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Summary

We prove the well-posedness of a multi-population dynamical system with an entropy regular-

ization, and compare the entropic solution to the entropy-free solution. The mean-field limit

of such a system is performed in both the entropic and entropy free cases. We also address the

case of different time scales between the agents’ locations and labels dynamics, performing a

fast reaction limit.
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Mean-field limits for entropic multi-population dynamical systems

1 Introduction
The concept of mean-field interaction, originally used in statistical physics by Kac [18] and

then by McKean [22] to describe the collisions between particles in a gas, has later proved to be

a powerful tool to analyze the asymptotic behavior of systems of interacting agents. Models of

multi-agent interactions have been recently used to describe phenomena in biology, sociology,

and economics; for example cell aggregation and motility [19, 10], coordinated animal motion

[4], synthetic agent behaviour and interactions, such as cooperative robots [11], and influence

of key investors in the stock market [6, indroduction]. Two main mechanisms are considered

in such models to define the dynamics.

The first takes inspiration from physical laws of motion and is based on pairwise forces en-

coding observed “second principles” of biological, social, or economical interactions, including

repulsion/attraction, alignment, self-propulsion/friction. Typically, this leads to Newton-like

first or second order equations with “social interaction” forces. In fact, the evolution of N
agents with time-dependent locations, x1

t , . . . , xN
t in Rd

is described by the ODE system

ẋi
t = 1

N

NØ
j=1

f(xi
t, xj

t ) for i = 1, . . . , N, t ∈ (0, T ],

where f is a pre-determined pairwise interaction force between pairs of agents. First order

models of this form are ubiquitous in the literature and have, for instance, been used to model

multi-agent interactions in opinion formation [16], vehicular traffic flow [14], pedestrian mo-

tion [12], and synchronisation of chemical and biological oscillators in neuroscience [20].

In the second mechanism, the dynamics is driven by an evolutionary game where players

simultaneously optimize their cost. Examples are game theoretic models of evolution [17]

or mean-field games, introduced in [21] and independently under the name Nash Certainty

Equivalence (NCE) in [9], later greatly popularized, e.g., within consensus problems.

More recently, the notion of spatially inhomogeneous evolutionary games has been pro-

posed [2] where the transport field for the agent population is directed by an evolutionary

game on their available strategies (see also [1] for a proposal of a numerical scheme for spa-

tially inhomogeneous evolutionary games). Unlike mean-field games, the optimal dynamics is

not chosen via an underlying non-local optimal control problem, but by the agents’ local (in

time and space) decisions. This is implemented by the well-known replicator dynamics [17].

As above, agents may move in Rd
. We denote by U be the set of pure strategies. A pay-off

function J : (Rd × U)2 → R is supposed to be known, so that J(x, u, x′, u′) is the pay-off that

player in position x gets playing pure strategy u against player in position x′
with pure strat-

egy u′
. Each agent does not always play the same strategy, but picks instead different strategies

according to a probability measure σ ∈ P(U), which is referred to as mixed strategy. The state

of each agent is given by their position and mixed strategy, e.g., (x, σ), so thatÚ
U

J(x, u, x′, u′) dσ′(u′)

is the pay-off that player in position x gets playing strategy u against player in position x′
with

mixed strategy σ′
. Therefore, if we consider N agents, and denote by (xi

t, σi
t), i = 1, . . . , N ,
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1 Introduction

their states, the pay-off that the i-th player gets playing strategy u against all the other players

at time t is

J (xi
t, u) :=

NØ
j=1

Ú
U

J(xi
t, u, xj

t , u′) dσj
t (u′).

Maximizing this pay-off is a consequence of playing the best strategy possible. In order to do

so, the i-th player has to compare the pay-off obtained by a certain strategy with the mean

pay-off over all possible strategies according to their mixed strategy σi
t. This leads us to the

system of ODEsẋi
t = v(xi

t, σi
t)

σ̇i
t =

3
J (xi

t, u) −
Ú

U
J (xi

t, v) dσi
t(v)

4
σi

t

for i = 1, . . . , N, t ∈ (0, T ].

A more general case has been analyzed in [23], where the velocity of the agents is also de-

pending on the behavior of the other ones, and the replicator dynamics for the strategies has

been replaced by a more general vector field T , that is
ẋi

t = vΛN
t

(xi
t, σi

t)

σ̇i
t = TΛN

t
(xi

t, σi
t)

i = 1, . . . , N, t ∈ (0, T ],

where ΛN
t =

qN
j=1 δ(xj

t , σj
t ) ∈ P(Rd × P(U)) is a distribution of agents with strategies at

time t. The interpretation, given in [23], of these types of systems differs from the one of

game theory: the interacting agents are assumed to belong to a number of different species,

or populations, and therefore we deal with labels instead of strategies. This point of view can

be used to distinguish informed agents steering pedestrians, to highlight the influence of few

key investors in the stock market, or to recognize leaders from followers in opinion formation

models. Throughout this work, we will adopt this perspective.

In [5], the replicator equation is slightly modified adding an entropy regularization H,

see (11) below. However, it is very complicated to define such a functional on the space of

probability measure P(U). Therefore, we fix a probability measure η ∈ P(U), and consider

only probabilities densities with respect to η. The aim of this work is to study the systemẋi
t = vΛN

t
(xi

t, ℓ i
t )

ℓ̇ i
t = λ [TΛN

t
(xi

t, σ i
t ) + ε H(ℓ i

t )]
i = 1, . . . , N, t ∈ (0, T ], (I)

where ℓ i
t denotes the label of the i-th agent, and therefore it is a probability density with respect

to η; ε > 0 is a small parameter which modulates the intensity of the entropy functional; λ ≥ 1
takes into account the possible time scale difference between the positions and labels dynamics.

We are interested in the well-posedness of this system, and in comparing the entropic solution,

i.e., ε > 0, to the entropy-free solution, i.e., ε = 0. Our intent is also to compute the mean-field

limit of system (I). The underlying idea is that the behavior of this system, as the number

of agents is large enough, i.e., N → ∞, can be efficiently treated by replacing the influence

of all other individuals in the dynamics on a given agent by a single averaged effect. From a
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Mean-field limits for entropic multi-population dynamical systems

mathematical point of view, this amounts to passing from a particle description to a kinetic

description, consisting of a limit PDE whose unknown is the particle density distribution in

the state space. More precisely, if we denote by bΛN
t

(xi
t, ℓ i

t ) the vector field which drives the

state (xi
t, ℓ i

t ) in system (I), the mean-field limit of such a system is probability measure on the

state space, which solves the continuity equation for measures

∂tΛt + div(bΛt Λt) = 0.

The well-posedness of such models has therefore to be proved in spaces of measures (we refer

to [3] for a monograph on this topic). Lastly, we are interested in the case of instantaneous

changes for the labels dynamic, i.e., the fast reaction limit λ → +∞. In the undisclosed setting

[5], that is TΛN
t

(xi
t, ℓi

t) = T (xi
t, ℓ i

t , x1
t , . . . , xN

t ), we prove the convergence of system (I) to a

Newton-like system of the form

ẋi
t = vΛN

t
(xi

t, ℓ∗ i
t (x1

t , . . . , xN
t )) for i = 1, . . . , N, t ∈ (0, T ],

where ℓ∗ i
t is a solution to a particular minimum problem. The mean-field limit of this last

system is a byproduct of the mean-field limit of system (I).

In Sections 2 and 3, we present our notation, and recall some tools of functional analysis and

measure theory. In Section 4 we outline the basic settings of the problem and make the general

assumptions. In Section 5 we study the entropy functional focusing just on the dynamics for

the labels. In section 6 we prove the well-posedness of system (I), and compare the entropic

solution to the entropy free solution. In Section 7 we introduce the notions of Eulerian and

Lagrangian solutions, which are used in Section 8 to obtain the mean-field limit of system

(I). In Section 9, we obtain the fast reaction limit of system (I). We conclude this thesis with

Section 10, where we indicate some possible lines of research for further development of these

topics.

2 Basic notation
If (X , dX ) is a metric space we denote by P(X ) the space of probability measures on X . The

notation Pc(X ) will be used for probability measures on X having compact support. We de-

note by C0(X ) the space of continuous functions vanishing at the boundary of X , and by

Cb(X ) the space of bounded continuous functions. Whenever X = Rd
, d ≥ 1, it remains

understood that is endowed with the Euclidean norm (and induced distance), which shall be

simply denoted by | · |. For a Lipschitz function f : X → R we denote by

Lip(f) := sup
x, y ∈X

x /=y

|f(x) − f(y)|
dX (x, y)

its Lipschitz constant. The notations Lip(X ) and Lipb(X ) will be used for the spaces of Lip-

schitz and bounded Lipschitz function on X , respectively. Both are normed spaces with the

norm ∥f∥ := ∥f∥∞ + Lip(f), where ∥·∥∞ is the supremum norm. In a complete and separa-

ble metric space (X , dX ), we shall use the Kantorovich-Rubinstein distance W1 in the class of
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P(X ), defined as

W1(µ, ν) := sup
;Ú

X
φ(x) dµ(x) −

Ú
X

φ(x) dν(x) : φ ∈ Lipb(X ), Lip(φ) ≤ 1
<

(1)

or, equivalently (thanks to the Kantorovich duality), as

W1(µ, ν) := inf
;Ú

X ×X
dX (x, y) dΠ(x, y) : Π(A × X ) = µ(A), Π(X × B) = ν(B)

<
,

involving couplings Π of µ and ν. It can be proved that the infimum is actually attained. Notice

that W1(µ, ν) is finite if µ and ν belong to the space

P1(X ) :=
;

µ ∈ P(X ) :
Ú

X
dX (x, x) dµ(x) < +∞ for some x ∈ X

<
(2)

and that (P1(X ), W1) is complete if (X , dX ) is complete. For a probability measure µ ∈ P(X ),
if X is also a Banach space, we define the first moment m1(µ) as

m1(µ) :=
Ú

X
∥x∥X dµ(x).

So that, the finiteness of the integral above is equivalent to µ ∈ P1(X ), whenever the distance

dX is induced by the norm ∥·∥X .

Let µ ∈ P(X ) and f : X → Z a µ-measurable function be given. The push-forward measure

f#µ ∈ P(Z) is defined by f#µ(B) = µ(f−1(B)) for any Borel set B ⊂ Z . It also holds the

change of variables formulaÚ
Z

g(z) df#µ(z) =
Ú

X
g(f(x)) dµ(x)

whenever either one of the integrals is well defined.

For E being a Banach space, the notation C1
b (E) will be used to denote the subspace Cb(E)

of functions having bounded continuous Fréchet differential at each point. The notation Dϕ(·)
will be used to denote the Fréchet differential. In the case of a function ϕ : [0, T ] × E → R,

the symbol ∂t will be used to denote partial differentiation with respect to t, while D will only

stand for the differentiation with respect to the variables in E.

3 Well-posedness of ODEs in Banach spaces
We recall a theorem by Brezis [7, section I.3, Theorem 1.4, Corollary 1.1] on the well-posedness

of ODEs in Banach spaces.

Theorem 1. Let (E, ∥·∥E) be a Banach space, let C be a closed convex subset of E, and, for
t ∈ [0, T ], let A(t, ·) : C → E be a family of operators satisfying the following properties:

(i) there exists a constant L ≥ 0 such that for every c1, c2 ∈ C and t ∈ [0, T ]

∥A(t, c1) − A(t, c2)∥E ≤ L ∥c1 − c2∥E ;
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Mean-field limits for entropic multi-population dynamical systems

(ii) for every c ∈ C the map t → A(t, c) is continuous in [0, T ];

(iii) for every R > 0 there exists θR > 0 such that for every c ∈ C ∩ {e ∈ E : ∥e∥E ≤ R}

c + θR A(t, c) ∈ C.

Then for every c ∈ C there exists a unique curve c : [0, T ] → C of class C1 such that

d
dt

ct = A(t, ct) in [0, T ], c0 = c.

Moreover, if c1 and c2 are the solutions starting from the initial data c1, c2 ∈ C , respectively, we
have ...c1

t − c2
t

...
E

≤ eLt
...c1 − c2

...
E

for every t ∈ [0, T ].

For our purposes, we need the following generalization where assumption (i) in Theorem 1

is weakened to a local Lipschitz continuity condition, provided we additionally assume at most

linear growth of the operator A.

Corollary 1. Let (E, ∥·∥E) be a Banach space, let C be a closed convex subset of E, and, for
t ∈ [0, T ], let A(t, ·) : C → E be a family of operators satisfying the following properties:

(i) for every R > 0 there exists a constant LR > 0 such that for every t ∈ [0, T ] and c1,
c2 ∈ C ∩ {e ∈ E : ∥e∥E ≤ R}

∥A(t, c1) − A(t, c2)∥E ≤ LR ∥c1 − c2∥E ;

(ii) for every c ∈ C the map t → A(t, c) is continuous in [0, T ];

(iii) for every R > 0 there exists θR > 0 such that for every c ∈ C ∩ {e ∈ E : ∥e∥E ≤ R}

c + θR A(t, c) ∈ C;

(iv) there exists M > 0 such that for every c ∈ C , there holds

∥A(t, c)∥E ≤ M(1 + ∥c∥E).

Then for every c ∈ C there exists a unique curve c : [0, T ] → C of class C1 such that

d
dt

ct = A(t, ct) in [0, T ], c0 = c. (3)

Moreover, if c1 and c2 are the solutions starting from the initial data c1, c2 ∈ C∩{e ∈ E : ∥e∥E ≤
R}, respectively, there exists a constant L = L(M, R, T ) > 0 such that...c1

t − c2
t

...
E

≤ eLt
...c1 − c2

...
E

for every t ∈ [0, T ]. (4)
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4 Functional setting

Proof. Let us fix the initial datum c ∈ C and let us choose R := (∥c∥E + MT )eMT
. Consider

a smooth function with compact support χ : R+ → [0,1] such that χ(r) = 1 for every r ≤ R
and set B(t, c) := χ(∥c∥E)A(t, c). Then one can see that B satisfies hypotheses (i) and (ii) of

Theorem 1. To see that hypothesis (iii) of Theorem 1 is also satisfied, it is suffices to notice

that, by convexity and since 0 ≤ χ ≤ 1, the point c + θχ(∥c∥E)A(t, c) belongs to C whenever

c + θA(t, c) ∈ C . Therefore there exists a unique solution t → c(t) of class C1
to

d
dt

ct = B(t, ct) in [0, T ], c0 = c. (5)

Using again that 0 ≤ χ ≤ 1 and assumption (iv), one can see that

∥ct∥E ≤ ∥c∥E + MT + M

Ú T

0
∥cs∥E ds,

hence, Grönwall’s Lemma implies that ∥ct∥E ≤ R for every t ∈ [0, T ]. With this, ct solves (3).

A similar argument shows that any other solution t → ĉt to (3) must satisfy ∥ĉt∥E ≤ R for

every t ∈ [0, T ]. Thus, uniqueness of solutions for (3) follows from the uniqueness of solutions

to (5). A similar argument also yields (4).

4 Functional setting
The space of labels (U, d) will be assumed to be a separable metric space. Consider the Borel

σ-algebra B on U induced by the metric d and let us fix a probability measure η ∈ P(U) which

we can assume, without loss of generality, to have full support, i.e., spt(η) = U . Notice that

the measure space (U,B, η) is σ-finite and separable
1
. For p ∈ [1, +∞], we denote by E the

Banach space Lp(U, η) which we suppose to be separable
2
. Given two constants r and R such

that 0 < r < 1 < R < +∞, we introduce the set of probability densities with respect to η,

having lower bound r and upper bound R :

Cr,R :=
;

ℓ ∈ E :
Ú

U
ℓ(u) dη(u) = 1 and r ≤ ℓ ≤ R η − a.e.

<
. (6)

For our purposes, both constants will depend on a small parameter ε > 0, i.e., r = rε and

R = Rε , so that we shall use the simpler notation Cε instead of Crε,Rε . Such dependence will

be discussed in detail in the Section 5. With an abuse of notation, we denote by C0,∞ the set

of unbounded probability densities with respect to η, having Lp
regularity:

C0,∞ :=
;

ℓ ∈ E :
Ú

U
ℓ(u) dη(u) = 1 and ℓ ≥ 0 η − a.e.

<
. (7)

1

A measure space (X , A, µ) is said to be separable if there exists a countable family of elements in A, for

which the σ-algebra generated by this family coincides with A, see [8, Definition on page 98].

2

For p ∈ [1, +∞), such a space is actually separable because of [8, Theorem 4.13]. For p = +∞, a sufficient

condition would be that the elements of U are finite.
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Mean-field limits for entropic multi-population dynamical systems

Since η(U) = 1, the inclusion Lp(U, η) ⊂ L1(U, η) holds for all p ∈ [1, +∞] and therefore

Cε and C0,∞ are both closed sets with respect to the p-norm. Thus, when equipped with the

p-norm, both Cε and C0,∞ are separable
3

Banach spaces. Notice that Cε and C0,∞ are also

convex and their interiors are empty.

The state variable of the our system is y := (x, ℓ) ∈ Rd × Cε =: Yε . The component

x ∈ Rd
describes the location of an agent in space, whereas the component ℓ ∈ Cε describes

the distribution of labels (or pure strategies in the case of a replicator dynamics) of the agent.

A probability distribution Ψ ∈ P(Yε) denotes a distribution of agents with labels. To outline

the functional setting for the dynamics, we define Y := Rd × E and the norm ∥·∥Y by

∥y∥Y = ∥(x, ℓ)∥Y
:= |x| + ∥ℓ∥Lp(U,η) . (8)

Since Yε ⊂ Y , we equip Yε with the ∥·∥Y norm. For a given R > 0, we denote by BR the

closed ball of radius R in Rd
and by BYε

R the closed ball of radius R in Yε, namely, BYε
R = {y ∈

Yε : ∥y∥Y ≤ R}. The Banach space structure of Y allows us to define the first moment m1(Ψ)
for a probability measure Ψ ∈ P(Yε) as

m1(Ψ) :=
Ú

Yε

∥y∥Y dΨ(y),

so that the space P1(Yε), see (5), can be equivalently characterized as

P1(Yε) = {Ψ ∈ P(Yε) : m1(Ψ) < +∞}.

Given the arbitrariness of ε and since we will be also interested in the limit as ε → 0, we define

the space Y := Rd × C0,∞. Similarly, we equip Y with the norm ∥·∥Y and we denote by BY
R

the closed ball of radius R in Y . Notice that BYε
R ⊂ BY

R for every ε > 0.

5 The decoupled problem
In this section, we focus our attention just on the dynamics for a single distribution of labels.

Such dynamics is described by a vector field T which is regularized by the entropy functional H
defined below. The intensity of the entropy functional is modulated by a small parameter

ε > 0, so that the overall dynamics, for a distribution of labels ℓ ∈ Cε, is determined by the

vector field Rε(ℓ) = T (ℓ) + ε H(ℓ). In order to state the regularity assumptions that we make

on Rε
, we will discuss first the assumptions on T and then define the entropy regularization

functional H. To this aim, we recall definitions (6) and (7), and that we have set E = Lp(U, η).
We assume that the operator

T : C0,∞ → E (9)

satisfies the following properties:

(dT 1) T (ℓ) has zero mean for every ℓ ∈ C0,∞ :Ú
U

T (ℓ)(u) dη(u) = 0 ;

3

A subset of a separable metric space is also separable, [13].
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5 The decoupled problem

(dT 2) for every R > 0 there exists a positive constant LT ,R such that for every ℓ1, ℓ2 ∈ C0,∞
with ∥ℓ1∥E , ∥ℓ2∥E ≤ R

∥T (ℓ1) − T (ℓ2)∥E ≤ LT ,R ∥ℓ1 − ℓ2∥E ; (10)

(dT 3) there exist a monotone increasing function ω : [0, +∞) → [0, +∞) , for which

∃ lim sup
s→0+

ω(s)
s

=: ω ∈ [0, +∞) and ∃ lim sup
s→+∞

ω(s)
s

=: ω ∈ [0, +∞),

and a positive constant CT such that for every ℓ ∈ C0,∞ and for η-a.e. u ∈ U

|T (ℓ)(u)| ≤ CT ω(ℓ(u)).

The entropy functional that we consider is

H : Cε → E

ℓ → ℓ [I(ℓ) − log ◦ ℓ] ,
(11)

where I(ℓ) is the negative entropy of the probability density ℓ, namely

I(ℓ) :=
Ú

U
ℓ(u) log(ℓ(u)) dη(u).

In Lemma 1 below, we show that the entropy functional H is well defined for every choice of

0 < rε < 1 < Rε < +∞ . Notice that H can be written as

H(ℓ) = −ℓ log ◦ ℓ − (−I(ℓ)) ℓ,

where, in the term I(ℓ)ℓ, the presence of the (negative) entropy I(ℓ) has the effect that H(ℓ)
has zero mean, while the presence of ℓ guarantees that H(ℓ) is compatible with a replicator

dynamics, see, e.g., [5].

Lemma 1. Let T be a functional defined as in (9) satisfying properties (dT 1), (dT 2), and (dT 3).
Then, for every ε > 0 there exist two constants rε and Rε, such that 0 < rε < 1 < Rε < +∞,
and the functional

Rε : Cε → E

ℓ → T (ℓ) + ε H(ℓ)
(12)

satisfies the following properties:

(R1) Rε(ℓ) has zero mean for every ℓ ∈ Cε :Ú
U

Rε(ℓ)(u) dη(u) = 0 ;

(R2) Rε is Lipschitz continuous with respect to the p-norm: there exists Lε > 0 such that for
every ℓ1, ℓ2 ∈ Cε

∥Rε(ℓ1) − Rε(ℓ2)∥E ≤ Lε ∥ℓ1 − ℓ2∥E ;
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(R3) there exists a positive constant θε such that for every ℓ ∈ Cε

ℓ + θε Rε(ℓ) ∈ Cε;

where Cε := Crε,Rε is defined as in (6), and H is the entropy regularization functional defined in
(11).

Proof. We first check that Rε
is well defined for any choice of Rε > 1 > rε > 0 . To this end, it

is sufficient to show that H(Cε) ⊂ L∞(U, η) , because L∞(U, η) ⊂ E and Cε ⊂ C0,∞ . Fixed

ℓ ∈ Cε , for every u ∈ U we have that ℓ(u) = rε ζ(u) + (1 − ζ(u)) Rε , with 0 ≤ ζ(u) ≤ 1 .

Thus, using the convexity of the function x → x log(x) we get

I(ℓ) ≤ rε log(rε)
Ú

U
ζ(u) dη(u) + Rε log(Rε)

Ú
U

(1 − ζ(u)) dη(u).

Since ℓ is a probability density it is straightforward to check thatÚ
U

ζ(u) dη(u) = Rε − 1
Rε − rε

,

and therefore

I(ℓ) ≤ Rε − 1
Rε − rε

rε log(rε) +
3

1 − Rε − 1
Rε − rε

4
Rε log(Rε).

For the sake of simplicity we define

αε := (Rε − 1) rε

Rε − rε
∈ (0,1), (13)

and the previous inequality takes the simpler form

I(l) ≤ αε log(rε) + (1 − αε) log(Rε) =: kε. (14)

Moreover, by Jensen’s inequality

I(ℓ) ≥
Ú

U
ℓ(u) dη(u) log

3Ú
U

ℓ(u) dη(u)
4

= 0. (15)

From the bounds on ℓ and I(ℓ) it is easy to check that

−Rε log(Rε) ≤ H(ℓ) ≤ Rε kε + 1
e

,

so that H(ℓ) ∈ L∞(U, η) . Since H(ℓ) has zero mean and (dT 1) holds, (R1) also holds. To

prove (R2) it is sufficient to show that H is Lipschitz on Cε because (10) holds with LT ,Rε for

every ℓ1, ℓ2 ∈ Cε. First, we observe that since x → x log(x) is Lipschitz on [rε, Rε] whenever

rε > 0

sup
u∈U

|ℓ1(u) log(ℓ1(u)) − ℓ2(u) log(ℓ2(u))|
|ℓ1(u) − ℓ2(u)| ≤ sup

x1, x2∈[rε,Rε]

|x1 log(x1) − x2 log(x2)|
|x1 − x2|

≤ sup
x∈[rε,Rε]

| log(x) + 1| =: ℘ε

13



5 The decoupled problem

and therefore

|H(ℓ1)(u) − H(ℓ2)(u)| ≤ |I(ℓ1)ℓ1(u) − I(ℓ2)ℓ2(u)| + |ℓ1(u) log(ℓ1(u)) − ℓ2(u) log(ℓ2(u))|
≤ |I(ℓ1) − I(ℓ2)| |ℓ1(u)| + |I(ℓ2)| |ℓ1(u) − ℓ2(u)| + ℘ε |ℓ1(u) − ℓ2(u)|
≤ Rε |I(ℓ1) − I(ℓ2)| + kε |ℓ1(u) − ℓ2(u)| + ℘ε |ℓ1(u) − ℓ2(u)|

≤ Rε

Ú
U

|ℓ1(u) log(ℓ1(u)) − ℓ2(u) log(ℓ2(u))| dη(u) + (kε + ℘ε) |ℓ1(u) − ℓ2(u)|

≤ Rε ℘ε

Ú
U

|ℓ1(u) − ℓ2(u)| dη(u) + (kε + ℘ε) |ℓ1(u) − ℓ2(u)|.

Thus

∥H(ℓ1) − H(ℓ2)∥E ≤ Rε ℘ε ∥ℓ1(u) − ℓ2(u)∥L1(U,η) + (kε + ℘ε) ∥ℓ1 − ℓ2∥E

≤ Rε ℘ε ∥ℓ1 − ℓ2∥E + (kε + ℘ε) ∥ℓ1 − ℓ2∥E

= (Rε ℘ε + kε + ℘ε) ∥ℓ1 − ℓ2∥E ,

where we have used the inclusion Lp(U, η) ⊂ L1(U, η). Regardless of p, the Lipschitz constant

of Rε
in not greater than Lε = LT ,Rε + Rε ℘ε + kε + ℘ε . We have proved so far that for any

choice of Rε > 1 > rε > 0 the functional Rε
is well defined, and both (R1) and (R2) hold.

Now we want to show that for some particular choices of rε and Rε also (R3) holds. To this

end, rε must satisfy the following inequality

ε log
3 3

4 rε

4
≥ CT

ω(4
3rε)
rε

. (16)

Observe that there exists at least one rε ∈ (0,1) which satisfies such inequality because

lim sup
rε→0+

ε log
3 3

4 rε

4
= +∞ and lim sup

rε→0+
CT

ω(4
3rε)
rε

= 4
3 CT ω.

Instead, Rε must satisfy the following inequality

αε log
3

Rε

rε

4
≥ 2 CT ω(Rε)

ε Rε
. (17)

Observe that there exists at least one Rε > 1 which satisfies such inequality because

lim sup
Rε→+∞

αε log
3

Rε

rε

4
= +∞ and lim sup

Rε→+∞

2 CT ω(Rε)
ε Rε

= 2 CT ω

ε
.

Let us show now that we can choose θε such that for η-a.e. u ∈ U

ℓ(u) + θε Rε(ℓ)(u) ≤ Rε .

In fact, using (dT 3) and (14) we get

ℓ(u) + θε [T (ℓ)(u) + ε H(ℓ)(u)] ≤ ℓ(u) + θε [CT ω(ℓ(u)) + ε H(ℓ)(u)]
≤ ℓ(u) + θε [CT ω(Rε) + ε ℓ(u) (I(ℓ) − log(ℓ(u)))]
≤ ℓ(u) + θε [CT ω(Rε) + ε ℓ(u) (αε log(rε) + (1 − αε) log(Rε) − log(ℓ(u)))] .

(18)

14



Mean-field limits for entropic multi-population dynamical systems

Because of (17)

lim
ℓ(u)→R−

ε

[CT ω(Rε) + ε ℓ(u) (αε log(rε) + (1 − αε) log(Rε) − log(ℓ(u)))] =

= CT ω(Rε) − ε αε Rε log
3

Rε

rε

4
≤ −CT ω(Rε) < 0,

so that there exists R′
ε < Rε for which the right-hand side of (18) is not greater than Rε

whenever ℓ(u) ∈ [R′
ε, Rε]. Otherwise, if ℓ(u) ≤ R′

ε

ℓ(u) + θε Rε(ℓ)(u) ≤ R′
ε + θε

5
CT ω(Rε) + ε Rε kε + ε

e

6
,

and there exists at least one positive value, that we shall denote θ1
ε , for which the right-hand

side of the previous inequality is not greater than Rε for every positive θε ≤ θ1
ε . Similarly, we

show that we can choose θε such that for η-a.e. u ∈ U

ℓ(u) + θε Rε(ℓ)(u) ≥ rε .

In fact, using (dT 3) and (15)

ℓ(u) + θε [T (ℓ)(u) + ε H(ℓ)(u)] ≥ ℓ(u) + θε [−CT ω(ℓ(u)) − ε ℓ(u) log(ℓ(u))].

If ℓ(u) > 4
3 rε

ℓ(u) + θε [T (ℓ)(u) + ε H(ℓ)(u)] ≥ 4
3 rε + θε [−CT ω(Rε) − ε Rε log(Rε)] ,

and there exists at least one positive value, that we shall denote θ2
ε , for which the right-hand

side of the previous inequality is not less than rε for every positive θε ≤ θ2
ε . Otherwise, if

ℓ(u) ≤ 4
3 rε

ℓ(u) + θε [T (ℓ)(u) + ε H(ℓ)(u)] ≥ ℓ(u) + θε ℓ(u)
5
−CT

ω(ℓ(u))
ℓ(u) − ε log(ℓ(u))

6
≥ ℓ(u) + θε ℓ(u)

C
−CT

ω
!4

3 rε

"
rε

+ ε log
3 3

4 rε

4D
≥ ℓ(u),

where the last inequality follows from (16). Finally, taking 0 < θε ≤ min{θ1
ε , θ2

ε} we get

rε ≤ ℓ(u) + θε Rε(ℓ(u)) ≤ Rε

for η-a.e. u ∈ U .

Remark 1. The Lipschitz continuity of Rε
is a consequence of the boundedness of Cε with

respect to the p-norm, in fact T is Lipschitz, and not just locally Lipschitz, on Cε.

Remark 2. With a similar line of reasoning, it can be proved that for any choice of 0 ≤ a <
1 < b < +∞ there exists θ > 0 such that for every ℓ ∈ Ca,b we have that ℓ + θ ε H(ℓ) ∈ Ca,b .
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5 The decoupled problem

We now have a well-posedness theorem for the labels dynamics.

Theorem 2. For every ε > 0, there exist two constants rε ∈ (0,1), and Rε ∈ (1, +∞) such
that for every T > 0, and every ℓ ∈ Cε there exists a unique curve ℓ : [0, T ] → Cε of class C1

satisfying
d
dt

ℓt = Rε(ℓt) in [0, T ], ℓ0 = ℓ,

where Rε is defined as in (12).

Proof. For any choice of 0 < rε < 1 < Rε < +∞ the space Cε is a convex and closed subset

of the Banach space E. The map [0, T ] × Cε ∋ (t, ℓ) → Rε(ℓ) ∈ E is independent of t, and

therefore it satisfies hypothesis (ii) of Theorem 1. For Lemma 1 hypothesis (i) is also satisfied

with L = LT ,Rε + ε (Rε ℘ε + kε + ℘ε). Again, for Lemma 1 there exists a particular choice of

rε and Rε for which such a map also satisfies hypothesis (iii) of Theorem 1.

We conclude this section with few remarks.

Remark 3. The modelling choice of setting the probability densities in Cε instead of the larger

space C0,∞ is due to two main reasons. First, the lower bound rε guarantees that the en-

tropy functional is Lipschitz continuous. Second, the upper bound Rε guarantees the non-

degeneracy of the term ℓ log ◦ ℓ. In fact, given the vector space structure of E, for any choice

of θ, if ℓ ∈ E then ℓ + θ [T (ℓ) + ε H(ℓ)] ∈ E if and only if H(ℓ) ∈ E. However, if ℓ ∈ E it’s

not necessarily true that ℓ log ◦ ℓ ∈ E , unless ℓ is bounded.

Remark 4. The choice of rε and Rε is made once ε is fixed. Therefore, for ε → 0+
from (16)

and (17) we get that rε → 0+
and Rε → +∞. More precisely, for every monotone decreasing

sequence εn → 0+
there exist a monotone decreasing sequence rεn → 0+

and a monotone

increasing sequence Rεn → +∞. For this reason

C0,∞ =
∞Û

n=1
Cεn

∥·∥E

(19)

which, given the encapsulation of the sets Cεn , we shall denote it simply by Cε → C0,∞ as

ε → 0+
. To check why this is true, let

χε : R → {0,1}

x → χε(x) =
I

1 if x ∈ [rε, Rε],
0 otherwise,

and for every ℓ ∈ C0,∞ consider the function

Avg(χε(ℓ) ℓ) :=
3Ú

U
χε(ℓ(u)) ℓ(u) dη(u)

4−1
χε(ℓ) ℓ .

Clearly Avg(χε(ℓ) ℓ) is a probability density and it’s greater than rε for η-a.e. u ∈ U , however

it’s not necessarily smaller than Rε for η-a.e. u ∈ U . Nevertheless, fixed n ∈ N there exists m ∈
N such that m > n, and Avg(χεn(ℓ) ℓ) ∈ Cεm . For n → +∞ we have that ||Avg(χεn(ℓ)ℓ) −
ℓ||E → 0.
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Mean-field limits for entropic multi-population dynamical systems

Remark 5. The entropy regularization functional acts similarly to the Laplacian operator on

the space of labels U . Indeed, if we consider a dynamics of the type ℓ̇t = H(ℓt), for ∆t ≪ 1
we can approximate ℓt+∆t ≈ ℓt + ∆tH(ℓt). For u ∈ U such that ℓ(u) ≤ eI(ℓt)

we have that

H(ℓt)(u) ≥ 0, otherwise H(ℓt)(u) ≤ 0. Iterating, ℓt gets closer to u → 1 since I(ℓt) gets closer

to zero. This is shown in detail in [5] taking J(x, u, x′u′) = 0 for the replicator dynamics.

6 The coupled problem
Recall that the state of our system is described by pairs y = (x, ℓ) ∈ Yε = Rd × Cε. The

element x ∈ Rd
denotes the position of an agent, whereas the element ℓ ∈ Cε denotes a

distribution of labels, see (6). The space Yε is equipped with the norm ∥y∥Y = |x| + ∥ℓ∥E ,

where Y = Rd×E, see (8). A distribution of states will be described by an element Λε ∈ P(Yε).
We will be concerned with the evolution of Λε

, given an initial Λ ε
, determined by the laws of

evolution of x and ℓ, which are going to be discussed below.

For y = (x, ℓ) ∈ Yε and Ψ ∈ P1(Yε), see (2), we define the entropic vector field bε
Ψ : Yε → Y

through

bε
Ψ(y) :=

3
vΨ(y)
Rε

Ψ(y)

4
. (20)

The first component of bε
Ψ is a velocity field in Rd

determined by the global state of the system

Ψ; the second component is expressed in terms of an entropy perturbed vector filed TΨ(y) for

the labels dynamics: Rε
Ψ(y) = TΨ(y) + ε H(ℓ), where H is defined as in (12). For y ∈ Y and

Ψ ∈ P1(Y ), the entropy free vector field bΨ : Y → Y is defined as

bΨ(y) :=
3

vΨ(y)
TΨ(y)

4
, (21)

where Y = Rd × C0,∞ , see (7). In order to state the regularity assumptions that we make on

bε
Ψ and bΨ, we will discuss separately the assumptions that we make on vΨ and on TΨ. Given

the arbitrariness of ε and since we will be also interested in the limit as ε → 0, we state our

regularity assumptions on the larger space Y instead of Yε. In doing so, we’ll be interested

in comparing the entropic and the entropy free solutions, upon knowing that Yε → Y in the

sense of (19). We recall that BYε
R ⊂ BY

R and we’ll use the notation P(K) to denote a probability

measure with support contained on a given bounded subset K ⊂ Y , for example K = BY
R or

K = BYε
R . Notice that trivially we have P(K) ⊂ P1(Y ).

We assume that the velocity field vΨ : Y → Rd
satisfies the following conditions:

(v1) for every R > 0, for every Ψ ∈ P(BY
R ), vΨ ∈ Lip(BY

R ;Rd) uniformly with respect to Ψ,

namely there exists Lv,R > 0 such that

|vΨ(y1) − vΨ(y2)| ≤ Lv,R ||y1 − y2||Y ;

(v2) for every R > 0, there exists Lv,R > 0 such that for every y ∈ BY
R , and for every Ψ1

,

Ψ2 ∈ P(BY
R )

|vΨ1(y) − vΨ2(y)| ≤ Lv,R W1(Ψ1, Ψ2);

17



6 The coupled problem

(v3) there exists Mv > 0 such that for every y ∈ Y , and for every Ψ ∈ P1(Y ) there holds

|vΨ(y)| ≤ Mv (1 + ∥y∥Y + m1(Ψ)).

We now describe the assumptions on T . For every Ψ ∈ P1(Y ), let TΨ : Y → E be an operator

such that

(T0) TΨ(y) has zero mean for every (y, Ψ) ∈ Y × P1(Y ) :Ú
U

TΨ(y)(u) dη(u) = 0 ;

(T1) for every (y, Ψ) ∈ Y × P1(Y ), there exists MT > 0 such that

∥TΨ(y)∥E ≤ MT (1 + ∥y∥E + m1(Ψ));

(T2) for every R > 0 there exists LT ,R > 0 such that for every (y1, Ψ1), (y2, Ψ2) ∈ BY
R ×

P(BY
R )

||TΨ1(y1) − TΨ2(y2)||E ≤ LT ,R

1
||y1 − y2||Y + W1(Ψ1, Ψ2)

2
;

(T3) there exist a monotone increasing function ω : [0, +∞) → [0, +∞) , for which

∃ lim sup
s→0+

ω(s)
s

=: ω ∈ [0, +∞) and ∃ lim sup
s→∞

ω(s)
s

=: ω ∈ [0, +∞),

and a constant CT > 0 such that for every (y, Ψ) ∈ Y × P1(Y )

|TΨ(y)(u)| ≤ CT ω(ℓ(u))

for η-almost every u ∈ U .

Since we’re interested in the limit as ε goes to zero, we wish that the entropy free solution also

exists. To this end, we require that

(T4) for every R > 0 there exists δR > 0 such that for every (y, Ψ) ∈ BY
R × P(BY

R ) we have

ℓ(u) + δR TΨ(y)(u) ≥ 0

for η-almost every u ∈ U .

We now have the following regularity properties for the entropy free vector field bΨ.

Proposition 1. For y ∈ Y and Ψ ∈ P1(Y ), define bΨ(y) as in (21). Assume that vΨ : Y → Rd

satisfies properties (v1)-(v3), and TΨ : Y → E satisfies properties (T0)-(T4). Then

(i) for every R > 0, there exists LR > 0 such that for every Ψ ∈ P(BY
R ), and for every y1,

y2 ∈ BY
R

||bΨ(y1) − bΨ(y2)||Y ≤ LR ||y1 − y2||Y ;

18
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(ii) for every R > 0, there exists LR > 0 such that for every Ψ1, Ψ2 ∈ P(BY
R ), and for every

y ∈ BY
R

||bΨ1(y) − bΨ2(y)||Y ≤ LR W1(Ψ1, Ψ2);

(iii) for every R > 0, there exists θR > 0 such that for every y ∈ BY
R , and for every Ψ ∈ P(BY

R )

y + θR bΨ(y) ∈ Y ;

(iv) there exists M > 0 such that for every y ∈ Y and for every Ψ ∈ P1(Y ) there holds

||bΨ(y)||Y ≤ M(1 + ∥y∥Y + m1(Ψ)).

Proof. Property (i) is a consequence of (v1) and (T2); property (ii) follows from (v2) and (T2);

property (iv) is a direct consequence of (v3) and (T1). Lastly, because of the vector space

structure of Rd
, property (iii) follows from (T0) and (T4). Notice that (T0) and (T4) can be

combined together because for our notation Ψ ∈ P(BY
R ) ⊂ P1(Y ). Observe also that we

haven’t use (T3).

We now have the following regularity properties for the entropic vector field bε
Ψ.

Proposition 2. Assume that vΨ : Y → Rd satisfies (v1)-(v3) and TΨ : Y → E satisfies (T0)-
(T4). Then for every ε > 0 there exist rε ∈ (0,1) and Rε ∈ (1, +∞) such that for every
(y, Ψ) ∈ Yε × P1(Yε), with spt(Ψ) ⊂ Yε , the vector field bε

Ψ(y) defined as in (20) satisfies the
following properties:

(i) for every R > 0, there exists Lε,R > 0 such that for every Ψ ∈ P(BYε
R ), and for every y1,

y2 ∈ BYε
R

||bε
Ψ(y1) − bε

Ψ(y2)||Y ≤ Lε,R ||y1 − y2||Y ; (22)

(ii) for every R > 0, there exists LR > 0 such that for every Ψ1, Ψ2 ∈ P(BYε
R ), and for every

y ∈ BYε
R

||bε
Ψ1(y) − bε

Ψ2(y)||Y ≤ LR W1(Ψ1, Ψ2); (23)

(iii) for every R > 0, there exists θR > 0 such that for every y ∈ BYε
R and for every Ψ ∈ P(BYε

R )

y + θR bε
Ψ(y) ∈ Yε ; (24)

(iv) there exists Mε > 0 such that for every y ∈ Yε and for every Ψ ∈ P1(Yε) with spt(Ψ) ⊂ Yε

there holds
||bε

Ψ(y)||Y ≤ Mε (1 + ∥y∥Y + m1(Ψ)). (25)

Proof. We start noticing that BYε
R ⊂ BY

R and therefore for our notation P(BYε
R ) ⊂ P(BY

R ).
Moreover, H is Lipschitz on Cε, with respect to the p-norm, for every choice of rε ∈ (0,1)
and Rε ∈ (1, +∞). Then, properties (i) and (ii) follow from Proposition 1. Observe that

the Lipchitz constant in (23) does not depend on ε because H does not depend on Ψ, and
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Lε,R = LR + ε Lip(H). Similarly, property (iv) follows from Proposition 1 because for a

measure Ψ ∈ P1(Yε), which support is at most Yε , it holds that Ψ ∈ P1(Y ), and because

||H(ℓ)||E ≤ (I(ℓ) + (− log(rε) ∨ log(Rε))) ∥ℓ∥E

≤ (log(Rε) + (− log(rε) ∨ log(Rε))) ∥ℓ∥E =: hε ∥ℓ∥E ,
(26)

having in the end Mε = M + ε hε. To prove (iii), because of the vector space structure of

Rd
, we simply have to show that for every R > 0, there exists θR > 0 such that for every

y = (x, ℓ) ∈ BYε
R and Ψ ∈ P(BYε

R )

ℓ + θR [TΨ(y) + ε H(ℓ)] ∈ Cε. (27)

Chosen rε and Rε satisfying (16) and (17) respectively, the proof is identical to the one of

Lemma 1.

Remark 6. It is important to notice that since the choice of rε and Rε has to be independent of

the pair (y, Ψ) also the constant CT has to be independent of (y, Ψ). For the same reason we

can’t allow CT to be dependent on the constant R of formula (27).

Remark 7. In the proof of Proposition 2 assumption (T4) has not been used. Nevertheless, it

can be used to show that for every R > 0 there exists θR > 0 such that for every (y, Ψ) ∈
BYε

R × P(BYε
R ) and for η-a.e. u ∈ U

ℓ + θR [TΨ(y) + ε H(ℓ)] ≥ rε,

making inequality (16) redundant. Thus, one can pick rε = ε as long as (T4) holds.

Remark 8. Manipulating inequality (17) it is easy to see that ε log Rε /→ 0 whenever ω /= 0.

Indeed, by (17), and recalling (13), we have that

2 CT w(Rε)
Rε

+ αε ε log(rε) ≤ ε αε log(Rε) ≤ ε log(Rε),

taking the limit as ε → 0+

lim
ε→0+

ε log(Rε) ≥ 2 CT ω .

For every ε > 0, we now consider a particle system of N agents evolving according toI
ẋε,i

t = vΛN
t

(xε,i
t , ℓ ε,i

t ),
ℓ̇ ε,i

t = TΛε,N
t

(xε,i
t , ℓ ε,i

t ) + ε H(ℓ ε,i
t )

for i = 1, . . . , N, t ∈ [0, T ] (28)

where xε,i
t ∈ Rd

, ℓ ε,i
t ∈ Cε for each i ∈ {1, . . . , N}, and

Λε,N
t := 1

N

NØ
i=1

δ(xε,i
t , ℓ ε,i

t ) (29)

is the empirical measure associated with the system. Recalling that definition of bε
in (20), the

evolution (28) can be written in compact form as

ẏε,i
t = bε

Λε,N
t

(yε,i
t ) for i = 1, . . . , N, t ∈ [0, T ]. (30)

We discuss the well-posedness of system (30) for every choice of an initial datum y ε,i =
(x ε,i, ℓ

ε,i), for i = 1, . . . , N .
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Mean-field limits for entropic multi-population dynamical systems

Theorem 3. Assume that vΨ : Y → Rd satisfies (v1)-(v3) and TΨ : Y → E satisfies (T0)-
(T4). Then, for every ε > 0 there exist rε ∈ (0,1) and Rε ∈ (1, +∞) such that for every
choice of y ε,i ∈ Yε , i = 1, . . . , N , the system (30) has a unique solution in [0, T ]. Moreover, for
i = 1, . . . , N

||yε,i
t ||Y ≤

A
NØ

i=1
||y ε,i||Y + NMT

B
e(2M+ε hε)T . (31)

Proof. We introduce the vector-valued variable

yε := (yε,1, . . . , yε,N ) ∈ Y N
ε ⊂ Y

N
,

which we endow with the norm

∥yε∥
Y

N := 1
N

NØ
i=1

||yε,i||Y ,

and the associated empirical measure

Λε,N := 1
N

NØ
i=1

δyε,i ,

which belongs to P(BYε
R ) whenever y ∈ (BYε

R )N
. Consider the map bε,N : Y N

ε → Y
N

whose

components are defined through

bε,N
i (yε) := bε

ΛN (yε,i).

Then the Cauchy problem associated with (30) can be written asI
ẏε

t = bε,N (yε
t ),

yε
0 = y ε.

In order to apply Corollary 1 to the system above, we first notice that assumption (ii) is auto-

matically satisfied since the system is autonomous. To check the other assumptions, we fix a

ball B
Y N

ε
R and notice that B

Y N
ε

R ⊂ (BYε
NR)N

. Applying (24) with Ψ = Λε,N
to each component

yε,i
of yε

, we get that assumption (iii) of Corollary 1 is satisfied with θ = θRN . We now show

that assumption (i) holds. Fix yε
1, yε

2 ∈ B
Y N

ε
R ⊂ (BYε

NR)N
, and let Λε,N

1 , Λε,N
2 be the associated

empirical measures. Recalling (1), we notice that

W1(Λε,N
1 , Λε,N

2 ) ≤ 1
N

NØ
i=1

||yε,i
1 − yε,i

2 ||Y = ||yε
1 − yε

2||
Y

N ,

an therefore by the triangle inequality, (22), and (23)

||bε,N (yε
1) − bε,N (yε

2)||
Y

N = 1
N

NØ
i=1

||bε
ΛN

1
(yε,i

1 ) − bε
ΛN

2
(yε,i

2 )||Y

≤ LNR W1(Λε,N
1 , Λε,N

2 ) + Lε,NR

N

NØ
i=1

||yε,i
1 − yε,i

2 ||Y

≤ 2 Lε,NR ||yε
1 − yε

2||
Y

N
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for every yε
1, yε

2 ∈ B
Y N

ε
R . To see that also assumption (iv) holds, we apply (25), upon noticing

that m1(Λε,N ) = ∥yε∥
Y

N ,

||bε,N (yε)||
Y

N = 1
N

NØ
i=1

||bε
Λε,N (yε,i)||Y

≤ Mε

N

NØ
i=1

(1 + ||yε,i||Y + m1(Λε,N )) = Mε (1 + 2||yε||
Y

N ).

Therefore we can apply Corollary 1, which proves the existence and uniqueness of the solution.

Finally, because of (25), and (26), we have that

||yε
t ||Y N ≤ ||y ε||

Y
N + 1

N

NØ
i=1

Ú T

0
||bε

Λε,N
s

(yε,i
s )||Y ds

≤ ||y ε||
Y

N + 1
N

NØ
i=1

Ú T

0

1
||bΛε,N

s
(yε,i

s )||Y + ε||H(ℓ ε,i
s )||E

2
ds

≤ ||y ε||
Y

N + 1
N

NØ
i=1

Ú T

0

è
M(1 + ||yε,i

s ||Y + m1(Λε,N
s )) + ε hε ||ℓ ε,i

s ||E
é

ds

≤ ||y ε||
Y

N + 1
N

NØ
i=1

Ú T

0

è
M(1 + ||yε,i

s ||Y + ||yε
s||Y N ) + ε hε ||yε,i

s ||Y
é

ds

= ||y ε||
Y

N +
Ú T

0

è
M(1 + 2 ||yε

s||Y N ) + ε hε ||yε
s||Y N

é
ds

= ||y ε||
Y

N + MT + (2M + ε hε)
Ú T

0
||yε

s||Y N ds ,

and therefore by Grönwall’s Lemma

||yε
t ||Y N ≤ (||y ε||

Y
N + MT ) e(2M+ε hε)T .

Noticing that ||yε,i||Y ≤ N ||yε||
Y

N gives us (31).

Since we are also interested in the entropy free case, we consider also a particle system of

N agents evolving according toI
ẋi

t = vΛN
t

(xi
t, ℓ i

t ),
ℓ̇ i

t = TΛN
t

(xi
t, ℓ i

t )
for i = 1, . . . , N, t ∈ [0, T ] (32)

where xi
t ∈ Rd

, ℓ i
t ∈ C0,∞ for each i ∈ {1, . . . , N}, and

ΛN
t := 1

N

NØ
i=1

δ(xi
t, ℓ i

t ) (33)

is the empirical measure associated with the system. Recalling that definition of b in (21), the

evolution (32) can be written in compact form as

ẏi
t = bΛN

t
(yi

t) for i = 1, . . . , N, t ∈ [0, T ]. (34)
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Mean-field limits for entropic multi-population dynamical systems

We discuss the well-posedness of system (34) for every choice of an initial datum y i = (x i, ℓ
i),

for i = 1, . . . , N .

Theorem 4. Assume that vΨ : Y → Rd satisfies (v1)-(v3) and TΨ : Y → E satisfies (T0)-(T4).
Then, for every choice of y i ∈ Y , i = 1, . . . , N , the system (34) has a unique solution in [0, T ].
Moreover

||yi
t||Y ≤

A
NØ

i=1
||y i||Y + NMT

B
e2MT . (35)

Proof. Since Proposition 1 holds, with a similar line of reasoning of Theorem 3 one can prove

the statement.

We are now interested in comparing the entropic and the entropy free solutions, that is the

solutions of (30) and (34) respectively. Fixed the initial data y ε ∈ Y N
ε and y ∈ Y N

, we shall

denote by yε ∈ Y N
ε and by y ∈ Y N

the entropic and entropy free solutions respectively. We

shall also denote by Λε,N
and ΛN

the associated empirical measures. Then, we have that

∥yt − yε
t ∥Y

N = 1
N

NØ
i=1

...yi
t − yε,i

t

...
Y

≤ 1
N

NØ
i=1

∥y − yε∥Y + 1
N

NØ
i=1

Ú t

0

...bΛN
s

(yi
s) − bε

Λε,N
s

(yε,i
s )
...

Y
ds.

(36)

We focus our attention on the integrand of (36): by the triangle inequality, (22), (23), and (26)...bΛN
s

(yi
s) − bε

Λε,N
s

(yε,i
s )
...

Y
≤
...bΛN

s
(yi

s) − bΛN
s

(yε,i
s )
...

Y
+
...bΛN

s
(yε,i

s ) − bε
Λε,N

s
(yε,i

s )
...

Y

≤ Lℜ

...yi
s − yε,i

s

...
Y

+
...bΛN

s
(yε,i

s ) − bΛε,N
s

(yi,ε
s )
...

Y
+ ε

...H(ℓ ε,i
s )
...

E

≤ Lℜ

...yi
s − yε,i

s

...
Y

+ Lℜ W1(ΛN
s , Λε,N

s ) + ε hε

...ℓ ε,i
s

...
E

≤ Lℜ

...yi
s − yε,i

s

...
Y

+ Lℜ ∥ys − yε
s∥Y

N + ε hε ℜ,

(37)

where

ℜ :=
NØ

i=1

1
||y i||Y + ||y ε,i||Y + NMT

2
e(2M+ε hε)T ≥ sup

t∈[0,T ]
max

i=1,...,N

1
||yi

t||Y ∨ ||yε,i
t ||Y

2
because of (31) and (35). Combining (36), and (37), we get

∥yt − yε
t ∥Y

N ≤ ∥y − yε∥
Y

N + ε hε ℜ T + 2 Lℜ

Ú T

0
∥ys − yε

s∥Y
N ds .

and by Grönwall’s lemma

∥yt − yε
t ∥Y

N ≤
1
∥y − yε∥

Y
N + ℜ ε hε T

2
e2 Lℜ T . (38)

Even if y ε → y as ε → 0+
, estimate (38) does not guarantee convergence of the entropic

solution to the entropy free solution because of Remark 8. To avoid this obstacle, one has to

avoid using inequality (17) by making stronger assumptions on T . For example, instead of (T3)

we could require that
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7 Eulerian and Lagrangian Solutions

(T3’) for every R > 0, there exists θR > 0 such that for every ε > 0 and for every (y, Ψ) ∈
(BYε

R , P(BYε
R ))

ℓ + θ TΨ(y) ∈ Cε

as long as rε ∈ (0,1) and Rε ∈ (1, +∞).

Notice that if (T3’) holds, recalling Remark 2, and using the convexity of Cε , one can easily

check that for every R > 0, there exists θR > 0 such that for every ε > 0, and for every

(y, Ψ) ∈ (BYε
R , P(BYε

R ))
ℓ + θ [TΨ(y) + ε H(ℓ)] ∈ Cε

for any choice of rε ∈ (0,1) and Rε ∈ (1, +∞). Therefore we could pick rε = ε, because of

Remark 7, and Rε = 1 + ε−1
, so that ε hε → 0 as ε → 0+

, having convergence of the entropic

solution to the free entropy one. However, assumption (T3’) is too stringent, in fact it is not a

priori satisfied by the replicator dynamics.

7 Eulerian and Lagrangian Solutions
We are interested in the mean-field limit as N → ∞ of the solutions yε,N

t to (30) or, equiva-

lently, the limiting behaviour of the associated empirical measure Λε,N
t defined in (29). In order

to do so, we first need to recall the concept of Eulerian solution to the continuity equation.

Definition 1 (Eulerian solution, [3]). Let Λε ∈ C0([0, T ]; (P1(Yε), W1)) and let Λ ε ∈ Pc(Yε)
be a given initial datum. We say that Λε is an Eulerian solution to the initial value problem for
the continuity equation

∂tΛε
t + div(bε

Λε
t
Λε

t ) = 0 (39)

starting from Λ ε if and only if Λε
0 = Λ ε and, for every ϕ ∈ C1

b ([0, T ] × Y ),Ú
Yε

ϕ(t, y) dΛε
t (y)−

Ú
Yε

ϕ(0, y) dΛε
0(y) =

Ú t

0

Ú
Yε

(∂tϕ(s, y)+Dϕ(s, y)·bε
Λε

s
(y)) dΛε

s(y) ds, (40)

where Dϕ(s, y) is the Fréchet differential of ϕ in the y variable.

The main result of this work is the following theorem, stating the existence of a unique

Eulerian solution to (39) and its characterization as the mean-field limit of solutions to the

discrete problem (28).

Theorem 7. Let r > 0, and Λ ε ∈ P(BYε
r ) be a given initial datum. Then

(i) there exists a unique Eulerian solution t → Λε
t to (39) starting from Λ ε

;

(ii) if Λ ε,N = 1
N

qN
i=1 δy ε

i,N
is a sequence of atomic measures in P(BYε

r ) such that

lim
N→∞

W1(Λ ε
, Λ ε,N ) = 0

and, for fixed N , Λε,N
t are the empirical measures associated with the unique solution to

(28) with initial datum y ε
i,N , we have

lim
N→∞

W1(Λε
t , Λε,N

t ) = 0 uniformily with respect to t ∈ [0, T ].

24



Mean-field limits for entropic multi-population dynamical systems

The proof of Theorem 7 will be based on a fixed point argument and on the notion of

Lagrangian solution, which are going to be introduced below.

We start by proving an auxiliary well-posedness result for an ODE in Yε of the form

ẏε
t = bε

Ψε
t
(yε

t ), yε
0 = y ε

(41)

where [0, T ] ∋ t → Ψε
t ∈ P1(Yε) is a continuous curve and y ε ∈ Yε.

Proposition 3. Assume that for every y ∈ Y and Ψ ∈ P1(Y ) the velocity vΨ : Y → Rd satisfies
(v1)-(v3) and the operator TΨ : Y → E satisfies (T0)-(T3). Let Ψε ∈ C0([0, T ]; (P1(Yε), W1))
and assume that there exists R > 0 such that Ψt ∈ P(BYε

R ) for all t ∈ [0, T ]. Then, for every
choice of y ε ∈ Yε, the ODE (41) has a unique solution.

Proof. We set A(t, y) := bε
Ψε

t
(y). Since t → Ψε

t is continuous, using (23) we get that, for any

fixed y ∈ Yε, A(·, y) is continuous. Moreover, A(t, ·) is locally Lipschitz because of (22) with

the Lipschitz constant independent of t because Ψt ∈ P(BYε
R ) for all t ∈ [0, T ]. For the same

reason, by (25), we have the sub-linear growth of A :

||A(t, y)||Y ≤ Mε (1 + ||y||Y + m1(Ψt)) ≤ Mε (1 + ||y||Y + R).

Similarly, from (24), we have that condition (iii) of Corollary 1 is satisfied, so that existence

and uniqueness of the solution follow directly from Corollary 1.

In view of the previous result the following definition is justified.

Definition 2 (Transition map). The transition map Yε
Ψ(t, s, y ε) associated with the ODE (41),

replacing the initial condition by yε
s = y ε is defined through

Yε
Ψ(t, s, y ε) = yε

t , (42)

where t → yε
t is the unique solution to (41).

We can now proceed to defining the notion of Lagrangian solution to (39).

Definition 3 (Lagrangian solutions). Let Λε ∈ C0([0, T ]; (P1(Yε), W1)) and let Λ ε ∈ Pc(Yε)
be a given initial datum. We say that Λε is a Lagrangian solution to the initial value problem for
(39) starting from Λ ε if and only if it satisfies the fixed point condition

Λε
t = Yε

Λε(t,0, ·)#Λ ε for every 0 ≤ t ≤ T, (43)

where Yε
Λε(t, s, y ε) are the transition maps associated with the ODE (41).

Remark 9. Recalling the definition of push-forward measure, it can be easily proven that La-

grangian solutions are also Eulerian solutions. Indeed, for every ϕ ∈ C1
b ([0, T ] × Y )

d
dt

Ú
Yε

ϕ(t, y) dΛε
t (y) = d

dt

Ú
Yε

ϕ(t, Yε
Λε(t,0, y)) dΛ ε(y)

=
Ú

Yε

è
∂tϕ(t, Yε

Λε(t,0, y)) + Dϕ(t, Yε
Λε(t,0, y)) · bε

Λε
t
(Yε

Λε(t,0, y))
é

dΛ ε(y)

=
Ú

Yε

1
∂tϕ(t, y) + Dϕ(t, y) · bε

Λε
t
(y)
2

dΛε
t (y)

(44)

which, upon integrating, coincides with (40).
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7 Eulerian and Lagrangian Solutions

Remark 10. For a fixed N ∈ N, let Λε,N
t be the empirical measures associated with the unique

solution to (30) with initial datum y ε,i
, i = 1, . . . , N . If we now set Λ ε,N = 1

N

qN
i=1 δy ε,i , by

Definition 2 there holds

Λε,N
t = Yε

Λε,N (t,0, ·)#Λ ε
for every 0 ≤ t ≤ T. (45)

Indeed, Λε,N
is continuous, since t → yε,i

t are continuous, and it has compact support because

of (31).

We now want to show that an infinite-dimensional converse of Proposition 3 holds, proving

that indeed, in our case, every Eulerian solution is also a Lagrangian solution. This stems out

of a general abstract principle known as the superposition principle in the version introduced

in [2]. In the statement below, the evaluation map evt is defined, at a given t ∈ [0, T ], by

evt(γ) := γ(t) for all γ ∈ C([0, T ]; E);

we also use the notion of cylindrical functions, which are defined in the following way. We

say that ϕ ∈ C1
b (E) is a cylindrical function if there exists a function φ ∈ C1

b (RN ) and

z′
1, . . . , z′

N ∈ E′
such that

Φ(y) = φ(⟨z′
1, y⟩, . . . , ⟨z′

1, y⟩),

where ⟨·, ·⟩ denotes the duality map between E′
and E.

Theorem 5 (Superposition principle). Let (E, ∥·∥) be a separable Banach space, let b : (0, T ) ×
E → E be a Borel vector field, and let [0, T ] ∋ t → µt ∈ P(E) be a continuous curve withÚ T

0

Ú
E

∥bt∥E dµt dt < +∞ .

If
d
dt

µt + div(bt µt) = 0

in duality with cylindrical functions ϕ ∈ C1
b (E)4, then there exists η ∈ P(C([0, T ]; E)) concen-

trated on absolutely continuous solutions to the ODE ẏ = bt(y) and with (evt)#η = µt for all
t ∈ [0, T ].

Proof. See [2, Theorem 5.2] for the proof.

Combining the Superposition Principle with the uniqueness granted from Proposition 3, we

can prove the announced equivalence result. Notice that the proof has an intermediate step,

since in order to apply Proposition 3 we first must ensure that an Eulerian solution Λε
t has

equi-compact support for all t. We are able to deduce this from the Superposition Principle and

the assumption that the initial datum Λ ε ∈ Pc(Yε).

4

By this we mean that the definition of weak solutions to the continuity equation has only to be satisfied for

test functions that are cylindrical.
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Mean-field limits for entropic multi-population dynamical systems

Theorem 6. Let Λε ∈ C0([0, T ]; (P1(Yε), W1)) and let Λ ε ∈ Pc(Yε) be a given initial datum.
Assume that Λε is an Eulerian solution to the initial value problem for ∂tΛε

t + div(bε
Λε

t
Λε

t ) = 0
starting from Λ ε, in the sense of (39), then there exists R > 0 such that Λε

t ∈ P(BYε
R ) for all

t ∈ [0, T ], and
Λε

t = Yε
Λε(t,0, ·)#Λ ε for every 0 ≤ t ≤ T, (46)

where Yε
Λε(t, s, y ε) are the transition maps associated with the ODE (41).

Proof. Since Λε ∈ C0([0, T ]; (P1(Yε), W1)), the map

t → m1(Λε
t ) =

Ú
Yε

∥y∥Y dΛε
t (y)

is continuous and, hence, bounded in [0, T ]. We set bt(y) := bε
Λε

t
(y) for y ∈ Yε, and extend it

to zero on Y \ Yε. Using (25), we haveÚ T

0

Ú
Y

||bε
t (y)||Y dΛε

t (y) dt =
Ú T

0

Ú
Yε

||bε
t (y)||Y dΛε

t (y) dt

≤
Ú T

0

Ú
Yε

Mε (1 + ∥y∥Y + m1(Λε
t )) dΛε

t (y) dt

≤ TMε

3
1 + 2 max

t∈[0,T ]
m1(Λε

t )
4

< +∞.

Hence we can apply Theorem 5 with E = Y and µt = Λε
t , obtaining that Λε

t = (evt)#η for a

suitable η ∈ P(C([0, T ]; Y )) concentrated on absolutely continuous solutions to the ODE

ẏε = bε
Λε

t
(yε) in [0, T ], for every initial datum y ε ∈ Yε. (47)

Now, using (25) again, we have

||bε
Λε

t
(y)||Y ≤ Mε(1 + ∥y∥Y + m1(Λε

t )) ≤ MΛε(1 + ∥y∥Y ) (48)

where we set MΛε := Mε(1 + maxt∈[0,T ] m1(Λε
t )). The equality Λ ε = Λε

0 = (ev0)#η, which

reads Ú
C([0,T ];Y )

ϕ(γ(0)) dη(γ) =
Ú

Yε

ϕ(y) dΛ ε(y)

for each ϕ ∈ Cb(Yε), implies that η is concentrated on the set of solutions to (47) satisfying

yε(0) ∈ BYε
r , where r is such that spt(Λ ε) ⊂ BYε

r . With (48) and the Grönwall’s Lemma, each

of these solutions must satisfy yε(t) ∈ BYε
R , where R is explicitly given by

R := Rr,Mε,Λε,T = (r + MΛεT )eMΛε T .

From the equality Λε
t = (evt)#η we deduce that Λt ∈ P1(BYε

R ) for all t ∈ [0, T ]. We can

therefore apply Proposition 3 and exploit uniqueness of the solution to the Cauchy problem

to deduce the representation

γ(t) = Yε
Λε(t,0, γ(0))
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8 Mean-field limit

with γ(0) ∈ BYε
r , for each continuous path γ ∈ spt(η). With the equality Λε

t = (evt)#η, this

givesÚ
Yε

ϕ(y) dΛε
t (y) =

Ú
C([0,T ];Y )

ϕ(Yε
Λε(t,0, γ(0))) dη(γ) =

Ú
Yε

ϕ(Yε
Λε(t,0, y)) dΛ ε(y)

for each ϕ ∈ Cb(Yε), which implies the conclusion.

Remark 11. The same notions of Eulerian and Lagrangian solutions, with the proper adjust-

ments, hold for the entropy free vector field (21) in the larger space Y . With the same line of

reasoning the equivalence between the two can indeed be proved.

8 Mean-field limit
As mentioned in the previous section, we are interested in the mean-field limit as N → ∞ of

the solutions yε,N
t to (30) or, equivalently, the limiting behaviour of the associated empirical

measure Λε,N
t , defined in (29). Such behaviour is described in Theorem 7, stating the existence

of a unique Eulerian solution to (39) and its characterization as the mean-field limit of solutions

to the discrete problem (28). In this section, we prove Theorem 7 and compare the entropic

mean-field limit to the entropy free mean-field limit. As a preliminary step towards the proof,

we need the following lemma, ensuring that the size of the support of a Lagrangian solution

in the sense of Definition 3 can be a priori estimated from the data of the problem.

Lemma 2. Assume that for every y ∈ Y and Ψ ∈ P1(Y ) the velocity vΨ : Y → Rd satisfies
(v1)-(v3) and the operator TΨ : Y → E satisfies (T0)-(T4). Let Λε ∈ C0([0, T ]; (P1(Yε), W1))
and let Λ ε ∈ Pc(Yε) be a given initial datum. Fix r > 0 such that Λ ε has support in BYε

r , and
let Mε be the constant given by (25). Assume that Λε is the a Lagrangian solution to the initial
value problem for (39) starting from Λ ε in the sense of (44). Then, for R = (r + Mε T ) e2Mε T

we have
Λε

t ∈ P(BYε
R ) for all t ∈ [0, T ].

Proof. For r, R as in statement, it suffices to show that

max
y∈BYε

r

∥Yε
Λε(t,0, y)∥Y

for all t ∈ [0, T ]. Indeed, if this holds the statement follows immediately from (44) and ele-

mentary properties of the push-forward measure, taking into account that Λ ε
has support in

BYε
r . To prove the above claim, we first observe that by definition of Lagrangian solutions and

the fact that Λ ε ∈ P(BYε
r ) we immediately have

m1(Λε
t ) ≤ max

y∈BYε
r

∥Yε
Λε(t,0, y)∥Y (49)

for all t ∈ [0, T ]. We now set f(s) = maxy∈BYε
r

∥Yε
Λε(s,0, y)∥Y . Then, we have by definition

of the transition map, (25) and (49) that for every choice of y ∈ BYε
r

∥YΛε(t,0, y)∥Y ≤ r + Mε

Ú T

0
(1 + ∥YΛε(s,0, y)∥Y + m1(Λε

s)) ds

≤ r + Mε

Ú T

0
(1 + 2 f(s)) ds ,
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Mean-field limits for entropic multi-population dynamical systems

which implies by Grönwall inequality that f(t) ≤ R for all t ∈ [0, T ].

We can now prove Theorem 7.

Theorem 7. Let r > 0 and Λ ε ∈ P(BYε
r ) be a given initial datum. Then

(i) there exists a unique Eulerian solution t → Λε
t to (39) starting from Λ ε;

(ii) if Λ ε,N = 1
N

qN
i=1 δy ε

i,N
is a sequence of atomic measures in P(BYε

r ) such that

lim
N→∞

W1(Λ ε
, Λ ε,N ) = 0

and, for fixed N , Λε,N
t are the empirical measures associated with the unique solution to (28)

with initial datum y ε
i,N , we have

lim
N→∞

W1(Λε
t , Λε,N

t ) = 0 uniformily with respect to t ∈ [0, T ].

Proof. The proof goes through a finite-dimensional approximation and involves three steps.

Step 1: Stability of Lagrangian solutions. We fix r > 0, two initial data Λ ε,1
, Λ ε,2 ∈ P(BYε

r ),
and assume that two Lagrangian solutions Λε,1

t , Λε,1
t starting from Λ ε,1

and Λ ε,2
, respectively,

exist. We fix R = (r + MεT )e2MεT
and the corresponding constant Lε,R provided by (22).

Notice that such Lipschitz constant is greater than the one of (23). We claim that

W1(Λε,1
t , Λε,2

t ) ≤ eLε,Rt+LR eLε,Rt

W1(Λ ε,1
, Λ ε,2) for all t ∈ [0, T ]. (50)

To prove this claim, we fix y 1
and y 2 ∈ BYε

r and observe that by the previous Lemma

||Yε
Λε,i(t,0, y i)||Y ≤ R (51)

for all t ∈ [0, T ] and i = 1, 2. With (51), (22) and (23), the solutions y1
t and y2

t to the ODEs

ẏi = bε
Λε,i

t

(yi) with initial data y 1
and y 2

respectively satisfy

||y1
t − y2

t ||Y ≤ ||y 1 − y 2||Y +
Ú t

0

1
||bε

Λε,1
s

(y1
s) − bε

Λε,1
s

(y2
s)||Y + ||bε

Λε,1
s

(y2
s) − bε

Λε,2
s

(y2
s)||Y

2
ds

≤ ||y 1 − y 2||Y + LR

Ú t

0
W1(Λε,1

s , Λε,2
s )ds +

Ú t

0
Lε,R ||y1

s − y2
s ||Y ds .

This gives, by Grönwall’s Lemma, that

||y1
t − y2

t ||Y ≤
3

||y 1 − y 2||Y + LR

Ú t

0
W1(Λε,1

s , Λε,2
s )ds

4
eLε,Rt

equivalently,

||Yε
Λε,1(t,0, y1) − Yε

Λε,2(t,0, y2)||Y ≤
3

||y 1 − y 2||Y + LR

Ú t

0
W1(Λε,1

s , Λε,2
s )ds

4
eLε,Rt

(52)
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8 Mean-field limit

for all t ∈ [0, T ] and y 1
, y 2 ∈ BYε

r .

Now, let Π be an optimal coupling between Λ ε,1
and Λ ε,2

. Then clearly, by the definition

of Lagrangian solutions, (Yε
Λε,1(t,0, ·), Yε

Λε,2(t,0, ·))#Π is a coupling between Λε,1
t and Λε,2

t .

Therefore

W1(Λε,1
t , Λε,2

t ) ≤
Ú

Yε×Yε

||Yε
Λε,1(t,0, y1) − Yε

Λε,2(t,0, y2)||Y dΠ(y1, y2)

=
Ú

BYε
r ×BYε

r

||Yε
Λε,1(t,0, y1) − Yε

Λε,2(t,0, y2)||Y dΠ(y1, y2),

where we also used that Λ ε,1
, Λ ε,2 ∈ P(BYε

r ). Hence, using (52) we get

W1(Λ1
t , Λ2

t ) ≤ eLε,Rt
Ú

BYε
r ×BYε

r

||y1 − y2||Y dΠ(y1, y2) + LR eLε,Rt
Ú t

0
W1(Λε,1

s , Λε,2
s )ds

= eLε,Rt W1(Λ ε,1
, Λ ε,2) + LR eLε,Rt

Ú t

0
W1(Λε,1

s , Λε,2
s )ds .

With this and the Grönwall Lemma, we get (50).

Step 2: Existence and approximation of Lagrangian solutions. We start by fixing a sequence of

atomic measures Λ ε,N ∈ P(BY
r ) such that

lim
N→∞

W1(Λ ε,N
, Λ ε) = 0. (53)

Such a sequence can be for instance constructed as follows: choose y i(z) ∈ Yε independent

and identically distributed, with law Λ ε
, so that the random measures Λ ε,N := 1

N

qN
i=1 δyi(z)

almost surely converge in P1(Yε) to Λ ε
, and choose a realization z such that this convergence

takes place. Now let Λε,N
t be the empirical measures associated with the unique solution to

(28) with initial datum y i
, i = 1, . . . , N . As noticed in (45), Λε,N

t are Lagrangian solutions to

(39) starting from Λ ε,N
. Hence, (50) provides a constant C := C(ε, Mε, r, T ) such that

W1(Λε,N
t , Λε,M

t ) ≤ C W1(Λ ε,N
, Λ ε,M )

for all t ∈ [0, T ] and N , M ∈ N. If follows that Λε,N
t ∈ C([0, T ]; (P1(BYε

R ), W1)) is a Cauchy

sequence. Let then Λε
t ∈ C([0, T ]; (P1(BYε

R ), W1)) be the limit of the sequence Λε,N
t . For

a given y ε ∈ BYε
r , consider now the solution yε,N

t and yε
t to the ODEs ẏε,N = bε

Λε,N
t

(yε,N

and ẏε = bε
Λε

t
(yε), respectively, with initial datum y ε

. Let R′ ≥ R be an upper bound
5

for

maxt∈[0,T ] ||yε
t ||Y , which can be taken independent form y ε ∈ BYε

r . With (22) and (23) we

obtain again that

||Yε
Λε(t,0, y ε) − Yε

Λε,N (t,0, y ε)||Y ≤ LR eLε,R′ t
Ú t

0
W1(Λε

s, Λε,N
s )ds,

5

Observe that at this point of the proof we cannot a priori exclude that R′ > R, since we still do not know

that Λε
is a Lagrangian solution, hence we cannot apply (51) (which holds instead for Λε,N

).

30



Mean-field limits for entropic multi-population dynamical systems

which entails the uniform convergence of Yε
Λε,N (·, t, ·) to Yε

ΛN (·, t, ·) in [0, T ] × BYε
r . For each

t ∈ [0, T ] this implies together with (53) and the fact that Yε
Λε(t,0, ·) is a Lipschitz map on

BYε
r , that

Λε,N
t = Yε

Λε,N (t,0, ·)#Λ ε,N → Yε
Λε(t,0, ·)#Λ ε

in P1(Yε), which gives Λε
t = Yε

Λε(t,0, ·)#Λ ε
.

Step 3: Uniqueness and conclusion. Uniqueness of Lagrangian solutions, given the initial datum,

follows now from (50). Existence and uniqueness of Eulerian solutions is now a consequence

of Remark 9 and Theorem 6, respectively.

Remark 12. The same theorem, with the proper adjustment holds for the entropy free vector

field (21) in the larger space Y .

We now want to compare the entropic solution, to the continuity equation (39), to entropy

free solution for the correspondent continuity equation that is

∂tΛt + div(bΛt Λt) = 0, (54)

where now Λ ∈ C0([0, T ]; (P1(Y ), W1)) and Λ ∈ P(Y ).
Consider two initial data Λ ∈ P(BY

r ) and Λ ε ∈ P(BYε
r ), so that there exist two unique solu-

tions Λ and Λε
to the continuity equations (39) and (54), starting from Λ and Λ ε

respectively.

Let ΛN
t and Λε,N

t be the relative empirical measures in the sense of Step 2 of Theorem 7. We no-

tice that all these measures have support contained in the balls BY
R , with R = (r + MT )e2MT

,

for the entropy free case, and in the balls BY
R′ , with R′ = (r + MεT )e2MεT

, for the entropic

case. Moreover R′ ≥ R, since Mε = M + ε hε (see the proof of Proposition 2). By the triangle

inequality

W1(Λε
t , Λt) ≤ W1(Λε

t , Λε,N
t ) + W1(Λε,N

t , ΛN
t ) + W1(ΛN

t , Λt). (55)

With a similar reasoning to the one that led us to (50) one has

W1(Λε,N
t , ΛN

t ) ≤ eLR′ t (1+eLR′ t) W1(Λ ε,N
, Λ N ) + ε hε R′ t eLR′ t (1+eLR′ t)

≤ eLR′ t (1+eLR′ t) [W1(Λ ε,N
, Λ ε) + W1(Λ ε

, Λ) + W1(Λ, ΛN )]

+ ε hε R′ t eLR′ t (1+eLR′ t)

(56)

Combining (55) with (56), and taking the limit as N → +∞, we get

W1(Λε
t , Λt) ≤ eLR′ t (1+eLR′ t) W1(Λ ε

, Λ) + ε hε R′ t eLR′ t (1+eLR′ t).

If TΨ satisfies (T3’) instead of (T3) then ε hε → 0, so that R′ → R. Using this and assuming

that the initial entropic data converge to the entropy free ones, that is Λ ε → Λ, we have the

desired result

lim
ε→0+

W1(Λε
t , Λt) = 0

uniformly with respect to t ∈ [0, T ].
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9 Fast Reaction Limit

9 Fast Reaction Limit
The aim of this section is to address the case in which the dynamics for the labels runs at a

much faster time scale than the dynamics for the agents’ positions. In this case, introducing

the fast time scale τ = λ t, with λ ≫ 1, system (28) takes the formI
ẋε,i

t = vΛN
t

(xε,i
t , ℓ ε,i

t ),
ℓ̇ ε,i

t = λ[TΛε,N
t

(xε,i
t , ℓ ε,i

t ) + ε H(ℓ ε,i
t )]

for i = 1, . . . , N, t ∈ [0, T ]. (57)

Note that the well-posedness of (57) is still guaranteed by Theorem 3. Our attention is focused

on the behaviour of system (57) as λ → +∞, thus we are interested in the case of instantaneous

adjustment for the labels (or the strategies if a replicator dynamics is being considered). To

this end, we suppose that the dynamics for the labels can be written as follows

ℓ̇ ε,i
t = λ

3Ú
U

∂ξFπ#Λε,N
t

(xε,i
t , ℓ ε,i

t (u), u) ℓ ε,i
t (u) dη(u) − ∂ξFπ#Λε,N

t
(xε,i

t , ℓ ε,i
t , ·)

4
ℓ ε,i

t , (58)

where

π : Yε → Rd

y → x

is the position projection, and

F : P1(Rd) × Rd × [rε, Rε] × U → [−∞, +∞]
(Σ, x, ξ, u) → FΣ(x, ξ, u)

(59)

satisfies the following properties:

(FI) for any R > 0, Σ ∈ P(BR), x ∈ BR , and ℓ ∈ Cε the map u ∈ U → FΣ(x, ℓ(u), u) is

η-Lebesgue integrable;

(FII) for any R > 0, Σ ∈ P(BR), x ∈ BR , and for η-a.e. u ∈ U the map

g : [rε, Rε] → R
ξ → FΣ(x, ξ, u)

is twice differentiable with second derivative strictly positive and bounded uniformly

with respect to u, that is 2α < g′′(ξ) < M for every ξ ∈ [rε, Rε] and for some M, α > 0
independent of u;

(FIII) for any R > 0 there exists LR > 0 such that for every Σ1, Σ2 ∈ P(BR), x1, x2 ∈ BR ,

ξ ∈ [rε, Rε], and for η-a.e. u ∈ U

|FΣ1(x1, ξ, u) − FΣ2(x2, ξ, u)| ≤ LR (|x1 − x2| + W1(Σ1, Σ2)),

and

|∂ξFΣ1(x1, ξ, u) − ∂ξFΣ2(x2, ξ, u)| ≤ LR (|x1 − x2| + W1(Σ1, Σ2)).
Note that by Rademacher’s Theorem, the map x → FΣ(x, ξ, u) is differentiable for

almost every x ∈ int(BR) and |∂xFΣ(x, ξ, u)| ≤ LR .
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Remark 13. Assumptions (FI), (FII), and (FIII) do hold for the replicator dynamics in a par-

ticular case, which is referred to as undisclosed setting [5]. The pay-off that player in position x
gets playing strategy u against all the other players according to a distribution Ψ of players

with mixed strategies is

JΨ(x, u) =
Ú

Yε

Ú
U

J(x, u, x′, u′) ℓ′(u′) dη(u′)dΨ(x′, ℓ′).

If we suppose that opponents’ strategies are undisclosed, that is J(x, u, x′, u′) = J(x, u, x′),
we have that

JΨ(x, u) =
Ú

Yε

J(x, u, x′) dΨ(x′, ℓ′) =
Ú
Rd

J(x, u, x′) dπ#Ψ(x′) =: Jπ#Ψ(x, u),

and therefore

TΨ(x, ℓ) =
3

Jπ#Ψ(x, ·) −
Ú

U
Jπ#Ψ(x, u) ℓ(u) dη(u)

4
ℓ.

This leads us to

TΨ(x, ℓ) + εH(ℓ) =
3Ú

U
[ε log(ℓ(u)) − Jπ#Ψ(x, u)] ℓ(u) dη(u) − [ε log(ℓ) − Jπ#Ψ(x, ·)]

4
ℓ,

and finally

Fπ#Ψ(x, ξ, u) = −Jπ#Ψ(x, u) ξ + ε [ξ log(ξ) − ξ].

It easy to check that such a function satisfies properties (FI), (FII), and (FIII) whenever

J ∈ Lipb(Rd × U × Rd × U).
The following proposition provides a set of conditions under which the assumptions stated

above are satisfied for FΣ(x, ξ, u) being an integral function.

Proposition 4. Let F be a function as in (59) defined as follows

FΣ(x, ξ, u) =
Ú
Rd

f(x, ξ, u, x′) dΣ(x′),

where f : Rd × [rε, Rε] × U × Rd × Cε → [−∞, +∞] satisfies the following properties

(fI) for every R > 0, Σ ∈ P(BR), x ∈ BR , ℓ ∈ Cε the map

u →
Ú
Rd

f(x, ℓ(u), u, x′) dΣ(x′)

is η-Lebesgue integrable;

(fII) for every R > 0, x ∈ BR , x′ ∈ BR , and for η-a.e. u ∈ U the map ξ → f(x, ξ, u, x′) is
twice differentiable with second derivative bounded from above and below by two positive
constants independent of u and x′;

(fIII) for every R > 0, x, x′ ∈ BR , ξ ∈ [rε, Rε], and for η-a.e. u ∈ U the function f(x, ξ, u, ·) ∈
Lipb(Rd), and the function f(·, ξ, u, x′) ∈ Lip(Rd), with Lipschitz constants dependent
only on R;
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9 Fast Reaction Limit

(fIV) for every R > 0, x, x′ ∈ BR , ξ ∈ [rε, Rε], and for η-a.e. u ∈ U the function ∂ξf(x, ξ, u, ·) ∈
Lipb(Rd), and the function ∂ξf(·, ξ, u, x′) ∈ Lip(Rd), with Lipschitz constants dependent
only on R.

Then F satisfies properties (FI), (FII), and (FIII).

Proof. Assumption (FI) coincides with (fI). Assumption (FII) follows from (fII), (fIII), and

(fIV) by applying Leibniz integral rule. Assumption (FIII) is a direct consequence of (fIII)
and (fIV).

Our goal is to prove the convergence, as λ → +∞, of system (57) to a suitable system of

agents with labels, where such labels are defined as minima of some particular functionals.

In Proposition 5 we introduce the prototype for these functionals and present some of its

properties. Before, stating Proposition 5, we recall the definition of Fréchet-differentiability.

Definition 4 (Fréchet-differentiability). A functional F : Lp(U, η) → R is said to be continuos
Fréchet-differentiable, if for every ℓ ∈ Lp(U ; η) there exists a unique linear application DF(ℓ) ∈
L(Lp(U, η);R) such that

lim
ℓ̃

Lp

−→ℓ

|F(ℓ̃) − F(ℓ) − DF(ℓ)(ℓ̃ − ℓ)|
||ℓ̃ − ℓ||Lp(U,η)

= 0,

and the map Lp(U, η) ∋ ℓ → DF(ℓ) ∈ L(Lp(U, η);R) is continuous. A functional F : Cε → R
is continuous Fréchet-differentiable if it is the restriction of a continuous Frechèt-differentiable
functional over Lp(U, η).

Proposition 5. Let F be a function defined as in (59) which satisfies properties (FI), (FII) and
(FIII). Then for any R > 0, Ψ ∈ P(BYε

R ), and x ∈ BR the functional

GΨ(x, ·) : Cε → R

ℓ → GΨ(x, ℓ) :=
Ú
U

Fπ#Ψ(x, ℓ(u), u) dη(u) (60)

is well defined, Fréchet differentiable if p > 1, strongly convex if 1 ≤ p ≤ 2 and uniformly convex
if 2 < p < +∞. Moreover, for every ℓ ∈ Cε, the map

BR × P(BR) ∋ (x, π#Ψ) → GΨ(x, ℓ) (61)

is Lipschitz continuous, with Lipschitz constant dependent only on R.

Proof. The functional GΨ(x, ·) defined in (60) is well defined as a consequence of property (FI).

Furthermore, it is Fréchet-differentiable in ℓ1 ∈ Cε with differential

DGΨ(x, ℓ1) : Cε → R

ℓ2 →
Ú
U

∂ξFπ#Ψ(x, ℓ1(u), u) ℓ2(u) dη(u).
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Indeed, because of (FII) there exists M > 0, independent of u, such that |g′′(ξ)| < M for every

ξ ∈ [rε, Rε] and therefore

|GΨ(x, ℓ2) − GΨ(x, ℓ1) − DGΨ(x, ℓ1)(ℓ2 − ℓ1)| =

=
----Ú

U
[Fπ#Ψ(x, ℓ2(u), u) − Fπ#Ψ(x, ℓ1(u), u) − ∂ξFπ#Ψ(x, ℓ1(u), u)(ℓ2 − ℓ1)(u)] dη(u)

----
=
Ú

U

1
2 ∂ξξFπ#Ψ(x, ℓ1,2(u), u)(ℓ2 − ℓ1)2(u) dη(u)

≤ M

2

Ú
U

(ℓ2 − ℓ1)2(u) dη(u)

≤ M

2 ||ℓ2 − ℓ1||Lp(U,η)||ℓ2 − ℓ1||Lq(U,η),

where ℓ1,2(u) is the value provided by the Mean Value Theorem and q is the conjugate expo-

nent of p. This leads us to

lim
ℓ2

Lp

−→ℓ1

|GΨ(x, ℓ2) − GΨ(x, ℓ1) − DGΨ(x, ℓ1)(ℓ2 − ℓ1)|
∥ℓ2 − ℓ1∥Lp(U,η)

≤ M

2 lim
ℓ2

Lp

−→ℓ1

∥ℓ1 − ℓ2∥Lq(U,η) .

If p ≥ q, then ∥ℓ2 − ℓ1∥Lq(U,η) ≤ ∥ℓ2 − ℓ1∥Lp(U,η) . Otherwise, if q ≥ p

∥ℓ2 − ℓ2∥q
Lq(u,η) ≤ (Rε − rε)q−p

Ú
U

|ℓ2 − ℓ1|p(u)dη(u) = (Rε − rε)q−p ∥ℓ2 − ℓ1∥p
Lp(U,η) .

In either case, ℓ2
Lp

−→ ℓ1 implies that ℓ2
Lq

−→ ℓ1, proving the Fréchet differentiability for all

p ≥ 1. We now prove the strong convexity for 1 ≤ p ≤ 2. Because of property (FII), the map

ξ → FΣ(x, ξ, u) is strongly convex and therefore

GΨ(x, ℓ1) − GΨ(x, ℓ2) =
Ú
Y

[Fπ#Ψ(x, ℓ1(u), u) − Fπ#Ψ(x, ℓ2(u), u)]dη(u)

≥
Ú
U

è
∂ξFπ#Ψ(x, ℓ2(u), u)(ℓ1(u) − ℓ2(u)) + α (ℓ1(u) − ℓ2(u))2

é
dη(u)

=
Ú
U

∂ξFπ#Ψ(x, ℓ2(u), u)(ℓ1 − ℓ2)(u) dη(u) + α ∥ℓ1 − ℓ2∥2
L2(U,η)

= DGΨ(x, ℓ2)(ℓ1 − ℓ2) + α ∥ℓ1 − ℓ2∥2
L2(U,η)

≥ DGΨ(x, ℓ2)(ℓ1 − ℓ2) + α ∥ℓ1 − ℓ2∥2
Lp(U,η) .

(62)

Otherwise, if 2 < p < +∞
∥ℓ1 − ℓ2∥p

Lp(U,η) ≤ (Rε − rε)p−2 ∥ℓ1 − ℓ2∥2
L2(U,η) (63)

which, together with (62), proves that GΨ(x, ·) is uniformly convex. Finally, the Lipschitz

continuity is a direct consequence of property (FIII), indeed

|GΨ2(x2, ℓ) − GΨ1(x1, ℓ)| ≤
Ú
U

|Fπ#Ψ2(x2, ℓ(u), u) − Fπ#Ψ1(x1, ℓ(u), u)| dη(u)

≤ LR (|x2 − x1| + W1(π#Ψ2, π#Ψ1)),
which concludes the proof.
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As a consequence of Proposition 5 we have the following corollary.

Corollary 2. Let F be a function defined as in (59) which satisfies properties (FI), (FII), (FIII),
and let G be defined as in (60). Then for every R > 0, Ψ ∈ P(BYε

R ), x ∈ BR , and 1 ≤ p < +∞
there exists a unique solution ℓ∗ to min

ℓ∈Cε

GΨ(x, ℓ), and for every ℓ ∈ Cε

GΨ(x, ℓ) − GΨ(x, ℓ∗) ≥ α ||ℓ − ℓ∗||2L2(U,η). (64)

Moreover, the map
BR × P(BR) ∋ (x, π#Ψ) → GΨ(x, ℓ∗), (65)

is Lipschitz continuous for every 1 ≤ p < ∞, while the map

BR × P(BR) ∋ (x, π#Ψ) → ℓ∗
(66)

is Lipschitz continuous for 1 ≤ p ≤ 2 and Hölder continuous for 2 < p < +∞.

Proof. The existence and uniqueness to the minimum problem is a direct consequence of the

strong and uniform convexity of GΨ(x, ·) together with the convexity of Cε . Then, by (62)

and by the minimality of ℓ∗

GΨ(x, ℓ) − GΨ(x, ℓ∗) ≥ DGΨ(ℓ∗)(ℓ − ℓ∗)ü ûú ý
≥0

+α||ℓ − ℓ∗||2L2(U,η) ≥ α||ℓ − ℓ∗||2L2(U,η).

Let x1, x2 ∈ BR , Ψ1, Ψ2 ∈ P1(BYε
R ), and let ℓ∗

1 and ℓ∗
2 be the solutions to minℓ∈Cε GΨ1(x1, ℓ)

and minℓ∈Cε GΨ2(x2, ℓ) respectively. If GΨ2(x2, ℓ∗
2) ≥ GΨ1(x1, ℓ∗

1), using the minimality of ℓ∗
2

and the Lipschitz continuity of (61)

|GΨ2(x2, ℓ∗
2) − GΨ1(x1, ℓ∗

1)| = GΨ2(x2, ℓ∗
2) − GΨ2(x2, ℓ∗

1) + GΨ2(x2, ℓ∗
1) − GΨ1(x1, ℓ∗

1)
≤ GΨ2(x2, ℓ∗

1) − GΨ1(x1, ℓ∗
1)

≤ LR (|x2 − x1| + W1(π#Ψ2, π#Ψ1)).

Otherwise, if GΨ2(x2, ℓ∗
2) ≤ GΨ1(x1, ℓ∗

1), with a similar line of reasoning, we reach the same

result:

|GΨ2(x2, ℓ∗
2) − GΨ1(x1, ℓ∗

1)| = GΨ1(x1, ℓ∗
1) − GΨ1(x1, ℓ∗

2) + GΨ1(x1, ℓ∗
2) − GΨ2(x2, ℓ∗

2)
≤ GΨ1(x1, ℓ∗

2) − GΨ2(x2, ℓ∗
2)

≤ LR (|x2 − x1| + W1(π#Ψ2, π#Ψ1)),

which gives us the Lipshitz conitnuity of (65). Since GΨ(x, ·) is strongly convex for p = 2 we

have that

[DGΨ2(x2, ℓ∗
2) − DGΨ2(x2, ℓ∗

1)](ℓ∗
2 − ℓ∗

1) ≥ α ||ℓ∗
2 − ℓ∗

1||2L2(U,η).

By minimaility

DGΨ2(x2, ℓ∗
2)(ℓ∗

2 − ℓ∗
1) ≤ 0 ≤ DGΨ1(x1, ℓ∗

1)(ℓ∗
2 − ℓ∗

1),
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and therefore using property (FIII)

α ||ℓ∗
2 − ℓ∗

1||2L2(U,η) ≤ [DGΨ1(x1, ℓ∗
1) − DGΨ2(x2, ℓ∗

1)](ℓ∗
2 − ℓ∗

1)

=
Ú

U
[∂ξFπ#Ψ1(x1, ℓ∗

1(u), u) − ∂ξFπ#Ψ2(x2, ℓ∗
1(u), u)](ℓ∗

2 − ℓ∗
1)(u) dη(u)

≤ LR (|x2 − x1| + W1(π#Ψ1, π#Ψ2))
Ú

U
|ℓ∗

2 − ℓ∗
1|(u) dη(u)

≤ LR (|x2 − x1| + W1(π#Ψ1, π#Ψ2)) ||ℓ∗
2 − ℓ∗

1||L2(U,η).

Finally, if p ≤ 2 then

||ℓ∗
2 − ℓ∗

1||Lp(U,η) ≤ ||ℓ∗
2 − ℓ∗

1||L2(U,η) ≤ LR

α
(|x2 − x1| + W1(π#Ψ1, π#Ψ2)),

otherwise remembering (63)

||ℓ∗
2 − ℓ∗

1||p−1
Lp(U,η) ≤ LR

α
(Rε − rε)p−2 (|x2 − x1| + W1(π#Ψ1, π#Ψ2)).

As intermediate step towards the main result of this section we have the following Lemma.

Lemma 3. Let F be a function defined as in (59) which satisfies properties (FI), (FII), (FIII),
and let G be defined as in (60). Consider system (57) and suppose that the dynamics for the labels
can be written as in (58). Then, for any 1 ≤ p < +∞, for every i = 1, . . . , N , and for almost
every t ∈ (0, T ]

lim
λ→∞

||ℓ ε,i
t − ℓ∗ ε,i

t ||E = 0, (67)

where ℓ∗ ε,i
t is the unique solution to min

ℓ∈Cε

GΛε,N
t

(xε,i
t , ℓ).

Proof. The proof consists of two steps. In the first step, we obtain some useful estimates and

properties of system (57), which we’ll use in the second step to prove (67).

Step 1. First, we have a bound for every agent’s location. In fact, using (v3), remembering that

m1(Λε,N
t ) ≤ ||yε

t ||Y N , and noticing that ||ℓ ε,i
t ||E < Rε for any p < +∞, we have that

|xε,i
t | ≤ |xε,i

0 | +
Ú T

0
|vΛε,N

s
(xε,i

s , ℓ ε,i
s )| ds

≤ |xε,i
0 | +

Ú T

0
Mv(1 + |xε,i

s | + ||ℓ ε,i
s ||E + m1(Λε,N

s )) ds

< |xε,i
0 | + Mv (1 + Rε) T +

Ú T

0
Mv (|xε,i

s | + ||yε
s||

Y
N ) ds

< |xε,i
0 | + Mv (1 + 2Rε) T +

Ú T

0
Mv (|xε,i

s | + ||xε
s||

Y
N ) ds.

Therefore, a straightforward computation leads us to

||xε
t ||Y N < ||xε

0||
Y

N + Mv (1 + 2Rε) T + 2Mv

Ú T

0
||xε

s||Y N ds,
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9 Fast Reaction Limit

and applying Grönwall’s Lemma

||xε
t ||Y N < (||xε

0||
Y

N + Mv (1 + 2Rε) T ) e2Mv T .

Then for each agent’s location

|xε,i
t | < N (||xε

0||
Y

N + Mv (1 + 2Rε) T ) e2Mv T =: R. (68)

Second, the map t → xε,i
t is Lipschitz continuous:

|xε,i
t2 − xε,i

t1 | ≤
Ú t2

t1

|vΛε,N
s

(xε,i
s , ℓ ε,i

s )| ds

< Mv (1 + R + 2Rε + R/N) |t2 − t1| =: A |t2 − t1|,
(69)

and therefore t → π#Λε,N
t is also Lipschitz continuous:

W1(π#Λε,N
t1 , π#Λε,N

t2 ) ≤ ||xε
t2 − xε

t1 ||
Y

N ≤ A |t2 − t1|. (70)

Step 2. Using the convexity of GΛε,N
t

(xε,i
t , ·) we have that

GΛε,N
t

(xε,i
t , ℓ ε,i

t ) − GΛε,N
t

(xε,i
t , ℓ∗ ε,i

t ) ≤ DGΛε,N
t

(xε,i
t , ℓ ε,i

t (u), u)(ℓ ε,i
t − ℓ∗ ε,i

t )

=
Ú

U
∂ξFπ#Λε,N

t
(xε,i

t , ℓ ε,i
t (u), u)(ℓ ε,i

t − ℓ∗ ε,i
t )(u)dη(u)

=
Ú

U
[∂ξFπ#Λε,N

t
(xε,i

t , ℓ ε,i
t (u), u) −

Ú
U

Fπ#Λε,N
t

(xε,i
t , ℓ ε,i

t (v), v)ℓ ε,i
t (v)dη(v)](ℓ ε,i

t − ℓ∗ ε,i
t )(u)dη(u)

≤
....∂ξFπ#Λε,N

t
(xε,i

t , ℓ ε,i
t , ·) −

Ú
U

Fπ#Λε,N
t

(xε,i
t , ℓ ε,i

t (u), u)ℓ ε,i
t (u)dη(u)

....
L2(U,η)

||ℓ ε,i
t − ℓ∗ ε,i

t ||L2(U,η)

which together with (64) lead us to

α [GΛε,N
t

(xε,i
t , ℓ ε,i

t ) − GΛε,N
t

(xε,i
t , ℓ∗ ε,i

t )] ≤

≤
....∂ξFπ#Λε,N

t
(xε,i

t , ℓ ε,i
t , ·) −

Ú
U

Fπ#Λε,N
t

(xε,i
t , ℓ ε,i

t (u), u) ℓ ε,i
t (u) dη(u)

....2

L2(U,η)
.

(71)

For almost every t ∈ (0, T ]

d

dt
[GΛε,N

t
(xε,i

t , ℓ ε,i
t ) − GΛε,N

t
(xε,i

t , ℓ∗ ε,i
t )]

=
Ú
U

∂ξFΛε,N
t

(xε,i
t , ℓ ε,i

t (u), u) ℓ̇ ε,i
t (u) dη(u)

ü ûú ý
I

+ ∂xGΛε,N
t

(xε,i
t , ℓ ε,i

t ) · ẋε,i
tü ûú ý

II

+

+ d

dτ
GΛε,N

τ
(xε,i

t , ℓ ε,i
t )
---
τ=tü ûú ý

III

− d

dt
GΛε,N

t
(xε,i

t , ℓ∗ ε,i
t )ü ûú ý

IV

(72)
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We now show that the terms II , III , and IV are well defined and uniformly bounded with

respect to λ. Because of property (FIII), (v3), and bound (68) we get

II = ∂xGΛε,N
t

(xε,i
t , ℓ ε,i

t ) · ẋε,i
t

=
Ú
U

∂xFΛε,N
t

(xε,i
t , ℓ ε,i

t ) · vΛε,N
t

(xε,i
t , ℓ ε,i

t ) dη(u)

≤
Ú
U

|∂xFΛε,N
t

(xε,i
t , ℓ ε,i

t )| |vΛε,N
t

(xε,i
t , ℓ ε,i

t )| dη(u)

≤
Ú
U

LR+Rε Mv(1 + ||yε,i
t ||Y + m1(Λε,N

t )) dη(u)

≤ LR+Rε Mv (1 + R + 2Rε + R/N) = LR+Rε A.

(73)

Given the Lipschitz continuity of map (61), and because of bounds (68) and (70), the map

τ → GΛε,N
τ

(xε,i
t , ℓ ε,i

t ) is Lipschitz continuous:

|GΛε,N
τ2

(xε,i
t , ℓ ε,i

t ) − GΛε,N
τ1

(xε,i
t , ℓ ε,i

t )| ≤ LR+RεW1(π#Λε,N
τ1 , π#Λε,N

τ2 ) ≤ LR+Rε A |τ2 − τ1|,

and therefore differentiable by Rademacher’s Theorem for almost every t ∈ (0, T ], with deriva-

tive bounded by its Lipschitz constant, that is

III = d

dτ
GΛε,N

τ
(xε,i

t , ℓ ε,i
t )
----
τ=t

≤ LR+Rε A. (74)

Because of bound (68), the Lipschitz continuity of (65), (69), (70), and Rademacher’s Theorem,

we have that

IV ≤
---- d

dt
GΛε,N

t
(xε,i

t , ℓ∗ ε,i
t )

---- ≤ 2 LR+Rε A. (75)

Regarding I instead, using (58) and (71) we have that

I =
Ú

U
∂ξFπ#Λε,N

t
(xε,i

t , ℓ ε,i
t ) ℓ̇ ε,i

t (u) dη(u)

=
Ú

U

3
∂ξFπ#Λε,N

t
(xε,i

t , ℓ ε,i
t ) −

Ú
U

∂ξFπ#Λε,N
t

(xε,i
t , ℓ ε,i

t (v), v) ℓ ε,i
t (v) dη(v)

4
ℓ̇ ε,i

t (u) dη(u)

= −λ

Ú
U

3
∂ξFπ#Λε,N

t
(xε,i

t , ℓ ε,i
t ) −

Ú
U

∂ξFπ#Λε,N
t

(xε,i
t , ℓ ε,i

t (v), v) ℓ ε,i
t (v) dη(v)

42
ℓ ε,i

t (u) dη(u)

≤ −λ rε

Ú
U

3
∂ξFπ#Λε,N

t
(xε,i

t , ℓ ε,i
t ) −

Ú
U

∂ξFπ#Λε,N
t

(xε,i
t , ℓ ε,i

t (v), v) ℓ ε,i
t (v) dη(v)

42
dη(u)

≤ −λ rε α [GΛε,N
t

(xε,i
t , ℓ ε,i

t ) − GΛε,N
t

(xε,i
t , ℓ∗ ε,i

t )] .

(76)

Using (73), (74), (75), and (76), from (72) we get the following inequality

d

dt
[GΛε,N

t
(xε,i

t ,ℓ ε,i
t ) − GΛε,N

t
(xε,i

t , ℓ∗ ε,i
t )] ≤

≤ −λ rε α [GΛε,N
t

(xε,i
t , ℓ ε,i

t ) − GΛε,N
t

(xε,i
t , ℓ∗ ε,i

t )] + 4 LR+Rε A,
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9 Fast Reaction Limit

or equivalently

d

dt

5
GΛε,N

t
(xε,i

t , ℓ ε,i
t ) − GΛε,N

t
(xε,i

t , ℓ∗ ε,i
t ) − 4 A

λ α rε
LR+Rε

6
≤

≤ −λ rε α

5
GΛε,N

t
(xε,i

t , ℓ ε,i
t ) − GΛε,N

t
(xε,i

t , ℓ∗ ε,i
t ) − 4 A

λ α rε
LR+Rε

6
.

Therefore, by Grönwall’s Lemma5
GΛε,N

t
(xε,i

t , ℓ ε,i
t ) − GΛε,N

t
(xε,i

t , ℓ∗ ε,i
t ) − 4 A

λ α rε
LR+Rε

6
≤

≤
5
GΛε,N

0
(xε,i

0 , ℓ ε,i
0 ) − GΛε,N

0
(xε,i

0 , ℓ∗ ε,i
0 ) − 4 A

λ α rε
LR+Rε

6
e−λ rε α T ,

and applying (64)

α ||ℓ ε,i
t − ℓ∗ ε,i

t ||2L2(U,η) ≤ 4 A

λ α rε
LR+Rε+

+
5
GΛε,N

0
(xε,i

0 , ℓ ε,i
0 ) − GΛε,N

0
(xε,i

0 , ℓ∗ ε,i
0 ) − 4 A

λ α rε
LR+Rε

6
e−λ rε α T .

Taking the limit as λ → ∞ gives the desired result.

Remark 14. Since ℓ ε,i
0 is independent of λ so is ℓ∗ ε,i

0 , and therefore it is obvious that

lim
λ→∞

||ℓ ε,i
0 − ℓ∗ ε,i

0 ||E = ||ℓ ε,i
0 − ℓ∗ ε,i

0 ||E .

We are now ready to state and prove our main result for the undisclosed setting.

Theorem 8. Let F be a function defined as in (59) which satisfies properties (FI), (FII), (FIII),
and let G be defined as in (60). Let (xε, ℓ

ε) ∈ Y N
ε . Consider system (57) with initial datum

(xε, ℓ
ε), suppose that the dynamics for the labels can be written as in (58), and denote by t → yε

t

its unique solution. Consider the system
˙̂xε,i
t = vΛ̂ε,N

t
(x̂ε,i

t , ℓ̂ ε,i
t )

ℓ̂ ε,i
t = arg min

ℓ∈Cε

GΛ̂ε,N
t

(x̂ε,i
t , ℓ)

x̂ε,i
0 = xε,i

for i = 1, . . . , N, t ∈ (0, T ] , (77)

where

Λ̂ε,N
t = 1

N

NØ
i=1

δ(x̂ε,i
t ,ℓ̂ ε,i

t ) . (78)

Then, for any 1 ≤ p ≤ 2 and for almost every t ∈ (0, T ], problem (77) admits a unique
solution t → ŷε

t . Moreover, for almost every t ∈ (0, T ], the solution yε
t converges to ŷε

t as
λ → +∞, namely

lim
λ→+∞

||yε
t − ŷε

t ||Y N = 0.
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Proof. Existence and uniqueness of the solution to system (77) follows form the Lipschitz con-

tinuity of the map (66), by standard results on ODE theory [15]. For the same reason, we have

that

||ℓ ε
t − ℓ̂

ε

t ||EN = 1
N

NØ
i=1

||ℓ ε,i
t − ℓ̂ ε,i

t ||E

≤ 1
N

NØ
i=1

||ℓ ε,i
t − ℓ∗ ε,i

t ||E + 1
N

NØ
i=1

||ℓ∗ ε,i
t − ℓ̂ ε,i

t ||E

≤ ||ℓ ε
t − ℓ∗ ε

t ||EN + LR+Rε(||xε
t − x̂ε

t ||(Rd)N + W1(π#Λε,N
t , π#Λ̂ε,N

t ))
≤ ||ℓ ε

t − ℓ∗ ε
t ||EN + 2 LR+Rε ||xε

t − x̂ε
t ||(Rd)N ,

where R is the bound defined in (68). From Lemma 3, there exists C(λ) > 0 such that C(λ) ∼
1/λ as λ → +∞, and ||ℓ ε

t − ℓ∗ ε
t ||EN ≤ C(λ). Thus

||ℓ ε
t − ℓ̂

ε

t ||EN ≤ C(λ) + 2 LR+Rε ||xε
t − x̂ε

t ||(Rd)N .

Using the Lipschitz continuity of the vector filed v, and the previous inequality, we can estimate

d
dt

||xε
t − x̂ε

t ||(Rd)N ≤ 1
N

NØ
i=1

|ẋε,i
t − ˙̂xε,i

t |

= 1
N

NØ
i=1

|vΛε,N
t

(xε,i
t , ℓ ε,i

t ) − vΛ̂ε,N
t

(x̂ε,i
t , ℓ̂ ε,i

t )|

≤ 1
N

NØ
i=1

LR+Rε(|x
ε,i
t − x̂ε,i

t | + ||ℓ ε,i
t − ℓ̂ ε,i

t ||E + W1(Λε,N
t , Λ̂ε,N

t ))

≤ 2 LR+Rε (||xε
t − x̂ε

t ||(Rd)N + ||ℓ ε
t − ℓ̂

ε

t ||EN )
≤ 2 LR+RεC(λ) + 4 LR+Rε ||xε

t − x̂ε
t ||(Rd)N

≤ 4 LR+Rε (C(λ) + ||xε
t − x̂ε

t ||(Rd)N )
or equivantely

d
dt

1
C(λ) + ||xε

t − x̂ε
t ||(Rd)N

2
≤ 4 LR+Rε

1
C(λ) + ||xε

t − x̂ε
t ||(Rd)N

2
.

Therefore, by applying Grönwall’s Lemma, for any τ > 0 we obtain

C(λ) + ||xε
t − x̂ε

t ||(Rd)N ≤ (C(λ) + ||xε
τ − x̂ε

τ ||(Rd)N ) e4LR+Rε (t−τ),

which leads us to

||xε
t − x̂ε

t ||(Rd)N ≤ (C(λ) + ||xε
τ − x̂ε

τ ||(Rd)N ) e4LR+Rε T .

Since the same initial data are being considered, we have that

||xε
τ − x̂ε

τ ||(Rd)N ≤ 1
N

NØ
i=1

Ú τ

0
|vΛε,N

t
(xε,i

s , ℓ ε,i
s ) − vΛ̂ε,N

s
(x̂ε,i

s , ℓ̂ ε,i
s )| ds

≤ LR+Rε

1
N

NØ
i=1

Ú τ

0
(|xε,i

s − x̂ε,i
s | + ||ℓε,i

s − ℓ̂ ε,i
s ||E + ||xε

s − x̂ε
s||(Rd)N ) ds

≤ LR+Rε(1 + 4 R + 4 Rε) τ .
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9 Fast Reaction Limit

Finally, choosing τ = 1/λ

||xε
t − x̂ε

t ||(Rd)N ≤
3

C(λ) + LR+Rε(1 + 4 R + 4 Rε)
1
λ

4
e4LR+Rε T .

Taking the limit as λ → +∞ completes the proof.

Remark 15. With the same line of reasoning of Section 8, it can be proved that the mean-field

limit of system (77) is a probability measure Σt ∈ C0([0, T ]; (P1(Rd), W1)) which satisfies the

continuity equation

∂tΣε
t + div

1
vΛ̂ε

t

!
·, ℓ∗

Σε
t

"
Σε

t

2
= 0,

where

ℓ∗
Σε

t
(x) := arg min

ℓ∈Cε

Ú
U

FΣε
t
(x, ℓ(u), u) dη(u) and Λ̂ε

t := (id, ℓ∗
Σε

t
)#Σε

t ,

that isÚ
Rd

ϕ(t, x)dΣε
t (x)−

Ú
Rd

ϕ(0, x)dΣε
0(x) =

Ú t

0

Ú
Rd

(∂tϕ(s, x)+∇ϕ(s, x)·vΛ̂ε
s
(x, ℓ∗

Σε
s
(x)))dΣε

s(x)ds

for every ϕ ∈ C1
b ([0, T ] × Rd). As a consequence of Theorem 8, we have the following result

lim
λ→+∞

W1(Σε
t , Λε

t ) = 0,

where Λε
t is the mean-field limit of system (57). Indeed, by the triangle inequality we have that

W1(Λ̂ε
t , Λε

t ) ≤ W1(Λ̂ε
t , Λ̂ε,N

t ) + W1(Λ̂ε,N
t , Λε,N

t ) + W1(Λε,N
t , Λε

t ),

and taking the limit as λ → +∞ we obtain

W1(Λ̂ε
t , Λε

t ) ≤ W1(Λ̂ε
t , Λ̂ε,N

t ) + W1(Λε,N
t , Λε

t ).

Finally, recalling (1) we have that

W1(Λ̂ε
t , Λ̂ε,N

t ) = sup
φ∈Lipb(Yε)
Lip(φ)≤1

Ú
Yε

φ(x, ℓ) dΛ̂ε
t (x, ℓ) −

Ú
Yε

φ(x, ℓ) dΛ̂ε,N
t (x, ℓ)

= sup
φ∈Lipb(Yε)
Lip(φ)≤1

Ú
Rd

φ(x, ℓ∗
Σε

t
(x)) dΣε

t (x) − 1
N

NØ
i=1

φ(x̂ε,i
t , ℓ̂ ε,i

t )

= sup
φ∈Lipb(Yε)
Lip(φ)≤1

Ú
Rd

φ(x, ℓ∗
Σε

t
(x)) dΣε

t (x) −
Ú
Rd

φ(x, ℓ∗
π#Λ̂ε,N

t

(x)) dπ#Λ̂N,ε
t (x),

by the triangle inequality

W1(Λ̂ε
t , Λ̂ε,N

t ) = sup
φ∈Lipb(Yε)
Lip(φ)≤1

Ú
Rd

φ(x, ℓ∗
Σε

t
(x)) dΣε

t (x) −
Ú
Rd

φ(x, ℓ∗
Σε

t
(x)) dπ#Λ̂N,ε

t (x)

+ sup
φ∈Lipb(Yε)
Lip(φ)≤1

Ú
Rd

[φ(x, ℓ∗
Σε

t
(x)) − φ(x, ℓ∗

π#Λ̂ε,N
t

(x))] dπ#Λ̂N,ε
t (x).
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Since there exists R > 0 such that Σε
t , π#Λ̂ε,N

t ∈ P(BR) for all t ∈ [0, T ] and N ≥ N , and

because of (66), we have that

W1(Λ̂ε
t , Λ̂ε,N

t ) ≤ (1 + LR)W1(Σε
t , π#Λ̂ε,N

t ) + LR W1(Σε
t , π#Λ̂ε,N

t ).

In the end, we have

W1(Λ̂ε
t , Λε

t ) ≤ (1 + 2 LR)W1(Σε
t , π#Λ̂ε,N

t ) + W1(Λε,N
t , Λε

t ),

which gives the desired result taking the limit as N → ∞.

10 Possible Improvements
In Section 9, we have analyzed just the undisclosed case. In order to address the general case,

the equations for the labels (58) suggest us to suppose, for the functional F , a full depen-

dence on the state of the system and not just on the agents’ locations. Thus, we shall consider

FΛN
t

(xε,i
t , ℓ ε,i

t (u), u), instead of Fπ#ΛN
t

(xε,i
t , ℓ ε,i

t (u), u). By doing so, the functional G takes the

following form

GΛε,N
t

(xε,i
t , ℓ ε,i

t ) =
Ú

U
FΛN

t
(xε,i

t , ℓ ε,i
t (u), u) dη(u),

instead of (60), which in turn leads us to a problematic expression for the labels equations of

system (77):

ℓ̂∗ i
t = arg min

ℓ∈Cε

Ú
U

FΛ̂N
t

(xε,i
t , ℓ ε,i

t (u), u) dη(u) i = 1, . . . , N.

The expression above does not make any sense because on the right-hand side the other so-

lutions to the minimum problem appear in the term Λ̂N
t . While it may initially resemble a

fixed point problem, a closer inspection reveals that it is not, due to the vector nature of the

problem. For this reason, instead of (58), we are lead to consider

ℓ̇ ε,i
t = λ

3Ú
U

DFΛε,N
t

(xε,i
t , ℓ ε,i

t (u), u) ℓ ε,i
t (u) dη(u) Π − DFΛε,N

t
(xε,i

t , ℓ ε,i
t , ·)

4
(ℓ ε,i

t , ℓ ε
t ), (79)

where now

Π: Cε × CN
ε → Cε

(ℓ, ℓ) → ℓ

and DF is the Fréchet-differential, in the sense of Definition 4, of

F 1
N

qN

j=1 δ(xj ,·)
(xi, ·, u) : [rε, Rε] × CN

ε → [−∞, +∞]

(ξ, ℓ) → F 1
N

qN

j=1 δ(xj ,ℓj )
(xi, ξ, u) .

We notice that since (79) has to be compatible with (57) in order to use Definition 4, we would

have to extend smoothly the entropy functional H to zero. We also observe that in the undis-

closed setting, the expression in (79) gives us back that in (58). To avoid dealing with derivatives
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in the space of measures, we deal with integral functions only, that is

F 1
N

qN

j=1 δ(xj ,ℓj )
(xi, ξ, u) = 1

N

NØ
j=1

f(xi, ξ, u, xj , ℓj). (80)

In such cases, to guarantee that similar assumptions to (FI), (FII), and (FIII) are satisfied, it

is sufficient to make similar hypothesis on f to the ones of Proposition 4. At this point we can

define

G(x, ℓ) := 1
N

NØ
i=1

Ú
U

FΛN (xi, ℓi(u), u) dη(u), with ΛN = 1
N

NØ
j=1

δ(xj ,ℓj) ,

and have an analogous results to Proposition 5 and Corollary 2; in particular one can prove

the existence and uniqueness of the solution ℓ∗
to the minimum problem minℓ∈CN

ε
G(x, ℓ). To

prove a result similar to Lemma 3, we require an additional property:

mi
t(u)

A
mi

t(u)(ℓ ε,i
t , ℓ ε

t ),
1
mj

t (u)(ℓ ε,j
t , ℓ ε

t )
2N

j=1

B
≥ C ||mi

t(u)||2L([rε,Rε]×CN
ε ;R) ||(ℓε,i

t (u), ℓ ε
t )||[rε,Rε]×CN

ε
,

where

mi
t(u) = −

3Ú
U

DFΛε,N
t

(xε,i
t , ℓ ε,i

t (u), u) ℓ ε,i
t (u) dη(u) Π − DFΛε,N

t
(xε,i

t , ℓ ε,i
t (u), u)

4
.

Unfortunately, the replicator dynamics does not satisfies this last hypothesis, and satisfies

the other ones only for J(x, u, x′, u′) = −J(x′, u′, x, u), so that a cooperative behavior is

not allowed. Therefore, we have to think about how to weaken the assumptions on f to still

guarantee the desired results. Another problem arise when we want to perform the mean-field

limit. We have defined our functional F over [rε, Rε] × CN
ε in the form (80), but taking the

limit as N → ∞ to obtain a mean-field description is an ill-posed operation since the spaces

change with N . Therefore, the particular form (80) does not solve our issue and it seems that

considering measures derivatives can be a possible way to deal with the general problem.
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