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Summary

The jet wiping process is a coating technique that uses impinging gas jets to
control the thickness of a liquid layer dragged along a moving strip. This process
is fundamental in hot-dip galvanization but it is characterized by an unstable
interaction between the gas jet from a nozzle and the liquid film on the strip
that results in wavy final coating films. The not homogeneous film thickness
is complicate to predict and manage through methods based on fluid dynamics
simulations so that here the waves control on the liquid film is treated whereby
an innovative concept in engineering: the Reinforcement Learning (RL). Further
wiping jets will be controlled by specified algorithms in order to make uniform
the liquid film surface. The main advantage of RL is the capability to access a
wide range of techniques to define how an agent could decide what action performs
to achieve the goal. This work will propose some alternatives: Artificial Neural
Network (ANN), Genetic Programming (GP) and function Optimization methods
with the purpose to define a virtual agent who chooses an action for the real jet
wiping controllers. In RL each algorithm is dependent on hyperparameters so that
the reader will understand how much large could be this field of work; the best
results will be figured out but additional ways to satisfy the intent of this work
could be proposed.
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Chapter 1

The physical framework

The physical problem we want to manage is related to the control of “undulation”
appearing during the hot-dip zinc galvanization process. In the industrial steel
manufactory chain, zinc is used to protect the metal from corrosion. Usually, the
laminate, moved by wheels, passes through a hot-dip zinc bath and when it goes out
no imperfections on the face layer are expected. Once the metal strip is extracted
from the bath, an impinging gas jet allows controlling the final coating thickness in
a process called jet wiping. Although being a very efficient and profitable process,
in certain operating conditions the jet starts to oscillate causing an instability
called undulation which results in detrimental wavy patterns in the final coating.
To cope with this problem, a possible solution consists in using a feedback regulator
composed of a set of sensors and gas jet actuators managed by a controller.

Figure 1.1: The hot-dip galvanization process and related wiping control: the
laminate is immersed in a liquid zinc bath and once taken out, the main jet wipes
the amount of zinc in excess (1) generating an undulated distribution of zinc (2) of
which we want to control the shape by an active control (3)
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The physical framework

We can use different approaches to set up the controller. The one we are using in
this work is based on Machine Learning methods (ML). This pick has been guided
by its simple way to work due to the fact that ML is capable to give us a satisfying
result by managing just input and output, and no other data or equations are
required, therefore its setup cost is reduced. The ML methods need only input,
and output at the beginning, so it could be considered a black box that works and
acts on the environment by itself. Among these methods, there is a particularly
useful branch of ML called Reinforcement Learning (RL).
In a short overview, the basic principle of RL is to create an Agent that learns
how to achieve a certain goal without human guidance. The agent interacts with
the Environment outputting an Action which goes to modify the environment; the
environment produces a Reward which carries information about how good has
been the action, in terms of how much the new environment state is close to the
target.
In RL the agent is blind because it does not know where it is going to but it only
tries to maximize what the user specifies as a reward: in fact in RL is effective the
Reward Hypothesis which assess: “All goals can be described by the maximization
of expected cumulative reward”.
If we go more in detail, the Agent acquires the Environment State (si) by observing
it while the last one produces a reward (r) as input for the Learner (Learning
Method); the learner is the real “brain” in the process because it elaborates
rewards and finds the weights (w) the agent will use in its computation. Using
the Environment states and the weights, the agent creates an action (a) used to
modify the Environment (to the state si+1), so a new reward (ri+1) is found and
another cycle begins.

Figure 1.2: Logical flow in Reinforcement Learning

Coming back to the physical problem, the jet-wiping system, some actuators control
the zinc film pattern to make it homogeneous. In this work, we will focus on the
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The physical framework

jet-wiping actuators.
The jet-wiping actuators will act on the liquid surface after some observations over
the thin zinc layer have been acquired: those are the inputs for the Agent.
The observations contain only data about the film thickness and the zinc rate
wiped so, step by step, we could relate them to the time evolution of the problem
in such a way to figure out the control law which the agent has to perform. This is
a reduced-order model (ROM) designed to avoid CFD simulations.
The general kinematic problem could be extrapolated as the following expression:I

ḣ
q̇

J
= f(h, q) + c(x, t)

where f(h, q) is the force perturbing the medium values and c(x, t) represents the
control action.
The purpose of the work, as defined above, is to have the minimum thickness for
the zinc layer, namely the variable “h”, finding the optimal c(x, t) which ensures
the minimum value of L defined as follows:

L =
Ú t

0

Ú x2

x1
h dx

Minimizing the thickness L is what ML methods are used for; these allow us to get
the best result on their own.
The ML methods include algorithms such as Genetic Programming (GP), Bayesian
Optimization (BO) and Lipschitz Optimization (LIPO) that will be taken into
account, while the largely used methods are based on Artificial Neural Network
(ANN).
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Chapter 2

Reinforcement Learning and
related algorithms

When we talk about Machine Learning we can think of a large variety of algorithms
that can be divided into three big families: the first two families are called Super-
vised and Unsupervised Learning with their own typical features explained below.
The supervised learning process aims to construct a model from already known
inputs and outputs. The user already knows what the solution is for given inputs
and he wants to find a model which fits correctly outputs given inputs in order to
predict the correct outputs for new given inputs. The learning process requires an
initial set of inputs and outputs data used to train the model; as a general trend,
the larger the initial data set, the better will be the model predictions for unknown
outputs on the new inputs.
We can assess that supervised learning focuses on solving regression problems.
On the other hand, in unsupervised learning, the user knows the input data but
not the related output so that the model the user wants to find out is the one
useful to predict the output types. The typical example is for a given image input
set where we want to understand what kind of subject is shown on each of them to
divide the whole inputs data set into different groups.
In this case, we can assess that unsupervised learning focus on a solve the classifi-
cation problem.

The third family is called Reinforcement learning (RL): this is similar to unsuper-
vised learning in the sense that outputs are usually not given. The RL works by an
Agent which interacts with the Environment through actions and then observes the
environment’s reaction to evaluate a new reward. Reinforcement learning is like
trial-and-error learning where is effective the “Reward Hypothesis” and in which
the reward R is a scalar feedback signal that indicates how well the agent is doing
at step “t”.

4



Reinforcement Learning and related algorithms

At each step “t” the agent executes the action At, receives observations Ot and the
scalar reward Rt while the environment receives action At and releases observations
Ot+1 and the scalar reward Rt+1. The sequence of observations, actions, and
rewards is defined History while the Observation State, due to the fact that it
represents the information used to determine what happens next, is a function of
the history.
Given any element, when its “future is independent of the past given the present" it
could be defined as “Markov”: in this case it can be stated that S at time instant
“t” is defined "Markov" if and only if: P [St+1|St] = P [St+1|S1, ..., St].
In short, once the state is known the history may be thrown away, so the current
state completely characterizes the process.
Hence, depending on the information known, it is possible to define:

• Full observable Environment: in this case the agent directly observes the
environment state Ot := Set = Sat (Observation state corresponds to the
environment state which is equal to the Agent state). Formally, when this
occurs we are working through a Markov decision process (MDP).
Markov decision processes describe an environment for reinforcement learning.
A Markov Decision Process is a tuple (S;A;P;R; γ) where the probability P
and the reward R(γ), for the next state, are dependent on action A at the
current state S.

• Partial observable Environment: the agent indirectly observes the environment
(a card-playing agent only observes public cards) hence some beliefs about
the environment state needed to be created. This is named as a partially
observable Markov decision process (POMDP)

The algorithm whereby an agent determines its actions is called Policy (π). The
policy takes observations as inputs and outputs the action to adopt. The agent
should discover a good policy from its experiences with the environment.
A RL agent could include different elements:

I) Policy: agent’s behaviour function.
– Deterministic policy: a = π(s)
– Stochastic policy: π(a|s) = P [At = a|St = s].

This policy type carries out the most probable action after evaluating a
probabilistic field. In this case, we talk about "beliefs".

II) Value function v(s): it represents how good is each state/action; it is a
prediction of future reward.

III) Model: the representation of the environment used by the agent.
It predicts what the environment will do next using prediction for Rewards
and States.

5



Reinforcement Learning and related algorithms

How can the agent know which of the hundreds of actions it took were good, and
which of them were bad? All it knows is what happens after the last action, but
surely this last action is not entirely responsible. This is called the credit assignment
problem: when the agent gets a reward, it is hard for it to know which actions
should get credited (or blamed) for it. To tackle this problem, a common strategy
is to evaluate an action based on the sum of all the rewards that come after it
evaluating a belief reward and usually applying a discount factor γ at each step.
The sum of discounted rewards is called the action’s return and it is indicated as
“Gt”. The return corresponds to the total discounted reward from time-step “t”.

Gt = Rt+1 + γ ·Rt+2 + γ2 ·Rt+3 + ... =
∞Ø

k=0
γk ·Rt+k+1 (2.1)

When γ is close to 0 it leads to a “myopic” evaluation, then future rewards won’t
count for much compared to immediate rewards; conversely, when it is close to
1 leads to a “far-sighted” evaluation, then rewards far into the future will count
almost as much as immediate rewards.
The discount factor is important to avoids infinite returns in cyclic Markov processes
and moreover, the immediate reward is preferred in animal and human behaviour.
For any Markov Decision Process exists the optimal policy π∗ that is the best to
all other policies (π∗ ≥ π ∀π) and all optimal policies achieve the optimal value
function vπ∗(s) = v∗(s). To improve a given policy π, iteratively:

1. Evaluate the policy π : vπ(s) = Eπ[Rt+1 + γRt+2 + · · · |St = s];

2. Improve the policy with respect to vπ : π′ = greedy(vπ).

Then, some Predictions will be carried out to evaluate the future given a policy
and perform the Control to optimize the future in order to find the best policy
( e.g. Policy Iteration/Value Iteration where we find the best value function to
obtain the best policy) in accord to the Principle of optimality: A policy π(a|s)
achieves the optimal value from state s : vπ(s) = v∗(s), if and only if for any state
s′ reachable from s, π achieves the optimal value from state s′ : vπ(s′) = v∗(s′).
Generally, each algorithm works combining two steps to achieve the best policy,
and the best rewards; these are:

1. Exploration which is used to find more information about the environment

2. Exploitation which exploits already known information to maximize reward

Finally, as a last notion, the agent could be classified as:

- Policy Based

6



Reinforcement Learning and related algorithms

- Value Based

- Actor Critic (Policy and Value)

- Model Free (Policy and/or Value)

- Model Based (Policy and/or Value and Model)

2.1 Deep Deterministic Policy Gradient (DDPG)
The mathematician Andrey Markov studied stochastic processes with no memory,
the Markov processes. The probability to evolve from a state s to a state s′ is fixed
in the Markov chain, and it depends only on the pair (s, s′), not on past states (no
memory).
If we think about RL, the aim for the agent is to maximize the return (cumulative
reward), which could be defined through the value function, starting from the state
s and following the policy π.
Richard Bellman resembled Markov chains but with a twist: at each step, an agent
can choose one of several possible actions, and the transition probabilities “P”
depends on the chosen action. Moreover, every state transition returns a (positive
or negative) reward while the agent is finding a policy that will maximize reward
over time. Bellman found a way to estimate the optimal state value of any state
s, noted as v∗(s), which is the sum of all discounted future rewards the agent can
expect on average after it reaches a state s, assuming it acts optimally.
He showed that if the agent acts optimally, then the Bellman Optimality Equation
applies:

v∗(s) = max
a

Ø
s

P (s, a, s′)[R(s, a, s′) + γ · v∗(s′)] for all s (2.2)

where, given that the agent chooses the action a, P (s, a, s′) is the transition
probability from state s to state s′, R(s, a, s′) is the reward that the agent gets in
the transition and γ is the discount factor.
This equation leads to an algorithm that can precisely estimate the optimal state
value of every possible state: the first step is to initialize all the state value estimates
to zero, and then iteratively update them using the Value Iteration algorithm:

vk+1(s)← max
a

Ø
s′
P (s, a, s′)

5
R(s, a, s′) + γ · vk(s′)

6
for all s (2.3)

A remarkable result is that these estimates are guaranteed to converge to the
optimal state values v∗, corresponding to the optimal policy π∗.
Bellman found a similar algorithm to estimate also the optimal state-action values,
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Reinforcement Learning and related algorithms

generally called Q-Values (Quality Values). The optimal Q-Value of the state-action
pair (s, a), noted as Q∗(s, a), is the average sum of discounted future rewards the
agent can expect after it reaches the state s via action a, but before it sees the
outcome of this action, assuming it acts optimally after that action:

Qπ(s, a) = Eπ

C
NØ

n=0
γnrn |sn = s, an = a

D
= Eπ [Gn | sn = s, an = a] . (2.4)

As the same as before for the state value v, the first step is used to initialize all the
Q-Value estimates to zero, then update them using the Q-Value Iteration algorithm:

Qk+1(s, a)←
Ø
s′
P (s, a, s′)

5
R(s, a, s′) + γ ·max

a′
Qk(s′, a′)

6
for all (s′, a) (2.5)

Once we have the optimal Q-Values, defining the optimal policy π∗(s) is trivial; in
fact when the agent is in the state s, it should choose the action with the highest
Q-Value for that state: π∗(s) = argmaxa Q

∗(s, a).
Here we introduce the Q-Learning algorithm as an adaptation of the Q-Value
Iteration algorithm when the transition probabilities and the rewards are initially
unknown. Q-Learning works by watching an agent play (e.g. random player) and
gradually improving its estimates of the Q-Values. Once it has accurate Q-Value
estimates, then the optimal policy is to choose the action that has the highest
Q-Value: the Q-Learning algorithm:

Qk+1(s, a) ← (1− α)Qk(s, a) + α(r + γ ·max
a′

Qk(s′, a′)) (2.6)

where α is the learning rate, an arbitrary parameter.
For each state-action pair (s, a), this algorithm keeps track of an average value
of the rewards r the agent gets upon leaving the state s with action a, plus the
sum of discounted future expected rewards. To estimate this sum, we take the
maximum of the Q-Value estimates for the next state s, since we assume that the
target policy would act optimally from then on.
The main problem with Q-Learning is that it does not match well to large (or even
medium) MDPs with many states and actions, because evaluating the discounted
maximum Q in a wide range of actions and states (e.g. when the state-action pair is
a continuous, and not discrete, domain) became resources expensive. The solution
is to find a function Qθ(s, a) that approximates the Q-Value of any state-action
pair (s, a) using a manageable and appropriate number of parameters (given by
the parameter vector θ). This is called Approximate Q-Learning using deep neural
networks can work much better, especially for complex problems. A Deep Neural
Network (DNN) used to estimate Q-Values is called a Deep Q-Network (DQN),

8



Reinforcement Learning and related algorithms

and using a DQN for Approximate Q-Learning is called Deep Q-Learning.
Consider the approximate Q-Value computed by the DQN for a given state-action
pair (s, a). Thanks to Bellman, we know that this approximate Q-Value has to be
as close as possible to the reward r that we actually observe after playing action
a at the state s, plus the discounted value of playing optimally from then on. To
estimate the sum of future discounted rewards, is possible to execute the DQN
on the next state s′ and for all possible actions a′. We get an approximate future
Q-Value for each possible action and then we pick the highest (since we assume we
will play optimally) and discount it. This gives us an estimate of the sum of future
discounted rewards and by summing the reward r and the future discounted value
estimate, we get a target Q-Value for the state-action pair (s, a).

Qtarget(s, a) = r + γ ·max
a′

Qθ(s′, a′)

With this target Q-Value, we can run some training steps using any Gradient
Descent algorithm. Obviously, is considered good practice to try to minimize the
squared error between the estimated Q-Value and the target Q-Value.

DDPG is an off-policy method that results in some additional advantages:

1. The off-policy approach can reuse any past episodes (“experience replay”) for
much better sample efficiency;

2. The sample collection follows a behavior policy different from the target policy,
given a better exploration effects.

The behavior policy for collecting samples is predefined, so it is already known and
labeled as β(a|s). The objective function works summing up the rewards over the
state distribution defined by the behavior policy:

J(θ) =
Ø
s∈S

dβ(s)
Ø
a∈A

Qπ(s, a)πθ(a|s) = Es∼dβ

Ø
a∈A

Qπ(s, a)πθ(a|s)

given the action domain A and where dβ(s) is the stationary distribution of the
behavior policy β ( dβ(s) = limt→∞ P (St = s|S0, β) ) and Qπ is the action-value
function estimated with regard to the target policy π (not the behavior policy).
Given that the observations used for training are sampled by a ∼ β(a|s) , the
gradient could be rewrite as:

∇θJ(θ) = Eβ

C
πθ(a|s)
β(a|s) ·Q

π(s, a)∇θlnπθ(a|s)
D

(2.8)

The policy function π(.|s) has been modeled so far as a probability distribution
over actions A given the current state and thus it is a stochastic policy; when we
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refer to the deterministic policy gradient (DPG), instead, the policy embarks on
a deterministic decision: a = µ(s). It may look weird because the output is a
single action when we use a deterministic policy and we miss an actions field where
calculate the gradient of the action probability. Hence we call a new objective
function to optimize for that is reported below:

J(θ) =
Ú

S
ρµ(s)Q(s, µθ(s)) ds

with:

• ρ0(s) is the initial distribution over states;
• ρµ(s→ s′, k) is the starting from state s, the visitation probability density at

state s’ after moving k steps by policy .
• ρµ(s′) =

sN
n=0

q∞
k=1 γ

k−1ρ0(s)ρµ(s→ s′, k) ds is the discounted state distribu-
tion

According to the chain rule, we first take the gradient of Q w.r.t. the action a and
then the gradient of the deterministic policy function will be computed (“µ” w.r.t.
θ):

∇θJ(θ) =
Ú

S
ρµ(s)∇aQ

µ(s, a)∇θµθ(s)|a=µθ(s) ds (2.9)

We can consider the deterministic policy as a special case of the stochastic policy,
where the probability distribution contains only one non-zero value over one action.

Given that DDPG combines Policy Gradients with Deep Q-Networks, an Actor-
Critic agent which contains two neural networks, a policy network and DQN, is
adopted.
The DQN is trained by learning from the agent’s experiences. The policy network
learns differently (and much faster) than in regular Policy Gradient: instead of
estimating the value of each action by going through multiple episodes, the current
process works on summing the future discounted rewards for each action, and
normalizing them, the agent (actor) relies on the action values estimated by the
DQN (critic). We could say that the agent learns with the help of a coach (the
DQN).
We can conclude that the Deep Deterministic Policy Gradient is a an algorithm we
can ascribe to the model-free, off-policy and actor-critic algorithm, and it combines
DPG with DQN (Deep Q-Network) which stabilizes the learning of Q-function
by experience replay and a frozen target network β. The DQN usually works
in discrete space but DDPG extends its concept to continuous space with the
actor-critic framework while it learns a deterministic policy.
In the case of a given deterministic policy, if the agent explores on-policy in the
beginning, it would probably not try a wide enough variety of actions to find
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useful learning signals. To make DDPG policies explore better, we add noise to
their actions during the training. A new exploration policy µ′(s) is constructed by
adding noise N : µ′(s) = µ(s) + N
In addition, DDPG performs soft updates (“conservative policy iteration”) on the
parameters of both actor and critic, with τ ≪ 1 : θ′ ← τθ + (1− τ)θ′

In this way, the target network values are constrained to change slowly, differently
than in DQN where the target network stays frozen for a while.

[1]

2.2 Proximal Policy Optimization (PPO)
PPO alternates between sampling data through interaction with the environment
and optimizing a “surrogate” objective function via stochastic gradient ascent.
Whereas the standard policy gradient methods perform one gradient update per
data sample, PPO is characterized by a new objective function that enables multiple
epochs of minibatch updates1.
The proximal policy optimization (PPO) benefits from some features of the trust
region policy optimization (TRPO), but it is much simpler to implement (it is more
general) and has better sample complexity (empirically) by introducing an algorithm
that achieves the data efficiency and the reliability of TRPO while using only first-
order optimization. The objective presents a clipped probability ratio, which forms
a pessimistic estimate (i.e., lower bound) of the policy’s performance. To optimize
policies, PPO alternates between sampling data from the policy (exploration) and
performing several optimization epochs on the sampled data (exploitation).
The Policy Gradient 2 methods compute an estimator g of the policy gradient and
plug it into a stochastic gradient ascent algorithm.

g = Et[∇θ(log(πθ(at, st)) · At)]

where πθ is a stochastic policy that refers to the parameters θ and At is an estimator
of the advantage function at time step “t”; the advantage function will be worth
deepening later. The estimator g is obtained by differentiating the following
objective:

LP G = Et[log(πθ(at, st)) · At].

The expectation Et[...] indicates the average over a finite number of samples (batch),
when sampling and optimization alternate. Similarly to the Trust Region Policy

1Read the reference in Appendix A.1 to deepen into batch size, epoch, etc...
2See also Appendix A.2
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Optimization (TRPO)3, the “surrogate” objective function is maximized whereas
the size of the policy update is constrained to δ.

maximize
θ

LCP I
θ = Et

5
πθ(st, at)
πθold(st, at)

· At

6
(2.10)

costrained to Et[KL(πθold, πθ])] ≤ δ (2.11)

where “CPI” refers to “conservative policy iteration” 4.
Instead of a constraint, we could use a penalty, but it is hard to choose a single
value for a penalty that performs well when characteristics change over the course
of learning. To achieve a first-order algorithm that emulates the monotonic im-
provement of TRPO, more modifications are required.
We can use a Clipped Surrogate Objective which now considers how to modify
the objective, to penalize changes in the policy that move the probability ratio
rt(θ) = πθ(st,at)

πθold(at,st) away from 1.

LCLIP = E[min(Atrt(θ), clip(rt(θ),1− ϵ,1 + ϵ) · At)]

The clipping removes the incentive for moving rt(θ) outside of the interval [1−ϵ, 1+ϵ].
The solution ignores the probability ratio change when the objective improves and
includes it when the objective is worse.
LCLIP = LCP I to first-order around θold , however, they become different as θ
moves away from θold. The probability ratio rt is clipped at “1 − ϵ” or “1 + ϵ”
depending on whether the advantage is positive or negative.
The loss LCLIP is simply constructed and then we perform multiple steps of
stochastic gradient ascent on this objective.
In computing advantage-function estimators we can use a bunch of learned state-
value function v(s) introduced into a neural network architecture that shares
parameters between the policy (actor) and value function (critic). The loss function
has to compute both the policy surrogate and a value function error term and,
moreover, it is augmented by an entropy bonus to ensure sufficient exploration.
Combining these terms, we obtain a new objective, which will be maximized in
each iteration:

LCLIP +V F +S
t (θ) = Et

è
LCLIP

t (θ)− c1(Vθ(st)− V targ
t )2 + c2S[πθ(st)]

é
(2.12)

where c1 and c2 are two hyperparameter constants coefficients, respectively for the
squared-error loss and the entropy, while S denotes an entropy bonus.

3Reference in Appendix A.2
4Reference in Appendix A.2, KL
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The style of policy gradient implementation runs the policy in recurrent neural
networks for T time steps (where T is much less than the episode length), and uses
the collected samples for an update. This style requires an advantage estimator
that does not look beyond time step T . The estimator used is:

Ât = −v(st) + rt + γrt+1 + · · ·+ γT −t+1rT −1 + γT −tv(sT )

where γ is the discount factor and t specifies the current instant index included in
[0, T ], within a given length− T trajectory.
In each iteration in the proximal policy optimization (PPO) algorithm that uses
fixed-length trajectory segments, N user-defined (parallel) actors collect T time
steps of data. Then we construct the surrogate loss on these N · T number of data
and optimize it with mini-batch for K epochs.

Algorithm: Pseudo-Code for PPO, Actor-Critic Style
for iteration = 1, 2, . . . do

for actor = 1, 2, . . . ,N do
Run policy_old in environment for T timesteps
Compute advantage estimates A1, ..., AT

end for
Optimize surrogate L wrt θ, with K epochs and minibatch size M ≤ N · T
θold ← θ

end for

[2]

2.3 Bayesian Optimization (BO)
Bayesian Optimization (BO) focused on solving the problem maxx f(x). The
input x is in Rd and typically d ≤ 20 in most successful applications of Bayesian
Optimizations.
The BO becomes useful when the unknown function f(x) is “expensive to evaluate”,
in the sense that the number of evaluations is limited to a few hundred because
each evaluation requires an amount of time.
The typical form for Bayesian optimization algorithms involves two primary compo-
nents: (I) a method for statistical inference, which is invariably a Gaussian Process
regression (GPr), for shaping the surrogate objective continuous function f(x) ;
and (II) an acquisition function in order to decide where to sample (i.e. Expected
Improvement).
In GPr implementation we observe only f(x) and no its first/second derivatives, so

13



Reinforcement Learning and related algorithms

we refer to the GPr as a “derivative-free" method.
Therefore Bayesian Optimization consists of two main components: a Bayesian
statistical model used to model, in fact, the objective function, and an acquisition
function for deciding where to sample next. Bayesian optimization chooses to
sample next at the point that maximizes the acquisition function.

Algorithm: Pseudo-code for Bayesian Optimization
Place a Gaussian process prior on f
Observe f at n0 points according to an initial space-flling experimental design.
Set n = n0.
while n ≤ N do

Update the posterior probability distribution on f using all available data
Find xn, the argmax of the acquisition function over x, where the acquisition function
is computed using the current posterior distribution
Observe yn = f(xn).
Increment n

end while
Return a solution: either the point evaluated with the largest f(x), or the point with the
largest posterior mean.

The statistical model, which is Gaussian Process, provides a Bayesian posterior
probability distribution that describes potential values for f(x) at a candidate
point x where f(x) that is normally distributed with mean µn(x) and variance
σ2

n(x).
Gaussian Process regression is a Bayesian statistical approach for modeling functions.
We first collect the function’s values at a finite collection of points into a vector,
from some prior probability distribution; then we evaluate a mean function µ0 at
each xi, and the covariance function, or kernel (Σ0), at each pair of points xi, xj in
order to encode the belief that two closer points should have more similar function
values than points that are far apart. Hence, the kernel is chosen so that closer
points xi, xj in the input space have a large positive correlation.
We suppose to observe f(x1:n), for some n, and we wish to infer the value of f(x) at
some new points; we let k = n+ 1 and xk = x, so that the prior over [f(x1:n); f(x)]
is the distribution on [f(x1); . . . ; f(xk)] for k points:

f(x1:k) ∼ Normal(µ0(x1:k),Σ0(x1:k, x1:k))

where x1:k = [x1, . . . , xk], f(x1:k) = [f(x1), . . . , f(xk)], µ0(x1:k) = [µ0(x1), . . . , µ0(xk)]
and Σ0(x1:k, x1:k) = [Σ0(x1, x1), . . . ,Σ0(x1, xk); . . . ; Σ0(xk, x1), . . . ,Σ0(xk, xk)].
We may then compute the posterior probability distribution of f(x) given these
observations using Bayes’ rule (let see Chapter2 of [3]):
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f(x)|f(x1:n) ∼Normal(µn(x), σ2
n(x)) (2.13)

µn(x) = Σ(x1, x1:n)
Σ(x1:n, x1:n) · (f(x1:n)− µ0(x1:n)) + µ0 (2.14)

σ2
n(x) =Σ0(x, x)− Σ(x1, x1:n)

Σ(x1:n, x1:n
) · Σ0(x1:n, x) (2.15)

The posterior mean µn(x) is a weighted average between the prior µ0(x) and an
estimate based on the data f(x1:n), with a weight that depends on the kernel while
the posterior variance σ2

n(x) is equal to the prior covariance Σ0(x, x) less a term
that corresponds to the variance removed by observing f(x1:n).
Kernels, we already said, have the property that points closer in the input space
are strongly correlated, that if |x − x′| < |x − x′′| for some norm ∥ • ∥, then
Σ0(x, x′) > Σ0(x, x′′).
One of the most popular and simple kernel is the power exponential or Gaussian
kernel,

Σ0(x, x′) = α0 · e−∥x−x′∥2

where ∥x− x′∥ = qd
i=1 αi(xi − x′

i) and α0:d are parameters of the kernel. Varying
this parameter creates different correlations about how quickly f(x) changes with
x. The mean function and kernel contain parameters that we typically call the
prior hyperparameters and we indicate them via a vector η.
Another commonly used kernel, the Màtern kernel:

Σ0(x, x′) = α0
21−ν

Γ(ν)
1√

2ν∥x− x′∥
2ν
Kν

1√
2ν∥x− x′∥

2
where Kν is the modified Bessel function, and we find the parameter ν in addition
to the parameters α0:d.
We just cited the Màtern kernel for its wide use in BO due to its capability to
customize the kernel, but in this work, we will use every time the Gaussian kernel
in order to avoid introducing other hyperparameters.
We just discussed the first of the two main components of the BO algorithm, the
Gaussian process regression, and what concerns about the acquisition function take
place below.
The most commonly used acquisition function is the expected improvement (EI)
because it performs well and it is easy to use. The literature proposes other
acquisition functions but in this work, only the EI will be used.
We suppose to be in the nth iteration when the point xn is sampled and yn =
f(xn) is the observed value. The optimal choice (respect the problem on stack
maxx f(x)) is the previously evaluated point with the highest observed value. Let

15



Reinforcement Learning and related algorithms

f ∗
n = maxm≤nf(xm) be the value at this point, where n is the number of times we

have evaluated f thus far.
Now we suppose to have one additional evaluation to perform so that the evaluation
at x is f(x). After this new evaluation, the value of the best point we have observed
will either be:

f ∗
n+1 =

I
f(x) f(x) ≥ f ∗

n

f ∗
n f(x) ≤ f ∗

n

(2.16)

The improvement of the value at the best observed point is then [f(x)− f ∗
n]+ with

y+ = max(y,0). While we would like to choose x so that this improvement is
the largest but f(x) is unknown until the evaluation. To cope with this issue we
introduce the “expected” value of this improvement and choose x to maximize it.
We define the expected improvement (EI) as:

EIn(x) := En [f(x)− f ∗
n]+

where En[•] = E[•|x1:n, y1:n] indicates the expectation related to the posterior
distribution given evaluations of f at x1, . . . , xn.
As proposed in [4], the EI could be found out as:

EIn = [∆n(x)]+ + σn(x)φ
A

∆n(x)
σn(x)

B

where ∆n(x) := µn(x) − f ∗
n is the expected difference in quality between the

proposed point x and the previous best and ϕ(x) = (2 ∗ π)−1/2e( − x2/2).
Finally we have the tools to sample the next point, so that:

xn+1 = argmax EIn(x)

[5]

2.4 Liptzich Optimization (LIPO)
Machine learning algorithm has hyperparameters and it is up to the user to
determine their values. If we do not set these parameters to “good” values the
algorithm will not work well. We all want some black-box optimization strategy
like Bayesian optimization to be useful but if we do not set its hyperparameters to
the right values it does not work as well as an expert doing guess and check.
A very simple parameter-free for finding the x ∈ Rd that maximizes a function,
f(x), even if f(x) has many local maxima, is Lipschitz Optimization (LIPO). The
key idea is to maintain a piecewise linear upper bound of f(x) and use that to
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decide in which x evaluate f(x) at each step of the optimization. When the the
points x1, x2, , xt are already evaluated, we can define a simple upper bound on
f(x) as follows:

U(x) = min
i=1. . . t

(f(xi) + k · ||x− xi||2)

LIPO picks points at random, checks if the upper bound for the new point is better
than the best point seen so far, and if it is so selects it as the next point to evaluate.
The method is better than a random search in several non-trivial situations.
If f(x) is noisy or discontinuous at a certain point, the value k could be infinity
at that point and it is not going to work reliably since k will be infinity. Not all
hyperparameters are equally important, some hardly matter while small changes
in others drastically affect the output of f(x). So it would be better if each
hyperparameter got its own k.
For a more general treatment, we can also define:

U(x) = min
i=1. . . t

[f(xi) +
ñ

(σi + (x− xi)TK(x− xi))]

The noise term σi should be 0 most of the time unless xi is really close to a
discontinuity. Here, K is a diagonal matrix that contains the hyperparameter
Lipschitz k terms.
The issue is that we do not know the value of the Lipschitz constant k! This is
not a big deal since it is easily estimated, for instance, by setting k to the largest
observed slope of f(x) before each iteration. We can find the parameters of U(x)
by solving an optimization problem:

min
K,σ

∥K∥2
F + 106 ·

tØ
i=1

σ2
i (2.17)

s.t. U(xi) ≥ f(xi), ∀i ∈ [1, . . . , t] (2.18)
σi ≥ 0 ∀i ∈ [1, . . . , t] (2.19)
Ki,j ≥ 0 ∀i, j ∈ [1, . . . , d] (2.20)

where 106 is a penalty factor and ∥ • ∥F is the Frobenius norm.
The σi values will be 0 most of the time while still preventing k from becoming
infinite, which is the behavior we want.
The final issue that needs to be addressed is LIPO is bad convergence in the area
of local maxima. To cope with this issue, we can apply the classic Trust Region
method ([6]) to derivative-free optimization.
The Trust Region methods fit a quadratic surface around the best point seen so far
and then use the next iterate to maximize that quadratic surface within a certain
distance of the current best point. So we “trust” this local quadratic model to be
accurate within some small region around the best point, hence the name “trust
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region”; It has excellent convergence to the nearest local optima in a very small
number of steps.
We can fix LIPO’s convergence problem by combining these two methods: LIPO
will explore f(x) and quickly find a point on the biggest peak, then the trust region
method efficiently finds the real maximizer of that peak. The simplest way to
combine these two methods is to alternate between them. On even iterations we
pick the next x according to our upper bound while on odd iterations we pick the
next x according to the trust region model. Whereas we select the maximum upper
bounding point on each iteration we can call this LIPO variation “MaxLIPO”;
therefore we can refer to the final algorithm as “MaxLIPO+TR”. The upper bound
becomes progressively more accurate (approximating the peak), helping to find the
best peak while the quadratic model quickly finds a high precision maximizer on
whatever peak it currently rests (it finds peaks).
The LIPO’s inputs are a number n of function evaluations, a Lipschitz constant
k ≥ 0, the input space X and the unknown function f . At each iteration t ≥ 1,
a random variable Xt+1 is uniformly sampled over the input space X and the
algorithm can decides whether evaluate the function at this point or not. Indeed,
the algorithm evaluates the function over Xt+1 if and only if the value of the upper
bound on possible values UBk,t : x → mini=1...t f(Xi) + k · ∥x − Xi∥2 computed
from the previous evaluations, is at least equal to the value of the best evaluation
observed so far maxi=1...tf(Xi).
Therefore it is possible explain LIPO as follows.

Algorithm: Pseudo-code for LIPO
Input: n ∈ N∗, k ≥ 0, X ⊂ Rd, f ∈ Lip()k
Initialization: Let X1 ∼ U(X)

Evaluate f(X1), t← 1
Iterations: Repeat while t < n:

Let Xt+1 ∼ U(X)
if mini,...t (f(Xi + k · ∥Xt+1 −Xi∥2) ≥ maxi,...,t f(Xi) [Decision rule]

Evaluate fXt+1 , t← t+ 1
Output: Return Xîn

where în ∈ argmaxi,...,n f(Xi)

having introduced some notations and therefore such definitions:

• X ⊂ Rd a bounded set;
• Lip(k) := {f : X → R s.t.|f(x)− f(c′)| − k · ∥x− x′∥2, ∀(x, x′) ∈ X2} the

class of k-Lipschitz functions defined on X;
• t

k≥0 Lip(k) the set of Lipschitz continuous functions;
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• U(X) stands for the uniform distribution over a bounded measurable domain
X.

[7] [8]

2.5 Genetic Programming (GP)
Evolutionary Programming (EP) utilizes the concepts of Darwinian evolution to
iteratively generate increasingly appropriate solutions (organisms).
Instead of developing a (potentially) complex set of rules which were derived from
human experts, EP evolves a set of solutions that exhibit optimal behavior about
an environment and desired payoff function.
In a most general framework, EP may be considered an optimization technique
wherein the algorithm iteratively optimize behaviors, parameters, or other con-
structs. “Learning” is a product of the evolutionary process because successful
individuals are retained through stochastic trial and error process.
The basic evolutionary program algorithm utilizes four main components: (i) ini-
tialization, (ii) variation, (iii) evaluation (scoring), and (iv) selection.
The basic EP algorithms starts with a trial population of solutions which are ini-
tialized by random or heuristic. The population size, µ, may range over a broadly
distributed set but is in general larger than one. After the creation of a population
of initial solutions (initialization), variation provides the means for moving solutions
around on the search space, preventing entrapment in local minima: Each of the
parent member i is altered through the application of a mutation process and gen-
erates λi progeny which is replicated with a stochastic error mechanism (mutation).
Each of these trial solutions is evaluated concerning the specified fitness function.
The evaluation function directly measures the fitness, or equivalently the behavioral
error, of each member in the population with regard to the environment. The fitness
or behavioral error is assessed for all offspring solutions with the selection process
performed by one of several general techniques including: (i) the best µ solutions
are retained to become the parents for the next generation (elitist) or (ii) µ of the
best solutions are statistically retained (tournament), or (iii) proportional-based
selection. Finally, the selection process into the population, probabilistically culls
suboptimal solutions.
EP differs philosophically from other evolutionary computational techniques such as
genetic algorithms (GAs). According to neo-Darwinism, selection operates only on
the phenotypic expressions of a genotype; the underlying coding of the phenotype
is only affected indirectly. A sum of optimal parts rarely leads to an optimal overall
solution: this is key to this difference. GAs rely on the identification, combination,
and survival of “good” building blocks (schemata) iteratively combining to form
larger “better” building blocks. In a GA, the coding structure (genotype) is of
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primary importance as it contains the set of optimal building blocks discovered
through successive iterations: we call this process recombination. (See Figure 2.1)
The building block hypothesis is an implicit assumption that fitness is a separable
function of the parts of the genome. This successively iterated local optimization
process is different from EP, which is an entirely global optimization approach. In
EP the variation operator allows for simultaneous modification of all variables at
the same time; therefore fitness is evaluated directly, and it is the sole basis for the
survival of an individual in the population. Thus, a crossover operation designed
to recombine building blocks is not utilized in the general forms of EP while it is
allowed in Genetic Programming (GP).

Figure 2.1: Recombination process: there are two parent program trees, (a) and
(b)recombined through crossover to create an offspring program tree (c). A subtree
is chosen in each of the parents, and the offspring is created by inserting the subtree
chosen from (b) into the place where the subtree was chosen in (a).

As a general framework for basic instances, we define I to denote an arbitrary
space of individuals a ∈ I , and F : I → R to denote a real-valued fitness function
of individuals. Using µ and λ to denote parent and offspring population sizes,
P (t) = (a1(t), ..., aµ(t)) ∈ Iµ characterizes a population at generation t.
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Algorithm: GP pseudo-code:

t := 0
initialize P (0) := {a′

1(0), a′
2(0), . . . , a′

µ(0)}
evaluate F (0) ≡ P (0) : {Φ(a′

1(0)),Φ(a′
2(0)), . . . ,Φ(a′

µ(0))}
iterate for t

{
recombine: P ′(t) := rΘr(P (t))
mutate: P ′′(t) := mΘm(P ′(t))
evaluate: F (t) ≡ P ′′(t) : {Φ(a′

1(t)),Φ(a′
2(t)), . . . ,Φ(a′

λ(t))}
select: P (t+ 1) := sΘs(P ′′(t)|F (t))
t := t+ 1

}

where:
a′ is and individual member in the population;
µ ≥ 1 is the size of the parent population;
λ ≥ 1 is the size of the offspring population;
P (t) := a′

1(t), a′
2(t), . . . , a′

µ(t) is the populationat time t;
Φ : I → ℜ is the fitness mappping;
rΘr is the recombination operator with controling paramtetrs Θr;
mΘm is the mutation operator with controling paramtetrs Θm;
sΘs is the selection operator ∋ sΘs : (Iλ ∪ Iµ+λ)Iµ;

Genetic programming is a form of evolutionary algorithm which is distinguished
by a particular set of choices as to representation, genetic operator design, and as
we already said in fitness evaluation. Fitness evaluation in genetic programming
involves executing these evolved programs. Genetic programming, then, involves
an evolution-directed search of the space of possible computer programs for ones
that, when executed, will produce the best fitness.
To create the initial population a large number of computer programs are generated
at random. Each of these is executed and the relative results are used to assign
a fitness value to each program. Then a new population of programs, the next
generation, is created by directly copying certain, selected by their fitness values,
existing programs. This population is filled out by creating many new offspring
programs through genetic operations on existing parent programs which are selected
based, again, on their fitness. Then, this new population of programs is again
evaluated and fitness is assigned to each program based on the results of its
evaluation.
Although different representations used to evolve programs exist and the most
common is the syntax tree.
Figure 2.2 contains two different types of nodes (as do most genetic programming
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representations) which are called primitives (or functions) and terminals. Terminals
are usually inputs to the program, although they may also be constants. They
are the variables that are set to values external to the program itself before the
fitness evaluation is performed by executing the program. Primitives take inputs
and produce outputs and possibly produce side-effects. The inputs can be either a
terminal or the output of another function.
The tree’s leaves, in green, are the terminals divided into two subtypes, the
constants, and the arguments, while the internal nodes, in red, are the primitives.
The primitive type here used is called “Loosely typed" because GP sets as free

Figure 2.2: GP tree example ([9])

the types between the nodes, so the primitives’ arguments can be any element,
primitive or terminal, present in the primitive set.
Otherwise, the “strongly typed" primitive set assigns a specified type for every
primitive and terminal. The output type of a primitive must match the input type
of another one of them to be connected. The generation of trees is done randomly
while making sure type constraints are respected.
The DEAP’s library contains the main tools to define the tree shape and its
operators. The evolution algorithm is defined sequentially.
We first define a "PrimitiveSet()" where we can “.addPrimitive” such as operations
whose combination will be evaluated along the evolution. Every operation used in
the evolution process is a primitive which takes care of its “protection" due to the
fact that an invalid element could be used (e.g. when the zero value goes to the
denominator in a division and a “ZeroDivisionError” arises).
Once the operators have been defined we just choose the single individual’s features.
Just to recap, an individual is a tree containing a certain amount of primitives
(operations) given the inputs (terminals); its features are the tree’s depth and how
deep each one has to be in each branch. Starting on the single individual we must
define how big the whole population is before starting the evolution; the population
dimension affects the evolution time and the computing resources required.
In every evolutionary algorithm, for a given population, is mandatory to specify
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the method used to select, mate, mutate and evaluate an individual into the whole
population. (In this specific case the “mate" and “mutate" methods correspond to
the variation component of the whole algorithm pseudo-code).
Once defined the way to mate, mutate, evaluate and select, these will be described
as needed, we have just to use the algorithms provided by DEAP, which are the
“simple" algorithm whose pseudo-code is the closest to the one that has been shown
before and the (µ+ λ) and (µ, λ) algorithms. Specifically, the algorithm works as
below:

Algorithm: "Simple" pseudo-code:

inputs: population, the {mate,mutate,evaluate,select} methods
generation=0
evaluate(population)
for generation in Ngenerations

offspring=VarAnd(population, crossover_probability, mutation_probability)
evaluate(offspring)
population = offspring

end for

where N_generations means how many times an offspring has to be engendered (or
the total number of generations), for a crossover it means the "mate" method defined
before, and VarAnd is used to execute the variation part of the algorithm. About
VarAnd is worth spending more words on understanding how it works. “VarAnd"
contains the variation element in the whole algorithm which performs crossover
and mutation. The variation goes as follows. First, the parental population Pp is
duplicated and the result is put into the offspring population Po. The first loop
over offspring population Po is executed to mate pairs of consecutive individuals.
According to the crossover probability, the individuals xi and xi+1 are mated. The
resulting children yi and yi+1 replace their respective parents in Po. A second loop
over the resulting population Po is executed to mutate every individual with a given
mutation probability. When an individual is mutated it replaces its not mutated
version into the population. The crossover_probability and mutation_probability
must be in [0,1].
These last two algorithms, (µ+ λ) and (µ, λ), are essentially similar to the basic
one but in them, the population picked in each iteration is chosen differently.
In (µ+ λ) evolution strategy, once the λ offspring from µ parents is engendered, it
selects the µ best individuals from the (µ+ λ) individuals (parents and offspring)
in total.
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Similarly as before, here we recommend to observe deeply how the algorithm works
and its differences from the simplest one.

Algorithm: (µ+ λ) pseudo-code:

inputs: population, {mate,mutate,evaluate,select} method, µ, λ
generation=0
evaluate(population)
for generation in Ngenerations

offspring=VarOr(population, λ, crossover_probability, mutation_probability)
evaluate(offspring)
population = select(population + offspring, mu)

end for

One of the main two differences is that the final population is wide as µ and its
individuals are chosen from the sum of parents and offspring set. The second
noteworthy new concern is the variation method: the name “VarOr" is because an
offspring will never result from both operations crossover and mutation. On each
of the λ iteration, it selects one of the three operations: crossover, mutation or
reproduction. In the case of a crossover, two individuals are selected at random
from the parental population Pp, those individuals are mated. Only the first child
is appended to the offspring population Po, the second child is discarded. In the
case of a mutation, one individual is selected at random from Pp, it is cloned and
then mutated. The resulting mutant is appended to Po. In the case of reproduction,
one individual is selected at random from Pp, cloned, and appended to Po.
The sum of both probabilities shall be in [0,1] while the reproduction probability is
1 - crossover_probability - mutation_probability.
Differently, the (µ, λ) denotes an evolution strategy that generates λ offspring
from µ parents but selects the µ best individuals only from the λ offspring. As
a consequence, λ must be necessarily at least as large as µ. However, since the
parameter setting µ = λ represents nothing more than a random walk, it is
a convention that the abbreviation (µ, λ) evolution strategy always refers to a
parametrized strategy according to the relation 1 < µ < λ <∞ .
In this case, the algorithm is a blend of the previous two and this becomes blatant
when observing its following pseudo-code.
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Algorithm: (µ, λ) pseudo-code:

inputs: population, the {mate,mutate,evaluate,select} methods, µ, λ
generation=0
evaluate(population)
for generation in Ngenerations

offspring=VarOr(population, λ, crossover_probability, mutation_probability)
evaluate(offspring)
population = select(offspring, µ)

end for

The only difference with the (µ + λ) algorithm is the final population returned
after each cycle: in this last case the new individuals are chosen only by picking
into the offspring set.

[9] [10]
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Chapter 3

Applications on GYM’s
environment

Let’s put on scripts what is explained before to understand the representative
format of RL
At first, we talked about an environment from which observations are acquired,
and then the user-specified agent will manage the reward. We use the gym’s
tools provided by OpenAI to initiate the process because it provides some already-
implemented functions that prove to be very useful in designing policy. Thanks to
OpenAI-GYM we can “play" in a classical games environment where the actions
space could be discrete or continuous and the performance evaluations should be
easy to build.
The tools we were talking before are the same for every environment proposed
in which the framework for every algorithm implementation from now on will be
featuring by the following steps:

env=gym.make("environment_name") load the environment we want to play.
Inside every environment has been defined the output reward.

env.reset() sets the default observations, which in a fully observable environment
match with the environment state. Every component of the RL process is now
initialized to the default conditions, so the default environment state St=0.
The (default) observations state depends on the environment loaded (i.e. in
"cart-pole" environment the observation state contains 4 information inside
([poistion, velocity, angle, angle velocity]) while for "mountain car" these are
only 2 ([position, velocity]).

env.step(action) for a given action, depending on the environment space into
the environment type chosen and, obviously, on the user specified policy, this
command evaluate the action effect on the environment state and returns:
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- Observations (St+1): the new observations state caused by the given
action;

- The immediate reward rt+1;
- Done: it is setted as “True" if the goal is reached or the episode end, else

it is “False";
- Info: extra informations.

These facilities’ functions stand for the mainstay of algorithm implementation
and evaluation. In each problem we will try to manage the environment, once it
has been defined, will be reset to the default conditions as soon as the episode
begins while along the episode multiple steps will evaluate the action’s effect on
the environment. In this process, the action changes in accord with the agent
computation every time the “.step()" is called and the learning will be visible after
a certain episode amount.
One of the best skills that OpenAI-GYM provides is the capability to write a
particular one own environment following the basics of the proposed one. This
is very useful because in this way it is possible to use the same algorithms used
for trivial environments, like the "games" environment, for a more complicated
and physical environment as well. This approach will be used in the different
environments proposed later.

[11]

3.1 GYM’s environments
The models are going to control the two environments released by GYM, Mountain
Car and Lunar Lander, whose both action space is continuous and will be defined
through a deterministic policy, for which the action is univocally chosen.
Here became necessary to introduce the environment features.

MOUNTAIN CAR CONTINUOUS
Mountain Car Continuous is a “game" environment where the player’s purpose

is to lead a kart parked in a valley, parametrized like a cosine function, to the
mountain peak. The environment state equals the observed space and provides
only information such as position and speed whose both domains are finite.
At the beginning the velocity is null and the position is random and obviously
before the mountain peak, but when the starting position corresponds to a place
far from the valley center, whereas without action, the kart is led by the gravity
force to the lower valley point.
Therefore the action domain is continuous and it is included between -1 and 1: the
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Figure 3.1: Mountain Car environment

action value is a weight for the power the kart use to thrust in the right direction
(positive) or the left direction (negative). The reward is negative and proportional
to the action, in the way to penalize for taking actions of large magnitude; If the
mountain car reaches the goal then a positive reward of +100 is added to the
negative reward for that timestep. At each step, position, velocity ad immediate
reward are updated:

• velocityt+1+ = action · power − 0.0025 · cos(3 · position)

• positiont+1+ = velocityt+1

• rewardt+1+ = −0.1 · action2

The episode end when the kart cross the peak position or the episode complete the
maximum steps number (1000).

LUNAR LANDER CONTINUOUS
The Lunar Lander Continuous is another “game" environment where the player’s
purpose is to land a rocket only controlling what engine fires on and its power. It
is a trajectory optimization problem.
In one episode, landing outside of the landing pad is possible and fuel is infinite.

The lander at the beginning is located at large above the ground, the top at the
center of the screen with a random initial force applied to its center of mass.
Mainly There are four discrete actions available: do nothing, fire the left orientated
engine, fire the main engine, and fire the right orientated engine. The action is
continuous and included in between -1 and 1, but a direction is figured out to fire
on some engines than others.
The environment state is composed of eight information such as: 1) two coordinate
data (horizontal and vertical), 2) two-speed data (horizontal and vertical), 3) two
angle data (amplitude and angular speed), and other two checks, each for one of
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Figure 3.2: Lunar Lander environment

the two rocket’s leg, which are “True" (1) when the leg has contact on the ground
and “False" otherwise.
When the lander moves away from the landing station, it loses reward points. Firing
the main engine is -0.3 points each frame while firing one of the two side engines is
-0.03 points each step. Whereas the lander crashes, it receives an additional -100
points else if it comes to rest, it receives an additional +100 points. Additional
+10 points are assigned when each leg is on the ground contact. When landing is
solved are +200 additional points.
The episode ends when the lander’s body gets in contact with the moon, landed
rocket, or when the lander crashes, and furthermore when the lander gets outside
of the viewport.

3.2 Stable Baselines’ tools
Gym provides an environment and functions to choose actions and evaluate the
reward, giving us the capability to create a policy. The policy performs actions by
learning how to maximize the reward in the lower steps number possible, therefore
we care to set the policy to better fit this aim and to make the learning process
faster.
Stable Baselines provides effective tools, and an already implemented algorithm, to
maximize the total reward to find the best policy. Among the algorithms provided
by Stable Baselines, here have been chosen the PPO and DDPG.
One of the first methods used is called PPO1: this algorithm is the first version of
the proximal policy optimization method because another method called PPO2,
similar but improved with another kind of learning rate value used, is also provided
by Stable-Baselines.
These two methods use both the clipping method to avoid too large update and
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are called down with the common following inputs:

model = PPO# (

- The “Mlp" (Multi-layer-perceptron) for actor-critic composed by 2 layers
of 64 perceptrons,

- The environment name loaded with gym.make(),
- The discount factor γ with default value equal to 0.99,
- time steps per actor per update (128 for #=2, 256 for #=1 as default),
- The clipping parameter ϵ with default value equal to 0.2 )
- the entropy loss constant with default value equals to 0.01,
- The optimizer’s number of epochs wiith default value equals to 4,
- The optimizer’s batch size (64 for #=1 and update_steps/4 for #=2 as

default),
- The advantage estimation with default value equals to 0.95,
- “policy_kwargs": additional arguments to be passed to the policy on

creation. In this work it is used to vary the artificial neural network
dimension when we don not want use “Mlp".

model.predict(observation) : this method return the action and a prediction
of the new environment state from the model, given an initial environment
state (equivalent to observations due to the deterministic policy),

model.learn(total_timesteps) : this command launch the learning process, so
the forward steps and back-propagation to define the weights inside the ANN.
Here the total_timesteps are the total number of samples to train on, the
number of how many times perform the “.step()" method proposed by the
Gym environment.
Given a large number for timesteps, the model chosen will be called "total_timesteps"-
times. Higher is the input more precise the network predictions will be, but
increasing the input implies a more time required in learning process.

Above only the entropy coefficient c2 has been indicated so it means that in PPO the
relative error loss term between policy and value function is not corrected. However
this is true only for PPO1 because PPO2 take as input also vfcoef ≡ c1 = 0.5.
Moreover, While PPO2 takes in input also the “learning_rate” (0.00025 as default),
PPO1 uses the ADAM method to evaluate it and the values “optim_stepsize” (the
ADAM “alpha") and “adam_epsilon” (respectively equal to 0.001 and 1e-05, in
default mode) should be changed as we wish in PPO1.
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PPO1 works by updating the actor every 256 steps (actor batch-size) and it
processes 4 epochs, whose batch size is 64 steps to conclude the optimization
process. PPO2 uses similar values except that they are not absolute but relative
to the surrogate objective: the optimization batch size is composed of 128 steps
and it uses mini-batches per update (the total value divided 4 times as default)
and the same for the epochs which are mini-epochs when optimizing the surrogate
(again the total divided 4 times as default)
The DDPG is also used in this work so here its parameters are presented like for
PPO#.

model = DDPG (

- The “Mlp" (Multi-layer-perceptron) for actor-critic composed by 2 layers
of 64 perceptrons,

- The environment name loaded with gym.make(),
- The discount factor γ with default value equal to 0.99,
- The τ = 0.001 for soft actor and critic update,
- The batch-size with default value equals to 128,
- The interval of steps to apply the noise is 50 as default,
- The actor learning rate with default value equals to 0.0001 as default,
- The critic learning rate with default value equals to 0.001 as default,
- The buffer size with default value equals to 50000 as default,
- “policy_kwargs": additional arguments to be passed to the policy on

creation. In this work it is used to vary the artificial neural network
dimension when we don not want use “Mlp".

In DDPG the policy learns in accord with the batch-size of 128 steps and buffer
size of 50000. The user can provide a sort of Noise, defining it previously and
this is going to be used by the algorithm every 50 time-steps to ensure a better
exploration .
It is possible to save the model weights after the training with a particular name
via “.save(‘name’)” and then load in the future the model already trained with
“.load(‘name’, env)”.

3.3 Application of LIPO
Here we try to find the global maximum for the reward distribution, which is the
objective function, in this case, using the LIPO algorithm with the Trust Region
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method (MaxLIPO+TR).
In this case on stack the useful tools are provided by the “dlib" library (See [12]),
and the method used in this implementation are:

global_function_search() implements both the LIPschitz Optimization and
Trust Region Method.

function_spec(for_each_weight) define the domain exploration space for each
weight. We have to specify the interval set of each weight, which means the
maximum and minimum value it could assume.

set_seed() to seed a bunch of points as the first approximation to initialize the
optimization.

get_next_x() to pick another point where evaluate the objective function. Here
the new “point" is an array containing the weights picked inside their explo-
ration domain defined before.

set() is used to load on the algorithm the function value evaluated at the current
“point". In this way, receiving the reward, the algorithm understands how
good is the weights set (the “point") picked at the current iteration.

The objective function to maximize is the episode total reward, corresponding to
the sum of the single reward returned from the “.step()” function at each step,
until the variable “Done” became “True” (this occurs in different ways for different
environments).
All Gym’s environments produce a new observations array (the new environment
state) St = [s1,t, . . . , sn,t] with n elements after each time-step t (the current step
t after the method “.step()" has been called t-times), but the new observation is
the product of an action evaluated through stepping ahead, so how to define the
action??
How we know the policy function is defined by the user to discern what action
output after each observation (action and policy correspond due to the deterministic
representation wanted), but in this case, the policy is implicit and defined through
the weights’ array wt = [w1,t, . . . , wn,t] at the current time-step t, found out by the
algorithm, in linear combination with the observation state.

at(St, wt) ≡ π(St, wt) = wt · ST
t

For more general purposes, the weights chosen by the algorithm could be used for
different computing types, exponential, harmonic, or whatever else non-linear func-
tion. To be precise, in this case on stack, some arbitrary weights linearly multiply
the observations array’s elements to evaluate a new action, so the optimization
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consists in finding the weights at the highest total reward iteratively so that new
actions are taken on the track of the best score.

We can apply LIPO to the two game environments presented before. in both, we
will use the linear combination to define the action.
In the Lunar Lander Gym’s environment is important to be careful with the obser-
vation array’s length, because the dimension of the weights needs to adapt with it.
Moreover, the action is not unique because here we have to control three engines
to define the speed and direction and no more only one like Mountain Car.

3.4 Application of BO
The second optimization algorithm is the Bayesian Optimization and here an
implementation of this algorithm is going to be proposed.
The script framework is very similar to the previous for LIPO but the tool used
is the “skopt" library “Optimizer”. In this case, the “Optimizer” compute the
Gaussian Process (GPr) to evaluate the next point, so the next function value
but the user has to define also the hyperparameters: kernel and the acquisition
function.
Unlike LIPO, whereas we refer to the BO theory, this algorithm tries to minimize
the loss function, so it is a minimizer actually, instead of the maximizer LIPO.

Optimizer mainly takes in inputs:

- Domain space for each weight similar to the LIPO approach,
- the “base_estimator" or “Kernel". In this work, we will use the default

Kernel which is the Gaussian Kernel but one can choose the one he wants
trying to customize that,

- the acquisition function for deciding where sample next. In the next
results the “acq_func" chosen is the EI (expected improvement),

- a user-specified number of initial points where evaluate the objective
function for the prior evaluation with a default value equal to 10,

- the generator type, or rather the method to deploy the number of initial
points: the default is the random method.

ask() is useful to get a new “point x", so a new set of weights, through which
evaluate the objective function;

tell(x, reward) using for recording the objective function value related to the
current point, the set of weights.
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Similarly to the LIPO optimization, a linear combination is used to combine state
and weights in this case.
Step by step the two Optimization algorithms work sampling a new point, a set
of weights, to compute a new action in order to evaluate the reward; the reward
information leads the sampling process in order to find the global maximum, or
minimum, but the learning speed depends on the algorithm on stack.

[13]

3.5 Algorithms comparison
We used the game Gym environment, Mountain Car and Lunar Lander, to run the
algorithms widely discussed above.
The optimizators, LIPO and BO, pick the weights’ array element from a continuous
set space bounded by ±50 so that wi,t ∈ [−50,50] ∀i ∈ [1, . . . , dim(wt)].
The objective function is the total reward for the whole episode taken as sum of
the immediate reward after each step.

J(at) =
TØ

t=0
rt(at|St)

where t is the current time-step and T represents the total time steps per episode.
It is noteworthy to remember LIPO is a maximizer while BO is a minimizer, so for
BO the actual JBO(at) = −J(at).
As for the algorithm which uses ANN (PPO#, DDPG) we use their default
parameters except that for DDPG where we specify the noise parameter, the
Ornstein-Uhlenbeck noise, which represents a Gaussian noise distribution in short.
The performances attributed to Figure 3.3 are shown in Table 3.1.

Mountain-Car Lunar-Lander
PPO1 PPO2 DDPG LIPO BO PPO1 PPO2 DDPG LIPO BO

reward 0 -0.6·10−3 96.2 99 98 67 252 306 297 2575
episodes 500 500 3691 1500 500 832 117 1149 1500 500

time [min] 7.7 8.4 21.8 2.5 32 14.3 17.3 31.6 7.5 3.71[h]

Table 3.1: Algorithms’ performances on GYM-environments

The total number of time-steps set in the stable baselines algorithms learning
process are 5 · 105 but the relative episode length could change along the learning
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Figure 3.3: Learning Curves for Mountain Car and Lunar Lander

Figure 3.4: Episode’s length by learning for Mountain Car and Lunar Lander

process.
For Mountain Car continuous the training ended after 1000 episodes if the cart

does not reach the flag on the top of the mountain. This episode’s feature is evident
in Figure 3.4 for PPO1 and PPO2, in fact on the correspondent learning curves
graph (Figure 3.3) PPO1 and PPO2 do not reach to learn enough given that their
maximum cumulative reward is the lowest. On Mountain Car we can see effective
learning progress via DDPG and the two optimizers: in DDPG, especially, we
can observe an impressive decrease in episode length while the other two ANN
based algorithms do not perform this behavior. Here we can realize the strength of
DDPG among the ANN-based algorithm!.
Similar things could be said for Lunar Lander, though the episode does not end
when it reaches a certain amount of steps, for which the episode length continuously
varies.
For the total time-steps for learning in the stable baselines’ tools, we have put the
value 5 · 105; downline of the previous considerations we can assess that the total
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episodes used to learn change with the algorithm. In Mountain Car, DDPG can
learn faster than PPO# so the episode length needed to finish the episode, and
reach the flag in this case, decrease continuously. This is why we can assess that
for both PPO algorithms the episodes used in the training process are 500 (that is
5e5/1000 where 1000 is the default steps number to conclude the episode) while
DDPG uses more episodes (5e5 steps is a user-defined constant so if the learning
process is faster, the episode end earlier and for the same total steps more episode
could be evaluated). An algorithm festers than another has a double positive effect
due to (i) its velocity itself, in terms of episodes, to reach the maximum and (ii) the
possibility to search the objective function’s maximum on a wider episode amount.
Downline the simulations’ data acquired we can draw some evident conclusions: the
two optimizers, LIPO and BO, perform the best reward achievement, and they are
very fast in that. When we talk about the velocity used to achieve the maximum
cumulative reward, we mean the velocity in terms of episodes number because, as
we can notice in table ??, BO is not properly “fast" in sense of the time but just
the opposite.
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Chapter 4

Application on O.D.E.
system

The previous tests have shown how a specified model works and for that purpose,
the environments used were game’s environments as instances.
Right now we can approach a new environment that describes the mass-spring-
dumper evolution, a more physic environment than before, where we appreciate
the control action on a “pendulum”.
The environment is composed of one mass, one spring, and one dumper free to
move along the x-axes (Figure 4.1). In this one-dimensional problem, we take care
of a harmonic forcing function F which can disturb the physic system and it can
modify its motion law so that the control actions are required to maintain one
designed position.

Figure 4.1: ODE system environment

Since the physic problem is 1-D, the physic law describing the mass motion along
the horizontal direction involves the forcing function F and the control action u
also horizontal.
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The mechanical system response is a nonlinear oscillator with one degree of freedom
indicated with x = x(t), where x represents the punctiform mass displacement.
The nonlinear device shown in Figure 4.1 is based on the generalized Van der Pol
damping model. This component alternatively provides and drains mechanical
energy from the nonlinear oscillator leading to a limit cycle in the dynamical
behavior.
By using the analytical methods of classical mechanics, the nonlinear equation of
motion of the mechanical oscillator can be readily written as follows:

Fi + Fd + Fk + Ff + Fu = 0

Where the first term Fi is the inertia force, the second term Fd is force generated by
the nonlinear damper, the third one Fk is the spring force or the elastic response,
the Ff is the forcing function while the last one term Fu concern the control actions.
Now we can explicitly rewrite the system equation of motion as:

mẍ(t) + ẋ(t)(ax(t)2 + b)c+ kx(t) = f(t) + u(t, x, ẋ)

where on the right are all the external forces while on the left only the physic
system response.
The values m = 1 kg, k = 2 kg/s2, c = 0.3 kg/s, a = 1 m−2, b = −1 are
constants and these are respectively the mass, the elastic coefficient and the three
coefficients for the non-linear term of the dumping force. The forcing function
is a harmonic function that is only dependent on time while the control force is
dependent mainly on the position and velocity of the mass exactly like a closed-loop
control. This is common use in reinforcement learning applications because the
actions are dependent on the environment state observed, as explained at first in
this document.
In the solving process, the mathematical approach is the one for an initial value
problem (IVP) for Ordinary Differential Equations (ODE). The solving process is
iterative along the temporal variable and in each time step, the system is solved
given the state information, position, and velocity, at the previous time step. Pre-
cisely the system to be solved is the following:


ẍ = − 1

m
[ẋc(ax2 + b) + xk − f(t)− u(ẋ, x)]

ẋ = ẋ(t = 0)
x = x(t = 0)

In this way we can control the system time evolution for every time step finding
the weights whose best fit the null displacement; the flat solution, the aim of the
control process, that is the null displacement.
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4.1 Control on O.D.E. system
For a recap, the main reinforcement learning components at each step are:

• observation state S: point mass position and its velocity so that S = [x, ẋ];
• action: the action definition depends on the algorithm: into the optimizer,

the action is defined by the user as a linear combination among state and
weights (W = [w1, w2]) so that action = W · ST , while DDPG and PPO use
linear combination through ANN and GP finds the best equation for the state
vector components;

• reward: is defined as the absolute difference of the local displacement x and
the null displacement, hence the absolute value at the current instant;

• episode length: 40 seconds.

In the previous chapter, we talked about the possibility to create our own envi-
ronment starting from the general format proposed by OpenAI GYM. The ODE
environment has been built exactly similar to the OpenAI GYM environments
hence it contains the main interaction functions used for both Mountain Car and
Lunar Lander environment, which are: “step()” and “reset()”.
Given this environment we can use the same algorithm used before to optimize and
control the new environment, never seen before but with the same characteristic.
In this context, the LIPO, BO, DDPG, PPO, and GP algorithms will find the best
weights given the observation state for the system at stake, completely similar to
the previous environments.
Here the control’s effect is shown for the forced and unforced case, where the forcing
function is the harmonic function sin() and the initial condition is null velocity
and displacement equals 4 m.

ẍ(t) + 0.3ẋ(t)(x(t)2 − 1) + 2x(t) = 100 sin(2π · 0.4 · t) + u(t, x, ẋ)
ẋ(t = 0) = 4
x(t = 0) = 0

where has been used a non-dimensional forcing functions’ frequency of 0.4. Obvi-
ously, when we treat the unforced ODE system the forcing term is null.

Looking at the forced solution in Figure 4.2, LIPO and BO appear to perform the
same control, but the cost for that is not the same.
Based on what is shown in the table 4.1 for the not forced system, we can conclude

that LIPO is faster than BO and it reaches the best reward.
Delving into the weights vector in same table, we can observe the maximum weights
value inside it: in fact, running the optimizer, we have set the investigation domain
for the weights between -150 and 150, so that we can try to increase the weight’s
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Figure 4.2: Control with different algorithms (with and without forcing function)

Not forced Forced
BO LIPO BO LIPO

Episodes 200 2000 200 2000
Time [min] 3.77 3.21 7.35 4.60
Reward [m] 0.6348 0.6085 0 0

Weights [-150,-18] [-150,-17.47] [-150,-23] [-149.64, -29.98]

Table 4.1: LIPO and BO performances comparison

domain expecting to obtain a better reward, but the scope in this section is still to
understand the algorithms’ behavior.
In the case without forcing function, the control actions are made to “kill” the
natural response for the mass-spring-dumper system. In this last case, LIPO and
BO attain the best performance killing the whole oscillations almost immediately,
without transients, but the two optimization algorithms have different abilities in
doing that. Their best weights are very similar, in fact in the learning curves table
(Figure 4.3) we can find the corresponded curves almost overlapped. In the case
of learning curves practically overlapped we can conclude that the BO and LIPO
perform the same behavior but LIPO is a bit faster.
This conclusion about LIPO performances is acceptable when the weights’ domain
is little but it could be not true otherwise.
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Figure 4.3: Learning curves along the episode for different algorithms
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Chapter 5

The BLEW environment

We now approach the actual problem of this work: the control of liquid film undu-
lation.
The control of a liquid film undulation implies the capability to interact with it;
for this purpose, a proper environment has been modeled at Von Karman Institute
so that the user can simply interact with it managing its outputs via the algorithm
he wants.
In this first section, we are going to introduce the reader to the physic model used
to build the wiping nozzle for the liquid film interaction environment.
The Integral Boundary Layer (IBL) models are widely used for falling liquid films
description because, when these are referred to as low dimensional models, eliminate
the velocity and pressure fields from the full set of Navier-Stokes equations reducing
the number of variables that govern the problem, thus describing the dynamics of
the liquid film only through the thickness and the flow rate. These models have
been largely used in more complex configurations due to the fact that them enable
minor computational cost, if compared to full simulations, and introduce useful
analytic insights. As reported in [14], the classical Integral Boundary Layer (IBL)
models for liquid films have been extended for a flow configuration that has never
been used: the jet wiping process. This process on stack involves the use of an
impinging gas jet to control the thickness of a coating liquid film on a vertical
moving substrate, and it is characterized by unstable dynamics. In particular,
the propagation of instabilities of the gas jet to the impinged liquid produces a
non-uniform coating distribution referred to as “undulation”.
The phenomena described in BLEW concern the 2D formulations. The modeling
of this configuration presents two distinctive features: the upward motion of the
vertical substrate and the simultaneous presence of time-dependent sources of
shear stress and pressure gradient. These formulations aim at predicting the final
coating thickness by describing the mean thickness distribution of the liquid film
just under the action of the pressure gradient and the shear stress produced by
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the jet impingement. The formulation presented neglects the role of inertia in the
liquid film, disregarding the nonlinear contribution of advection.

Figure 5.1: Process description [14]

A gas jet impinges on a liquid film that is dragged along a vertical plate moving
upward at a constant velocity Up.
The wiping nozzle is a nozzle with an opening d and a stagnation pressure N

releases a jet flow at a distance Z from the dip-coated substrate moving at a speed
Up. The impingement produces a wiping meniscus (region WR). This forces the
film to flow backward (region RB) and leaves a thinner liquid film downstream
(region FC) before solidification takes place.
The configuration is assumed two-dimensional, with incompressible liquid flow
bounded by the laminate at y = 0, and the liquid interface at y = h(x, t); this is a
dynamic interface.
The nozzle axis marks the origin x = 0, and the streamwise coordinate x follows
the direction of gravity, countering the substrate velocity. The impinging jet flow
produces a pressure pg(x, t) and a shear stress distribution τg(x, t) that identifies
three areas, qualitatively pictured on the right (Fig 5.1). In the wiping region
indicated as “WR”, the pressure gradient imposed by the gas jet forces part of
the liquid to move in the opposite direction of Up, resulting in a wiping meniscus.
The falling liquid forms the runback flow in the region x→ (indicated as RB); the
remaining liquid evolves upward in the final coating region x→ − (indicated as
FC). In a coupling formulation has been assumed that the presence of the liquid
film does not influence the gas jet and this has been extensively validated for the
prediction of the averaged final coating thickness. [15] We thus assume that both
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the pressure and the shear stress produced by the jet solely depends on the nozzle
gauge stagnation pressure ∆PN , the nozzle opening d, its discharge coefficient Cd

and the standoff distance Z.
All the integral models investigated rely on the Navier-Stokes equation and the
related boundary conditions in the “long-wave” formulation. This formulation is de-
rived by scaling the cross streamwise direction with a reference length [h] = νlUp/g) 1

2 ,
which is much smaller than the streamwise reference length [x] = [h]/C

1
3
a . The

dimensionless continuity and the momentum equation in the x and y directions, for
the long-wave formulation of the problem, reduce to the boundary layer equations:

∂û

∂x
+ ∂v̂

y
= 0, (5.1)

εRe

A
∂û

∂t̂
+ û

∂û

∂x̂
+ v̂

∂û

∂ŷ

B
= ∂p̂l

∂x̂
+ ∂2û

∂ŷ2 + 1 (5.2)

0 = ∂p̂l

∂ŷ
(5.3)

Hereinafter the dimensionless variables scaled with respect to the quantities in
Table 5.1 are indicated with a hat (e.g. ĥ = h/[h]).

Reference Quantity Definition Expression (·) reference
[h] (ν[u]/g)1/2 (νlUp/g)1/2 cross streamwise length
[x] [h]/ε [h]/C1/3

a streamwise length
[u] Up Up moving speed
[v] εUp UpC

1/3
a cross stream velocity

[p] ρlg[x] (µlρlgUp)1/2/C1/3
a liquid pressure

[τ ] µl[u]/[h] (µlρlgUp)1/2 liquid shear stress
[t] [x]/[h] (νl/Upg)1/2/C1/3

a problem time scale

Table 5.1: Reference quantities for the Shkadov-like scaling

With the film parameter ε = C1/3
a whose Ca = µUp/σ is the capillary number

dependent to the surface tension σ we can define Re = [u][h]/νl = (U1/3
p /gνl)1/2 is

the global Reynolds number of the phenomena. Since the proposed scaling laws hold
for ε≪ 1, the long wavelength formulation is valid for C1/3

a ≪ 1. This generally
occurs in galvanizing conditions, where typically µl ≈ 0.003Pa · · · , σ ≈ 0.8N and
Up = 1− 2m/s and hence Ca ≈ 0.004− 0.008.
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The kinematic boundary conditions at the wall and the gas-liquid interface set:I
(û, v̂) = (−1,0) in ŷ = 0
v̂ = ∂h

t̂
+ û∂ĥ

x̂
in ŷ = ĥ

(5.4)

The dynamic boundary conditions at the interface simplify to:

p̂l|ĥ = p̂g(x̂, t̂− ∂2ĥ

∂x̂2 ) along n̂ in ŷ = ĥ (5.5)
∂û

∂y ĥ = τ̂g(x̂, t̂) along t̂ in ŷ = ĥ (5.6)

The integral model reduces the modeling complexity reducing the problem 1D.

∂ĥ

∂t̂
+ ∂q̂

∂x̂
= 0 (5.7)

εRe

A
∂q̂

∂t̂
+ ∂F̂
∂x̂

B
= ĥ

A
1− ∂p̂g

∂x̂
+ ∂4ĥ

∂x̂4

B
+ ∆τ̂ (5.8)

where q̂ is the volumetric flow rate per unit width, and

F =
Ú ĥ

0
û2dŷ (5.9)

∆τ̂ ≡ τ̂g − τ̂ = τ̂g −
∂û

∂ŷ

-----
ŷ=0

(5.10)

are the advection and the shear stress terms respectively where τw is the wall shear
stress.
To close integral models, the velocity profile is assumed to be the superposition of
three terms:

û(x̂, ŷ, t̂) = ûF (x̂, ŷ, t̂) + ûC(x̂, ŷ, t̂) + ûP = ûF (x̂, ŷ, t̂) + τ̂g(x̂, t̂)ŷ − 1 (5.11)

The term ûF accounts for the contributions of gravity, viscous stresses, surface
tension, and pressure gradient. The term ûC = τ̂gŷ accounts for the shear stress
produced at the gas-liquid interface while ûP = −1 accounts for the motion of
the substrate. This kinematic decomposition satisfies the boundary conditions if
ûF = 0 at ŷ = 0 and ∂ûF

∂ŷ
at ŷ = ĥ.

5.0.1 Laminar Film Model
The term ûF is decomposed in a series of basis function as:

ûF =
NØ

j=0
aj(x̂, t̂)fj

A
ŷ

ĥ(x̂, t̂)

B
, (5.12)
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where a0 is the highest order O(1) and aj with j > 0 are corrections of order O(ε).
The basis functions fj are taken as:

fj = ȳj+1 − j + 1
j + 2 ȳ

j+2, (5.13)

where ȳ = ŷ/ĥ(x, t) is the reduced coordinate. This choice was introduced for
falling liquid films, imposing that each of the basis functions satisfies the boundary
conditions.
By the assumption that only the first j = 0 term of the velocity profile is relevant,
we derive the 0-Order Film Model. This means that N = 0 in (5.12) and that
the inertial effects can be neglected, that is εRe ∼ 0 and the LHS in (5.8) van-
ishes. Therefore this model is an inertialess model and the velocity profile became
parabolic:

û = a0(x̂, t̂)
A ŷ

ĥ

B
− 1

2

A
ŷ

ĥ

B2
+ τ̂gŷ − 1 (5.14)

As for the 0-Order model, the Integral Boundary Layer (IBL) considers only the
first term in the velocity profile (5.14), but it does not assume that the LHS of (5.8)
vanishes. The full expansion in (5.12) is now considered for the Weighted Integral
Boundary Layer Model (WBL), taking up to N = 4 terms. This number can be
derived based on the order of magnitude analysis. The method of weighted residuals
to derive the coefficients A = a0, a1, a2, a3, a4 in (5.12) for a falling liquid film was
proposed by [16]. In the formulation, a model following the polynomial matching
procedure that involves neither weights nor residuals is used because this allows
deriving an explicit equation for the coefficients aj.
Laminar integral boundary layer models have been proved successful for cases up to
Re ≈ 80 well above their theoretical range of validity, while much higher Reynolds
numbers, like those considered in this work, might need a different treatment. A
different approach is commonly encountered in the literature on shallow water
flows in which a correlation between the wall shear stress and a shape factor for
the velocity profile is introduced. The Transition and Turbulent Boundary Layer
(TTBL) model for the jet wiping problem extends the IBL model to a turbulent
liquid film. A similar extension of the WIBL for a falling liquid film, using the
mixing-length formulation, is presented by [17].

5.0.2 The Wiping Actuator
The gas jet action’s effect on the liquid film is modeled via the pressure gradient and
the shear stress produced on the liquid surface. These two quantities, referred to as
wiping actuators, are modeled via experimental correlations for gas jet impinging

46



The BLEW environment

on the plate, with minor adaptations to account for their time dependency, and
under the assumption that the dynamics of the liquid film has no influence on their
evolution. The wiping actuators are of the form:

∂p̂g

∂x̂
= ∂

∂x̂
[Pg(t)fp(x̃(t))/(ρlg)] (5.15)

τ̂g = Tgfτ (x̃(t)/
ñ
µlρlgUp) (5.16)

where Λx denotes a time-dependent axis accounting for the possible oscillation of the
jet. The functions fp and fτ have range ∈ [−1,1] so that the maximum values from
these quantities are defined by the scalars Pg(t) and Tg(t). Following the empirical
correlation, the pressure distribution for a gas jet impinging on a wall is:

fp(ξ) = exp(−0.693ξ2) + 0.01895|ξ|
1 + (ξ − 1.67489)2 (5.17)

where ξ = x/b is a dimensionless coordinate, with the parameter b controlling the
spreading of the distribution. As proposed by [18], for a stand-off distance Z/d > 5,
this parameter can be computed as b = 0,125Z. The maximum pressure Pg, for a
statistically stationary impinging jet, can be computed as Pg = 6,5Pdd/Z, where
Pd = Cd∆PN is the dynamic pressure at the nozzle outlet and Cd is the discharge
coefficient taking into account the losses for friction and gas separation in the
nozzle chamber. The parameter Cd depends on the nozzle design and is taken as
Cd = 0.8. For more details, the reader is referred to [19].
Concerning the dynamic evolution of the actuators, the time dependency, two
possibilities are considered: pulsations and oscillations. In the case of pulsa-
tions, the amplitude of the actuators Pg(t) and Tg(t) are set as harmonics with
mean value equal to the correlations in steady-state conditions and amplitude of
30%. In the case of oscillations the amplitudes are left stationary and equal to
the correlations previously proposed, while the streamwise variable is taken as
x̃(t) = x̃−Ztan(W (θ(t))), where θ(t) is the angle of the oscillation with respect to
the horizontal, taken as θ > 0 for a jet deflected upstream (on the runback flow
side), and W (θ(t)) is a possible waveform of the oscillation.
Three waveforms are considered. The first is a harmonic oscillation W (θ(t)) =
θAsin(2πfht). The others are non-harmonic oscillations biased upstream or down-
stream. These time dependent jet perturbations were designed to mimic different
oscillatory modes in the impinging jet flow.

5.0.3 Numerical Methods
We here introduce the numerical methods to solve the set of equations (5.7) . This
is a system of hyperbolic PDEs that can be written in the general form:

∂V(x, t)
∂t

+ ∂F(x,V)
∂x

= S(x, t,V) (5.18)
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with V the state vector of the problem, F the conservative flux and S the source
term.
In both the IBL and the WIBL model, the state vector is V = [h, q]T , the flux
term is F = [q,Fβ] and the source term is:

S =
C

0
(ĥ+ ĥ∂3ĥ

∂x̂3 − ĥ∂p̂g

∂x̂
) + ∆τ̂

D
β

εRe
(5.19)

where the coefficient β = 6/5 only for the WIBL model and β = 1 otherwise.
The system of PDEs in 5.18 has been extensively treated in the literature on
non-homogeneous Shallow Water (SW) equations and a wide range of suitable
Finite Volume (FV) schemes for their numerical analysis. Among these, two major
classes can be distinguished in the literature: (i) methods arising from Godunov’s
scheme and so based on the (approximated) solutions of the Riemann problem and
(ii) methods arising from the Lax-Friedrich scheme and so based on centered fluxes.
The first class of methods is better suited to cope with strong gradients while the
second has a much lower computational cost. Because the investigated simulations
do not produce shocks within the space and time domain of interest, this work
focused on the second class of methods.
Centered schemes introduce a certain amount of artificial viscosity which can be
introduced by a suitable combination of low order schemes and high order schemes.
This combination is achieved using flux limiters to blend a high order scheme
(Lax-Wendroff) in regions where the solution is smooth with a low order scheme
(Upwind or Lax-Friedrich) in regions which present strong gradients.
This approach combines the advantages of the two options: first-order schemes
prevent numerical oscillations (dispersion) at the cost of excessively smoothing the
solution.
A standard Finite Volume (FV) formulation using explicit methods with a three-
point stencil in conservative form discretizes 5.18 as:

Vk+1
i = Vk

i −
∆t
∆x

è
F+ − F−

é
+ ∆t · Sk

i (5.20)

where F+ = F(Vk
i ,Vk

i+1) and F− = F(Vk
i ,Vk

i−1) are the fluxes on the right and
the left boundaries of each cell. In a flux limiting scheme, these are

Fi = FH
i +

1
FL

i − FH
i

2
ϕi (5.21)

where ϕi is the flux limiter, FH is the flux calculated from a high order scheme,
and FL is the flux calculated from a low order scheme. The chosen limiter function
could be the classical min-mod:

ϕi = max(0,min(1, θi)) (5.22)
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or the Van-Albada otherwise:

ϕi = θ2
i + θi

θi + 1 (5.23)

where θi = (hi− hi−1)/(hi+1− hi) is the smoothness parameter based on the liquid
film thickness.
The numerical diffusion added by the low order scheme results in the smoothing
of the waves in the liquid film. This smoothing becomes more evident as the
waves move away from the wiping point that engenders them. Lax Wendroff
scheme is used when the solution requires a high accuracy but its computational
cost is high too instead of the Lax-Friedrich method that is less accurate and its
computational cost is lower; the numerical diffusion added by this last method
introduces a numerical dumping effect that is inappropriate in control problem due
to the convergence effect to the mean value of oscillations.

5.1 Time improving from whole phenomena to
ROM

How easy to understand, one of the problems in BLEW (Boundary LayEr Wiping)
software is the time required to process an entire episode. For the episode here we
mean the number of steps required by the model solver to observe two wave period
over the reward zone. The reward, the observation, and the active zone are defined
by the user and this parameter could change as we wish.
The time per episode is paramount in our research because we use reinforcement
learning algorithms that process hundreds of episodes to evaluate the best policy;
in this work, it becomes the most important feature because we want to understand
how the algorithms interact with the physic model to control the undulation
phenomena.
In the beginning, the model was designed to represent the whole wiping phenomena
in a wide spatial range, where we can observe all the zinc liquid film exceeding
the wanted thickness value wiped in the opposite direction of the laminate in the
direction “−Up” (Figure 5.2a). The original episode for this kind of environment is
128 steps long (a bit more than three periods on the reward zone) and it requires a
bit more than 1 hour to compute it completely.
In our case the control of the liquid film thickness is necessary to decrease the
undulation, hence observing the whole wiping phenomena is not relevant for our
purpose so the control environment could regard only the zone where the undulation
phenomena appear. If we think in these terms, the wiped liquid flow exceeding the
wanted thickness value is not important and a Reduced Order Model (ROM) is
created under the shadow of the initial one; this is a ROM which contains only the
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undulation waves in its resolution. In accord to [14], trying to represent the wiping
effect on a quiet liquid film, the ROM environment shows the solution for a liquid
film with no shear stresses on the basement and a forcing function in the origin;
this last one concern only the mass flow and not the thickness properly, in fact,
the thickness is keeping constant while the mass flow rate change via a harmonic
forcing function (Figure 5.2b).
This trick allows to save almost 55 minutes of almost 1 hour of the original episode

(a) (b)

Figure 5.2: BLEW output in complete solution and ROM

128 steps long so that after this tweaking the episode takes almost 7 minutes.
The time performance increasing is amazing, from 1 hour to 7 minutes, but it is still
not enough; just for one hundred episodes an algorithm still needs approximately
12 hours. In order to decrease the episode computing time-consuming, we focus
more on the design environment so that the space interval length changes from 150
to 80 non-dimensional points, and has been decided to observe only two oscillation
periods on what we call the reward zone concerning the definition of the episode
length. The time required for an episode is 5 minutes; it is still too much.
Understanding the model computation process becomes evident that the most
time requirement for an episode is taken by the initial transitory; actually, we do
not care about those first steps because the related first undulations are far from
the wiping control nozzle and the times used in this transitory is lost waiting for
the undulation approach the control nozzle area. Starting with a different initial
condition became necessary to decrease the episode time required, so an initial
condition with the transitory already developed and more steps already computed
has been decided to use as the initial condition.
Moreover, we define the episode length as the length needed to observe only two
undulation wavelengths onto the reward zone and this sets a limit in our simulations.
After these precautions, the model requires only 2 minutes to perform 86 steps,
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required for the definition of episode length, in a space discretized through a
medium-mesh (1318 points in 80 non-dimensional distance points): now it seems
we do not have any other possibilities to decrease the time required for an episode.

5.1.1 The step length
Waiting for the discussion on the mesh type and the flux limiter used for the
simulations, we try to explain how the episode length is affected by the step
length used for evaluating the “instant by instant" solution. In order to obtain the
thickness amplitude on the mesh points, the equations discussed before are solved
each “step", but the time-length of this step is decided by the user. Previously
has been assessed that for an episode (two-wavelength observed onto the reward
zone), 86 steps were required; each of these 86 steps contains inside it 50 minimum
numerical time-steps used for solving the differential equations.
To avoid confusion in the nomenclature we step back into what we define as “time-
step".
Originally, in the chapter concerning the GYM’s environment, we talked about
the possibility to create the our own environment starting from the general format
proposed by OpenAI GYM. The BLEW environment has been built exactly similar
to the OpenAI GYM environments hence it contains the main interaction functions
used for both Mountain Car, Lunar Lander, and the ODE system environment,
which are the famous: “step()" and “reset()".
Since we use the “step()" method to evaluate the action on the model’s solution,
we can put inside this step a user-defined amount of numerical time-steps used in
the discretized differential equations for the wiping model.
For a recap here we define the:

• numerical time-step: the minimum time used discretization of the wiping
model’s differential equations and defined as the minimum representative time
among the gas and the liquid phenomena: in this case is dt = 0.01667s for
the liquid;

• step: the amount of numerical time-steps used to perform one “step()" and
along which the action is kept constant.

Since the user can pick an arbitrary amount of numerical time-steps into each step,
we could choose an enormous quantity on those to minimize the time required to
process an episode, but if we extend this idea to its limit we could have the faster-
computed episode with only one step, so one single action along all the episode.
This strategy is yet not useful for control purposes because it only aims to decrease
the episode time computing but we can expect the worst control performance; the
best choice, for control purposes instead, is to have an actuator with the possibility
to interact with the liquid film each numerical time step, the smallest time-step, but
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this increases enormously the episode time computing. When we call the solution
"instantly", we mean the solution while the actuator produces action on the liquid
film surface every 0.01667 seconds instead of the usual 50 times larger step is 0.833
seconds (when the episode was 86 steps long each step was 0.833 seconds long).
This multiple is chosen as big as to ensure the fast conclusion of an episode, but we
can lose the accuracy in acting because the actuator could choose an instant in a
time domain 50 times smaller for its actions. Making smaller and smaller the step
toward the numerical time-step the time required by the computer to complete the
episode increases: the instant episode computing end after 291 seconds instead of
the 50 times bigger step which requires 143 seconds, less than the half part, but
with lower time accuracy. As said before, become evident the necessity to mediate
between the temporal accuracy and the episode computing time required.

Figure 5.3: The numerical time-step dt, the step Ndt and episode Mdt

5.1.2 The CFL condition
The numerical time-step is the same for all the mesh types because the CFL
condition is not implemented yet in this environment. Knowing the characteristic
time for the liquid and the gas phenomena, the numerical time-step used for solving
the differential equations is chosen as the smallest between these two characteristic
times.
In each step, a small amount of numerical error is collected into the solution hence
different waves shape could be observed for different mesh types. Throughout the
episode, only the numerical diffusion effect on the spatial resolution due to the
mesh refinement could be observed on the waves, but not the relative time diffusion
due to the CFL condition is nonexistent. Mainly the Lax-Wendroff scheme is the
most problematic scheme since when the mesh becomes finer (from Fine Mesh on)
its numerical solution pours on NaN values earlier and earlier in time increasing
the mesh fineness. Via comparison of the four mesh types, this effect becomes
visible; only the solution’s space distribution is dependent on the mesh grid but
observing their peaks in Figure 5.4 we can notice that at the beginning and at the
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end of an episode the space distribution maintain the same distance among the
different solutions, so there is not mesh dependence in numerical time-step, the
CFL condition is not actually implemented.

Figure 5.4: proof of absence of CFL condition

5.2 Flux Limiters effects on model’s solution
Lax Wendroff scheme is used when the solution requires a high accuracy but
its computational cost is high too instead as Lax-Friedrich method which is less
accurate and its computational cost is lower; the numerical diffusion added by this
last method introduces a numerical dumping effect that is inappropriate in control
problem due to the convergence effect to the mean value of the oscillation how we
can see in 5.5.
How we could expect the Lax-Wendroff method, the higher-order method, to
provide a more numerical accurate solution while the Lax-Friedrich method, the
lowest order method, goes to introduce the highest dumping effect. The Flux
limiters are very able to reduce the negative numerical diffusion effect but the
time to process an episode increases for the lowest order solver (let see Table
5.2). The time difference required by each episode with one or other Flux limiters
could appear insignificant and our final choice could be obviously direct to the
Lax-Wendroff solution, the most accurate. From an operational point of view,
we have to match among time required and solution accuracy because the time
needed to process an episode becomes noteworthy as soon as the optimization run;
along the hundreds of episodes required for the optimization, the time saved is
hundreds of times the small difference for each episode and whereas the episode
length increase also the small time difference increase. In general, this trend is
visible when the mesh refinement increases. Therefore, it could be very useful to
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Figure 5.5: Limiter Functions’ solution

strive for Van-Albada Limiter because of a good compromise between the time
required and numerical accuracy.
Due to numerical stability matters, the limiter’s ϕi is filtered on the space domain
and this produces a non-uniform distribution of ϕ over the space. This numerical
requirement causes the solving of both the low order and high order methods
for each step for both the hybrid method (min-mod and Van-Albada) and the
Lax-Wendroff method. However, the Lax-Wendroff method requires more times
for an episode than the other methods due to the spatial filter because the limiter
is calculated and it is not taken into account as constant (ϕ(x) = 1); the time
required increases especially when the mesh grid goes to be finer and finer, as for
the other limiters.

Time required for one episode [s]
Limiter Type Coarse Mesh Medium Mesh Fine Mesh Ultra-Fine Mesh Extreme Mesh

Min-mod 80 126 176 233 279
Van-Albada 76 126 180 228 227

Lax-F 75 125 182 226 273
Lax-W 75 127 194 238 277

Table 5.2: Time required for an episode
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Figure 5.6: Flux limiter distribution and their solution accuracy
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Chapter 6

The jet wiping control on
BLEW

Let analyze mainly the influence of the number of jets on the controlled solution
after hundreds of episodes through the algorithms exposed. We will understand
how much important could be the episode length and, obviously, the policy used in
the training processes.

6.1 The single jet control
Working on the BLEW’s parameters which could influence the learning process
in the RL algorithms, the step length treated in the previous chapter represents
the most important data. Successively is going to be reported the algorithms
achievement with the two different step lengths: the numerical time-step and
the relative 50 times bigger step. Before proceeding with the use of the BLEW
environment the algorithms have been improved by tweaking the ANN size or other
hyperparameters; the main change concerns the size of the ANN in DDPG and
PPO# while for the optimizer other hyperparameters are used as constant in the
next optimization processes.
We report the new ANN enlarged to obtain the best weights combination along
the learning process. The PPO# algorithm, proposed by Stable Baselines, uses
a Multi-layer perceptron (Mlp) consisting of two layers of 64 perceptrons using
ReLU as activation function; the new ANN for PPO# is still a “Mlp” consisting of
fifteen layers of different dimension for 32 perceptrons per layer to 512 as shown in
the Figure 6.1.
The Table 6.1 could be included the new ANN for policy (π,“pi”) and value function
(vf) which input is:
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1 pol icy_kwargs = d i c t ( net_arch=[ d i c t (
2 pi =[64 , 128 , 128 , 256 , 256 , 512 , 512 , 512 , 256 , 256 ,
3 128 , 128 , 64 , 32 ] ,
4 vf =[64 , 128 , 128 , 256 , 256 , 512 , 512 , 512 , 256 , 256 ,
5 128 , 128 , 64 , 3 2 ] ) ] , )

Figure 6.1: PPO2 ANN improvement

Similarly to PPO the DDPG also used a Multi-layer perceptron (Mlp) consisting
of two layers of 64 perceptrons using ReLU as activation function, but we tweaked
it to an Mlp consisting of seventeen layers from 32 to 512 perceptrons per layer as
shown in Figure 6.2. The new ANN is related to the policy only.

1 pol icy_kwargs = d i c t ( l a y e r s =[64 , 128 , 128 , 128 , 256 , 256 , 512 , 512 ,
512 , 256 , 256 , 128 , 128 , 128 , 64 , 3 2 ] )

In DDPG(H) we can be more deep specifing every sub-network as in Figure 6.3.
In the case of the Optimizer like LIPO and BO, the main hyperparameters are
shown in Table 6.1. At moment we do not include Genetic Programming in our
discussion because only step length influence on the whole performance is going to
be discussed.
As regards the reward we have chosen the Gaussian distribution of standard
deviation for the boundary condition, this last one represents the target to achieve,
the mean value of liquid zinc thickness h. This is what is recommended in [20]:
using the Gaussian distribution of the original reward leads the algorithm to a
faster learning process. The reward is defined as the sum over the steps of the
standard deviation with respect to the target value, the mean value, for the solved
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Figure 6.2: DDPG ANN improvement

Figure 6.3: Inside the DDP(H) networks

solution along the time variable; this value is used as a negative exponent for an
exponential function, so that: e−std. The reward definition will be discussed more
afterward in order to analyze its faults ( Section 6.4).
The rewards achieved are dependent on the step length because the step is processed
outside the solving process. The final reward is the sum of the reward obtained
every step, so whereas the step is composed by 50 numerical time-steps the output
will be a number 50 times smaller than the reward obtained when the step is the
numerical time-step. To be clear, the user chooses the step length and after this
step, the reward value is given as output and will be summed along the episode;
if the episode uses 86 steps to end then the total reward will be the sum of 86
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LIPO

Initial seed points: 500 points
Initial point generator: random
Weights set: {-15,15}

BO

Initial points: 1000 points
Initial point generator: random
Weights set: {-15,15}
Acquisition function Expected Improvement

PPO1

Steps per actor update: 3 episodes
Optimizer’s batch size: two-thirds of episode
Optimizer’s epochs number: 3
lambda : 0.93

PPO2

Steps per actor update: 3 episodes
Optimizer’s batch size: two-thirds of episode
Optimizer’s epochs number: 3
Optimizer’s mini-batches number: 3

DDPG
Instantly step

Buffer size: 1 million steps
Batch size: two-thirds of episode

50 numerical steps
Buffer size: 20 thousands steps
Batch size: two-thirds of episode

Table 6.1: Algorithms’ parameters for BLEW

immediate rewards but when the user chooses to use the smaller step, the numerical
time-step, the episode will require 4200 steps and the total reward will be the sum
of 4200 immediate rewards.
The total reward scaled according to its episode length is called the “immediate
average reward”. These are the rewards shown in Table 6.1 and in Figure 6.4 which
are the best reward achieved through the learning process and scaled with respect
to the episode length!
The reward has been set on LIPO, DDPG and PPO as a negative reward because
there are some maximizers instead of BO which is a minimizer and his reward has
been set as positive. The last note for LIPO and BO concerns the seeding points:
they are randomly assigned because if we send out the points on an equally spaced
grid along the weights domain the algorithm could lose time optimizing the results
into local maxima.
In Table B.1 and Figure 6.4 all the simulations are carry out using a mesh grid of
Medium dimension and the Van-Albada flux Limiter.
As expected, the learning curves for instant actions show higher rewards than the
others because the action is constant only for one numerical time-steps and then it
could change instead of maintaining it constantly for 50 numerical time steps. The
algorithms achieve a better reward because the actions can be better distributed
along the time to fit better the target solution. We need to choose the step length
equal to the numerical time step to obtain the best reward but the time required to
complete the training is too much. The final decision was taken downstream this
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Figure 6.4: Performances differences in negative rewards

first analysis is about using a step length smaller than 50 times the numerical time
steps, but it is still not the smallest one. For the next simulations and training will
be used a step length of 20 numerical time-steps which ensures actions release more
frequently and maintained constant enough less than before but it also ensures an
episode time required smaller than the 4200 steps episode, almost the 50% more.

Figure 6.5: PPO2 instantly evolution
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The best solution for instantly PPO2 is shown in Figure 6.5. There we can notice
how the undulation’s peaks are recognized and wiped becoming almost white, and
flat, after the control action on x̂ = 30 but the blue parts, the meniscus, are still
evident and they are not enough controlled. The wiping nozzle can only blow and
it cannot aspire, so the meniscus parts will be maintained unless the wiping control
nozzle will be inclined to wipe the liquid zinc toward the meniscus. In the next
learning processes the actuator number will increase to two actuators expecting a
better controlled solution.

6.2 The double jets wiping control
In parallel to the previous optimizations has been developed the double jet control
on the liquid film introducing also different policy laws for the optimizer LIPO and
BO and tweaking more parameters. Here the previous conclusion was not already
known and the simulations have been run using the faster method, so the step() is
50 times the numerical time-step.
In the algorithms, the parameters are maintained almost the same as previously
because they are reported in Table 6.1 as proportional to the episode length used.
The principal differences are located in the policy for the optimizer LIPO and BO.
The new policies still manage the weights in a new linear combination but also use
them in an open-loop control via harmonic function.
For first, the new linear policy has been designed to examine the undulation shape:
the undulation’s waves peak is located at the beginning, the dimensionless x = 80,
and its maximum value, when the Lax-Wendroff limiter is used, is less than 0.25. The
wiping nozzle can only blow until the maximum or blow out giving information, the
action, included in 0, . . . ,1 ∈ R. Knowing the actions are related to the observations
state, and given the maximum observation value equals 0.25, we can limit the
weights domain space using only sums in the linear combination: we can assess, in a
certain instant t: a=w1s1 +w2s2 +w3s3 ⇒ 0.25(w1 +w2 +w3) = 1 so that wi = 4

3 .
We will use only sums in linear combination, so the weights will be only positive to
ensure the maximum action=1. In this way the research domain of weights will
definitely decrease and we can expect a better performance other than faster.
The common linear combination policy uses this time the weights set included in
-8,8 because given the last results the best weights are close to the value=4.

With regards to the harmonic policy, two different solution will be proposed.
For harmonic policy we mean that the control actions follow an harmonic function
along the time, so here we move away from closed loop control to enter in open
loop control due to the actions are not dependant from the observations. The two
methods proposed will use the same parameters as weights so that optimize the
weights means optimize the harmonic function’s parameters. Given the amplitude
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A, the non dimensional frequency f and the phase ψ. the harmonic policy could
be one of the following:

at(w) = Asin(2πtt+ ψ)


A = {x|x ∈ R : 0 ≤ x ≤ 1}
f = {y|y ∈ R : −50 ≤ y ≤ 50}
ψ = {z|z ∈ R : 0 ≤ z ≤ 2π}

(6.1a)

at(w) = 0.5 +Asin(2πf t+ ψ)⇐=


A = {x|x ∈ R : −0.5 ≤ x ≤ 0.5}
f = {y|y ∈ R : −50 ≤ y ≤ 50}
ψ = {z|z ∈ R : 0 ≤ z ≤ 2π}

(6.1b)

In equations 6.1 the weights are relative the parameters A, f and ψ, each can
wander inside a particular domain space.
The training for Genetic Programming (GP) is also evaluated for double jets con-
trol after changing the algorithms in order to output two actions instead of only
one because here we use two actions instead of one. This tweak implicate more
time to finish the optimizations but it is required in this new environment. The
parameters inserted into the algorithms concern the number of individuals into the
initial population (pop), the probability to mate individuals or crossover (cxpb), to
mutate an individual (mutpb) and the wanted offspring (λ) for a given parents (µ)
selected, in addiction to the number of generations (ngen): these are the followings
in Table 6.2.

Genetic Programming parameters
pop cxpb mutpb µ λ ngen

Simple 100 0.5 0.7 - - 10
M,L 100 0.35 0.35 40 120 20
M+L 100 0.35 0.35 50 150 20

Table 6.2: GP parameters for the Simple, (µ, λ) and (µ+ λ) algorithms

Downstream the training the “Simple" algorithm produces the best performance
and it is the one shown in Figure 6.7
When the training finishes, the learning curves in Figure 6.6 show the best perfor-
mance. The algorithms LIPO and BO with classic linear policy performs the best
achievement. The harmonic policy does not work correctly evidently, but more we
can say about the policy based on the new linear combination strategy. The new
linear combination strategy for policy could appear less expensive, and surely it is,
but it is not able to perform a good result because it considers all the observations
equally. The observations are weighted at the same way losing the information
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Figure 6.6: Learning curves for double jets control

between the state vector. The weights’ domain is too poor to guarantee a good
exploration. Among the observations state maybe one could be more representative
in dumping oscillation than other and that should have ad higher weight. The best
solution is every time to ensure a far exploration trough a wider weights domain as
possible to avoid the optimization choke. The weights require to be summed or
subtracted as they please giving more or less, positive or negative, contribution in
action defining process. The observations’ position should change to observe how
it influences the search inside the weights domain, but this lie outside the time
usable in the current work.
In Figure 6.7 two actuator are used in control but only one is used by the algorithms
because the action in one actuator is every time null. This behaviour could be
visible also in other trained algorithms so we can affirm that only one actuator is
enough to control the liquid film in order to kill the undulation, while the second
actuator is redundant: only one actuator will be used in successive optimizations.
In figure the undulation’s peaks are not completely dumped but the negative aspect
are the deep meniscus created by the jets. This behaviour move the solution
away from the target solution and we can conclude that the control has not been
performed sufficiently good and more episode could be used in more training,
especially respect the BO and PPO2 which seems them could improve more the
reward achieved. In Table B.21 the BO and LIPO weights are very close to the

1The symbol “ * ” specify the “new” version: for harmonic refers to the equation 6.1b
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maximum value achievable so the weights’ domain space needs to be wider.

Figure 6.7: LIPO and Simple evolution

From the comparison of the two solutions for the linear LIPO and the Simple
evolutionary algorithm for GP become evident the best control is performed by the
LIPO; this one presents slightly bright colors after the control which ensure lower
peaks and higher meniscus around the mean value 0.2. Also in the Simple evolu-
tionary algorithm is adopted only one actuator but for µ+ λ and µ, λ algorithms
also the second jet located in x̂ = 40 has been used but with poor performances.

6.3 The definitive jets wiping control
The last BLEW version used for control purposes includes the expedients shown in
the conclusions of the previous sections. The BLEW environment uses now the
step-long 20 numerical time-steps, which ensure more precise actions use in time,
and only one actuator because it is sufficient to control the liquid film undulation
and it also provides faster training than the two actuator environments.
The episode is now 500 steps long but this information will not be significant in
our further considerations. The noteworthy information is that before, to complete
an episode 4200 numerical time steps were required but now, where the step is
composed of 20 numerical time steps, the required steps to complete one episode are
210. Now we use 500 steps because a problem occurs in BLEW control: the reward
zone is close to the action zone but they do not coincide, hence the reward computed
is not the one relative to the action but it is the reward obtained downstream
previous actions. The algorithm entrusts a certain reward to some actions which
do not create that reward and we can refer to this problem as a “phasing” problem.
In order to try to solve this problem the distance between the actuator and reward
zone has been decreased moving the actuator from x̂ = 30 to x̂ = 25 and the episode
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length has been increased so that the observed waves on reward zone are more than
2 but almost 5. This expedient does not solve the phasing problem between action
and the evaluated reward but, relating to the phasing problem, it helps to cope
with the “delay” problem. The delay problem is related to the delay problem but
it refers to the initial actions only; at the beginning, when the actuator acts on the
liquid film the reward computed is not relative to the undulation distribution and
we need to wait for some numerical time-steps to have at least the reward relative
to the perturbed solution by actions and not relative to the initial undisturbed
solution. This pours in a different transitory in which the reward is relative to
the undisturbed solution even if the actuator is already acting on the liquid film.
Making the episode length longer, the “delay transitory” has less weight on the
total reward and at least the reward evaluated concerns the effect of the actions.
Moreover, the reward now is not dependent on the episode length but the BLEW
environment has been tweaked to obtain the cumulative reward as sums of instant
rewards, per each numerical time-step, so that the total reward will not be scaled
by the episode length to have a comparative reward because this is exactly the
total cumulative reward.
In this environment on stack, the undulation shape is also different and it has more
physical features. The undulation shape proposed now is relative to the solution
via CFD analysis and its shape recalls a gaussian distribution in space. As shown
in Figure 5.2a the undulation has not the harmonic shape but only peaks and
no meniscus in its real solution and CFD confirmed this kind of characteristic.
Minimizing the solution difference between the “real” shape given from CFD
analysis and a parametrized Gaussian curve, the undulation wave acquires the
following distribution:

funwave = e− (t−t̃)2

2σ2

where σ = 2.36934558 is obtained through the minimization process, t is the
current instant in simulation and t̃ ∝ 1

f̂
is the centered time for the undulation

time distribution which is relative to the non dimensional frequency f̂ = 0.055:
the gaussian undulation does not go along time t but it evolves along the time in
relation to the numerical evolution with reference to f̂ : t− t̃ is the centered time.
The new environment provides the new ROM with Gaussian solution different than
the harmonic distribution as shown in Figure 6.8:
The last combination type for policy in optimization algorithms is the non linear
combination. Connecting us to [21], for the given state vector St = [s1, s2, s3]t and
the non linear form for policy

at(S,w) = wt S
T
t + S Wt S

T
t .

the weights will be included into both w = [w1, w2, w3] and Wt ∈ R3x3 which leads
in larger amount of weights and the importance of their combination management.
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Figure 6.8: From Harmonic to Gaussian undulation in ROM

This last combination will surely require more episodes to achieve the best reward
because will be computed the combination of 12 weights, differently than before
when there were only 3. The non-linear policy for LIPO and BO could pick one
weight inside the set from -18 to +18. After the first attempts became visible the
higher performances of LIPO non-linear so has been decided to use another version
of this algorithm whose weights’ domain space is the set from -50 to +50.
The “LIPO/BO linear” parameters are the ones relative to the new linear policy
in equation 6.2 which uses only sums in its definition and positive weights to the
maximum value of 1.33; the same discussion could be mirrored for the “LIPO/BO
harmonic” whose policy is the new harmonic policy in equation 6.1b.
The GP algorithms now use a new set of values reported in Table 6.3 In (µ, λ) and

Genetic Programming parameters
pop cxpb mutpb µ λ ngen

Simple 100 0.5 0.7 - - 15
M,L 100 0.35 0.35 25 80 20
M+L 100 0.45 0.45 20 70 20

Table 6.3: GP parameters for the Simple, (µ, λ) and (µ+λ) algorithms in Gaussian
undulation

(µ + λ) the probability of mate and mutate individuals are equally but in these
cases, the algorithms could also pick some parents for the next generations and not
only the offspring; the probability to have a parent in the generative set is given as
1− cxpb−mutpb .
The model training performs the learning curves in Figure 6.9 with the features
in Table B.3. The LIPO non-linear with larger weights domain attains the best
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Figure 6.9: Learning curves in Gaussian undulation environment

reward and it appears to have the capability to improve more its performances.
We can also notice how the harmonic policy for LIPO and BO performs better
than the previous attempt with two actuators, but the best solution is relative to
the non-linear policy it is now shown in Figure 6.10.

Figure 6.10: LIPO non linear: the best performance

67



The jet wiping control on BLEW

6.4 The reward influence
The main concern in the machine learning algorithm is the reward distribution
because the learning velocity is affected by its distribution. Here we try to explain
how the undulation on the reward zone affects the convergence to the highest
reward peak by using a harmonic function in an arbitrary domain.
The reward in the following examples is defined similarly to the O.D.E. environment,
so it is a space difference between the layer thickness wanted and the actual layer
thickness in the reward zone. Because the reward zone now is not a single point
as in the ODE environment (the reward was the instantaneous space difference
at that integration time step ), but it is a wider space, we decided to define the
reward as a negative standard deviation of the actual solution respect to the initial
point value:

Reward ≡ −std = −
qN

i=0(ĥ0 − ĥ)2

N
(6.2)

where ĥ0 is the wanted thickness value which receives the amount of dq̂ which
ensure the undulation phenomena in the current ROM model.
Here we also take into account a different reward definition which increases when
the points of the solution are closer to the aim. It is the following one:

Reward = −std ·
1−

qM
j=0 xj ∀xj :

---ĥ(xj)
--- < ϵ

N

 (6.3)

where ϵ is an arbitrary small number.
In accord with to [20] a reward distribution with a negative Gaussian function shape
could be the best choice to obtain the best result in fewer episodes and smaller
time required. The negative reward, generally, ensures avoid being stuck in a kind
of loop along the learning process, but in this case, it is more important because
the standard deviation is a positive function that decreases when the algorithm is
going to approaches the target and maximizes the reward we have to invert the
trend. The Gaussian reward distribution helps to flatten the reward when it goes
very far from the maximum reward value (the null value), maintaining it almost
at a comparable little value while largely increasing when it is in the proximity of
the peak: therefore the Gaussian reward distribution helps to focus the algorithm
research in the proximity highest value.

Reward = e−std − 1 (6.4)

If we investigate the reward definition (the standard deviation) we can observe that
it is affected by weird behavior. When the oscillation of the target over we are
computing the standard deviation has multiple oscillations, its standard deviation
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could be equal to the standard deviation for a distribution mean value closer to the
target but with fewer oscillations. The last example is the kind of target we are
looking for through the ML algorithms but its value could be concealed by another
one a bit different. Obtaining a better reward distribution is mandatory to ensure
a fast ascending to the global peak and not lose iteration on local maxima.

Figure 6.11: Translations and oscillations affects on the reward distribution
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Chapter 7

Conclusions and future
recommendations

In this paper, the work carried out aimed to show how Reinforcement Learning can
benefit engineering applications inherent in closed-loop active control. The control
obtained by means of the algorithms now known to this point succeeds very well in
damping the characteristic waves of the ripple phenomenon on the liquid zinc film,
but as can be seen in the solutions reported, a completely flat solution downstream
of the control cannot be obtained.
The algorithms seem to work by completing very good analyses and thus show that
they are capable of learning quite effectively. From this, it can be inferred that the
suboptimal control, characterized by a liquid layer surface that is not completely
flat, is not directly attributable to the algorithm but to the environment in which
it acts. Indeed, the BLEW environment has been gradually modified to represent
a more physically correct and numerically effective solution for control, but not
all precautions have already been implemented. In this work, some precautions
have improved the learning speed for some algorithms by affecting the maximum
achievable reward but further precautions could make the solution even better.
First, it might be considered a good practice to use episodes of longer duration so
that there is a greater chance of learning as early as during an episode, especially
for the PPO# and DDPG algorithms that work in just this way. This expedient
could also further decrease the weight of the "delay transient" on the whole episode
and make the analysis more effective. What has just been said is acceptable to
minimize the effects of the error brought by the "delay transient" in our analysis,
but in this case, it is allowed in our system. Instead, the best solution would be to
eliminate this source of error by placing the reward zone at the action zone so that
we have immediate feedback through the immediate reward of the control action
being performed.
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Conclusions and future recommendations

All optimizations were carried out using a state vector composed of 3 equispaced
observations and positioned upstream of the control zone. In this case, the state
vector contains information about 3 waves of ripple, and the information about
the single wave would be lost. It would be optimal to bring the observations closer
together so that we can obtain an action that can better respond to the form of
the wave in analysis.
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Appendix A

Established concepts

A.1 Artificial Neural Network (ANN)

An ANN is a model inspired by the networks of biological neurons in our brains.
Biological neurons produce short electrical impulses called action potentials (or
just signals) which travel along the axons and make the synapses release chemical
signals called neurotransmitters. When a neuron receives a sufficient amount of
these neurotransmitters, it fires its own electrical impulses. They are organized
in a vast network of billions, with each neuron typically connected to thousands
of other neurons. The architecture of biological neural networks (BNNs) is still
subject of research, but starting from the parts of the brain already mapped, it
seems that neurons are often organized in consecutive layers. The artificial neuron
activates its output when more than a certain number of its inputs are active.
The Perceptron, invented in 1957 by Frank Rosenblatt, is one of the simplest ANN
architectures and it is based on a slightly different artificial neuron known as the
threshold logic unit (TLU). Each input connection is associated with a weight, so the
TLU computes a weighted sum of its inputs (z = w1x1 +w2x2 + ...+wnxn = xTw)
and then applies a step function on the sum result to output: hw(x) = step(z),
where z = xTw.
The most common step function used in Perceptrons is the Heaviside step function
but sometimes other functions could be instead. A single TLU can be used for
simple linear binary classification. It computes a linear combination of the inputs,
and if the result exceeds a threshold, it outputs the positive class; otherwise, it
outputs the negative class. Training a TLU connected to all the inputs means
finding the right values for w0, w1, . . . , wn.
When an ANN of perceptrons is made of multiple layers we call it as Multi-layer
perceptron (MLP). When all the neurons in a layer are connected to every neuron
of the previous layer, we refer to this layer as a fully connected layer or a dense
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Figure A.1: The TLU Perceptron

layer. Moreover, an extra bias neuron could be generally added with the purpose
to output the numerical unit all the time, in such a way as to create a constant.
Compute the outputs of a fully connected layer means solving hw,b(X) = ϕ(x ·w+b)
where:

• X represents the matrix of inputs;
• The weight matrix w contains all the connection weights except for the ones

from the bias neurons which are contained in b;
• The function ϕ is called the activation function: when the artificial neurons

are TLUs, it is a step function.

Donald Hebb noticed that when a biological neuron triggers another neuron often,
the connection between these two neurons becomes stronger. “Cells that fire
together, wire together”; that is, the connection weight between two neurons tends
to increase when they fire simultaneously. This rule later became known as Hebb’s
rule. Perceptrons are trained taking into account the error made by the network
when it makes a prediction. More specifically, the Perceptron is fed one training
instance at a time, and for each instance, it makes its predictions. For every output
neuron that produced a wrong prediction, it reinforces the connection weights from
the inputs that would have contributed to the correct prediction.
Perceptron learning rule (weight update): wi,j|next step = wi,j + η · (yj − ŷt)xi

- yj is the output of the j-th output neuron;
- ŷt is the target output of the j-th output neuron
- η is the learning rate.

When an ANN contains a deep stack of hidden layers, the layers between the input
and the output layer, is called a Deep Neural Network (DNN).
Back-propagation is the core of the network training algorithm. It first makes a
prediction (forward pass) and measures the error between the prediction and the
target, then goes through each layer in reverse to measure the error contribution
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from each perceptron’s connection (reverse pass), and final tweaks the connection
weights to reduce the error. Once it has figured out the errors, it just performs a
common Gradient Descent step and the whole process is repeated until the network
converges to the solution.
We have also to replace the step function with the logistic (sigmoid) function,
σ(z) = 1/(1 + exp(−z)). This was essential because the step function contains only
constant segments, so the Gradient Descent cannot be applied because it cannot
move on a flat surface, while the logistic function, which has a continuous non-zero
derivative, allows Gradient Descent to make some progress at every step. Also others
functions could be used to fit better the problem solving: these are, as instances,
the hyperbolic tangent function tanh(z) = 2σ(2z) − 1 and the Rectified Linear
Unit function ReLU(z) = max(0, z), both with non-zero derivative everywhere.
In general, when building an MLP, we do not want to use an activation function for
the output neurons because we want them to be free to output any range of values
in a continuous space. Alternatively, we can use the soft-plus activation function,
which is a smooth variant of ReLU: softplus(z) = log(1 + exp(z)). If we want to
guarantee that the predictions will fall within a given range of values, then we can
use the hyperbolic tangent, and then scale the labels to the appropriate range.

Here we want to delve into the learning process just announced but is noteworthy
to introduce some definitions; in fact, for MLP architecture we define the batch
as the number of training examples present in a single iteration of evaluation and
epoch the total training examples, defining the matter on stack, when they pass
forward and backward through the neural network once. ( As an instance, for a
data-set of 1000 examples, 5 iteration steps are required to complete an epoch
composed by batches whose batch size is 200 examples).
We review this algorithm in more detail:

I An ANN handles one mini-batch at a time, and it runs the full training set
multiple times. Each time the full set is processed, each pass, is called an
epoch;

II Each mini-batch is passed to the network’s input layer and starting from that
it runs through all the layers so that the algorithm can compute the output of
all the neurons layer per layer (for every instance in the mini-batch). This
process represents the forward pass: it is exactly like making predictions,
except that all intermediate results are preserved since the backward pass;

III Now the algorithm, using a loss function that compares the desired and the
actual output, measures the network’s output error of the network and returns
some measure of the error (backward pass).

IV Then it computes how much each output connection contributed to the
error. This is done analytically by applying the chain rule (maybe the most
fundamental rule in calculus), which makes this step fast and precise.
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It is important to initialize all the hidden layers’ connection weights randomly
because if we initialize all weights and biases to zero, then all neurons in a given
layer will be identical, and thus backpropagation will affect them in exactly the
same way. In other words, the model will act as if it has only one neuron per layer.
The loss function to use during training is typically the mean squared error, but
if we have a lot of outliers in the training set and we may prefer to use the mean
absolute error instead.

[1]

A.2 Useful tools
To provide the reader with all the useful tools for a clear understanding of the
algorithms used in this work, which has been exposed above, we now introduce
some numerical methods as the “mainstay” of the algorithms reported. These are
nothing else than conditions or minor algorithms widely used, in the sense that they
are continuously recalled, in those that are the most known learning techniques
reported here.

KULLBACK–LEIBLER DIVERGENCE

The KL (Kullback–Leibler) divergence, (also called relative entropy), is a statistical
distance and it measures how one probability distribution p diverges from a second
expected probability distribution q.

DKL(p || q) =
Ú

x
p(x) log

A
p(x)
q(x)

B
dx (A.1)

DKL attains the minimum, the zero, when p(x) == q(x) everywhere.
It is noticeable, according to the formula A.1, that KL divergence is asymmetric
because in cases where p(x) is close to zero, but q(x) is significantly non-zero, the
effect of q is disregarded. This causes buggy results when we just want to measure
the similarity between two equally important distributions.
Expressed in the language of Bayesian inference, DKL(p || q) is a measure of the
information acquired by revising one’s beliefs from the prior probability distribution
q to the posterior probability distribution p. In other words, the KL divergence
takes into account the amount of information lost when q is used to approximate
p. Typically p represents the real distribution of data, observations, or a precisely
calculated theoretical distribution, while q typically represents a theory, a model,
or approximation of p. To find a distribution q that is closest to p, we have to
minimize KL divergence.
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Figure A.2: DKL for p and q as normal distributions

[22]

TRUST REGION POLICY OPTIMIZATION (TRPO)
To improve training stability, we should control the parameter updates to avoid the
policy changes too much at one step. Trust Region Policy Optimization (TRPO)
[23] carries out this idea by enforcing a KL divergence constrained on the size of
policy update at each iteration.
TRPO aims to maximize the objective function J(θ) subject to the trust region
constraint which enforces the improvement between old and new policies measured
by KL-divergence, to be small enough and within a parameter δ:

maximize
θ

Jθold
(θ) (A.2)

subject to Dmax
KL (θold, θ) ≤ δ (A.3)

where we can use δ = 0.01 similar than in [23].
Meeting this hard constraint, the old and new policies would not diverge too much,
so that TRPO can guarantee a monotonic improvement over policy iteration.

THE POLICY GRADIENT
The policy gradient methods aim to model and optimize the policy directly. The
policy is usually modeled with respect to parameters θ, so that could be written
πθ(a|s). The reward (objective) function’s value depends on this policy and then
we can admit to use various algorithms to optimize θ in order to achieve the best
reward.
The objective function (or sometimes, reward function) is defined as:

J(θ) =
Ø
s∈S

dπ(s)vπ(s) =
Ø
s∈S

dπ(s)
Ø
a∈A

πθ(a|s)Qπ(s, a)
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where dπ(s) is the stationary distribution of the Markov chain for πθ (on-policy
state distribution under π).
Using the gradient ascent, we can move θ toward the direction suggested by the
gradient ∇θJ(θ) to find the best θ for πθ that produces the highest return. Due
to the fact that ∇θJ(θ) depends on both the action selection (determined by πθ)
and the distribution of states following the target selection behavior (indirectly
determined by πθ ), computing the gradient becomes not immediate and tricky.
Moreover, is difficult to estimate the effect on the state distribution by a policy
update when the environment is generally unknown. Luckily, the policy gradient
theorem could be restated to not involve the derivative of the state distribution
dπ(.) that simplifies the gradient computation ∇θJ(θ).

∇θJ(θ) = ∇θ

Ø
s∈S

dπ(s)
Ø
a∈A

πθ(a|s) ·Qπ(s, a) ∝
Ø
s∈S

dπ(s)
Ø
a∈A

∇θπθ(a|s) ·Qπ(s, a)

(To go deeply in the proof, see [24])

ADAM OPTIMIZATION ALGORITHM

In using the gradient descent (or ascent) algorithm, the choice of the learning rate,
and the step size for progress, becomes crucial in terms of the global performances
we are expecting. The learning rate is usually kept constant and defined a priori
by the expert user to have good global minima, or maxima, estimation. Its choice
affects the computing resource due to the fact that a smaller learning rate requires
more steps to attain the minima/maxima and spending some steps in the local
minima/maxima, but its approximation will be more accurate. The Adaptive
Movement Estimation algorithm, or Adam, is an extension of gradient descent that
automatically adapts the learning rate related to each input variable and furthers
an exponentially decreasing moving average of the gradient to update the variables
that leads to smoothing the research process.
Adam is indicated on updating many hyperparameters in a similar way to the
gradient descent/ascent learning rate and also in problems with very noisy and/or
sparse gradients. The method computes individual adaptive learning rates for dif-
ferent parameters from estimates of the first and second moments of the gradients.
Adam is designed to accelerate the optimization process decreasing the number of
function evaluations required to reach the optimum, or in our case, improving the
capability of the optimization algorithm resulting in a better final result. Impor-
tantly, each step size is automatically adapted throughout the search process based
on the partial derivatives (gradients) for each variable.
Ascribing to m the moving averages estimated for the 1st moment (the mean)
and to v the 2nd raw moment (the uncentered variance) of the gradient and given
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Established concepts

β1, β2 ∈ [0,1) the exponential decay rates for the moment estimates, the algorithm
works as shown in the following pseudo-code in this section A.2.
Given that the moving averages m and v are initialized as the null vector, leading
to moment estimates biased towards zero (especially during the initial time steps),
we need to counteract this initialization bias resulting in bias-corrected estimates
m̂t, v̂t.
The problem with ADAM is that it uses hyperparameters but the good new is that
the author in [25] recommended default settings for the tested machine learning
problems that are α = 0.001, β1 = 0.9, β2 = 0.999 and ϵ = 10−8.

[25].

Algorithm: Pseudo-code for ADAM

inputs: α: Stepsize
β1, β2 ∈ [0,1)
f(θ): Stochastic objective function with parameters array θ
θ0: initial parameter vector

Initialize the 1st moment vector m0

Initialize the 2nd moment vector v0

Initialize timestep t = 0
while θt not converged do:
t = t+ 1
gt = ∇θft(θt−1) Get gradients w.r.t. stochastic objective at timestep t

mt = β1 ∗mt−1 + (1− β1) · gt Update biased first moment estimate
vt = β2 · vt−1 + (1− β2) · g2

t Update biased second raw moment estimate
m̂t = mt/(1− βt

1) Compute bias-corrected first moment estimate)
v̂t = vt/(1− βt

2)
θt = θt−1 − α · m̂t/(

√
v̂t + ϵ) Update parameters

end while
return θt the resulting parameters.
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Appendix B

Tables

Single jet control
training steps [episodes] time [h] reward max|weight|

In
st

an
tly

st
ep

s PPO1 3 millions [715] 66 (-)0.0099 -
PPO2 3 millions [715] 67 (-)0.0045 -
DDPG 0.5 million [120] 89 (-)0.0113 -

DDPGH [500] 96 (-)0.0049 -
BO [500] 31 0.0049 2.117

LIPO [1000] 23 (-)0.0048 3.099

50
nu

m
er

ic
al

st
ep

s PPO1 50000 [584] 25 (-)0.0057 -
PPO2 50000 [584] 24 (-)0.0055 -
DDPG 50000 [584] 25 (-)0.0078 -

DDPGH [500] 48 (-)0.062 -
BO [500] 15 0.008 3.5

LIPO [1000] 34 (-)0.0066 9.9

Table B.1: Characteristics of the learning performance for single actuator control.
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Tables

Double Jets control
training steps [episodes] time [h] reward max|weight|

PPO1 40000 [468] 25 (-)0.017 -
PPO2 40000 [571] (bit smaller episode) 25 (-)0.0085 -
DDPG 60000 [698] 40 (-)0.0178 -

DDPGH [500] 48 (-)0.01 -
BO harmonic [1000] 126 0.279 40

LIPO harmonic [2000] 149 (-)0.22 28.49
BO harmonic* [1000] 97 0.063 20.69

LIPO harmonic* [1500] 124 (-)0.0457 4
BO [1000] 38 0.00509 8

LIPO [1500] 52 (-)0.00503 7.99
BO linear* [1000] 82 0.039 0.56

LIPO linear* [1500] 112 (-)0.041 4.89
Simple - 3 (-)0.0015 -
M,L - 6.5 (-)0.017 -
M+L - 3.8 (-)0.018 -

Table B.2: characteristics of the learning performance for double actuator control
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Tables

Single Jets control on Gaussian
training steps [episodes] time [h] reward max|weight|

PPO1 [700] 30 (-)63 -
PPO2 [700] 30 (-)107 -
DDPG [1000] 45 (-)47 -

DDPGH [700] 25 (-)36.15 -
BO harmonic [1000] 39.6 0.279 1.01

LIPO harmonic [1500] 62 (-)39.5 5.28
BO [1000] 45 43.65 1.33

LIPO [1500] 61 (-)43.65 1.18
BO non-linear [1000] 48 50.8 17.8

LIPO non-linear [1500] 62 (-)36.2 2.65
LIPO non-linear 50 [2500] 90 (-)35 43.1

Simple - 54 (-)38 -
M,L - 41 (-)44 -
M+L - 50 (-)43 -

Table B.3: Characteristics of the learning performance for single actuator control
in Gaussian undulation shape
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