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Summary

The analysis of propellers is characterized by a great variety of available methods to
evaluate their performance, with different levels of accuracy and computational cost. Some
widely used analytical methods are based on a series of approximations which allow to
perform calculations, in a reduced amount of time and with an acceptable level of accuracy.
Among them, the Momentum theory and Blade Element Theory (BET) should be cited,
as well as the Blade Element Momentum Theory (BEMT) which is a combination of the
previous two. The introduction of computational fluid-dynamics techniques based on the
resolution of Navier-Stokes equations has brought to the development of simulations with a
high accuracy but, usually, a very high computational cost. In the last decades researcher’s
efforts have been spent in the evaluation of the possibility to develop new methods which
can somehow combine the computational efficiency of the Blade Element Momentum
Theory and the accuracy guaranteed by CFD techniques. This context has brought to
the introduction of the Actuator Disk Method (ADM) and then of the more accurate
Actuator Line Method (ALM). These techniques have followed the idea of approximating
the propeller as a source of momentum which is then introduced in the resolution of the
Navier-Stokes equations. In the actuator disk method, forces exchanged between propeller
and fluid are seen as evenly distributed on a zero-thickness disk, while in the actuator line
method these forces are radially distributed along lines which represent propeller’s blades.
The goal of this thesis is the implementation of the Actuator Line Method in a CFD code
and its application to the analysis of a propeller for which geometry and experimental data
are known, comparing propeller’s performance resulting from the implemented model with
propeller’s performance given by experiments in wind tunnels and other numerical data
available in the literature.

In the first chapter a brief introduction will be presented, in which the central topics
will be the evaluation of the advantages and the disadvantages of the different available
methods and the needs that have brought to the introduction of the Actuator Line Method.
In the second chapter the methods today available for the analysis of an aeronautical
propeller will be presented, in particular: Momentum Theory, Blade Element Theory and
Blade Element Momentum Theory; methods that implement a full resolution of the flow
acting on a propeller through high fidelity computational fluid-dynamics simulations; the
Actuator Disk Method. In the third chapter a detailed explanation of the Actuator Line
Method will be performed, focusing in particular on the strategies adopted during the
implementation of the code. The fourth chapter will provide all the details regarding the
case study considered, relevant data about propeller’s geometry will be reported and also
the results of experimental analysis. In the fifth chapter results obtained through the
implementation of the Actuator Line Method will be shown, evaluating the accuracy of
the method and the computational cost required by the simulations.
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Chapter 1

Introduction

The analysis of propellers has always been a topic of great interest in aeronautics. Today,
this device has gained even more relevance because of the development of new architectures
such as aerotaxis, distributed propulsion electrical aircrafts equipped with a large number
of propellers, or even unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs).

Most of the available analytical techniques for analyzing the performance of an aero-
nautical propeller are today based on the Blade-Element Momentum Theory (BEMT)
(Glauert [1926]), which combines the Blade Element Theory (BET) (Drzewiecki [1920])
with the Momentum Theory (Rankine [1865], Froude [1889]). Momentum Theory, as-
sumes forces exchanged between flow and propeller as evenly distributed on a zero thick-
ness disk. Various assumptions are made: the flow considered is inviscid, incompressible
and steady; velocity and static pressure are seen as uniform over each cross section of the
disk. This is a very simple method but with quite low reliability. BEMT is based on the
subdivision of the flow in annular control volumes, and on the application of the conser-
vation laws in each control volume. The annular volumes are bounded by stream surfaces
that extend from far upstream to far downstream. The aerodynamic forces acting on the
blade element considered are deduced through the use of tabulated airfoil data, which are
derived from experimental measurements carried on in wind tunnels. There is the need
to introduce a series of assumptions: the flow has to be axis-symmetric, the flow can be
studied through the subdivision in radially separated streamtubes. Moreover, because of
these assumptions, it is necessary to introduce a certain number of empirical corrections;
owing to limitations of representing, for example, phenomena related to: dynamic inflow,
yaw misalignment, tip loss and heavily loaded rotors. Methods based on the BEMT have
been vastly used for the analysis of many devices, such as propellers (Tognaccini [2014]),
helicopter rotors or wind turbines; they are simple, fast and quite reliable. All the ana-
lytical techniques available for the evaluation of aeronautical propellers’ performance are
categorized as low fidelity methods.

The most reliable methods for the analysis of an aircraft propeller are fully resolved,
three-dimensional, CFD simulations. These types of analysis allow to predict with high
accuracy the behaviour of a propeller in different working conditions, thanks to a complete
resolution of the Navier-Stokes equations. Computational fluid-dynamics simulations are
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Introduction

categorized as high fidelity methods. In the bibliography, comparisons between the com-
putationally cheap BEMT and the highly accurate CFD simulations for the performance
of an aircraft propeller can be found in Loureiro et al. [2021] or Carroll [2013]. However,
the computational cost required is noticeably high and this has lead to the introduction
of advanced techniques, which can provide a good reliability, while reducing the compu-
tational cost.

Among these methods one of the most relevant is the Actuator Disk Method (ADM),
which is presented in Sørensen and Myken [1992]; it employs tabulated airfoil data along
with the conservation laws. This method, with respect to the BEMT, eliminates the as-
sumption of flow travelling in radially independent streamtubes, and introduce instead
a numerical resolution of a full set of Navier-Stokes equations where source of momen-
tum terms are introduced following the Momentum Theory. Forces are assumed to be
evenly distributed on a zero-thickness permeable disk. However, the assumption of axis-
symmetric flow is still valid also for the Actuator Disk Method. This is one of the most
diffused between the nowadays existing techniques.

In order to overcome the limits imposed by the axis-symmetric flow approximation,
Sorensen and Shen [2002] have introduced the Actuator Line Method (ALM), which com-
bines a Navier-Stokes solver with a technique that assumes the acting forces as radially dis-
tributed over lines which represent the propeller’s blades. The fluid mechanics governing
equations are the Navier-Stokes equations for incompressible flows and the aerodynamic
forces acting on each actuator line are introduced into the fluid-dynamics equations, which
are solved by means of CFD techniques. This method was at first implemented, and later
validated, in order to solve fluxes on wind turbines, and it has provided highly reliable
results if compared to other currently available methods, or to experimental data. More-
over, the computational cost is relatively reduced and the required mesh is significantly
simpler. It has also been verified that there are small differences in the wake structure
between fully resolved CFD and ALM simulations, while using turbulent inflow. For all
these reasons, the Actuator Line Method is found very attractive, if compared to other
available types of simulations.

The goal of this thesis is to apply this method to solve fluxes acting on propellers used
in aeronautical field, and verify its reliability through the analysis of a relevant case study.
The propeller analyzed is the one designed by Weick and described in bibliography (Weick
[1930]). Comparisons were made between results obtained with the actuator line method
and experimental data, which have proven the adopted resolution method as reliable.
Propeller’s performance obtained with ALM have also been compared to the ones found
by means of a method based on the BEMT, implemented by Tognaccini [2014]. Moreover,
different grids have been adopted in order to evaluate the influence of domain size and
mesh resolution.
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Chapter 2

The analysis of an aeronautical
propeller

The analysis of a propeller is characterized by many difficulties because a complete analysis
of the flow field should consider a viscous, unsteady and compressible flow around complex
geometries. An aeronautical propeller is used to accelerate air particles, while obtaining
a propulsive force acting on itself, the thrust T . A propeller can be defined by three
fundamental geometric entities: the diameter D, the local chord length c, and the local
pitch angle γ; with c and γ that change with the radial position. Considering a flow with
asymptotic velocity V∞, the operating regime of a propeller is given by the advance ratio:

J = V∞

nD
; (2.1)

where n is the rotational frequency of the propeller, expressed in [round/s]. Thrust and
required power can be easily studied while introducing the dimensionless coefficients:

CT = T

ρn2D4 ; (2.2)

CP = P

ρn3D5 . (2.3)

These coefficients are linked by the definition of another dimensionless variable, the effi-
ciency:

η = JCT

CP
. (2.4)

The curves reporting CT , CP and η given as functions of the advance ratio are the char-
acteristic curves of a propeller. In the following chapters we will report a brief description
of the most diffused methods for propeller analysis: fully resolved three-dimensional CFD
simulations, the Blade Element Momentum Theory (BEMT), the Actuator Disk Method
(ADM) and the Actuator Line Method (ALM).
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The analysis of an aeronautical propeller

2.1 The Momentum Theory
In order to overcome some of the difficulties in the propeller’s analysis, approximations
can be adopted while giving up the detailed knowledge of the flow-field in the proximity
of the propeller. The Momentum theory has been introduced by Rankine [1865] and later
continued by Froude [1889]; it considers the propeller as a zero-thickness disk which is
modelled as a discontinuity surface for the flow field and thrust is uniformly distributed
over the disk. There are some simplifying assumptions: the flow is considered inviscid,
incompressible and steady; velocity and static pressure are assumed to be uniform over
each cross section of the disk; pressure far ahead and far behind the disk matches the
ambient value. In this approximation, the first half of the acceleration happens in front
of the propeller, and the second half takes place behind the propeller. We know that the
mass flow should be continuous, while discontinuities in pressure are admitted. Moreover,
the energy level of the flow downstream of the disk is different from that of the external
flow and this leads to the development of the propeller’s wake. Energy variation imparted
to the flow passing through the propeller has to be equal, due to energy conservation, to
the expended energy provided to the propeller by the engine.

As reported by Tognaccini [2014] and by Rwigema [2010], the thrust produced by a
propeller must be equal to the change in flow momentum along a stream-tube, following
the axial direction. In the Actuator Disk model, the disk is seen as a discontinuity surface
and pressure rises discontinuously through it from a value p− immediately upstream to
a value p+ immediately downstream. The momentum balance is applied to the volume
included between surfaces S∞ and A, where A is the actuator disk section and S∞ is the
surface that delimits the stream-tube which goes from far upstream to far downstream.
The velocity component normal to the disk is continuous through the disk, so that the
momentum flow depends only on the pressure component and the thrust produced can be
written as:

T = ∆pA = k⃗ ∗
Ú

S∞

(pI + ρV⃗ V⃗ ) ∗ n⃗ dS. (2.5)

Where n⃗ is the versor normal to surface S∞, k⃗ is the versor in axial direction and I is
the identity matrix. Considering the inlet section of the stream-tube as section 0, and the
outlet section as section e, we can write the conservation of mass along the stream-tube
passing through the disk:

A0V0 = AV = AeVe; (2.6)

where V is the absolute velocity at the actuator disk section and A is the corresponding
area.

Combining the previous equations and decomposing S∞ in lateral surface St, inlet
section A0, and outlet section Ae, we can write a different formulation for the thrust
generated by the propeller:

T = ṁ(Ve − V0) + (pe − p0)Ae + k⃗ ∗
Ú

St

(p − p0) ∗ n⃗ dS. (2.7)

A simple representation of the surfaces considered is reported in figure 2.1.
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2.1 – The Momentum Theory

Figure 2.1. Surfaces delimiting the stream-tube.

We can consider the lateral surface of the stream-tube as a surface through which the
momentum flow is equal to zero and account only for the mass conservation through the
surfaces far ahead and far behind the disk. Under these considerations, the last term of
equation (2.7) will be equal to zero, and the thrust equation will become:

T = ṁ(Ve − V0) + (pe − p0)Ae. (2.8)

As written before, the first version of the Momentum Theory has been developed
by Rankine [1865] in the second half of nineteenth century and it is usually referred to
as ”simple” momentum theory. Some other hypothesis are introduced: all the physical
variables depends only on the axial position in the stream-tube, there are no discontinuities
in the tangential velocity component through the disk (the disk does not introduce any
rotational component in the flow, this is a strong approximation); this last hypothesis
allows us to consider pe = p0 and equation (2.8) becomes:

T = ṁ(Ve − V0). (2.9)

Which can be also written as:

T = ρV A(Ve − V0). (2.10)

It is also possible to write the thrust produced by the propeller as:

T = (p+ − p−)A. (2.11)
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Applying Bernoulli’s equation, which states that the total pressure is constant along any
stream line, excluding lines passing through the disk; and remembering the assumption for
which pressure far ahead and far behind the disk matches the ambient value, the following
equation can be considered:

p+ − p− = 1
2ρ(V 2

e − V 2
0 ). (2.12)

Combining the above equations shows that the absolute velocity at the actuator disk
corresponds to the average of the velocities far upstream and far downstream:

V = V0 + Ve

2 . (2.13)

This is in accordance with the assumption that the first half of the acceleration given by
the propeller is produced in front of the propeller, while the second half takes place behind
it. Indeed, if we write the jump in velocity along the stream-tube as ∆V = Ve − V0 and
we consider this equation along with the equation (2.13), we can easily obtain:

V = ∆V

2 + V0. (2.14)

This means that the additional velocity far downstream is the exact double of the velocity
addition at the actuator disk section.

While introducing the ”induced velocity” as V ′ = ∆V
2 and thanks to a recombination

of the above equations, an interesting different formulation of the thrust produced by a
propeller can be obtained:

T = 2ρAV ′(V0 + V ′). (2.15)
This clearly states that the thrust grows if the propeller diameter is increased, and

also that thrust increases if the induced velocity, and so the velocity addition between far
ahead and far behind the propeller, is increased. Moreover, if we consider a propulsive
propeller (T > 0), velocity increases along the stream-tube, and the stream-tube contracts
along axial direction. These type of information are in agreement with the results given
by other theories and confirmed by experimental data.

The power P expended in order to obtain the thrust T is given by the variation in
kinetic energy experienced by the flow:

P = 1
2ṁ(V 2

e − V 2
0 ) = 1

2T (Ve + V0) = TV. (2.16)

Thus, propeller’s efficiency can be defined as:

η = TV0

P
= 1

1 + a
. (2.17)

Where a = V ′

V0
and is called the axial interference factor. From this last equation we

can understand that, in order to obtain maximum efficiency from the propeller, given the
thrust produced, it is necessary to minimize the axial interference factor, which means
that the largest possible propeller’s diameter should be adopted.
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2.1 – The Momentum Theory

Figure 2.2. Actuator disk model in simple momentum theory (Tognaccini [2014]).

If the hypothesis of uniform axial induction on the propeller is removed then the
axial interference factor must be considered variable along the radius; it is interesting to
evaluate for which radial distribution of a the maximum efficiency is obtained. Another
hypothesis has to be made: for each elementary annular surface of area 2πrdr there is no
interaction with any other elementary surface. Therefore thrust can be calculated applying
the results of simple momentum theory to the elementary annular surface. The so called
differential simple momentum theory is obtained. This theory has shown that, if the thrust
produced is known and the diameter of the propeller is fixed, then the maximum efficiency
is obtained if the load is evenly distributed on the disk. Experimental evidences have
demonstrated that quite accurate results can be obtained with this theory for propellers
which are slightly loaded and have little rotational effects; however, the hypothesis of no
interaction between different annular surfaces does not show a good agreement with the
physics.

The simple momentum theory has been derived considering only axial velocity varia-
tions, while changes in radial and tangential velocities have been neglected. Propeller’s
rotation with a certain angular velocity obviously introduces a rotational velocity com-
ponent downstream of the propeller. That’s why Betz [1920] developed the so called
”general” momentum theory, which accounts for the rotational velocity introduced. In
this theory the effect of the radial velocity component is still neglected, as well as vis-
cous losses due to the interaction between the propeller’s blades and the flow. For these
reasons, the ideal efficiency calculated by means of this theory can not be exceeded by
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The analysis of an aeronautical propeller

a real propeller. The general momentum theory gives us, for each value of J and CT ,
the maximum level of efficiency that can not be overcome, whatever the geometry of the
propeller is (Tognaccini [2014]).

2.2 The Blade Element Momentum Theory (BEMT)
2.2.1 Propeller’s vortical system.
The generation of thrust by a propeller can be attributed to the lift acting on propeller’s
blades, and each blade can be considered as a finite wing which interacts with a flow of
variable velocity; indeed, the rotational velocity, which depends on the radial position,
has to be summed to the translational velocity of the propeller. Tognaccini [2014] reports
that it is possible to develop a model in which the propeller is seen as a disk on which
infinite vortices with intensity γ(r) are radially distributed. The circulation at a certain
radial position is given by:

Γ(r) = 2πγ(r)r. (2.18)
The shape of vortices is helicoidal because they have to follow the trajectory of flow

particles. If a slightly loaded propeller is considered, the effect of radial velocities can be
neglected, under these assumptions, the propeller’s wake is a cylinder which has for basis
the actuator disk and is developed until far downstream. The helicoid described by each
free vortex has a pitch (or aerodynamic pitch) pa, which is the distance in axial direction
between two different points of the helicoid and can be calculated as:

pa = JD. (2.19)

To fully understand the flow field generated by free vortices, we can consider it as
equivalent to the field induced by the composition of a system of free straight vortices
parallel to the axial direction, with a second system of concentric annular vortices which
develops along the wake. Annular vortex system induces an axial velocity component
inside the wake, at the propeller’s section induction is due only to the annular vortex
system which develops beginning from this section, while far downstream the contribution
from the annular vortices developed far upstream should be added. The axial velocity
component at a section positioned far downstream is found to be the double of the one
acting on the propeller’s disk, this conclusion is in agreement with the simple momentum
theory. Rotational velocity outside the wake is equal to zero, indeed, if the circulation
along a line downstream from the disk and enclosing all the wake is calculated, it results
equal to zero. It can also be observed, with similar considerations, that the rotational
velocity induced far downstream is two times the one induced on the disk. If the circulation
around a single blade is Γb and the propeller has a certain number of blades N , the total
circulation Γ = ΓbN can be related to the induced rotational velocity. Indeed, while
summing the circulation on each blade, we obtain:

Γ = 2πrω. (2.20)

Where ω is the induced rotational velocity. If we consider the wake of a propeller
which is evenly loaded along the radius, free helicoidal vortices develop from the tip of
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2.2 – The Blade Element Momentum Theory (BEMT)

the blades with intensity: γ = Γ
2πR ; with R radius of the disk. From the centre of the disk

starts another straight vortex in axial direction, with intensity Γ.

2.2.2 The Blade Element Theory (BET)
We have to introduce now the so called Blade Element Theory (BET) which, merged
to the previously described Momentum Theory, has brought to the Blade Element Mo-
mentum Theory (BEMT), a largely diffused method for the analysis of propellers. The
idea of the blade element was first introduced by Drzewiecki [1920] to enhance the results
produced by Froude [1889]. This theory allows the calculation of the differential thrust
and torque at a given radial location on the propeller. The propeller, indeed, is divided
into a number of sections and each of them is solved and then summed to the others in
order to give the overall thrust and torque. This method uses a series of annular stream
tubes control volumes, and each one of these volumes contains a distinct element of the
blade, which has height dr. Geometrical properties, such as airfoil shape and chord or
twist distribution are used to calculate the forces exchanged between the propeller and
the flow-field. Two important assumptions are essentially made: there is supposed to be
no interaction between fluxes acting on different blade element of the propeller; and the
forces exerted by the flow on the propeller depends only on the two-dimensional lift and
drag acting on each blade element. Since CL and CD are determined by knowing local
Reynolds number and angle of attack, it is necessary to determine the flow angle ϕ, which
is based on the two components of the local velocity vector, and is later used to calculate
the local angle of attack α. At this point thrust and torque of the element are determined
as:

∆T = 1
2ρV 2(CL cos ϕ − CD sin ϕ)cdr; (2.21)

∆Q = 1
2ρV 2(CL sin ϕ + CD cos ϕ)crdr. (2.22)

Where ρ and V are the flow density and velocity at the propeller plane. Finally the
thrust and torque are summed over all elements of each blade and produced T and Q are
calculated.

The description of the wake as a vortical system and the analogy with lifting line
theory allows to overcome the contradictions between the blade element theory and the
momentum theories. Blade Element Momentum Theory (BEMT), which was first pro-
posed by Glauert [1926], combines BET and Momentum Theory and provides a way to
evaluate the flow-field around a propeller. It also allows to alleviate the difficulties in
calculating the induced velocities at the propeller, and to correct the inflow conditions
assumed in the blade element theory. As in the case of the BET, the analysis is based on
the differential thrust and torque of the propeller, which is modelled as an actuator disk.
The propeller is divided again in a certain number of elements along the radius of each
blade, and for each element a force balance is applied, considering two-dimensional lift
and drag to calculate thrust and torque generated by the single section. This generates a
set of nonlinear equations which can be solved iterating for each blade section, generally
the quantity iterated is the thrust coefficient; then the overall thrust and torque can be
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calculated. A brief description of the calculation generally adopted to calculate thrust
and torque by means of the BEMT is reported here.

If the propeller’s geometry, the number of blades and blades’ geometry are known, the
flow angle ϕ can be obtained as:

tan ϕ = V0(1 + a)
Ωr(1 − a′) . (2.23)

Where Ω is the angular velocity of the propeller and a′ is the rotational interference
factor, calculated as a′ = ω

2Ω ; with ω the induced angular velocity. The angle of attack is
given by the difference between the pitch angle and the flow angle:

α = γ − ϕ. (2.24)

The effective velocity is calculated as:

Ve = V 2
0 (1 + a)2 + Ω2r2(1 − a′)2. (2.25)

Figure 2.3. Effective velocity and flow angle in blade element theory (Tognaccini [2014]).

Then the thrust and torque acting on the single blade element are calculated with
formulas 2.21 and 2.22, respectively, while using the effective velocity Ve instead of V .
If N is the number of blades of the propeller and the solidity at radius r, σ = Nc

2πr , is
introduced, thrust and torque for the entire propeller are:

dT

dr
= σπρrV 2

e (CL cos ϕ − CD sin ϕ); (2.26)
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dQ

dr
= σπρr2V 2

e (CL sin ϕ + CD cos ϕ). (2.27)

It can be useful to observe that CL and CD are functions of the angle of attack α and of
the local Reynolds number, but, for little values of α, dependence from Reynolds number
can be neglected, therefor lift and drag coefficients can be calculated as functions of α.
Relations obtained allows to evaluate the performances of a known propeller. If a non-
viscous flow is considered, results derived from BEMT coincides with the ones obtained
with general momentum theory. For the highest values of J , viscous effects cause a quite
important difference between curves η(J) obtained applying the two theories. When the
pitch angle of the blade increases, the point of maximum efficiency shifts to the right
because, at a certain rotational velocity, blade elements work at a lower α, and thus
at a lower CD, for higher values of V0. This leads to an interesting consideration: a
propeller can keep an high level of efficiency for a longer interval if the pitch angle γ
changes for different values of advance ratio J ; thus a variable pitch propeller should be
adopted. Further studies about optimal working conditions for a propeller have brought
to a relevant observation: a propeller with a certain thrust level reaches the maximum
efficiency if the vortical wake shifts and rotates rigidly, generating an helicoidal surface
with constant pitch (Tognaccini [2014]). The Blade Element momentum theory requires
a low computational cost if compared to detailed CFD models, the accuracy of the results
is obviously lower, but this technique can be adopted in the early stages of a propeller
design.

2.3 High fidelity CFD simulations
As said before, the efficiency of the Blade Element Momentum Theory comes with a signif-
icant loss in accuracy with respect to full CFD resolution methods. For example, BEMT
fails in predicting important 3D flow effects, such as tip losses, which can affect propeller
performances. Tip losses happen when tip vortices are introduced in the propeller wake,
causing a reduction of the thrust produced in the tip region of each blade. Post stall
behaviour of a propeller is also bounded to 3D flow effects, propeller’s rotation induce
centrifugal and Coriolis forces on the blade and on the fluid particles around the blade
surface. These forces produce a strong radial force component in the boundary layer and
help stabilize it, this leads to a postponed separation for higher angles of attack on a
3D rotating propeller blade, if compared to a non-rotating one; with a positive effect on
propeller’s thrust. This effect is known as stall-delay and is stronger near the root and
weaker in the tip region. Using high fidelity CFD it is possible to have a time-accurate
simulation, where complicated 3D flow effects are taken into account and highly accurate
results are obtained. Of course, a high resolution mesh is required, which has to adapt
to the rotating blades; indeed, propeller CFD simulations often adopt a mesh around the
propeller, or the single blade, which rotates relatively to a second stationary mesh. In
addition, a time-dependent simulation has to work with very small time steps in order to
resolve the fast propeller rotation, and it has to include several revolutions to obtain a
periodic solution. These characteristics lead to a considerable time expense for a full CFD
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simulation. This type of simulation is usually adopted when a very detailed flow analysis
is required, and they are typically used in studies where few simulations are needed, but
with the highest possible level of accuracy.

2.3.1 Steady state and unsteady approaches
There are many different full CFD methods to model rotating flows or to analyze propul-
sion systems’ fluid-dynamics in general, and there are a lot of thesis or reviews which pro-
vide a general overview about this topic, for example, in the studies made by D’Ambrosio
and Ruiz [2019]. CFD techniques often needs to consider a multiple reference frame, in
which one reference frame is stationary while the other, which contains the propeller, has
to rotate with a precise angular velocity. The various available methods which account
for the propeller’s rotation can be divided in two categories of approaches: steady state
and unsteady state approaches.

Steady state approaches can be used to solve constant rigid body motion, but it has
to be noted that the flow is still unsteady. A moving frame of reference should be used to
describe rotating blades and time averaged characteristics of the flow should be computed.
Moreover, free-stream velocity needs to be parallel to the axis of rotation and the volume
containing the rotating region must be axisymmetric. These approaches can only be used
when average values are relevant and transient effects can be neglected. It has to be
observed that in this type of approaches the mesh does not move, the reference frame is
rotating and the velocity components of the fluxes are calculated relatively to this moving
reference frame, but the meshes are always static. Since we are considering stationary
approaches, it is obvious that the Navier-Stokes equations will be used in their steady
state form. Steady state Navier-Stokes equations in differential form and in absence of
volume forces are:

∇ ∗ (ρV⃗ ) = 0; (2.28)

∇ ∗ (ρV⃗ V⃗ ) = −∇(p) + ∇ ∗ (τ). (2.29)

Compressible Navier-Stokes equations are adopted in order to describe compressible
flows in the presence of diffusive effects. If viscous effects are neglected, Euler equations
are obtained, which are used to describe compressible flows in the absence of diffusive
effects. These equations can be adopted to describe expansion and compression fans,
shock waves and contact surfaces. Steady state Euler equations in differential form are:

∇ ∗ (ρV⃗ ) = 0; (2.30)

∇ ∗ (ρV⃗ V⃗ ) = −∇(p). (2.31)

We can rewrite the absolute velocity in terms of relative velocities:

V⃗ = v⃗r + v⃗t + (ω⃗ × r⃗). (2.32)
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Then we can rewrite Navier-Stokes equations in the rotating frame of reference and
express them in terms of relative velocity, combining the above equations:

∇ ∗ (ρv⃗r) = 0; (2.33)

∇ ∗ (ρv⃗rv⃗r) = −∇(p) + µ∇ ∗ ∇(v⃗r) − ρ(2ω⃗ × v⃗r) − ω⃗ × ω⃗ × r⃗. (2.34)

The last two terms in equation (2.34) are Coriolis and Centripetal accelerations, which
are caused by the non-inertial reference frame considered.

Unsteady approaches consider moving meshes and have a very high computational
cost but they are the only way of conducting simulations in order to obtain time accurate
results. In this case unsteady Navier-Stokes equations in differential form are adopted.
We can write, again neglecting volume forces:

∂ρ

∂t
+ ∇ ∗ (ρV⃗ ) = 0; (2.35)

∂ρV⃗

∂t
+ ∇ ∗ (ρV⃗ V⃗ ) = −∇(p) + ∇ ∗ (τ). (2.36)

For the sake of completeness, we report also unsteady Euler equations in differential
form:

∂ρ

∂t
+ ∇ ∗ (ρV⃗ ) = 0; (2.37)

∂ρV⃗

∂t
+ ∇ ∗ (ρV⃗ V⃗ ) = −∇(p). (2.38)

In unsteady approaches usually the whole mesh rotates following an imposed motion
that makes it follow the propeller, Navier-Stokes equations are thus solved for the moving
mesh. Thanks to these methods we can observe also unsteady phenomena and we can
have a better understanding of the propeller behavior and its performance; however the
computational cost is even worse than in the steady state conditions. Along with these
methods, techniques which combine rotating and static regions also exists; they are par-
ticularly useful if non axisymmetric domains are considered. We will have a rotating mesh
in the regions occupied by propeller blades which slides along the boundaries of the steady
control volume. These approaches necessitates to enable simulations across disconnected,
but adjacent, mesh domains.

2.3.2 Turbulence models
Turbulent wakes are often present in simulations involving aeronautical propellers, and
the behaviour of turbulence could be predicted adopting Direct Numerical Simulations
(DNS), which integrates the three-dimensional Navier-Stokes equations. However, an
accurate analysis of the turbulent behavior would be very demanding, especially for high
Reynolds number flows, in terms of computational cost; therefore turbulence models are
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often adopted instead of a complete turbulence simulation. Among turbulence models,
the most diffused are certainly the approaches known as Reynolds Averaged Navier-Stokes
(RANS) equations. In these models Navier-Stokes equations are averaged in time, then the
flow is solved in terms of mean variables; indeed RANS adopt the Reynolds decomposition,
in which each variable of interest is divided in an average part and a fluctuating part.
Turbulence can be defined as statistically steady or statistically unsteady, in the latter
case mean values are time dependent, while in the former one they are not. In case
of statistically unsteady flows, then we should refer to the equations used as Unsteady
Reynolds Averaged Navier-Stokes equations (URANS).

In order to adopt these equations, some strong assumptions have to be introduced,
these hypothesis are usually not satisfied in real problems. However, this approach is
often chosen because in some circumstances it is necessary to know only averaged or
integral properties of the flow field. Moreover, RANS approach is significantly cheaper,
in terms of computational cost, than DNS techniques, especially for high values of the
Reynolds number of the flow.

Within RANS, there are many different models which tries to describe the turbulence,
and two of the most diffused are the two-equations models k − ω (Wilcox et al. [1998])
and k − ϵ. These methods describe the turbulence using two transport equations, the first
one is in both cases an equation for the turbulent kinetic energy k, the second one can
be either for the specific turbulence dissipation rate ω or for the turbulence dissipation
rate ϵ. Models which introduce the definition of turbulent kinetic energy ask for the
adoption of a modified energy equation in which the total energy has to include also the
turbulent kinetic energy. An alternative is to add a new source term to the classical energy
equation. Among two equations models, k − ϵ is the more reliable but is not particularly
suitable for fast rotating flows, while k − ω is often adopted for aerospace applications.
Another largely diffused approach is the one-equation Spalart-Allmaras model (Spalart
and Allmaras [1994]), which is often adopted for the analysis of transonic or supersonic
flows. Indeed, this model provides very good results for fully turbulent high Reynolds
number flows.

An alternative approach also exists, which tries to solve the real flow instead of the
averaged one, it is called LES (Large Eddy Simulation). In this kind of simulation gov-
erning equations are derived by ”filtering” the Navier-Stokes equations. Resultant filtered
equations contain terms which account for the effects of the scales deleted by the filter,
and the resultant flow field is essentially the flow field restricted to the components that
can be solved by the adopted mesh. LES are not well suited for the analysis of flow around
solid bodies with high values of Reynolds number (external aerodynamics) because of the
large number of cells required near the walls.

2.3.3 Boundary conditions
In order to have a complete analysis of the flow field, boundary conditions should be im-
posed. In Euler equations, wave propagation effects are considered and they are described
by the characteristic signals, these signals are transported along characteristic lines. At
inlet and outlet boundaries, some of the information needed are taken from the compu-
tational domain and some are given by the external environment, through the imposition
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of BCs. The number of boundary conditions that have to be imposed depends on the
number of characteristic lines which enter in the computational domain. For example, if
subsonic flows are considered, n − 1 boundary conditions have to be imposed at the inlet,
where n is the number of flow variables, and one quantity is imposed at the outlet. Things
changes while considering supersonic flows, in this case n conditions have to be imposed
at the inlet, and no BCs are imposed at the outlet.

In the presence of diffusive effects, which are considered in the Navier-Stokes equations,
other boundary conditions should be added to the ones imposed for the Euler equations.
BCs should be introduced, in particular, near the solid walls, where the no-slip condition
is usually imposed on momentum variables. As written before, when Reynolds Averaged
Navier-Stokes equations are adopted, new variables have to be introduced, such as the
turbulent kinetic energy k. Usually experimental data are not available for these variables
and empirical correlations have to be introduced in the model in order to link the known
data about BCs and the variables adopted in the turbulence model.

2.3.4 Immersed boundary methods
Interesting methods that can be applied in full CFD resolutions are the Immersed Bound-
ary (IB) methods which have been introduced by Peskin [1972], who adopted these tech-
niques for biomedical purpose, in particular for the analysis of cardiac mechanics and
blood flow. IB methods are discussed in Mittal and Iaccarino [2005]. These methods
simulate viscous flows with immersed boundaries while adopting Cartesian grids that do
not conform to the shape of these boundaries, thus a new way of introducing the effects
of the IB in the flow analysis has been developed.

The conventional approach in simulating a flow past a solid body would adopt struc-
tured or unstructured grids which conform to the body, while in IB methods the boundary
is represented by a surface grid and a Cartesian volume grid non conformal to the body
is generated without regard to the surface grid. The equations describing the flow-field
have to be modified in the proximity of the solid boundary in order to incorporate the
BCs in the Cartesian volume grid, then governing equations are discretized with a finite
differences, finite volumes or finite elements method.

There are some advantages and disadvantages in the adoption of an Immersed Bound-
ary method instead of following the conventional approach. First of all, the generation
of the grid is clearly much simpler if IB methods are chosen, and this leads to significant
advantages in terms of time expense and computational cost. Anyway, this grid has to
provide sufficient resolution at any location. Among the disadvantages, it should be ob-
served that imposing the boundary conditions, when adopting IB methods, is not trivial.
Moreover, while utilizing body-conformal grids, a better control of the grid resolution in
the proximity of the body is provided.

For these reasons methods adopting body-conformal grids are very useful when complex
geometries are concerned, but it should be considered that a deterioration in grid quality
is observed when complexity of the geometry is increased. When considering fluxes with
moving boundaries, such as the flow around an aeronautical propeller, adopting a body-
conformal grid will require the generation of a new grid at each time step. This can
clearly lead to an increase in computational cost, and has a negative impact on simplicity
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and accuracy of the resolution method. In contrast, immersed boundary methods are
widely used for the analysis of flows with rotating boundaries, because the introduction
of body motion in these methods is quite simple thanks to the adoption of a stationary,
non-deforming Cartesian grid.

2.4 The Actuator Disk Method (ADM)
The lack of accuracy of the Blade Element Momentum Theory (BEMT) and the high
computational cost and time expense of high fidelty full CFD simulations, have brought
researchers to investigate the possible introduction of new methods, which could guarantee
a good level of reliability with a limited computational cost. Different methods have been
developed along the years and most of them has followed the idea of approximating the
propeller as a time-averaged source of momentum which is used as source force in 3D CFD
flow simulations. In most of them, source terms are based on the Momentum Theory.

The Momentum Theory introduced in the previous chapters is a simple concept which
can be adopted for a first evaluation of propellers’ performance. However, this concept can
also enable us to introduce a discontinuity in governing flow equations. As in momentum
theory, the propeller is modelled as a permeable disk which surface is normal to the free-
stream velocity, and forces exchanged between the disk and the flow are evenly distributed
on the surface. An early formulation of the Actuator Disk Method (ADM) has been
introduced by Wu et al. [1962], who applied this technique to the analysis of heavily loaded
propellers. In its classical formulation, ADM solve the flow field by means of the unsteady
and axisymmetric Navier-Stokes equations, which means that the only assumption made
is that of axisymmetric flow, still necessary in this method. There have been many
improvements of the method along the years, which have come from many different works.
The Actuator Disk Method version that we consider in this thesis is the one developed by
Sørensen and Myken [1992].

They proposed a method in which a finite difference solution of unsteady, axysimmetric
Euler equations is adopted. Rotor blades are replaced by volume forces which are used
as source terms in the flow equations, this allows to evaluate the influence of the rotor
on the flow field. The solution of Euler equations is sought iteratively through a time
stepping procedure, which assures time accurate results at each time step. Volume forces
are estimated thanks to experimental two-dimensional airfoil data, but it has to be noted
that this model is three-dimensional.

The flow is assumed as axisymmetric, inviscid and incompressible by Sorensen and
Myken. With these assumptions, Euler equations are written in terms of cylindrical
coordinates (x, r, θ), with corresponding velocity vector (u, v, w):

∂(ur)
∂x

+ ∂(vr)
∂r

= 0; (2.39)

;
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂r
= −1

ρ

∂p

∂x
+ fx

ρ
; (2.40)
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∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂r
− w2

r
= −1

ρ

∂p

∂r
+ fr

ρ
; (2.41)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂r
+ vw

r
= ft

ρ
. (2.42)

These equation are, respectively, continuity equation and momentum balance along
x, r and θ directions. p is the pressure, ρ is the air density, t is the time and f is the
vector containing the three components of the volume force acting on the rotor. To solve
the system, boundary conditions and initial conditions should be introduced; boundary
conditions are imposed at the inflow, at the outflow, along lateral boundaries and along
symmetry axis; while at time t = 0 the flow is assumed to have a perfectly axial direction.
We should also remember that the force field and the kinematics are coupled, and the
solution has to be obtained iteratively. If the intention is to keep the computational
cost under a certain level, mesh dimensions should be reduced as much as possible, but
obviously without introducing strong wall effects in the simulation.

The solution of the continuity equation can be obtained employing a second-order accu-
rate central-difference discretization; while because of the hyperbolicity of the momentum
balance equations, they are solved with a first-order accurate upwind discretization.

The Actuator Disk Method has become very popular and constitutes a quite reliable
and computationally cheap method of evaluating the flow across a propeller. Indeed, it
has now been applied to the analysis of aeronautical propellers for years. However, the
main limitations of this method are represented by the assumption of axis-symmetric flow
and by the fact that the disk is assumed as uniformly loaded. These weaknesses have led
to the introduction of an alternative method which tries to distribute the loading only on
lines representing the propeller blades, rather than on a disk representing the propeller.
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Chapter 3

The Actuator Line Method
(ALM)

The axisymmetric assumption is the most critical part of the Actuator Disk Method
because, as it can be easily seen, forces acting on a propeller are exchanged only between
the propeller blades and the flow, and consider them as evenly distributed on a disk
is a quite strong approximation. For this reason Sorensen and Shen [2002] decided to
introduce an alternative model, known as Actuator Line Method (ALM), which combines
a 3D Navier-Stokes solver with a technique that distributes forces over lines representing
the blades. Kinematics of the wake is resolved thanks to Navier-Stokes equations while
acting forces are included in the momentum balance using tabulated airfoil data. In the
model proposed by Sorensen the flow is essentially inviscid and the viscous effects from the
boundary layer are introduced as integrated quantities. This method has been introduced
and validated for the analysis of wind turbines, performing comparisons between ALM,
ADM and high fidelity CFD simulations, a very good agreement with full CFD resolutions
has been showed. Later works by Ravensbergen et al. [2020] and Churchfield et al. [2017]
also contributed to assure the reliability of the Actuator Line Method.

As written before, the goal of this thesis is to implement the ALM for the analysis
of an aeronautical propeller, and evaluate its reliability through the application of the
method to a relevant case study.

3.1 Numerical model
The physical model adopted in order to solve the fluid-dynamics are the compressible
Navier-Stokes equations which are recalled in the following lines:

∂ρ

∂t
+ ∇ ∗ (ρV⃗ ) = 0; (3.1)

∂ρV⃗

∂t
+ ∇ ∗ (ρV⃗ V⃗ ) = −∇(p) + ∇ ∗ (τ) + ρf⃗e; (3.2)
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∂ρE

∂t
+ ∇ ∗ (ρV⃗ E) = −∇ ∗ (pV⃗ ) + ∇ ∗ (τ ∗ V⃗ ) + ρf⃗eV⃗ . (3.3)

Where the first equation is the mass balance, the second equation is the momentum
balance, which can be divided in three differential equations along axis x, y and z, and
the last one is the energy balance. In these equations, the term f⃗e represents the volume
forces which are calculated thanks to the actuator line model and then introduced in
Navier-Stokes equations as momentum source terms. τ is the shear-stress tensor and its
components are computed as:

τij = µ( ∂ui

∂xj
+ ∂uj

∂xi
) − 2

3δij∇ ∗ V⃗ . (3.4)

Where clearly x⃗ = [x y z] and u⃗ = [u v w]; and µ is the dynamic viscosity. The
term δij is equal to zero if i /= j, and equal to 1 if i = j.

The object of this thesis has been the calculation of the source forces through the
implementation of a function based on the ALM, and a comprehensive description of
the strategies adopted will be provided in section 3.2. These source terms have been
later introduced in a CFD code which has performed the resolution of the Navier-Stokes
equations. A far more exhaustive description of the code used for the simulations can be
found in bibliography (Ferrero [2014]).

In the computational fluid-dynamics analysis here described all the variables of the
Navier-Stokes equations have been divided for conventional reference values and used in
their non-dimensional form. In the present work time integration is performed by utilizing
an explicit Runge-Kutta method of the first order, while the spatial discretization is made
employing a Discontinuous Galerkin (DG) method of the second order.

DG methods have some features in common with both finite volumes (FV) methods
and finite elements (FE) methods, and they combine some of the advantages of these two
techniques, for this reason they are vastly adopted for the numerical resolution of Navier-
Stokes equations. Various numerical fluxes from FV methods have been inherited by DG
methods, however, there is still one remarkable difference between these discretization
methods. Indeed, in finite volumes methods, only the average values of the conservative
variables are known inside the cells, while in DG methods a large number of degrees of
freedom is introduced inside the element and this feature helps to simplify high-order
reconstructions, because all the needed information is already contained in the element.
This is the feature that DG methods and finite elements methods have in common.

In order to close the equations, boundary conditions should be imposed at the inflow,
at the outflow, and along lateral boundaries.

In the first phase, we had to evaluate the affordability of the method with relatively
fast simulations, so we adopted a small cubic mesh which side measures 4 meters, with
40 cells on each side, for a total of 68921 nodes; a mesh of these dimensions can introduce
wall effects and for more accurate results a bigger mesh should be adopted. Indeed, after
this first phase, a larger cubic mesh has been adopted, which side measures 16 meters.
Three different levels of resolution have been adopted, a less refined mesh with 40 cells per
side, for a total amount of 68921 nodes; a moderately refined mesh with 80 cells per side,
for a total amount of 531441 nodes; and an highly refined mesh with 160 cells per side,
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bringing the total amount to 4173281 nodes. With this last mesh in particular, the time
expense grows up significantly, but it is still lower than the time that would be required
by a full CFD resolution.

3.2 Computation of body forces

As written before, the true object of this thesis have been the calculation of the source
forces which have to be introduced in the Navier-Stokes equations. Source terms of the
forces exchanged between the propeller and the flow have been obtained according to the
Actuator Line Method (ALM). This method has been introduced by Sorensen and Shen
[2002] and it has been used in many later works, for example by Ravensbergen et al.
[2020]. At first it had been studied in order to be applied in the project and analysis of
wind turbines, but it also can be useful for other interesting applications, such as analysis
of propellers or helicopters’ rotors. This method calculates the body forces through a
series of steps, resumed in the following lines.

For the implementation of the ALM we have written a subroutine in FORTRAN, which
has been later introduced in a CFD code implementing the resolution of N-S equations.
Given x, y, z, t, ρ, u, v and w as input parameters of our function, we need to compute
forces acting on the flow by means of the Actuator Line Method. Input values x, y and z
are the spatial coordinates while t is the time coordinate, ρ is the flow density, u, v and
w are the absolute velocity components. It is necessary to establish a reference system
related to the propeller. The origin will be set at the centre of the propeller and x will be
positive in the stream direction, positive directions for y and z axis can be found following
the right-hand rule.

As the very first step we need to know if the point (x, y, z) touches one of the blades
at the time t; if not, then the force will be equal to zero. We assume that the blade
is vertical at time t = 0 and we compute the angle between the blade and the vertical
axis at time t as θ = ωt, where ω is the rotational velocity of the propeller; we also
assume θ to be positive in clockwise direction while the propeller is seen from upwind.
If the propeller has more than one blade, which happens nearly always, all the following
calculations are iterated for other values of theta; indeed, the number of blades can be
introduced as a parameter, at the beginning of the subroutine. As a first approximation
we have considered each blade as a cylinder whose height equals the radius of the blade
and which basis has c (chord of the blade’s profile) as diameter; the following description
of the resolution method will be based on this approximation. We need to know if the
point in input falls inside the circle described by the rotation of the blade, which is true
only if

ð
y2 + z2 ≤ R, where R is the radius of the blade. Then we have computed the

distance between the point and the straight line which coincides with the axis of the blade,
if this distance is lower than c

2 the point is located on the blade.
In order to calculate this distance, we firstly had to write the equation of the straight

line. This could be done by knowing that this line is passing through two points, which
are the centre of the propeller (0, 0, 0), and the point of the axis of the cylinder which is
at the tip of the blade at time t: (0, −R sin θ, R cos θ). The equation of the straight line
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results to be:

x = 0; (3.5)
z = − y

tan θ
. (3.6)

Which, if written in parametric form, becomes:

x = 0; (3.7)
y = t; (3.8)

z = − t

tan θ
. (3.9)

Thus, the direction vector will result to be: r⃗ = [0 1 − 1
tan θ ].

It is also useful to compute the versor e⃗r = r⃗
∥r⃗∥ ; then the distance between the point

and the straight line can be easily computed: it is the norm of the vectorial product
between this versor and the vector which gives the position of the point with respect to
the origin of the axis, which is so: [x y z]. As said before, if this distance is lower than
c
2 we can go on with the rest of the calculations, otherwise the forces will simply be equal
to zero.

Propeller blades are divided into a certain number of discrete elements (20 in our
case) and an actuator point is located at the centre of each element. If the point in
input touches one of the blades, then it is possible to determine precisely, with a simple
calculation, which one of the elements is touched. After that, a certain value of r can be
chosen properly for the given point, where r is the radial coordinate of the actuator point
at the centre of the element considered.

An important variable of our problem is the fluid velocity relative to the rotating blade,
that we can compute as:

Vrel =
ñ

u2
rel + v2

rel. (3.10)
The relative velocity components are given by the combination of the fluid velocity and
the rotational component given by the propeller, and can be written as follows:

urel = u; (3.11)

vrel = −ωr + v cos θ + w sin θ. (3.12)
It can be useful to remind that u, v and w are the absolute velocity components, ω is

the rotational velocity of the propeller, θ is the angle between the blade and the vertical
axis at time t and r is the radial coordinate of the actuator point. It should be also
noted that these relative velocity components are located in a reference frame which is
rotating according to the propeller’s blade, urel is directed in the axial direction while vrel

is directed in the tangential direction.
Knowing the relative velocity components allows us to compute the angle that the

relative velocity makes with the rotor plane, which is called the flow angle, ϕ and is
determined as:

ϕ = arctan urel

vrel
. (3.13)
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3.2 – Computation of body forces

Then the angle of attack can be written as α = ϕ + γ, being γ the local pitch angle of
the blade. The α just defined is the geometric angle of attack, which is the angle between
the chord line and the free-stream direction, and it coincides with the aerodynamic angle
of attack (or simply angle of attack, AOA) only for symmetrical airfoils. Indeed, the angle
of attack is defined as the angle between the zero-lift line and the free-stream velocity and
for asymmetrical airfoils the zero-lift line is rotated of an angle α0 with respect to the chord
of the profile. So, if we have to consider an asymmetrical airfoil, the correct definition of
the angle of attack α will be:

α = ϕ + γ − α0. (3.14)

A simple representation of the reference frame adopted for the definition of the con-
sidered angles is reported in figure 3.1.

Figure 3.1. Velocity components acting on the blade element.

The computed angle of attack could be used along with the local Reynolds number to
obtain lift and drag coefficients, but in this implementation of the method we can assume
to have constant CD and CLα and so calculate the lift coefficient as CL = CLαα.

Lift and drag forces per unit length are computed using the well-known formulas:

L = 1
2ρV 2

relcCL; (3.15)

D = 1
2ρV 2

relcCD. (3.16)

Where ρ is the fluid density and c is the chord of the blade’s profile. Lift and drag must
be rotated in order to obtain an axial force FX and a tangential force FT , force along the
radial direction of the blade has zero magnitude. These are still forces per unit length, so
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they have to be multiplied by the spacing between the actuator points to obtain a force
expressed in Newton. We have:

FX = (L cos ϕ + D sin ϕ) R

NC
; (3.17)

FT = (L sin ϕ − D cos ϕ) R

NC
. (3.18)

R is the radius of the blade, while NC is the number of discrete elements in which the
blade has been previously divided.

As for the last step of this method, the aerodynamic force acting on the flow due to
the blade element is obtained combining axial and tangential forces computed before, and
is then divided into three components acting along directions x, y and z:

F1 = FX; (3.19)

F2 = FT cos θ; (3.20)

F3 = FT sin θ. (3.21)

It is useful to remind that we have assumed that the blade makes an angle θ with
the vertical axis, and the propeller rotates clockwise when seen from upstream. Since
the outputs of our function are the source terms of the aerodynamic force acting on the
flow, we compute these terms dividing the force components by the volume of the blade
element, which is given by:

V ol = π
c2

4
R

NC
. (3.22)

Another term has been added for the calculation of the torque acting on the blade
element considered, which is calculated as:

TQ = −Ftr. (3.23)

This term has also been divided by the volume of the blade element. Source forces acting
on each element of the blades, along the three directions, have been integrated to obtain
the total forces exchanged between flow and propeller, along directions x, y, z at a certain
time. The integration has been performed at each time step, and the same thing has been
done for source torque. Thanks to this integration we had obtained the thrust produced
at each time step, which coincides with force acting along direction x, and also the torque
acting on the propeller.
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Numerical results
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Chapter 4

Case study

4.1 Weick’s propeller
The case study considered is the propeller projected by Weick and discussed in the study
Weick [1930], it has also been analyzed by Tognaccini [2014], by means of the Blade-
Element Momentum Theory (BEMT), which has shown a good agreement with the ex-
perimental data.

This propeller was tested in the Twenty-Foot Propeller Research Tunnel of the National
Advisory Committee for Aeronautics, and it was mounted on a Wright "Whirlwind" J-5
engine. It is a three blades propeller with a radius of 1.587 meters, mounted on a hub
with a diameter of 20 centimeters, and all the blades were set at a pitch angle of 15.5◦ at
75% of the radius. The distributions of chord and pitch angle along the radius are given,
we can therefore choose a precise value of c and γ for each blade element. Blades were
all made to fit the same hub and were made of aluminum alloy, and a representation of
the single blade can be found in figure 4.1. We have assumed CD and CLα as constant
parameters and the values chosen are, respectively, 0.020 and 2π. The variation of chord
and pitch angle along radius is shown in figure 4.2, with pitch angle traced back to 0◦ at
75% of the radius (so we will have to add 15.5◦ to these values in order to have the real
local pitch angle of the blades).

Experimental tests were conducted and for a set of different values of density ρ, velocity
V∞ and rotating velocity n gave a set of different values for thrust T and expended power
P . These values were reduced to the well known coefficients of thrust CT (2.2), power CP

(2.3) and propulsive efficiency η (2.4) and plotted against the advance ratio J (2.1). In
these formulas D is the propeller diameter and n represent the revolutions per unit time
(round/s). The coefficients are dimensionless, so that any homogeneous system of units
can be adopted. Results are plotted in figure 4.3.

Tognaccini [2014] adopted the Blade Element Momentum Theory (BEMT) to deter-
mine the characteristic curves of the propeller proposed by Weick, this method has been
implemented with a code written in FORTRAN. Since in the expressions for the calcula-
tion of CT and CP given by the BEMT, the only unknown quantity is the angle of attack
α, three different methods for the determination of α have been introduced in this work.
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Figure 4.1. Blade of 10.5 ft diameter propeller (Weick [1930]).

Figure 4.2. Evolution of chord and pitch angle along radius (Tognaccini [2014]).
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4.1 – Weick’s propeller

In this code a correction for the effects due to the finite number of blades, as well as
a correction which accounts for radial velocity components, have been introduced. An
interesting part of this research is that in the calculation the blades were set at five dif-
ferent values for pitch angle, varying from 20◦ to 40◦. Results have shown a significant
increase in thrust and power coefficients, for higher values of pitch angle. Moreover, with
an increase in pitch angle, efficiency curves’ maximum shifts to the right, and the highest
level of efficiency is obtained for higher values of J . However, for high values of pitch
angle and low values of J , results for thrust and power are not reliable because the Blade
Element Theory does not account for stall conditions.

Figure 4.3. Performance of Weick’s propeller (Weick [1930]).
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Chapter 5

Results and conclusions

In order to compare results obtained with this implementation of the actuator line method
with experimental results, or even with results provided by other resolution methods, we
have taken the force along x axis acting on the flow and the torque acting on the propeller.

Expended power has been calculated as:

P = ωC. (5.1)

Where ω is the rotational velocity expressed in rad/s. At this point, thrust coefficient,
power coefficient and propeller’s efficiency have been calculated following, respectively,
formulas 2.2, 2.3 and 2.4; while the advance ratio has been calculated with formula 2.1.

As written before, in the first analysis we have used a relatively simple mesh, it’s a cubic
mesh which side measures 4 meters and it is composed by 68921 nodes. A mesh with a
side dimension that is not so bigger than the diameter of the propeller, can introduce wall
effects. However, this mesh can be adopted for a first evaluation about the reliability of the
method, and more precise results can be obtained while using bigger meshes. Indeed, after
these first simulations, a cubic mesh which side measures 16 meters has been adopted,
with three different levels of resolution. A less refined mesh with 40 cells per side, for a
total amount of 68921 nodes; a moderately refined mesh with 80 cells per side, for a total
amount of 531441 nodes; and an highly refined mesh with 160 cells per side, bringing the
total amount to 4173281 nodes.

A first comparison has been made to the results provided by Tognaccini [2014], who
adopted a resolution method based on the Blade Element Momentum Theory (BEMT),
which results are shown in figure 5.1 and 5.2, for five different values of pitch angle at 75%
of the chord. In the figures continuous lines and dotted lines can be seen. Continuous
lines show the results obtained with the first, less reliable, method adopted to calculate
α; in this method small angles of attack are assumed and the axial induced velocity is
assumed to be only function of the radial position on the blade. In the second method,
the only assumption made was that of small angles of attack, while in the third method
no simplifying hypothesis have been made. These two methods, more accurate, provided
results very similar between them, which are plotted by the dotted line.

The actuator line method implemented, with this first grid adopted, has provided
three different values of CT and CP for three different pitch angles (20 deg, 30 deg and
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40 deg); all these results have been obtained for three different advance ratio: J = 0.6537,
J = 0.4358 and J = 0.3268; which coincide with a rotational velocity of, respectively,
2000rpm, 3000rpm and 4000rpm. It should be noted that, even if Tognaccini suggested a
reference value of alfa0 = −3◦ for the analysis of Weick’s propeller, in his implementation
of the Blade Element Momentum Method he has adopted a simplifying assumption of
symmetrical airfoils. Therefore we have adopted α0 = 0◦ for this specific comparison.
Values obtained have shown a good agreement as it can be seen in tables 5.1, 5.2 and 5.3.
While graphical comparisons have been reported in figures: 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8.
We have plotted the evolution of CT in time for pitch angle of 20◦ at 75% of the blade,
and for a rotational velocity of 2000rpm, and the results are showed in 5.9.

Results obtained for thrust coefficient have shown a good agreement with the ones
provided by the method based on the BEMT. However, the comparison of values found
for the power coefficient shows less precise results, especially for higher values of the pitch
angle and for high rotational velocities. The overestimation of the power coefficient leads
inevitably to an underestimation of the propeller’s efficiency.

Figure 5.1. Thrust coefficients obtained with BEMT (Tognaccini [2014]).

J = 0.6537 J = 0.4358 J = 0.3264
CT BEMT 0.035 0.075 0.085
CT ALM 0.0315 0.0752 0.0772

CP BEMT 0.025 0.040 0.047
CP ALM 0.0287 0.0503 0.0490

Table 5.1. Comparison between ALM and BEMT for γ = 20 deg.
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Figure 5.2. Power coefficients obtained with BEMT (Tognaccini [2014]).

J = 0.6537 J = 0.4358 J = 0.3268
CT BET 0.125 0.160 0.175
CT ALM 0.1237 0.1677 0.1840
CP BET 0.100 0.105 0.105
CP ALM 0.1106 0.1326 0.1454

Table 5.2. Comparison between ALM and BEMT for γ = 30 deg.

Then the pitch angle has been brought to 15.5 deg, which is the value adopted by Weick
[1930], so that we could compare actuator line method results with experimental data.
The real airfoils were asymmetrical, so we have adopted a reference value of α0 = −3◦, as
suggested in bibliography (Tognaccini [2014]), and we have simulated the flow acting on
the propeller. Simulations have been performed for three different values of advance ratio:
J = 0.6537, J = 0.4358 and J = 0.3268; corresponding, respectively, to n = 2000rpm,
n = 3000rpm and n = 4000rpm. The results obtained with these simulations for the
thrust coefficient have shown good agreement with experimental data, even with the small
mesh adopted. However, also in this case, the results obtained for the power coefficient
and for the efficiency are less accurate, especially for rotational velocities of 3000rpm and
4000rpm. Results are shown in comparison with experimental data in figures 5.10, 5.11
and 5.12.

As written before three other meshes were also adopted, all these meshes were cubical
with a side of 16 meters, the less refined one had 40 cells per side, the second one had 80
cells per side, while the one with the highest resolution had 160 cells per side. Obviously
the time required for the simulations increases for a mesh with a larger number of nodes.
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J = 0.6537 J = 0.4358 J = 0.3268
CT BET 0.215 0.245 0.270
CT ALM 0.2200 0.2641 0.3011
CP BET 0.195 0.190 0.180
CP ALM 0.2225 0.2477 0.2621

Table 5.3. Comparison between ALM and BEMT for γ = 40 deg.

Figure 5.3. Comparison between BEMT and ALM resolutions for CT (γ = 20◦

at 75% of the blade).

We evaluated results given by the three simulations and compared them with experimental
data in figures 5.13, 5.14 and 5.15.

In order to evaluate the influence of domain dimensions on the accuracy of results, a
comparison has been made between results obtained for the mesh which side measures 4m
and the one which side measures 16m. The comparison has been made with the same level
of mesh refinement, which means 40 cells per side for the small mesh, and 160 cells per
side for the bigger one. Results are shown in figures 5.16, 5.17 and 5.18. This comparison
has shown that, in this case, wall effects introduced by the little mesh are very small, and
results obtained with the two different meshes are very similar. Of course, this observation
should not be considered valid in general; but we have found that, for this case study,
while adopting the implemented method, the effects of domain boundary are relatively
weak.

VisIt (Childs et al. [2012]) allows to visualize the evolution of variables such as entropy
or vorticity in the flow around a propeller. In figure 5.19 a visual representation of vorticity
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Figure 5.4. Comparison between BEMT and ALM resolutions for CT (γ = 30◦

at 75% of the blade).

Figure 5.5. Comparison between BEMT and ALM resolutions for CT (γ = 40◦

at 75% of the blade).

after some time steps is provided, this representation is the result of a simulation conducted
for the propeller considered with the bigger and most refined among the meshes adopted.
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Figure 5.6. Comparison between BEMT and ALM resolutions for CP (γ = 20◦

at 75% of the blade).

Figure 5.7. Comparison between BEMT and ALM resolutions for CP (γ = 30◦

at 75% of the blade).

Tip vortices introduced in the wake by the interaction between flow and propeller can be
distinctively seen in this representation.
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Figure 5.8. Comparison between BEMT and ALM resolutions for CP (γ = 40◦

at 75% of the blade).

Figure 5.9. Evolution of CT in time for γ = 20◦ at 75% of the blade, and for n = 2000rpm.

In conclusion, the implemented Actuator Line Method has proven himself as reliable
and with a relatively reduced computational cost. Future improvements to the method
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Figure 5.10. Comparison between experimental data and simulation results for CT
(γ = 15.5◦ at 75% of the blade).

Figure 5.11. Comparison between experimental data and simulation results for CP
(γ = 15.5◦ at 75% of the blade).

could provide even more accurate results, especially for the evaluation of the power co-
efficient. Comparisons between different meshes have shown that mesh refinement has
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Figure 5.12. Comparison between experimental data and simulation results for efficiency
(γ = 15.5◦ at 75% of the blade).

a relevant influence on accuracy. A possible strategy could be the adoption of a mesh
with a side which measures less than 16m but big enough to assure the avoidance of wall
effects, this mesh could be locally refined in the region of interest without causing a rel-
evant increase in computational cost. Another strategy could involve the subdivision of
the blades in a larger number of elements, while always choosing a precise value of chord
and pitch angle for each blade element.
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Figure 5.13. Comparison between results derived with three different cubical meshes
with a side of 16 meters for CT (γ = 15.5◦ at 75% of the blade).
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Figure 5.14. Comparison between results derived with three different cubical meshes
with a side of 16 meters for CP (γ = 15.5◦ at 75% of the blade).
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Figure 5.15. Comparison between results derived with three different cubical meshes
with a side of 16 meters for η (γ = 15.5◦ at 75% of the blade).

Figure 5.16. Comparison between results obtained with two meshes with different di-
mensions and same refinement for CT (γ = 15.5◦ at 75% of the blade).
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Figure 5.17. Comparison between results obtained with two meshes with different di-
mensions and same refinement for CP (γ = 15.5◦ at 75% of the blade).
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Figure 5.18. Comparison between results obtained with two meshes with different di-
mensions and same refinement for η (γ = 15.5◦ at 75% of the blade).
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Figure 5.19. Vorticity around a propeller rotating at 4000rpm.
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