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Abstract

Unmanned Aerial System (UAS) imagery has enabled very high-resolution multispectral image
acquisition. In this study images acquired by UAS or generally known as drones are our main data,
which have been used to perform the Structure from Motion (SfM) Approach and produce the
Digital Elevation Model (DEM) and orthophotos (orthomosaics) of five spectral bands of Red,

Green, Blue, Red-Edge and Near-Infrared.

Detection of wet areas and classification of land cover based on these images using the Machine
Learning (ML) algorithm named Random Forest (RF) is our main purpose in this project.
Orthophotos of the SfM process have been used as inputs for a machine learner in different
scenarios. Starting from Random Forest Classifier, 3 different datasets consisting of RGB only,
Multispectral only consisting of Red-Edge and Near-Infrared, RGB plus Multispectral for

classification of the area have been used in three different test areas in two time epochs.

Therefore, another objective of this study is to investigate the performance of spectral bands
(number of included bands and related wavelength) in the classification and wet area detection,
to probe whether RGB (visible) light provides better results for our goal or multispectral data (Red-
Edge and NIR) outperform in this analysis, or whether combining visible and Multispectral data is

a superior alternative or not.

In our case study for the sake of simplicity of comparison between implemented methods of
classification and strength of datasets and to probe the most effective features in all seasonal

conditions, only three classes have been analyzed including Vegetation, Water, and Ground.

Furthermore, in another time epoch in the summertime, in addition to spectral features used in
the previous epoch, the capability of vegetation indices, elevation, and texture features in the
classification of land cover and detection of the wet riparian area in the case study are assessed.
There are many existing methods for the classification of land cover based on UAS images, but
very high-resolution centimetre-level data are of main importance in this analysis. Outstanding

results have been produced in both epochs considering three extremely accurate performance



analyzers of precision, recall, and F-core which are originally based on True Positive, True Negative,
False Positive, False Negative concepts.

Additionally, in this research, the most decisive and effective features based on a selection tool in
python programming language have been discovered to compromise the accuracy of the
classification and the number of effectual features and save processing time and power in future

similar studies.

Keywords: Machine learning, classification, UAS, spectral features, land cover.
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Chapter 1 Introduction

Chapter 1
1- Introduction

According to several reports, consequences of global warming and climate change including
severe droughts, saltwater intrusion into groundwater, shrinkage of glaciers, in addition to the
increased water demand due to economic developments, fast urbanization, and population
increase, have combined to result in an estimated 40% global water shortage by the year 2030.
Hence, in addition to improvements in the conservation, distribution, and management of water
resources, ensuring that new sources of fresh water can be readily available is essential in order
to meet the increasing demand (Clara Skuse, 2021).

Classification of land cover to detect wet and moist areas is highly important for urban and
environmental planning (Chaturvedi and de Vries, 2021). Furthermore, one of the crucial pillars of
climate change is connected to water in different media, from lakes and rivers to soil water
(Mahboubi, et al., 2022). Hence, detecting water in various environmental media is one of the
essential steps in facing climate change (Lidberg et al., 2020). Since as climate changes and the
earth warms up, the drier areas of earth become drier and lose all their wet resources from the
lake, rivers, and even soil moisture. Since there is no direct and straightforward way to measure
rainfall and evaporation from the surface, automatic artificial intelligence tools for the detection

of wet areas enables researchers to detect dried areas, especially in the riparian river area, which



Chapter 1 Introduction

is expected to be the moistest areas and assess the effect of climate change (Schneider, et al.,
2010).

Today, the widespread use of UAS imagery has provided a variety of very high-resolution image
data sources for machine learning classifiers. There are several reasons that UAS or drones are a
pleasant choice for scientists nowadays. To name a few, we can mention drones’ appropriateness
for hazardous and hard-to-reach areas, where it contains risks for human/operator health, and
they can easily fly over the hazardous area with the drone. The second enormous advantage of
drones would be their cost-efficiency. Considering that in a short period, there is the possibility of
several flights and the acquisition of thousands of images, they are an extremely economic choice.
Furthermore, the possibility of reacquisition of data helps to have high-quality data at the end of
the acquisition phase. Last but not least, very high-resolution data acquired by drones, which is a
result of GPS systems enabled on drones, enables researchers to have very accurate results for
different purposes such as identification of weeds, monitoring crop health, crop damage, crop
assessment, field soil analysis, Irrigation Monitoring, classification, etc. (Singh, et al., 2022).

The efficiency and potential of machine learning classifiers have made the classification purpose
more precise and efficient (Jiang et al., 2021). UAS outperforms traditional approaches for data
acquisition thanks to their high temporal and spatial resolution (Merlino et al., 2020; Banerjee et
al., 2020). Considering their low cost, it is possible to have several flights in different epochs
(Jiménez-Jiménez et al., 2021).

After data acquisition, to have a 3D map of the area, the Structure from Motion (SfM) approach
was implemented. SfM lies in the simplified concept of production of a 3-D model or a digital twin
from a bunch of 2-D images, and in order to produce this model, it looks up for similar features in
the images and finds the corresponding points in each couple of images. Hence, to have a
successful 3-D model, there should be overlap in the images in the acquisition phase, the amount
of overlap can be controlled by the operator in the acquisition phase (Francisco Agliera-Vega,
2018).

Classification of the study area is based on a Machine Learning algorithm in this project. Machine
learning is a sub-category of Artificial Intelligence and it can be referred s predictive modeling.
Machine learning involves the use of algorithms that receive and analyze some input data/features

and predict output values based on these algorithms. These algorithms learn from new data and
2
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optimize their operations in order to improve performance and accuracy, hence they gradually
become intelligent.
The four types of machine learning algorithms are supervised, semi-supervised, unsupervised, and
reinforcement learning. Our focus will be on the Supervised algorithms, since we are able to
provide training data for our algorithms, in other words, can teach the machine by some examples.
Based on some known inputs and outputs for the machine by users, its responsibility is to figure
out how to reach those outputs based on the given inputs, hence, it intelligently tries to figure out
the methodology. Operators know the right answers to problems, but algorithms identify patterns
in data, learn from observations, and predict. Level of accuracy and performance attained by the
algorithm by making predictions will be checked by the operator until it reaches a high degree of
performance.

There are Three kinds of supervised learning:

a) Classification: Machine learning programs are used for classification tasks, where they draw
conclusions from observed values and determine which values are relevant to which class.

b) Regression: In regression, machine learning programs are required to estimate - and
understand - how variables are related and what is the pattern in the data (Mahboubi, et al.,
2022).

c) Forecasting: Based on past and present data, forecasting makes predictions about the future
and is often used to analyze trends (F.Y,, et al., 2017).

In Unsupervised algorithms, clustering | based on similarities and differences between data

themselves, so there is no information about classes and their characteristics in the first place. In

a semi-supervised, there is some information available about labels, and the relationship between

data and input data, in this method portion of labeled data is a few in respect to unlabeled data.

In reinforcement learning, there are methods for each step of the model.

Our focus will be on the classification task of machine learning considering three available classes

in the riparian river area. There are several methods for the classification of multispectral UAS data

(Iglhaut et al., 2019).

Random Forest (RF) Classifier is based on the decision of several trees, meaning that it uses several

trees (so a forest) and the concept of sub-sampling to make the prediction more precise and more

accurate (Rodriguez-Galiano et al., 2012; Lowe and Kulkarni, 2015). Random forest algorithms are
3
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built on decision trees. Decision trees are tree-like structures that provide decision support. There
are three components to a decision tree: decision nodes, leaf nodes, and the root node. Training
datasets are divided into branches that are further divided into sub-branches by a decision tree
algorithm. A leaf node is reached at the end of this sequence, which cannot be divided anymore.
In a decision tree, nodes show the attributes that can be used to predict outputs, and decision
nodes provide the linkage with leaves.
The following steps represent the steps of the Random Forest classifier:

a) Random forest takes n random records from a data set with k records

b) A decision tree is constructed for each sample

c) Decision trees produce output

d) The final output is decided based on the majority number of votes based on several

decision trees.

Random Forest is used for our classification purpose, Figure i shows a schematic diagram of the

RF structure for a classification purpose for a given dataset (Random Forest Models, 2022).

Random Forest Classifier

X dataset

I

atures N, features N, features N, features
TREE #1 TREE #2 TREE #3 TREE #4
CLASS C CLASS D CLASS B CLASS C

MAIORITY VOTING

FINAL CLASS

Figure i. Random Forest Structure

In the following chapters, after the introduction of sensor characteristics, acquired data, and study
area, the first Structure from Motion procedure will be illustrated considering all steps and results

of Orthophotos of different spectral bands, and Digital Elevation Model (DEM) will be presented.
4
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Then in the next part, the Machine Learning classifier, RF will be used in different scenarios in two
different time epochs for three different test areas to detect the wet areas in the Riparian region
of a river and perform the classification. Hence, in this study, the performance of the RF classifier
in classification and wet area detection, based on three different combinations of spectral bands
will be assessed, and then, the classifier’s improvement after adding some extra features including
spectral indices, elevation, and texture features for the second time epoch will be analyzed, and
the most effectual features for classification of land cover and detection of wet soil and waterbed
will be discovered.

Table 1 shows different spectral indexes. The most useful features are selected using the “Select

III

from Model” function in the scikit-learn package.

Table 1. Vegetation indexes and corresponding references

Abbrev
Formula Author and Year
iation
Normalized Difference NIR — RED (Abderrazak et al.,
NDVI _—
Vegetation Index NIR + RED 1996)
Normalized Difference —
NDWI Green = NIR (Ceccato et al., 2002)
Water Index Green + NIR
Normalized Difference Red- NIR — RE
NDRE — (Clarke et al., 2001)
Edge NIR + RE
Anthocyanin Reflectance 1 1
ARI S (Miura et al., 2008)
Index Green RE
Enhanced Vegetation Index NIR — RED
EVI2 2.4 % (Miura et al., 2008)
2 NIR + RED + 1
Soil Adjusted Vegetation NIR — RED
SAVI 1+L Ahamed et al., 2011
Index NIR+RED+ L) T )
Structure Insensitive —
SIP| sip] = VIR — Blue (Xue & Su, 2017)
Pigment Index NIR — Red
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NDVI: the most basic way to assess if vegetation is healthy or not. Negative values of NDVI show
there is probably water instead of vegetation. Low values of NDVI show the presence of less or no

vegetation, a high value shows the presence of dense vegetation.
NDWI: the most basic index to evaluate the water/moisture content of vegetation.

NDRE: another index for measuring the health of vegetation based on multispectral data, in other

words, it measures the amount of chlorophyll in the plants.

ARI: Weakening vegetation contains higher concentrations of anthocyanins, so this index is one
measure of stressed vegetation. Increases in ARI1 indicate canopy changes in foliage via new
growth or death. It uses reflectance measurements in the visible spectrum to take advantage of

the absorption signatures of stress-related pigments.
EVI2: it has improved sensitivity in high biomass regions and a reduction in atmosphere influences.
SAVI: it attempts to minimize soil brightness influences using a soil-brightness correction factor.

SIPI: it maximizes sensitivity to the bulk carotenoids to chlorophyll ratio while minimizing the

impact of the variable canopy structure. Larger SIPI values represent more stress.

Most of the processings in this project are performed by two tools:

a) QGIS software: QGIS stands for Quantum Geographic Information Systems. This publicly
available and free software is mainly used for mapping and related geospatial tasks. As a
license is not needed, any type of user can make use of QGIS. There is no limitation on the
tools that can be utilized, and numerous plug-ins can be easily installed to execute different
complex processes. This geospatial software has very good data processing times compared
to other technologies of the same kind such as some of the ESRI Desktop tools. QGIS was
mainly used for vector data preprocessing steps such as digitization and for raster visualization
of RF predictions (QGIS, 2022).

b) Python Programming language: a very popular computer programming language that is being
used in different disciplines. It has an object-oriented approach that facilitates coding in a

logical and clear way. It can be applied in a wide range of small- and large-scale projects,
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allowing to conduct data analysis, software development, and complex data visualization.
Python is an open-source and freely available service that supports a wide variety of modules
and libraries that assist users in different fields. Libraries and geopackages are user-friendly
and easy to import and execute. The machine learning model and random forest classifier that
was used for class prediction were based on python language (Python Programming Language,

2022).

As for limitations of this project is consideration of only three classes of water, vegetation, and
ground, but since our purpose is focused on the methodology development itself and best features
detection, we have continued with these three classes, and then, in future work, the selected
features can be used to perform the classification for a larger number of classes, for example,
different types of vegetation, grass, large trees, bushes, etc.

Another limitation of this study is focusing on only five multispectral bands. In a more developed
work, hyperspectral data with more spectral features can be considered (Maimaitijiang, et al,,
2020).

Therefore, what is examined in this thesis is to answer the following questions:

v" Whether UAV data can perform the classification of the riparian area and detect wet
areas?

v" Whether visible bands of the UAV data are able to perform classification of the riparian
area and detect wet areas?

v' Whether adding other multispectral bands to visible bands improves the classification?

v" Whether adding other features of elevation/ vegetation indices/ texture improves the
classification?

v" Which features play the most decisive role in the classification?

The overall overview of investigations carried out in this thesis is presented in Figure j:
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Chapter 2

2- State of the Art

For data acquisition, UAVs outperform traditional approaches. The high temporal and spatial
resolution of the UAV systems is impressive (Merlino et al.,, 2020; Banerjee et al., 2020).
Considering their low cost, it is possible to have several flights in different epochs (Jiménez-
Jiménez et al.,, 2021) and investigate the area for different purposes for example their evolution.
After data acquisition to have a 3D map of the area, the Structure from Motion (SfM) approach
will be implemented, which can be considered as a combination of computer vision and image
analysis (Iglhaut, et al., 2019). In traditional softcopy photogrammetric methods, the 3-D location
and pose of the camera (s), or the 3-D location of ground control points, must be known in order
to facilitate the triangulation and reconstruction of a scene, on the other hand, a highly redundant
bundle adjustment based on matching features in multiple overlapping, offset images is used by
the SfM method to solve camera pose and scene geometry simultaneously and automatically

(Westoby, et al., 2012).

Classification of a riparian area of the river has high importance for decision-makers. Land-use
planning for water-quality security can benefit from an understanding of the connections between
land use, landscape patterns, and riverine water quality (Zhang, et al., 2022). In (Zhang, et al.,
2022) 67 water samples were collected and analyzed in northwest China's Jing River Watershed

(JRW) from 2016-2017. The Canadian Water Quality Index (CWQI) was calculated using remote
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sensing images from Sentinel-2. In a riparian buffer zone, Random Forest classification was used
to describe current LULC patterns and compute landscape metrics. By collecting geospatial data
continuously over large areas, remote sensing technology makes it possible to understand riparian
shape, function, and change over time (Rusnak, et al., 2022). A review of studies published from
1991 to 2021 that used remote sensing techniques to map and understand riparian habitats and
their ecological functions is provided in (Rusnak, et al., 2022). The 257 articles reviewed fell into
six major categories (physical channel properties; morphology and vegetation or field surveys;
canopy detection; use of vegetation and water indices; riparian vegetation; and fauna habitat
assessment). In most studies, aerial RGB imagery was used for river reaches up to 100 kmin length,
and Landsat satellite imagery for river reaches of 100 to 1000 km in length. Based on (Rusnak, et
al., 2022), over the past decade, unmanned aerial vehicles (UAVs) have been widely used for low-
cost monitoring and mapping of riverine and riparian environments. A major challenge remains
the transfer of RS data to managers and stakeholders for systematic monitoring in order to ensure

the successful management of riparian zones.

As a result of climate change, flash floods are expected to intensify and become more frequent in
the Mediterranean region. This will also have an impact on the adjacent riparian vegetation
(Koutalakis, et al., 2020). In this study, UAV images were used to capture and record flood debris
events and fluvial-geomorphological changes along the Kallifytos torrent in northern Greece. By
using UAV images validated using field data and a visual protocol, a novel approach was developed
for detecting changes in riparian vegetation and assessing conditions. Following major floods, the
orthomosaics clearly showed changes in the torrent bed and debris flow events. UAV images are
highly useful for capturing, recording, and monitoring fluvio-geomorphological events and riparian

vegetation (Koutalakis, et al., 2020).

There are several methods for the classification of multispectral UAV data such as support vector
machine (SVM), neural networks, maximum likelihood, and Random Forest (RF). Random Forest
Classifier is based on several decision trees, in which for classification purposes, each tree decides
a class, and at the end, the class with a maximum number of votes is selected as a class for the
input (Maimaitijiang, et al., 2020), hence the analysis is based on the decision of several trees, and

it results in a highly accurate and precise classification (Rodriguez-Galiano et al., 2012). Neural
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networks on the other hand produce more accurate and satisfying results in the presence of a

large number of images for their training purpose (Lowe & Kulkarni, 2015; Osco, et al., 2021)

Classification based on the UAV data can be performed for different contexts. For instance, Using
UAV imagery, (Gevaert, et al., 2017) gets high classification accuracy in challenging classification
problems for the analysis of informal settlements based on integrating 2D radiometric and textural
features, 2.5D topographic features, and 3D geometric features. The aim is to identify salient
features for specific objects in heterogeneous urban environments by comparing UAV datasets
from informal settlements in two different countries.

Classification based on machine learning algorithms can be either feature-based or object-based.
An example of an object-based approach is presented in (Franklin & Ahmed, 2018), As a result of
segmenting images, the resulting objects were visually confirmed to correspond to the sampled
tree crowns. An independent validation sample of 23 tree crowns produced results of
approximately 78% accuracy based on machine-learning classification using the Random Forest
algorithm and finally, the most distinct species were birch and aspen; maples were confused with

each other and with immature trees and shrubs under the understory.

Scientific studies also utilize RF for a variety of topics, for instance, (Zhang, et al., 2022) uses two
machine learning methods of Multilayer Perceptron (MLP) and Random Forest (RF) for the
prediction of coal self-ignition tendency (Zhang, et al., 2022), and (Nasir, et al., 2022) uses Machine
learning algorithm for Water quality classification (Nasir, et al., 2022). (Al-Awar, et al, 2022) utilizes
four machine learning algorithms of support vector machine (SVM), random forest (RF), regression
tree (CART), and backpropagation network (BPN) to select the most robust one for classification

of the crop maps (Al-Awar, et al, 2022).

Focusing on agricultural purposes, in (Shen, et al., 2022) study, UAV multispectral and UAV data
are used to perform a crop vyield prediction estimation based on a long short-term memory neural
network and random forest (LSTM-RF) tool, and finally LSTM-RF model obtained better prediction

results compared to the LSTM.
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With the same token, (Alabi, et al., 2022)did soybean yield estimation. Based on the multispectral
images of UAV from five variety trials during the 2020 growing season in Nigeria. UAV-based
spectral bands, canopy height, vegetation indices, and texture features have been utilized to
estimate crop grain yield using five machine learning (ML) regression models, including Cubist,
Extreme Gradient Boosting (XGBoost), Stochastic Gradient Boosting (GBM), Support vector
machine (SVM), and Random Forest (RF).

In a similar study, (Impollonia, et al., 2022) considers multispectral images of UAV in Italy and the
UK in 2021 and 2022 to analyze the possibility of high-throughput phenotyping (HTP) of novel
Miscanthus hybrids to estimate the yield prediction, to do this, they use Random Forest using Vls
time series and predicted yield using peak descriptor derived from Vls time series.

In order to perform change detection on macro landforms, (Tavakol, et al., 2022) performs a
classification. The methodology performed is based on two approaches, first, a supervised
classification based on Random Forest, the three major classes of soil microforms, vegetation, and
galls were identified and classified into five classes, then a deep learning neural network is used
to classify area into 5 classes (Tavakol, et al., 2022).

(Nikolakopoulos, et al., 2022) propose a method to acquire UAV data over landslide areas with
various characteristics. In this study, ortophotos and digital surface model is produced based on

the SfM method, as is ours in this research.

An analysis of multispectral UAV images to classify burn severity is presented in (Shin, et al., 2019)
study. In the analysis of burn area severity, determining the burned surface area is challenging
since it appears unburned in aircraft or satellite images. They processed a mosaic reflectance
image from a RedEdge multispectral UAV image after a forest fire. As training and validation
samples, hundreds of samples were collected for each burn severity class. In order to classify the
data, maximum likelihood methodology (MLH), spectral angle mapper (SAM), and thresholding of
the normalized difference vegetation index (NDVI) were employed. Even though unburned pine
and unburned deciduous trees exhibited some confusion, the classifiers also showed high accuracy

for identifying burned surfaces.
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The study performed by (Feng, Liu, & Gong, 2015) includes analyzing how classification accuracy
changes with texture window size in urban vegetated areas using a hybrid method using Random
Forest and texture analysis. To add ancillary data to RGB images, six less-correlated second-order
texture measures were calculated at nine different window sizes. The spectral-textural feature
space was classified using a Random Forest classifier consisting of 200 decision trees. According
to the results, Random Forest outperformed traditional Maximum Likelihood classifiers and
matched object-based image analysis in urban vegetation classification, and incorporating texture

features improved classification accuracy significantly (Feng, Liu, & Gong, 2015).

A ranking-based approach is proposed by (Ramos, et al., 2020) to further potentialize the RF
method for predicting maize vyields. In this approach, the correlation coefficient between
individual vegetation indices (VIs) is used as a method of estimation. VIs were ranked using RF
against a baseline method to measure the improvement in Pearson's correlation coefficient. As a
result, the RF model only included the most relevant Vls. Using multispectral imagery from UAVs
(unmanned aerial vehicles), 33 ViIs were extracted. The ranking-based analysis found that NDVI,
NDRE, and GNDVI combined were the top three factors in predicting maize yields. Moreover, their
approach outperformed previous machine learning methods, such as support vector machines

and artificial neural networks (Ramos, et al., 2020).

(Zeybek, 2021) talks about the importance of classification in a general context. A two-dimensional
cadastral map or a topographic map can be produced using three-dimensional (3D) point clouds
in the form of UAV-based images. It is necessary to classify point clouds since they are subjected
to various analyses for the purpose of extracting further information from direct point clouds. The
high density of point clouds makes it challenging and time-consuming to process data and gather
information. As a result, the classification process enables the acquisition of valuable information
in an optimal manner. Random forest machine learning algorithms are applied to radiometric
features (Red band, Green band, Blue band) as well as geometric features (curvature,
omnivariance, flatness, linearity, surface variance, anisotropy, normalized terrain surface).
Additionally, the proposed methodology is tested against UAV-based point clouds to obtain

accuracy and performance using the random forest method (Zeybek, 2021).
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In (Zan, et al., 2020), a method for automatic detection of maize tassels by random forest (RF) and
VGG16 was developed based on time series RGB images from unmanned aerial vehicles (UAVs)
with maize at the flowering stage. To determine potential tassel regions, the RF first segmented
UAV images into tassel and non-tassel regions; then, morphological methods were employed and
they randomly selected 50 plots from UAV images to demonstrate the performance of the

proposed method (Zan, et al., 2020).

Some studies perform a similar methodology with a different kind of input dataset. In (Ayala-
lzurieta, et al., 2017), a spectral vegetation index (SVI) and ancillary geographic data were used to
map vegetation based on random forest and to analyze variables that help differentiate vegetation
cover, and (3) to evaluate the reliability of the vegetation cover classification in hard-to-reach
Ecuadorian mountain regions. Satellite images from Landsat 7 ETM+, a Random Field Coefficient
algorithm, and stratified sampling were used. As with the traditional and often used normalized
difference vegetation index (NDVI) in other settings, the altitude, and the two-band enhanced
vegetation index (EVI2) give more information on vegetation cover than the traditional and usually

used two-band enhanced vegetation index (EVI2) (Ayala-lzurieta, et al., 2017).

With the help of UAV imagery, (Marin, et al., 2021) propose a method of detecting Coffee leaf rust
(CLR) severity. Farmers can improve disease management procedures and reduce losses
associated with CLR by identifying the symptoms, severity, and spatial distributions of the disease.
So for this purpose vegetation indices alongside machine learning algorithms have been used

(Marin, et al., 2021).

The most essential objective of my study is to investigate the performance of datasets (number of
considered features) in the classification and if adding other features, including elevation
(Normalized Digital Surface Model (nDSM)), spectral (thermal data and vegetation indexes), and
texture features can be of benefits for classification. There are several studies to investigate the
classification capability based on an RF classifier (Jiang, et al., 2021; Rodriguez-Galiano, et al,,
2012), but focusing on the goal of wet area detection considering different combinations of very

high-resolution multispectral bands (centimeter-level data) and adding other features, including
14
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elevation, spectral (thermal data and vegetation indexes), and texture in two different epochs

highlights the innovation of this research.

Data were acquired using a commercial solution drone DJI Phantom 4. The drone contains an RGB
sensor and separate blue, green, red, RE, and NIR sensors. During the data collection, some GCPs
have been surveyed to assess the accuracy of the georeferencing of the embedded GNSS dual-

frequency sensor.

The study area was mapped using the DJI Phantom 4 drone. Besides the RGB camera, the sensor
contains blue, green, red, red-edge, and near-infrared multispectral cameras. Among the sensor's
unique features are its integrated sunlight sensor. Positioned on the body's upper part, the sensor
detects the sun's irradiation, optimizing the quality of the collected data. In addition, RTK
positioning accuracy without internet connection is enhanced by connecting P4 Multispectral to
D-RTK 2 high precision GNSS mobile station, or NTRIP protocol (for RTCM data transfer over the
internet) via a 4G dongle or WiFi hotspot. By using DJI's TimeSync system, it is possible to capture

accurate, real-time positioning data by capturing images from six cameras.

The TimeSync system continuously updates the attitude of the flight controller, the RGB and NB
cameras, and the RTK module, keeping the positioning data accurate at the center of the CMOS
sensor and providing accurate metadata for each image. Calibration of all cameras includes

measuring radial and tangential lens distortions.

To adapt the post-production software to the needs of each user, distortion parameters are
acquired and saved in the metadata. According to DJI, this new platform comes with the same
powerful features as its Phantom 4 series drones, such as a flight time of 27 minutes and a
transmission distance of seven kilometers. Figure 1 shows the sensors and multispectral bands
utilized for data acquisition including the DJI phantom4 drone for multispectral data acquisition in
both April and July epochs and Thermal XT2 camera in the July epoch. Table 2 shows the technical

characteriscitcs of phantom4 drone.
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Figure 1. Up left: DJl phantom4 camera, up right: 6 spectral bands of phantom4 drone, bottom: Thermal camera XT2

Table 2. Technical characteristics of the DJI phantom4 sensor

Sensors Six 1/2.9"CMOS sensors, including an RGB sensor for visible lightimages and five monochrome sensors for
multispectral image acquisition.
Each Sensor: 2,08MP Effective Pixels (2,12MP Total)

Filters: Blue (B): 450nm £ 16nm, Green (G): 560nm = 16nm, Red (R): 650nm = 16nm, Red-Edge (RE): 730nm + 16nm, near
infrared (NIR ): 840 nm £ 26 nm

Aims FOV (field of view): 62.7 ©
Focal length: 5.74mm (35mm equivalent format: 40mm), « autofocus
Aperture: f/2.2

RGB sensor ISO range 200-800

Gain of the monochrome sensor 1-8x

Global electronic shutter 17100 - 1/20000 s (visible light); 1/100- 1/10000 s (multispectral)

Maximum image size 1600 x 1300 (4: 3.25)

Photo format JPEG (visible light images) + TIFF (multispectralimages)

Supported file systems FAT32 (< 32GB); exFAT (> 32 GB)

Supported SD cards microSD with a minimum write speed of 15MB/s. Capacity: 128GB. Class 10 or UHS-1 standard
Operating temperature 0-40°C
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Chapter 3

3- Methodology

3-1- Theoretical Background

3-1-1- Structure from Motion

The two most important methodologies used in this study are Structure from Motion (SfM) and
Classification based on the Random Forest classifier. SfM technique works on the fact that several
images are acquired from different angles from the object or in our case the area and overlapped
photogrammetry produces 3D structures (lglhaut, et al., 2019). After data acquisition in order to
have a 3D mapping of the area besides producing a Digital Elevation model and orthomosaic of
the area, an approach is implemented in the Metashape software, which can be considered as a
combination of computer vision and image analysis. StM technique works on the fact that several
images are acquired from different angles (both nadiral and oblique) from the object or in our case
the area and overlapped photogrammetry produce 3D structures. The concept behind this
technique is called SIFT or Scale-Invariant Feature Transform (Francisco Agliera-Vega, 2018). Data
acquired by high-resolution UAV systems follow a chaotic behavior meaning that there is high
rotational and angular variation during acquisition time and high distortions. So, the post-

processing technique for producing 3D models and DEM should be strong for this purpose. that is

17



Chapter 3 Methodology

the reason for using the introduced SIFT method for UAV imagery data processing since it has a
steady behavior in presence of translation and rotation of the UAV images. On-board GNSS
receivers of the UAVs allow for location data acquisition in the collection phase and in order to
increase the positioning accuracy Ground Control Points can be manually collected during the
campaign, in this way the result is a high accuracy DEM and Orthomosaic (Darren Turner *, 2012).

The flowchart in Figure 2 represents the main steps included in the SfM (Iglhaut et al., 2019).

Adding photos

|

Interior Orientation of Camera

Align Photos

Georeferencing

|

Optimal Alignment

Building Dense Point Cloud

<+—— Build Mesh Orthophoto

Build Texture

Figure 2. Structure from Motion procedure

3-1-2- Machine Learning Classification

So-called Intelligent Systems are frequently employed for the task of supervised classification.
Artificial Intelligence has been used to develop a large number of techniques (Logic-based
techniques, Perceptron-based techniques) as well as Statistics (Bayesian Networks, Instance-
based techniques). Using predictor features, supervised learning builds a concise model of the

distribution of class labels. As a result of the classifier, class labels are assigned to instances that
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have known predictor features but unknown class labels (Kotsiantis, Zaharakis, & Pintelas, 2006).
Remotely sensed imagery can be effectively and efficiently classified using machine learning.
Handling data with high dimensionality and complex characteristics are two of the strengths of

machine learning (Maxwell, Warner, & Fang, 2018).

Random Forest Classifier as can be understood from its name is based on several decision trees in
which for classification purposes, each tree decides a class and at the end, the class with the
maximum number of votes is selected as a class for the input, hence the analysis is based on the
decision of several trees, and it results in a highly accurate and precise classification (Barrett Lowe,
2015). Each tree in the random forest spits out a class prediction and the class with the most votes
becomes our model’s prediction. The fundamental concept behind random forest is a simple but
powerful one, the wisdom of crowds: A large number of relatively uncorrelated models (trees)
operating as a committee will outperform any of the individual constituent models. In other words,
A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-
samples of the dataset and uses averaging to improve the predictive accuracy and control over-

fitting in this project (Ronald Kemker C. S., 2018).

In the April epoch, orthophotos of 5 multispectral bands have been used as input features for the
RF classifier. Furthermore in the summer epoch, besides 5 considered spectral channels, Elevation
data of Normalized Digital Surface Model, Spectral data including Thermal data and Vegetation
Indexes including NDVI, NDWI, NDRE, ARI, EVI2, SAVI, SIPI, and Texture features including Angular
Second Moment, Contrast, Correlation, Variance, Inverse Difference Moment, Sum Average, Sum
Variance, Sum Entropy, Entropy, Difference Variance, Difference Entropy, Information Measures
of Correlation, Maximal Correlation Coefficient as described in (ROBERT M. HARALICK, 1973) have
been added with the purpose of improving the classification result. Considering all features and

bands into account generally 27 attributes for each pixel are available in the dataset.

In the summer epoch, the best-selected dataset from the previous epoch beside extra features
including nDSM, thermal and vegetation indexes, and texture features, are added to improve the

classification (Haralick et al., 1973) and to find out about the most effective features in the
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classification of the area using RF. Considering all features and bands, 27 attributes for each pixel

are available in this dataset.

3-1-3- Performance Assessment

Validation- Evaluation of classification goodness- Python: in this level, the prepared validation data
will be as input for the python program and classification goodness will be examined through
evaluation tools. For this purpose, first, some concepts for accuracy assessment should be

explained.

Performance Assessment: Before introducing performance analyzers, four basic concepts of
machine learning techniques for classification should be established. True Positive, True Negative,

False Positive, False Negative.
True Positive (TP): positive outcomes that the model predicted correctly.
True Negative (TN): negative outcomes that the model predicted correctly.

False Positive (FP): positive outcomes that the model predicted incorrectly. This is also known as

Type |l error.

False Negative (FN): negative outcomes that the model predicted incorrectly. This is also known

as Type Il error.

Classification Accuracy: Classification accuracy or simply accuracy is the ratio of the number of
correct predictions to the total number of input samples and it usually works well when the
number of samples in classes is mostly symmetrical, otherwise when the dataset includes
misbalanced classes accuracy may give us the false sense of achieving high accuracy.

| ~ TP + TN
CeUracy = Tp Y FP+ TN + FN

Precision: The number of correct positive results divided by the number of positive results

predicted by the classifier.

TP

p . . -
recision TP + FP
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Recall: It is the number of correct positive results divided by the number of all actual samples.

TP

Recall = TP+—F1V

F1 Score: The F1 Score is the weighted average or Harmonic Mean between precision and recall.
The range for F1 Score is [0, 1] and it represents how precise the classifier is (how many instances

it classifies correctly), as well as how robust it is (it does not miss a significant number of instances).

Precision*Recall_ TP

F1 score = 2 % — =
Precision+Recall TP+E(FP+FN)

Confusion Matrix: A Confusion matrix is an N x N matrix used for evaluating the performance of a
classification model, where N is the number of target classes. The matrix compares the actual
target values with those predicted by the machine learning model. This gives us a holistic view of
how well our classification model is performing and what kinds of errors it is making. Classification
accuracy can hide the detail needed to diagnose the performance of the model. But details can be
detected by using a confusion matrix and generally the confusion matrix shows the ways in which

the classification model is confused when it makes predictions.

Validation in python: The input file in this stage is the prepared validation data and the idea is that
based on the Random Forest Classifier, the predicted label of points will be compared to the
known label of the point, and this procedure will get repeated for all points in the validation data
and finally an accuracy score based on the probability of correct predictions will be computed.
Crucial libraries from Scikitlearn package for this stage includes ‘confusion_matrix’,

‘plot_confusion_matrix’, ‘precision_recall_fscore_support’ and ‘precision_recall curve.

Nine different scenarios considering three datasets for three test areas in the winter epoch have
been analyzed. In the following, the best-selected dataset from the winter epoch with the addition
of some other features consisting of Elevation (Normalized Digital Surface Model), Spectral
(Thermal data and Vegetation Indexes of Normalized Difference Vegetation Index, Normalized
difference water index, Normalized Difference Red-Edge, Anthocyanin Reflectance Index,
Enhanced vegetation index, Soil-adjusted vegetation index, Structure Insensitive Pigment Index)

and Texture (Angular Second Moment, Contrast, Correlation, Variance, Inverse Difference
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Moment, Sum, Average, Sum Variance, Sum Entropy, Entropy, Difference Variance, Difference
Entropy, Information Measures of Correlation, Maximal Correlation Coefficient) have been taken
into account to analyze the performance of the classifier on the summer epoch of the acquired

area.

3-2- Data Acquisition and study areas

UAV Data acquired in this area are provided in two epochs: one during April in winter and the
other one during July in summer. For this study, data has been acquired in the Salbertrand town
in northwest ltaly in two different epochs of April and July. Salbertrand, as is shown in Error!
Reference source not found. is a municipality in the province of Torino with an elevation of 1039
meters and studied riparian area located in the Salbertrand. Since the data is acquired on the
river and the surrounding area, the focus of this study will be on the riparian area and wet area

detection in the riverbed and riparian areas.

0 100 200m
-

A

Figure 3. Study area, Salbertrand town, Salbertrand river
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3-3- Processing Steps
The main idea of the present study contains the following steps:

a) produce orthophotos and DEM based on the Structure from Motion approach from raw
UAV multispectral data which has been acquired in the Salbertrand area in Piedmont, Italy
in two different epochs of April and July.

b) The concentration of this study is on the riparian area of the river; hence the final goal is
to assess the strength of Artificial Intelligence methods in the identification of wet areas
besides detection of all other classes and to analyze the performance of Artificial
intelligence techniques, specifically talking Machine Learning technique named Random
Forest (RF) for classification purpose.

c) Then a feature selection method will be used in the second method to discover the most

effective and decisive features for the classification.

3-3-1-Structure from Motion (SfM)
3-3-1-1- Adding photos:

In this step, there are two options to import photos into software. Either by adding a folder in
which all photos are included or by selecting all photos and adding them. If the selected folder
only includes needed photos, adding a folder is a better option. It is worth mentioning that photos
will be imported to the already selected chunk in the project. In the project for the sake of
simplicity, each band of the multispectral camera including Red, Green, Blue, Red-Edge, Near
Infrared, and RGB are imported in separate chunks. Once the photos have been added to the

project, the software will call them camera which implies camera location or camera position.

3-3-1-2- Quality control of photos

In order to be sure that there are not any blurry or defective photos in our dataset quality control
of photographs is necessary. For this purpose, the “Estimate Image Quality” option has been
performed on photographs. Quality values range between 0 to 1. And on average values below

0.5 should be considered blurry and unqualified to be used in the 3D modeling process. As an
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example, image quality values related to the Red band are presented in Figure 4. Quality values of

all other bands similar to the red band were quite high.

Photos

e x ok ] =

Label Size Aligned Quality Date & time

# DJI_0551 (4).TIF 1600x1300 ™ 0.743757 2021:03:09 11:36...
M DJI_0551 (5).TIF 1600x1300 v 0.944134 2021:03:09 11:57...
® DJI_0551.TIF 1600x1300 v 0.813784 2021:03:09 12:42...
® DJI_0561 (2).TIF 1600x1300 v 0.876457 2021:03:09 13:03...
® DJI_0561 (3).TIF 1600%x1300 v 0.814634 2021:03:09 13:12...
® DJI_0561 (4).TIF 1600x1300 v 0.762531 2021:03:09 11:36...
W DJI_0561 (5).TIF 1600x1300 v 0.974458 2021:03:09 11:57...
# DJI_0561.TIF 1600x1300 v 0.797639 2021:03:09 12:42...
M DJI_0571 (2).TIF 1600x1300 v 0.796882 2021:03:09 13:03...
B DJI_0571 (3).TIF 1600%1300 v 0.828779 2021:03:09 13:12...
® DJI_0571 (4).TIF 1600x1300 v 0.813753 2021:03:09 11:36...
™ DJI_0571 (5).TIF 1600x1300 v 0.946452 2021:03:09 11:57...

Figure 4. Quality Control for images- Red band

3-3-1-3- Interior orientation of the camera
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In this step, camera calibration parameters should be adjusted internal parameters such as focal

length, camera type, and pixel size will be set using imported photos in the software based on the

bundle block adjustment method (Figure 5).

Camera Calibration @ X
g, FCB360 (5.T4mm) Camera type: Frame
R e e R e Pixel size: {mm): 0.00301169
Focal length (mm): 5.74
Enable roling shutter compensation Film camera nith fidudial marks
Inttial  Adjusted  Bands  GPS/INS Offset
Type: Precaibrated =88
o 7.35484
i 1905,90625 oy -32.9217
k1:  -0.411688 p1l:  0.001745
k2:  0.336548 p2:  0.001745
k3: | -0.332926 b1 o
k& 0 b2 0
Image-variant parameters: Nene
Cameralabel - Resolution Cameramodel  Focal length Date & time
DJLOO1 (2)... 1600x1300 FC6360 574 2021:03:09 13:00:59 l
DJLOOT1 (3)... 1600x1300 FC6360 574 2021:03:08 13:08:33
DJLO011 (4)... 16001300 FC6360 574 2021:03:09 11:34:03
DJLOO11 (5)... 1600x1300 FC6360 574 2021:03:08 11:53:37
DILOOILTIF 16001300 FC6360 574 2021:03:09 12:40:07
B D21_0021 (2)... 1600x1300 FCG360 574 2021:03:08 12:01:01
B DJ0021 (3)... 1600x1300 FC6360 574 2021:03:09 13:08:34
B D001 f4) 1RD1300 FCRIN 574 071:0208 11:24:05
(o]

Figure 5. Camera interior calibration
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3-3-1-4- Settings

Some settings should be checked in the software before starting the modeling process. For
instance, in the “Metashape Preferences tool” two options of “load camera location accuracy from
XMP metadata” and “Load GPS/INS offset from XMP metadata” should be activated, in this way,
all data recorded in the metadata during acquisition will be added to the project to increase initial

accuracy of the project.
3-3-1-5- Align photos

The next step in the workflow is aligning photos. The result of this step is initial camera locations
and sparse point cloud or named tie points. Alignment in the Metashape is based on Scale Invariant
Feature Transform (SIFT) algorithm. Scale Invariant Feature Transform (SIFT) is an image descriptor
for image-based matching developed by (Lowe D. G., 2004). As a descriptor, this can be used for
a variety of tasks in computer vision, including point matching between different views of a 3-D
scene and view-based object recognition. The SIFT descriptor is invariant to translations, rotations,
and scaling transformations in the image domain as well as moderate perspective transformations
and illumination variations. Under real-world conditions, the SIFT has proven to be very useful for

robust image matching (Darren Turner *, 2012).

It is worth mentioning that the initial alignment of the photos was based on the GNSS positioning
of the cameras. Accuracy has been set to the “high” in this step meaning that photos are used in

their original size. By decreasing the accuracy level photos will be downscaled by a factor.

Results of this step are provided in the following table for each band separately and they represent
tie points of each band and initial camera positions by blue rectangles on them. There is the
possibility that not all of the photos of each chunk get aligned successfully because of the low

resolution of some photos or low overlap between some images.

Tie points resulting from aligning process for all chunks (bands) are presented in Error! Reference
source not found., Error! Reference source not found., Error! Reference source not found., Error!

Reference source not found., Error! Reference source not found..
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Figure 11 shows the hypothetical position of the cameras during the acquisition phase on the tie

points.

Number of images: Camera stations:
Flying altitude: 86.6 m Tie points:
Ground resolution: 4.1 cm/pix Projections:
Coverage area: 0.407 km?2 Reprojection error:

Figure 6. Tie points of blue band and technical characteristics

Number of images: Camera stations:
Flying altitude: 89.1m Tie points:

Ground resolution: 4.09 cm/pix Projections:
Coverage area: 0.4 km= Reprojection error:

Figure 7. Tie points of green band and technical characteristics

Number of images: 1,025 Camera stations:
Flying altitude: 78.2 m Tie points:

Ground resolution: 4.12 cm/pix Projections:
Coverage area: 0.411 km2 Reprojection error:

Figure 8. Tie points of red band and technical characteristics
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Number of images:

Flying altitude: 85.9 m
Ground resolution: 4.12 cm/pix
Coverage area: 0.4 km2

Camera stations:
Tie points:
Projections:

Reprojection error:

Figure 9. Tie points of Red-Edge band and technical characteristics

Number of images:

Flying altitude: 78.8 m
Ground resolution: 4.13 cm/pix
Coverage area: 0.411 km2

Figure 10. Tie points of NIR band and technical characteristics

r

Camera stations:
Tie points:
Projections:
Reprojection error:

833
969,916
3,184,452
0.374 pix

935

1,281,411
4,310,921
0.354 pix

Figure 11. Camera Positions on RGB Tie Points

3-3-1-6- Georeferencing

On-board GNSS receiver of the UAVs allow for location data acquisition in the collection phase and

in order to increase the positioning accuracy Ground Control Points can be manually collected
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during the campaign, in this way the result is a high accuracy digital terrain model and orthomosaic

of the study area based on the SfM procedure (Turner et al., 2012).

During the data collection phase, some Ground Control Points have been surveyed. Adding these
points to the project and optimizing alignment based on these GCPs can result in increasing the
accuracy of modeling. In order to integrate ground control points into a project, a text file of points
including ‘Name of the marker’, ‘Easting’, ‘Northing’ and ‘Altitude’ of points should be imported
into the project. Coordinate system related to points should be set correctly during import process
which in our case is projected into Universal Transverse Mercator (UTM), Zone 32 North. The
targets used in this project are photogrammetric, meaning that they are selected on the existing
stable objects on the ground to provide multi-temporal analysis for the future. For points, only

position data are acquired, and orientation data (Yaw, Pitch, Roll) are not provided.

Once the GCPs have been imported into the project, the setting related to the reference system
in the project should be checked, at this moment there are three coordinate systems that should

be set correctly:

1) coordinate system of the project and outputs: since objective is to acquire all results in the

metric system so the coordinate system should be projected to UTM,32N.

2)Camera reference related to acquired images: which is the reference system during the

acquisition time
3) Marker reference system related to surveyed Ground Points.

Since all cameras, markers, and also the project is georeferenced in the same reference system,
markers will be detected on the tie points as soon as they are imported into the project, but to fix
the exact location of markers and avoid some inaccuracies, markers should be placed on images
again manually, for this purpose ‘Filter photos by marker’ is performed, which separates images
related to each marker and allows user to place markers in each image in the exact location. After
detection of the marker in 2 or 3 images and updating the project, the marker will be modified in
the rest of the images and its location became even more accurate. Thus, the marker placing

process will become easier and easier. Figure 12 shows the location of GCPs on the tie points of
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the area. Generally, 27 markers were surveyed for this case study and as beforementioned ground
control points in this case study are photogrammetric meaning they are signs on existing objects
or detectable corners of objects. Hence, some markers in some images were not detectable with
good accuracy, and in the end number of projected images for some markers was not enough,

hence in order to make consistency this kind of marker has been removed from the project.

Figure 12. GCPs on the Tie points- RGB

To provide some examples some of the photogrammetric targets on the RGB, NIR, Red-Edge, and
Blue cameras are presented in Figure 13.

& f |
(TR T
= in (A e

T I v

Figure 13. . right: F6 marker on the RGB image, left: two markers on the NIR image
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3-3-1-7- Optimal Alignment

After detecting GCP on the images for all chunks the whole project should be updated and
georeferenced based on very accurate Ground Control Points. Then optimal alignment function
should be performed to improve initial alignment and generate a camera calibration based on GCP
which takes GCP into account for the alignment process. Of all GCPs, some of them should be
selected as checkpoints to check alignment accuracy. The number of checkpoints should be in a
reasonable proportion with respect to the total number of ground control points, in a way that
assessment of the accuracy of the model based on checkpoints gives us a reasonable overview. In
the following table, the number of checkpoints and control points for each band is presented in

Table 3.

Table 3. Number of Check and control points in all bands

Num of Control points Num of Checkpoints
Red 17 4
Green 17 4
Blue 17 4
Red-Edge 16 4
NIR 15 4
RGB 18 4

3-3-1-8- Building Dense Point Cloud

This step uses generated sparse cloud in the previous step and camera locations and produces a
dense cloud in Figure 14. Quality setting in this step determines down sampling factor for photos,
for instance, if ‘High” quality gets selected down-sampling factor will be 4. This is also the case for
our project. ‘Depth Filtering’ setting is related to the behavior of software with outliers and depth

calculation. For our project, the default parameter has been kept.
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The ability to produce dense clouds from lower density data (tie points) is one of the great
advantages of the UAV drones in comparison to other acquisition platforms for instance LIDAR
system. Since with a low price we can achieve high-density pint cloud and high accuracy (Tao, Lej,
& Mooney, 2011). The produced dense cloud in this step will be used to produce mesh for the

area.

Figure 14. Dense Cloud of RGB bands

3-3-1-9- Build Mesh

This step generates a polygonal model based on a dense cloud. One of the important setting
parameters required for this step is related to ‘Surface Type’. Usually, surface type can be set in 2
ways. ‘Arbitrary’ type can be used for any kind of object such as oblique or complex. ‘Height Field’
type is appropriate to model a surface orthogonal to the reference system, hence when the main
objective is to produce DEM, this type can be suitable. It is worth mentioning that this step is based
on theinterpolation of points to generate Mesh (Figure 15). Where a point cloud saves the location
for millions of points, a mesh converts those points into triangles (Bassier, Vergauwen, & Poux,

2020).

31



Chapter 3 Methodology
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Figure 15. Solid Model of RGB bands

3-3-1-10- Build Texture

To have a representation of color and texture, a color overlay of the point cloud is needed. All
parameters have been set to default values. Figure 16 and Figure 17 and Figure 18 show the 3-D
model of the area, as it can be seen from different views of the 3-D model, the studied area
consists of vegetation, road, ground, riverbed, and some rocks, stocks (very low buildings or
storages) and some taller buildings at the very edge of the area. In the next stages, only some

portions of the area will be clipped to be used in the Machine Learning processing.

Figure 16. Textured Model of RGB bands
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Figure 17. Different views of the 3D model

Figure 18. Different views of the 3D model

3-3-1-11- Building Digital Elevation Model

Since Ground Control Points are provided for the project, generation of DEM product is possible,
in this step coordinate system of DEM should be the same as the coordinate system of GCP.
Although during the export process of DEM, the coordinate system can be modified. Both dense
Cloud and Mesh can be used as source data in this step. Using Dense Cloud, provide more accurate

results since it is actual data, while the mesh is based on interpolation. DEM is produced for the
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RGB band and it will be used as a source for the next step which is orthomosaic production. The

resolution of the DEM is 7.97 cm/pixel and the point density is 150 points/m?.
3-3-1-12- Building Orthomosaic

Building orthomosaic was not possible if the texture had not been added to the project. Both DEM

and Mesh can be a source for producing orthomosaic.

In our case, the Digital Elevation Model of RGB bands is the reference for producing orthomosaic
of all other bands including Red filter, Green filter, Blue filter, Red-Edge, and NIR bands. The reason
for doing this is to avoid any difference between bands from a spatial point of view and bring
orthophotos of all bands perfectly to each other. In this step, pixel size should be set for
orthomosaic. Recommended value based on ground sampling resolution is suitable although
increasing this value may result in a lower file size. At the end of this process for each band in the
reference pane, a list of Ground control points, checkpoints and their East Error, North Error,

Altitude Error, and overall error in meter and pixel units are provided.

Table 5, Table 6, Table 7, Table 8, and Table 9, Table 9 represent accuracy errors for check and

control points in three directions for red, green, blue, Red-Edge, and NIR respectively.

Table 4. Accuracy errors of Red Band for control and checkpoints

Markers East err (m) Morth e {m) Alt. err {m) Accuracy [m) Error {m) Projections Errar (pix)

™ Fe 0.002504 0.000375 -0.000187 0.005000 0.002539 11 0604
*FT =[O0RE2S [0 5 (e}2a953 Q005000 0004093 g (.5905
™ P2 _sopra 0.000142 0.005503 0.000242 0.005000 0.005510 3 0.300
M P3_sopra 0013748 0.0043713 0001634 0005000 0.014501 a 0.952
™ P4 _testa 0.003275 0004141 0.000011 0.005000 0.005280 10 0.738
P PS5 testa 0013153 0014344 0.004744 0.005000 0019898 12 1.122
™ Pi_testa 0.0003464 0.009278 Q001055 0.005000 0.009344 11 2116
B PO testa 0000023 -0.000580 0.002309 0.005000 0.002381 13 0.635
L4 0.005000 0 0,000
LA b -0.001453 -0.001808 -0.000272 0.005000 0.002335 8 0.305
LTS I 0014621 -0.00526% 0002531 0.005000 0015753 12 0Aass
M y1g 0.005009 0012841 0056592 0.005000 0.038247 8 0.237
L. 1] -[i05886 OO0 00 0.000088 Q.005000 0005928 8 0487
L] 0004650 -0.001447 -0.069465 0.005000 0.069637 1 1.051
* arto201 -000370 -0.000498 0.000466 0.005000 0.000776 & 0.504
P orto2d3 0000126 0.001121 0.020672 0.003000 0020703 B 0.510
™ arto205 -0.000541 -0.000733 0.0057114 0.005000 0.009159 5 0.458
Tatal Errar
Control points 00007291 0.005703 0.001867 0.008443 0.989
Check points  0.003428 0006496 0045202 0.046783 0702
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Table 5. Accuracy errors of green Band for control and checkpoints
Markers East err (m) North err (m) Alt. err (m) Accuracy (m) Error (m) Projections Error (pix)
/™ F6 0.000959 0.000731 -0.000447 0.005000 0.001286 ik 0.978
/™ F7 -0.002046 0.001703 0.002891 0.005000 0.003930 9 1.447
P P2_sopra -0.000744 0.002201 -0.000043 0.005000 0.002324 5 0.834
™ P3sopra 0013557 0.005645 0.003062 0.005000 0.015001 1 0.851
/™ P4_testa -0.002755 -0.003024 -0.000185 0.005000 0.004095 10 0.705
P P5_testa -0.001880 0.011623 0.003203 0.005000 0.012202 14 0.795
P P6_testa -0.001868 -0.008978 0.001189 0.005000 0.009247 8 2.206
™ P9_testa -0.001027 -0.001924 0.002598 0.005000 0.003392 13 0.521
P V12 0.005000 0 0.000
P v17 -0.002947 0.000011 -0.000295 0.005000 0.002962 8 1.140
/ M \18 0.000367 -0.001916 -0.001729 0.005000 0.002607 13 0.358
/M9 0.002348 0.002818 -0.000358 0.005000 0.003685 9 0.251
™ v20 -0.016806 -0.015828 -0.035874 0.005000 0.042660 8 0.164
P V30 0.002499 -0.011696 -0.099361 0.005000 0.100078 8 0.456
P orto201 0.000066 -0.005700 0.026184 0.005000 0.026797 6 0.256
/™ orto203 0.000791 0.000776 0.000773 0.005000 0.001351 9 0.462
™ orto205 -0.002365 -0.002636 0.000709 0.005000 0.003612 5 0.065
Total Error
Control points 0.004283 0.004838 0.001830 0.006716 0.969
Check points  0.008577 0.010329 0.054419 0.056051 0.291
Table 6. Accuracy errors of the blue band for control and checkpoints
Markers East err (m) North err (m) Alt. err (m) Accuracy (m) Error (m) Projections Error (pix)
™ F6 0.000904 -0.000202 0.000238 0.005000 0.000957 10 0.644
™ F7 0.000237 0.005362 0.003139 0.005000 0.006218 8 1.183
® P2_sopra -0.000251 -0.000388 -0.000966 0.005000 0.001071 7 1.285
™ P3_sopra 0.013260 0.003976 0.001367 0.005000 0.013911 9 1.108
™ P4_testa -0.039900 -0.010752 0.071044 0.005000 0.082188 8 0.420
™ P5_testa 0.021840 0.024766 0.006223 0.005000 0.033602 11 1.880
™ P6_testa -0.005639 -0.002481 0.000649 0.005000 0.006195 10 0.563
™ P9_testa -0.000814 -0.000088 0.003401 0.005000 0.003499 7 1175
M vi2 0.005000 0 0.000
™ V17 -0.005347 -0.004923 -0.003523 0.005000 0.008077 8 0.426
™ V18 -0.017868 -0.013304 -0.003514 0.005000 0.022552 13 1.026
™ V19 0.000785 -0.001953 -0.000617 0.005000 0.002193 8 0.398
™ V20 -0.001575 -0.000859 0.007421 0.005000 0.002289 8 0.934
™ V30 -0.000878 -0.011089 -0.046083 0.005000 0.047406 12 1.320
™ orta201 -0.000377 -0.001438 0.000945 0.005000 0.001761 5 0.639
® orto203 0.000754 -0.000548 0.000275 0.005000 0.000972 8 0.491
™ orto205 -0.000420 -0.005115 -0.000558 0.005000 0.005163 5 1.658
Total Error
Control points  0.009171 0.008407 0.002568 0.012704 1.054
Check points  0.020134 0.008500 0.042378 0.047682 1.066

Table 8 shows the accuracy errors of the control and checkpoints in three directions and the average value
in both meter and pixel units for the blue band, the representation for each marker is available as well,
which can show us which markers have better accuracy in comparison to others. Table 9 shows these
results for the Red-Edge band. As it can be seen from the results of all bands, errors are in the order of mm

or cm level, which shows a very high level of accuracy for remotely-sensed data.

35



Chapter 3 Methodology
Table 7. Accuracy errors of Red-Edge band for control and checkpoints
e SO Ztatia S A TR
Markers East err (m) North err (m) Alt. err (m) Accuracy (m) Error (m) Projectians Error (pix)
/™ F6 -0.001667 0.003920 0.000563 0.005000 0.004297 9 0.958
/™ F7 0.001905 -0.000226 0.001070 0.005000 0.002196 6 1.482
™ P2 sopra -0.002921 -0.002919 0.000948 0.005000 0.004237 6 0.857
/P P3_sopra 0.006148 0.002798 0.003568 0.005000 0.007639 9 0.798
M P4 testa -0.006139 -0.001596 0.000174 0.005000 0.006346 10 0.486
/| P6_testa -0.011858 0.004027 0.000710 0.005000 0.012543 5 1.219
™ P9 _testa -0.000882 -0.000703 0.001995 0.005000 0.002292 9 0.505
™ y12 0.005000 0 0.000
1M V17 -0.000634 0.001987 -0.000271 0.005000 0.002103 7 0.840
™18 0.025068 0.001687 0.054161 0.005000 0.059705 10 0.602
M V19 0.006724 -0.002593 -0.000082 0.005000 0.007207 6 0.654
/| P20 0.001934 -0.004012 -0.003092 0.005000 0.005422 8 0.860
™ V30 -0.005161 -0.006629 -0.034194 0.005000 0.035211 g 0.806
™ orto201 -0.003457 0.001261 0.041384 0.005000 0.041547 6 0.613
™ orto203 0.002397 -0.001121 0.000285 0.005000 0.002662 9 0.918
™ orto205 -0.004268 -0.005521 -0.014902 0.005000 0.016455 5 0.166
Total Error
Control points  0.005107 0.002681 0.001633 0.005995 0.877
Check points ~ 0.013088 0.004440 0.038850 0.041235 0.629
Table 10 represents the results of 3-D model accuracy for the Near-Infrared band.
Table 8. Accuracy errors of NIR band for control and checkpoints
Markers East err (m) North err (m) Alt. err (m) Accuracy (m) Error (m) Projections Error (pix)
/P F6 -0.006670 0.008922 0.000092 0.005000 0.011140 8 1.032
M F7 0.006329 -0.012209 -0.000499 0.005000 0.013761 9 1.102
/I M. P3_sopra 0.011347 0.005672 -0.001271 0.005000 0.012749 10 0.745
' ¥ P4 testa -0.005999 -0.001411 -0.000779 0.005000 0.006212 10 0.444
™ P6_testa -0.000022 -0.016641 0.051593 0.005000 0.054211 7 0.599
/™ P9 testa -0.001212 -0.000608 0.000078 0.005000 0.001358 1 0.461
vz 0.005000 0 0.000
M v17 -0.003138 0.001450 -0.001451 0.005000 0.003749 T 0.570
P v18 0.020179 -0.006639 0.079080 0.005000 0.081884 10 0.174
P v19 -0.005724 0.000019 -0.001338 0.005000 0.005878 8 0.555
/| ™ 20 -0.000061 -0.000866 0.001034 0.005000 0.001350 8 0.284
P v30 -0.006975 0.016947 0.003879 0.005000 0.018733 12 217
P orto201 0.005000 0 0.000
/™ arto203 0.004049 -0.002511 -0.000089 0.005000 0.004765 9 0.925
™ orto205 -0.002835 -0.004681 0.006881 0.005000 0.008792 0.581
Total Error
Control points  0.005866 0.005501 0.000910 0.008094 0.728
Check points  0.010769 0.012551 0.047376 0.050180 0.841
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Table 9. Accuracy errors of RGB for control and checkpoints

Markers East err (m) North err (m) Alt. err (m) Accuracy (m) Error (m) Projections Error (pix)
™ F6 -0.001360 0.000783 0.000123 0.005000 0.001574 10 0.880
™ F7 0.003963 -0.004418 0.000009 0.005000 0.005935 9 1.102
P P2 sopra -0.008469 -0.014433 0.031060 0.005000 0.035280 8 0.573
™ P3_sopra 0.006691 0.006009 -0.000349 0.005000 0.009000 12 0.803
™ P4 testa -0.006056 0.002773 -0.000212 0.005000 0.006665 9 0.669
™ P5_testa -0.004451 -0.004850 -0.000098 0.005000 0.006584 13 0.800
™ P6_testa -0.006147 0.001981 0.000464 0.005000 0.006475 13 0.527

/P P9 _testa 0.000223 0.000168 0.000058 0.005000 0.000285 13 0.507
P V12 0.005000 0 0.000
™ V17 -0.000789 0.001214 -0.000117 0.005000 0.001452 7 0.185
™ V18 0.021941 0.013246 0.005688 0.005000 0.026252 12 0418
™ V19 0.003570 -0.001459 -0.000155 0.005000 0.003860 8 0.289
™ \/20 0.003653 -0.002105 -0.001069 0.005000 0.004349 8 0.360
™ v27 -0.000751 -0.005939 0.000489 0.005000 0.006006 5 0.520
™ V30 -0.006068 0.009569 -0.001620 0.005000 0.011446 12 0.966
™ orto201 0.005000 0 0.000
™ orto203 -0.000578 0.000111 -0.000172 0.005000 0.000613 8 1.203
™ orto205 -0.001521 -0.003416 -0.011308 0.005000 0.011910 4 0.449

Total Error
Control points  0.003919 0.003351 0.000394 0.005171 0.726
Check points  0.012168 0.011034 0.016789 0.023488 0.682

In Table 10, results of georeferencing accuracy for checkpoints in all bands of R, G, B, RE, NIR, and
RGB camera are presented for the April epoch, which is considered a measure of 3D model

accuracy.

As it is evident from the table, all errors are in mm or cm level and represent a high level of
accuracy, especially considering that data are remote sensing data and there is the possibility of
having several flights in the area with this level of accuracy. Hence, such accurate data can be very

interesting for the machine learning classifier, which will be explored in the next chapters.

The main outputs of Structure from Motion, besides the 3-D model, would be the orthomosaic of
the area in five spectral channels and the Digital Elevation Model. Produced orthomosaics will be
used in the next step to perform machine learning. Figure 19 shows the Digital Elevation Model of
the Salbertrand area, and Figure 20, Figure 21, and Figure 22 are the produced orthomosaics of

the Salbertrand area in each multispectral band.
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Table 10. Check points Errors of all bands

Band East Error (m) North Error (m) Alt.Error (m) Total Error (m)

Red 0.003 0.006 0.046 0.047
Green 0.008 0.01 0.054 0.056
Blue 0.02 0.008 0.042 0.048
Red-Edge 0.01 0.004 0.039 0.041
NIR 0.01 0.012 0.047 0.05
RGB 0.012 0.011 0.017 0.023

0.976 km

Figure 19. DEM- RGB band

In the following figures, orthophotos of all bands have been shown.
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Figure 20. Orthophoto-left: Blue Band, right: green band

Figure 21. Orthophoto-left: red Band, right: Red-Edge band

Figure 22. Orthomosaic- left: NIR Band, right: RGB band
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3-3-2- Machine Learning- Random Forest- April Epoch

UAV Data acquired in this area are provided in two epochs: one during April in winter and the
other one during July in summer. The processing phase started with the Winter epoch. In order to
choose the optimized dataset accuracy measures of precision, Recall and F-score value have been
taken into account, and the optimized dataset for the classification purpose of the April epoch has
been used to perform classification of the Summer epoch, although in the summer epoch also
some Elevation (Normalized Digital Surface Model), Spectral (Thermal data and Vegetation
Indexes) and Texture features (Angular Second Moment, Contrast, Correlation, Variance, Inverse
Difference Moment, Sum Average, Sum Variance, Sum Entropy, Entropy, Difference Variance,
Difference Entropy, Information Measures of Correlation, Maximal Correlation Coefficient as
described in (ROBERT M. HARALICK, 1973)) have been added to discover the most effective features in
the classification of the area using Random Forest Classifier and to explore whether the
classification quality improves or not.

Classification of the Salbertrand area in April has been performed using three different datasets:
a) combination of RGB and Multispectral datasets

b) Only RGB datasets

c) Only Multispectral Dataset including Red-Edge and Near-Infrared bands.

Nine different scenarios considering three datasets for three test areas in the winter epoch have
been analyzed. In the following, the best-selected dataset from the winter epoch with the addition
of some other features consisting of Elevation (Normalized Digital Surface Model), Spectral
(Thermal data and Vegetation Indexes of Normalized Difference Vegetation Index, Normalized
difference water index, Normalized Difference Red-Edge, Anthocyanin Reflectance Index,
Enhanced vegetation index, Soil-adjusted vegetation index, Structure Insensitive Pigment Index)
and Texture (Angular Second Moment, Contrast, Correlation, Variance, Inverse Difference
Moment, Sum, Average, Sum Variance, Sum Entropy, Entropy, Difference Variance, Difference
Entropy, Information Measures of Correlation, Maximal Correlation Coefficient) have been taken

into account to analyze the performance of the classifier on the summer epoch of the acquired
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area. Moreover, the feature selection approach has been utilized in python to detect the most
important features and explore a compromise between accuracy and the number of utilized
features. Our purpose is to see how datasets perform separately and how they perform when

they are used together.

In order to perform an accurate classification 4 different portions of the study area have been
clipped, one for training and three others for testing and validation. For different input datasets,
these portions will remain constant spatially in order to perform an analytical comparison at the
end, although for each dataset the radiometric values will be different. The following steps should
be performed for all datasets to have a final classified map and an evaluation of the accuracy of
the results and the same procedure will be repeated for two other test areas to produce a
generalized result and conclusion for the performance of Random Forest classifier and machine

learning technique.

a) Data preparation for Training dataset- QGIS

b) Cross validation- Python

c) Data preparation for Testing dataset- QGIS

d) Classification of Unseen testing dataset- Python
e) Data preparation for Validation dataset- QGIS

f) Validation- Evaluation of classification goodness- Python
3-3-2-1- First Test Area

3-3-2-1-1- RGB+ Red-Edge+ Near Infrared dataset

As previously mentioned, data acquired by phantom4 drone include 5 bands, of which three are
associated with red, green, and blue filters and 2 of them are Red-Edge and Near-Infrared bands.
Hence by combining orthophotos of these 5 bands together, an orthophoto consisting of 5
radiometric values for each pixel, will be obtained. It is worth mentioning that the final orthophoto
resulting from the Structure from Motion approach had a pixel size of 4 cm, but for the sake of

processing time, the combined orthophoto resampled with the pixel size of 6 cm.
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Data preparation for Training dataset — QGIS: Mainly machine learning approach for our purpose
has been performed in Python and based on Random Forest Classifier, so training, testing, and
validation data should be prepared and exported in the appropriate format using QGIS, open-
source software to be used later in python. The following steps should be performed to get training

data ready.

1. Build Virtual Raster from Red, Green, Blue, Red-Edge, and NIR bands: as soon as the
combined raster has been produced in the software, it should be exported in the Geotiff
format, otherwise, since it is a virtual raster it will not be saved in the long-term memory
and will be lost after closing software. Figure 23 shows a false-color representation of the

area, with NIR in the Red channel, red in the blue channel, and green and green channel.

Figure 23. Composite raster of RGB, Red-Edge & NIR bands

2. Resample with 6 cm resolution: this step can be implemented by getting a ‘save as’ from
the raster and the resolution value should have been changed during the save as process.

3. Translate (Convert Format) from 16 bit to 8 bit: using the “-scale 0 65535” command in the
console, pixel values change from 16 bit to 8 bit (Figure 24 and Figure 25). Value of 65535 is the
maximum value in the 16bit scale, so this value may be different for other data, and it should be

checked in the ‘properties’ of the raster. As a result of this step, all pixel values should become a
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value between 0 and 255. hence in order to check if the translation has been performed correctly

“identify” tool can be used.

Identifv Results
Y sww
Feature Value
¥ raster-all bands 0
~ raster-all bands
Band 1 12103
Band 2 13271
Band 3 11948
Band 4 19248
Band 5 20819

¥ (Derived)
Figure 24. identify value in 16 bit for one pixel
Identifv Results ™
1T "“ww
Feature Value

~ raster-all bands... 0
¥ raster-all ban...

Band 1 4l

Band 2 88

Band 3 89

Band 4 102

Band 5 128
» (Derived)

Figure 25. identify value after converting the format to 8 bit
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4. Clip raster by training mask and save as training raster: the objective of this step is to clip
raster of the whole area with the training perimeter, the final raster will be called training raster
(Figure 26) and will be used in the rest of the procedure. The coordinate system should be set
here, and it is the same coordinate system of ground control points: WGS, UTM 32N.

5.

Figure 26. Training raster

5. Create polygons of 3 classes, each in an individual layer: for this purpose, three new layers
should be created, one for each class, then each of the layers should be started for editing, and
polygons will be drawn manually in each layer.

It is noteworthy that in drawing polygons only areas should be selected that we are confidently
sure about their label since we are in the training stage and any wrong selection in the labels, will
affect the final result of training and may end in inaccurate classification. It is also crucial to keep

in mind that the number of points in 3 classes should be at least in the same order of magnitude
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to have a balanced dataset, the more similar the number of points, the more accurate will be the
results. Figure 27 shows the training polygons for the training area, in which yellow polygon
represents the ground class, green ones are the vegetation areas and blue areas are the wet or
water class. The more the number of polygons for each class, the more tried and accurate will be
the classifier, but a very large and unreasonable number of training polygons may cause an

overfitting problem.

Figure 27. training polygons for 3 classes: Green (Vegetation), Yellow (Ground), Blue (Water)

6. Clip training raster with polygons and produce raster of each class: if the training raster
gets clipped with 3 vector files (one for polygons of each class) the final result will be 3 new raster

files: Vegetation raster, Water raster (Figure 28), Ground Raster.

7. Convert raster pixel2points: this step should be repeated for three rasters of Vegetation,

Ground, and Water, the result of this step is the vector file of 3 layers.
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Figure 28. Water training raster

8. Remove zero values from 3 layers by detecting them on the attribute table (selecting

features with value>1 and exporting the selected features): this step is necessary in order to

remove non-data pixels and decrease the number of pixels significantly.

9. Point sampling tool: to assign R, G, B, RE, and NIR values for 3 layers of Ground, Vegetation,

and Water, therefore point sampling tool gets radiometric values of different bands from the

raster and assigns them to points.

10. Open the attribute table of 3 classes and add the class field (class label) to 3 layers: for the

sake of simplicity the name 33 has been assigned for ground and class names for water and

vegetation are 11(Figure 29) and 22 respectively.
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11. Merge 3 vector layers of 3 classes: 3 vector files of ground, vegetation, and water should
be selected as input data. Furthermore, the coordinate system should be set in the UTM, 32N as

has been set in all other steps.

12. Export merged vector as comma-separated values (CSV) file: in this step, only the fields
that we want to be present in the text file should be checked, which are as followings: R, G, B, RE,
NIR, Class. Besides geometry type should be set to point, the coordinate system should be
selected, and the final directory of exported file can be determined here. The result of this step is
the final result of the preparation of training data, and it is a text file that will be imported for

machine learning in python.

Cross-Validation- Python: Cross-validation has been performed in Python. Input data for cross-
validation is the text file resulting from the previous step including points with R, G, B, RE, NIR, and
Class (label) fields (Figure 30).

44 TRATINING DATASET LOADING

df train data = pd.read csv("D:\\Masoume\\Salbertrand\\DATASET\\RGB+RENTR-1st\\training\\training data-final.csv

features - df train data.drop(columns=['Class'], axis='columns')
labels = df train data['Class']

Figure 30. Reading training data into the python script

predefined packages and libraries necessary for this step are as Figure 31:

pandas pd

numpy np
scipy.sparse coo matrix
sklearn.utils shuffle
sklearn model selection
sklearn.preprocessing StandardScaler
sklearn.model selection train test split
sklearn.model selection cross val score
sklearn.model selection GridSearchCV
sklearn.metrics make scorer
sklearn.ensemble RandomlForestClassifier

time

Figure 31. packages and libraries used in the training phase

e Numpy is for processing N-dimensional array objects, Linear Algebra, Fourier Transformation,

etc.
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Scipy is for Mathematics and Engineering processing.

Scikitlearn is for predictive data analysis including classification, Regression, Clustering,

dimensionality reduction, and preprocessing of data.

Coo-matrix can transform a sparse matrix into the coordinate format.

Preprocessing is for transforming input data such as text files to be used in Machine Learning.

StandardScaler standardizes features by removing mean and scaling to unit variance.

Cross-val-score evaluates score by cross-validation.

Model selection: for comparing, validating, choosing parameters and models or generally
parameter tuning which specifically includes GridSearchCV, train_test split, and

cross_val_score.

train_test_split is for splitting data into training and testing data with a specified percentage

by the user which in our case is 20% for testing and 80% for training data (Figure 32).

GridSearchCV is for searching over estimated parameters to find optimized and best cross-
validation parameters. If cross-validation is based on the K-fold approach the observation set
will be divided into K groups or folds of approximately the same size, first fold will be the

validation set and the method will be fit on the remaining (K-1) folds. In our case number of

folds is 4.
F## DATASET SPLITTING FOR CROSS/VALIDATION --- StandardScaler () NORMALIZATION --- RANDOMIZING OF IT
X train, X test, y train, y test train test split(features, labels, test size=0.2, random state=0)
features scaler = StandardScaler /()
X train features scaler.fit transform(X train)
X test features scaler.transform(X test)
X train, y train = shuffle(X train, y train)

Figure 32. Splitting training dataset for cross-validation purpose

RandomForestClassifier is the used classifier for the Machine Learning approach here. The
random forest has a large number of parameters that should be set for our purpose. For
instance, ‘number of estimators’ or number of trees which has been set to values of 10-25 or
50. ‘Criterion’ can be ‘Gini’ or ‘Entropy’ and it represents the quality of split. ‘Minimum samples

split” is the minimum number of features required to split the internal node. ‘Minimum
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samples leaf’ is the minimum number of samples required to be a leaf node. ‘Maximum
features’ present the maximum number of features to consider when looking for the best split
and it can be ‘auto’ or ‘log2’ for our purpose. It is the responsibility of the Cross-validation
process to select the optimized values for these parameters among the possible values

assigned by the user (Figure 33 and Figure 34).

4 ALGORTTHM CHC (RI'), CV CALCULATION (cross val score), RESULTS PRINTING

tl = time.time ()

classifier = RandomForestClassifier (n estimators=10)

all accuracies = cross val .’—;(:(:r'e(est.\ﬁal.ﬂr'*c:\ar—'.:—:ifier, X=X train, y=y train, cv=4)

[M"iriw‘ ("Accuracy on training dataset with differents cv=4 \7‘\-1:::”, all accuracies)

print ("Mean accuracy on training dataset through Cv:", all ac(?ura\:i\ﬂsfmean())

print ("Standard deviation reached in trainig dataset (if <1 is good -> very LOW wvariance):", all accuracies.std())
precision = cross val score(classifier,X train,y train, cv=4, scoring='pre n macro') -

recall = cross val score(classifier,X train,y train, cv=4, scoring='reca macro')

f1 = cross va\_s;::n)?e(classifier',X l.raTm,y Ir'aTrw, cv=4, scoring='fl macro')

print ("I recion train C 4:=", pr'@cTsitm) B

print ("Recall rain A", recall)

print ("I'l train Cv=4:", f1)

t2 = time.time ()

print ("\n\n### %s ## \nCV and statistical parameters Time: %s s' % (RandomlforestClassifier, round(t2-t1,5)))

Figure 33. Script of cross-validation step for best parameters determination for 4 folds

grid param = {

L 1 Bors!: [10y .25; 505
e ['gini', 'entropy
'max fe res': [“aute!,

_samp gplit?s |5,
'min_samples leaf': [4,

'random state': [None, 0,

Figure 34. possible values for each parameter

The cross-validation result for this dataset is as in Table 11.

Data preparation for Testing dataset- QGIS, the steps are as follows:

e Importing orthophoto of the area (combined raster of all 5 bands) into QGIS
e Translating 16-bit raster into 8-bit raster

e Importing testing polygon perimeter

e Clip raster by testing mask layer to produce test raster (Figure 35).
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Table 11. Cross-Validation result for RGB + Red-Edge + NIR dataset

N-Estimators 50
Criterion Entropy
Max-features Auto
Min-samples-leaf 4
Min-samples-split 5
Random state None
Accuracy on training 98%

Table 12 shows the accuracy of the training dataset for 4 sets of cross-validation:

Table 12. Accuracy on training dataset for 4 folds and optimum parameters

Accuracy on training dataset with different

[0.984 0.984 0.983 0.984]
CV =4 folds
Mean accuracy of the training dataset 0.98
Standard deviation reached in the training
0.0002
dataset

Precision in CV = 4 folds [0.984 0.983 0.983 0.983]

Recall in CV = 4 folds [0.984 0.983 0.983 0.984]

F1 Score in CV = 4 folds [0.984 0.984 0.983 0.983]
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Figure 35. Test raster, 1st test area

e Raster pixel2points

e Clip vector by testing mask layer
e Point sampling tool

e Add X/Y fields to the layer.

e Export final vector into CSV file.

Most of the procedure of preparation of the testing dataset is similar to the training phase, except
for the fact that labels or classes are not determined in the testing dataset, furthermore,
coordinates should be added in this stage to the layer (step 8) because final classified orthophoto
will be represented in the software visually, hence it should be spatially correct. The result of this

step is a text file including R, G, B, RE, NIR, and X, Y values of all points of the testing area.

Classification of Unseen testing dataset- Python: Some packages and libraries are added in this
step to perform the classification of the testing dataset (Figure 36). LabelEncoder is for encoding
target labels with a value between 0 to (Number of classes-1). In this phase presence of some
libraries is crucial in order to analyze the accuracy of testing data such as accuracy_score.
Classification-report and libraries related to the confusion matrix will be used in the validation

stage.
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port pandas as pd
T numpy as np

from sklearn.preprocessing import LabelEncoder

from scipy.sparse lmport coo matrix

from sklearn.utils Tmport shuffle

f sklearn.ensemble import RandomForestClassifier
ort time

sklearn.metrics
sklearn.metrics classification report
sklearn.metrics npC confusion matrix

m scikitplot.metrics Ilmport plot confusion matrix
import matplotlib.pyplot as plt

accuracy score

Figure 36. packages and libraries necessary for the prediction and evaluation phase

One crucial stage here that cannot be ignored is to use the ‘Head’ function which works based on
the number of points in each class of training data (Figure 37). The purpose of this function is to
make a balance among number of points of 3 land cover classes, so if there is the confidence that
the classes are more or less balanced regarding number of points head function can be ignored,
otherwise, the head function must be set based on a minimum number of points, in this way the
program uses only ‘head’ number of points for all classes and automatically brings balance to the

training phase.

### Portioning if you have unbalanced labels - otherwise don't use it
portion = df train data.groupby('Class', sort=Ialsec) .head(145402)
features = portion[feature columns]

labels = portion['Class']

Figure 37. Head function for bringing balance to the unbalanced training dataset

The procedure is to first train the classifier for 3 classes using the training dataset, and after setting
the optimized hyperparameters for the random forest classifier resulting from the Cross-

Validation stage, the prediction of class or label for testing data will be implemented (Figure 38).

f## Upload dataset for training and validation through accuracy paramete

df train data = pd.read csv("D: lasoume\\Salbertrar \DATASET\\RGB+R N st\ ng\\ nin
df train data = df train data.dropna/()
feature columns ['R",'G','B','RE", "
features df train datalfeature columns]
labels = df train data['Cla ']

print (labels.value ('HH[\IH())|

']
"N

Figure 38. Reading training dataset into the script
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Figure 39 shows the steps of hyper parameters setting for RF classifier, then fits a model on the

training data and predicts accuracy on training data.

v) V and GridSearchCV f ptimiz T " hyperparame

imators=25,max_features='auto', min_samples leaf=10, min_samples split=5, random state= 42)

Figure 39. setting hyper-parameters for RF classifier, fitting a model on the training data, and predicting accuracy on training data

Figure 40 reads an unseen dataset and performs the classification on it for each point, and
exports it to the set directory.

351 f ition and exportation of he 2nd unseen dat

df testing pd.read csv("D:\\Masoume\\Salber and\ \TASET\\SECOND TE REA\\N RE\\testing yints i
df testing clean df testing.dropna/() .drop(columns ', 'y D)

feature columns test = ['R','G','B','RE',"NIR"]

features test df testing|feature columns test]

CLASSIFIED DATASET model .predict (df testing clean)

tot df pd.concat ([df testing,df testing clean],axis=1) .dropna/()

my data 1 np.vstack ((tot df.T.drop(['R','G",'B',"RE', "NIR']),CLASSTIFIED DATASET))

my data 1 my data 1.1

np.savetxt ("D:\\M

Figure 40. Reading unseen testing dataset into the script, prediction of labels for each point, exporting it to the determined directory

The output of this step is a text file consisting of coordinates and a class of points, accordingly, in
order to have a visualization of the predicted map, the text file should be presented in the QGIS.

The steps for preparing results and representing them in software are as follows:

Import CSV file into the software.
Export text file as point shapefile
Rasterize point shapefile based on a class field.

change the visualization to pseudo color.

A e

assign appropriate colors for 3 classes of ground, water, and vegetation.

Data preparation for Validation dataset- QGIS: The validation step is decisive to see whether the
results of classification are acceptable for us or not. In this stage, preparation should be
implemented on the testing raster considering that classes of some points or areas are well-known
to us and the goal is to see if these areas are classified correctly during the classification of unseen

datasets or not. The steps of data preparation here are similar to training data preparation, the
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only difference is the input data, which is testing raster here. Figure 41 shows the validation

polygons. Thus, the steps are in such a way:

1. Importing testing raster into software

2. Drawing polygons for each class in 3 different layers

Figure 41. Validation polygons for 3 classes: Green (Vegetation), Yellow (Ground), Blue (Water)

Clip test raster by polygons: The result will be three rasters for each class.
Converting raster pixel2 points: the result will be 3 vector layers.

Removing zero values from attribute table of 3 layers

Point sampling tool: to add radiometric R, G, B, RE, and NIR values into layers.
Adding Coordinates of X/Y features into layers

Adding class or label field in the attribute table of each layer

L 0 N O U kW

Merging 3 vector layers
10. Extracting merged file into CSV format file: final output to be used in the next validation

step in python.
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3-3-3- Machine Learning- RF- July Epoch

In order to have an analysis regarding the performance of the Random Forest classifier in the
summertime epoch in the same study area, orthomosaics of the area in the July season have been
taken into account. Based on the results from previously analyzed scenarios in the winter epoch,
all of the channels together had a better performance, hence in the summer data analysis, only
this dataset in only one test area has been considered. Furthermore in the summer epoch, besides
5 considered spectral channels, Elevation data of Normalized Digital Surface Model, Spectral data
including Thermal data and Vegetation Indexes including NDVI, NDWI, NDRE, ARI, EVI2, SAVI, SIPI,
and Texture features including Angular Second Moment, Contrast, Correlation, Variance, Inverse
Difference Moment, Sum Average, Sum Variance, Sum Entropy, Entropy, Difference Variance,
Difference Entropy, Information Measures of Correlation, Maximal Correlation Coefficient as
described in (ROBERT M. HARALICK, 1973) have been added with the purpose of improving the
classification result. Considering all features and bands into account generally 27 attributes for

each pixel are available in the dataset.

In the summer epoch, the best-selected dataset from the previous epoch beside extra features
including nDSM, thermal and vegetation indexes, and texture features, are added to improve the
classification (Haralick et al., 1973) and to find out about the most effective features in the
classification of the area using RF. Considering all features and bands, 27 attributes for each pixel

are available in this dataset.

3-3-3-1- Feature Selection
Using the “Select from Mode

|H

function in the scikit-learn package of python the most useful
features have been selected considering the highest accuracy.

The used 27 features in this epoch are:

a) Spectral features: Red, Green, Blue, RE, NIR, and thermal.

b) Vegetation Indexes: NDVI, NDWI, NDRE, ARI, EVI2, SAVI, SIPI

c) Texture features: Angular Second Moment, Contrast, Correlation, Variance, Inverse
Difference Moment, Sum Average, Sum Variance, Sum Entropy, Entropy, Difference
Variance, Difference Entropy, Information Measures of Correlation, Maximal Correlation
Coefficient.
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Chapter 4

4- Results and Discussion

4-1- Random Forest - April Epoch - First test area
4-1-1- RGB + Red-Edge + NIR

0 100 200m
[

B11 Water
m22 Vegetation
33 Ground

Figure 42. Prediction (Segmented) map of testing based on RGB + Red-Edge + NIR dataset
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Figure 42 shows the classified map of the Salbertrand testing area based on all spectral bands of
Red, Green, Blue, Red-Edge, and NIR, based on the Random Forest classifier. In the classified map,
the water area is presented in blue, the vegetation in green, and the ground in yellow colors. As it
is evident riverbed is detected almost accurately, as is the vegetated area, but to have an accurate
measure of classification goodness, Table 13 represents the confusion matrix of the classified map.
In the confusion matrix, diagonal numbers represent the correct classified pixels, which dedicates
to the majority number of pixels in a good classification. Non-diagonal values represent
misclassification between three classes, As it is obvious from the table, most of the
misclassification is between vegetation and water class. Also, there are high values of
misclassification between vegetation and ground. It is worth mentioning that values are not pixels,

for the sake of simplicity they are presented in square meter units.

Table 13. Confusion Matrix for 1st test area- RGB+RE+NIR dataset

Vegetation

Vegetation

Ground 1.2

Table 14. Accuracy parameters for 1st test area- RGB+RE+NIR dataset

Table 14 presents other accuracy measures of precision, recall, and F-score. Precision shows how
many of the classified pixels are correct. And recall shows how many correct pixels are classified
correctly, and F-score is the weighted average of these two values. Similar to the results of the
confusion matrix, lower values of precision, recall and f-score is between water and vegetation
couple, as well as vegetation and ground couple. But, taking all misclassifications into account,

results still are promising and present an f-score of an average of 86%.
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Precision Recall F-score AUC

Water 0.99 0.82 0.90 0.99
Vegetation 0.69 0.99 0.82 0.99
Ground 0.98 0.76 0.86 0.98
Average 0.87 0.86 0.86 0.99

The precision-recall curve is another measure of model performance and represents the
classifier’s ability to distinguish between classes. Based on Table 14, high values of precision have
been acquired, so in this case, the class has a high ability to distinguish between classes for a
random dataset. Figure 43 shows the curve for three classes and almost all the classes, it tends to
be close to 1 for both precision and recall measures. In other words, this curve is an easier and
faster visual way of analyzing the results in comparison to numerical results presented in the

precision, recall, and f-score table.
sision-Recall curve for Water (11), Vegetation (22), Ground/Gravel bars classe

1.0
0.9 1 ;

0.8 +

0.7 1

0.6

Precision

0.5

0.4 1
— class 0
034 — class 1
= Class 2

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 43. The precision-Recall curve for 3 classes- for 1st test area- RGB+RE+NIR dataset
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4-1-2- RGB dataset

The cross-validation result for this dataset are as follows in Table 15, this result is based on the
cross-validation library in the scikit-learn package in python, and shows the optimized values of

random forest parameters. Optimization is based on the accuracy of training data.

Table 15. Cross-Validation result for RGB dataset

N-Estimators 50
Criterion Gini
Max-features Auto

Min-samples-leaf 10

Min-samples-split 10
Random state None
Accuracy on training 90 %

Classification of Unseen testing dataset- Python is in Figure 44 . As it is obvious, the river bed is
partly detected in the classified map, and there seem to be lots of misclassification between

vegetation and ground.

0 100 200m
-_—

®11 Water
m22 Vegetation

33 Ground
Figure 44. Predicted (Segmented) image of the 1st Test area based on RGB dataset
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Evaluation of classification goodness based on the confusion matrix for this dataset is presented
in Table 16. High values are related to the diagonal ones, as expected, but there are also very high
values in misclassification between water and vegetation, and also between vegetation and
ground, very low values of recall for water and ground, and low precision of vegetation is proof
for this misclassification in Table 17. All three classes have low values of f-score and the average f-

score value for all classes is 72%, which represents high problems in classification for this dataset.

Table 16. Confusion matrix of 1st test area- RGB dataset

Unit:m? Vegetation

Water

Vegetation

Ground

Table 17. Accuracy parameters of 1st test area- RGB dataset

Precision Recall F-score AUC

Water 0.88 0.58 0.70 0.85
Vegetation 0.55 0.92 0.69 0.88
Ground 0.96 0.70 0.81 0.98
Average 0.80 0.72 0.72 0.85
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Figure 45 shows the precision-recall curve for the results of this dataset, and as it is evident, curves
tend to decrease immediately from 1, especially for water and vegetation. Ground class decreases
a bit slower with respect to two other classes and it has better results of F-score based on Table
17. The easiest way to interpret this curve is to analyze its curviness, the more it is tending to run
away from 1 value on both axes, the less the precision, recall values, and the less accurate is the

classification.
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Figure 45. Precision-Recall curve of 1st test area- RGB dataset

4-1-3- Red-Edge + NIR dataset

Table 18 shows the results of Cross-validation for the Red-Edge + NIR dataset. Based on these
results, 25 trees are used in a random forest and there is randomness in the selection of
features.

Figure 46 shows the classification of the unseen testing area based on the multispectral dataset.
As it can be seen riverbed and wet areas are correctly detected with a high level of accuracy. There

seem to be some misclassifications between vegetation and ground classes.
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Table 18. Cross-Validation Result for Red-Edge + NIR dataset

N-Estimators 25
Criterion gini
Max-features Auto
Min-samples-leaf 10
Min-samples-split 5
Random state 42

0 100 200m
-_— )

11 Wwater
m22 Vegetation
33 Ground

Figure 46. Predicted (classified) map of 1st test area- based on Red-Edge + NIR dataset

Evaluation of classification goodness in Python is based on the confusion matrix in Table 19, based
on which misclassified pixels between vegetation and ground are present. This problem can also
be derived from low precision in vegetation class and low recall in ground class in Table 20. As a
result, the f-score of vegetation and ground is both low, compared to the water class. Because
based on the results, all the pixels in the water class are water and almost all of the water pixels

are detected and classified in the correct class.
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Figure 47 is the area under curve

very high value of almost 1 and it

representation. As it can be seen from the curve, the water class

tends to stay at 1 until the very end of it. Vegetation and ground,

on the other hand, have problems in their precision-recall curve, and precision and recall values

tend to decrease immediately for vegetation and ground respectively. Therefore, this dataset

seems to perform very well for only wet area detection (water class), but considering the results

of the other two classes, it fails to perform very well.

Table 19. Confusion Matrix of 1st test area based on Red-Edge + NIR dataset

Vegetation

Vegetation | Ground

Ground

0.4

Table 20. Accuracy

parameters of 1st test area based on Red-Edge + NIR dataset

Precision Recall F-score
Water 0.99 0.99 0.99 0.99
Vegetation 0.80 0.96 0.87 0.97
Ground 0.93 0.70 0.80 0.95
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Figure 47. Precision-Recall curve of 1st test area based on Red-Edge + NIR dataset
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Figure 48. Results of 1st test area using 3 different datasets

Based on Figure 48, the results of all three datasets for 1% test area are presented. In the RGB

dataset precision and recall and consequently, f-score values are low for all classes. In the
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multispectral dataset (RE+NIR) low recall has resulted for ground meaning that when it is ground,
it has not been predicted as ground correctly, besides precision is low for vegetation meaning that

most of the time that it is predicted as vegetation it is no vegetation.

Using the combined dataset (RGB+RE+NIR) the same pattern has remained, so low precision for
vegetation class and low recall for ground class. However, with a slight improvement of 5%
multispectral data alone performed better with respect to mixed data and about 20% better with

respect to RGB data alone regarding the average f-score value of all classes.

Confusion of the vegetation and ground for the classifier can be a result of brownish and not
completely green vegetation in the area during the winter season. Besides, the presence of
shadows during the acquisition phase in April time has caused the main problems for the classifier

to distinguish between ground and vegetation.

4-2- Random Forest- April Epoch- Second Test Area
4-2-1- RGB dataset

The leftimage in Figure 49 shows the second test area selected to test the random forest classifier.
This test area is another part of the Salbertrand area and the reason for using the second test area
is to produce some generalized results regarding the performance of datasets. The right image in
Figure 49 is the classified map of the area based on the RGB dataset. As it is shown, there seems

to be a lot of misclassifications between all couples of classes.

B11 Water /
m22 Vegetation

33 Ground

N
0 100 200m
-_—

Figure 49. Left: 2nd test area. Right: classified map of 2nd test area
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B11 water
m22 Vegetation
33 Ground
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Figure 50. Validation polygons on the 2nd test area, Green (Vegetation), Blue (Water), Yellow (Ground)

In Figure 50, validation polygons on the testing area are presented, with the assumption that

classes of the validation polygons are determined for us. This step is for assessing the classification

goodness.

A numerical assessment of the results is in Table 21. Based on the results, there are high values of

misclassification between vegetation\water, ground\water, vegetation\ground couples.

Table 21. Confusion matrix of 2nd test area- RGB dataset

PR
Unit:m Vegetation | Ground

Vegetation

Ground 35

66



Chapter 4 Results & Discussion

Table 22. Accuracy parameters of 2nd test area- RGB

Precision Recall

Water 0.92 0.72 0.81 0.95
Vegetation 0.72 0.92 0.81 0.94
Ground 0.74 0.76 0.75 0.92
Average 0.79 0.80 0.79 0.94

Table 22 shows the accuracy measures of the second test area based on the RGB dataset. As it can
be seen, there are low values of precision, recall, and consequently f-score for almost all the
classes and the best-achieved result is 80%. Figure 51 shows the precision-recall curve for this
dataset and their immediate decrease from 1 reference value in the water class as well as the
other two classes, which proves the presence of high misclassification between all the classes.
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Figure 51. Precision-recall curves for 3 classes
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4-2-2- Red-Edge + NIR dataset

B11 Water

W22 Vegetation
33 Ground
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Figure 52. Left: 2nd Testing area- RE + NIR dataset. Right: segmented map of 2nd testing area based on RE + NIR dataset

Figure 52 shows the results of the classification of the second test area based on only multispectral
data alongside with testing area itself is shown. The testing area in this figure (left) is a false-color

representation with Red-Edge in the Red channel and NIR in the Green channel.

In the classified map, as it is evident visually, waterbed and wet areas are detected with almost

good accuracy, but in the next figures also numerical measures are considered.

Table 23. Confusion matrix of 2+ Testing area- RE + NIR dataset

)
Unit:m Vegetation | Ground

Water

Vegetation

Ground
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In table 23, the confusion matrix for the second test area for this dataset is reported. There seems
to be no problem for water class, water pixels are mostly in water class, and the number of
vegetation and ground pixels inside water class is not that much, but misclassification between
ground and vegetation is still present in this testing area. The precision-recall curve in Figure 53
shows very high values of almost 1 for the water class. But for the other two classes, there is an
immediate decrease in the AUC curve, which is proof of the classification problem. In Table 24,
numerical results of precision, recall, and f-score for 3 classes prove our interpretation. Since there
are low precision and recall values for vegetation and ground classes. But water class has higher

precision and recall estimations.

iision-Recall curve for Water (11), Vegetation (22), Ground/Gravel bars classe

1.0

0.9 1

0.8

0.7 1

Precision

0.6 1

0.5

041 —— class 0

class 1
0.3 9 = class 2

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 53. Precision-recall curves for 3 classes
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Table 24. Accuracy parameters of 2nd Testing area- RE + NIR dataset

Precision

Water 0.99 0.99 0.99 0.99
Vegetation 0.87 0.70 0.78 0.95
Ground 0.75 0.88 0.81 0.94
Average 0.89 0.88 0.88 0.98

4-2-3- RGB+ Red-Edge+ NIR dataset

B11 Water
o 100 200m .
-— W22 Vegetation
33 Ground

Figure 54. Left. 2nd testing area, RGB+ RE+ NIR dataset. Right: Segmented map of the 2nd testing area

Figure 54 shows the false-color representation of the testing area and the classified map of the
area. As it is evident, most of the pixels seem to be classified correctly. Waterbed and moist areas

are detected accurately and there is not that much noise between vegetation and ground classes.
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Table 25. Confusion Matrix of 2nd testing area, RGB+ RE+ NIR dataset

2
Unit:m Vegetation | Ground

Water

Vegetation

Ground

sision-Recall curve for Water (11), Vegetation (22), Ground/Gravel bars classe
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Figure 55. Precision- Recall curves

With the same token and same interpretations, the confusion matrix in Figure 55, Table 25, and
Table 26 shows that precision, recall, and F-score values of all classes are high in this dataset,

meaning that most of the classified pixels are in the right class and most of the pixels of each class
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are detected. The precision-recall curve tends to stay 1 until the very end of it and the average F-

score for all classes is about 97%.

Table 26. Accuracy Parameters of 2nd testing area, RGB+ RE+ NIR dataset

Precision Recall

Water 0.99 0.98 0.98 0.99
Vegetation 0.95 0.99 0.97 0.99
Ground 0.97 0.94 0.95 0.98

Average 0.97 0.97 0.97 0.99

RGB RE+NIR
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Figure 56. Results of 2nd test area using 3 different datasets

Figure 56 shows the results of all three datasets for the second test area. As expected RGB dataset
could not provide accurate results for any of the classes. Using a multispectral dataset (RE+NIR)

good results have been achieved for the water class mostly because of not so shallow depth of
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water and clear boundaries between water and other areas. Although lower precision and lower
recall values have been produced for both vegetation and ground classes, meaning that most of
the points that are classified as vegetation or ground are not actually vegetation and ground
respectively and most of the actual vegetation and ground points have not been predicted
correctly, it is obvious that these parameters are correlated to each other and the level of
confusion for the classifier is very high between vegetation and ground classes. And as mentioned
before the most logical explanation for this issue is the radiance values in the winter which do not
have a sharp difference between ground and vegetation in winter. However, this problem has
been mostly resolved by using all available bands together including RGB and RE, and NIR.
Therefore, with the combined dataset (RGB+RE+NIR), precision, recall, and consequently f-score

values and considerably high for all classes.

4-3- Random Forest- April Epoch- Third Test Area
4-3-1- RGB dataset

Figure 57, the left map shows the true color representation of the third test area, and the right
map shows the classified map of the third test area based on the RGB dataset. Figure 58 shows
the validation polygons of the three classes which have been used to perform the evaluation of

goodness for the classified map.
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Figure 57. Left: 3rd testing area-RGB dataset. Right: segmented map of the 3rd testing area based on RGB dataset
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B11 Water
0 100 200m 22 Vegetation
33 Ground

Figure 58. Validation Polygons on the 3rd testing area. Green (Vegetation), blue (Water), Yellow (Ground)

Table 27. Confusion Matrix of the 3rd testing area- based on RGB dataset

t4epn2
Unit:m Vegetation | Ground

Water

Vegetation

Ground
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iision-Recall curve for Water (11), Vegetation (22), Ground/Gravel bars classe
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Figure 59. Precision-Recall curves

Based on the results reported in Table 28, Table 28, and Figure 59, there is misclassification
between all of the classes. A large number of pixels are classified incorrectly, especially between
the water\vegetation couple, and ground\vegetation couple of classes. The average F-score value
produced for the water class is 58%, for vegetation class is 72% and for ground, class is 73%, and
the overall average F-score for all classes is 68% which represents a very low value of precision
and recall. The precision-recall curve has better results for the ground class compared to the two
other classes, and the worst condition is related to the water class. Like the results of two previous
test areas, the results of this test area proves that the RGB dataset cannot perform well neither

for wet area detection nor for classification of two other classes.

Table 28. Accuracy parameters of the 3rd testing area- based on RGB dataset

Precision Recall F-score
Water 0.83 0.44 0.58 0.89
Vegetation 0.57 0.97 0.72 0.93
Ground 0.98 0.59 0.73 0.99
Average 0.78 0.69 0.68 0.87
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4-3-2- Red-Edge + NIR dataset
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Figure 60. Left: 3rd testing area- Red-Edge + NIR dataset. Right: classified map of the 3rd testing area based on Red-Edge + NIR
dataset

Figure 60, the left map shows a false-color representation of the third test area (Red-edge in the
Red channel, and NIR in the green channel), and the right map shows the classified map of this
area based on the Red-Edge and NIR dataset, in which blue represents water class, the yellow area

is related to ground class and green classified areas are the vegetation class.

Based on the classified map, the water class seems to have very accurate results. The classifier was
able to predict the water pixel even in the most challenging parts of the area (wet areas among
the vegetation). For vegetation and ground, on the other hand, there seem to be some noises and
misclassifications. Table 29, shows a high number of correctly classified water pixels, but a high

number of falsely classified pixels for vegetation and ground.

Hence, as well as two other test areas, also in this test area, wet area and waterbed can be easily
and accurately detected by Red-Edge and NIR dataset, but they have serious problems |
classification of two other classes, it is worth mentioning that all accuracy measures of precision-
recall numerical values, their curve and confusion matrix prove each other’s results, which can be

interpreted as their correct performance.
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Table 29. Confusion Matrix of 3rd testing area- Red-Edge + NIR dataset

Unit:m?2

Vegetation

Water

Vegetation

Ground
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Figure 61. Precision-recall curve
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Based on the precision-recall curve in Figure 61, the water class achieves an exact value of 1 in
both axes, but vegetation and ground classes suffer from a large amount of misclassification. Low

precision and recall in these two classes in Table 30 is proof of this interpretation.

Table 30. Accuracy Parameters of the 3rd testing area based on Red-Edge + NIR dataset

Precision Recall F-score
Water 0.99 0.99 0.99 0.99
Vegetation 0.66 0.67 0.67 0.84
Ground 0.64 0.64 0.64 0.83
Average 0.75 0.75 0.75 0.91

4-3-3- RGB+ Red-Edge+ NIR dataset

N ®11 Water

0 100 2nnm@ m22 Vegetation
33 Ground

Figure 62. Left: 3rd testing area- RGB+ RE+ NIR dataset. Right: Segmented map of 3rd testing area based on RGB+ RE+ NIR
dataset

The last set of analysis for the April epoch is depicted in this section. In Figure 62, the right map

shows the false representation of the area. And the right map shows the classified map of the area
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based on a dataset of all bands together. Table 31 depicts some problems in the classification
results mostly in the water\vegetation and vegetation\ground couple. Figure 63 represents the
precision-recall curve for three classes, in which again water class seems to perform better than

the two other classes.

Table 31. Confusion Matrix of the 3rd testing area- RGB+ RE+ NIR dataset

itemm2
Unit:m Vegetation

Water

Vegetation

Ground

Table 32, shows the numerical results of the classification, low precision for vegetation, and low
recall for ground class, showing the classification problem between these two classes of vegetation
and ground. This misclassification can be accounted for by the presence of shadow in the area
during the acquisition phase and the composition of brownish vegetation with the ground surface
in this epoch. The average f-score values achieved for water, vegetation, and ground are 89%,

83%, and 84% respectively.

Figure 64 shows the results of the third test area based on all three datasets. Like the other two
test areas, the RGB dataset performs weakly in classification. In the multispectral dataset (RE+NIR)
precision and recall are low for both vegetation and ground classes meaning that there is some
misclassification between actual and predicted points, especially between vegetation and ground

pixels.
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sision-Recall curve for Water (11), Vegetation (22), Ground/Gravel bars classe

1.0 1 — —

0.9 ~

0.8 1

0.7 1

Precision

0.6

0.5 A

0.4 4
—— class 0

= Class 1
039 — class 2

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 63. Precision-Recall curves

Table 32. Accuracy Parameters of the 3rd testing area based on RGB+ RE+ NIR dataset

Precision Recall F-score AUC
Water 0.99 0.81 0.89 0.99
Vegetation 0.72 0.99 0.83 0.98
Ground 0.99 0.73 0.84 0.98
Average 0.89 0.85 0.85 0.97

Results for the water class are promising. Using a combined dataset (RGB+RE+NIR), for water class,
high precision values have been generated representing that most of the pixels that are classified
as water are water, and also low recall value (not so low) meaning that a portion of the pixels that

are actually water has not been predicted as water correctly.
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Figure 64. Results of 3rd test area using 3 different datasets

To sum up, for the water class, most of the points in the water class are water but still, there are
a few points of water points in other classes as wrongly classified points.

Vegetation class resulted in low precision and high recall values meaning that points that are
vegetation have been classified mostly correctly as vegetation but there are some other points in
the vegetation class that belong to other classes and predicted incorrectly as vegetation which can
be related to water points and explain lower recall value for water class. For ground class, high
precision and low recall values have been observed showing that most of the points that are
predicted as the ground are ground but there are some missing points from the ground which is
present in other classes incorrectly, and it can be realized here that these missing points are most
probably present in the vegetation class because of resulting low precision value for vegetation
class. Generally, based on the average f-score value, the combined dataset (RGB+RE+NIR)
performs better with respect to the other two datasets, but the results are still suffering from the
grassy and brownish texture of the area during the winter season and even some shadow presence
in the area. Table 33, shows all of the results for all classes for three test areas considering three

datasets altogether, so it contains 9 scenarios.
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Based on the results of Table 33, it can be recognized that generally RGB dataset cannot produce
accurate results for classification purposes using a Random Forest classifier but adding data from

other spectral bands to RGB dataset can improve classification results considerably.

Regarding 3 analyzed test areas, water class almost got detected in multispectral and combined
datasets in all cases, but misclassification between ground and vegetation classes are still present
even in the multispectral dataset for 15t and 3™ test area, although for 2" test area such a problem

was not an issue and RGB+RE+NIR dataset using Random Forest classifier did a good job for

Table 33. Results of all test areas for all available dataset

Dataset Precision % Recall % F-score %
RGB water 88 58 70
vegetation 55 92 70
ground 97 70 81
RedEdge + NIR water 99 99 99
Test 1 vegetation 8o 96 87
ground 94 70 8o
RGB+ RedEdge + NIR
RGB water 92 72 81
vegetation 72 92 8o
ground 74 76 75
RedEdge + NIR water 99 99 99
Test 2 vegetation 87 70 78
ground 75 88 81
RGB+ RedEdge + NIR water a9 98 98
vegetation 95 99 97
ground 97 97 97

water

vegetation 66 66 66
ground 64 64 64
water 99 81 89
vegetation 72 99 83
ground 99 73 84

classification. Following our aim of identifying wet areas effectively and as quickly as possible, It
can be emphasized that the multispectral RE and NIR bands associated with RF are able to do so
with an excellent degree of accuracy (in all 3 areas analyzed), with some errors mainly related to

shadows due to the lack of light during the acquisition phase.
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It is worth mentioning that multispectral data alone (Red-Edge and NIR) produce promising results
for water class, so they can perform very well for wet area detection, but if detection of two other

classes is also of importance for us, the combined dataset is preferable.

The composition of RGB bands with the multispectral ones tends to improve the classification also
of the emerged areas with the consequence of a worsening of the wet areas’ detection (especially
in the 1st and 3™ sections). In general, the classified areas into Vegetation and Ground present
classification problems, linked to the constitution of the riverbed and the non-evergreen
vegetation present in the investigated area during the winter season. Such evidence could be

severely limited in evergreen wooden areas or in summer, as will be exploited in the next stage.

4-4- Random Forest- July epoch

As discussed in the previous section, since our focus is to detect wet areas as well as the other two
classes, the combined dataset of RGB+RedEdge+NIR have been selected as the best dataset for
classification purpose. In addition, in this epoch, other features of elevation, spectral indices, and

texture features have been added as the RF inputs.
The used 27 features in this epoch are:

a) Spectral features: Red, Green, Blue, RE, NIR, and thermal.
b) Vegetation Indexes: NDVI, NDWI, NDRE, ARI, EVI2, SAVI, SIPI
c) Texture features: Angular Second Moment, Contrast, Correlation, Variance, Inverse
Difference Moment, Sum Average, Sum Variance, Sum Entropy, Entropy, Difference
Variance, Difference Entropy, Information Measures of Correlation, Maximal Correlation
Coefficient. (ROBERT M. HARALICK, 1973)
Hence, in this section, the results of the classification of one of the test areas in the July epoch
with all 27 features are presented. Table 34 shows the results of precision, recall, and f-score for
this step. As presented in chpater3, a selection process based on “Select from model” tool has
been performed in this epoch to find a compromise between accuracy and number of features,
and to detect the most important features for the classification purpose. Figure 65 shows the

percentage of importance for each feature. As shown in this figure, spectral indices including
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NDWI, EVI2, NDVI, SAVI, NDRE, and ARl are among the most effective features for classification,
and from spectral bands, thermal and NIR and RE are the most important ones, and this is another
proof for the fact that RGB dataset alone could not achieve to the acceptable classification

accuracies, even in summer epoch.

Then, based on a median threshold, only 14 features are used to implement the classification and
reclassify the area based on selected features, which can be considered the most important
features. The result of performance analyzers with all features and with only the important ones
are presented in Table 34. It is worth mentioning that Based on these results, it can be interpreted
that with importance analysis, we can produce even better results with a lower number of features
because sometimes less important features even tend to decrease the accuracy score and
removing them from classification, not only improves the classification results but also decrease

the processing time and required power for the classifier.
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Figure 65. Importance of all features in percentage
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Table 34. Results of performance analysis with all features vs only selected features.

Precision (%) Recall (%) F-score (%)
27 features 91.6 91.5 91.3
14 features 93.2 92.6 92.7

In Figure 66, the top image shows the analyzed testing area in the summer epoch in RGB
representation. The bottom image shows the result of classification for this area based on all the
27 features. The predicted map of the area based on only 14 features is not reported here, since

it has a similar map as Figure 66, as are their precision, recall, and F-score values.
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Figure 66. Classification of unseen dataset in summer epoch
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Chapter 5
5- Conclusions and Suggestions

Riparian river areas are of high importance for landscape and environmental planning. The river
area and its surrounding landscape are highly effective in the judgments of decision-makers for
climate change measures. Taking all these considerations into account, the classification of the
riparian area of the Salbertrand river with emphasis on wet area detection is performed in this

project.

Starting from Raw UAV multispectral images, the orthophotos of the area based on the Structure
from Motion approach are produced with a high level of accuracy at the centimeter level. The
produced orthophotos were then used as inputs of the machine learning classifier named Random

Forest.

Following our aim of identifying wet areas effectively and as soon as possible, along with the
classification of two other classes of vegetation and ground, it can be emphasized that the
multispectral radiometric features associated with the Random Forest classifier were able to do
so with an excellent degree of accuracy, either in the cold season in April time epoch or the

summertime in July time epoch.

There were some errors in all the scenarios mainly related to shadows due to the lack of light
during the acquisition phase and constitution of the riverbed and the non-evergreen vegetation
present in the investigated area in the April epoch.
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In the July time epoch, the composition of radiometric features with additional features, including
elevation feature of the Normalized Digital Elevation Model (nDSM), thermal data acquired by a
thermal camera, vegetation indexes of NDVI, NDWI, NDRE, ARI, EVI2, SAVI, SIPI, and textures
features of Angular Second Moment, Contrast, Correlation, Variance, Inverse Difference Moment,
Sum Average, Sum Variance, Sum Entropy, Entropy, Difference Variance, Difference Entropy,
Information Measures of Correlation, Maximal Correlation Coefficient, tends to improve the

classification results even more in respect to previous time epoch.

Meanwhile, a compromise between the number of features and classification accuracy results in
a more realistic conclusion about selected features. Based on the performed importance analysis,
spectral indices including NDWI, EVI2, NDVI, SAVI, NDRE, and ARl are among the most effective
features for classification, and from spectral bands, thermal and NIR and Red-Edge are the most
important ones. By recognizing the most effective features, researchers can focus on the most
important ones in their studies, to decrease the processing time and required power alongside

achieving high accuracy for the classification.

In future works, other machine learning methods, such as Support Vector Machine (SVM) and
deep learning methods based on Convolutional Neural Networks (CNNs), can be taken into
consideration to have a comprehensive analysis of the performance of different methods beside

different datasets for wet area detection.

In order to perform the classification with CNNs, one way is to take a model and train the model
by our multispectral dataset of Salbertrand, but the problem with this action is overfitting. Another
way would be to find a pretrained network with an available weighting matrix and test it with our
Salbertrand dataset. But the problem with this method is that the given network should be trained
on exactly similar data as ours considering the number of bands, wavelength, and all radiometric
characteristics. The third possible way is to find a set of datasets (images) and train the network
with that unknown dataset and then use the Salbertrand data as testing data for the network
(Ronald Kemker C. S., 2017), but similar to the previous method, also in this case we should have
exactly same characteristics of the dataset as ours because the model will be trained on it and

different characteristics of data may result is problematic results (Bin Pan, 2019). Because of lack
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of processing power and time, CNNs have not been performed in this research work, but

considering the performed vast literature review on it, it can be the focus of our future work.
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