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durante questi anni





Abstract

The aim of this thesis is to review and further investi-
gate orbital maneuvers on satellite flight formations using
relative orbital elements. The study of flight formations
applies to twin satellites as well as swarms and constel-
lations of thousands of them, with applications from au-
tonomous rendezvous and docking maneuvers of manned
spacecrafts, to Earth and deep space observation through
swarms of satellites acting as a virtual radar dish, over-
coming the difficulties associated with big, single satellite
missions.

After proposing the derivation of the state transition
matrices that model the perturbed orbital dynamics, ma-
neuvering schemes found in literature are employed to
solve formation reconfiguration problems, highlighting par-
ticularly economic or optimal strategies. A new maneu-
vering strategy is then developed to combine the out-of-
plane burns to the in-plane ones, allowing for propellant
expense reduction. The relation between orbital elements
variations and combined maneuvers’ costs are investigated
through a series of parametric studies, which find delta-v
reductions up to 14.8%.
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Symbols

a semimajor axis
B control input matrix
e eccentricity
ex, ey eccentricity vector components
i inclination
J2 first zonal harmonic
t time
u mean argument of latitude, or mean latitude
uT vector (collection) of maneuvers’ mean latitudes
α vector of classical orbital elements
δα vector of relative orbital elements
δa relative semimajor axis
δλ relative mean longitude
δe relative eccentricity vector
δi relative inclination vector
δix, δiy relative inclination vector components
δv velocity impulsive variation in the Hill reference

frame
∆δα̃ effective relative orbital elements change, net of

perturbations
θ true anomaly
ξ mean argument of latitude difference
φ relative pericenter
ΦH natural dynamics state transistion matrix
ΦJ2 perturbed dynamics state transition matrix
ω argument of periapsis
Ω right longitude of ascending node
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1 Spacecraft Formation Flight

The spacecraft formation flight has been studied since the early six-
ties, at the beginning of the manned space program, when the chal-
lenge was to get two spacecrafts to rendezvous and dock. This was
critical for the Apollo space program. In 1969 the US, Soviet Union
and European Space Research Organization satellites studied the
interaction between solar flares and Earth’s magnetic field, achiev-
ing the first spatial sampling by a group of separated spacecrafts
[1]. In 1978 Antoine Labeyrie proposed in his paper “Stellar inter-
ferometry methods” [2] a multi-telescope system in space, free from
disturbances present on Earth like microseism and wind. Having
multiple satellites flying in a specific geometry avoids the technical
and financial challenge of building a radar dish of the equivalent
size.

These satellite formations can have diameters up to several kilo-
meters. Attempting to build, control, and navigate a structure that
could span such surfaces would be challenging and not cost effective,
while having a multitude of satellites form a virtual radar dish avoids
many of these issues. The formation flight of satellites today has
many other applications, such as positioning systems (like GPS), in-
ternet services, cloud observation for better weather forecasting and
climate research, Earth observation regarding monitoring of volca-
noes, earthquakes and environment pollution, communication and
connection to remote and developing areas.

Traditionally these tasks were done by sending large satellites
equipped with big payloads and complex on-board systems. Large
satellites require big launch vehicles leading to high costs and mis-
sion complexity and are more affected by orbital disturbances, re-
quiring bigger correction maneuvers. Besides, in case of failure of
one satellite, it is easier to replace one of the spacecrafts during the
mission instead of repairing a subsystem of a big spacecraft in space.
Modern miniaturization progresses of microprocessors, batteries, ac-
tuators, and other hardware parts allow to build smaller satellites
able to fly in formation to accomplish the same tasks of bigger, single
satellites. A swarm of smaller satellites can offer higher redundancy,
and the ability to launch small vehicles as co-passengers of heavier
satellites launch, leading to reduced launch costs [3].

Formation flight poses its challenges such as limited propulsion
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capabilities and batteries capacity, communication between many
satellites with limited bandwidth and attitude perturbations. A
successful mission that exploits formation flight will then require a
precise position and attitude control of the satellites, in order for
them to fly with minimum deviations from their intended orbits,
despite orbital perturbations such as J2 effect, atmospheric drag,
gravity gradient and solar pressure.

Satellite formations can be made of just two spacecrafts called
twin satellites, or from hundreds of them. They can be arranged
in trailing formations, swarms, or constellations. While in trailing
formation they orbit the same path, clusters (or swarms) are groups
of satellites moving very close together in almost identical orbits, and
in constellations they’re typically placed in sets of complementary
orbital planes. As an example, the following are completed or in
progress missions that count from two to more than 2000 satellites
flying in formation, orbiting both Earth and the Moon:

• Gravity Recovery and Climate Experiment (GRACE): carried
on by NASA and DLR (German Aerospace Center), it used
twin satellites to look for Earth’s gravity field anomalies from
its launch in March 2002 to the end of the mission in October
2017. By measuring gravity anomalies, GRACE showed how
mass is distributed around the planet and how it varies over
time. Data from the GRACE satellites is an important tool for
studying Earth’s ocean, geology, and climate

• Gravity Recovery and Interior Laboratory (GRAIL): carried
on by NASA, two small satellites were launched on September
2011 and reached their orbits around the Moon 25 hours apart.
By measuring changes in their relative distance as small as one
micrometer, the two satellites mapped the gravitational field of
the Moon to obtain its geological structure.

• Swarm: ESA’s first swarm mission for Earth observation. The
mission consists of three identical satellites which were launched
on November 2013 into a near-polar orbit. Swarm is dedicated
to creating a highly detailed survey of the Earth’s geomagnetic
field and its temporal evolution as well as the electric field in
the atmosphere
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Figure 1: Swarm satellites

• Magnetospheric Multiscale Mission MMS: NASA’s mission to
study Earth’s magnetosphere using four identical satellites in
a tetrahedral formation, launched on March 2015. In 2016 the
mission achieved a new record, with its four spacecraft flying
only 7 kilometers apart, the closest separation ever of any for-
mation as reported on NASA’s website.

Figure 2: MMS tetrahedral formation
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• Starlink: a satellite internet constellation operated by SpaceX,
providing satellite Internet access coverage to 33 countries, aim-
ing for global coverage. As of May 2022, Starlink consists of
over 2,400 mass-produced small satellites in low Earth orbit
which communicate with ground transceivers.

Figure 3: 60 Starlink satellites stacked together before deployment

While the concepts of formation flight apply to the rendezvous
and docking maneuvers of spacecraft, the difference with the control
of clusters of satellites lies in the different time of flight. Rendezvous
and docking maneuvers require little time compared to the lifetime
of the vehicle or the missions, and feedback control laws can com-
pensate for orbit modeling errors. Swarms and constellations of
satellites are significantly more sensitive to this kind of errors, since
formation has to be maintained over the entire life span of the ve-
hicles, which will require more fuel for orbit corrections and can
dictate a shorter lifetime of the formation.

Future missions intend to further test formation flight capabilities
of small satellites, to achieve relevant scientific goals and perform
scientific measurements not possible otherwise, within a small cost.
Proba-3 is a technological demonstration mission planned by ESA to
observe the Sun corona. It consists of two independent spacecrafts,
which will fly close to each other on elliptical orbits up to 60500
km of altitude. The two satellites must be at 150 meters from each
other, and maintain this position with accuracy up to the millimeter.
Proba-3 will also demonstrate formation flight technologies: station
keeping up to 25 meters of distance, approaching and separating in
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formation, resizing and re-targeting maneuvers [4].
A novel architecture proposed is the Swarms of Silicon Wafer

Integrated Femtosatellites (SWIFT), that would enable 100-gram-
class spacecraft to be flown as swarms (100s to 1000s) in low Earth
orbit, with applications to sparse aperture arrays and distributed
sensor networks.The femtosat swarm architecture aims to demon-
strate the flexibility and robustness that can be achieved by dis-
tributed spacecraft systems [5].
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2 Introductory Topics

2.1 The Two Body Problem

The two body problem consists in determining the motion of two
bodies due solely to their own mutual gravitational attraction. The
two bodies are treated as particles and their rigid body motion is
neglected. Assuming that the two masses m1,m2 are moving in
space, and the position vectors R1,R2 are measured relative to an
inertial reference frame, the position of m2 relative to m1 is the
vector

r = R2 −R1

Figure 4: Free body diagram in the inertial reference frame

Using Newton’s equation of motion, the inertial equations of mo-
tion for each body are written as

m1R̈1 =
Gm1m2

r3
r

m2R̈2 = −Gm1m2

r3
r

where G is the universal gravity constant. The gravitational coef-
ficient is defined as µ = G(m1 + m2) and can be approximated as
µ ≈ Gm1 being m1 ≫ m2 true for many systems. By subtracting
the two equations of motion:

r̈ = − µ

r3
r
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This last equation envelops a system of three coupled, nonlinear,
scalar differential equations, which decouple only in the particular
case of circular orbit. An analytical solution still exists in the most
general case. By integrating this equation the fundamental integrals
of an orbit are found, one of them being the specific angular momen-
tum vector h = r × ṙ, later used to define the orbital parameters.
Moreover, it is found that the orbit of the secondary body of mass
m2 around the primary one is a conic section, with body m1 at the
focal point. The equation for the orbit will be, in polar coordinates
r, θ:

r =
a(1− e2)

1 + e cos θ

where the angle θ is measured from the periapsis in the direction
of motion. The semi-major axis a indicates the size of the orbit,
and the eccentricity e its flattening. Different values of e correspond
to different geometries of the orbit: e = 0 will be a circular orbit,
0 < e < 1 an elliptic orbit, e = 1 a parabolic orbit, e > 1 a
hyperbolic orbit.

Figure 5: Orbits of various eccentricity, having common focus and periapsis

2.2 Classical orbital elements

[6][7][8]To define the orbital elements it is necessary to introduce
the geocentric equatorial reference system. The X axis points in
the vernal equinox direction, the XY plane is the Earth’s equatorial
plane, and the Z axis coincides with the Earth’s axis of rotation and
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points northward. The unit vectors Î, Ĵ , K̂ form a right-handed
triad. This coordinate systems is not truly inertial, since the center
of the Earth is always accelerating towards a third body, but this
phenomenon can be ignored in the two-body formulation.

Figure 6: Geocentric equatorial frame

Assuming no orbit perturbations, any two-body orbit geometry
can be described through six scalar parameters, called orbital ele-
ments. The orbital elements are constant, except for the position of
the body within the orbit. A commonly used set of COEs is

α = (a, e, i,Ω, ω, θ)

The first two elements are the semi-major axis and the eccentric-
ity, which determine the orbit size and shape. The following three
scalars are the Euler angles that define the orbit plane orientation
in space:

• Inclination i: the angle between the third component of the
geocentric-equatorial coordinate system K̂ and the angular mo-
mentum vector h

• Longitude of ascending node Ω: the angle in the equatorial
plane measured eastward from the first coordinate axis Î to

12



the ascending node, which is the point where the spacecraft
crosses the fundamental plane while moving to the northern
hemisphere

• Argument of periapsis ω: the angle in the orbit plane between
the ascending node and the periapsis, measured in the direction
of the spacecraft’s motion

Figure 7: Classical Orbital Elements

Finally, the true anomaly θ specifies where the object is within
the orbit at time t, and is measured from the periapsis passage,
meaning from the eccentricity vector. The orbital elements can be
found from the Cartesian components of the position and velocity
vectors r,v. First the angular momentum and eccentricity vectors
are computed:

h = r × v e =
v × h

µ
− r

r

then the following unit vectors:

ĥ =
h

h
, r̂ =

r

r
, n̂ =

N

N
=

K̂ × h

∥K̂ × h∥
, ê =

e

e
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These vectors are centered in the center of mass of the primary body
and define respectively the directions normal to the orbit plane,
towards the spacecraft, towards the ascending node, and towards
the periapsis. The orbital elements are then given by:

• e = ∥e∥

• p = h2/µ −→ a = p/(1− e2)

• cos i = h3/h

• cosΩ = n1 (Ω > π if N2 < 0)

• cosω = n̂ · ê (ω > π if e3 < 0)

• cos θ = ê · r̂ (θ > π if r · ṙ < 0)

The mean anomaly M can be used instead of the true anomaly.
These two angles are related by Kepler’s equation:

E − e sinE =

√
µ

a3
(t− t0) = M

where t0 is the time of periapsis passage and E is the eccentric
anomaly defined as

cosE =
e+ cos θ

1 + e cos θ

The right quadrant of E is found by knowing that if 0 < θ < π then
0 < E < π. The mean anomaly changes by 2π during one orbital
revolution, but differently from the true and eccentric anomaly it
does it linearly with time. The mean anomaly can then be calculated
as M = M0+n(t− t0), where t0 could also be an arbitrary reference
epoch.

When dealing with circular or near-circular orbits it is convenient
to use the argument of latitude u = θ+ω to express the position of
the spacecraft along its orbit, measured from the ascending node to
the spacecraft at time t. The argument of latitude can be written
in terms of mean anomaly, u = M + ω, called mean argument of
latitude.
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Figure 8: True anomaly as a function of mean anomaly and apoapsis altitude
ha with periapsis altitude hp = 400km

2.3 Effect of Earth’s oblateness

[6]The external potential of a perfectly spherical Earth, with an
homogeneous mass distribution is described by

U = −µ

r

Where r is the distance from Earth’s center of gravity. Considering
the general case of a body with arbitrary shape, its gravitational
potential may be written as

U = −µ

r

[
1−

∞∑
n=2

Jn

(
R

r

)n

Pn sin(φ)−
∞∑
n=2

∞∑
m=2

(
R

r

)n

Jn,mP
m
n sin(φ) cos(mΛ− Λn,m)

]
Where Pn are Legendre’s polynomials of degree n, and Pm

n are Leg-
endre’s polynomials of degree n and order m, r is the distance from
the mass center of the body, φ and Λ are respectively the geocen-
tric latitude and geographic longitude of the generic point. The
first term of the perturbed potential represents the gravitational
potential of a perfect sphere, while the second term represents the
influence of deviations of the shape and mass density distribution
in north-south direction (zonal harmonics), and the third term rep-
resents the influence of deviations of the shape and mass density
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distribution in north-south and east-west direction (tesseral and sec-
torial harmonics). For the tesseral harmonics holds m ̸= n; for the
sectorial harmonics m = n.

These effects are larger when the satellite is closer to the Earth.
The value of the coefficient of the first perturbing term is J2 =
1.083 ·10−3, while all other J coefficients are three or more orders of
magnitude smaller. So the first term produces the largest perturbing
force.
A non symmetric gravitational potential will make the orbital

Figure 9: Examples of zonal, sectorial and tesseral harmonics J80, J88, J87 on
the sphere

elements Ω and ω vary with time. There will be a precession of the
node line, and hence, of the orbital plane:

Ω̇ = −3
J2
2

R2

a2(1− e2)2
n cos i

For prograde orbits the node line will drift westward, since 0 < i <
π/2 means Ω̇ < 0, this phenomenon is called regression of the nodes.
If π/2 < i < π then Ω̇ > 0, so for a retrograde orbit the line of nodes
advances eastwards. For polar orbits the node line is stationary. In
a similar fashion the argument of periapsis varies as

ω̇ =
3

2

J2
2

R2

a2(1− e2)2
(5 cos2 i− 1)

This expression shows that if 0 < i < 63.4◦ or 116.6◦ < i < 180◦ then
the perigee advances in the direction of the motion of the satellite,
otherwise it regresses, moving in the opposite direction. i = 63.4◦

and i = 116.6◦ are the critical inclinations at which the apse line
does not move.
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Figure 10: Regression of nodes and advance of apsis for near-circular orbits of
altitudes 300 to 1100 km

2.4 Chief-deputy formation

[7]The formation under investigation is composed of a chief and a
deputy satellite. The chief satellite is the one about which all other
satellite motions are referenced, and it is uncontrolled, or passive.
The deputy satellite then flies in formation with the chief, it is con-
trolled by a three dimensional thrust input, also called an active
satellite. The relative orbit seen by the chief satellite can be an-
alyzed by introducing the Hill coordinate frame. Its origin is at
the chief position, its three axis will constitute a radial-tangential-
normal triad ôr, ôθ, ôh. The ôr vector will be in the chief’s radius
direction, ôh will be parallel to the orbit’s momentum vector, and
ôθ completes the right-hand coordinate system. These vectors are
defined as:

ôr =
rc
rc

ôθ = ôh × ôr

ôh =
h

h
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If the chief orbit is circular, then ôθ is parallel to the satellite velocity
vector. If the two satellites travel on the same circular orbit, the
spacecrafts separation will remain fixed, because the two vehicles
are moving at the same orbital speed. If the orbit is elliptic, then
the spacecraft separation will contract and expand, depending on
whether the formation is approaching the orbit apoapsis or periapsis.

2.5 Relative orbital elements

The set of classical orbital elements is now defined as:

α = (a, u, i,Ω, ex, ey)
T

where u = M + ω is the mean argument of latitude, and e is the
eccentricity vector, which is useful to avoid singularities in near-
circular orbits [9]:

e = (ex, ey)
T = (e cosω, e sinω)T

A set of relative orbital elements δα is then defined as:

δα = f(αd, ac, ic)− f(αc, ac, ic) = (δa, δλ, δix, δiy, δex, δey)
T

Where δa is the relative semi-major axis and δλ the relative mean
longitude. Assuming no perturbations, δλ is the only time-dependent
ROE, which can be written as a function of the mean latitude and
δa:

δλ(u) = −3

2
(u− u0)δa+ δλ(u0)
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The last four components of δα constitute the relative eccentricity
vector δe and relative inclination vector δi:

δe =

(
δex
δey

)
= δe

(
cosφ
sinφ

)
, δi =

(
δix
δiy

)
= δi

(
cos θ
sin θ

)
The angle φ is the relative pericenter, and θ is the argument of
latitude at which the deputy spacecraft crosses the orbital plane of
the chief spacecraft, defining the relative ascending node N12.

f is a non-linear function of the COEs set α:

f(α, ac, ic) =


a/ac

u+ Ωcos ic
i

Ω sin ic
e cosω
e sinω


so that

δα =


ad/ac − 1

(ud − uc) + (Ωd − Ωc) cos ic
id − ic

(Ωd − Ωc) sin i
ed cosωd − ec cosωc

ed sinωd − ec sinωc


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The relative orbital elements give an insight on the geometry of the
two orbits. Both the inclination angle difference and the RAAN
differences affects the out-of-plane motion of the deputy spacecraft.
δix will specify how much out-of-plane motion the relative orbit will
have as the satellite flies over high latitude regions, while δiy shows
how much out-of-plane motion there is over equatorial regions [7].

The relative orbital elements can be linearly mapped to the Carte-
sian state expressed in the Hill coordinates frame

x =

(
x, y,

dx

dt
,
dy

dt
, z,

dz

dt

)T

according to x = Mδα

M(u, n) =


1 0 − cosu − sinu 0 0
0 1 2 sinu −2 cosu 0 0
0 0 n sinu −n cosu 0 0
0 0 0 0 sinu − cosu
0 0 0 0 n cosu n sinu


The ROE framework has the following peculiarities [10]:

• The availability of a simple and complete closed-form state-
transition matrix for the perturbed relative motion, which avoid
the need to propagate the orbit by solving differential equations
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• The geometrical meaning of each component of the ROEs vec-
tor

• The functional structure, later introduced, of the relations be-
tween instantaneous velocity variation in the Hill coordinates
frame and the effect on the ROEs component

• Distances in the ROE space constitute a metric of the recon-
figuration cost.

This last point will be exploited in section 4.6 to understand the
numerical results when combining normal and in-plane orbital ma-
neuvers.
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3 Model of J2 perturbed satellite relative mo-
tion

3.1 Unperturbed motion

For the Keplerian two-body problem the classical orbital elements
are constant, with the exception of the mean argument of latitude
u, which varies with a rate of

u̇ =

√
µ

a3
(1)

If the two spacecrafts lie on orbits with different semi-major axis,
then there will be free drift between them, because of the different
rate of variation of u. It is possible to relate δu and δa by taking the
differential of Eq.(1) and then considering finite differences: ∆(·)

∆u̇ = −3

2

√
µ

a3
∆a

a
= −3

2
nδa (2)

This relation is valid for ∆a smaller than the chief’s orbit’s radius.
By integrating Eq.(11) w.r.t. time:

δu(t) = −3

2
nδa∆t

Where ∆t = t − t0. For the unperturbed motion Ω and i are
constants, so the mean relative longitude δλ will vary with time as
∆u̇. It is now possible to write a state transition matrix ΦH(t, t0)
that will map a current state δα0 to a new state δα according to
the unperturbed dynamics:

δα(t) = ΦH(t, t0)δα0

ΦH(t, t0) =


1 0 0 0 0 0

−3
2
n∆t 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


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3.2 J2 perturbed motion

The J2 effect varies a satellite’s COEs according to the following
equations [11]: 

da

dt
=

de

dt
=

di

dt
= 0

dΩ

dt
= −3γn cos i

dω

dt
=

3

2
γn(5 cos2 i− 1)

dM

dt
=

3

2
γηn(3 cos2 i− 1)

(3)

where η =
√
1− e2, γ = J2

2

R2
E

a2η4
. To link these equations to the

ROEs’ time derivatives, every component of δα is linearized in the
vicinity of the chief orbit as follows:

δαi ≈
∑
j

∂fi
∂αj

∣∣∣∣
C

∆αj

where the index i accounts for the component of f that is being lin-
earized, and j for the COE with respect which we’re differentiating.
The partial derivatives are evaluated on the COEs of the chief (C)
spacecraft. Then δαi is differentiated with respect to time:

d

dt
(δαi) ≈

∑
j

∂gi
∂αj

∣∣∣∣
C

∆αj (4)

with gi = dfi/dt.

3.2.1 g5 derivatives

f5 is differentiated w.r.t. time:

g5 =
d

dt
(e cosω) = cosω

de

dt
+ e

d

dt
(cosω)

Since the J2 effect doesn’t alter the orbit’s eccentricity the first term
of the sum will be zero. The second one is written with Eq.(3) and
using e sinω = ey:

g5 = −e sinω
dω

dt
= −3

2
γeyn(5 cos

2 i− 1)
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Now g5 is differentiated w.r.t. every COE:

∂g5
∂a

= −3

2
ey(5 cos

2 i− 1)
∂

∂a
(γn)

where

γn =
J2
2

R2
E

η4

√
µ

a7
=⇒ ∂

∂a
(γn) = −7

2
γn

1

a

thus giving:
∂g5
∂a

= −21

4
ey(5 cos

2 i− 1)γn
1

a

Now deriving w.r.t. the eccentricity e:

∂g5
∂e

= −3

2
n sin(ω)(5 cos2 i− 1)

∂

∂e
(γe)

∂

∂e
(γe) =

J2
2

R2
E

a2
∂

∂e

(
e

(1− e2)2

)
= −γ

3e2 + 1

1− e2

And writing the numerator as 4e2 − e2 + 1:

∂

∂e
(γe) = −γ

(
1 + 4

(
e

η

)2
)

Finally:

∂g5
∂e

= −3γn(5 cos2 i− 1) sinω

(
1

2
+ 2

(
e

η

)2
)

Then g5 is differentiated w.r.t. to ω and then to i:

∂g5
∂ω

=

(
−3

2
γen(5 cos2 i− 1)

)
∂

∂ω
sinω = −3

2
γexn(5 cos

2 i− 1)

∂g5
∂i

=

(
−3

2
γen sinω

)
∂

∂i
(5 cos2 i− 1) =

15

2
γney sin(2i)

The function g5 does not depend by any other classic orbit element.
Its time derivative is computed from Eq.(4), where K = 5 cos2 i− 1

d

dt
δex =

∂g5
∂a

(ad − ac) +
∂g5
∂e

(ed − ec) +
∂g5
∂ω

(ωd − ωc) +
∂g5
∂i

(id − ic)
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By substituting the different derivatives and recognizing the ROEs
ad−ac
ad

= δa and id − ic = δix we get to:

d

dt
δex =

21

4
γnKeyδa−3γnK

(
1

2
+ 2

(
e

η

)2
)
(ed − ec)−

3

2
γnKex(ωd − ωc)︸ ︷︷ ︸

ℵ

+
15

2
γney sin(2i)δix

(5)
We look for a time derivative which is function of only ROEs, but
this equation still presents some classic orbit elements. An approx-
imation valid for small ∆e and ∆ω between the two orbits is in-
troduced. The deputy’s orbital parameters are written as small
increments of the chief ones: ed = ec +∆e and ωd = ωc +∆ω.

They are substituted in the definition of δey, dropping the ”c”
subscript which is the only last one:

δey ≈ (e+∆e) sin(ω +∆ω)− e sin(ω)

By using the angle sum identity, the following approximation holds
for small values of ∆ω:

sin(ω+∆ω) = sin(ω) cos(∆ω)+cos(ω) sin(∆ω) ≈ sin(ω)+cos(ω)∆ω

and the second order increment ∆e∆ω is neglected:

δey ≈ ec∆ω cosωc +∆e sinωc (6)

By operating in the same way we can find an approximation for δex:

δex ≈ ∆e cosωc − ec∆ω sinωc (7)

These two approximations are then substituted in Eq.(5), where for

the sake of clarity 1
2
+ 2

(
e
η

)2
= f(e):

ℵ = −3γnK sin(ωc)f(e)(ed − ec)−
3

2
γnKex(ωd − ωc)

= −γnK

[
f(e) sin(ωc)(ed − ec) +

1

2
ex(ωd − ωc)

]
= −3γnK

[
f(e) sin(ωc)∆e+

1

2
ex∆ω

]
Since ex = ec cosωc we get:

ℵ = −3γnK

[
1

2
sin(ωc)∆e+

1

2
ec cos(ωc)∆ω + 2

(
e

η

)2

sin(ωc)∆e

]
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By neglecting the first term inside square brackets, because of small
∆e, and by using Eq.(6) we finally get to:

ℵ ≈ −3γnK

(
1

2
δey

)
Which substituted back in Eq.(5) leads us to the result:

d

dt
δex ≈ 21

4
γnKeyδa−

3

2
γnKδey +

15

2
γney sin(2i)δix (8)

3.2.2 g6 derivatives

The same strategy can be used to find an expression of d(δėy)/dt.
From the definition of g6:

g6 =
d

dt
(e sinω) = e cos(ω)

dω

dt
=

3

2
γen(5 cos2 i− 1) cosω

which gets differentiated w.r.t. the COEs. Using the previous results
for ∂(γn)/∂a and ∂(γe)/∂e we get:

∂g6
∂a

= −21

4
γnex(5 cos

2 i− 1)
1

a

∂g6
∂e

= 3γn cos(ω)(5 cos2 i− 1)f(ec)

∂g6
∂ω

= −3

2
γeyn(5 cos

2 i− 1)

∂g6
∂i

= −15

2
γnex sin(2i)

The time derivative of δey is written with Eq.(4):

d

dt
(δey) ≈ −21

4
γnexKδa+3γn cos(ω)Kf(e)(ed − ec)−

3

2
γeynK(ωd − ωc)︸ ︷︷ ︸

ℶ

−15

2
γnex sin(2i)δix

Writing once again ed and ωd as small increments of ec and ωc we
can get to the following expression:

ℶ = 3γnK

(
1

2
cos(ω)∆e− 1

2
ec sin(ωc)∆ω + 2 cos(ω)

(
e

η

)2

∆e

)
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Neglecting the term which depends from ( e
η
)2∆e and using Eq.(6):

ℶ ≈ 3γnK

(
1

2
δex

)
and finally:

d

dt
δey = −21

4
γnexKδa+

3

2
γnKδex −

15

2
γnex sin(2i)δix (9)

3.2.3 Integrating g5 and g6

Equations (8) and (9) link the time derivatives of δex and δey to
these functions themselves, that are functions of time because are
affected by the J2 effect. These two first order differential equations
can be integrated as a system of ODEs. Eq.(8) and Eq.(9) can be
further simplified by neglecting the terms dependent on δα or δi,
which is possible with the assumption of small eccentricity e of the
chief’s orbit.

Then, since the coefficient in front of both δex and δey is the
derivative of the relative perigee w.r.t. the mean latitude

3

2
γK =

dφ

du
= φ′

the following system of differential equations can be written:
d

dt
(δex) = −φ′nδey

d

dt
(δey) = φ′nδex

and by differentiating each equation w.r.t. time we get to two
second-order differential equations with known analytical solutions:

d2

dt2
(δex) + (φ′n)δex = 0

d2

dt2
(δey) + (φ′n)δey = 0

−→
{
δex = δex0 cos(φ

′∆t)− δey0 sin(φ
′∆t)

δey = δey0 cos(φ
′∆t) + δex0 sin(φ

′∆t)

3.2.4 g4 derivatives

f4 has to be derived w.r.t. time:

g4 =
d

dt
f4 =

dΩ

dt
sin ic = −3γn cos i sin ic
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then differentiated w.r.t. a,e and i, where ∂γ/∂e = 4γe/η2:

∂g4
∂a

=
21

2
γn

1

a
cos i sin ic

∂g4
∂e

= −12γn cos i sin ic

(
e

η2

)
∂g4
∂i

= 3γn sin i sin ic

The derivatives are summed according to Eq.(4), using ad−ac
ac

= δa,

id − ic = δi, and sin(ic) cos(ic) = sin(2ic)/2:

d

dt
δiy =

21

4
γn sin(2ic)δa+ 3γn sin2(ic)δix − 6γn sin(2ic)(ed − ec)

ec
η2

For near-circular orbits e ≈ 0, which also means η ≈ 1, so the last
term in the sum can be neglected:

d

dt
δiy =

21

4
γn sin(2ic)δa+ 3γn sin2(ic)δix (10)

3.2.5 g2 derivatives

The second component of δα is f2 = u + Ωcos ic. First g̃2 = du/dt
is differentiated w.r.t. every COE, then a change of variables is
performed, in order to get an expression for d(δλ)/dt. Using δλ
instead of δu will decouple the in-plane and out-of-plane motion.

g̃2 =
du

dt
=

df2
dt

− Ωcos ic

Where the mean argument of latitude is defined as u = M + ω. To
compute its time derivative Eq(3) is used:

du

dt
=

d

dt
(M + ω) =

3

2
γn(K + ηH)

Where H = 3 cos2 i − 1 is a constant. g̃2 can now be differentiated
w.r.t. the COEs:

∂g̃2
∂a

=
3

2
(K + ηH)

∂

∂a
(γn) = −21

4
γn

1

a
(K + ηH)
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∂g̃2
∂e

=
∂

∂e

(
3

2

J2
2

R2
E

a2
1

(1− e2)2
(K +

√
1− e2H)

)
= 3γne

(
2

η2
K +

3

2

H

η

)
∂g̃2
∂i

= −3

2
γn sin(2i)(5 + 3η)

The derivatives can now be combined according to Eq.(4):

d

dt
(δu) = −21

4
γn(K + ηH)δa+ 3γnec

(
2

η2
K +

3

2η
H

)
(ed − ec)+

−3

2
γn sin(2i)(5 + 3η)δix

(11)

Using the approximations Eq.(7) and Eq.(6) it can be shown that
the coefficient ec(ed − ec) in the second term of the sum is equal to
exδex + eyδey:

exδex + eyδey = e cosω(cosω∆e− e sinω∆ω) + e sinω(sinω∆e+ e cosω∆e)

= e cos2 ω∆e− e2 sinω cosω∆ω + e sin2 ω∆e+ e2 sinω cosω∆ω

≈ e∆e(sin2 ω + cos2 ω) = e∆e = ec(ed − ec)

Where the terms dependent on e2 have been neglected, because of
the near-circular orbits hypothesis. Thus the second term of Eq.(11)
is the only one dependent on e, since exδex = ec cosω(ed − ec) ∝ e2,
and it can be neglected:

d

dt
(δu) = −21

4
γn(K + ηH)δa− 3

2
γn sin(2i)(5 + 3η)δix

The mean relative longitude - mean relative latitude relation δu =
δλ− δiy cot ic is now differentiated to get:

d

dt
(δλ) =

d

dt
(δu) + cot(ic)

d

dt
δ(δiy)

By substituting in this last equation the expressions for d(δu)/dt
and Eq.(10), and by factoring out the ROEs we get:

d

dt
(δλ) =

21

4

[
−γn(K+ηH)+cot(ic)γn sin(2i)

]
δa+

[
−3

2
γn sin(2i)(3η + 5) + 3 cot(ic)γn sin2(i)

]
δix

The first term in square brackets is equal to −21
4
γn[H(η+1)], while

the second one can be simplified using the identity cot(ic) sin
2(ic) =
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sin(2ic)/2, leading to −3
2
γn sin(2ic)(3η+4). The resulting equation

is:

d

dt
(δλ) =

21

4
γn[H(η + 1)]δa+

3

2
γn sin(2ic)(3η + 4)δix (12)

3.2.6 ΦJ2 Matrix

Equations (10) and (12) can be easily integrated w.r.t. time, since
their right hand sides are not functions of t. It is then possible to
arrange all the developed equations in a matrix ΦJ(t, t0), which is
summed to ΦH(t, t0):

ΦJ(t, t0) =


0 0 0 0 0 0

−21
4
γH(η + 1)∆t 0 −3

2
γ sin(2i)(3η + 4)∆t 0 0 0

0 0 0 0 0 0
21
4
γ sin(2i)∆t 0 3γ sin2(i)∆t 0 0 0

0 0 0 0 cos(φ′∆t) − sin(φ′∆t)
0 0 0 0 sin(φ′∆t) cos(φ′∆t)


(13)

Φ(t, t0) = ΦH(t, t0) +ΦJ(t, t0)

and Φ(t, t0) maps a current state δα0 in a future state δα.

δα(t) = Φ(t, t0)δα0 (14)

From now on, the state transition matrix will be written asΦ(t1, t0) =
Φ1,0. Moreover, the following identity is true: Φ2,1 ·Φ1,0 = Φ2,0
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4 Orbital maneuvers computation and forma-
tion reconfiguration

4.1 Orbital maneuvers computation

An impulsive maneuver at the mean argument of latitude uM pro-
duces the following ROEs variations:


∆δa
∆δλ
∆δix
∆δiy
∆δex
∆δey

 =
1

na


0 2 0
−2 0 0
0 0 cosuM

0 0 sinuM

sinuM 2 cosuM 0
− cosuM 2 sinuM 0


δvR
δvT
δvN



∆δα = B(uM)δv (15)

Some considerations about these equations [12]:

• There are two possible ways to establish a δλ variations: through
the natural dynamics of the system along a certain time span,
or through a radial delta-v

• δa and δe are both varied by tangential burns, with ∆δe de-
pending on the maneuvers’ locations uM . Thus there are values
of uM that reduce the required delta-v

• δe can be varied by pure radial or tangential burns. The tan-
gential maneuvers will require half the delta-v of the radial
ones.

• Tangential burns allow to change all in-plane ROEs: δa and δe
are directly changed, while δλ will vary with time.

When j maneuvers have to be performed, the initial state δα0 will
meet the final one δαF as follows, according to Eq.(14) and Eq.(15)

δα1 = Φ1,0δα0 +B1δv1

δα2 = Φ2,1δα1 +B2δv2 = Φ2,0δα0 +Φ2,1B1δv1 +B2δv2

...

δαj = ΦF,jδαj +Bjδvj
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Then, the reconfiguration δα0 −→ δαF can be written as

[ΦF,1B1, . . . ,ΦF,jBj]δv = δαF −ΦF,0δα0

Mδv = ∆δα̃

4.2 In-plane reconfiguration with two maneuvers

[12]The two maneuvers solution can establish not more than three
ROEs through a pair of tangential-radial burns. The δv values are
found solving the in-plane reconfiguration problem:

M (uF , u1, ξ)δv = ∆δα̃|ip (16)

where M is the following 4× 4 matrix, derived from the equations
of ROEs variations:

M =


0 2 0 2
−2 −3(uF − u1) 2 −3(uF − (u1 + ξ))

sinu1 2 sinu1 sin(u1 + ξ) 2 cos(u1 + ξ)
− cosu1 2 cosu1 − cos(u1 + ξ) 2 sin(u1 + ξ)


δv is the following vector:

δv = (δvR1, δvT1, δvR2, δvT2) = (x1, x2, x3, x4)
T

and ∆δα̃|ip represents the in-plane components of the vector of vari-
ation of ROEs:

∆δα̃ = (∆δã,∆δλ̃,∆δẽx,∆δẽy)
T = (A,L,E, F )T

While treating the in-plane reconfigurations it will be used the no-
tation ∆δα̃ for the sake of clarity.

Solution ₦3 employs only tangential burns, and can achieve a re-
configuration only when a correction of the relative semi-major axis
is needed (A ̸= 0). u1 and ξ are computed numerically, by mini-
mizing the cost function J = δvT δv, where the delta-v expression is
found analytically as δv = M−1∆δα̃. The δv values are then com-
puted from the expressions derived from Eq.(16) with x1 = x3 = 0:{

x2 = −3A(uF−ξ−u1)+2L
6ξ

x4 = −3A(uF−u1)+2L
6ξ

33



Solution ₦8 regards a pure radial maneuver (x2 = x4 = 0) where
∆δa and ∆δλ are zero. The optimal, double pulse, radial maneuver
is distinguished by ξ = π. The first burn is located at an angle

u1 = û+ kπ û = arctan

(
−E

F

)
with k being an odd integer. The delta-v vector is then written as

δv =
1

2
∥δe∥(g,−g)T

Using the following expression for the variation of the relative
eccentricity vector component:

a∆δex =
1

n
δvr sinu1 (17)

and given that that sinu2 = sin(u1 + π) = − sinu1, it follows that
in order to achieve a non-null relative eccentricity variation the two
burns must have different signs. The sign of the first pulse can be
determined from Eq.(17):

sgn(δvr1) = sgn(x2) = g =
sgn(E)

sgn(sinu1)

The value of g is correct regarding the sign of ∆δey as well, given
the following equation for its variation, and the different values of
u1 as a function of E and F :

a∆δey = − 1

n
δvR cosuM

u1 = arctan

(
−E

F

)
+kπ =⇒

{
u1 ∈ (π

2
, π) if sgn(E) = sgn(F )

u1 ∈ (π, 3
2
π) if sgn(E) ̸= sgn(F )

where k = 1 has been chosen.
Solution ₦9 regards a more general case where ∆δa ∨ ∆δλ are

not null. The pulses will have both radial and tangential compo-
nents, spaced once again by ξ = π. The cost function J will be a
transcendental function of u1, which will be found by minimizing J
numerically.
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Solution ₦10 regards reconfigurations with only relative eccen-
tricity variations. The radial-tangential pulses latitudes u1, u2 are
not spaced by π anymore; both are found by minimizing J numeri-
cally.

Solution ₦11 is the most general case, where any ROE can be
established and u1, ξ are found by minimizing J numerically. In
₦9,₦10 and ₦11 δv components are then computed by Eq.(16)

4.3 In-plane reconfigurations with three maneuvers

[12]Considering three impulsive in-plane maneuvers, the reconfigu-
ration problem is written as

M(uF , u1, u2, u3)δv = ∆δã (18)

where δv = (x1, x2, x3, x4, x5, x6)
T . We consider only tangential

maneuvers by imposes x1 = x3 = x5 = 0. The number of unknowns
is now six.

Solution ₦12 considers maneuvers that occur at multiples of half
the orbital period of the following mean latitude:

ū = arctan

(
F

E

)
which is the phase of the total variation of the relative eccentricity

vector δe. The maneuvers’ latitudes will then be ui = ū + kiπ,
with ki being an odd integer. This spacing is a necessary condition
of the minimization of the total delta-v. The optimal coefficients
set (k1, k2, k3) can be found by solving Eq.(18) for every admissible
combination of ki coefficients (such that k1 < k2 < k3 and u3 ≤ uF ),
and picking the one the minimizes the sum δvtot = |x2|+ |x4|+ |x6|.

Solution ₦13 imposes a constraint on the first and third impulses’
locations u1 = u0 and u3 = uF , reducing the number of unknowns
to four and allowing to exploit the whole transfer time to achieve
the reconfiguration. u2 is found by solving numerically the following
equation

f(u2) = u2 − K̃ cosu2 − P̃ sinu2 − Q̃ = 0

where

D̃ = 3 cos(u0)(A sin(uF )−F )−3E sin(uF )+sin(u0)[3E−3A cos(uF )+3F cos(uF )]
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K̃ = −[3u0(F−A sin(uF ))+3AuF sin(uF )+2L sin(uF )−3FuF−2L sin(u0)]/D̃

P̃ = −[3u0(A cos(uF )−3E)−3AuF cos(uF )−2L cos(uF )+3EuF+2L cos(u0)]/D̃

Q̃ =− [cos(u0)(−3AuF sin(uF )− 2L sin(uF ) + 3FuF ) + 3u0(E sin(uF )+

− F cos(uF )) + sin(u0)(3AuF cos(uF ) + 2L cos(uF )− 3EuF )]/D̃

For values of |Q̃| sufficiently small, f(u2) has more than one zero,
leading to different (u0, u2, uF ) solutions, with different total delta-v
costs. The admissible solution has to satisfy u0 < u2 < uF . It is
then possible to solve Eq.(3) for every set of mean latitudes and pick
the one that minimizes δvtot.

Number of δvs ₦ δv direction δv Locations (u1, ξ) Conditions on ∆δα̃

Two
pulses

3 T-T u1, ξ A ̸= 0
8 R-R û+ π, π A = L = 0
9 RT-RT u1, π -
10 RT-RT u1, ξ A = L = 0
11 RT-RT u1, ξ -

Three
pulses

12 T-T-T ū+ kiπ -
13 T-T-T u0, u2, uF -
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4.4 In-plane reconfiguration: numerical results

This section presents the results of the simulations of two differ-
ent reconfigurations. Both of them have the same starting ROEs
vector δα0 and a different final aimed state δαF . E1 represents a
reconfiguration between two bounded orbits, where only the rela-
tive eccentricity vector needs to be varied. E2 requires a relative
semi-major axis and relative mean longitude variation as well, but
the dominant correction is needed on δe.

The chief spacecraft orbit is circular at 750 km altitude, with
an inclination i = 63.4◦. The reconfiguration has to occur in 2.5
orbital periods, starting with the deputy satellite at the ascending
node, meaning u0 = 0 and uF = 5π.

4.4.1 Problem E1

The next table uses aδα = a(δa, δλ, δex, δey)
T , since the out of plane

dynamic is not considered:

E1

aδα0 [m] aδαF [m]
0 -10000 200 -10 0 -10000 230 50

₦ u1 u2 u3 δvR1 δvT1 δvR2 δvT2 δvR3 δvT3 δvtot
- rad m/s
8 2.6885 5.8301 - 0.0361 0 -0.0361 0 - - 0.0722
10 0.0871 5.2899 - -0.0322 0.0083 -0.0322 -0.0083 - - 0.0665
12 4.2487 7.3903 10.5319 0 -0.009 0 0.0181 0 -0.009 0.0361
13 0 4.6356 15.7080 0 0.0231 0 -0.0327 0 0.0098 0.0656

Table 2: Problem E1 and solutions

Solution ₦12 achieves the final state with the lowest total delta-
v, which matches the delta-v lower bound. The lower bound LB is a
function of the aimed ROEs variation and can be written as follows:

LB = max
{na

2
∥∆δe∥, na

2
∆δa∗

}
where:

∆δa∗ = max{|δaF − δa0|, |δa∗transf − δa0|, |δa∗transf − δaF |}
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with δa∗transf = 2∆δλ/3∆u being the minimum relative semi-major
axis for accomplishing a given δλ variation over the ∆u = uF − u0

mission’s mean latitudes span. Figure 11 shows the relative orbits
in the tangential-radial plane obtained from solutions in Table 1.

Figure 11: Relative orbits in reconfiguration E1, tangential-radial plane

The following plots show the cost function J(u1, ξ) as a function
of one of its variables when the other one is fixed at its optimal
value, set from the function minimization. The red circle shows
these optimal values.
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Figure 12: Cost function of scheme ₦10 solving E1

Lastly, the plot of the function f(u2) used by scheme ₦13 is
presented. For this particular reconfiguration |Q̃| happens to be
small enough that more than one zeros are found. The chosen u2 =
4.6356 rad minimizes δvtot

Figure 13: Possible values for u2 in scheme ₦13

4.4.2 Problem E2

E2

aδα0 [m] aδαF [m]
50 -10000 230 -50 0 -9800 150 0

Problem E2 is solved also by schemes ₦3, ₦9 and ₦11, for which
is necessary a non null variation of relative semi-major axis A ̸= 0
The less expensive solution is given by scheme ₦13, but the total
delta-v is still greater than the lower bound, which for E2 amounts
to LBE2 = 0.0496 m/s.
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₦ u1 u2 u3 δvR1 δvT1 δvR2 δvT2 δvR3 δvT3 δvtot
- rad m/s
3 5.1180 10.4547 - 0 -0.0645 0 0.0382 - - 0.1027
9 5.4458 8.5874 - -0.1206 -0.0370 -0.1479 0.0107 - - 0.2744
11 0 9.4040 - -0.0215 -0.0343 -0.0307 0.008 - - 0.0722
12 2.5830 5.7246 15.1494 0 -0.0088 0 -0.0379 0 0.0205 0.0672
13 0 5.2906 15.7080 0 -0.0099 0 -0.0314 0 0.0150 0.0563

Table 3: Problem E2 and solutions

Figure 14: Relative orbits in reconfiguration E2
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Figure 15: Cost function scheme ₦3

Figure 16: Cost function scheme ₦9

Figure 17: Cost function scheme ₦11

The delta-v lower bound is is met with solution ₦12 and an
allowed time span of 7.5 orbital periods
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₦12 Solving E2, uF = 15π
u1 u2 u3 δvR1 δvT1 δvR2 δvT2 δvR3 δvT3 δvtot

rad m/s
5.7246 40.2821 43.4237 0 -0.0331 0 0.0116 0 -0.0048 0.0496

Figure 18: Relative orbit ₦12 solving E2, uF = 15π
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4.5 Out-of-plane reconfiguration

The out-of-plane reconfiguration can be solved by two equations in
Eq.(15) with unknowns uM and δvN :{

na∆δix = cosuMδvN
na∆δiy = sinuMδvN

(19)

The change in the inclination vector ∆δi can then be achieved by
the following delta-v at latitude uM :

uM = arctan

(
∆δiy
∆δix

)
+ kπ, δvN = na∥∆δi∥

This formulation doesn’t account for the J2 perturbation described
by the state transition matrix, leading to errors on the final state.
According to the ΦJ2 matrix in Eq.[13] the element δiy will drift
linearly with time and proportionally to δix. To account for orbital
perturbations the procedure described on [13] can be followed. First
the equations for a single delta-v reconfiguration are written:

ΦF,1B1δv = δαF −ΦF,0δα0 = ∆δα̃

The two equations regarding the out-of-plane dynamics are the fol-
lowing:{

cosuMδvN = n∆δα̃3 = n∆δĩx[
1
n
λI(uF − uM) cosuM + sinuM

]
δvN = n∆δα̃4 = n∆δĩy

(20)

Where λI = 3nγ sin2 i. By dividing the second equation of this sys-
tem by the first one a transcendental function of the delta-v latitude
is found, which has to be solved numerically:

1

n
λI(uF − uM) + tan(uM) =

∆δĩy

∆δĩx

Then the first equation in the system can be used to compute the
delta-v magnitude as:

δvN = n
∆δĩx
cosuM

The two maneuvers can be compared by applying them to the follow-
ing problem: the chief satellite lies on a circular orbit of semi-major
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axis a = 6828 km and inclination i = 78◦. The initial and final rela-
tive orbital elements of the chief-deputy formation are the following,
where only the relative inclination vector is non-zero and has to be
varied:

aδi0 = (10, 70) m

aδiF = (400, 120) m

(a∆δĩx, a∆δĩy) = (390, 49.405) m

The reconfiguration has to be achieved in a time span of seven orbits,
meaning ∆u = 14π.

Equations δix,f [m] δiy,f [m] um [rad] δvN [m/s]
19 400 143.14 0.126 0.4399
20 400 120 0.0672 0.4374

Table 4: Out of plane maneuvers’ comparison

Figure 19: Relative inclination vector’s second component variation following
the two approaches

It is clear how the first maneuver described by Eq.(19) corrects δiy
to the desired value, but without accounting for the J2 perturbation
that will make it drift from it during the following seven orbits. On
the other hand, Eq.(20) gives a slightly different value of uM and
δvN that alter the ROE of interest so that it will match the desired
value at the final time. δix is not affected by the J2 perturbation
and will be corrected to the desired value by both approaches
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4.5.1 Combined maneuver

The combined maneuver involves one or more impulses with both in
plane and out of plane thrust components. The combined maneuver
is less expensive than the separated one when the normal impulse
required to correct the relative inclination vector should be located
at the same mean latitude of one of the in plane impulses. This
particular relative inclination vector can be found from Eq.(20) with
the following approximation:

∆δiy
∆δix

≈ λI

n
(uF − ut) + tan(ut) (21)

This expression is an approximation because the left hand side term

should be equal to ∆δĩy
∆δĩx

, which would involve the state transition

matrix terms and longer computations. By choosing E2 as in-plane
reference problem and a starting relative inclination vector aδi0 =
(δix, δiy)

T
0 = (0, 0)T it is found aδiF = (50,−31.75)T . The normal

deltav required to accomplish the out of plane reconfiguration would
be executed at u = 2.5615, while the in plane problem E2 solved
with scheme N12 requires a first impulse at u = 2.5643, showing
that the approximation used is accurate enough.

Taking E1 as in-plane reference problem the procedure is the
same: by imposing aδi0 with null components it is found by using
Eq.(21) aδiF = (50, 103.095)T . The out of plane maneuver would
then require a normal impulse at u = 1.11 rad, but the first tangen-
tial pulse that solves E1 with scheme N12 is located at u = 4.2581
rad. This difference arises from the apparently periodic behavior of
the second equation of Eq.(20), which has more than one zero. By
imposing the normal impulse at u = 4.2581 rad the reconfiguration
is achieved with a combined deltav 5.466% smaller than the sepa-
rated one.

aδα0 [m] aδαF [m]
E1 0 -10000 0 0 200 -10 0 -10000 50 103 230 50
E2 50 -10000 0 0 230 -50 0 -9800 50 -31.75 150 0

Table 5: New three dimensional problems

The combined maneuver requires an overall deltav 5.47% smaller
than the separated maneuver in E1 and 6.07% smaller in E2.
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u1 u2 u3 δvT1 δvN1 δvT2 δvN2 δvT3 δvN3 δvcomb δvsep
rad m/s

4.2581 7.3996 10.5412 -0.009 -0.1197 0.018 0 -0.009 0 0.147 0.1555
2.5643 5.7059 15.1307 -0.0085 -0.0632 -0.0381 0 0.0203 0 0.1222 0.1301

Table 6: Three dimensional problems’ solutions
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4.6 Combined Maneuvers - Parametric studies

The purpose of this chapter is to show a parametric study where
reconfigurations with different variations of inclination, longitude of
ascending node and argument of periapsis ∆i,∆Ω,∆ω of the deputy
spacecraft’s orbit are solved in two different ways. The first one
called the T solution solves the in-plane problem with scheme₦12
and the out of plane one through Eq.(20). The second one, called
RT solution solves the three dimensional problem with a combined
maneuver. The first attempt of combined maneuver has been shown
in the previous section of this document: given an out of plane
problem represented by a variation of the relative inclination vector
δi, an in plane problem [A,L,E, F ] was found such that uN = uT .

In these parametric studies, chief and deputy’s initial orbits will
be defined by their classical orbital elements αc,αd, and the initial
relative elements δα0 of the formation will be computed. Then,
deputy’s semi-major axis, eccentricity and mean latitude variations
∆a,∆e,∆u will be fixed for the three analysis. Regarding the last
three elements i,Ω or ω, their variations’ values will be fixed two at
a time according to Table 7, while the remaining element variations
are defined by Eq.(22)

α Chief Deputy ∆α Deputy
a[km] 7000 7010 ∆a -0.05
e 0 0.05 ∆e -0.01
i 45◦ 44.5◦ ∆i 0.5◦

Ω 0 0 ∆Ω 0.2◦

ω 0 0 ∆ω 1◦

u0 0 0 ∆u 0◦

Table 7: Starting orbital parameters

∆Ω = 0, 0.2◦, . . . , 1◦

∆i = 0, 0.2◦, . . . , 1◦

∆ω = 1◦, 2◦, . . . , 5◦
(22)

The reconfigurations has to occur in 2.5 orbital periods. RT solution
computes the maneuvers as follows:

1. Scheme ₦12 will solve the in-plane problem, providing the three
tangential impulses magnitudes δvT and their mean latitude
arguments uT
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2. The problem Eq.(20) is solved to find δvN and uN

3. The closest element of uT to uN is made equal to uN . This
means that one of the in-plane maneuvers will be executed at
the same time of the normal one, as to combine them and
reduce the total cost.

4. The values of the in-plane delta-vs are computed again by solv-
ing Eq.(18), in order to still achieve the in-plane ROEs vari-
ations with the new maneuvers’ mean argument of latitudes
uT

The system of equations at Eq.(18) is overdetermined, having
three unknowns and four equations. The solutions found by using
uT = ū + kiπ as in scheme ₦12 always led to the desired in-plane
ROEs variations. By changing uT according to the out of plane
problem, no acceptable solutions are found, meaning the final ROEs
errors are always big, so the reconfiguration is not achieved.
This problem is overcome by allowing radial maneuvers in the solu-
tions, removing the constraint x1 = x3 = x5 = 0. This means that
the system will be underdetermined with two degrees of freedom,
having now 6 unknowns (three tangential and three radial delta-v
values) but still four equations.

4.6.1 Longitude of ascending node variations

The longitude of the deputy’s orbit ascending node will be varied
from 0 to 1◦with variations of 0.2◦. The following table shows the
in-plane, out of plane and total delta-v calculated by T and RT so-
lutions for every value of ∆Ωd. Since increasing ∆Ω increases the

T RT
∆Ω[◦] δvip δvoop δvtot δvip δvoop δvtot In plane red.% total red.%

0 45.24 65.85 111.09 45.13 65.85 107.39 0.25 3.33
0.2 47.21 68.33 115.54 38.17 68.33 102.07 19.14 11.66
0.4 49.18 75.47 124.66 39.53 75.48 109.80 19.64 11.92
0.6 51.16 86.13 137.28 41.54 86,13 121.73 18.81 11.33
0.8 53.13 99.16 152.29 43.86 99.17 136.36 17.44 10.46
1 55.10 113.77 168.87 46.32 113.78 152.68 15.94 9.59

Table 8: Delta-v values in m/s and their reductions

magnitude of the final relative inclination vector, the out of plane
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delta-v will increase as well. This values will be independent of the
in-plane control strategy, so they don’t change between the T and
RT case. The longitude of ascending node also affects the relative
mean longitude δλ, so the in-plane delta-vs will vary as well with
∆Ω. The two different solutions present different in-plane delta-v
values, with the RT one being up to 19.6% cheaper at ∆Ω = 0.4◦.
The in-plane delta-v reduction comes from the introduction of one
radial burn which is performed with one of the tangential ones. This
means lower total delta-v values, up to 11.92%. The total delta-v
reduction is affected by the combined normal maneuver as well.
Since δvN is the same between the two solutions, combining it to an
in-plane burn will always result in a reduction of total delta-v. This
can be seen from the reconfiguration at ∆Ω = 0, on the first row
of Table 8. The in-plane delta-v reduction amounts to 0.25% in the
RT solution, while the reduction of total delta-v amounts to 3.33%.
These results can be analyzed in the ROEs space, more specifically
in the δλ, δa and δex, δey planes. In these plots the initial condi-
tion is marked by a green circle, it then evolves through a series
of segments in order to reach the red circle, which marks the final
condition. Grey segments show ROEs variations due to the natural
dynamics (Keplerian motion and J2 effect) which affects δλ and δey.
Black segments show impulsive ROEs variations due to performed
maneuvers, Eq.(15) can be recalled to remember that tangential
burns don’t affect δλ, and radial burns don’t affect δa.

The length of the black segments is related to the total mission’s
cost. In fact, [10] shows how the cumulative delta-v cost associated
to the δα0 −→ δαF reconfiguration can be written as a quadratic
function of the ROE corrections not related to the natural dynamics,
i.e. related only to the m maneuvers performed:

Jplan =
m∑
i=1

(a∆δa)2i +
m∑
i=1

(a∆δλ)2i +
m∑
i=1

(∥a∆δe∥)2i +
m∑
i=1

(∥a∆δi∥)2i

In the ROEs space this is a metric of distance measuring the length
of black segments, so minimizing Jplan means connecting δα0 to δαF

with the minimum path, which represents a minimum path prob-
lem. The following pictures show the ROEs evolution in the T and
RT solutions for ∆Ω = 0.6◦. Initial and final relative eccentricity
vectors are out of phase by just ∆ω = 1◦, so the scale on the δey
has been dilated by approximately two orders of magnitude in order
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Figure 20: In-plane ROEs variation, ∆Ω = 0.6◦

to distinguish all the different segments. The RT solution biggest
difference from the T one lies in smaller δa variations performed by
tangential burns, associated to smaller tangential delta-vs. Further-
more, the δex variations (larger than the δey ones) are all three with
the same sign, meaning the delta-v isn’t spent to increase that ROE
and then decrease it to reach the final aimed state as in the T so-
lution. In this example the introduction of the radial burn allowed
to a reduction of in-plane delta-v by 18.8%, and an overall 11.3%
delta-v reduction. The following plots summarize the behavior of
the various delta-vs as a function of the required RAAN variations.

Figure 21: Delta-v values for ∆Ω variations
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4.6.2 Inclination variations

In this case five formation reconfigurations where the deputy space-
craft’s inclination is varied from 0 to 1◦with 0.2◦steps are solved.
All the other COEs variations are fixed by table 7. Table 9 shows
how in-plane delta-vs don’t change with ∆i in the T solution, since
scheme ₦12 solves the in-plane problem without accounting for δi
variations. This doesn’t hold for the RT solution, since in-plane
delta-vs are computed again as a function of the normal burn mean
argument of latitude uN . Out of plane delta-vs magnitudes are still
equal between the two solutions, and increase as ∆i increases.

T RT
∆i[◦] δvip δvoop δvtot δvip δvoop δvtot In plane red.% total red.%
0 47.21 18.92 66.13 41.59 19.03 59.01 11.92 10.78
0.2 47.21 32.28 79.49 38.53 32.32 67.74 18.39 14.79
0.4 47.21 55.79 103.01 37.98 55.80 89.81 19.56 12.81
0.6 47.21 81.07 128.28 37.84 81.07 114.63 19.85 10.64
0.8 47.21 106.86 154.07 37.79 106.85 140.23 19.95 8.98
1 47.21 132.87 180.08 37.77 132.85 166.14 20.00 7.74

Table 9: Delta-v values and reductions

Again, total delta-v reductions up to 14.8% are shown, as a result of
the introduction of a radial burn and the combined normal maneu-
ver, which reduces the in-plane delta-v up to 20%. The following
plots on figure 22 show the ROEs evolution for ∆i = 0.6◦, with sim-
ilar differences between the two solutions as noticed in the previous
example: impulsive δa variations are smaller in the RT solution,
and there are no δex variations with different signs between them,
while variations of δey are still from one to two orders of magnitude
smaller.

Finally the delta-v costs as functions of the desired inclination
variation are summarized in figure 23.

4.6.3 Periapsis argument variations

Lastly, reconfigurations with different variations of deputy’s argu-
ment of periapsis ωd are studied. Their values will range from 0 to
5◦, and variations of Ωd and id will be fixed by table 7. This means
that only the in-plane ROEs variations [A,L,E, F ] will be varied,
while ∆δi will be a constant, meaning that δvN and uN will be the
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Figure 22: In-plane ROEs variation, ∆i = 0.6◦

Figure 23: Delta-v values for ∆i variations

same for every ∆ωd and in both T and RT solutions. The in-plane
total delta-vs computed with the RT solution are now bigger than
those obtained with scheme ₦12 in solution T, for ∆ω > 1◦, with
in-plane delta-v increases up to 69%. Combining the normal ma-
neuver with one of the in-plane burns moderates this loss, but the
total δv is still approximately 14% bigger in the RT solution.
This phenomenon can be better understood by solving a prob-

lem with a much bigger variation of ∆ω = 45◦. This will allow
equal scales on both δex and δey axis, to show the actual length
of the path connecting the two vectors in figure 25. The reconfig-
uration cost is driven by δe variations, so in order to achieve an
economic enough maneuver, a minimum path traveled by the black
segments in this plane will be the priority. This condition is en-
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T RT
∆ω[◦] δvip δvoop δvtot δvip δvoop δvtot In plane red.% total red.%

0 47.26 68.33 115.59 37.91 68.33 101.97 19.78 11.78
1 47.21 68.33 115.54 37.89 68.33 102.07 19.74 11.66
2 37.87 68.33 106.20 64.01 68.33 121.33 -69.04 -14.25
3 38.23 68.33 106.56 64.02 68.33 121.83 -67.47 -14.33
4 38.81 68.33 107.14 64.44 68.33 122.71 -66.03 -14.53
5 39.61 68.33 107.94 65.25 68.33 123.94 -64.74 -14.83

Table 10: Delta-v values and reductions

Figure 24: In-plane ROEs variation, ∆ω = 3◦

sured by scheme ₦12, without any radial burns. As remarked by
[11], when ∥∆δe∥ > |∆δa∗ |, the absolute minimum cost is achieved
whenever the traveled path length in the relative eccentricity vector
plane lays parallel to the vector δeF − δe0. This happens when all
maneuvers occur at some arguments of latitude whose modulus-π
equals the one of ū.
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Figure 25: In-plane ROEs variation, ∆ω = 45◦

The minimum path length is shown by the T solution; chang-
ing uT in order to combine the normal burn to one in the orbital
plane will result in a longer path, so in a larger overall mission’s
cost. Moreover, the covered path is longer also in the δλ, δa plane,
making the RT solution even less optimal. The in-plane delta-v cal-
culated with the T solution is 16.67% smaller, but a normal burn
not combined with an in-plane one makes the overall cost just 6.63%
smaller than the RT solution’s. Finally, the delta-v values of table
10 are summarized in image 26:

Figure 26: Delta-v values for ∆ω variations
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5 Conclusion

This thesis showed the mathematical derivation for the state transi-
tion matrix needed to compute relative orbital elements variations
of a J2-perturbed satellites formation. Various in-plane maneuvers
available in the referenced literature has been tested on two differ-
ent reconfiguration problems, showing the resulting relative orbits,
mission costs and cost function diagrams, highlighting optimal ma-
neuvers.

Out of plane maneuvers has been tested on a different reconfig-
uration, showing the precaution needed to compensate for J2 effect
on the relative inclination vector

Lastly, a procedure to combine out of plane and in plane ma-
neuver has been developed and applied to reconfigurations with dif-
ferent deputy’s COEs variations. Solutions are found by allowing
radial burns, which along with the combined normal burns lead to
delta-v savings up to 14.8% compared to the separated maneuver.
This maneuvering scheme was not always optimal, since for a re-
configuration’s cost dominated by δe variation, radial burns are less
efficient than tangential burns as in scheme ₦12.

Future works on this topic may investigate how the reconfigura-
tion cost changes with the mission’s allowed time span, new models
of atmospheric drag and solar pressure disturbances effects on for-
mation flight through state transition matrices, and different ma-
neuvering schemes to compensate for these perturbations’ effects on
final ROEs of the formation.
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