary Value Problem 

A Boundary Value Problem consists of a system of Ordinary Differential 
Equations (ODE) with values of the solution and derivative specified at 
a certain number of points. The special case in which solution and 
derivatives are defined at two boundary points is called Two-Point 
Boundary Value Problem (TPBVP). A classical solution to this type of 
problem generally requires a major computational effort because it is 
necessary to iterate by integrating the differential equations in the 
domain of interest. In the particular case of linear differential 
equations, however, it is possible to make some simplifications and 
estimate a priori the number of iterations required to solve the 
problem. For some types of TPBVP, some direct methods are available 
which do not involve the integration of differential equations, reducing 
the computational cost. However, these methods generally involve a 
restriction of the solution domain and thus generally provide a near-
optimal solution. The TPBVP in its standard form is defined as follows: 

Given a system of  coupled first-order ODE in the independent 
variable , find the solution belonging to the domain  that 
satisfies  boundary conditions at the initial point  and  
conditions at the final point : 

 (122) 

with: 

 
(123) 
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and 

 (124) 

 (125) 

where , are sets of functions that may involve the derivatives of 
the dependent variables and define  independent boundary 
conditions applied in  and . For the case considered in this study, 
as explained in detail in Section 4.3, it is possible to reduce the TPBVP 
to a problem in two spatial dimensions for which the solution is sought 
in the form of a 2D trajectory in the x and y LV coordinates as a function 
of the time. The boundary conditions consist of the position, velocity to 
acceleration vectors at the starting point  and the desired final point 

. Figure 4-1 shows the geometric structure of the problem for the 
Terminal Guidance problem under investigation. 

 

Figure 4-1: TPBVP for the Terminal Guidance problem 

Regarding the existence and uniqueness of the solution to Boundary 
Value Problems, no theorems of general validity are yet available. 
However, there are several studies in the literature concerning single 
cases associated with specific methods of solving. For the case at 
hand, it is possible to demonstrate rigorously that the existence of the 
solution is not always guaranteed and, where it exists, it is not unique. 
Such a demonstration is beyond the scope of this work.
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4.2. TPBVP Resolution Literature Review 

The Boundary Value Problem is a widely studied problem because of 
its numerous applications in engineering. For this reason, there are 
many approaches proposed in the literature for its solution. The two 
main classes of methods for solving TPBVP are as follows: 

• Numerical methods 
• Direct methods 

Numerical methods in general allow an optimal solution to be 
obtained without special restrictions on its form through the 
integration of ODEs. Among the most widely used numerical methods 
for TPBVP are shooting methods and relaxation methods.  
The shooting methods require the use of a set of parameters that 
describe the  solution of the problem and are associated with a given 
number of degrees of freedom (DOF). Some of the parameters are 
assigned specific values in order to satisfy the boundary conditions at 
the initial point . The remaining degrees of freedom determine the 
shape of the solution and are initially guessed arbitrarily. The 
differential equations are then integrated using the chosen 
parameters. The final conditions obtained in  are then compared 
with the desired ones. Based on the discrepancies obtained, free 
parameters are then adjusted in subsequent iterations to obtain the 
target boundary conditions in . Due to numerical integration, the 
solutions found at each iteration always respect the differential 
equations (122). On the other hand, the boundary conditions given by 
(124) and (125) are both satisfied only at the end of the iteration process 
with some design-defined precision. Each method provides a specific 
approach to systematically identify the value of free parameters to 
limit the number of iterations and the computational cost.  
The relaxation methods approximate differential equations with finite-
difference equations by considering a finite number of points within 
the domain of integration. As a first attempt, we assume a value for 
the dependent variables  at each point. Such values in general do not 
satisfy either the boundary conditions (124) and (125) or the differential 
equations (122). Subsequently, through successive iterations, the value 
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of  at the mesh points is varied so as to progressively approach the 
fulfillment of the problem conditions. These methods involve the 
presence of a large number of variables but, despite this, are 
convenient in some specific cases. Relaxation is indeed very efficient 
in case of expressions that are difficult to solve in closed form or when 
there are particularly stringent boundary conditions. In contrast, they 
are not recommended when the shape of the solution is oscillatory. In 
fact, in these cases, it is necessary to consider a large number of 
variables that slow down the method. In any case, to make the method 
efficient, it is important to consider an appropriate initial guess. 
Numerical methods are effective in finding the optimal solution but 
have as their major drawback a high computational cost. In the case 
of real-time applications, especially for the aerospace sector, the 
computational budget is a major limiting factor that has led to the 
investigation of alternatives such as direct methods. For the latter, the 
approach used is to reduce the initial problem to a second one, which 
does not involve differential equations. This ensures fast and robust 
convergence that makes these methods very suitable for solving 
TPBVP applied to real-time trajectory generation. The Terminal 
Guidance problem constitutes a special case of TPBVP and can be 
defined as follows: 

Given the initial position  and velocity defined by , fly 
by the target point  with the desired velocity given by . 

Where it is recalled that the direction of the final velocity depends on 
the direction of the wind on the ground as the goal is to land upwind 
to minimize the touchdown velocity. The main difficulties in the design 
of a strategy for such a problem, as already mentioned, are related to 
the unpredictability of wind effects. However, there are other elements 
to take into account. A glided flight under parafoil without a propulsive 
system in fact ensures low control authority. The presence of no-fly 
zones is also an additional element that influences trajectory 
generation. In the specific case of Space Rider, it is then necessary to 
keep in mind the absence of an air-data system that can provide real-
time data on the actual wind encountered during the descent. Several 
possible approaches to the problem at hand are proposed in the 
literature. 



Optimal Trajectory Design 
  

 

 59  

 

Fowler1 and Rogers have proposed in [17] an algorithm that involves the 
use of one or more cubic Bézier curves for the generation of the 
optimal trajectory. The parameters characterizing the Bézier curves 
are optimized so as to minimize the touchdown distance error from 
the target landing point. Model Predictive Control techniques are then 
applied to minimize a cost function  that can include additional 
penalty terms such as distances from curve midpoints to the target 
and maximum yaw acceleration. The problem definition also requires 
the maximum yaw rate not to exceed a certain threshold and the 
trajectory not to intersect any 3D obstacle. The structure of the 
problem, combined with the presence of nonlinear constraints, makes 
the optimization problem non-convex. The Bézier curve path planner 
is characterized by an optimization sequence that involves calculating 
the trajectory with a gradually increasing number of Bézier curves. A 
first trajectory with only one curve is computed, and, if a feasible 
solution is not found, first two curves are employed, then three, and so 
on. An example with two Bézier curves is shown in Figure 4-3. 

 

Figure 4-2: Bézier curve path planner 
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This approach allows a high degree of flexibility in the shape of the 
solution that is well suited to complex geometry configurations of the 
problem, especially in the presence of obstacles such as no-fly zones. 
The main drawback of this particular approach, however, is the high 
computational burden, which makes it unsuitable for real-time 
trajectory computation when the computational load budget is rather 
tight as in the case study. However, application to the Space Rider case 
cannot be ruled out. In fact, this method could be used for the 
generation of an offline reference trajectory that can be imposed to 
be followed using tube-based MPC techniques that effectively 
counteract the effect of external disturbances. The trajectory can then 
be periodically updated along the path by making use of a scheduler 
that distributes the computation of the optimal trajectory over multiple 
guidance cycles.  
Another possible approach for solving the Terminal Guidance problem 
is the one proposed by Rademacher and Lu in [18] based on Dubins 
path. In this case, the strategy used for trajectory generation is a hybrid 
one as it combines the use of modified Dubins paths and minimum-
control-energy paths. The type of trajectory computed is a function of 
the value of the parameter of normalized altitude margin from the 
optimal Dubins path (minimum time). The problem is solved by an 
appropriate change of the independent variable that converts the 3D 
problem to 2D enabling optimization using the minimum principle of 
Pontryagin. This method is quite efficient but, in contrast to the Bézier 
curve path planner, it does not guarantee easy collision avoidance. 
Other interesting approaches are, for instance, those of Carter or 
Calise and Preston. Carter proposed in [19] a bandwidth-limited 
trajectory planner using the simplex search algorithm by Nelder and 
Mead that guarantees a low computational load. Calise and Preston 
in [20] developed a swarming control law that allows for obstacle 
avoidance to be taken into account by calculating the probability of 
collision. 
Another strategy proposed in the literature is that of Slegers and 
Yakimenko who in [1] discuss a trajectory planner based on direct 
methods of calculus of variations. This approach provides high 
flexibility with low computational cost. It represents the method 
selected for this study and it is described in detail in Section 4.3.
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4.3. Direct-Method-Based Approach 

This section presents the basic method proposed by Slegers and 
Yakimenko in [1] for generating optimal trajectories of the Terminal 
Guidance phase of PADS. Specific modifications will then be applied to 
this method, which are discussed in Section 4.4. The approach under 
consideration is based on a direct method of calculus of variations 
and inverse dynamics in a virtual domain. The main idea is to obtain a 
method of solving that does not involve the presence of differential 
equations. The goal is to reduce the problem to a single parameter 
optimization problem so as to obtain an efficient method for real-time 
trajectory computation. Indeed, for the special case of the Terminal 
Guidance problem, a continuous update of the trajectory is required 
to ensure a robust design in an environment with high wind-to-
airspeed ratios.  

4.3.1. TPBVP Definition 

First, it is required to define the boundary value problem in the form 
described in Section 4.1. As differential equations governing the system, 
it is possible to consider in first approximation the simple kinematic 
equations provided by the 3DOF model described in Section 3.5.1: 

 

(126) 

where it is recalled that assumptions of negligible sideslip  and constant 
vertical and horizontal airspeed norms (  and ) were considered. An 
additional important assumption that can be made is that the vertical wind 
component is negligible: 

 (127) 

This assumption has a major impact on the configuration of the problem 
because it allows the transition from the initial three-dimensional problem to 
a two-dimensional problem since the vertical component of groundspeed 
coincides with the vertical component of airspeed, which is considered 
constant. The differential equations to be considered for the TPBVP become: 
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(128) 

where the down-wind and cross-wind components,  and , respectively, 
may depend on altitude  but are considered known. With this problem 
formulation, a central parameter for the application of the direct method can 
be easily calculated, namely, the total duration of the Terminal Guidance 
maneuver. It will be given by: 

 
(129) 

It is now required to define the boundary conditions at the initial point  and 
at the final point . Henceforth the initial and final conditions will be referred 
to as subscripts  and  respectively. In both cases, the position, velocity, and 
acceleration vectors must be provided. The initial point considers the current 
state of the system while the end final consists of the target of the terminal 
guidance phase. The boundary conditions below are given in the physical 
domain using time  as the independent variable. The position vectors are: 

 
(130) 

 
(131) 

Velocity vectors are obtained from the equations of kinematics (126): 

 

(132) 

(133) 

Deriving with respect to time yields the boundary conditions in terms of 
accelerations: 

(134) 
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(135) 

considering the following relationships between the derivative with respect to 
time (�̇�) and that with respect to altitude ( of wind components: 

 
(136) 

 
(137) 

recalling that the vertical component of airspeed is described in LV  
which is characterized by a downward  axis. The use of the derivative in 
altitude is due to the fact that the wind profile is often known as a function of 
altitude and not of time. For equation (135), it was also imposed that the 
derivative of the final heading rate be zero: 

 
(138) 

This ensures a smoother arrival that results in a straight line in the final point 
approach phase. In addition, in the special case of constant wind profile, the 
right-hand side of Equation (135) cancels out and thus the accelerations at 
the arrival point are zero. Expression (128) together with the boundary 
conditions defined by equations (130) through (135) define the Two-Point 
Boundary Value Problem applied to the Terminal Guidance phase of a flight 
under parafoil.  The physical domain of definition of the independent variable 
that consists of time is as follows: 

 
(139) 

It is important to note that during the TERGUID phase there is a continuous 
update of the optimal trajectory so that the initial conditions defined above 
are also updated at each guidance step when a new trajectory is generated. 
Similarly, the time domain to be considered varies at each step.  
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4.3.2. Direct Method Algorithm 

This section describes the direct method selected for solving the 
TPBVP. This method does not involve the use of differential equations 
since it reduces the resolution to single parameter optimization. Thus, 
the objective is to minimize a cost function with respect to a single 
parameter. The parameter under consideration consists of the virtual 
variable . In fact, the method involves describing the trajectory in an 
appropriate virtual domain for optimization. Once the optimal 
trajectory in the virtual domain is found, the solution is returned to the 
physical domain. Finally, knowing the trajectory as a function of time, 
the control input is derived by inverting the dynamics.  
First, it is required to select the form of the analytical solution in the 
virtual domain. This choice is relevant since a significant restriction is 
being made to the spectrum of possible solutions to the problem. This 
is why it is generally referred to as a near-optimal solution. Considering 
the virtual domain: 

 
(140) 

solutions of the following type are considered: 

 
(141) 

where the normalized virtual variable     is given by: 

 
(142) 

The type of solution chosen consists of a polynomial part and a 
sinusoidal part. This choice guarantees a rather malleable shape of 
the solution as well as advantages in terms of computation of the 
derivatives of  and . For trajectory definition, the values of the 
coefficients must be identified  with  and 

 For this purpose, the coordinate  and  are derived twice with 
respect to the nonnormalized virtual variable  
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(143) 

 

(144) 

and 

 
(145) 

 
(146) 

The values of  and the respective derivatives at the two boundary 
points are now derived. Considering, for instance, the x-coordinate, for 
the first extreme: 

 
(147) 

 

(148) 

 

(149) 

with: 

 
(150) 

 
On the other hand, for the second extreme results: 
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(151) 

 

(152) 

 

(153) 

with: 

 

(154) 

Therefore, for the x coordinate alone, a system of 6 equations in the 6 
unknowns  with    as a parameter is obtained. This system, 
expressed in matrix form, is as follows: 

 

(155) 

The coefficients  are then obtained as a function of the single 
parameter : 

 
(156) 
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(157) 

 
(158) 

 
(159) 

 
(160) 

 

(161) 

A quite similar procedure can be followed for the y-coordinate for 
which 6 more equations for  in the parameter  are obtained. It 
is important now to keep in mind that the derivatives seen so far are 
taken in the virtual domain. it is possible to shift to the physical domain 
by considering that: 

 
(162) 

 

(163) 

with: 

 
(164) 

To switch from virtual domain to physical domain then: 

 

 
(165) 

 
(166) 

It can now be noted that the derivatives are calculated only at the 
domain extremes when boundary conditions are imposed so it is 
useful to take into account what is the value of the derivative at the 
extremes: 
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(167) 

 
(168) 

 

(169) 

 

(170) 

The derivatives at the extremes then result as follows: 
  

 
(171) 

 
(172) 

At this stage, by fixing the parameter , the coefficients ,  and thus 
the trajectory in the virtual domain can be easily obtained. Then, the  
and  coordinates and respective  and  derivatives are computed 
over a fixed set of  points (or nodes) spaced evenly along the virtual 
arc  The virtual interval under consideration is thus: 

 
(173) 

From which the values 𝜏𝑗 to be considered are obtained: 

 
(174) 

with: 

 (175) 

Again, considering only the x-coordinate as an example, the following 
is obtained for each of the  points: 

 
(176) 

 
(177) 
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At this point, it is needed to compute the time interval  in the physical 
domain corresponding to each interval  in the virtual domain. In 
fact,  intervals, in contrast to  intervals, are not all equal: 

 
(178) 

where the horizontal ground speed vector , taking into account the 
steady-state horizontal airspeed hypothesis and the equations of the 
kinematics (126),  is given by: 

 

(179) 

Once all the time intervals  in the physical domain have been 
calculated, it is possible to calculate the total time required to cover 
the entire trajectory: 

 
(180) 

It is now possible to build the cost function  to be minimized in the 
single parameter  considering the target maneuver time  (129): 

 
(181) 

Minimizing the function, therefore, means ensuring that the total 
duration of the maneuver matches the desired one m . Any 
optimization function such as the MATLAB functions fminbnd or 
fminsearch can be used to solve this problem. As an initial guess for 
the  parameter, half the value of the circumference with a diameter 
equal to the distance between the initial and the final point ( , ) 
can be employed: 

 

(182) 
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The result of minimization is as follows: 

 
(183) 

 

(184) 

Once the optimal value for the virtual parameter  is found, the 
trajectory can be easily derived by computing the coefficients thanks 
to equations (156) through (161) for the x coordinate and 6 other similar 
equations for the y coordinate. An example of a trajectory generated 
with this method using  and no wind is shown in the Figure 4-3. 
In dark blue are shown the boundary conditions of the problem, in 
green the generated optimal trajectory while in light blue are indicated 
the velocity vectors along the trajectory. Given the assumption of no 
wind, the latter are all of the same magnitude, equal to the steady-
state horizontal airspeed . The reported trajectory is in 2D because, 
as previously discussed, we assume constant vertical ground speed, 
so the third dimension is not relevant to the problem. 

 

Figure 4-3: Example of optimal trajectory 
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Once the optimal trajectory is known, it is necessary to derive the 
heading and heading rate sequence with respect to the ground speed 
vector where the latter constitutes the control input. Given the 
assumptions made in Section 3.5.1, it is possible to equivalently 
consider the yaw angle 𝜓 and yaw rate �̇� instead of heading angle 
and heading rate. A simple, purely geometric procedure can be 
employed to derive the sequence of yaw angle values along the 
trajectory. From equations (128) it follows: 

 
(185) 

therefore: 

 

(186) 

Then, for each node, recalling equation (162), it can be computed: 

 

(187) 

where it is possible to approximate: 

 

(188) 

Through (187), the sequence of yaw angles at each of the  reference 
points of the trajectory is determined. To derive the yaw rate sequence 
to be applied in order to follow the optimal trajectory several possible 
approaches are described in detail in Chapter 5. Here a simple 
geometric method based on finite-difference is illustrated. This 
approach does not take into account the actual dynamics of the 
vehicle, but it is useful to provide an idea of the order of magnitude of 
the yaw rate values to be assumed to follow the trajectory: 

 

(189) 
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As described in Section 3.2, the maximum heading rate (thus the 
maximum yaw rate) is one of the main limiting factors for the design 
of the PGNC. It is therefore critical to make sure that the values 
assumed by �̇�𝑗 do not exceed a certain threshold when planning the 
trajectory. For this reason, it is reasonable to consider adding a term to 
the cost function  that takes into account the maximum heading rate 
value �̇�𝑚𝑎𝑥: 

 
(190) 

with: 

 

(191) 

where 𝑘�̇� is a weighting coefficient for the penalty term . 

In conclusion, an efficient TPBVP solving method that is based on 
single-parameter optimization in  was obtained.  This approach is 
based on a simplified 3DOF model of the dynamics of the payload-
parafoil system, so it is subject to all the corresponding assumptions 
(see Section 3.5.1). However, it can be proven that, for limited turn rates, 
it provides results with good accuracy. This fits with the limitations of 
the parafoil dynamics which in any case do not allow high turn rates.  
In addition, the algorithm described in this section requires a very low 
computational cost. This allows the trajectory to be updated in real-
time very frequently if required. However, as will be discussed in Section 
6.3, frequent optimal trajectory updating is not required in practice, 
which, indeed can be detrimental to driving strategy. It will be shown 
that an update every 5-15 seconds can be reasonable in many cases.



Optimal Trajectory Design 
  

 

 73  

 

4.4. Algorithm Modifications  

The method outlined in Section 4.3, if applied to the Space Rider case 
without modification, may present some critical issues that make it 
unsuitable for meeting mission requirements. This section describes 
the main modifications carried out in order to adapt Slegers and 
Yakimenko method to the case at hand. For the design of the final 
algorithm, a series of tools were developed in the MATLAB environment 
to test the different solutions described in the following sections. One 
of the tools developed allows testing of trajectory generation by 
varying one of the boundary conditions and keeping the others fixed. 
Figure 4-4, for instance, shows the case where all boundary conditions 
are fixed except for the direction of the initial airspeed. Fixed boundary 
conditions consisting of initial and final position and final velocity are 
shown in blue. Instead, the different trajectories generated as the 
direction of the initial airspeed changes are indicated with three 
different colors. There are three categories of solutions that can be 
obtained through the optimization process: 

• Optimal solution (green) 
• Sub-optimal solution (yellow) 
• Not acceptable solution (red) 

For the solution not to be unacceptable first (optimal or suboptimal 
solution), the following requirement must be met: 

 

(192) 

where the value   is considered for this study. Therefore, 
the time ratio  must be such that the difference between desired 
maneuver duration and achieved maneuver duration is less 
than 1% of the target maneuver time . This value constitutes a 
tunable parameter and the value of 0.01 is the result of a series of 
trade-offs conducted during the testing phase.  
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If this condition is met, the criterion for assigning the category to the 
solution depends on the maximum yaw rate �̇�𝑚𝑎𝑥 obtained along the 
entire trajectory which is calculated through the simplified method 
described in Section 4.3.2. Categories are then assigned as follows: 

• Optimal solution:     and        �̇�𝑚𝑎𝑥 < �̇�𝑙𝑖𝑚1  
• Sub-optimal solution:    and        �̇�𝑙𝑖𝑚1 ≤ �̇�𝑚𝑎𝑥 < �̇�𝑙𝑖𝑚2 
• Not acceptable solution:    and/or   �̇�𝑚𝑎𝑥 ≥ �̇�𝑙𝑖𝑚1 

The solution is considered optimal only if the maximum yaw rate �̇�𝑚𝑎𝑥 
is less than a specific threshold value �̇�𝑙𝑖𝑚1, which for this work is 
considered to be 7 deg/s. There is then a sub-optimal solution for 
which the yaw rate can still be considered acceptable under certain 
circumstances. For the sub-optimal solution, the yaw rate must not 
exceed a second threshold �̇�𝑙𝑖𝑚2 set equal to 10 deg/s. The �̇�𝑙𝑖𝑚1, �̇�𝑙𝑖𝑚2 
values are system parameters that depend on the dynamic properties 
of the parafoil-payload system. Figure 4-4 also shows the maximum 
yaw rate value located, for each trajectory, near the point of the path 
where this value is assumed. 

 

Figure 4-4: Trajectory generation tool 
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The tool just described allows direct integration of the MATLAB 
functions developed in this study for the GNC software to test them 
before implementation. For this purpose, an additional tool was 
developed to run a Monte Carlo campaign in which all boundary 
conditions are varied (and not only one) so that the performance of 
the trajectory generation algorithm can be analyzed. In addition, there 
are a set of other tools, for instance, for comparing two different 
algorithms applied to the same problem, analyzing the computation 
time required, or verifying the yaw rate sequences obtained. These 
tools will be briefly described in subsequent sections where needed. 

4.4.1. Cost Function 

First adjustments were made by modifying the cost function  
reported in (190). The changes are related to three main causes: 

• Unphysical solutions 
• Ineffective yaw rate penalty term 𝛥�̇�𝐽 
• No-fly zones avoidance 

The mathematical formulation of the algorithm described in Section 
4.3 always guarantees the presence of a solution, which, however, in 
some cases, may be considered unacceptable according to the 
criteria described above. Moreover, there are some further cases 
where the mathematical solution found turns out to be nonphysical. 
These are particular cases where the initial/final direction of the 
trajectory is aligned with the initial/final velocity but has the opposite 
orientation. An example is shown in Figure 4-5 where both initial and 
final directions are wrong (remembering that the velocity at the final 
point is in blue). To solve this problem, it is sufficient to add two 
additional penalty terms to the cost function. The first is the square of 
the angular difference between initial trajectory yaw and initial velocity 
yaw ( intended as a boundary condition) and the second is analogous 
but applied to the final point: 

 
(193) 

with: 
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 (194) 

 
(195) 

where  and  denote respectively the initial and final yaw relative to 
the optimal trajectory, while  and  denote the yaw relative to the 
initial and final velocities provided as boundary conditions. It is 
important to emphasize that for simplicity of notation the angular 
difference has been denoted by the simple subtraction symbol. This 
operation actually requires the development of a special algorithm 
that takes into account all possible combinations in terms of directions 
in the 4 quadrants of the plane. Indeed, it is essential that in the case 
where trajectory direction and velocity are aligned but with opposite 
orientations, the result of the operation is 180 and not 0 degrees. The 
parameter  is the weighting coefficient for the penalty terms just 
introduced. The value acquired by it must be arbitrarily large so as to 
avoid in any way an unphysical solution.  

 

Figure 4-5: Unphysical solution 
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Figure 4-6 shows an example in which the results obtained with and 
without additional terms  and  in the cost function are 
compared. On the left, it can be seen that in some cases, for certain 
geometric conditions of the problem, unphysical solutions are 
obtained if no specific measures are taken. On the other hand, on the 
right, the terms  and  are introduced within the cost function 

 and the nonphysical cases no longer appear. 
 

 

Figure 4-6: Unphysical solutions correction 

A second improvement that can be performed on the cost function 
concerns the maximum yaw rate term 𝛥�̇�𝐽 defined in the (191). The 
definitions considered so far only use the single maximum yaw rate 
value encountered along the entire trajectory. This approach can be 
made more efficient by considering an integral along the trajectory of 
all yaw rate values that exceed the threshold �̇�𝑙𝑖𝑚2. Taking into account 
that the yaw rate is computed only over a finite number of nodes, it is 
possible to redefine the penalty term for the yaw rate as follows: 

 
(196) 

The cost function then becomes: 

 
(197) 
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A specific test campaign carried out in this regard has shown that with 
this new formulation the algorithm can more easily detect and avoid 
cases where the yaw rate limit is exceeded.  
A final change made on the cost function concerns the possibility of 
avoiding intersections with no-fly zones. For this purpose, an algorithm 
was developed in order to detect possible intersections by simply 
checking whether any of the nodes of the trajectory is contained in the 
geometric area of one of the no-fly zones. A new term is then 
introduced into the cost function, which results in zero if there are no 
intersections and one otherwise as shown in Figure 4-7. The cost 
function becomes: 

 
(198) 

where  is a weighting coefficient that, as in the case of , must be 
large enough to ensure that there are always no intersections with no-
fly zones. This simple expedient effectively avoids no-fly zones in all 
cases where they do not impose too restrictive conditions by requiring 
complex path geometry. 

 

Figure 4-7: No-fly zones avoidance 
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4.4.2. Wind Drift and Wind-Fixed Frame 

The wind is a crucial element of the Terminal Guidance problem, and 
predicting its effects is a key factor for mission success. For this reason, 
the GNC subsystem is provided with a wind table that is sent from the 
ground station and updated with a certain frequency. This table 
provides a wind profile over the altitude based on the data collected 
by dedicated instrumentation. By means of such a table, it is possible 
to estimate what the effects of wind may be on the next phase of flight. 
It is common practice in these cases to introduce a new reference 
system called Wind-fixed Frame (WF) that considers a virtual position 
of the vehicle given by the sum of the actual position with the wind drift 
vector. Given the assumptions of no vertical wind, this corresponds to 
a shift in the horizontal plane. The position of the vehicle in such a 
reference system is generally denoted by air position  The wind drift 
vector is defined as follows: 

 

(199) 

Considering that the wind profile given by the table is a function of 
altitude , expression (199) can be rewritten as follows: 

 
(200) 

The air coordinates in the WF system are given by: 

 
(201) 

The strategy adopted in this study is to remove any kind of reference 
to wind speed within the direct method algorithm by always using air 
coordinates and airspeed instead of ground speed. The effect of wind 
is taken into account through the drift contribution alone. As an 
example, the equations of kinematics (128) become: 

 
(202) 
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4.4.3. Two-Parameter Optimization 

The algorithm described so far proves to be very effective for specific 
geometric conditions. For example, in the case of a maneuver with a 
yaw variation of 180 degrees, the algorithm always provides an optimal 
solution. This is clearly true if the distance between the initial and the 
final point is not too large taking into account the horizontal velocity 
and the difference in altitude to be traveled (under the assumptions 
of constant vertical velocity). If the delta of altitude is not sufficient to 
guarantee the time needed to travel the horizontal distance between 
the initial and the final point, there is no physical solution to the 
problem. Figure 4-8 shows an example of a problem geometry (with 

) for which the tests performed demonstrated the complete 
reliability of the algorithm. A Monte Carlo campaign was conducted by 
varying all the boundary conditions but keeping the delta yaw  
around 180 degrees. In 100% of the cases with an available physical 
solution, an optimal trajectory was found (meeting all requirements in 
terms of maneuver time and maximum yaw rate). 

 

Figure 4-8: Problem geometry with  

However, running a more extensive Monte Carlo campaign which also 
varied the delta yaw  between initial and final directions, it is 
observed that there are several geometric conditions for which the 
developed algorithm does not encounter an optimal solution. 
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These conditions are a combination of the relative position of the initial 
and final point and the relative direction between initial and final 
velocity, so there is no standard case where the algorithm does not 
find a solution. Certainly, one of the most problematic is the one in 
which  is about 360 degrees with fairly close initial and final 
positions. An example is illustrated in Figure 4-9. In this case, because 
of the geometry of the problem, it is very complex to find a solution 
that meets the maximum turn rate requirements, which for parafoil are 
very stringent. 
 

 

Figure 4-9: Problem geometry with  

Although there are particular geometric conditions in which an 
optimal solution cannot be guaranteed in any case, some measures 
can be taken in order to improve the performance of the algorithm. 
One of them is to relax the boundary conditions to broaden the range 
of possible acceptable solutions. In particular, in Section 4.3.1, the yaw 
rate �̇�𝑓 at the final point was imposed to be zero to make the arrival 
smoother. It is possible to relax that condition by allowing a non-zero 
final yaw rate but it still maintains reasonably low values. Nevertheless, 
the final yaw rate �̇�𝑓 is needed to define the boundary conditions so it 
cannot be considered as a generic free parameter but must have a 
specific value for the complete problem definition. One possible 
solution is to consider the final yaw rate �̇�𝑓 as a second parameter in 
the optimization process. Two-parameter optimization (TPO) certainly 
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guarantees better results in terms of finding the optimal trajectory but 
with a higher computational cost that results in more time required for 
optimization. TPO was implemented in this work similarly to single-
parameter optimization (SPO) by employing the MATLAB function 
fminsearch. The two parameters used for the optimization are: 

• Virtual variable   

• Final yaw rate  �̇�𝑓  

The optimization problem then becomes: 

 
(203) 

A comparison of the performance obtained with single-parameter 
and two-parameter optimization is now presented. Figure 4-10 and 
Figure 4-11 present a comparative example in which the two types of 
optimization are applied to the same problem. In particular, the initial 
and final positions and the final velocity are kept fixed. In contrast, the 
direction of the initial airspeed varies. It is noted that, for this example, 
groundspeed is still employed so, since the wind at the initial point is 
considered constant in direction and magnitude, the change in the 
direction of the initial airspeed causes a change in the magnitude of 
the initial groundspeed. It appears evident that with a TPO, the 
algorithm is able to find an optimal solution for a much wider range of 
combinations of boundary conditions. The results related to the 
aforementioned figures are shown in Table 6. It is observed that only 3 
out of a total of 100 cases are not acceptable for two-parameter 
optimization while with a single parameter there are as many as 47. 

Type of solution Single parameter 
number of cases 

Two-parameter 
number of cases 

Optimal (green) 40/100 85/100 

Sub-optimal (yellow) 13/100 12/100 

Not acceptable (red) 47/100 3/100 

Table 6: SPO/TPO single case comparison 
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Figure 4-10: SPO trajectories 

 

Figure 4-11: TWO trajectories 
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The figures below show the performance for the comparison under 
consideration. Figure 4-12 shows the trend of the maximum yaw rate 
(in logarithmic scale) as the direction of the initial velocity changes. In 
the case of single-parameter optimization, it is observed that there are 
two specific directions for which the maximum yaw rate tends to 
infinity. Two-parameter optimization tends to reduce the maximum 
yaw rate corresponding to these critical directions to bring it below the 
acceptable threshold. For this purpose, the TPO relaxes the final yaw 
rate conditions. This effect is evident in Figure 4-14 where it is observed 
that the final yaw rate increases precisely at the critical directions. 
Despite this, the final yaw rate values always remain below 1.5-2 deg/s. 
As discussed in Section 2.1, the Terminal Guidance phase is followed by 
a short corrective phase before flare activation. During that phase, it is 
possible to correct the yaw rate by bringing it to zero. For this reason, 
the relaxation of boundary conditions does not affect the performance 
of the PGNC. Another interesting figure is the missing time  defined 
as the difference between desired maneuver time and total travel 
time of the trajectory given by the optimization algorithm: 

 
(204) 

In Figure 4-13, the missing time for SPO and TPO is shown. Considering 
that the trajectories under investigation have a target time  of about 
300 seconds, it is observed that the missing time always remains 
limited and there is no particular difference between the two 
optimization methods. To further understand the difference in 
performance between the two types of optimization, a Monte Carlo 
campaign was carried out based on the comparison just examined 
but varying all boundary conditions using Gaussian distributions. The 
results obtained are shown in Table 7. 

Type of solution Single parameter 
number of cases 

Two-parameter 
number of cases 

Optimal (green) 43.16% 85.35% 

Sub-optimal (yellow) 15.71% 9.38% 

Not acceptable (red) 41.13% 5.27% 

Table 7: SPO/TPO MC comparison 
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Figure 4-12: SPO/TPO max yaw rate comparison 

 

Figure 4-13: SPO/TPO missing time comparison 

 

Figure 4-14: SPO/TPO final yaw rate comparison 
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It is emphasized that the performance so far illustrated is the result of 
a laborious process of tuning all parameters involved to achieve the 
desired output.  So far, the advantage gained by using TPO appears 
evident. It provides a more robust approach to the variation of the 
problem geometry in terms of boundary conditions. However, as 
previously mentioned, the main drawback of TPO is related to 
computational cost. Figure 4-15 shows the performance in terms of 
time required for optimization in the MATLAB environment. The values 
given are relative to the performance of the machine used for the 
simulation and are not intended to indicate an absolute figure but to 
compare the different scenarios: SPO and TPO with the maximum 
number of iterations for the function fminsearch set to 50 and 100. It is 
observed that varying the maximum number of iterations from 50 to 
100 has no noticeable improvement in terms of the maximum yaw 
rate. On the contrary, there are significant differences in terms of the 
time required for optimization. With 50 iterations the computational 
time always remains below 20 ms while for 100 iterations it can exceed 
30 ms. In any case, the time required for SPO is significantly lower, never 
exceeding 10 ms. Therefore, a trade-off is required taking into account 
computational cost and efficiency in finding an optimal trajectory. A 
possible strategy is the one proposed in Chapter 8 for which SPO is 
used as a first approach and, in case the solution found is not 
acceptable, TPO with a maximum iteration limit of 50 is used. 

 

Figure 4-15: SPO/TPO computational cost 
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5. Trajectory Tracking Design 
Chapter 4 is devoted to describing the guidance algorithm used to 
design the trajectory for the case study. The output of this algorithm is 
the path to be followed in terms of coordinates in the Wind-fixed 
Frame, as discussed in Section 4.4.2. The velocity considered is no 
longer the ground speed but the airspeed since the effect of the wind 
is taken into account exclusively through the wind drift. The sequence 
of angles that is obtained through the geometric procedure described 
in Section 4.3.2 (equation (187)) is therefore no longer related to the yaw 
angle  but to the heading angle of the airspeed (𝜒𝑎 or HdgAir). The 
input required by the control is indeed the air heading rate (�̇�𝑎  or 
HdrAir). The heading angle of the airspeed and the air heading rate will 
henceforth be denoted simply by HDG and HDR, respectively. It should 
be recalled that, for the Terminal Guidance phase, a fixed value of FPA 
is considered, i.e., a constant symmetric command. Figure 5-1 
illustrates the typical scenario under investigation. This chapter 
describes some suitable approaches to derive the HDR command 
from the HDG sequence provided by the guidance through different 
types of SISO controllers.  

 

Figure 5-1: Tracking problem configuration 
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5.1. PID with Finite Differences 

The simplest strategy consists of deriving the sequence of HDR from 
the sequence of HDG using finite differences (equation (189)). The 
reference HDR values  are sent to a proportional-integral-derivative 
(PID) controller that provides the control input  The control function 
must then process the signal obtained from the PID to obtain a 
command to be sent to the actuators in the form of asymmetric or 
left/right lines deflections ( . 

 

Figure 5-2: PID controller 

This method has a negligible computational cost but does not directly 
take into account the dynamics of the payload-parafoil system. 
Nevertheless, the feedback employed in the control mechanism 
ensures that the response of the system is taken into account allowing 
for indirect consideration of the dynamics of the vehicle. Despite the 
close-loop control, the accuracy provided in trajectory tracking is 
poor. However, this approach can be used for an initial test of the 
operation of the guidance algorithm. The results obtained, as 
discussed later in Chapter 7, with proper tuning of the PID, can be 
considered acceptable to a first approximation. For more accurate 
results, it is required to employ more sophisticated techniques such as 
Model Predictive Control (MPC).
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5.2. Model Predictive Control 

A possible improvement in accuracy over PID is the Model Predictive 
Control (MPC). MPC techniques involve the use of a dynamic model of 
the system to predict the evolution of the system state over a finite 
time horizon, the so-called prediction horizon . This method takes 
into account the dynamics of the system to predict the response to 
control actions in order to identify the most effective command to 
achieve the desired state. The MPC, at each iteration, receives the 
system state from the navigation, solves the Constrained Finite-Time 
Optimal Control (CFTOC) problem, and identifies the most suitable 
sequence of commands to obtain the desired output. At each 
iteration, only the first value of the identified sequence of commands 
is used. The MPC can handle more constraints on both input and 
output and adjust the results through an appropriate construction of 
the cost function. Compared to PID, the MPC requires a significantly 
higher computational cost that depends on the prediction horizon 
chosen and the dynamic model of the system. Despite the ability to 
handle nonlinear models, it is generally convenient to use linear 
models that guarantee lower computational cost and the possibility 
of stability, feasibility, and performance analysis. Some linearized 
models that can be employed in this context are described in Section 
3.6. To use such models with MPC, it is necessary to convert them from 
continuous-time to discrete-time. Within the MATLAB environment, the 
dedicated c2d  function can be utilized for this purpose. The discrete-
time SISO system obtained has the following form: 

 

(205) 

where  and  are the discrete-time state-space matrices and 
 and  are respectively the state vector, the control input, and 

the output at the -  sampling time. The system (205) is a Linear Time-
Invariant (LTI) system. The left-hand side of the state equation is no 
longer the derivative of the state vector but the state vector itself at 
the next sampling time.  
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According to the classical formulation of the MPC problem, given the 
prediction horizon , it must be identified the optimal sequence  of 
control inputs over : 

 
(206) 

that minimizes the quadratic cost function: 

 
(207) 

such that: 

 
(208) 

 
(209) 

 
(210) 

 
(211) 

with: 

 
(212) 

 
(213) 

 
(214) 

The cost function involves the reference output sequence vector , 
the desired output sequence vector �̃�, and the control input sequence 
vector . For the SISO case at hand, the output  is the heading while 
the control input  is the asymmetric line deflection: 

 
(215) 

 
(216) 

The entity of the state vector , on the other hand, depends on the 
linearized model chosen.  
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For cost function minimization, the two positive semidefinite symmetric 
matrices  and  of size  are introduced. Matrices  and  allow 
for weighting the tracking error and control action, respectively. The 
MPC problem is subject to a set of conditions and constraints. The 
system in (208) is the LTI system that simulates plant dynamics. The 
expression (209) constitutes the initial condition i.e., the starting state 
of the system. The (210) and (211) are instead the constraints imposed 
on the control input. The first concerns the values that can be assumed 
by the control input which is the asymmetric deflection . The second 
instead imposes a constraint on the difference between consecutive 
control actions, which is equivalent to a limit on the derivative in 
continuous-time. It is now observed that the MPC algorithm can 
replace, with proper modifications, the control function already 
included in the GNC software bypassing it during the Terminal 
Guidance phase. However, this approach involves several 
complications in the SW design so, for this work, as shown in Figure 5-3, 
it was preferred to convert the control input from the MPC ( ) into the 
input signal required by the original control (HDR) without bypassing it. 
For this purpose, the dynamic state-space model can be used to 
derive the heading rate knowing the current state of the system (which 
includes the HDG) and the optimal control variable provided by the 
MPC. The formulation of the linear MPC is thus completely defined in its 
basic compact, flexible, and intuitive form. The advantages in the 
application of MPC techniques are numerous, but to obtain accurate 
results, a reliable validated dynamic model must be employed. In 
addition, the state vector from navigation must also prove to be 
sufficiently reliable. This is especially critical in the case of indirect 
measurements of state variables, measurement disturbances, and 
uncertainties. When using MPC it is then essential to keep in mind that 
the computational cost can be rather high for real-time application 
considering also that the problem under examination is generally non-
convex. To cope with this, besides properly varying the problem 
formulation, it is possible to operate on the value of the prediction 
horizon , making a trade-off between performance and 
computational cost. There are numerous MPC optimization algorithms 
available, and an entire toolbox dedicated to the purpose is available 
within the MATLAB environment.     
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5.3. Linear Quadratic Regulator 

Optimization algorithms used for MPC are nowadays very efficient, but 
the computational cost still cannot fall below a certain threshold 
because of the way the problem is formulated. In some cases, it is 
possible to drastically reduce the computational cost by using a Linear 
Quadratic Regulator (LQR), which is nothing more than a special case 
of unconstrained MPC. The formulation of the problem is the same as 
that seen in Section 5.2 but without the constraints of equations (210) 
and (211). In this case, an analytical solution to the problem can be 
found without resorting to specific optimization algorithms. The 
resolution method for LQR is briefly discussed below.  
Denoting by  and  (instead of  and ) the discrete-time 
state vector and control input at the k-th sampling time, using the first 
equation of the (205), it results: 

 

(217) 

It is noted that the state  always depends solely on the initial state 
 and the control input sequence applied to the previous steps. The 

time evolution of the state vector can therefore be predicted as 
follows: 

 

(218) 
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where the tilde mark denotes the estimated quantities. Now, taking into 
account that the second equation of (205) gives: 

 
(219) 

and following a procedure similar to the one just seen yields: 

 

(220) 

The formulation of the LQR problem then requires finding the optimal 
control input sequence  over the entire prediction horizon that 
minimizes the cost function: 

 

(221) 

that is: 

 
(222) 

with: 

 
(223) 

In the case of the Linear Quadratic Regulator, it can be shown that the 
vector  can be derived analytically as follows: 

 
(224) 

Once the optimal control vector has been derived, at each control 
step, the first element can be extracted and used as the control input 
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value. Following the diagram in Figure 5-3, this value can be processed 
and sent directly to the actuators as a command in the form of 
left/right line deflection. This procedure bypasses the original PGNC 
Control (PCON) whose functions are replaced in their totality by the 
LQR and the associated processing functions. In contrast, the 
approach used for this study involves processing the output of the LQR 
to obtain the HDR signal required by the original PCON, which is 
therefore not bypassed. The HDR value is derived by introducing the 
current state  of the system and the output  of the LQR within the 
linearized continuous-time state-space system from which the 
discrete-time system was derived. An alternative but less accurate 
procedure might be to use a lookup table (LUT) to derive the HDR. By 
means of a series of open-loop simulations, it is indeed possible to 
analyze the dynamic response in terms of HDR to a  command and 
construct a table that, based on the state of the system, univocally 
provides the value of HDR. The table generated must take into account 
a set of main parameters such as the mass of the system and the 
density of the air. Figure 3-3 shows visually a portion of the structure of 
the tables under consideration. This figure should be extended to more 
dimensions to consider the selected system parameters. This method 
is quite common in GNC design but provides less accurate results than 
using the dynamic model because it is not possible to account for all 
the parameters involved.  

 

Figure 5-3: LQR/MPC implementation 
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For this study, LQR was selected as the trajectory tracking method. This 
choice is attributable to two main reasons. The first is related to the low 
computational cost which is a crucial element for the problem under 
investigation. The second, on the other hand, partly justifies the use of 
the LQR instead of the MPC. The heading sequence coming from the 
driving algorithm that is used by the LQR already takes into account 
the constraint in terms of the values that can be assumed by the 
command and the maximum turn rate. The imposition of a new 
constraint is therefore redundant. Despite this, it is always good 
practice to provide a saturator for the commands, associated, in the 
case of PID controllers, with an anti-windup system to avoid possible 
issues with the integral term in case of saturation of the command.  
To analyze the performance of the LQR, a simple 3DOF model such as 
the one described in Section 3.5.1 was developed in the Simulink 
environment. The purpose of this analysis is mainly to investigate the 
evolution of the output of the trajectory tracking algorithm without 
focusing on the result in terms of the path followed. Figure 5-4 shows 
the comparison of the HDR sequences obtained with finite differences 
and LQR. In particular, for LQR, the two different methods seen to derive 
HDR from the asymmetric deflection  were considered.  

 

Figure 5-4: HDR sequence with LQR and Finite Differences 
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The first evident result obtained is that the HDR estimation performed 
by the finite difference method is much greater than that by LQR. This 
element is an additional point in favor of using LQR instead of MPC. In 
fact, it indicates that the criteria used for the limitation in terms of 
maximum HDR within the guidance algorithm are actually more 
stringent than expected ensuring a certain margin of safety.  It is also 
observed that the LQR trend exhibits an initial peak that makes the 
whole sequence appear very different from the finite difference one. 
Comparing the two methods used to derive the HDR for the LQR shows 
that the two sequences are quite similar except for the initial stage of 
the sequence.  The use of the space-state model involves considering 
the dynamic evolution of the system, which therefore starts (in this 
case) from a null HDR command. On the other hand, the LUT method 
immediately associates a certain value of  with the corresponding 
value of HDR without considering the current state of the system. A 
further analysis that can be performed concerns the selection of the 
prediction horizon. In general, the choice of a longer horizon allows the 
evolution of the system to be considered over a longer period of time 
but with a higher computational cost. In addition, a larger  clashes 
with the assumptions made for the linearization providing less 
accurate results.  A trade-off was carried out to find the most suitable 
value of , which was set to 30. Figure 5-5 shows the HDR sequences 
related to LQR with LUT as  varies. 

 

Figure 5-5: HDR sequences varying the prediction horizon 
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6. TERGUID Functional Architecture 
So far, the algorithms for the generation of the optimal trajectory and 
its tracking have been developed. These algorithms must be properly 
incorporated into the complete PGNC code to be able to carry out full 
simulations with the 6DOF simulator provided by SENER Aeroespacial. 
For this purpose, a complete logic for the entire Terminal Guidance 
phase was first designed, then implemented in a set of MATLAB 
functions that were incorporated into the complete PGNC code. The 
architecture of the code for implementing the developed algorithms 
is a rather delicate task because it has to take into account all the 
interfaces with the rest of the code, but also possible issues related to 
the operation of the algorithms. Therefore, it is essential to possess a 
complete overview of the architecture and operation of the entire GNC 
code besides having a clear understanding of the mission profile and 
the challenges associated with it. Two different logics have been 
developed for this study. One employs finite differences for HDR 
sequence computation and the other employs LQR. The following 
sections only concern the second case, describing both the logic and 
its implementation strategy.  
Figure 6-1 shows the general architecture adopted for the PGNC 
functions developed to manage the Terminal Guidance phase. As 
seen in Section 2.3, the parafoil GNC (PGNC) algorithms are part of the 
more general framework of the complete GNC software of the vehicle. 
The PGNC can be considered as a submode of the GNC activated in 
correspondence with parafoil deployment and composed in turn of 
specific submodes. The PGNC is composed of the following main 
functions: 

• Parafoil Navigation (PNAV) 
• Parafoil Mode Manager (PMNG) 
• Parafoil Guidance (PGUI) 
• Parafoil Control (PCON) 

For the purpose of this study, the PNAV function already implemented 
in the design developed by SENER Aeroespacial was not modified. In 
contrast, the code of PMNG, PGUI, and PCON related to the TERGUID 
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phase was properly edited to implement the algorithms seen in the 
previous chapters. In particular, a set of functions has been developed 
for generating the trajectory and its tracking (section 6.1), for 
managing the triggering and exit from the TERGUID phase (section 6.2), 
and for handling the general operation of the TERGUID through the 
logic designed for this phase. It should also be recalled that all PGNC 
functions are called with a frequency of 2.5 Hz except for the guidance 
functions, which are characterized by a frequency of 25 Hz. The PGUI is 
therefore activated every 10 cycles of complete PGNC. 

 

Figure 6-1: PGNC TERGUID architecture 
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6.1. Trajectory Generation & Tracking Implementation 

This section describes the implementation of the guidance and 
trajectory tracking algorithms seen in the previous two chapters (4 
and 5). In addition to them, to make the adopted strategy sufficiently 
robust, a further algorithm was included i.e., a backup solution for 
trajectory generation. 

6.1.1. Optimal Solution Search 

The real-time optimal trajectory search is based on four low-level 
functions that are called sequentially: 

a. GetOptSolution 
b. GetOptTrajectory 
c. GetOptHdrSequenceFD 
d. CheckOptSolution 

The sequence begins with the function GetOptSolution, which aims to 
minimize the cost function  using the MATLAB function fminsearch. For 
this purpose, a specific function was developed to implement the cost 
function  described in Section 4.4.1 that must be properly called within 
the function fminsearch. The output of the GetOptSolution function is 
constituted by the optimal values of the two optimization parameters 
selected (virtual variable  and final yaw rate �̇�𝑓). These values are 
then used by the GetOptTrajectory function to define the optimal 
trajectory in terms of coordinates in WF. This function allows the 
coefficients  and  of equation (141) to be identified so that an 
analytical expression of the solution can be defined. From this, the HDG 
sequence needed to obtain the HDR sequence is derived. This last step 
is performed by the GetOptHdrSequenceFD function, which derives 
HDR values by making use of the finite difference method. The 
obtained sequence is not used as a control input (given by the LQR) 
but only to check the status of the solution using the CheckOptSolution 
function according to the criteria presented in Section 4. This choice is 
due to the lower computational cost of the finite difference method 
compared to LQR taking into account that the former is also more 
conservative.  
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6.1.2. Backup Solution 

The proposed guidance algorithm succeeds in ensuring an optimal 
solution very efficiently where a physical solution to the problem is 
guaranteed to exist. There are, however, some cases where it does not 
exist. This can occur because of the initial conditions for the Terminal 
Guidance phase, due to issues related to previous phases, or as a 
result of wind drift during the TERGUID phase itself. Figure 6-2 helps to 
understand the basic conditions for which the problem does not 
possess physical solution. Considering constant horizontal and vertical 
airspeed norms, it is possible to define the following time parameters, 
named vertical and horizontal time respectively: 

 
(225) 

 
(226) 

where  and  are the vertical and horizontal distance of 
the vehicle from the landing point in the Wind-fixed Frame (WF), 
assuming that the final point used for the guidance algorithm is the LP.  

 

Figure 6-2: Vertical and horizontal time 



TERGUID Functional Architecture 
  

 

 101  

 

The necessary but not sufficient condition for a physical solution of the 
Terminal Guidance problem to exist is the following: 

 
(227) 

This condition is not sufficient since for an optimal solution to exist, a 
certain margin of time difference  between  and  is 
also necessary to plan a trajectory that meets the maximum turn rate 
requirements. The value of  depends on the boundary conditions of 
the problem so it is possible that (227) is met but no solution to the 
problem exists. The standard trend of vertical and horizontal times is 
shown in Figure 6-3 where it is always observed the presence of some 
margin  which tends to zero as the final point of the trajectory is 
approached.  

 

Figure 6-3: Vertical and horizontal time trends 

Given the observations just made, it appears clear the need to provide 
a backup approach in case an optimal solution is not available. The 
objective of this approach is to limit the distance to the LP at 
touchdown as much as possible in order to avoid possible hazardous 
conditions in terms of mission safety requirements. The maneuver that 
is generally adopted as a backup solution is what is usually referred to 
as Point to Target. The trajectory generated in the horizontal plane is a 
simple straight line joining the current position of the vehicle in WF and 
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the LP. Thus, neither the direction of the vehicle's current speed nor the 
desired final speed is taken into account in planning the backup 
trajectory. This element has a severe impact on touchdown speed 
requirements that cannot generally be guaranteed. This solution is 
therefore critical to the fulfillment of the requirements and should be 
adopted only if it is actually needed. It is crucial to design a robust logic 
for activating the backup solution when required (see Section 6.3).  
Figure 5 compares 3 different solutions for the Terminal Guidance 
trajectory as the initial horizontal position changes (with the same 
initial altitude). For cases 1 and 2, it is observed that the horizontal 
distance is still within the limits that guarantee the presence of an 
optimal trajectory. In the third case, on the other hand, the horizontal 
distance is too large and a Point to Target solution is used. The 
trajectory depicted is the one calculated by the guidance and not the 
one traveled by the vehicle. Given the absence of a physical solution, 
the touchdown point will be located along it and not exactly at the LP. 

 

Figure 6-4: Optimal and backup solutions 
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6.1.3. Trajectory Tracking 

Once the trajectory to be followed has been calculated, it is necessary 
to implement a control function to track it. As seen in Section 5, there 
are several possible approaches. The use of Model Predictive Control 
techniques with constraints on the output value is certainly preferable 
in case there are no special limitations on the computational cost. 
However, for the case under consideration, the computational cost is 
limited and, in addition, constraints are imposed downstream during 
the trajectory generation. For this reason, a Linear Quadratic Regulator 
was selected for trajectory tracking. The LQR solves an unconstrained 
minimization problem over a finite time horizon.  
The algorithm described in Section 5.3 was implemented in a function 
named GetOptAsymDeflectionLQR that receives as input the state 
vector from the navigation and the HDG sequence to follow from the 
guidance and provides as output the optimal asymmetric deflection 
value. The obtained value  must then be converted into the heading 
rate value HDR of the airspeed vector, which consists of the input 
required by the original PCON. The GetOptHdrLQR function performs 
this conversion using the linearized dynamic system. The use of LQR is 
scheduled for each PGNC cycle in which an optimal or sub-optimal 
trajectory is available. In the event of backup solution activation 
instead, LQR no longer becomes needed. In fact, for a Point to Target-
type trajectory, it is in general sufficient to use a simple Proportional–
Integral–Derivative controller characterized by low computational 
cost and sufficiently accurate results. For the backup solution, the 
trajectory tracking simply requires following a straight path which 
results in constant HDG. Even in the case of PID use, it is necessary to 
obtain as a final output the value of HDR to be sent to the original PCON 
functions. LQR and PID are activated one at a time based on whether 
or not the backup solution has been triggered. Downstream of both 
the LQR and the PID, it is then essential to ensure the presence of a 
saturator in order to guarantee that the command value does not 
exceed the design limits. In the case of this work, this element is already 
included within the PCON function. 
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6.2. Submode Transitions 

An additional important function to be implemented for the correct 
operation of the code is the triggering of the different submodes. In 
this case, a first function was developed to exit the Energy 
Management (ENEMNG) submode and activate the terminal guidance 
(TERGUID) submode, and a second one to exit the TERGUID submode 
and enter the final corrections submode. The ENEMNG exit function is 
active during all and only the ENEMNG phase. For the exit from this 
phase, the following condition must first be met: 

 
(228) 

where  is the altitude threshold required for Terminal Guidance 
activation. For the case study, TERGUID cannot be activated above 
1500 meters. The other required condition is the availability of an 
optimal solution. The high-level function for exiting ENEMNG, at each 
PGNC cycle, executes the sequence of Section 6.1.1 to search for an 
optimal solution. The last function of the sequence (CheckOptSolution) 
returns a flag indicating the type of solution found. If the solution is 
optimal (see Section 4.4 for the criteria to be met) and the altitude limit 
is respected, the PMNG activates the TERGUID submode. In summary, 
the conditions to be met simultaneously for TERGUID activation are as 
follows: 

• Current phase: ENEMNG  

• Current altitude  

• Optimal TERGUID solution available 

It is important then to take into account the eventuality in which the 
conditions just presented are never met during the ENEMNG phase. In 
this case, it is necessary to introduce an altitude threshold after which 
the TERGUID submode is forced even without the required conditions 
being met. The Terminal Guidance submode is then automatically 
activated when: 

 
(229) 
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where the altitude limit  is set at 800 meters. In case of forced 
triggering of TERGUID submode, there is an initial absence of optimal 
trajectory, so the backup solution is activated. It is possible, however, 
that under particular conditions, for example, due to wind drift, the 
optimal solution is recovered during the Terminal Guidance phase. 
Therefore, the search for the optimal solution remains active anyway. 
Once the TERGUID submode is activated, the PMNG begins to execute 
the TERGUID exit function. The conditions imposed for exiting the 
TERGUID and starting the final corrections phase are as follows: 

 
(230) 

 (231) 

where  is the angular difference between the current 
heading and the target final heading. The value chosen for this 
parameter is 10 degrees. This is because the Final Corrections 
submode can easily correct heading differences of this order of 
magnitude. The altitude threshold  is 400 m. If the conditions 
are not met, the Final Corrections submode is not activated and there 
is a direct transition from TERGUID to flare (always activated). 

 

Figure 6-5: Submode triggering examples 
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6.3. TERGUID Logic 

When the TERGUID submode is active, it is needed to properly manage 
the different functions taking into account several factors, such as the 
different frequencies, the computational cost, and the mission profile. 
The PMNG works at the main frequency of the PGNC, which is 25 Hz. 
During the Terminal Guidance phase, the TERGUID exit function is 
performed at each PGNC cycle to check whether the output conditions 
are verified. The LQR and PID functions introduced downstream of the 
original PCON must also operate at the frequency of the PGNC 
because at each cycle the control must send a command signal to 
the actuators. In contrast, the PGUI works at a frequency ten times 
lower (2.5 Hz). Figure 6-6 shows the logic designed for the PGUI 
functions used during the TERGUID phase. A fundamental concept of 
the logic design is that the computation of the optimal trajectory does 
not occur at every PGUI cycle. The reason for this choice is not only 
related to the CPU load budget. Indeed, tests with the 6dof simulator 
have shown that too frequent updating of the trajectory to be followed 
can be counterproductive in many cases. In fact, the dynamics of a 
large parafoil is characterized by a rather slow response that causes 
the vehicle to be unable to follow frequent changes in trajectory. This 
problem is worsened by the fact that using a two-parameter 
optimization the shape of the solution can vary significantly even with 
a slight change in boundary conditions. In particular, keeping the 
boundary conditions fixed except for small changes in the direction of 
the initial velocity, in some cases, a kind of discontinuity in the shape 
of the solution can be observed. This phenomenon is referred to as 
branching and can cause several issues in guidance strategy so it 
must be handled carefully. Figure 6-7 clearly illustrates this 
phenomenon. A sudden change in the shape of the solution is 
observed between the two groups of trajectories (1 and 2) due to a 
slight change in the direction of the initial velocity. This phenomenon is 
not observed in the case of single-parameter optimization which, 
however, as seen previously, is much less efficient in the search for an 
optimal solution.  
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Figure 6-6: TERGUID PGUI logic 
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During a simulation, for every PGUI cycle, in addition to a change in 
direction of the initial velocity, there is also a change in initial position 
so the shape of the trajectory can change much more easily. For this 
reason, the most convenient approach for trajectory calculation is to 
perform it at a lower frequency than PGUI. A baseline computation 
frequency of 1/6 Hz was chosen for the case study. This means that the 
trajectory is calculated every 15 cycles of PGUI (every 6 seconds). To 
do this, a counter called PguiCycCounter is used. It increases by one 
unit at each PGUI cycle and resets to the value 1 when it reaches the 
OptSolCycles value, which is equal to 15. 

 

Figure 6-7: Trajectory generation discontinuities 

When the value of PguiCycCounter is equal to 1 the sequence 
illustrated in Section 6.1.1 for trajectory generation is activated. This 
case is referred to as an "active cycle". The CheckOptSolution function 
provides a flag with the category of the solution found, which can be:  

• Optimal solution (green) 
• Sub-optimal solution (yellow) 
• Not acceptable solution (red) 

The structure of the logic considering the different cases is now 
described according to the diagram in Figure 6-6. 
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In the case where an optimal trajectory has been found, the HDG  
sequence identified is stored in the memory. This sequence will be 
used for all subsequent PGNC cycles until the trajectory is updated 
again. The LQR works at the frequency of PGNC (25 Hz) so, taking into 
account that the trajectory is calculated every 15 cycles of PGUI (which 
works at 2.5 Hz), the saved HDG sequence will be used for 150 cycles of 
PCON.  Such cycles are referred to as "idle" because they do not involve 
the computation of a new trajectory. It is important to properly 
manage the HDG sequence during idle cycles so that the LQR receives 
as input the HDG vector relative to the correct prediction horizon . 
In case the solution found is not acceptable, the sequence of HDG 
found in the previous active cycle is maintained. Here, a new counter, 
called SolLostCounter, comes into play, which is used to count the 
number of cycles that have occurred since the last solution update 
(not including idle cycles). If at the previous cycle the SolLostCounter 
assumes a non-zero value, the current cycle will surely be an active 
cycle, regardless of the value of PguiCycCounter. This means that until 
a new feasible trajectory is identified, the PGNC follows the last 
available trajectory while searching for a new one at each PGUI cycle. 
The third case is when the solution found is sub-optimal. The solution 
found can be considered acceptable, but the HDR values associated 
with it can be very close to the limit ones. These are therefore feasible 
trajectories that are preferable to be used if strictly necessary also 
taking into account that the method employed to categorize the 
solution (based on HDR) is finite differences, which is rather inaccurate. 
The action performed by the PGUI, in this case, depends on the value 
taken by SolLostCounter. If the solution has not been updated for a 
number of cycles greater than or equal to the design value 
SuboptimalTrgThrs, then the HDG sequence is updated with the 
suboptimal solution found. Otherwise, the previous solution is kept, as 
in the case of unacceptable solution (increasing the value of 
SolLostCounter by one unit). The value of SuboptimalTrgThrs selected 
is 5 then a suboptimal solution is used only after 4 cycles of PGUI with 
an unacceptable/suboptimal solution (resetting the SolLostCounter).  
In addition, there is a further case where the solution found is 
unacceptable for a number of PGUI cycles greater than or equal to the 
BackupTrgThrs threshold value (which is set to 30). In this case, the 
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backup solution consisting of Point to Target is activated. Considering 
the frequency of PGUI, this means that if the solution is lost for more 
than 12 seconds the backup is triggered. When the backup is active, 
the SolLostCounter is never reset, so at each PGUI cycle, the PGNC still 
attempts to recover an optimal solution. This assumption is not to be 
discarded, considering that, for instance, the strong unpredictable 
impact of wind on the trajectory may lead to a condition where an 
optimal solution is available. Please note that the output of the 
guidance, in this case, consists of a constant HDG and it is sent to the 
PID instead of the LQR. This strategy allows all possible situations to be 
taken into account providing a robust approach to the proposed 
guidance problem. The trajectory update every 6 seconds is the result 
of a trade-off that mainly takes into account the velocity of the 
system's dynamic response and the impact of the wind. Figure 6-8 
illustrates how the sequence of optimal HDR varies markedly over time 
as a result of disturbances and uncertainties effects. Shown in light 
blue is the first calculated HDR sequence while in green is the HDR 
sequence updated according to the logic described above. 

 

Figure 6-8: HDR sequence simulation 
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Figure 6-9 and Figure 6-10 show an example of activation of the 
backup solution. For this example, the trajectory is updated every 12 
seconds (30 cycles of PGUI) and the value of BackupTrgThrs is 25. A 
standard first phase is observed in which a new optimal solution 
(FULLOPT) is calculated every 30 cycles of PGUI and the counter 
PguiCycCounter is then reset. Thus, idle cycles and active cycles 
alternate regularly.  Around second 1057 of the simulation, however, it 
is noticed that an active cycle gives in output an unacceptable path 
(NULLOPT). At each subsequent PGUI step the computation of the 
optimal trajectory is then retried but without any success. The counter 
SolLostCounter thus increases its value until it reaches the threshold of 
25 at which the backup solution is activated. The PGUI keeps searching 
for an optimal solution with a frequency of 2.5 Hz but does not find it 
and thus remains in backup mode until the end of the simulation. 

 

Figure 6-9: TERGUID flags 

 

Figure 6-10: TERGUID counter  
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7. Simulations Results 
This section presents the main results obtained using the 6dof 
simulator developed by SENER Aeroespacial. The simulator allows to 
perform single and Monte Carlo simulations selecting the parameters 
to be varied for each simulation. The main parameters that are 
considered for this study are as follows: 

• Initial conditions in terms of position, velocity, and attitude 
• Vehicle mass properties  
• Sensor uncertainties and errors 
• Uncertainties on the aerodynamic parameters of the parafoil 

By changing the initial conditions, the boundary conditions of the 
problem are varied. Mass properties are not known during the design 
phase because they depend on the payload selected for the RM (TBD), 
which affects parameters such as the total mass of the system, 
position of the center of gravity, and moments of inertia. Therefore, for 
performance assessment, it is necessary to apply a certain dispersion 
to these parameters to consider different possible configurations. In 
addition, uncertainties associated with the accuracy of the navigation 
sensors and knowledge of the aerodynamic parameters of the 
parafoil must be taken into account. The latter play a key role in 
characterizing the dynamics of the system. They are generally 
provided as a result of flight tests and depend on the specific 
prototype used for testing. For this reason, some level of uncertainty in 
their knowledge should always be assumed. Moreover, the DKE of the 
simulator employs a different wind profile for each shoot of a Monte 
Carlo simulation in order to vary the wind effects. It is also possible to 
disable the presence of wind to compare the results obtained with and 
without wind. The overall parafoil mission performance does not 
depend solely on the TERGUID code implemented for this work, but on 
the general operation of the GNC software developed by SENER 
Aeroespacial and already implemented in the simulator. However, in 
this section, only the performance related to landing accuracy will be 
analyzed, which mostly depends on the TERGUID algorithms. It is 
emphasized that the performance figures shown here are not 
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representative of the ones achieved by the GNC software developed 
by SENER Aeroespacial. They rather aim to offer a general overview of 
the performance achievable with the strategy proposed in this study. 
The campaign of simulations carried out is not to be considered as a 
formal validation campaign of the implemented algorithms but only 
as a preliminary assessment of the TERGUID performance. However, 
the case history available for performance evaluation is sufficiently 
large to draw some basic conclusions about the operation of the 
approach used in this work. In fact, in addition to the simulations whose 
results will be illustrated in this chapter, there is a set of simulations 
carried out during the design phase. The latter was required for the 
gradual verification of the functions implemented in the code. 
Regarding the mission requirements considered for the present study, 
there are two main elements to be taken into account. The first is the 
landing accuracy requirement of 150 m with 3σ standard deviation. It 
is important to point out that this requirement, in accordance with the 
observations made in [10] based on the results of flight tests with 
different types of parafoils (one among all X-38), is rather restrictive for 
large parafoils such as the one used by Space Rider. Compliance with 
this requirement depends mainly on the operation of the TERGUID 
submode. Another requirement to be met concerns the landing 
direction, which must be parallel and opposite to that of the wind on 
the ground so as to reduce the speed to touchdown (TD) as much as 
possible. This is equivalent to imposing horizontal ground speed at 
touchdown in the positive x-axis direction of the Landing Point Frame 
(see Section 3.3.1). The first requirement ensures that the RM lands at 
the intended landing site avoiding mission safety issues. The second 
requirement, on the other hand, ensures a soft touchdown that 
prevents any damage to the RM with a view to its reuse. To summarize, 
the requirements considered are: 

• Landing accuracy of 150 m 3σ 
• Groundspeed parallel and opposite to the wind direction at TD 
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7.1. Logic Operation  

For performance verification, several post-processing tools were 
developed in order to analyze the outputs of the simulations. A first tool 
allows visualizing the trend of the optimal trajectory computed along 
the different points of the TERGUID path. This provides insight into how 
the trajectory calculation adapts to external disturbances and allows 
to analyze any cases where the optimal solution is lost. Two examples 
of the tool output obtained for single simulations in the presence of 
wind are shown in Figure 7-1 and Figure 7-2. The blue dots indicate the 
trajectory followed during the TERGUID phase while the solid lines in 
green are a sample of the optimal trajectories computed by the 
guidance algorithm along the path. On the other hand, the light blue 
solid line is the first computed optimal trajectory, which is the one that 
triggers the Terminal Guidance submode. In the total absence of 
disturbances and uncertainties, the vehicle should follow the light blue 
trajectory for the entire duration of the TERGUID phase. It is observed, 
however, that this is not the case. In fact, the guidance function works 
properly by calculating an optimal trajectory that gradually adapts to 
the varying problem conditions. Analyzing several cases such as the 
ones under consideration, one common element is noted in most of 
them. During the initial phase of TERGUID, the computed optimal 
trajectory varies markedly and then tends to a single solution in the 
final part of TERGUID. This trend is independent of the wind profile 
encountered and is mainly related to the fact that the wind drift has 
less and less effect as the altitude decreases (the drift is an integral in 
altitude). In the final stages of TERGUID, the calculated trajectory is 
progressively less affected by the wind (the main disturbance factor) 
and thus undergoes less variation in its shape. In both cases, the 
backup solution is not activated, and the TERGUID phase ends in favor 
of the Final Corrections phase since the conditions for exiting the 
TERGUID are met. Indeed, a final delta heading of less than 10 degrees 
is observed. 



Simulations Results 
  

 

 115  

 

 

Figure 7-1: First example of optimal trajectory generation evolution 

 

Figure 7-2: Second example of optimal trajectory generation evolution 
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It is also important to note that the variation of the optimal trajectory 
along the path of the TERGUID phase depends not only on the effects 
of disturbances and uncertainties but also on the fact that several 
assumptions were made in generating the trajectory. These 
assumptions provide a good approximation of the dynamic behavior 
of the system but are not exact. An example is the assumption of 
constant horizontal and vertical airspeed norms. Figure 7-3 shows the 
norm trends of the two airspeed components. It can be seen that the 
two components are not constant over time. This has a severe impact 
on the trajectory generation algorithm, which, for the optimization, 
relies on the time required to perform the entire maneuver in WF and 
thus on horizontal and vertical airspeed values. The figure also shows 
that the airspeed employed by the guidance does not exactly match 
the one encountered (DKE) because its value is not measured directly 
but estimated on board by the navigation. 

 

Figure 7-3: Horizontal and vertical airspeed trend 
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7.2. Landing accuracy 

This section presents the performance of the implemented algorithms 
in terms of landing accuracy. As mentioned, it depends mainly on the 
TERGUID phase. However, once the TERGUID phase is completed there 
are additional small corrections for the residual longitudinal and 
lateral errors through the Final Corrections submode that precedes 
the Flare. This submode is not investigated for this work therefore, for 
the landing accuracy performance analysis, it was turned off. The 
trajectory is thus guided by the TERGUID submode until the instant the 
Flare is activated. It is important to keep in mind that performance in 
terms of longitudinal distance (along the x-axis of LPF) and velocity 
direction at touchdown, can be improved by reactivating that 
submode. Figure 7-4 shows the result obtained for a 100-case Monte 
Carlo simulation without wind using a PID controller for trajectory 
tracking (see section 5.1).  

 

Figure 7-4: MC simulation for PID controller without wind (100 shots) 
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Touchdown points, in blue, are represented in Landing Point Frame 
(LPF). The horizontal velocity at touchdown, in green, is reported for an 
understanding of its orientation without specifics regarding its 
magnitude. The mission requirement for landing accuracy is shown in 
red and consists of a circumference with a radius of 150 m centered in 
the Landing Point (LP). The two dashed-line circumferences in yellow 
and orange indicate 1σ and 3σ landing accuracy, respectively (the 
latter being the one to be considered for mission requirements). These 
circumferences are not centered in the LP but at the average 
touchdown point. Then the 99.87 percentile is also reported, which, 
however, in the case of only 100 simulations, corresponds to the 
maximum value of the distance from the landing site. For the case with 
PID, there is some dispersion at landing even in the absence of wind, 
with a 3σ value of 119m. Some outliers do not meet the requirements in 
terms of landing accuracy or horizontal velocity direction at 
touchdown. For the validation of the algorithms, an in-depth study of 
such cases is required in order to identify the issues that arise for each 
of them. These issues, in general, may be outside the TERGUID's 
competence and depend on the previous phases of flight. Such 
analysis, however, is beyond the scope of this section, which is to 
illustrate the general performance of the implemented algorithms. 
Figure 7-5 shows a Monte Carlo simulation similar to that in Figure 1 but 
implementing LQR instead of PID. It is observed that the performance 
improves compared to the case with PID, with a 3σ value of 56m. The 
effect of turning off the Final Corrections submode appears evident 
here, resulting in a distribution of touchdown points along the x-axis 
due to the absence of a final longitudinal correction. The direction of 
horizontal velocity at touchdown appears to be well aligned with the 
desired direction. There is a group of simulations with a direction not 
exactly aligned with the x-axis. Initial analysis indicated no specific 
correlation with incorrect operation of the TERGUID algorithms. 
Moreover, the magnitude of the misalignment is such that it can be 
easily corrected by activating the Final Corrections submode. 
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Figure 7-5: MC simulation for LQR without wind (100 shots) 

The two simulations analyzed above are useful to compare the results 
obtained with PID and LQR highlighting the advantages obtainable by 
using LQR for trajectory tracking. However, these simulations do not 
take into account the central element for the design of TERGUID 
algorithms, which is wind. Figure 7-6 shows the results obtained with 
LQR in the presence of the wind. The wind profiles considered have the 
following characteristics: 

• Maximum intensity: of 12 m/s  
• Maximum knowledge error: 5 m/s 

The knowledge error refers to the difference between encountered 
wind (DKE) and the wind predicted by the table on-board. This 
difference causes an error in the calculation of wind drift (see Sections 
4.4.2) and thus in the generation of the optimal trajectory. Adding the 
wind effect, It is immediately evident that the landing points are 
significantly more dispersed. The 3σ value is 139 meters. However, it 
remains within the limits of mission requirements. The wind also has a 
noticeable effect on the direction of the horizontal velocity at 
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touchdown, which, nevertheless, can be partly compensated for by 
activating the Final Corrections submode.  

 

Figure 7-6: MC simulation for LQR with wind (100 shots) 

The results shown above concern Monte Carlo simulations of only 100 
shots that help to get an idea of the general performance but are not 
sufficient to provide reasonably reliable figures of merit. Therefore, a 
larger Monte Carlo simulation campaign was carried out considering 
1000 shots for each of the cases seen above. The results are shown in 
Table 8. They are in line with those seen above and can be considered 
fully satisfactory for the purposes of this study. 

Case study  Landing accuracy 1σ Landing accuracy 3σ 

PID without wind 43.1 m 132.4 m 

LQR without wind 25.6 m 47.8 m 

LQR with wind 62.3 m 146.0 m 

Table 8: 1000-shots MC simulation results  



 

 

 121  

 

8. Conclusions and Future Work 
In this thesis, a possible approach has been proposed for managing 
the Terminal Guidance phase in the framework of the reentry mission 
of a payload-parafoil system such as the one constituted by Space 
Rider. A theoretical discussion of the proposed method has been 
presented first and then a possible practical implementation in order 
to be able to test the algorithms in a 6dof simulator. The challenges 
faced in the design and implementation of the method are many. 
Foremost among them was being able to adapt the method proposed 
by Yakimenko and Slegers [1] to the problem at hand. Indeed, early 
tests with the simulator demonstrated low compatibility of the original 
guidance algorithm with the Space Rider case bringing to light several 
issues that were addressed by the modifications proposed in Section 
4.4. Among them, the low efficiency in finding a solution of the 
algorithm with Single-Parameter Optimization (SPO) stands out. This 
issue does not greatly affect the triggering of the TERGUID phase 
because the spiral trajectory of the ENEMNG always guarantees a 
combination of boundary conditions for which the SPO has an optimal 
solution. During the TERGUID phase, in contrast, as illustrated in Figure 
7-2, the effects of disturbances and uncertainties can lead to 
conditions that deviate greatly from those predicted with the first 
computed trajectory (when the TERGUID is triggered). This can result in 
the SPO no longer finding an optimal solution. One approach that can 
be used is to appropriately employ both Single Parameter 
Optimization (SPO) and Two-Parameter Optimization (TPO). SPO is 
characterized by a significantly low computational cost that makes it 
preferable for equal performance in finding the solution. It is then 
possible to design the logic in such a way that at each active cycle of 
PGUI an SPO is used first, and only if the solution found is not optimal, 
the TPO is employed. TPO, at a higher computational cost, is capable 
of providing an optimal solution for a much wider range of problem 
boundary conditions. This type of strategy is often used when applying 
optimization techniques. 
Some other improvements can be applied to the guidance algorithm. 
For example, it is possible to change the shape of the solution of the 
direct method by acting on expression (141). Indeed, it may be 
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interesting to investigate how the algorithm behaves replacing the 
polynomial or sinusoidal part with another type of expression by 
checking whether more effective solutions are obtained. 
In addition, some modifications can be considered regarding the 
optimization process. The first interesting analysis can be regarding 
the second parameter chosen for Two-Parameter Optimization (TPO). 
In fact, the final HDR �̇�𝑓 was chosen following a series of comparative 
tests with several possible parameters. It is possible, however, that 
some unexplored solutions guarantee better results. For instance, it 
might be considered to use a scaling factor that multiplies a set of the 
terms in expression (141) and is used as the second parameter. Another 
aspect to be studied may be related to the fact that the function to be 
minimized turns out to be nonconvex, which generally makes the 
search for the optimal solution slower. This problem is partly 
compensated for by the fact that the initial point adopted for the 
optimization (expression (182) and �̇�𝑓 = 0) is generally quite close to 
the optimal one. In any case, to further accelerate the search for the 
optimal solution, especially in the case of Two-Parameter 
Optimization, it is worth trying to make the problem convex to facilitate 
the search for the minimum point of the cost function. 
For trajectory tracking instead, a possible alternative option is to 
implement the Model Predictive Control seen in Section 5.2 instead of 
a Linear Quadratic Regulator. MPC, despite a higher computational 
cost, provides a more robust approach, especially in relation to 
overshooting. To determine which approach is more cost-effective, a 
comparative campaign can be performed to highlight performance 
differences in terms of landing accuracy and computational cost 
required.  
Another major design challenge was the development of the logic for 
managing the TERGUID phase. This task requires a deep understanding 
of the complete GNC code and the various interfaces between GNC 
functions. In the initial theoretical design of the logic, it is indeed 
necessary to already have in mind its practical implementation within 
the code. It is then important to be aware of all possible issues that 
may arise related to both the mission profile and the code itself to build 
an effective and robust approach.  To this end, however, validation of 
the code through an extensive testing campaign is undoubtedly 
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required. For the present study, a series of Monte Carlo simulations 
were performed to test the performance of the various algorithms. For 
validation, it is necessary to design a larger campaign to verify 
whether the mission requirements are always fulfilled. For the present 
study, a series of Monte Carlo simulations were performed to test the 
performance of the various algorithms. For validation, it is necessary 
to design a larger campaign so that it can be verified whether the 
mission requirements are always fulfilled. A larger case study implies 
a higher probability of detecting special cases with nonstandard 
behavior, which must then be analyzed in detail to identify possible 
failures in the strategy used.  
Despite the various possible improvements proposed above the 
results obtained with the 6dof simulator (shown in Chapter 7) can be 
considered fully satisfactory. The approach used proved to be 
sufficiently robust in handling the unpredictable effects of 
disturbances and uncertainties that constitute the main challenge for 
the proposed guidance problem. The mission requirements in terms 
of landing accuracy can be considered met despite the presence of 
some outliers that need further analysis.  
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