
POLITECNICO DI TORINO

Corso di Laurea Magistrale
in Ingegneria Matematica

Tesi di Laurea Magistrale

Modelling relocation strategies for
shared mobility system management

Relatori Giulio Cerruto
prof. Luca Vassio
prof. Danilo Giordano
prof. Marco Mellia

Anno Accademico 2021-2022

Summary

A vehicle sharing system is based on a pool of vehicles that are located across the city and
can be used by multiple people. Each implementation has its own characteristics, e.g., if
it is station -based or free-floating, if it comprises different kinds of vehicles, if it has a
per-minute fare or a flat rate.

Often the demand for these services varies significantly in space and time. Some sta-
tions/regions may run out of units due to uneven demand, while concurrent end journeys
may overload others. To meet user trip demand and enhance user satisfaction and usage,
a relocation procedure is a solution to rebalance vehicles in various stations.

This thesis focuses on free-floating car sharing systems employing an operator-based
relocation process to mitigate the imbalanced vehicle distribution problem. Many previous
works have already confronted the repositioning problem, optimising the relocation process
only based on knowledge about the immediate future. The methods developed in this
thesis aim at maximising the satisfied mobility demand avoiding a greedy and possibly
short-sighted approach and taking into account demand forecasts over a longer time period
and over multiple relocation steps. The objective is to identify, at each time frame, how
many cars to move from one zone to another in order to maximise a given dynamic
forecast demand, with constraints on the maximum number of cars to be moved and the
time needed for vehicles to be relocated.

In particular the thesis analyses different optimisation methods for improving the re-
location strategy and investigates how far in the future is it appropriate to look. A first
method is based on the dynamic programming approach, which is - in principle - able to
find the optimal solution but, unfortunately very little scalable and inappropriate to fit
the problem dimensionality. A second procedure to find an approximate yet performing
solution is based on the formulation of a linear optimisation program in three versions: a
linear program, a mixed integer linear program and a combination of the two, gradually
relaxing more and more integrality constraints for computational time purposes. Finally,
starting from the solutions obtained through such algorithms, a further neighbourhood
search step, including the simulated annealing strategy, may be performed to improve the
quality of the solution.

Considering the city of Turin as a case study and using mobility data coming from the
operating Car2go fleet, the performances of the developed strategies have been evaluated,
taking into account satisfied trips, costs, and computational effort needed. A comparison
with a greedy approach optimising over only a single time frame and with a no-relocation
based strategy is then carried out. The approximated solution is also compared with the
optimal one found through the dynamic programming approach only in a toy example.
Finally, the impact of the relocation costs on the profits and the maximum relocation are
investigated.

Results show that a long-sighted strategy is preferred over a greedy one, with perfor-
mance improvements of up to 10% more satisfied demand, with a 2 two-hour time frame

2

look-ahead period already improving performances by around 7%. A relocation strategy
enhances the system performance in the first place, although high relocation costs may
result in a reduction in profits and user satisfaction, which may be mitigated with an
increase in fares. Moreover, a MILP-based approach proves to be the best performing
one, although computational times become prohibitive for long look ahead periods, while
the LP-based approach gives good performances always in short times. Finally, the neigh-
bourhood search does not always turn out to improve performances while needing great
computational effort.

3

Acknowledgements

Chi mi conosce bene sa quanto io sia introverso ma allo stesso tempo poco introspettivo,
e quanto sia difficile per me tirar fuori i sentimenti e le parole giuste per esprimere la
mia gratitudine verso le persone a cui voglio bene. Questi ringraziamenti rappresentano,
quindi, un enorme sforzo emotivo da parte mia.

Un primo grande ringraziamento va sicuramente ai miei relatori, i professori Luca
Vassio, Danilo Giordano e Marco Mellia per avermi accompagnato, guidato e aiutato con
passione e pazienza nella realizzazione di questa tesi.

Quest’ultimo anno mi ha sicuramente messo a dura prova sotto molti aspetti, forse
come mai mi era successo in precedenza, e reagire non è sempre stato semplice per me.
Però - sembra banale dirlo - ho avuto la fortuna di avere al mio fianco persone che in un
modo o nell’altro sono riuscite ad aiutarmi e starmi vicino.

Il ringraziamento più grande va ai miei genitori, semplicemente per esserci sempre stati.
L’affetto da parte di un genitore è spesso una cosa scontata, ma io sono stato abbastanza
fortunato da non aver mai per un secondo nella vita pensato di non poter contare sul vostro
appoggio, sulla vostra comprensione e sul vostro sostegno in ogni mia decisione. Grazie
per avermi reso la persona che sono oggi, per starmi vicino e accettare quei momenti in
cui sono più scontroso e ho meno voglia di parlare, grazie per celebrare ogni mio ritorno a
casa come un evento della massima importanza, grazie per avermi cresciuto insegnandomi
valori come l’umiltà, l’educazione e l’onestà e come non dimenticarli, anche quando capita
di non ritrovarli in chi ti sta di fronte. Semplicemente grazie, per tutta la mia vita.

Se l’affetto da parte della propria famiglia è una cosa che spesso ci viene assicurata,
ritrovarsi al proprio fianco qualcuno che quella vicinanza te la garantisca senza alcun
obbligo è un privilegio forse più grande. Io ho avuto la fortuna di trovare tutto questo in
te, Orazio. Grazie per avermi regalato alcuni dei momenti più belli della mia vita e per
essermi sempre accanto quando ne ho bisogno. I ringraziamenti in una tesi sono, come al
solito, la fiera della banalità, ma sappiamo benissimo entrambi quanto tu mi sia sempre
stato vicino e mi abbia sostenuto, mettendomi spesso al primo posto, e ciò è tutt’altro
che banale. Succeda quel che succeda, sai bene che potrai sempre contare su di me.

Oltre alle ben note sofferenze e ansie, l’università mi ha permesso di conoscere, tra
un funzionale e l’altro, Simona e Giulia. Con voi si è costruita negli anni un’amicizia
che mai mi sarei aspettato di poter vivere e che si è rafforzata nonostante la prova della
lontananza durante i vari coprifuochi e lockdown legati al Covid. Grazie per essermi state
ad ascoltare in tutte le mie paranoie, apprensioni e tormenti interiori vari, soprattutto in
quest’ultimo anno. So di essere pesante, ma voi siete state abbastanza pazienti da aver

4

retto alla pressione. Grazie Giulia per la tua generosità, il tuo altruismo e soprattutto la
tua dolcezza, sia emotiva che culinaria. Grazie Simona per la tua genuinità e allegria, e per
aver cambiato idea su di me, nonostante la tua prima impressione non fosse esattamente
positiva.

Questi ultimi anni mi hanno poi permesso di conoscere tante altre belle persone, con
cui ho condiviso intere giornate durante i periodi di zona rossa e che continuano ad essere
vicino a me anche adesso che stiamo uscendo da questa pandemia. Ad una in particolare
devo tanto in questi ultimi mesi. Grazie Carlotta per essermi stata vicino nei vari drammi
ed avermi ascoltato e consigliato (anche se poi non ti davo retta). Sarà forse perché siamo
caratterialmente molto simili, ma con te mi sono sempre sentito compreso e appoggiato,
in momenti in cui mi ci voleva davvero.

Infine, volevo ringraziare tutti coloro che sono stati al mio fianco in questi anni, per
più o meno tempo, e con cui ho condiviso le mie giornate.

5

Contents

List of Tables 8

List of Figures 9

1 Introduction and motivation 11
1.1 Scenario and Framework . 11
1.2 Research questions . 13
1.3 My contribution and results . 14
1.4 Overview of the thesis . 16

2 Literature Review 17
2.1 Overview . 17
2.2 Vehicle Routing Problem (VRP) . 18
2.3 Fleet Operator based relocation . 20
2.4 User incentive based systems . 21
2.5 Optimisation algorithms . 22

2.5.1 Heuristics in mixed integer programming 23
2.5.2 Simulated Annealing (SA) . 23

2.6 Research group works . 25

3 Methodology 27
3.1 Problem formulation and objective . 27
3.2 Overview on implemented algorithms . 28
3.3 Implementation . 30
3.4 System simulation and objective evaluation 30

4 Dynamic programming approach 35
4.1 The dynamic programming principle . 35
4.2 Implementation . 37

5 Sequential approximated linear programming and mixed integer linear
programming solution 41
5.1 Theoretical background . 41

5.1.1 Linear programs (LP) . 41
5.1.2 Mixed integer linear programs (MILP) 42

6

5.2 Implementation . 45
5.2.1 Linear program and solution rounding 46
5.2.2 Mixed integer linear program . 51
5.2.3 Linear program + mixed integer linear program 52

6 Neighbourhood search and simulated annealing 53
6.1 Theoretical background . 53

6.1.1 Neighbourhood search . 53
6.1.2 Simulated annealing (SA) . 54

6.2 Implementation . 55
6.2.1 Neighbourhood structure definition 55
6.2.2 Neighbourhood search . 56
6.2.3 Solution evaluation . 57
6.2.4 Parallelisation . 62

7 Data extraction and analysis 63
7.1 Data extraction . 63

7.1.1 The dataset . 63
7.1.2 Dataset cleaning . 64
7.1.3 Data processing . 64

7.2 Data aggregation . 66

8 Numerical results 71
8.1 The metrics . 72
8.2 Toy case and optimal solution . 72
8.3 Comparing approximated methods’ performances 76
8.4 Analysis on the maximum relocation budget 78
8.5 Analysis on profits and relocation costs . 80

9 Conclusions 85

Appendix A Tuning simulated annealing 89

7

List of Tables

3.1 Summary of implemented algorithms . 33
7.1 Total demand by time-frame . 69
8.1 Efficiency results with toy case problem, showing the optimal solution and

the approximated solutions performances 74
8.2 Elapsed time to run all the algorithms with the toy case problem 74
8.3 Efficiency results of approximated algorithms in the real-world case 77
8.4 Elapsed time to run the approximated algorithms in the real-world case . . 79
8.5 System efficiency by relocation budget . 79
8.6 Total profits by trip minute fee and cost of each relocation 82
8.7 System efficiency by trip minute fee and cost of each relocation 82
8.8 Total number of relocated vehicles by trip minute fee and cost of each

relocation . 82
A.1 Average percentage efficiency gain and standard deviation by cooling sched-

ule function choice . 90

8

List of Figures

3.1 Optimisation procedure representation . 31
7.1 Incoming and outgoing demand by time-frame and zone 68
7.2 Total demand by time-frame . 69
8.1 State space cardinality by vehicle and city zone number of the system . . . 73
8.2 State space cardinality by city zone and vehicle number of the system in

logarithmic scale . 73
8.3 Efficiency results with toy case problem, showing the optimal solution and

the approximated solutions performances 75
8.4 Elapsed time to run all the algorithms with the toy case problem 75
8.5 Efficiency results of approximated algorithms in the real-world case 78
8.6 Elapsed time to run the approximated algorithms in the real-world case . . 78
8.7 System efficiency by relocation budget . 80
8.8 Total profits by trip minute fee and cost of each relocation 80
8.9 System efficiency by per-minute trip fee and cost of each relocation 83
8.10 Total number of relocated vehicles by per-minute trip fee and cost of each

relocation . 83
A.1 Average percentage efficiency gain by cooling schedule function choice . . . 91
A.2 Average percentage efficiency gain by initial temperature choice 92
A.3 Average percentage efficiency gain by look ahead horizon 92

9

10

Chapter 1

Introduction and motivation

This first chapter serves as an introduction to the present thesis. A description of the
framework is given in section 1.1, discussing shared mobility systems and why relocation
strategies need to be elaborated. In section 1.2, the research questions faced in this work
are presented. The contribution of this work is described in section 1.3, together with a
summary of the achieved results. Finally, an overview on the structure of the thesis is
given in section 1.4.

1.1 Scenario and Framework
Cities are adopting innovative mobility methods to address smart city challenges such
as carbon reduction, multimodal urban transportation, and traffic decongestion, with a
focus on shared modes such as car and bike-sharing systems. These sharing models are
being used by an increasing number of cities worldwide in order to combat the current
trends of increased urban mobility, air pollution, and changes in urban mobility patterns
and behaviour, issues which have been exacerbated by the recent pandemic crisis. As
reported by Albuquerque et al. [2021], more than 1000 bike-sharing programmes have
been operating since 2016 in 60 different nations, and these programmes have undergone
several changes. The most recent technologies enable real-time data collection via wireless
connections and sensors, producing massive amounts of data.

The notion of "Mobility as a Service" (Maas) has perhaps been most widely imple-
mented through bike-sharing programmes (BSS). BSS debuted in Amsterdam as a public
service in 1965 with the "White Bike" initiative. However, it was not until the last ten
years that they gained international acclaim, mainly thanks to the increased awareness re-
garding environmental issues and the newly developed technologies, such as smartphones,
allowing users to easily rent a vehicle and pay, without any direct contact with the oper-
ator. Indeed, as Vallez et al. [2021] reported, the number of BSS implementations greatly
expanded from 13 BSS implementations in 2004 to 1956 active local programmes and
around 15,254,400 shared bicycles in 2019. Besides, according to Chinese Ministry of
Transport, by 2017 the number of dockless bikes and their users have reached 16 million
and 130 million, respectively.

11

Introduction and motivation

To gain access to the system, new users often sign up via a website or mobile application
and may need to pay a subscription fee. Following that, users who have already registered
with the system can locate, possibly reserve, and unlock the available vehicles using a
mobile application. They can then pay by the amount of time they use the vehicle (for
example, a per-minute fee), occasionally in addition to a drop-off fee based on the area of
the city where the vehicle is returned.

Therefore, a vehicle sharing system is based on a pool of publicly available vehicles
(either cars, bikes, motor scooters, scooters) that are located across the city and ready to
be rented for a nominal cost. Each implementation has its own characteristics, such as:

• whether it is managed by a private company or by the government;

• whether it is dock-based (if it is based on stations picking areas) or free-floating (if
vehicles can be picked up and dropped anywhere in the city);

• whether it has a restricted area of use (a delimited perimeter) or does not;

• whether it uses various payment methods, incentives to use the service, discounts,
and pricing plans;

• the type of vehicles employed, which can be electric scooters, scooters, bicycles, cars
(with different types of engines).

Each station in a station-based sharing system offers car/bike slots where users can pick
up a vehicle or return one they have previously used. Maintaining a high degree of service
efficiency despite the system’s cyclical dynamic reconfiguration throughout the operation
period is one of vehicle sharing systems’ key challenges. For instance, during the morning
rush hour, most people ride their bicycles to work. Due to the extreme oversupply of
shared bikes, residential areas have extremely few bikes, which reduces possible future
demand. Subway stations and business districts are thus paralysed. Due to users’ parking
sites being unrestricted, this issue is even worse with dockless sharing systems. Cities may
experience serious issues as a result of this imbalance, as well as customers and service
providers.

To guarantee that there are enough units that are distributed geographically among the
stations to meet customer needs, regular relocation of vehicles between stations becomes
essential. Some stations may run out of units due to uneven demand, while others get
completely filled and may be overloaded by concurrent end journeys. More recently, free-
floating systems allow to pick up and drop off the vehicles at virtually any parking space
within a predetermined operational region. However, free-floating systems face essentially
the same issue, with the only difference that no overloading scenarios need to be avoided,
since it is unlike that a city zone gets completely filled with cars. The problem has
been identified in the literature under numerous names, the most common ones being
imbalance, rebalance, repositioning, and balancing.

To meet user trip demand and enhance user satisfaction and usage, a support staff
taking care of a relocation procedure is commonly employed to rebalance vehicles in
various stations. This strategy is distinguished by a fleet of vehicles and a staff devoted
to manually moving vehicles between various places. However, this method is frequently

12

1.2 – Research questions

used at specific times of the day, making it impossible to change the number of bikes in
real time. Due to the heavy usage of truck routing, this strategy comes at a high cost
and has an environmentally unfriendly operation mode. Alternatively to or together with
this operator-based strategy, subsidies may be granted to customers who agree to pick up
their vehicle from a station with excess units and return it to a station with an inadequate
number of cars/bikes, encouraging repositioning actions that are good for the balance of
the system.

This thesis focuses on free-floating car sharing systems employing an operator-based
relocation process to mitigate the imbalanced vehicle distribution problem. However, the
methods developed in the work can be suitable for any kind of vehicle employed in the
system and for both free-floating and station based systems, since in the latter no spatial
discretization needs to be carried out.

1.2 Research questions
The present work arises from a few research questions:

• Can we optimise relocation, i.e., perform a relocation that would increase satisfied
demand or revenues or profit?

• Is it worth to look ahead in the future avoiding a greedy approach? If so, how far
should we go?

• Can we optimise the process in real time? What is the best trade off between
performances and computational times?

The relocation process is a very complex procedure and can be carried out in many
different ways. Finding the most effective one is an open research question and its main
difficulty lies in the very big dimensionality of the problem. Indeed, real-world scenarios
involve smart mobility implementations in big cities and therefore, a great number of
stations and vehicles. All their possible configurations give life to a huge and hardly
tractable problem and confronting it usually requires resorting to metaheuristics resulting
in approximate solutions. Moreover, how advantageous is it to relocate vehicles, in the
first place? Since it is a process that comes with a cost, the relocation operation might
neutralise the additional incomes coming from more satisfied mobility demand.

Implementing a relocation strategy is widely considered a good way to improve the
shared mobility system performances. However, previous works have often worked out
methods optimising the relocation process only based on immediate or short-term infor-
mation about the demand patterns. The main aim of this work is to go beyond these
greedy approaches, gathering information about longer term demand patterns and opti-
mising the process in a long-sighted way, avoiding choices that look best immediately, but
turn out to compromise the performances in the long run. Besides, how far in the future
is it worth to look? Looking ahead is usually a good strategy, and the further we look, the
better it is. Unfortunately, increasing the amount of information taken into consideration
often comes at a cost: the computational effort needed for the problem to be solved may

13

Introduction and motivation

become overwhelming. Additionally, looking too far in the future may not even prove to
give advantage, since the effect of the current decision may gradually fade.

Finally, vehicle sharing systems involve dynamic scenarios continually evolving and
changing. As a consequence, it is necessary to take new decisions and adjust the old
ones on the go. Therefore, fast algorithms are needed in these frameworks, gathering
new information and rapidly elaborating new strategies to be carried out to improve the
performances. Unfortunately, not all algorithms are able to provide solutions quickly:
actually, the most performing ones are usually the slowest. It is therefore an important
challenge to work out a method setting an appropriate trade off between performances
and computational times.

1.3 My contribution and results
Some algorithms have been developed in the present work to identify which city zones are
overcrowded and need fewer cars than their actual availability and can provide cars to
city zones which, on the contrary, cannot satisfy the forecast demand and are in need of
additional vehicles.

The dynamic programming methodology is a first way to identify the best relocation
strategy. Theoretically, using this method, it is possible to examine indefinitely ahead
in the future and identify the best possible solution to the issue at all time frames. It
is feasible to associate an optimum choice to every potential system state, reacting to
the system evolution and making adjustments to the decision as it goes along, constantly
deciding what to do to get the best result. Since every conceivable state of the system
must be analysed, this technique is unfortunately not particularly scalable and quickly
becomes unworkable when dealing with real-world situations.

Therefore, in order to develop a relocation strategy in a fair amount of time with
limited resources, approximation methodologies must be used. Consequently, a sequential
algorithm based on the formulation of a linear program is resorted to. This method can
be declined in one of three ways:

• a Linear Program, with no integrality constraints. Since the resulting relocation
strategy is coded by continuous variables, a post-processing step follows to get an
integer valued relocation vector;

• a Mixed Integer Linear Program, with integrality constraints on the relocation vari-
ables;

• a combination of the two, where the LP is first solved and the relocation variables
whose optimal value is found to be 0 are fixed, leaving the remaining ones as the
integer constrained variables for the MILP.

Even with a very high dimensionality and a somewhat large number of constraints, a linear
program may frequently be solved rather instantly, but a post-processing of the solution
is required in order to round its entries. On the other hand, there is no need for rounding
steps when employing a mixed integer linear program since keeping the integrality con-
straints on the relocation variables produces an already feasible solution. However, it is

14

1.3 – My contribution and results

well known that mixed integer linear programs are exceedingly computationally costly.
The third method’s goal is to solve the MILP, obtaining an integer solution only after
lowering the complexity and dimensionality of the optimisation problem. To further en-
hance the effectiveness of the method, a neighbourhood search might be started from the
solution provided by the linear program. Since the optimisation problem and the neigh-
bourhood search are carried out at the start of each time frame to change the relocation
strategy based on the realisation of the trip demand and, therefore, of the system state,
the algorithm in issue is described as sequential.

First of all, this research has once again proven that operators lose a great deal of con-
sumer satisfaction if they don’t move their cars to suit the shifting demand patterns. The
efficiency of the system is increased by around 4.5% by moving just 1 percent of the fleet,
while user satisfaction is increased by about 12% when the percentage of relocated cars
is increased to 7.5%. However, too many transferred vehicles appear to reduce customer
happiness since there are too many cars that are unavailable for booking by users because
they are being relocated.

Another question examined is how far it is worthwhile to look ahead in the future,
given that the further we look, the larger the solution becomes in terms of dimensionality,
necessitating an increasing amount of time for the algorithms to solve the issue. When the
look ahead period is set to two two-hour time frames and fewer than three percent of the
total cars are moved by the operator, the results indicated that a long-sighted approach
did, in fact, raise customer happiness, with an efficiency increase of about 7%. When the
look ahead period reaches 10 two-hour time frames, the efficiency improvement can reach
up to 10%, but computational times get overwhelming with such look aheads.

The mixed integer linear program optimising across a 2 two-hour look ahead horizon
in essentially no time ensures an 82 percent system efficiency, and turns out to be the
algorithm that offers the optimum trade-off between performances and computing times.
Despite the fact that some of the strategies took way too long to be executed, all of them
prove to be effective in tackling the issue. Implementing the neighbourhood search starting
from the solution provided by the optimisation program, in particular, can enhance the
quality of the solution, but the additional time required to do so prevents it from being an
effective substitute for other approaches. Working with a toy example also demonstrates
that the created algorithms, which are only able to identify approximate solutions, may
often come up with almost optimum solutions, by using a dynamic programming solution
as a benchmark. The latter option is the best one, but the algorithm that finds it quickly
becomes computationally impractical since the state space grows nearly exponentially as
more cars and city zones are added to the system.

A simple analysis of the system profits and relocation costs reveals that greater fees
ensure higher profits and that relocation expenses have a roughly linear influence on
profits. Aside from situations with extremely high per-minute fees, the system efficiency
tends to decline as relocation costs rise. Finally, the higher the relocation costs, the less
vehicles are relocated, since the additional cost of moving a vehicle does not get rewarded
by a sufficient profit, with higher fee cases less sensitive to an increase in costs.

15

Introduction and motivation

1.4 Overview of the thesis
Chapter 2 provides a review of the scientific literature consulted to gaze the state of the
art of the confronted problem and gather new information to solve it. Chapter 3 gives an
overview on the formalisation of the problem and the implemented algorithms to work it
out. Following, chapter 4 provides details about the dynamic programming method and
how it has been implemented in the work. Chapter 5 gives insights on the implementation
and resolution of the different versions of the linear programs and chapter 6 details the
neighbourhood search step with the simulated annealing strategy. Appendix A shows
the tuning procedure followed to set the parameters for the simulated annealing strategy
implementation.

Chapter 7 shows the data extraction procedure. Real-world data coming from the
operating Car2go fleet in the city of Turin were used and fed to the algorithms. Both the
spatial and temporal discretisation procedures are presented and a little data exploration
is carried out. Finally, chapter 8 displays and comments the obtained results from running
the algorithms. Chapter 9 closes the thesis and wraps up the whole work.

The code realised for this thesis can be found at https://github.com/giuliocerruto/
shared-mobility-relocation.

16

https://github.com/giuliocerruto/shared-mobility-relocation
https://github.com/giuliocerruto/shared-mobility-relocation

Chapter 2

Literature Review

This chapter focuses on the review of the existing literature concerning the fleet manage-
ment problem in shared mobility systems and some optimisation methods employed in
this work. A quick and broad overview is initially provided, followed by a review of a very
widespread approach to the relocation problem: the Vehicle Routing Problem. Then a
review of articles confronting the repositioning problem in a fleet operator-based fashion
and an user-incentive-based fashion is given. Heuristics for MILP problems and the Sim-
ulated Annealing method are later examined. Finally, an overview of the work done in
the SmartData@Polito1 research group is presented.

2.1 Overview
Smart urban mobility solutions have the potential to become a key part of the urban
policy agenda for addressing the negative effects of transportation. For this reason they
have recently become subject of numerous studies, tackling all aspects of this topic.

Golbabaei et al. [2021] analysed and reviewed 81 articles concerning many different
aspects of shared mobility such as the optimal fleet size, the effects on traffic volume
and congestion, the travel cost and fares of both the shared mobility system and their
effect on traditional taxi service fares. They also reviewed articles on the impact on
household locations, on parking demand and spaces, on the number and position of pick-
up and drop-off areas and charging stations, as well as on social and travel behaviours. In
particular, they pointed out that demand levels and arrival patterns are key considerations
in determining the right fleet size. Furthermore, Winter et al. [2016] found that the initial
vehicle position has a significant influence on system performance.

Hu et al. [2016] provided an overview and classification of the optimisation and con-
trol methodologies employed for smart charging of electric vehicle fleets. They identified
three control strategies used by fleet operators including centralised control, transactive
control, and price control and discuss their related mathematical modelling methods.

1https://smartdata.polito.it

17

https://smartdata.polito.it

Literature Review

Hu et al. [2016] further discussed the charging cost minimisation through methodolo-
gies like dynamic programming in order to obtain the optimal charging schedule. More-
over, they analysed several mathematical modelling frameworks such as linear program-
ming, quadratic programming, dynamic programming, mixed-integer linear and non-linear
programming, stochastic programming, robust optimisation, heuristic optimisation and
model predictive control in order to model the state of charge of the batteries.

Albuquerque et al. [2021] focused on machine learning techniques’ contributions ap-
plied to bike-sharing systems. They mainly reviewed articles concerning the prediction
of bike spatial and temporal demand and their optimal repositioning. Methods applied
in those articles span from random forest, weighted correlation network and Monte Carlo
simulation, artificial neural networks, graph convolutional neural networks, long-short
term memory neural networks, linear and logistic regression to hierarchical clustering,
k-means, k-medoids, among others. They observed that some research used clustering
methods like hierarchical clustering to predict the behaviour configurations on bike sta-
tion spatiotemporal redistribution. A random forest and a graph convolutional neural
network with data-driven graph filter has been employed to predict station and city bike
demand.

Vallez et al. [2021] reviewed papers on the repositioning problem in dock-based bike-
sharing services, observing that, since their inception, the balancing problem has been
highlighted as one of the most significant ones that such systems have to face. In particular
they pointed out at Ban and Hyun [2019]’s finding that in docking-station based bike
sharing systems, the operator-based approach appears to be more effective; on the contrary
in dockless bike sharing systems, the user-based strategy seems to outperform the former.
Vallez et al. [2021] analysis revealed that such problem has been tackled through methods
like stochastic programming, the travelling salesman problem, integer programming, Petri
nets to create modular dynamic models, chemical reaction optimisation, game theory,
heuristic methods such as tabu search, genetic algorithms or large neighbourhood search.
In Pfrommer et al. [2014], the authors coupled the traditional redistribution mechanism
with a pricing incentive approach to the consumers. Tang et al. [2020a] focused on reducing
three expenses associated with the rebalancing procedure: transportation costs, penalty
charges for all stations for not meeting the demand, and holding costs.

2.2 Vehicle Routing Problem (VRP)

The vehicle routing problem (VRP) is one of the most common solutions employed when
facing the system rebalancing problem. The VRP is a combinatorial optimisation and
integer programming problem, which generalises the travelling salesman problem (TSP),
and aims at finding the best set of routes for a vehicle fleet whose task is to deliver to a
given set of customers. The classical formulation of this problem assumes the best set of
routes to be the one that minimises the total route cost, which usually is the total travelled
distance. Constraints on the vehicle capacity, number of customers and on whether or not
a point can be visited more than once are usually added. Determining the VRP’s optimal

18

2.2 – Vehicle Routing Problem (VRP)

solution is known to be a NP-hard problem2, therefore heuristics need to be used, since
an exact solution can’t in general be found.

The road network may be represented as a graph, with arcs representing roads and
vertices representing intersections between them. Due to the possibility of one-way streets
or varying costs in each direction, the arcs may be directed or undirected. Each arc has
a cost associated to it, which is usually the length or travel time of the street.

In Shi et al. [2019] the VRP is applied to the fleet rebalancing problem and solved using
an upgraded particle swarm optimisation (PSO) algorithm. A (non-realistic) case study
is then conducted to verify the model’s and algorithm’s validity. The authors formulated
the problem as to minimise the operation’s overall cost, i.e, the fixed maintenance truck
cost and the variable distribution costs. Constraints on the number and capacity of the
relocating trucks are included, as well as the balancing of incoming and outgoing trucks
in a node and the possibility of every node to be visited from at most one truck. The
problem is then solved through a modified version of the PSO, where inertia weights and
learning factors had been adjusted.

In Lin and Chou [2012], the authors implemented the VRP to solve the unbalancing
problem and then analyzed three algorithms to solve such problem: the nearest neighbour
algorithm, the savings method and the farthest insertion algorithm, finding the last one to
be the best performing approach. They also faced the metric choice problem for measuring
the distance between nodes, using the Google Directions API instead of the euclidean
distance to have more reliable estimates.

In Bräysy and Gendreau [2005a] the authors analysed a variation of the classical VRP:
the vehicle routing problem with time windows (VRPTW). This formulation adds a fur-
ther constraint to the problem, requiring a vehicle to deliver to a certain point within a
given time interval. The authors, in particular, allowed the vehicles to get to the point
of interest before the time window opens and wait without penalty until the service is
available, but they did not allow anyone to arrive after the time window closed. In Bräysy
and Gendreau [2005a], three heuristics were then studied and their performances anal-
ysed. The first one is based on the construction of a new route combining pre-existing
ones. The second heuristic is a time-oriented nearest neighbour, which begins each route
by locating an unrouted client who is closest to the depot and then subsequently adding
the closest unrouted customer. The most effective of the three suggested sequential in-
sertion heuristics creates a route by starting with a "seed" customer and then adding the
other unrouted customers until the route is filled depending on specified criteria (like its
distance). In addition to route construction heuristics, the performance of several local
search methods had also been inspected, which differ on the way new candidate optimal
solutions are identified. In Bräysy and Gendreau [2005b], many different meta-heuristic
algorithms to solve the VRPTW are explored: tabu search algorithms, as well as genetic

2A problem H is NP-hard when every problem L in NP can be reduced in polynomial time to H;
that is, assuming a solution for H takes 1 unit time, H’s solution can be used to solve L in polynomial
time. As a consequence, finding a polynomial time algorithm to solve any NP-hard problem would give
polynomial time algorithms for all the problems in NP. Informally, a NP-hard problem is at least as
hard as the hardest problems in NP. A NP problem, instead, is a decision problem that can be solved
in polynomial time by a nondeterministic Turing machine.

19

Literature Review

algorithms, algorithms employing neural networks and many more. The authors found
meta-heuristic algorithms to be performing generally better than the previously examined
construction heuristics and local search algorithms, although being harder to handle in
the calibration and implementation.

The vehicle routing problem is not a tool used in the present work since no optimal
path needs to be found through the donor and receiver zones. It is, however, the most
convenient method to be implemented at the end of the presented procedure: once how
many cars need to be taken from or brought to a given city zone has been found (i.e. the
relocation strategy), the optimal path through them needs to be elaborated. Based on
the features of the system (free-floating/station-based, type of vehicles employed) different
kinds of constraints need to be formulated in order to reflect the operational procedure of
the support fleet.

2.3 Fleet Operator based relocation
Hellem et al. [2021] confronted the relocation and recharging problem in a rolling-horizon
and dynamic fashion, that is, fresh information regarding the distribution of automobiles
and their current state of charge is constantly obtained and used to adjust the decisions.
A mixed integer linear program is then formulated and solved through an adaptive large
neighbourhood search heuristic algorithm, combining a tabu search and a large neigh-
bourhood search. The objective was to maximise profits by supplying a suitable number
of cars, charged following an expected ideal distribution of rental vehicles. The authors
formulated a solution by assigning vehicles with low battery levels to charging stations,
cars in need of relocation to under-supplied zones, and car-moves, routes and schedules
to fleet workers. The algorithm was then tested on a simulation environment based on
real traffic data collected in the city of Oslo, finding the model to perform better than a
greedy heuristic.

In Caggiani et al. [2018], the authors suggested a dynamic bike redistribution approach
that starts with a bike number and position forecast over a system operating region and
finishes with a relocation Decision Support System, activated at regular gap times during
the day in order to adjust the choices made by the operator. The relocation procedure
is engaged at regular intervals in order to perform dynamic bike redistribution, with the
primary goal of maximising the user satisfaction while minimising vehicle repositioning
expenses. A wavelet transform for denoising and signal compression was initially employed
in order to subsequently identify first temporal and then spatio-temporal bike demand
clusters. Temporal clusters were identified through a hierarchical clustering algorithm,
while spatio-temporal clusters were obtained starting from the former ones through the
usage of a k-means method. Subsequently, a non-linear autoregressive neural network was
employed to predict the bike demand in each spatio-temporal cluster. Two optimisation
steps were then carried out: the first one minimises lost users and unfavourable times
(i.e. times in which the number of bikes goes below a given threshold in a cluster) and
generates a relocation matrix, giving information on how many bikes have to be moved
from one cluster to another. The second step involves the resolution of the VRP, in order
to find the best path through the donor clusters first (to collect the exceeding bikes) and

20

2.4 – User incentive based systems

then the best path through the receiver clusters. The usefulness of the proposed technique
for the real-time management of free-floating bike-sharing systems was tested using a test
case study and a full sensitivity analysis was also performed.

Brinkmann et al. [2019] confronted the routing problem in a station-based bike sharing
system in a stochastic and dynamic formulation by means of dynamic lookahead policies.
Such policies, starting with the current state of the system, simulated future user demand,
based on historical data. A Markov decision process was employed in order to determine
how many bikes the stuff truck has to pick-up or leave in a station and what is the next
station to be visited. The horizons are time-dependent and autonomously parameterised
using value function approximation since the demand pattern varies throughout the day.
The benefits of both the lookahead and time-dependent horizons of the dynamic lookahead
policies were tested in comparisons with conventional policies from the literature and
lookaheads with static horizons through simulations based on real-world data of the bike-
sharing system in Minneapolis.

Chiariotti et al. [2018] suggested a dynamic rebalancing technique that uses historical
data to forecast network dynamics. The authors decided to employ birth-death processes
to model the station occupancy and determine when to redistribute bikes, as well as
graph theory to choose the optimal path through the stations. As to the birth-death
processes, birth and death rates that change throughout time were employed so that how
long a station will be self-sufficient before it runs out of bikes or available stalls could
be anticipated. Through this problem formulation, a desired state for each station can
be computed, which maximises its survival time. After doing so, stations that are either
under- or overcrowded are identified and the optimal route through them is obtained by
means of the VRP. The suggested paradigm was validated using data from New York City’s
bike-sharing system. The numerical simulations revealed that this dynamic technique,
which can adapt to the network’s changing nature, exceeds static rebalancing schemes
performances.

Finally, Tang et al. [2020b] developed a dynamic optimisation model and used approxi-
mated dynamic programming to make dynamic repositioning decisions, while coping with
the problem dimensionality. The idea was to prevent myopic judgements by using a neural
network as an approximation function that examines the influence of present actions on
future system states.

2.4 User incentive based systems
As an alternative to a centralised control of the relocation process by the fleet manager,
some authors have investigated what effects a user incentive based strategy brings about.

In Wang et al. [2022], the authors developed an adaptive relocation model based on user
incentives that mixed car and bike sharing. To forecast relocation demand, multi-time-
period dynamic thresholds are initially implemented. The authors then introduced a joint
relocation mixed integer programming optimisation model aiming at minimising a cost
function that considers incentive expenditures and user satisfaction. Multiple dynamic
constraints such as state of charge, journey distance, station status, and user orders were
added. Subsequently, this joint relocation model was solved using a genetic algorithm.

21

Literature Review

The relocation model was used to determine the ideal incentive price for users, the initial
vehicle configuration at each station, the multi-time-period dynamic thresholds in each
station, and the vehicle relocation scheme across all stations. The model was the tested
on a real case study of an electric car sharing firm in Shanghai leading to the conclusion
that the cost for the operator can be reduced by up to 70%. Wang et al. [2022] finally
carried out a sensitivity analysis on the incentive prices.

Fanti et al. [2019] mixed a (incentivised) user-based and an operator based relocation
approach. An integer linear program problem for the company staff which aimed at
minimising the relocation costs was first developed. The model was then enriched to take
user incentives into account, which are given in order to avoid the intervention from the
operator. The models were subsequently tested on a case study in order to assess the
effectiveness of the user incentives, finding them useful to improve the overall quality of
service.

Wu et al. [2019] faced the relocation problem in a free-floating bike sharing system
with a user-incentive plan obtained through a ranking and selection method, a data-
driven approach in the simulation optimisation field, in order to cope with the complicated
structure of uncertainty sets in this context. Such method was applied to solve a profit
maximisation model with constraints on the customer service level. Wu et al. [2019]
finally concluded that the ideal customer incentive-based rebalancing strategy may not
only greatly raise the average daily profit, but also achieve a higher service level, using
numerical simulations.

Pan et al. [2018] modelled the problem as a Markov decision process that takes into
account both geographical and temporal characteristics of the user demand, constructing
a deep reinforcement learning algorithm based on the deep deterministic policy gradient
method. After a discretization into pricing areas and time slots, user incentives to conve-
niently move bikes were obtained through a hierarchical reinforcement pricing algorithm,
based on the idea of decomposing the Q-value of an entire area into more easily manage-
able sub-Q-values of smaller regions, which makes an efficient search for policies possible.
A real-case study was finally carried out with data from the city of Shangai, achieving a
40% to 80% un-service ratio decrement over 80% of tested areas.

2.5 Optimisation algorithms

The following section deals with some optimisation solutions explored for the solution of
the confronted problem.

An optimisation program is formulated in order to find the optimal relocation strat-
egy, where variables are supposed to take up only integer values. Due to the problem
dimensionality, an exclusively integer formulation is not practicable and heuristics need
to be resorted to. Some suggested heuristics are therefore explored.

A neighbourhood search is also implemented at the end of the optimisation program,
including the simulated annealing strategy, whose features and performances are investi-
gated below.

22

2.5 – Optimisation algorithms

2.5.1 Heuristics in mixed integer programming
Fischetti and Lodi [2011] confronted the resolution of mixed integer linear programs
through heuristics, in order to cope with excessive computational times, deriving from
such problems being NP-hard. They examined LP-based heuristics such as the rounding
of the continuous solution obtained from the LP-relaxation of the initial problem: vari-
ables that are supposed to be integer are usually rounded to the nearest integer value.
The diving heuristic fixes some integer valued variables that take a fractional value in the
LP-relaxation solution in a sequential manner. Pivoting methods make use of different
types of pivots, aiming at maintaining primal feasibility while increasing or decreasing the
number of nonbasic 0-1 variables. Many line search methods were also presented, whose
main construction is based on starting a line search from the LP-relaxation solution of
the integer problem; the line search then moves through discretised solutions making use,
as an example, of hyperplanes, like in the OCTANE method. The Feasibility Pump was
the last LP-based heuristic examined: each iteration consists in the resolution of the LP-
relaxation of the problem and then the rounding of the solution; the following step consists
in solving an auxiliary LP which aims at finding a feasible solution to the problem which
minimises the L1 distance to the previously found rounding. They also cited some further
improvements to this heuristic.

Fischetti and Lodi [2011] also presented some MILP-based heuristics. The Local
branching method looks for a new solution in a large neighbourhood search method fash-
ion, exploring the neighbourhood of a starting reference solution, defined through a local
branching constraint. Other neighbourhood search methods are the basis of more heuris-
tics: the relaxation induced neighbourhood search (RINS) compares the incumbent solution
and the LP-relaxation and fixes the integer-constrained variables that agree in value and
projects them out of the MILP, so to reduce the size of the problem. The distance in-
duced neighbourhood search (DINS) improves the latest method starting from the idea
that good solutions are those ’close’ to the LP-relaxation one: the algorithm then fixes
those variables whose distance between the LP-relaxation and the incumbent solution
does not exceed 0.5. Another variation to the RINS is the relaxation enforced neighbour-
hood search (RENS), which fixes already integer variables and rebounds the other ones by
using the ceiling and the floor values of the variable’s incumbent solution as upper and
lower bounds, respectively. Finally, the polishing algorithm was presented, which is called
on chosen nodes during the exploration of a branch-and-bound tree and is based on the
ideas underlying genetic algorithms. The combination phase recalls the RINS algorithm:
variables whose values are equal in the parents are fixed and then the resulting MILP is
heuristically solved. In the mutation phase, some solutions in the population are chosen
and some of their variables are fixed. Finally, the selection phase is performed choosing at
random one solution and then a second one only among those ones whose objective value
is better than the former.

2.5.2 Simulated Annealing (SA)
Simulated annealing is a probabilistic approach for determining the global minimum of a
function with possibly several local minima. It works by simulating the physical process of

23

Literature Review

a solid being steadily cooled until its structure is frozen at the lowest energy configuration
possible. Bertsimas and Tsitsiklis [1993] detailed the approach, its convergence, and its
behaviour in applications, limiting themselves to the situation of a cost function specified
on a finite set. After defining a proper neighbourhood structure, given a current state
of the system, the SA algorithm consists in choosing one of its neighbours at random;
the state of the solution, therefore, can be described as a Markov chain. If the cost
function computed with the given neighbour improves, then the latter is chosen like in
other neighbourhood search algorithms, while, if it does not improve, it may still be chosen
as the new incumbent solution with a given probability. The acceptance probability of a
new sub-optimal solution is function of both the cost function increase and a temperature
cooling schedule, which has to be properly set. As a result, the SA algorithm may be
considered as a local search algorithm with periodic upward advances that result in a cost
rise. Such moves will hopefully permit the method to lead the incumbent solution away
from local minima. Bertsimas and Tsitsiklis [1993] also investigated the convergence of the
algorithm, finding a necessary and sufficient condition for the convergence in probability
(i.e. for limt→∞ P[x(t) ∈ S∗] = 1, t being the iterations, x the state of the system
and S∗ the optimal set):

q∞
t=1 exp[−d∗/T (t)] = ∞ and limt→∞ T (t) = 0, being T the

cooling schedule and d∗ the height of S∗. They further observed that d∗ is a measure of
how difficult it is for the solution to escape from a local minimum and to move towards
the global one. Finally, considerations on the convergence speed of the algorithm were
made, concluding that results about it involve too large constants (and, therefore, too
many iterations to be performed) for the guarantee that the algorithm performs better
than an exhaustive search. The authors noticed, however, that, researchers employed SA
extensively despite the lack of a solid theoretical foundation for its rate of convergence,
discussing several problems and contexts in which it is successfully used, such as image
processing, as well as the graph partitioning problem and the graph colouring problem.

As already pointed out by Bertsimas and Tsitsiklis [1993], the cooling schedule impacts
the quality of the obtained solution. Nourani and Andresen [1998] compared different
temperature cooling schedules: constant thermodynamic speed (dT (t)

dt = −vsT
ϵ
√

C
, vs, ϵ and C

being parameters to be tuned), exponential (T (t) = T0αt, T0 being the initial temperature
and α being a parameter to be tuned), logarithmic (T (t) = c

log(t+d) , c and d being param-
eters to be tuned) and linear (T (t) = T0 − ηt, η being a parameter to be tuned) cooling
schedules. For given initial and final states and number of iterations, the authors tested
on a very simple and small system and on an NP-hard problem and found the constant
thermodynamic speed to be the best performing one, having the least entropy production
among the examined schedules. The logarithmic schedule, on the other hand, results in
the highest entropy production, while the linear and exponential schedules present similar
behaviours, with anyway higher entropy than the constant schedule.

Salamon et al. [1988] further inspected the effects of the choice of the constant ther-
modynamic speed schedule on the SA algorithm. They hypothesised that the optimal
setting for the method requires the distance between the system state and the target (the
state in which the system would be in equilibrium) to be constant along the iterations,
that is the constant thermodynamic schedule. They finally proved such hypothesis to be
consistent applying the schedule to the graph partitioning problem.

24

2.6 – Research group works

2.6 Research group works
The study for this thesis project falls into a wider work on mobility and shared trans-
portation carried out by the research group SmartData@Polito; this center focuses on
Big Data technologies, Data Science (from data management, to data modeling, analyt-
ics, and engineering), and Machine Learning methodologies applied to several domains of
knowledge, finding solutions for both theoretical problems and helping companies toward
applications.

In Cocca et al. [2020], making use of real car-sharing trip data from the city of Vancou-
ver and social-demographic characteristics of the city related to urban mobility, spatial
and temporal patterns of the user demand for cars were predicted. Long-term and short-
term prediction of the temporal demand was performed using historical data through
several machine learning algorithms such as auto-regressive models, support vector re-
gression, linear regression, long-short term memory neural networks and random forest
regression with the last method (and multivariate models in general) reaching the best
performance both in the long and in the short term prediction. The authors also observed
that, assuming perfect weather forecast, the mean absolute percentage error in the pre-
diction can be improved by around 3%. Using social-demographic data of the city, spatial
demand patterns were predicted using support vector machine regression, obtaining the
best performance with the polynomial kernel, and random forest regression, performing
feature ranking and selection in order to disclose what socio-demographic characteristics
influence demand patterns the most.

In Cocca et al. [2019, 2018] the problem of determining the optimal position of charging
stations and designing the optimal return policy in a FFCS system was faced. Two
different approaches to the optimal charging station positioning problem were discussed:
the first one is a heuristic placement based on three possible definition of likelihood. The
second approach uses two different data-driven simulation-based meta-heuristics: a local-
search algorithm based on a hill-climb method and a genetic algorithm. These algorithms
performance and the impact of different return policies were assessed through simulations
based on real data coming from the cities of Turin and Milan, revealing that equipping
only 5% of the city zones with charging stations allows the system to be self-sustainable
and all trip requests to be satisfied with limited user discomfort.

Ciociola et al. [2020a] proposed a way to design sharing systems for electric scooters
and heuristic approaches to solve the relocation and recharge problems. Real world data
from the cities of Minneapolis and Louisville were first processed with spatio-temporal
disaggregation techniques in order to increase resolution and obtain a realistic demand
model. First, for each one of the identified time bins, the demand in time was modeled
through modulated Poisson processes, then the Kernel Density Estimation (KDE) tech-
nique was used to model the demand in space within each time bin. A mobility and
charging simulator is also developed and used based on the demand model to gauge the
impact of design choices like the fleet size, the battery threshold that triggers a charging
operation, the provider workflow size, the average time to reach the e-scooter and the
volunteers’ willingness to handle charging on some system’s performance metrics. The
study revealed that a high number of e-scooters and battery swap operations are required
to meet the trip demand and prevent customers from running out of battery. Moreover,

25

Literature Review

reducing the time it takes for employees to get to their e-scooters and replace their batter-
ies has a significant impact for reducing costs. Finally, including users in the recharging
process can further reduce costs.

Fassio et al. [2021] compared the economical and environmental impact of FFCS with
different source of power (Electric, internal combustion engine with petrol, LPG and
diesel). A demand model was first developed using real-world data from a non-electric
FFCS like already discussed in Ciociola et al. [2020a] and then fed to an event-based sim-
ulator. Results revealed that quicker chargers provide just a minor benefit; consequently,
a slower and less expensive charger may be used. Furthermore, the widespread availabil-
ity of EV infrastructure aids in minimising the time it takes to move automobiles to a
charging station. When compared to a gasoline-powered fleet, EV fleets proved to have
the minimum environmental effect, with a reduction of more than 50%. Unfortunatelu,
in terms of economics, EV FFCS proved to be the least competitive system, owing to the
high vehicle expenses.

In Tolomei et al. [2021] the benefits of a relocation strategy were assessed and how
important it is to accurately satisfy the mobility demand was investigated. In particular,
a baseline relocation model based on the average expected demand and a deep-learning
based predictive model were compared. The latter model was used to predict future
routing matrices and was obtained assembling a convolutional neural network able to
learn the spatio-temporal demand patterns, a long-short term memory neural network to
reinforce the temporal correlation and finally a fully connected network able to consider
external factors, too. Simulating the demand in the cities of Austin and Louisville, the
utility of a relocation strategy is confirmed (especially for smaller fleets, while its advantage
decreases with more available vehicles) and the utility of a more precise prediction of the
demand through the deep learning model is proven, especially in bigger cities like Austin.

In Ciociola et al. [2020b] the impact of heuristic policies for charging batteries of EV
vehicles in FFCS was investigated. One scenario implies charging operations to be per-
formed only by the operator, while the other one involves charging poles distributed into
the operational area, where both the operator and the users can plug the cars. The study
was then extended to the cities of Milan, Vancouver and New York, showing that a dis-
tributed charging infrastructure allows for better system performances than a centralised
hub according to all metrics employed in the work. Moreover, the authors found that
involving the users in the charging operation can further reduce the relocation costs.

Barulli et al. [2020] analyzed through simulation based on data coming from the city
of Turin the scalability of sharing system and different charging infrastructure designs.
Their results showed that the optimal charging station placement involves more poles
to be placed in high demand areas, resulting in a decrease in the operational costs for
the management fleet. They also found that the charging infrastructure has to grow
proportionally to the trip demand, while the fleet size can grow much slower (sublinearly)
with respect to the demand.

26

Chapter 3

Methodology

This chapter provides a high level presentation of all the algorithms employed to confront
the optimal relocation problem, underlining their main features, strengths and weaknesses.
A mathematical formalisation of the problem is first discussed and the notation employed
throughout the thesis is presented. An overview and summary of the developed algo-
rithms is then given and, finally, the method to evaluate the performances of the different
procedures is explained.

3.1 Problem formulation and objective
The aim of the devised procedure is to find the optimal relocation schedule in order
to satisfy as many trip requests in a shared mobility system as possible. With this in
mind, the problem has been formalised and some notation has been introduced, which is
presented in this section. Let Z = {0, . . . , Z − 1} be the set of city zones (#Z = Z). Let
P be the optimisation horizon, i.e. the number of time-frames the optimal relocation
decision is to be found, and T the look-ahead horizon, i.e. the time horizon up to which
the optimisation procedure is to be carried out each time. Denoting P = {0, . . . , P−1} the
set of time-frames at the beginning of which a new optimisation step is to be performed,
the set of time-frames involved in the p-th step is Tp = {p, p + 1, . . . , p + T − 1}, p ∈ P .

At the generic optimisation round starting at p ∈ P , the relocation strategy may be
codified as

r = (rti)t∈Tp, i∈Z , rti ∈ Z
where rti > 0 if zone i is a receiver during time-frame t

rti < 0 if zone i is a donor during time-frame t

Moreover, let S be the space of possible relocation strategies, i.e. r ∈ S.
Other variables have been of use for the mathematical formulation of the problem:

• s = (sti)t∈Tp,i∈Z , sti ∈ N is the number of vehicles in zone i at the beginning of
time-frame t;

27

Methodology

• EO = (EOti)t∈Tp,i∈Z , EOti ∈ N is the number of vehicles leaving zone i during
time-frame t;

• EI = (EIti)t∈Tp,i∈Z , EIti ∈ N is the number of vehicles arriving in zone i during
time-frame t.

Some external data were extracted and provided, like described in chapter 7:

• N ∈ N is the total number of vehicles in the system, so
q

i∈Z sti = N ∀t;

• Rmax ∈ N is the maximum number of vehicles which can be relocated by the operator
within a time-frame;

• V = (V t
ij)t∈Tp,i,j∈Z , V t

ij ∈ N is the number of vehicles moving from zone i to zone j
during time-frame t;

• O = (Oti)t∈Tp,i∈Z , Oit ∈ N is the number of outgoing trip requests from zone i during
time-frame t;

• I = (Iti)t∈Tp,i∈Z , Iit ∈ N is the number of incoming trip requests to zone i during
time-frame t;

• p = (pt
ij)t∈Tp,i,j∈Z , pt

ij ∈ R+ is the probability of a vehicle to be moving from zone i
to zone j during time-frame t.

Let us notice that a total number of P + T time frames will be involved in the whole
optimisation procedure. At the generic optimisation round for time-frame p ∈ P , the aim
of the problem is to maximise the total satisfied outgoing trip demand, that is:

max
Ø
t∈Tp

Ø
i∈Z

EOti, (3.1)

Observing that O can be regarded in this contex as some constant given data and not a
problem variable and recalling the observation in (5.1), (3.1) can be restated equivalently
as

min
Ø
t∈Tp

Ø
i∈Z

Oti −
Ø
t∈Tp

Ø
i∈Z

EOti.

which can be rewritten as
min

Ø
t∈Tp

Ø
i∈Z

Oti − EOti, (3.2)

i.e., the objective of the problem is equivalent to the minimisation of the total unsatisfied
outgoing trip demand.

3.2 Overview on implemented algorithms
A first method to find the optimal relocation strategy, presented in chapter 4, is the dy-
namic programming approach. This technique allows - in principle - to find the optimal
solution to the problem throughout all time frames, with possibly an infinite look ahead.

28

3.2 – Overview on implemented algorithms

That is, starting at time frame 0 and solving the problem employing the dynamic pro-
gramming method, we are able to identify the relocation strategy leading to the optimal
outcome through all time frames up to the last one. To any possible state of the system,
it is possible to associate an optimal decision, therefore adapting to the evolution of the
system and adjusting the decision on the go, always choosing what is best to do to get the
best possible outcome. Therefore, this algorithm can be thought to be involving only one
optimisation round starting at time frame 0 with look ahead P, the optimisation horizon.
Unfortunately, this solution is very little scalable, since any possible state of the system
needs to be evaluated. Producing all possible system states becomes soon infeasible when
increasing the number of vehicles and city zones involved in the optimisation process and,
therefore, this approach cannot guarantee a solution for real-world cases.

Hence, approximate methods need to be resorted to for a relocation strategy to be
worked out in reasonable times and with limited resources. As stated in section 3.1, all
variables are supposed to take up integer values. Unfortunately, formulating an integer lin-
ear program with hundreds of integer variables still results in a problem which would take
too much time to be solved. Therefore, some or all integrality constraints were relaxed, to
speed up the resolution algorithm. A sequential algorithm based on the formulation of a
linear program, presented in chapter 5, is therefore employed. The optimisation program
can be formulated in three different ways:

1. a Linear Program, where all variables’ integrality constraints have been dropped.
Since the resulting relocation strategy is coded by continuous variables, a post-
processing step follows to get an integer valued relocation vector;

2. a Mixed Integer Linear Program, where the integrality constraints have been kept
only on the relocation variables rti, while relaxing them on all other variables;

3. a combination of 1 and 2, where the pure LP is first solved and the rti whose optimal
value is found to be 0 are fixed, leaving the remaining ones as the integer constrained
variables for the MILP in 2.

Relaxing the integrality constraints on rti returns unrealistic solutions, as it is impossible
to move half a vehicle, therefore a rounding step needs to be performed. Nevertheless,
solving a linear program is often virtually immediate, even though the problem dimen-
sionality is very high and the number of constraints is rather elevated. Keeping the
integrality constraints only on the relocation variables returns an integer strategy, there-
fore no rounding steps are needed. However, mixed integer linear programs are known
to be very computationally expensive. As will be shown in chapter 8, short look ahead
periods (which involve a smaller number of variables) can be solved fairly fast anyway,
while, working with longer look ahead periods (and, therefore, more variables) requires
very long computational times. Finally, the idea behind the method in 3 is to first solve
the LP, identify which relocation variables take up an optimal value near to 0 and fix their
value in the MILP, in order to reduce the dimensionality of the optimisation problem.

A neighbourhood search, described in chapter 6, can be performed starting from the
solution provided by the linear program to further improve the quality of the strategy.
Observe that a neighbourhood search might be used alone, starting from a random solu-
tion, but the very high dimensionality of the problem would make the convergence to a

29

Methodology

sufficiently good solution too slow to be used in practice. On the contrary, starting from
an already good solution can give hope to find a more performing one. Finally, the neigh-
bourhood search can be - and it has been, indeed - implemented to keep the relocation
solution integer.

The algorithm in question is defined to be sequential since the optimisation problem,
and possibly the neighbourhood search, is performed at the beginning of each time frame
in order to adjust the relocation strategy based on the realisation of the trip demand and,
therefore, of the system state.

The features of the presented algorithms are summarised in Table 3.1.

3.3 Implementation
This section deals with the practical implementation of the aforementioned tools for the
resolution of the problem. For each optimisation round starting with time-frame p ∈ P ,
an optimisation procedure is carried out, with any of the methods described in section 3.2.
Finally, a way to assess the quality of the solution has been implemented and is
presented in section 3.4. After obtaining the optimal relocation decision for time-frame p,
the system reaction is simulated, employing data on the trip demand, and a new state
of the system is obtained, which will be used as the initial state for the optimisation round
involving time-frame p + 1. The backbone of the whole procedure can be summarised in
the following general and high level steps:

s← s0
total_satisfied_demand← 0
for p = 0, . . . , P − 1 do

r ← solve_optimisation_problem(s, Tp)
snew, satisfied_demand← simulate_system(r, s, p)
total_satisfied_demand← total_satisfied_demand + satisfied_demand
s← snew

end for
The look-ahead horizon T is fixed and an initial state s0 needs to be provided. At

each loop a relocation strategy is determined for time frame p using information about
the look ahead period time frames Tp. According to the implemented strategy, the system
is simulated and the satisfied mobility demand and its next state are obtained, the latter
being used in the following round as the initial state of the optimisation problem. The
procedure is exemplified in Figure 3.1.

3.4 System simulation and objective evaluation
The algorithm in section 3.3 involves a system simulation step, whose aim is to reproduce
the reaction of the system when a given relocation strategy is carried out by the opera-
tor. During the simulation, the satisfied trip demand obtained implementing the chosen
strategy is computed, in order to gauge the problem objective as formulated in (3.1) and,
therefore, assess the quality of the given method.

30

3.4 – System simulation and objective evaluation

time frames
p − 1 p p + 1 p + 2 p + 3 p + 4

system simulation

optimisation round p − 1 over Tp−1

optimisation round p over Tp

Figure 3.1. Optimisation procedure representation.

The system simulation requires a traffic flow scenario, to estimate how the system
performances change and, therefore, how good the strategy obtained from the method is.
The traffic flow scenario consists of an ordered list of trips, described by a couple of indexes
specifying the departure and arrival city zones. It is very important to notice that only one
traffic flow scenario is used here and is common to all the carried out attempts, in order not
to facilitate any algorithm choice. A few Monte Carlo runs employing different scenarios
would have been more appropriate to get a more accurate estimate of the algorithm
performances but, unfortunately, that would have made the computational effort of the
estimation unbearable, since the optimisation rounds should have been executed not only
P times, but the whole procedure should have been carried out for every Monte Carlo
run.

For implementation purposes, a collection of data structures {tripst}t∈Tp has been used,
obtained from the array V described in section 3.1. tripst, t ∈ Tp, gives an ordered list of
trip requests during time frame t, containing each couple (i, j) V t

ij times, accounting for
the number of trips starting in zone i and ending in zone j during time frame t. Therefore,
looping through tripst gives a mobility demand scenario, which is used in the evaluation
of a relocation strategy.

Finally, the system simulation procedure during the generic time frame p can be de-
scribed. Given the current state of the system at time frame p, current_state, and the
relocation strategy r = (rpi)i∈Z , the algorithm to compute the objective value for time
frame p consists in the simulation of the system and in the subsequent computation of
the satisfied trip requests, i.e. the number of times a starting zone i has at least one car.

The simulation coincides with the function called simulate_system in section 3.3 and
is articulated in the following steps:

1. set the current state
s← current_state,

and initialise the satisfied trip counter to 0
satisfied_trips← 0;

2. compute sr, the state of the system after the beginning of the relocation process, i.e.
after all vehicles have been collected from the operator to be transferred to another
zone:

sr
i ← si + min{rpi, 0}, ∀i ∈ Z;

31

Methodology

3. copy sr to keep track of the zone availability:
availability ← copy(sr);

4. looping over the first half of tripsp, for each couple (i, j) identifying a trip request,
compute the new state of the system and update the zone availability only if the
request can be carried out:

if availabilityi > 0 then
sr

i ← sr
i + 1

sr
j ← sr

j − 1
availabilityi ← availabilityi − 1
satisfied_trips← satisfied_trips + 1

end if

5. update sr simulating the redistribution of the vehicles after the ending of the relo-
cation process:

sr
i ← sr

i + max{rpi,0};

6. looping over the second half of tripsp, for each couple (i, j) identifying a trip request,
compute the new state of the system and update the zone availability only if the
request can be carried out, like in steps 3 and 4;

7. update the current system state
s← sr

and return it, together with the number of satisfied trip requests:
return s, satisfied_trips

To take the time for the relocation procedure to be carried out into account, the state of the
system is first updated in 3 removing from each zone the number of cars to be transferred
according to the given strategy. The first half of trip requests is then simulated, modifying
the system. Successively, the system state is updated in 6 emulating the redistribution of
the relocated cars, making them available for users to rent them. Finally, the second half
of trips is simulated.

32

3.4 – System simulation and objective evaluation

M
et

ho
d

So
lu

tio
n

op
tim

al
ity

Lo
ok

ah
ea

d
pe

rio
d

Effi
ci

en
cy

Sc
al

ab
ili

ty
R

el
oc

at
io

n
va

lu
es

Sy
st

em
st

at
e

va
lu

es

D
yn

am
ic

pr
og

ra
m

m
in

g
O

pt
im

al
Po

ss
ib

ly
in

fin
ite

Sl
ow

Li
tt

le
sc

al
ab

le
In

te
ge

r
In

te
ge

r

Li
ne

ar
pr

og
ra

m
A

pp
ro

xi
m

at
ed

Fi
ni

te
Fa

st
Ea

sil
y

sc
al

ab
le

C
on

tin
uo

us
C

on
tin

uo
us

M
ix

ed
in

te
ge

r
lin

ea
r

pr
og

ra
m

A
pp

ro
xi

m
at

ed
Fi

ni
te

Fa
st

w
ith

sh
or

t
lo

ok
ah

ea
ds

Li
tt

le
sc

al
ab

le
In

te
ge

r
C

on
tin

uo
us

LP
+

M
IL

P
A

pp
ro

xi
m

at
ed

Fi
ni

te
Fa

st
w

ith
sh

or
t

lo
ok

ah
ea

ds
Li

tt
le

sc
al

ab
le

In
te

ge
r

C
on

tin
uo

us

N
ei

gh
bo

ur
ho

od
se

ar
ch

A
pp

ro
xi

m
at

ed
Fi

ni
te

Sl
ow

Li
tt

le
sc

al
ab

le
In

te
ge

r
In

te
ge

r

Ta
bl

e
3.

1.
Su

m
m

ar
y

of
im

pl
em

en
te

d
al

go
rit

hm
s,

co
nd

en
sin

g
th

ei
r

sp
ec

ifi
ci

tie
s

an
d

pe
rf

or
m

an
ce

s,
as

w
or

ke
d

ou
t

in
se

ct
io

n
8.

3.

33

34

Chapter 4

Dynamic programming
approach

The first method undertaken to solve the optimal relocation problem in a non-myopic
forward-looking way was the dynamic programming approach.

The idea behind this method (or rather, principle) is first briefly described, then its
implementation to fit the problem’s characteristics is illustrated.

4.1 The dynamic programming principle
Dynamic programming (DP) is a useful technique for tackling difficult dynamic optimisa-
tion problems. It is not, however, a technique like linear programming. DP, on the other
hand, may need a significant amount of customisation and implementation effort.

The basic concept is that DP is a decomposition principle that may be used to break
down a complex multistage problem into a series of simpler single-stage problems.

The idea of system state is crucial to dynamic programming, and a mathematical model
is needed to capture its evolution through time as a result of decisions and external inputs.
External inputs relate to the influence of the outside world on the system of interest and
therefore cannot be controlled, whereas decisions are under the agent’s control.

The building blocks of this approach are the following:

• the time instants with indexes t = 0, 1, 2, . . . , T − 1, at which the system status is
observed and decisions are taken;

• st, t = 0, 1, 2, . . . , T − 1, which summarises all of the information on the system;

• the vector of decision variables, also called control variables, is denoted by xt, t =
0, 1, 2, . . . , T − 2;

• a sequence of exogenous factors denoted by ξt, t = 0, 1, 2, . . . , T − 1, considered as
random perturbations or risk factors;

35

Dynamic programming approach

• a state transition function gt, t = 0, 1, 2, . . . , T − 1, such that
st+1 = gt+1(st, xt, ξt+1), which represents the system dynamics.

If a performance measure H over a time-horizon is to be optimised, the multiperiod
problem can be stated in a general form as

opt E[H(x0, x1, . . . , xT −2; s0, s1, . . . , sT −1)],

where the expected value is taken with respect to the exogenous factors ξ1, ξ2, . . . , ξT −1.
Let’s suppose the problem takes up a Markov structure1 and the objective function

assumes an additive form like

E
C

T −2Ø
t=0

γtft(st, xt) + γT FT −1(sT −1)
D

,

where ft and FT −1 are performance measures at the intermediate and final times and
γ ∈ (0, 1] is a discount factor which expresses a trade-off between immediate and future
contributions of the performance measure. Then the so-called value function can be
defined, which maps a state of the system at a certain time to its value. The value Vt(s)
of state s at time t should represent the predicted reward/cost attained when the optimum
strategy from time t on is implemented, i.e.

Vt(st) = opt
xt∈Xt(st)

{ft(st, xt) + γE[Vt+1(gt+1(st, xt, ξt+1))|st, xt]}, (4.1)

where Xt(s) is the set of feasible decisions at time t if the system is in state s.
(4.1) is usually referred to as Bellman’s equation and encapsulates the core idea of

dynamic programming: when in state st at time t, decision xt ∈ Xt(st) should be taken,
which optimises the sum of the immediate cost/reward and the expected value of the next
state, depending on the state and the decision themselves and on the random realisation
of the exogenous risk factors.

With this approach, the optimal decision can be obtained by solving a single-stage
optimisation problem using the next value function, therefore in a feedback fashion, i.e.
starting from the last time period and proceeding back to the starting one. The optimal
decision policy µ can finally be determined, where

µ = (µ0, µ1, . . . , µT −2),
xt = µt(s),

i.e. a decision is associated to each state at each time.
Furthermore, just as other functional equations like differential equations, boundary

conditions are needed to solve the problem. Going the procedure backwards in time, the
most natural boundary condition is the terminal condition

VT −1(sT −1) = FT −1(sT −1) ∀sT −1.

1In probability theory and statistics, the term Markov property refers to the memory-less property
of a stochastic process, i.e. a process whose future states are assumed to depend only on the current
state.

36

4.2 – Implementation

4.2 Implementation
This next section deals with how the dynamic programming principle has been adapted
to the problem in order to elaborate the optimal relocation strategy. As discussed in
section 3.2, this approach can be thought of as one single optimisation round over the
whole optimisation period, whose aim is to minimise the total cost function. Therefore,
T = P and the set of time frames over which the procedure is carried out can simply be
identified with T = {0, . . . , P − 1}.

Since the dynamic programming - as observed in section 4.1 - is more a principle than an
actual algorithm, some work has to be done to suit the problem peculiarities. Specifically,
since future contributions to the total cost do not need to be weighted differently, the
discount factor can be set to 1, i.e. γ = 1.

A system state at time t can be described with the set of variables st = (sti)i∈Z , t ∈
T , sti ∈ N, is the number of vehicles in zone i at time frame t. A system state st immediate
cost function at time t can be defined as

ft(st) =
Ø
i∈Z

(Oti − sti)+,

where (Oti − sti)+ represents the positive part2 of (Oti − sti). Defined like this, the
immediate cost function has the meaning of total unsatisfied outgoing mobility demand
during time frame t, since Oti − sti represents the unsatisfied demand in the city zone i
during time frame t. Being a cost function, the procedure has to be developed to minimise
the sum of the cost function over all time frames.

Since a limit Rmax to the relocation within a time frame has to be respected, not all
system states are reachable through a relocation step. Given a state st of the system, we
can associate to it a set of reachable states R(s) ⊆ S and

ŝt ∈ R(st) ⇐⇒
Ø
i∈Z

(sti − ŝti)+ ≤ Rmax.

That is, state ŝt is reachable from state st if they differ for the location of at most Rmax

vehicles. Notice that, if the positive part was not used, the summation would always be
equal to zero, since Ø

i∈Z
(sti − ŝti) =

Ø
i∈Z

sti −
Ø
i∈Z

ŝti = N −N = 0,

where N is the total number of vehicles in the system.

2The positive part of a real-valued function f : X −→ R is defined by the formula

f+(x) = max(f(x), 0) =
;

f(x) if f(x) ≥ 0
0 if f(x) < 0

∀x ∈ X

37

Dynamic programming approach

Also notice that,
ŝt ∈ R(st) ⇐⇒ s ∈ R(ŝ),

i.e., ŝt is reachable from st if and only if st is reachable from ŝt.
Finally, the demand is assumed to be perfectly known, and (4.1) can be stated as

Vt(st) = ft(st) + min
rt

Vt+1(gt+1(st, rt, ξt)),

where Vt is the value function at time frame t, gt is the state transition function, rt is the
relocation decision at time t and ξt are the exogenous factors, which, in this context, are
the incoming and outgoing mobility demand from each city zone.

The algorithm to compute the value function of every state at each time frame is the
following:

1. Compute the immediate cost function for every state at time T − 1, which will be
its value at the final time frame:

for s ∈ S do
VT −1(s)←

q
i∈Z(OT −1,i − sT −1,i)+

end for

2. Compute the value for every state at every intermediate time frame. Its value de-
pends on the state having the lowest value in the set of reachable states, which has
to be found. The value of each state at the current time frame will be the sum of its
immediate cost and the value of the most convenient state, which is the reachable
state having the lowest value. The relocation strategy can be found as the difference
vector between the arrival and the initial state:

for t = T − 2, . . . , 1 do
for st ∈ S do

Vmin ← +∞
ŝmin ← None
for ŝt ∈ R(st) do

ŝd
t ← compute_after_demand(ŝt)

if Vmin > Vt+1(ŝd
t) then

Vmin ← Vt+1(ŝd
t)

ŝmin ← ŝt

end if
end for
µt(s)← ŝmin − st

immediate_cost←
q

i∈Z(Oti − sti)+

Vt(st)← immediate_cost + Vmin

end for
end for

3. Compute the value for the initial state s0 at the initial time frame. Its value depends
on the state having the lowest value in its set of reachable states, which has to be
found:

38

4.2 – Implementation

Vmin ← +∞
ŝmin ← None
for ŝ0 ∈ R(s0) do

ŝd
0 ← compute_after_demand(ŝ0)

if Vmin > V1(ŝd
0) then

Vmin ← V1(ŝd
0)

ŝmin ← ŝ0
end if

end for
µ0(s)← ŝmin − s0
immediate_cost←

q
i∈Z(O0i − s0i)+

V0(s0)← immediate_cost + Vmin

In the previous algorithm a function called compute_after_demand is used, which de-
termines the resulting state from a starting one, considering the effect of the demand
patterns, contained in the data collected in O = (Oti)t∈P,i∈Z and I = (Iti)t∈P,i∈Z , like
described in section 3.1. The function is articulated in the following steps:

1. compute the overall mobility demand at time frame t and the resulting system state:
demandi ← Iti −Oti, ∀i ∈ Z
ŝd

t ← ŝt + demand

2. set a variable to account for the unbalance in the state:
unbalance← 0

3. reset to zero the zone indexes whose state is negative and add the reset value to the
unbalanced amount counter:

for i ∈ Z do
unbalance← unbalance− ŝd

i

ŝd
ti ← 0

end for

4. if unbalance /= 0, then the state has to be rebalanced. To do so, compute the list
of indexes whose value can be decreased to rebalance the vector, which are the ones
with some incoming demand, assumed to not have been carried out:

indexes← list()
for i ∈ Z do

if Iti > 0 then
indexes.append(i)3

end if
end for

3Given a data-structure implemented as a list, the append operation adds the given element as the
last one in the list.

39

Dynamic programming approach

5. while the unbalance is a positive value, decrease by one unit the entries given by the
indexes vector, starting over if necessary:

i← 0
while unbalance > 0 do

if ŝd
ti > 0 then
ŝd

ti ← ŝd
ti − 1

unbalance← unbalance− 1
end if
if i /= len(indexes)− 1 then

i← i + 1
else

i← 0
end if

end while

The research into the set R(st) of reachable states of st, together with the above function
gives the state transition function gt, depending on the current state of the system, the
relocation strategy and the exogenous factors.

After having associated a decision to every single system state through the policy
function µt, the optimal strategy found through this algorithm can be implemented, with
the precious advantage of dynamically adapting to the system evolution without any need
to solve the problem again. Starting from an initial state s0, for each time frame, the
optimal relocation decision associated to the current system state is implemented, the
system reaction is then simulated, like described in section 3.4, and a new state of the
system is obtained, which will be used as the current state in the following time frame.
The procedure can be described by the following algorithm:

s← s0
for t = 0, . . . , P − 2 do

r ← µt(s)
snew, _← simulate_system(r, s, t)
s← snew

end for
Observe that simulate_system is the same function described in section 3.4.

40

Chapter 5

Sequential approximated
linear programming and mixed
integer linear programming
solution

This chapter focuses on the formulation and resolution of the linear program employed
to confront the relocation problem. The optimisation program can be solved in three
different ways, based on the number of integrality constraints forced on the variables. A
further optimisation step can be added at the end and is based on a neighbourhood search,
described in chapter 6. A theoretical background is first provided, giving a brief insight
on linear and mixed integer linear programs, as well as on numerical methods to obtain
their solution. The mathematical formulation of the problem and the implementation of
these tools for its resolution is successively described.

5.1 Theoretical background

5.1.1 Linear programs (LP)

Linear programming is a technique for optimising a linear objective function subject to
linear equality and inequality constraints. The feasible region of a LP, i.e. the set of
points defined by the problem constraints which are eligible to be the optimum point, is
a polyhedron, coming from the intersection of a finite number of half spaces, each one
defined by a constraint. The objective function is a linear combination of the problem’s
variables and is defined on such feasible region.

Assuming x ∈ Rn, i.e. a problem with n optimisation variables, an LP can be stated

41

Sequential approximated linear programming and mixed integer linear programming solution

in more than one way, the most general one being:

min
x

cT x + d

s.t. Aeqx = beq

Ainx ≤ bin,

where c ∈ Rn gives the linear combination of the problem’s variable and, together with
d ∈ R, defines the objective function. Aeq ∈ Rk,n and beq ∈ Rk provide the linear equality
constraints, while Ain ∈ Rl,n and bin ∈ Rl express the linear inequality constraints. k
and l are, respectively, the number of equality and inequality constraints.

LPs are pretty convenient, being a linear function both convex1 and concave2, which
implies that any local optimum point is also a global one.

Let’s also observe that LPs are usually stated as minimization problems, but also a
maximization problem is treatable by switching the objective function sign, i.e.

max
x

cT x + d ⇐⇒ min
x
−(cT x + d). (5.1)

Geometrically - it can easily be proven - the optimal solution lies on one of the vertices
of the polyhedron corresponding to the feasible set.

Many methods have been developed in order to solve LPs. One of the best know
and most employed algorithms is the simplex method. It works by starting at a basic
vertex in the feasible set and proceeding towards adjacent vertices repeatedly, as long as
the objective gets improved and until the best solution is obtained. Pivoting techniques
are employed to avoid cycling events or that the problem gets stuck with no further
improvements of the objective function without the optimum being reached.

In real-life applications, the simplex method is rather efficient and can be relied upon
to obtain the global optimum. The simplex algorithm has been shown to effectively solve
"random" problems, i.e. in a cubic number of steps, as found by Borgwardt [1987].

5.1.2 Mixed integer linear programs (MILP)

Mixed integer linear programming is a very similar optimization technique, in principle,
to linear programming. The only difference between MILPs and LPs is that some opti-
mization variables are also constrained to take up only integer values. Like in LPs, the
objective function is a linear combination of the problem’s variables, and equality and
inequality constraints may be added in order to define a feasibility region. Therefore, if

1A function f : X −→ R is convex if ∀t ∈ [0, 1] and ∀x1, x2 ∈ X then
f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2). Convexity is a very desirable property of functions when
facing a minimization problem, being local optima also global ones in this case.

2A function f : X −→ R is concave if −f is convex.

42

5.1 – Theoretical background

x = (x0, . . . , xn−1), a MILP can be stated in a general form as:

min
x

cT x + d

s.t Aeqx = beq

Ainx ≤ bin

xi ∈ Z, i ∈ I ⊆ {0, . . . , n− 1},

where n, c, d, Aeq, beq, Ain and bin are defined as in subsection 5.2.1 and I is the set
of indexes of variables subject to the integrality constraint (and is, of course, a subset of
all problem’s variables). If I ≡ {0, . . . , n − 1}, i.e. all variables are constrained to take
up integer values, then the problem is usually referred to simply as integer linear program
(ILP).

It is very important to notice that, adding these integrality constraints, the feasible
set ’shrinks’. That is to say that the feasible set of the MILP (as well as ILP) problem
is contained into the feasible set of its so-called LP relaxation, i.e. the corresponding LP
problem where integrality constraints have been removed. As a consequence, the optimal
solution of the LP may not be attainable any longer from the corresponding MILP, whose
solution can only be less optimal (lower for a maximization problem and greater for a
minimization one) than the former. The LP relaxation’s solution is, therefore, a bound to
the solution of a MILP. This fact is used in many algorithms for the resolution of MILPs
(and, again, ILPs, in general).

The introduction of integrality constraints also brings about a great deal of troubles,
due to the loss of a fundamental property of the feasibility set: its convexity. The convexity
property of the feasible set guarantees that, when moving in its inside - as an example,
when applying the simplex method - one does not go outside of the region and, therefore,
the solution keeps being acceptable. When forcing a variable to be integer, this nice
property vanishes due to the fact that taking convex combinations involving integer values
results in having real values, too. In principle, as a consequence, an exhaustive research
throughout all possible feasible solutions has to be performed. Such an endeavour gets
easily out of control when the problem size grows bigger and ILPs can be proven to be
NP-complete3 problems.

Many exact algorithms are today known for the solution of MILP problems, as well
as some heuristics. One very common exact algorithm is the branch and cut method,
which suitably combines the branch and bound method and the cutting-plane method.

Cutting-plane method

Cutting plane methods refer to a variety of optimization methods that iteratively refine a
feasible set of an objective function through linear equalities, called cuts. Such methods

3A problem is NP-complete if it is both in NP and NP-hard. The NP-complete problems represent
the hardest problems in NP and the time required to solve the problem using any currently known
algorithm increases rapidly as the size of the problem grows. As a consequence, determining whether it
is possible to solve these problems quickly, called the P versus NP problem, is one of the fundamental
unsolved problems in computer science today.

43

Sequential approximated linear programming and mixed integer linear programming solution

were introduced with the precise aim of solving ILPs and then coupled with the branch
and bound method due to the effectiveness of the combination. Nowadays, Gomory’s cuts
are widely used by commercial solvers and the algorithm that uses them consist in the
following steps:

1. ∀i ∈ I drop xi’s integrality constraint and solve the given LP relaxation, whose
solution will lie on the vertex of the feasible set;

2. if the found solution does not satisfy the integrality constraints, then find a hyper-
plane having the solution’s vertex on one side and all other feasible integer points
on the other;

3. add the newly found hyperplane is added as an additional linear constraint to the
problem, in order to cut the vertex out;

4. repeat the process until an optimal integer solution is found.

Branch and bound method

The branch and bound method consists - at least in principle - in an exhaustive search of
the optimal solution in a state space rooted tree, where all possible solutions are enumer-
ated. The algorithm explores branches of such tree or ’prunes’ them based on lower (or
upper, for maximization) bound estimates. The fundamental steps for finding the optimal
solution x∗ are the following:

1. set the value of the incumbent solution ν∗, i.e. the best integer solution found so
far, to +∞ and initialize the set of open subproblems P ;

2. if P is not empty, select a subproblem from the search tree and solve its LP relaxation
(relaxing the integrality constraint only on variables whose value has not been fixed
yet), being x its solution and β its corresponding objective function value, serving
as lower bound for the branch subproblems;

3. if x is feasible (integrality constraints included), prune all the subproblems belonging
to its branch; morover, if x’s objective function value is lower than ν∗, update the
incumbent solution x∗ ←− x and its value ν∗ ←− β. Go back to 2.

4. if the LP relaxation is infeasible, prune the problem and its whole branch. Go back
to 2.

5. if β > ν∗ prune the problem and its whole branch of subproblems. Go back to 2.

6. replace in P the problem with subproblems obtained by further partitioning its
feasible set. Go back to 2.

Issues like which variable to branch on, which subproblem choose from P and how to
partition a feasible set are disregarded and there is not a unique answer to them. Solutions
are usually a matter of the solvers’ implementation.

44

5.2 – Implementation

Branch and cut method

The branch and cut method combines the previous two approaches, using, at each iteration
the cutting plane method to disregard non-feasible solutions and the branch and bound
algorithm to reduce the search space cutting off unuseful problems. The fundamental
steps for finding the optimal solution x∗ are the following:

1. set the value of the incumbent solution ν∗, i.e. the best integer solution found so
far, to +∞ and initialize the set of open subproblems P ;

2. if P is not empty, select a subproblem from the search tree;

3. solve its LP relaxation, being x its solution and β its corresponding objective function
value, serving as lower bound for the branch subproblems;

4. if x is feasible (integrality constraints included), prune all the subproblems belonging
to its branch; morover, if x’s objective function value is lower than ν∗, update the
incumbent solution x∗ ←− x and its value ν∗ ←− β. Go back to 2.

5. if the LP relaxation is infeasible, prune the problem and its whole branch. Go back
to 2.

6. if β > ν∗ prune the problem and its whole branch of subproblems. Go back to 2.

7. if x has a non-integer component which is supposed to be integer, search for cutting
planes and, if any are found, add them to the LP relaxation. Go back to 3

8. replace in P the problem with subproblems obtained by further partitioning its
feasible set. Go back to 2.

Like in the previous method, issues like which variable to branch on, which subproblem
choose from P and how to partition a feasible set are a matter of the solvers’ implemen-
tation.

5.2 Implementation
The variables introduced in section 3.1 to formalise the problem are supposed to take up
only integer values. This would lead to a integer linear program with at least 4× Z × T
variables, which, having Z = 276 means 1104× T variables. This number may therefore
be 1104 if T = 1 and range up to 11040 variables if T = 10! That is definitely too many
variables for an ILP to be solved in reasonable time. To cope with this great numerical
effort, three different methods have been developed:

1. a pure LP, where all variables’ integrality constraints have been dropped. A post-
processing step follows to get an integer valued relocation vector;

2. a MILP, where the integrality constraints have been kept only on the relocation
variables rti, while relaxing them on all other variables;

45

Sequential approximated linear programming and mixed integer linear programming solution

3. a combination of 1 and 2, where the pure LP is first solved and the rti whose optimal
value is found to be 0 are fixed, leaving the remaining ones as the integer constrained
variables for the MILP in 2.

The rationale behind these choices is that increasing the number of integer constrained
variables adds a great deal of numerical effort to the resolution algorithm of an opti-
mization program. LPs are usually fairly fast to be solved, even with a large number of
variables, while MILPs are definitely not. Integer constraints on all variables other than
relocation ones have been dropped in 2 in order to ease the computational effort. Finally,
the number of integer constrained variables has further been reduced in 3 to speed up the
algorithm all the more.

The optimisation program is the first step in the resolution algorithm and it is solved
at the beginning of each new round.

5.2.1 Linear program and solution rounding

The first of the three methods involves the resolution of a linear program, with no in-
tegrality constraint on any of the variables introduced in section 3.1. One more set of
variables has been introduced in the problem formulation:

• w = (wti)t∈Tp,i∈Z , wti ∈ R+ represents the positive part4 of the corresponding
relocation variable: wti = r+

ti .

4The positive part of a real-valued function f : X −→ R is defined by the formula

f+(x) = max(f(x), 0) =
;

f(x) if f(x) ≥ 0
0 if f(x) < 0

∀x ∈ X

46

5.2 – Implementation

The linear program has been formulated in the following way:

max
Ø
t∈Tp

Ø
i∈Z

EOti (5.2)

s.t. sti = st−1,i + EIt−1,i − EOt−1,i + rt−1,i ∀t ∈ Tp\{p},∀i ∈ Z (5.3)
0 ≤ EIti ≤ Iti ∀t ∈ Tp,∀i ∈ Z (5.4)
0 ≤ EOti ≤ Oti ∀t ∈ Tp,∀i ∈ Z (5.5)Ø
i∈Z

rti = 0 ∀t ∈ Tp (5.6)

wti ≥ rti ∀t ∈ Tp,∀i ∈ Z (5.7)
wti ≥ 0 ∀t ∈ Tp,∀i ∈ Z (5.8)Ø
i∈Z

wti ≤ Rmax ∀t ∈ Tp (5.9)
Ø
i∈Z

sti = N ∀t ∈ Tp (5.10)

sti ≥ 0 ∀t ∈ Tp,∀i ∈ Z (5.11)
− rti ≤ sti ∀t ∈ Tp,∀i ∈ Z (5.12)

sti + EIti + rti

2 ≥ EOti ∀t ∈ Tp,∀i ∈ Z (5.13)

EIti =
Ø
j∈Z

pt
jiEOtj ∀t ∈ Tp,∀i ∈ Z (5.14)

(5.2) is the objective function, representing the total number of outgoing trip requests
from all city zones during all the time-frames in the look-ahead period Tp, which has to
be maximised.

(5.3) is the transition equation of a city zone from the current state at the beginning of
time-frame t− 1 to the future state at the beginning of time-frame t, taking into account
the incoming and outgoing trips carried out and the relocated vehicles from the operator
during time frame t− 1.

(5.4) gives an upper and lower bound on the number of vehicles entering each zone
during each time-frame, which has to be obviously a positive value but cannot exceed the
incoming trip demand. (5.5) does the same with the number of vehicles leaving each zone
during each time-frame.

(5.6) forces the relocation during each time-frame to sum up to 0: as a negative value
of rti means that vehicles are taken away from zone i and a positive value of rti means
that they are brought to zone i, this constraint ensures that, during every time-frame, the
total number of vehicles taken away from all zones equals the total number of vehicles
brought to all zones.

Constraints (5.7) and (5.8) make sure that wti represents the positive part of rti: being
the solution on the edge of the feasible set, wti will be either 0 or rti and greater than or
equal to both of them.

(5.9) ensures that the total relocation during each time-frame does not exceed the
maximum value Rmax. w instead of r is used in this constraint since only positive (or

47

Sequential approximated linear programming and mixed integer linear programming solution

negative) values of r need to be taken into account for the number of vehicles moved from
the operator to be calculated (using r would yield a zero summation, as forced in (5.6)).

Constraint (5.10) forces the total number of vehicles in the system to be equal to N
and constraint (5.11) the number of vehicles in each zone to be always a non-negative
value.

(5.12) is an availability constraint, ensuring that the number of vehicles to be taken
away from a zone does not exceed the zone initial vehicle availability. This constraint only
makes sense if rti < 0, i.e. if vehicles need to be taken away, otherwise, if rti ≥ 0, it boils
down to (5.11), meaning that any number of vehicles can be brought to a zone, no matter
its initial availability.

Constraint (5.13) gives a further upper bound to the number of vehicles leaving each
zone during each time frame, which cannot be higher than its corresponding initial avail-
ability plus the average number of vehicles arriving and being relocated there. This
constraint, therefore, takes into account the trip flows within each time-frame, too.

Finally, (5.14) introduces a probabilistic constraint to the problem, providing a balance
between the incoming and outgoing vehicles in each city zone. The number of vehicles
moving from zone i to zone j has to reflect the estimated probability from the data on
that flow to avoid myopic behaviours of the model, which would otherwise find a solution
that would not reflect the truth by unrealistically enhancing convenient flows to maximize
the number of satisfied trips.

The problem was solved making use of PuLP5, which employs the simplex algorithm
to find the optimal solution.

The resulting relocation solution, i.e. the variables rti t ∈ Tp i ∈ Z, is afterwards
processed to take up only integer values, consistently with the reality, being impossible, of
course, for the operator to move half a car. Since the rounded solution still has to satisfy
constraints (5.6) and (5.9), the variables rti have to be processed grouped by time frame.
Fixed t̃ ∈ Tp, the rounding algorithm is therefore structured in the following steps:

1. compute r̂t̃i by rounding rt̃i to the nearest integer ∀i ∈ Z;

2. compute pos_rel, the list of indexes of entries which have been rounded up and such
that r̂t̃i > 0;

3. compute neg_rel, the list of indexes of entries which have been rounded down and
such that r̂t̃i < 0;

4. sort pos_rel and neg_rel in descending order by the magnitude of the corresponding
value’s rounding, i.e. sort from indexes corresponding to values which have been
rounded the most to those ones which have been rounded the least;

5. compute
pos_excess←

q
i:r̂t̃i>0 r̂t̃i −Rmax,

5PuLP is a free open source software written in Python. It is used to describe optimisation prob-
lems as mathematical models. Full documentation is available at https://coin-or.github.io/pulp/
technical/index.html.

48

https://coin-or.github.io/pulp/technical/index.html
https://coin-or.github.io/pulp/technical/index.html

5.2 – Implementation

taking into account only positive values of relocation, the amount of relocated ve-
hicles by which the rounded solution exceeds the limit Rmax (which is no more
guaranteed by constraint (5.9) because of the rounding step);

6. likewise, compute
neg_excess←

q
i:r̂t̃i<0 r̂t̃i −Rmax,

taking into account only negative values of relocation;

7. remove the excess incoming relocated vehicles:
while pos_excess > 0 do

if len(pos_rel)>0 then
index← pos_rel.pop(0)6

else
index← sample({0, . . . , Z − 1})

end if
r̂t̃,index ← r̂t̃,index − 1
pos_excess← pos_excess− 1

end while

namely, identify a zone index whose relocation value has to be decreased by one unit
until no more excess is reached. The index is identified by looking up in the pos_rel
list, containing indexes of the rounded entries of the original continuous solution;
when the list is emptied, the indexes are drawn randomly from the set of all zones;

8. with an analogous procedure, remove the in excess outgoing relocated vehicles:
while neg_excess > 0 do

if len(neg_rel)>0 then
index← neg_rel.pop(0)

else
index← sample({0, . . . , Z − 1})

end if
r̂t̃,index ← r̂t̃,index + 1
neg_excess← neg_excess− 1

end while

9. compute the potential relocation unbalance between incoming and outgoing vehicles,
i.e. between positive and negative r̂t̃i values:

unbalance←
q

i:r̂t̃i>0 r̂t̃i +
q

i:r̂t̃i<0 r̂t̃i

10. if unbalance> 0, the solution involves more incoming than outgoing vehicles during
time frame t̃; so, the former ones have to be rebalanced:

6Given a data-structure implemented as a list, the pop operation removes and returns the element
of the index corresponding to the argument of the function. If no argument is provided, it usually
removes the first element.

49

Sequential approximated linear programming and mixed integer linear programming solution

while unbalance>0 do
if len(pos_rel)>0 then

index← pos_rel.pop(0)
else

index← sample({0, . . . , Z − 1})
end if
r̂t̃,index ← r̂t̃,index − 1
unbalance← unbalance− 1

end while

namely, reduce the unbalance with the same procedure described in 7 until no more
unbalance is left;

11. if unbalance< 0, the solution involves less incoming than outgoing vehicles during
time frame t̃; so, the latter ones have to be rebalanced:

while unbalance > 0 do
if len(neg_rel)>0 then

index← neg_rel.pop(0)
else

index← sample({0, . . . , Z − 1})
end if
r̂t̃,index ← r̂t̃,index + 1
unbalance← unbalance + 1

end while

using an analogous procedure as the one described before.

The rationale behind this procedure is to get an integer solution starting from the
optimal solution provided by the LP problem. The original solution is forced to respect,
among the others, constraints (5.6) and (5.9), while a naively rounded solution does - in
general - lose these features, which are necessary for the solution to remain acceptable
and reasonable. As an example, if

q
i:r̂t̃i>0 r̂t̃i >

q
i:r̂t̃i<0 r̂t̃i, the solution would involve

more incoming than outgoing vehicles to be relocated, meaning that a car would magically
appear in the next state of the system, altering the mass conservation constraint in (5.10).

The presented algorithm is therefore used, in order to obtain a feasible integer reloca-
tion solution as near as possible to the original continuous one in the ℓ1 norm7, while still
respecting constraints (5.6) and (5.9), and avoiding a very expensive brute force search in
the space of all possible relocation solutions.

7Given a vector x ∈ Rn, its ℓ1 norm can be computed as

||x||1 =
nØ

i=1

|xi|

50

5.2 – Implementation

The idea lying behind the algorithm is to identify what indexes have been rounded up
the most for positive r̂t̃i and rounded down the most for negative r̂t̃i and subsequently
taking relocation units away in order to draw the sum below the maximum limit Rmax

and balance the positive and negative components.

5.2.2 Mixed integer linear program
The second method involves the resolution of a mixed integer linear program, keeping
the integrality constraint only on the relocation variables rti among all the variables in-
troduced in section 3.1. The formulation of the problem is totally analogous to that of
subsection 5.2.1, with the only difference of the presence of the integrality constraints.

max
Ø
t∈Tp

Ø
i∈Z

EOti

s.t. sti = st−1,i + EIt−1,i − EOt−1,i + rt−1,i ∀t ∈ Tp\{p},∀i ∈ Z
0 ≤ EIti ≤ Iti ∀t ∈ Tp,∀i ∈ Z
0 ≤ EOti ≤ Oti ∀t ∈ Tp,∀i ∈ ZØ
i∈Z

rti = 0 ∀t ∈ Tp

wti ≥ rti ∀t ∈ Tp,∀i ∈ Z
wti ≥ 0 ∀t ∈ Tp,∀i ∈ ZØ
i∈Z

wti ≤ Rmax ∀t ∈ TpØ
i∈Z

sti = N ∀t ∈ Tp

sti ≥ 0 ∀t ∈ Tp,∀i ∈ Z
− rti ≤ sti ∀t ∈ Tp,∀i ∈ Z

sti + EIti + rti

2 ≥ EOti ∀t ∈ Tp,∀i ∈ Z

EIti =
Ø
j∈Z

pt
jiEOtj ∀t ∈ Tp,∀i ∈ Z

rti ∈ {−Rmax, . . . ,0, . . . , Rmax} ∀t ∈ Tp,∀i ∈ Z (5.15)

As stated before, (5.15), the only additional constraint, requires the relocation variables
to take up only integer values in the range [−Rmax, Rmax].

The problem was solved making use of MIP8, which employs the branch-and-cut algo-
rithm to find the optimal solution.

8Python-MIP is a collection of Python tools for the modeling and solution of Mixed-Integer
Linear programs. The package also provides access to advanced solver features like cut genera-
tion, lazy constraints, MIP starts and solution pools. Full documentation is available at https:
//docs.python-mip.com/en/latest/index.html.

51

https://docs.python-mip.com/en/latest/index.html
https://docs.python-mip.com/en/latest/index.html

Sequential approximated linear programming and mixed integer linear programming solution

No post-processing of the solution is required here, since the relocation variables rep-
resenting the operator decision already take up integer values.

5.2.3 Linear program + mixed integer linear program
The last of the three methods involves the resolution of a linear program as stated in
subsection 5.2.1 and the subsequent resolution of the mixed integer linear program stated
in subsection 5.2.2.

After solving the LP problem, the variables rti whose optimal value is found to be zero
or nearly zero (with a tolerance of 10−5), i.e. |rti| < 10−5, have been fixed to 0 in the
MILP problem.

The idea of this approach is to reduce the number of integer constrained variables,
which are responsible for the tremendous computational effort to solve the problem, by
introducing a little extra computational effort solving the very fast LP. The resolution of
the LP can be regarded as one pre-processing step of the variables, whose value is fixed a
priori, with the actual resolution of the problem done through the MILP.

Also in this case no post-processing of the solution is required here, since the relocation
variables representing the operator decision already take up integer values.

52

Chapter 6

Neighbourhood search and
simulated annealing

The following chapter provides an insight on the latter stage of the optimisation procedure
to find the optimal relocation strategy. Given the solution found through the optimisation
programs described in chapter 5, a neighbourhood search step including the simulated
annealing strategy may be performed to further improve the quality of the solution.

A theoretical background is first provided on neighbourhood search algorithms and on
the simulated annealing approach. The mathematical implementation of these tools for
the resolution of the problem is then described. Finally, a comment on the parallelisation
procedure followed to speed up the execution of the search is provided in subsection 6.2.4.

6.1 Theoretical background

6.1.1 Neighbourhood search
Neighbourhood search algorithms are a class of metaheuristic methods for solving global
optimisation problems. When a complete search on the solution space is infeasible, this
type of algorithms are sometimes resorted to.

The basic idea behind this class of metaheuristics can be summed up in the following
steps:

1. define one (or, possibly, more than one) neighbourhood structure N (x) of any pos-
sible solution x ∈ S, where S is the solution space, and N (x) ⊆ S;

2. let x ∈ S be the current incumbent solution;

3. choose, according to some criterion, y ∈ N (x) and evaluate its performance;

4. accept or reject y, according to the specific algorithm rules; if y is accepted as the
new incumbent solution, then x← y. Go back to 3.

53

Neighbourhood search and simulated annealing

How to pick a new neighbour and how to decide whether or not a new solution should be
accepted as the incumbent one is a matter of the specific algorithm chosen to solve the
problem.

A stopping criterion is usually based on a maximum number of iterations, which is
fixed a priori.

Many neighbourhood search algorithms implement much more articulated procedures
than the one described above: the variable neighbourhood search, as an example, employs
many neighbourhood structuresN1, N2, . . . , Nk such that, given x ∈ S, N1(x) ⊆ N2(x) ⊆
· · · ⊆ Nk(x) to escape from local optima.

6.1.2 Simulated annealing (SA)
Simulated annealing is a probabilistic approach for determining the global optimum of
a function with possibly several local optima. More specifically, it is a metaheuristic
approach for global optimisation when dealing with a very large search space and is often
used when such search space is discrete.

The idea behind this algorithm is to emulate the metallurgic physical process of a solid
being steadily cooled in a controlled manner until its structure is frozen at the lowest
energy configuration possible. As the solution space is visited, the concept of slow cooling
employed in the simulated annealing method is implemented as a gradual decrease in
the probability of accepting poorer solutions, instead of only improving ones, like other
algorithms do. Accepting worsening solutions enables for a more thorough search of
the solution space and allows the solution to escape from local minima, unlike other
algorithms such as gradient descent. After defining a proper neighbourhood structure
and a quality function to measure how good a solution is, given the current state of the
system, the SA algorithm consists in choosing one of its neighbours at random. If the
quality function computed with the given neighbour improves, then the latter is chosen
as the new incumbent solution, like in other neighbourhood search algorithms. On the
contrary, if the quality measure does not improve, the neighbour may still be chosen as
the new incumbent solution with a given probability, depending on how big the quality
decrease is and on the current temperature of the system. Let S be the state space, x∗ ∈ S
the incumbent solution, N (x∗) ⊆ S its neighbourhood, x ∈ N (x∗) a new randomly chosen
candidate solution and J : S −→ R the quality measure function of a solution. Assuming
to be dealing with a maximisation problem (therefore J has to be maximised), the generic
t-th iteration of the SA algorithm involves the following steps:

1. if J(x) ≥ J(x∗), then accept x as the new incumbent solution: x∗ ←− x;

2. if J(x) < J(x∗), then accept x as the new incumbent solution with probability
exp{−(J(x∗)− J(x))/T (t)}.

The stopping criterion is usually based on a maximum number of iterations to be per-
formed. T : N −→ R+ is the cooling schedule function, which maps the current iteration
number to the temperature of the system, and Bertsimas and Tsitsiklis [1993] pointed
out its choice impacts the quality of the obtained solution. Some popular choices for the
temperature cooling function are:

54

6.2 – Implementation

1. the linear schedule: T (t) = T0 − ηt;

2. the exponential schedule: T (t) = T0αt;

3. the logarithmic schedule: T (t) = c
log(t+d) (usually d = 1);

4. the constant thermodynamic schedule: T such that dT (t)
dt = −vsT

ϵ
√

C
, where C is the heat

capacity and ϵ is the relaxation time of the system.

T0 is the initial temperature of the system and the parameter c in the logarithmic schedule
can be thought of as initial temperature, as well. The initial temperature, along with all
the other parameters need to be properly tuned.

6.2 Implementation
This section deals with the practical implementation of the aforementioned tools for the
practical resolution of the problem.

Given a starting solution provided by the resolution of the linear program, like de-
scribed in chapter 5, a neighbourhood search step implementing the simulated annealing
strategy may be included to further improve the quality of the solution.

A neighbourhood structure formal definition is first provided in subsection 6.2.1 and
successively employed in the neighbourhood search algorithm described in subsection 6.2.2,
together with the cooling schedule applied for the simulated annealing strategy. Two alter-
native quality measure functions can be used to compare different relocation solutions and
they are described in subsection 6.2.3. Finally, a comment on the parallel implementation
of this algorithm is made in subsection 6.2.4.

6.2.1 Neighbourhood structure definition
First of all, a neighbourhood structure of a given solution r = (rti)t∈Tp,i∈Z needs to be
defined. A neighbour of r may be obtained - in principle - by altering some entries of r.
However, since any solution has to follow some constraints, i.e.,Ø

i∈Z
rti = 0 ∀t ∈ Tp (6.1)

Ø
i∈Z

(t,i):rti>0

rti ≤ Rmax ∀t ∈ Tp, (6.2)

some special care needs to be taken. To keep the solution feasible after some alteration,
multiple neighbourhood structures can be defined, one for each time frame. Given t̃ ∈ Tp,
we can define

Nt̃(r) = {r̂ = (r̂ti)t∈Tp,i∈Z | r̂ti = rti ∀t /= t̃, ∀i ∈ Z and
∃!̂i ∈ Z : r̂t̃̂i = rt̃̂i + 1 and ∃!ĵ ∈ Z : r̂t̃ĵ = rt̃ĵ − 1
and r̂t̃k = rt̃k ∀k /= î, ĵ and (6.1) and (6.2)}.

55

Neighbourhood search and simulated annealing

That is, r̂ ∈ Nt̃(r) if and only if all its entries corresponding to time frames different
from t̃ are the same as in r; concerning time frame t̃, only two entries î and ĵ can differ
from the original solution: r̂t̃̂i has one unit more than the original rt̃̂i and r̂t̃ĵ has one unit
less than rt̃ĵ .

One neighbour r̂ ∈ Nt̃(r) can be - in principle - produced from r sampling a couple
(̂i, ĵ), î, ĵ ∈ Z and setting r̂ti = rti ∀t ∈ Tp, ∀i ∈ Z, except from r̂t̃̂i = rt̃̂i + 1 and r̂t̃ĵ =
rt̃ĵ−1. However, one more caution needs to be taken when computing the neighbourhood
of a solution: not all (̂i, ĵ) couples produce acceptable vectors. In particular, depending on
the sign of rt̃̂i and rt̃ĵ , altering their value may result in exceeding the maximum relocation
threshold Rmax. Let us assume, as an example, Rmax = 2, only one time frame and

r = (2,−1,0,−1).

In this case, both constraints (6.1) and (6.2) are respected. If î = 0 and ĵ = 1, then

r̂ = (3,−2,0,−1),

and, while constraint (6.1) keeps being respected, (6.2) does not hold any longer.
When constraint (6.2) holds with a strict inequality for the incumbent solution, i.e.,

when it does not reach the maximum relocation threshold, all (i, j) couples produce ac-
ceptable neighbours when chosen to alter the original solution. On the contrary, when
constraint (6.2) holds with an equality, i.e., when the maximum relocation threshold is
reached, not all couples produce feasible relocation solutions. In particular, given i ∈ Z, :

• if rt̃i ≥ 0, only couples (i, j), i, j ∈ Z such that rt̃j > 0 are acceptable;

• if rt̃i < 0, all couples (i, j), i, j ∈ Z are acceptable.

6.2.2 Neighbourhood search
Having defined a proper neighbourhood structure, a local search can then be performed.
The procedure is articulated in the following steps:

1. start from an incumbent solution r ∈ S, where S is the space of all possible solu-
tions and encodes the relocation strategy provided by the optimisation program, like
described in chapter 5; set the iteration number t← 0;

2. randomly select a time frame t̃ ∈ Tp;

3. randomly select r̂ ∈ Nt̃(r), a neighbour of the incumbent solution;

4. evaluate the quality of r̂ and let J(r̂) be its corresponding value;

5. if J(r̂) > J(r), accept r̂ as the new incumbent solution: r← r̂. Increase the iteration
number: t← t + 1. Go back to 2;

6. otherwise, if J(r̂) ≤ J(r), accept r̂ as the new incumbent solution with probability
exp{−(J(r)− J(r̂))/T (t)}, where T is the chosen cooling schedule. If r̂ is accepted:
r← r̂, t← t + 1. Go back to 2. Otherwise go back to 3.

56

6.2 – Implementation

Two stopping criteria are implemented:

• a first one is based, as usual, on a maximum number of iterations;

• a second one stops the search after a given number of iterations which produced no
change in the incumbent solution.

J : S −→ R+ is the quality measure function of the relocation solution and is described
in subsection 6.2.3, while T : N −→ R is the cooling schedule of the simulated annealing
algorithm.

Step 6 of the neighbourhood search algorithm implements the simulated annealing
strategy. As stated in subsection 6.1.2, a cooling schedule needs to be chosen when
implementing such procedure. After a numerical study, described in Appendix A, the
exponential schedule

T (t) = 1× 0.9t

has been selected, setting T0 = 1 and α = 0.9, after investigating the performances of the
functions described in subsection 6.1.2.

6.2.3 Solution evaluation
The neighbourhood search algorithm needs a way to compare two solutions and assess
which one is better. To do so, a quality measure of a solution J : S −→ R needs to be
properly defined, mapping any relocation strategy to a real value, making a comparison
between solutions possible.

Two different quality measures have been implemented:

• the first one is based on the resolution of a linear program giving the best case
scenario for the number of satisfied trips, having fixed the initial state of the system
and the relocation strategy for each time frame;

• the second one is based on a Monte Carlo simulation of the traffic flows, again,
having fixed the initial state of the system and the relocation strategy for each time
frame.

Best case scenario quality measure

The first possible quality measure function employs a linear program to get the best case
scenario number of satisfied trips. Given the initial state of the system, initial_state, and
the relocation strategy r = (rti)t∈Tp,i∈Z , the algorithm to compute the function value over
the time period Tp = {p, p + 1, . . . , p + T − 1}, p ∈ P , is articulated in the following steps:

1. set the current state
s← initial_state,

initialise the total satisfied trip counter to 0
total_trips← 0

and set the current time frame to p

57

Neighbourhood search and simulated annealing

t← p

2. while t < p + T , solve the following LP to get the satisfied demand in the best case
scenario

max
Ø
i∈Z

EOi (6.3)

s.t. 0 ≤ EIi ≤ Iti ∀i ∈ Z (6.4)
0 ≤ EOi ≤ Oti ∀i ∈ Z (6.5)

si + EIi + rti

2 ≥ EOi ∀i ∈ Z (6.6)

EIi =
Ø
j∈Z

pt
ijEOj ∀i ∈ Z (6.7)

si + EIi − EOi + rti ≥ 0 ∀i ∈ Z (6.8)

3. round the solution variables (EOi)i∈Z and (EIi)i∈Z (according to the steps described
below):ãEI, äEO ← round_solution(EI, EO)

4. add the number of satisfied trips to the total count
total_trips←

q
i∈Z

äEOi

5. compute the following system state
si ← si + ãEI i − äEOi + rti ∀i ∈ Z,

increase the time frame number
t← t + 1

and go back to 2.

Concerning the linear program used to obtain the best case traffic flows, (6.3) is the
objective function, representing the total number of outgoing satisfied trip requests from
all city zones during the current time frame t, which has to be maximised.

(5.3) is the transition equation of a city zone from the current state at the beginning of
time-frame t− 1 to the future state at the beginning of time-frame t, taking into account
the incoming and outgoing trips carried out and the relocated vehicles from the operator
during time frame t− 1.

(6.4) gives an upper and lower bound on the number of vehicles entering each zone
during the current time frame t, which has to be obviously a positive value but cannot
exceed the incoming trip demand. (6.5) does the same with the number of vehicles leaving
each zone during the current time frame t.

Constraint (6.6) gives a further upper bound to the number of vehicles leaving each
zone during the current time frame t, which cannot be higher than its corresponding initial
availability plus the average number of vehicles arriving and being relocated there. This
constraint, therefore, takes into account the trip flows within the time frame, too.

58

6.2 – Implementation

(6.7) introduces a probabilistic constraint to the problem, providing a balance between
the incoming and outgoing vehicles in each city zone. The number of vehicles moving from
zone i to zone j has to reflect the estimated probability from the data on that flow to avoid
myopic behaviours of the model, which would otherwise find a solution that would not
reflect the truth by unrealistically enhancing convenient flows to maximise the number of
satisfied trips.

Finally, constraint (6.8) makes sure that the following system state has a non-negative
value, as it represents the number of vehicles in each zone at the beginning of the following
time frame. The problem was again solved making use of PuLP.

Besides, in step 3 of the previous algorithm, a solution rounding step is involved, which
is articulated in the following steps:

1. compute äEOi and ãEI i by rounding respectively EOi and EIi to the nearest integer
∀i ∈ Z;

2. compute the potential unbalance between incoming and outgoing vehicles, i.e.
unbalance←

q
i∈Z

äEOi −
q

i∈Z
ãEI i

3. if unbalance> 0, the rounded solution involves more outgoing than incoming vehicles
during time frame t; so, the former ones have to be rebalanced. To do so compute
indexes, the list of entry indexes which have been rounded up and sort it in descend-
ing order by the magnitude of the corresponding value’s rounding, i.e. sort from
indexes corresponding to values which have been rounded the most to those ones
which have been rounded the least; then rebalance (EOi)i∈Z :

while unbalance>0 do
if len(indexes)>0 then

index← indexes.pop(0)1

else
index← sample({0, . . . , Z − 1})

end if
if sindex − (äEOindex − 1) + ãEI index + rt,index ≥ 0 thenäEOindex ← äEOindex − 1

unbalance← unbalance− 1
end if

end while

namely, reduce the unbalance until no more is left by identifying a zone index whose
outgoing vehicle count has to be decreased by one unit. The index is identified by
looking up in the indexes list, containing indexes of the rounded entries of the original
continuous solution. Observe that the count is decreased only if the following zone
state obtained after altering the value of the variable keeps being acceptable, i.e., it

1Given a data-structure implemented as a list, the pop operation removes and returns the element
of the index corresponding to the argument of the function. If no argument is provided, it usually
removes the first element.

59

Neighbourhood search and simulated annealing

has a non-negative value. When the list is emptied, the indexes are drawn randomly
from the set of all zones;

4. if unbalance< 0, the solution involves less outgoing than incoming vehicles during
time frame t; so, the latter ones have to be rebalanced:

while unbalance > 0 do
if len(indexes)>0 then

index← indexes.pop(0)
else

index← sample({0, . . . , Z − 1})
end if
if sindex − äEOindex + (ãEI index − 1) + rt,index ≥ 0 thenãEI index ← ãEI index − 1

unbalance← unbalance + 1
end if

end while

using an analogous procedure as the one described before.

Monte Carlo simulation quality measure

Alternatively to the best scenario measure, the quality of a relocation solution may be
computed through a Monte Carlo simulation of the system. To reduce the computational
effort needed for the simulations to be performed, every possible solution gets evaluated
using the same traffic flow scenarios, whose number is set a priori to MC.

Each traffic flow scenario consists of an ordered list of trips, described by a couple of
indexes specifying the departure and arrival city zones. For implementation purposes, a
collection of data structures {tripsk

t }
k=0,...,MC−1
t∈Tp

has been used, obtained from the array
V described in section 3.1.

tripsk
t , t ∈ Tp, k = 0, . . . , MC − 1 gives an ordered list of trips carried out during time

frame t in scenario k, containing each couple (i, j) V t
ij times, accounting for the number of

trips starting in zone i and ending in zone j during time frame t. Each traffic flow scenario
is obtained from the previous one by shuffling the list, i.e. tripsk

t = shuffle(tripsk−1
t)

∀k, ∀t ∈ Tp. Therefore, looping through tripsk
t gives a mobility demand scenario, which

is used in the evaluation of a relocation strategy.
Finally, the whole Monte Carlo solution evaluation procedure can be described. Given

the initial state of the system, initial_state, and the relocation strategy r = (rti)t∈Tp,i∈Z ,
the algorithm to compute the function value over the time period Tp = {p, p + 1, . . . , p +
T − 1}, p ∈ P , consists in the simulation of the system many times and in the subse-
quent computation of the performance measure for each Monte Carlo run. Finally, the
performance measures obtained by all the Monte Carlo runs are averaged to get a more
accurate and less uncertain estimate of the actual performance measure value, which is -
in general - a random unknown value.

The k-th Monte Carlo run is articulated in the following steps:

1. set the current state

60

6.2 – Implementation

s← initial_state,

initialise the total satisfied trip counter to 0
total_trips← 0

and set the current time frame to p

t← p;

2. while t < p + T , initialise the satisfied trip counter to 0:
satisfied_trips← 0;

3. compute sr, the state of the system after the beginning of the relocation process, i.e.
after all vehicles have been collected from the operator to be transferred to another
zone:

sr
i ← si + min{rti, 0}, ∀i ∈ Z;

4. copy sr to keep track of the zone availability:
availability ← copy(sr);

5. looping over the first half of tripsk
t
, for each couple (i, j) identifying a trip request,

compute the new state of the system and update the zone availability only if the
request can be carried out:

if availabilityi > 0 then
sr

i ← sr
i + 1

sr
j ← sr

j − 1
availabilityi ← availabilityi − 1
satisfied_trips← satisfied_trips + 1

end if

6. update sr simulating the redistribution of the vehicles after the ending of the relo-
cation process:

sr
i ← sr

i + max{rti,0};

7. looping over the second half of tripsk
t
, for each couple (i, j) identifying a trip request,

compute the new state of the system and update the zone availability only if the
request can be carried out, like in steps 4 and 5;

8. add the number of satisfied trips during the current time frame t to the total count
total_trips← total_trips + satisfied_trips,

increase the time frame counter
t← t + 1,

9. update the current system state
s← sr

and go back to 2.

61

Neighbourhood search and simulated annealing

To take the time for the relocation procedure to be carried out into account, the state of the
system is first updated in 3 removing from each zone the number of cars to be transferred
according to the given strategy. The first half of trip requests is then simulated, modifying
the system. Successively, the system state is updated in 6 emulating the redistribution of
the relocated cars, making them available for users to rent them. Finally, the second half
of trips is simulated.

The variable total_trips represents the performance measure of the k-th simulation
having undertaken the relocation strategy coded by r = (rti)t∈Tp,i∈Z . Running MC dif-
ferent simulations and averaging their total_trips values gives the relocation strategy
performance measure, making a comparison between solutions possible.

6.2.4 Parallelisation
The described algorithm is highly expensive since a great number of iterations are usually
needed to attain an improvement of the solution and one iteration itself is very costly.
Specifically, the most computationally expensive procedure is the evaluation of every single
strategy, described in subsection 6.2.3. However, given a single strategy, its performance
evaluation does not involve any other data except from the initial system state and the
mobility data (for what concerns the best case scenario quality measure) or the mobility
simulations (for the Monte Carlo measure). This means that a parallel implementation
can be worked out. The tool used to do so is the multiprocessing library2. In step 3
of the neighbourhood search, described in subsection 6.2.2, a random neighbour of the
incumbent solution is chosen and then evaluated. Since every evaluation is independent
on all the others, it can be carried out in parallel with them. Therefore, a number of
neighbours equal to the number of CPUs of the machine running the algorithm can be
simultaneously evaluated, speeding up the exploration of the neighbourhood. The search
is therefore carried out in simultaneous chunks, whose size is equal to the number of CPUs.
When any of the neighbours gets accepted as the new incumbent solution, according to
the rules of the simulated annealing, the algorithm simply moves on that new relocation
strategy, starting looking in its neighbourhood simultaneously on new candidates. In case
more than one neighbour gets accepted during one parallelised chunk, the first one in time
which was accepted becomes the new incumbent solution.

2multiprocessing is a package that supports spawning processes using an API similar to the
threading module. The multiprocessing package offers both local and remote concurrency, effec-
tively side-stepping the Global Interpreter Lock by using subprocesses instead of threads. Due
to this, the multiprocessing module allows the programmer to fully leverage multiple processors
on a given machine. It runs on both Unix and Windows. Full documentation is available on
https://docs.python.org/3/library/multiprocessing.html.

62

https://docs.python.org/3/library/multiprocessing.html

Chapter 7

Data extraction and analysis

This chapter concerns and details the extraction and processing procedure and the explo-
ration of the data used to confront the relocation problem.

7.1 Data extraction
The data extraction and processing procedure is described in the following section.

7.1.1 The dataset
A dataset of trips carried out in the city of Turin by Car2go, one very well-known car-
sharing company operating in many cities all over the world, was initially provided. The
data about the trips, carried out by a fleet of 396 vehicles, was collected through a system
called Urban Mobility Analisys Platform (UMAP), developed by the SmartData@Polito
research group. UMAP queries the Car2go API every minute to get the currently available
cars in the operating area and returns each car’s number plate, current position (i.e. its
latitude and longitude coordinates), current energy level and internal status. Tracking
when the cars appear and disappear, the system is able to identify the start and the
ending of a booking generating booking events characterised by a number plate (i.e. a
car), the initial and final position, time and energy level. Parkings are also tracked,
i.e. the time period in which a car is available for users to be taken. The booking
distance is approximated by means of the haversine distance1 and then corrected through
a spatial scale factor obtained with the Google Direction API. The energy consumption
is the difference between the initial and final fuel level and the duration is the difference
between the final and initial time (adjusted with a temporal scale factor obtained again
through the Google Directions API) and takes the reservation time into account, as well.

Each record then consists of the following information about a trip:

1The haversine formula determines the great-circle distance between two points on a sphere given
their longitudes and latitudes.

63

Data extraction and analysis

• plate: the number plate number of the car employed in the trip;

• init_time: the timestamp of the moment the trip began;

• final_time: the timestamp of the moment the trip ended;

• init_lon: the longitude of the point in which the trip began;

• init_lat: the latitude of the point in which the trip began;

• final_lon: the longitude of the point in which the trip ended;

• final_lat: the latitude of the point in which the trip ended;

• distance: the distance between the starting and ending point of the trip in meters;

• duration: the duration of the trip in seconds;

• weekday: the day of the week the trip was carried out;

• init_fuel: the initial value of the vehicle’s fuel state;

• final_fuel: the final value of the vehicle’s fuel state;

• engine_type: the type of engine the car is equipped with;

• init_date: the date (year and month) the trip began;

• init_day: the day, month and year the trip began.

7.1.2 Dataset cleaning
After importing the data as a pandas2 dataset, trips whose duration is below two minutes
or over two hours were filtered out, as well as trips whose travelled distance is lower than
100 metres or higher than 40 kilometres. Finally, trips where the initial fuel value is lower
than the final fuel value were filtered out, obtaining a dataset with 612,532 records, with
trips spanning around one year and one month, being the first one recorded in 2016/12/13
at 17:38 and the last one in 2018/01/31 at 13:08.

7.1.3 Data processing
The data were then processed in order to discretise them both spatially and temporally.

2pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data struc-
tures and data analysis tools for the Python programming language. See https://pandas.pydata.
org/docs/ for full documentation.

64

https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/

7.1 – Data extraction

Spatial discretization

The spatial variables were processed in order to obtain a grid discretization of the city
into zones. Both the longitude and the latitude coordinates were discretised to obtain
285 500-metres-by-500-metres square zones. The zones obtained through this procedure
were, then, identified with two discrete coordinates (coming from the discretization of the
longitude and latitude coordinates, respectively).

For the sake of simplicity, a ’flattening’ procedure of the coordinates was successively
performed, in order to associate a single index to each zone. The index, starting from the
zone’s x and y discrete coordinates, was obtained in the following way:

1. compute min_x, the lowest x coordinate among both departure and arrival zones;

2. compute max_x, the highest x coordinate among both departure and arrival zones;

3. compute min_y, the lowest y coordinate among both departure and arrival zones;

4. compute max_y, the lowest y coordinate among both departure and arrival zones;

5. compute x_zones = max_x−min_x+1, the total number of discrete x-axis values;

6. compute y_zones = max_y−min_y+1, the total number of discrete y-axis values;

7. compute the zone index (for both departure and arrival) as
(y −min_y) × x_zones + (x −min_x), where x and y are the initial coordinates
of the zone.

A further cleaning of the dataset was then carried out, filtering out zones whose departure
or arrival count was lower or equal than five trips. Nine zones were ruled out with this
procedure, reducing their total number to 276.

Finally, a zone re-numbering procedure was performed, in order to have indexes in
the range 0-275. In a real-world contex, the initial coordinates of the zones can easily
be computed back, but such procedure was not implemented here as there was no need
during the work.

Temporal discretization

Successively, a temporal discretization procedure was carried out, in order to obtain time-
frames at the beginning of which a new relocation step is to be performed.

Only few data were extracted in this step, covering two working days, as much as was
needed for the developed algorithms to be tested.

20 time-frames were extracted, starting from 2016/12/14 at 06:00 and ending with
2016/12/16 at 06:00. Each time frame covers a two-hour period, being a reasonable
time for a relocation procedure step to be undertaken and making the discretization
not too rough. Indeed, if longer time frames had been chosen, the mobility demand
would have been grouped approximately, not reflecting the actual patterns and variations
through the day. On the other hand, too short time frames (as an example, 10 minutes)
would not be enough to even contain a whole trip. Night hours from 00:00 to 06:00

65

Data extraction and analysis

were actually merged into one six-hour long time-frame to better reflect the operational
procedures of the operator. The resulting time-frames’ break-points are the following (in
the YYYY/MM/DD, HH:MM:SS format) - the bold number in parentheses giving their
corresponding position in the data structures employed:

• 2016/12/14, 06:00:00
(0)

• 2016/12/14, 08:00:00
(1)

• 2016/12/14, 10:00:00
(2)

• 2016/12/14, 12:00:00
(3)

• 2016/12/14, 14:00:00
(4)

• 2016/12/14, 16:00:00
(5)

• 2016/12/14, 18:00:00
(6)

• 2016/12/14, 20:00:00
(7)

• 2016/12/14, 22:00:00
(8)

• 2016/12/15, 00:00:00
(9)

• 2016/12/15, 06:00:00
(10)

• 2016/12/15, 08:00:00
(11)

• 2016/12/15, 10:00:00
(12)

• 2016/12/15, 12:00:00
(13)

• 2016/12/15, 14:00:00
(14)

• 2016/12/15, 16:00:00
(15)

• 2016/12/15, 18:00:00
(16)

• 2016/12/15, 20:00:00
(17)

• 2016/12/15, 22:00:00
(18)

• 2016/12/16, 00:00:00
(19)

• 2016/12/16, 06:00:00

Clearly, the first break-point is just the starting time of the first time-frame and the
last break-point is the ending time of the last time-frames, while all other break-points
are the ending time of the corresponding previous time-frame and the starting time of
the following one. Each trip record was assigned to a time frame based on its init_time
value, i.e. the time the trip began. That is, one trip beginning during one time frame and
ending in the following one gets assigned to the former for time discretization purposes.

7.2 Data aggregation

A data aggregation procedure followed, with the aim of getting the vehicle demand in
each zone for each time-frame. Making use of pandas, a group-by step was then performed,
gathering the trips by time-frame, departure zone and arrival zone. A size operations was
finally executed, returning the number of rows in each group, that is the number of trips
operated during each time-frame from a zone to another.

66

7.2 – Data aggregation

Origin-destination matrix

The aggregated data obtained after this step were then collected in a numpy3 array, whose
first axis corresponds to the time-frame, the second axis to the departure zone and the
third axis to the arrival zone. Therefore, entry (t, i, j) of the resulting array gives the
number of trips from zone i to zone j during time-frame t. The array can be seen as an
ordered collection of origin-destination matrices, one for each time-frame.

Origin-destination probability matrix

Starting from each origin-destination matrix, a normalisation by rows of the entries was
successively performed: for each row, the sum of the entries was computed, then each
entry was divided by such value.

The resulting data were, once again, collected in a numpy array, whose structure reflects
that of the origin-destination matrix. Therefore, entry (t, i, j) of the resulting array gives
the probability of going to zone j starting from zone i during time-frame t. The array can
be seen as an ordered collection of origin-destination probability matrices, one for each
time-frame.

Incoming and outgoing demand arrays

Starting from each origin-destination matrix, incoming and outgoing demand arrays were
also obtained by performing a sum over columns and rows, respectively. In both cases the
resulting data were, once again, collected in a numpy array: entry (t, i) gives the number
of trips starting or ending in zone i during time-frame t.

Figure 7.1 shows the incoming and outgoing demand pattern for each time-frame and
for each zone. Blue bars represent the total number of incoming trips into a zone, while
red bars display the total number of outgoing trips from a zone. We can usually observe
higher peaks on ’central’ zones, i.e. zones whose index is in the centre of the range, which
correspond to city centre areas.

Figure 7.2 and Table 7.1 portray instead the total (incoming or outgoing) demand for
each time-frame. Let’s observe that, of course, in each time-frame, the total incoming
demand equals the total outgoing demand. Reasonably enough, a lower demand can be
observed during evening and night hours (time-frames 7, 8, 17 and 18 corresponding to
the hour range 20-24 and time-frames 9 and 19 to the hour range 24-06). The highest
peaks in demand can instead be observed in afternoon hours (time-frames 5, 6, 15 and 16
corresponding to the hour range 16-20).

3numpy is a Python library that provides a multidimensional array object, various derived ob-
jects (such as masked arrays and matrices), and an assortment of routines for fast operations on
arrays, including mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete Fourier
transforms, basic linear algebra, basic statistical operations, random simulation and much more. See
https://numpy.org/doc/stable/ for full documentation.

67

https://numpy.org/doc/stable/

Data extraction and analysis

Figure 7.1. Incoming (blue) and outgoing (red) demand by time-frame and zone.

68

7.2 – Data aggregation

time-frame 0 1 2 3
demand 261 221 227 224

time-frame 4 5 6 7
demand 214 293 275 171

time-frame 8 9 10 11
demand 153 113 257 232

time-frame 12 13 14 15
demand 189 236 234 307

time-frame 16 17 18 19
demand 297 170 142 116

Table 7.1. Total (incoming or outgoing) demand by time-frame.

Figure 7.2. Total (incoming or outgoing) demand by time-frame.

69

70

Chapter 8

Numerical results

This chapter is devoted to the presentation of the numerical results obtained from the
optimisation procedures carried out by means of the algorithms discussed in the previous
chapters. The metrics employed to compare the performances of the algorithms are first
presented. Then, section 8.2 explores the computational difficulties encountered with
the dynamic programming approach and compares its performances with those of the
approximated algorithms in a toy case problem. In section 8.3, a comparison of the
approximated algorithms is carried out in a real-world situation, using mobility data of
the Car2go fleet operating in Turin. Successively, section 8.4 analyses the effect of varying
the maximum number of cars which can be relocated within a time frame, with some
further comment on systems not implementing a relocation strategy. Finally, section 8.5
provides a simple analysis on the effect of the relocation cost on the profits and the
efficiency of the system.

All the experiments have been carried out on a virtual machine belonging to the Big-
Data@Polito cluster1, maintained through the Hadoop framework and having reserved
24 CPU Threads and 120 GB memory, with maximum 70 CPU Threads and 320 GB
memory.

Some parameters need to be fixed before running the experiments: as described in
Appendix A, the exponential schedule with α = 0.9 and T0 = 1 was set; when solving
the mixed integer linear program, the parameter max_seconds_same_incumbent2 was set
to 1800 seconds, corresponding to half an hour, to avoid too long runs. Concerning the
neighbourhood search, a maximum number of 300 iterations per round was set, together
with a maximum number of 15 iterations without any change in the incumbent solution.

Finally, all approximated methods were performed with a look ahead horizon in the set
{1, 2, 4, 6, 8, 10}, corresponding to, respectively, 2, 4, 8, 12, 16 and 24 hours, with the
aim of assessing how long-sighted should be the optimisation strategy in order to attain

1https://smartdata.polito.it/computing-facilities/
2The parameter max_seconds_same_incumbent is the maximum time in seconds that the search

for the resolution of the mixed integer linear program, as implemented in the mip package, can go on
if a feasible solution is available and it is not being improved

71

https://smartdata.polito.it/computing-facilities/

Numerical results

the best performances. The optimisation period P was set to 10 time frames in all runs,
corresponding to one operation day. A starting system state needs to be provided to any
algorithm to run and that has been set to an uniformly distributed number of vehicles on
every city zone.

8.1 The metrics
To compare the algorithms employed to confront the problem and investigate the research
questions proposed in section 1.2, a performance measure of the procedures used to obtain
the relocation strategies needs to be defined. The main metric employed is the efficiency
of the system throughout the whole optimisation period, starting with time frame 0 and
ending with time frame P , according to the notation introduced in section 3.1. The
efficiency of the system can be described by the fraction of trips which could be satisfied
out of the total mobility demand on the whole period, that is

efficiency =
q

t∈P
q

i∈Z EOtiq
t∈P

q
i∈Z Oti

.

A higher efficiency clearly means better algorithm performances since the relocation strat-
egy found through the procedure allows more trips to be accomplished.

Together with the system efficiency, the elapsed time for the algorithm to be completed
is an important performance measure, since, especially in this contex, being able to take
fast decisions is very important.

In section 8.5 one more metric is used: the total profits obtained by the operator. Since
the relocation process is a costly procedure, carrying it out may actually turn out to be
decreasing the overall profits, although boosting the system efficiency. The total profits
are computed as

total profits = f ×
Ø
t∈P

Ø
i∈Z

EOti − c×
Ø
t∈P

Ø
i∈Z

r+
ti , (8.1)

where f is the average earning from a trip and c is the average cost of relocating a vehicle.
The first summation is again the total number of trips which could be carried out, while
the second summation represents the total number of vehicles moved by the support staff
during the relocation procedure. Once again, the positive part of the relocation variables
is used since each moved vehicle would otherwise be counted both when it is relocated
out of a zone and when it is moved to another one.

8.2 Toy case and optimal solution
In chapter 4, the dynamic programming approach is presented and its implementation is
described. This method guarantees to find the optimal solution and is even able to adapt
to the system evolution without any need to solve the problem again. Unfortunately, as
already observed, it is very little scalable: since any possible state of the system needs to
be evaluated and its optimal decision needs to be stored, the problem dimensionality and
computational difficulty become soon overwhelming.

72

8.2 – Toy case and optimal solution

Figure 8.1. State space cardinality by vehicle and city zone number of the system.

Figure 8.2. State space cardinality by city zone and vehicle number of the
system in logarithmic scale.

Figure 8.1 displays the cardinality of the state space against the number of vehicles

73

Numerical results

efficiency 1 2 4 6 8 10
Dynamic programming 0.961
LP+MILP & no search 0.865 0.913 0.959 0.942 0.957 0.959
LP+MILP & search & best case 0.913 0.933 0.947 0.945 0.947 0.938
LP+MILP & search & Monte Carlo 0.918 0.953 0.933 0.938 0.949 0.938
LP+rounding & no search 0.894 0.909 0.928 0.933 0.928 0.933
LP+rounding & search & best case 0.900 0.913 0.942 0.945 0.938 0.947
LP+rounding & search & Monte Carlo 0.913 0.952 0.942 0.952 0.938 0.933
MILP & no search 0.865 0.928 0.875 0.933 0.952 0.938
MILP & search & best case 0.894 0.938 0.938 0.946 0.904 0.928
MILP & search & Monte Carlo 0.889 0.956 0.959 0.954 0.954 0.957

Table 8.1. Efficiency results with toy case problem, showing the optimal solution and
the approximated solutions performances.

elapsed time (s) 1 2 4 6 8 10
Dynamic programming 104.1
LP+MILP & no search 1.1 1.5 2.7 4.2 7.1 7.9
LP+MILP & search & best case 18.7 27.5 41.5 54.0 73.6 88.5
LP+MILP & search & Monte Carlo 25.2 29.3 62.2 117.3 185.5 244.2
LP+rounding & no search 0.7 1.2 1.6 3.3 3.3 4.4
LP+rounding & search & best case 17.5 24.6 39.6 55.4 71.4 82.2
LP+rounding & search & Monte Carlo 21.2 29.5 56.6 102.0 180.1 266.8
MILP & no search 2.4 1.6 2.9 4.8 5.5 9.9
MILP & search & best case 16.2 25.5 38.2 47.2 53.3 68.9
MILP & search & Monte Carlo 22.1 27.3 60.1 108.7 209.6 309.8

Table 8.2. Elapsed time to run all the algorithms with the toy case problem.

in the system and the number of city zones, showing a computational effort almost ex-
ponentially increasing with the number of vehicles, fixing the number of zones. Although
the number of vehicles reaches realistic numbers, the number of zones is definitely too
small for real-world scenarios and increasing it to around 270, like is needed for the city of
Turin, would make solving the problem impossible. Figure 8.2 displays the cardinality of
the state space against the number of city zones and the number of vehicles in the system
in logarithmic scale, showing the exponential growth of the state space with the number
of zones. Besides, the method requires the computation of the reachability set R(s) of
every system state s, a problem whose complexity is O

1
n2

2

2
, where n is the number of

system states.
However, the algorithm can still be applied to small dimensionality cases and some

comparisons with the approximated algorithms can be made in order to grasp an idea of
how good the approximations are, with respect to the optimal solution provided by the

74

8.2 – Toy case and optimal solution

Figure 8.3. Efficiency results with toy case problem, showing the optimal solution and
the approximated solutions performances.

Figure 8.4. Elapsed time to run all the algorithms with the toy case problem.

dynamic programming method. An analysis on a toy case was therefore carried out, fixing
the number of vehicles in the system to 20 and working on 4 city zones. Figure 8.3 displays
the efficiency results obtained by all the approximated methods run with different look
ahead horizons and, in the red dashed line, the efficiency of the optimal result obtained
thorough the dynamic programming algorithm. Figure 8.4 shows the required time in
seconds to execute the algorithms.

75

Numerical results

First of all, the advantage of a long-sighted optimisation is already clear in this small
dimensionality scenario: increasing the look ahead horizon to just two time frames greatly
boosts the efficiency, which, for the greedy approach, is far from the optimal solution pro-
vided by the dynamic programming method. The best approximated method turns out
to be the mixed integer linear program followed by the neighbourhood search using the
Monte Carlo solution quality measure, which is able to attain almost optimal efficiency re-
sults with all look ahead horizons, except from the greedy one. However, it is, at the same
time, the most computationally expensive method, exceeding the dynamic programming
algorithm for look ahead horizons longer than 6.

Figure 8.4 also shows that for this toy problem, the execution time strongly depends
on the neighbourhood search step: when it is not performed, the resolution is almost
immediate; when it is performed with the best case scenario quality measure, more time
is required, but the algorithms keep being faster than the dynamic programming method;
instead, comparing the relocation strategies through the Monte Carlo simulation method
requires the most time. It is, however, worth noticing that the resolution of the linear
program does not weigh on the total running time because, even MILPs, are solvable
immediately in such small dimensionality scenarios.

8.3 Comparing approximated methods’ performances

Working on real-world problems makes it impossible to use the dynamic programming
approach, as already discussed in the previous section. The approximated methods de-
scribed in chapter 5 and chapter 6 are therefore applied to the case study of the Car2go
fleet operating in the city of Turin. The mobility data used to run the algorithms are
those described in chapter 7, with 396 vehicles, 276 city zones and a relocation budget
Rmax = 10.

Figure 8.5 displays the efficiency results of all the approximated algorithms by the
look ahead horizon employed in the optimisation process. There is a crystal clear result:
avoiding a greedy strategy favouring a long-sighted approach is able to increase the sat-
isfied demand by anticipating future demand patterns. Increasing the look ahead period
boosts the performances, but a plateau is soon reached: indeed, increasing the look ahead
from 1 to 2 improves the efficiency by around 7%, with a further improvement of another
3% when the look ahead gets to 10. Observe that a 7 to 10% improvement in efficiency
can be obtained using a non-greedy approach just by smartly relocating 10 vehicles per
time frame, making up less than 3% of the fleet! The MILP approach seems to be the
most performing one, giving good results with all look aheads. The LP+rounding method
performs fairly well, showing that the solution post-processing is able to provide quality
solutions in very short times, however its performances are lower with respect to the other
algorithms. The neighbourhood search seems to be able to do only little improvements
to the solution, with the LP+rounding method being the one that benefits the most from
using such procedure.

Figure 8.6 shows the time needed for the optimisation algorithms to be run. Short
look ahead periods, up to 2 two-hour time frames, do not require great computational

76

8.3 – Comparing approximated methods’ performances

times with any of the algorithms implemented. Unfortunately, starting from a 4 two-
hour time frame look ahead horizon the elapsed time starts to become unviable for many
algorithms. From a 8 time frame look ahead horizon on, the only algorithm guaranteeing
a short execution time is the linear program with no neighbourhood search. The run
time of some algorithms is not shown since it so elevated that it exceeded a two-day
threshold. The neighbourhood search greatly slows down the optimisation procedure,
especially when the Monte Carlo quality measure to compare candidate solutions is used.
With the shorter look ahead horizons (up to 4 time frames), the neighbourhood search
is actually the main responsible for the total computational time. With the size of the
problem increasing (look ahead horizons longer than 6), also solving the mixed integer
linear program becomes a computational issue. The pre-processing of the solution carried
out through the LP, whose aim is to reduce the problem dimensionality, does indeed speed
up the algorithm, but that is not enough to make the resolution of the problem fast enough
to be suitable to the shared mobility context.

No sharp superiority in efficiency of any algorithm emerges from the results. The
MILP method always guarantees good performances with respect to the others, and its
benefits can be further enhanced by the neighbourhood search, which, however, turned
out to be too expensive to be carried out in this context, since fast decisions need to
be taken at the beginning of a new relocation step. The best overall performances are
provided by the LP+rounding method together with the neighbourhood search, but again,
the neighbourhood search makes the resolution process too slow to be used in practice by
the operator. Since a trade off between efficiency and computational times needs to be
reached, the most convenient algorithm might be the MILP problem without the use of
the neighbourhood search with only a 2 two-hour time frame look ahead horizon, which
guarantees high efficiency in virtually no computational time.

efficiency look ahead horizon
1 2 4 6 8 10

LP+MILP & no search 0.730 0.803 0.814 0.822 0.828 0.828
LP+MILP & search & best case 0.736 0.794 0.809 0.820 0.822 -
LP+MILP & search & Monte Carlo 0.766 0.816 0.814 0.832 - -
LP+rounding & no search 0.718 0.806 0.815 0.820 0.820 0.828
LP+rounding & search & best case 0.747 0.801 0.809 0.828 0.821 0.825
LP+rounding & search & Monte Carlo 0.767 0.814 0.822 0.823 0.835 0.838
MILP & no search 0.755 0.818 0.818 0.832 0.834 0.836
MILP & search & best case 0.760 0.810 0.812 0.825 - -
MILP & search & Monte Carlo 0.760 0.822 0.816 0.831 - -

Table 8.3. Efficiency results of approximated algorithms in the real-world case.

77

Numerical results

Figure 8.5. Efficiency results of approximated algorithms in the real-world case.

Figure 8.6. Elapsed time to run the approximated algorithms in the real-world case.

8.4 Analysis on the maximum relocation budget

As explained in section 3.1, the parameter Rmax is the relocation budget set by the
operator for each time frame, i.e., each relocation step. This means that, within a single
time frame, a maximum number of Rmax cars can be relocated by the support fleet.
Of course, assuming that the operator is able to relocate all vehicles in the system is
unreasonable, therefore such technical limit may be introduced. Besides, if all cars could

78

8.4 – Analysis on the maximum relocation budget

elapsed time (s) look ahead horizon
1 2 4 6 8 10

LP+MILP & no search 3.8 5.4 70.0 10207 31341 49553
LP+MILP & search & best case 3711 5734 11364 69952 89716 -
LP+MILP & search & Monte Carlo 2940 5602 19898 140977 - -
LP+rounding & no search 1.3 2.8 6.5 10.8 16.8 24.2
LP+rounding & search & best case 4290 6330 11321 16173 31111 38399
LP+rounding& search& Monte Carlo 3163 4799 12823 17639 40000 46310
MILP & no search 5.3 40.6 340 12127 32653 42901
MILP & search & best case 1947 8311 28791 160644 - -
MILP & search & Monte Carlo 1792 7845 34831 204831 - -

Table 8.4. Elapsed time to run the approximated algorithms in the real-world case.

be moved within a single time frame to optimise the amount of satisfied trip requests,
an optimisation procedure over multiple time frames would not even make sense, since
it would be enough to find the system state guaranteeing the most satisfied trips during
every time frame and attain that state at every step.

Using the optimisation method based on the resolution of the mixed integer linear
program described in subsection 5.2.2, an analysis on the effect of the relocation budget
on the efficiency was carried out. Figure 8.7 displays the system efficiency as a function of
different values of Rmax, ranging from 0 - the no relocation scenario - to 60, being around
15% of the total number of vehicles in the system. The plot shows that setting a higher
relocation budget clearly boosts the efficiency and definitely proves that implementing
relocation strategies is useful to attain a greater user satisfaction. Just moving 5 cars per
time frame, making up only 1% of the fleet, increases the efficiency of the system by around
4.5%. Besides, further increasing Rmax to 30 boosts the efficiency by around 12%. When
Rmax > 30 a decrease in the curve can be observed, probably due to the unavailability
of too many cars, undergoing the relocation process and therefore not bookable by the
users.

Rmax 0 5 10 15 20
efficiency 0.747 0.789 0.818 0.831 0.848

Rmax 25 30 35 40 45
efficiency 0.858 0.865 0.863 0.858 0.854

Rmax 50 55 60
efficiency 0.852 0.845 0.842

Table 8.5. System efficiency by relocation budget.

79

Numerical results

Figure 8.7. System efficiency by relocation budget.

Figure 8.8. Total profits by trip minute fee and cost of each relocation.

8.5 Analysis on profits and relocation costs

This last section is devoted to carrying out a further analysis on the profits of the shared
mobility system operator. The objective of the problem to be solved at any optimisation

80

8.5 – Analysis on profits and relocation costs

round p is (3.1), which we repeat here:

max
Ø
t∈Tp

Ø
i∈Z

EOti.

Since only the number of satisfied trip requests is taken into account, all the relocation
budget Rmax tends to be used. Though, relocating a vehicle requires a support fleet and
therefore comes with a cost, meaning that the efficiency gain - and, therefore, additional
earnings - observed in the previous sections might be offset by the relocation cost.

This section analyses the effect of the relocation costs on the profits of the operator.
To do so, the objective of the problem (3.1) was modified to

max f ×
Ø
t∈Tp

Ø
i∈Z

EOti − c×
Ø
t∈Tp

Ø
i∈Z

r+
ti ,

where, like in (8.1), f is the average earnings from a trip and c is the average cost of
relocating a vehicle. The first summation yields the number of satisfied trips over the
whole look ahead horizon Tp, while the second summation represents the total number
of vehicles moved by the support staff during the relocation procedure. The previous
equation therefore represents the total profits obtained over the look ahead period and it
has to be maximised. Assuming the average trip duration to be 20 minutes and considering
that mobility shared systems charge users based on a per-minute fee fm, the average
earnings from a trip can be written as

f = 20× fm.

Using again the optimisation method based on the resolution of the mixed integer
linear program described in subsection 5.2.2 and fixing again Rmax = 10, an analysis
on the effect of the relocation costs on the total profits was then carried out. Figure 8.8
displays the total profits as a function of the unit relocation cost r, which ranges from 0 to
10, and of the per-minute trip fee fm, ranging from 0.1 to 0.5 (and, therefore, the average
trip profit ranges from 2 to 10). The plot shows that, as one would expect, higher fees
guarantee higher profits. The relocation costs impact on the profits, again, as expected,
decreasing the latter approximately linearly. It is very important, however, to notice that
a very basic analysis was carried out here, keeping the demand patterns independent on
the rent fees, which is clearly unrealistic, since, usually demand models assume an inverse
dependency of the demand and the prices.

Figure 8.9 shows the efficiency of the system as a function of the unit relocation cost
r and of the per-minute trip fee fm. The efficiency has a tendency to decrease with
the increasing relocation costs, except from the 0.5 per-minute fee, the most expensive
case taken into consideration, in which case no clear dependency emerges. Lower trip fee
scenarios are the most sensitive to an increase in the relocation costs.

Finally, Figure 8.10 plots the total relocated vehicles during the whole optimisation
period P as a function of the unit relocation cost r and of the per-minute trip fee fm.
Since both P and Rmax, the optimisation horizon and the relocation budget per time
frame, were set to 10, the maximum possible number of vehicles which can be transferred

81

Numerical results

from the operator is 100. The figure shows that, the higher the relocation costs, the less
vehicles are relocated, since the additional cost of moving a vehicles does not get rewarded
by a sufficient profit. Again, higher fee cases are less sensitive to an increase in relocation
costs: with a 0.1 per-minute fee the relocation procedure becomes disadvantageous when
the relocation cost is more than 4 per unit. On the contrary, a 0.5 per minute-fee makes
the relocation process always useful, even with high relocation cost. Observing when the
total relocation is zero explains why, in Figure 8.8, the total profit curves, after an initial
linear dependency, flatten from a cost value on, depending on the rent fees.

total profits relocation cost
0 2 4 6 8 10

per-minute trip fee

0.1 3474 3328 3198 3214 3214 3214
0.2 7040 6852 6656 6508 6416 6428
0.3 10482 10378 10172 9990 9826 9694
0.4 14072 13912 13736 13558 13336 13194
0.5 17710 17350 17190 17040 16928 16660

Table 8.6. Total profits by trip minute fee and cost of each relocation.

efficiency relocation cost
0 2 4 6 8 10

per-minute trip fee

0.1 0.807 0.817 0.744 0.747 0.747 0.747
0.2 0.818 0.819 0.816 0.780 0.746 0.747
0.3 0.812 0.819 0.819 0.817 0.795 0.762
0.4 0.817 0.820 0.821 0.822 0.817 0.808
0.5 0.823 0.816 0.817 0.820 0.823 0.816

Table 8.7. System efficiency by trip minute fee and cost of each relocation.

total relocation relocation cost
0 2 4 6 8 10

per-minute trip fee

0.1 100 94 1 0 0 0
0.2 100 100 92 34 1 0
0.3 100 100 100 93 55 14
0.4 100 100 100 99 92 71
0.5 100 100 100 100 99 91

Table 8.8. Total number of relocated vehicles by trip minute fee and cost of each relocation.

82

8.5 – Analysis on profits and relocation costs

Figure 8.9. System efficiency by per-minute trip fee and cost of each relocation.

Figure 8.10. Total number of relocated vehicles by per-minute trip fee and
cost of each relocation.

83

84

Chapter 9

Conclusions

Smart mobility system are widely spreading worldwide to address smart city challenges
such as carbon reduction, traffic decongestion, multimodal urban transportation. How-
ever, the system’s cyclical dynamic reconfiguration and the variability of the demand
patterns throughout the operation period may reduce possible future demand, and, as a
consequence, user satisfaction and profits. Relocation strategies are broadly implemented
to guarantee a more even and appropriate vehicle distribution in the geographical opera-
tion area of the fleet, but, since these strategies come with high costs, it is of great interest
to study methodologies to optimise such process.

A lot of work has already been done to develop optimal relocation strategies, employing
all kinds of methodologies. Nonetheless, many algorithms focus on short term optimisation
strategies, disregarding possible future evolutions of the system, which might be penalised
from present decisions. This thesis went beyond this greedy approach, looking for the
optimal relocation strategy gathering information on longer term demand patterns and
using it to work out strategies that avoid myopic behaviours. The real-world case of the
Car2go fleet operating in the city of Turin was used to validate the results and discuss
the implementation of different strategies.

Although all previous research is already fairly positive on considering the implementa-
tion of relocation strategies to boost user satisfaction, this work once again confirmed that
operators not relocating vehicles to meet the varying demand patterns suffer a big loss in
user satisfaction. Numerical results showed that relocating only 1% of the fleet increases
the efficiency of the system by around 4.5%, with a user satisfaction boost reaching 12%
when further increasing to 7.5% the share of relocated vehicles. Too many transferred
vehicles, however, seem to bring about a decrease in the user satisfaction, due to the un-
availability of too many cars undergoing the relocation process and therefore not bookable
by the users.

Being settled that implementing a relocation strategy does improve the system per-
formances, the main aim of the present work was to investigate how long is it worth to
look ahead in the future, considering that the further we look, the bigger the solution
gets in dimensionality, requiring more and more time for the algorithms to find a solution
to the problem. Results showed that a long-sighted strategy does indeed boost the user
satisfaction, with an efficiency increase of around 7% when the look ahead period is set to

85

Conclusions

2 two-hour time frames and less than 3% of the total vehicles are moved by the operator.
The increase in efficiency can reach up to 10% when the look ahead period gets to 10 two-
hour time frames. However, when implementing strategies employing longer look aheads
than 4 time frames, the computational times usually become overwhelming, making such
algorithms unsuitable for the context of use, where fast decisions need to be taken based
on the evolution of the system.

The algorithm providing the best trade off between performances and computational
times turned out to be the mixed integer linear program optimising over a 2 two-hour
look ahead horizon in virtually no time, guaranteeing a 82% system efficiency. However,
all methods proved to be able to provide good solutions to the problem, although some
of them needed definitely too much time to be run and fit the problem needs. In par-
ticular, implementing the neighbourhood search starting from the solution given by the
optimisation program, was able to improve the solution, but the extra time needed to
do so was too high for that to be a good alternative to other methods. Working with a
toy case problem also proved that the developed algorithms, which are able to find only
approximate solutions, can actually work out almost optimal strategies in many cases,
taking a solution obtained through the dynamic programming approach as a benchmark.
This latter solution is optimal, but the algorithm providing it gets soon computationally
infeasible since the state space grows almost exponentially with the number of vehicles
and city zones in the system.

In the previous considerations, only the user satisfaction was analysed. Nonetheless,
the relocation process comes at a high cost, which might offset the additional earnings
coming from trips carried out thanks to the operator intervention on the system. A
basic analysis showed that, higher fees guarantee higher profits and the relocation costs
impact on the profits decreasing the latter approximately linearly. Besides, the system
efficiency has a tendency to decrease with the increasing relocation costs, except from very
high per-minute fee scenarios. Finally, the higher the relocation costs, the less vehicles
are relocated, since the additional cost of moving a vehicle does not get rewarded by a
sufficient profit, with higher fee cases less sensitive to an increase in costs.

Based on the kind of system, the objective function could be modified in order to limit
the number of zones involved in the relocation procedure, since, as an example, collecting
bikes from many zones in the city would involve higher costs than collecting them from just
a few. The present work aimed at devising a general and flexible procedure, therefore, this
element was not taken into account. Moreover, the great computational effort required by
some algorithms did not make it possible to assess their performances in a more accurate
way. However, a Monte Carlo simulation of the system evolution, involving many runs,
would be more suitable to inspect the algorithms’ performances and assess the resulting
efficiency more appropriately.

The total demand over all time frames was assumed to be perfectly known in this
work, which is definitely unrealistic. Usually demand models are employed to predict
the demand patterns, giving a probability distribution of the number of request during
a given time frame. Future works could therefore introduce this further difficulty into
the picture, investigating whether longer look ahead periods could actually turn out to
be decreasing the methods’ performances. The effect of the relocation costs could further
be investigated, too, employing appropriate demand models based on the different fees

86

Conclusions

applied by the operator.
Finally, the present thesis developed methods to identify which city zones should act as

donors and receivers of vehicles during every relocation step. The following stage would
be to find the optimal path through the zones to redistribute the vehicles in the most
convenient way. The vehicle routing problem could be a solution and it has been widely
inspected in the existing literature, although some customisation of the constraints needs
to be performed to account for, as an example, whether we are working with a car or bike
sharing system, for which the practical redistribution procedure is very different.

87

88

Appendix A

Tuning simulated annealing

The present appendix describes the procedure employed to choose the cooling schedule
for the simulated annealing strategy in the neighbourhood search algorithm.

The following possible schedules have been tested, trying different parameter configu-
rations starting from the possibilities listed in subsection 6.1.2:

• Exponential schedules, whose general form is T (t) = T0αt:

– exp_sched_0 : T (t) = 1× 0.9t;
– exp_sched_1 : T (t) = 10× 0.9t;
– exp_sched_2 : T (t) = 1× 0.5t;
– exp_sched_3 : T (t) = 10× 0.5t;
– exp_sched_4 : T (t) = 0.1× 0.9t;
– exp_sched_5 : T (t) = 0.1× 0.5t;

• Linear schedules, whose general form is T (t) = T0 − ηt:

– lin_sched_0 : T (t) = 0.1− 0.1× t−0.1
(tmax+1)−0.1 ;

– lin_sched_1 : T (t) = 1− 1× t−1
(tmax+1)−1 ;

– lin_sched_2 : T (t) = 10− 10× t−10
(tmax+1)−10 ;

• Logarithmic schedules, whose general form is T (t) = c
log(t+d) (usually d = 1):

– log_sched_0 : T (t) = 10
log((t+1)+1) ;

– log_sched_1 : T (t) = 1
log((t+1)+1) ;

– log_sched_2 : T (t) = 0.1
log((t+1)+1) .

Observe that the parameter c in the logarithmic schedule is similar to the initial tem-
perature parameter in the other schedules, and their values are set to either 0.1, 1 or 10.
The parameter η in the linear schedules is set to give 0 temperature at the last iteration,

89

Tuning simulated annealing

schedule average percentage efficiency gain standard deviation
exp_sched_0 3.94% 1.77%
exp_sched_1 3.03% 1.35%
exp_sched_2 3.89% 1.75%
exp_sched_3 3.50% 1.54%
exp_sched_4 3.38% 1.49%
exp_sched_5 3.26% 1.43%
lin_sched_0 3.52% 1.51%
lin_sched_1 3.60% 1.69%
lin_sched_2 -2.76% 2.31%
log_sched_0 -1.70% 2.14%
log_sched_1 -3.09% 3.16%
log_sched_2 3.34% 1.45%

Table A.1. Average percentage efficiency gain and standard deviation by cool-
ing schedule function choice.

in order to decrease the number of tunable parameters. To do so, the maximum number
of iterations tmax needs to be provided. Finally, t + 1 instead of t is used in the linear and
logarithmic schedules to avoid them to take up exactly zero value, since that would give
issues when using the temperature function in the simulated annealing approach (which
requires to compute the acceptance probability dividing by the temperature).

The tuning procedure was carried out with mobility data coming from the same dataset
described in chapter 7, but different data from those used to test the algorithms were
extracted. The maximum number of iterations was set to 50, and the maximum number
of iterations which produced no change in the incumbent solution to 15.

The performance metric employed to compare the different cooling schedules is the
percentage efficiency gain of the system. It is computed starting from the efficiency of the
starting solution e0, given by solving the linear program described in chapter 5, and the
efficiency obtained by the solution after a round of neighbourhood search implementing
the simulated annealing approach has been carried out, in the following way:

percentage efficiency gain = e1 − e0

e0
× 100

Finally, to gather more data and test the simulated annealing and the neighbourhood
search in more scenarios, the procedure was carried out optimising with different look
ahead periods in the range [1, 4], causing the solution to gradually increase its dimen-
sionality.

Table A.1 shows the results of the trials. The average percentage efficiency gain of
the runs involving the same schedule is displayed, together with its standard deviation.
The same results are presented in Figure A.1, which exhibits the dispersion of the data

90

Tuning simulated annealing

through box plots produces from each sample, grouped by the chosen schedule. Based on
these results, the first exponential schedule was used to carry out all the neighbourhood
search steps. In general, the exponential schedule is the best performing one, while the
logarithmic schedule does not seem to fit the problem needs.

Some further considerations can be made. Figure A.2 plots the average percentage
efficiency gain by the initial temperature value, grouped by the schedule type. The plot
shows that small values of the initial temperature - namely, 0.1 - always give good results,
probably because the algorithm starts from an already performing solution which does
not need big adjustments. Higher initial temperature values give mixed results, with the
logarithmic schedule always worsening the quality of the solution. The reason behind this
behaviour is, probably, that high values of initial temperature make accepting sub-optimal
solutions too much likely.

Finally, Figure A.3 plots the average percentage efficiency gain by the look ahead
horizon of the solution. The results do not show any striking connection between these
two variables, even though a longer look ahead increases the solution dimensionality and,
therefore, it should be harder for the algorithm to improve the quality of the solution.

Figure A.1. Average percentage efficiency gain by cooling schedule function choice.

91

Tuning simulated annealing

Figure A.2. Average percentage efficiency gain by initial temperature choice.

Figure A.3. Average percentage efficiency gain by look ahead horizon.

92

Bibliography

Vitória Albuquerque, Miguel Sales Dias, and Fernando Bacao. Machine learning ap-
proaches to bike-sharing systems: A systematic literature review. ISPRS International
Journal of Geo-Information, 10(2), 2021. ISSN 2220-9964. doi: 10.3390/ijgi10020062.
URL https://www.mdpi.com/2220-9964/10/2/62.

Seonghoon Ban and Kyung Hoon Hyun. Curvature-based distribution algorithm: rebal-
ancing bike sharing system with agent-based simulation. Journal of Visualization, 22,
04 2019. doi: 10.1007/s12650-019-00557-6.

Michelangelo Barulli, Alessandro Ciociola, Michele Cocca, Luca Vassio, Danilo Giordano,
and Marco Mellia. On scalability of electric car sharing in smart cities. In 2020 IEEE
International Smart Cities Conference (ISC2), pages 1–8. IEEE, 2020.

Dimitris Bertsimas and John Tsitsiklis. Simulated Annealing. Statistical Science, 8(1):
10 – 15, 1993. doi: 10.1214/ss/1177011077. URL https://doi.org/10.1214/ss/
1177011077.

Karl-Heinz Borgwardt. The simplex algorithm: A probabilistic analysis. Algorithms and
Combinatorics, 1, 1987.

Paolo Brandimarte. From Shortest Paths to Reinforcement Learning. Springer Cham,
2021. ISBN 978-3-030-61866-7. doi: https://doi.org/10.1007/978-3-030-61867-4. URL
https://link.springer.com/book/10.1007/978-3-030-61867-4.

Jan Brinkmann, Marlin W. Ulmer, and Dirk C. Mattfeld. Dynamic lookahead poli-
cies for stochastic-dynamic inventory routing in bike sharing systems. Computers &
Operations Research, 106:260–279, 2019. ISSN 0305-0548. doi: https://doi.org/10.
1016/j.cor.2018.06.004. URL https://www.sciencedirect.com/science/article/
pii/S0305054818301588.

Olli Bräysy and Michel Gendreau. Vehicle routing problem with time windows, part i:
Route construction and local search algorithms. Transportation Science, 39:104–118,
02 2005a. doi: 10.1287/trsc.1030.0056.

Olli Bräysy and Michel Gendreau. Vehicle routing problem with time windows, part ii:
Metaheuristics. Transportation Science, 39:119–139, 02 2005b. doi: 10.1287/trsc.1030.
0057.

93

https://www.mdpi.com/2220-9964/10/2/62
https://doi.org/10.1214/ss/1177011077
https://doi.org/10.1214/ss/1177011077
https://link.springer.com/book/10.1007/978-3-030-61867-4
https://www.sciencedirect.com/science/article/pii/S0305054818301588
https://www.sciencedirect.com/science/article/pii/S0305054818301588

BIBLIOGRAPHY

Leonardo Caggiani, Rosalia Camporeale, Michele Ottomanelli, and Wai Yuen Szeto. A
modeling framework for the dynamic management of free-floating bike-sharing sys-
tems. Transportation Research Part C: Emerging Technologies, 87:159–182, 2018.
ISSN 0968-090X. doi: https://doi.org/10.1016/j.trc.2018.01.001. URL https://www.
sciencedirect.com/science/article/pii/S0968090X18300020.

Federico Chiariotti, Chiara Pielli, Andrea Zanella, and Michele Zorzi. A dynamic approach
to rebalancing bike-sharing systems. Sensors, 18(2), 2018. ISSN 1424-8220. doi: 10.
3390/s18020512. URL https://www.mdpi.com/1424-8220/18/2/512.

Alessandro Ciociola, Michele Cocca, Danilo Giordano, Luca Vassio, and Marco Mellia.
E-scooter sharing: Leveraging open data for system design. In 2020 IEEE/ACM 24th
International Symposium on Distributed Simulation and Real Time Applications (DS-
RT), pages 1–8, 2020a. doi: 10.1109/DS-RT50469.2020.9213514.

Alessandro Ciociola, Dena Markudova, Luca Vassio, Danilo Giordano, Marco Mellia, and
Michela Meo. Impact of charging infrastructure and policies on electric car sharing
systems. In 2020 IEEE 23rd International Conference on Intelligent Transportation
Systems (ITSC), pages 1–6. IEEE, 2020b.

Michele Cocca, Danilo Giordano, Marco Mellia, and Luca Vassio. Data driven optimiza-
tion of charging station placement for ev free floating car sharing. In 2018 21st Inter-
national Conference on Intelligent Transportation Systems (ITSC), pages 2490–2495,
2018. doi: 10.1109/ITSC.2018.8569256.

Michele Cocca, Danilo Giordano, Marco Mellia, and Luca Vassio. Free floating electric
car sharing design: Data driven optimisation. Pervasive Mob. Comput., 55(C):59–75,
apr 2019. ISSN 1574-1192. doi: 10.1016/j.pmcj.2019.02.007. URL https://doi.org/
10.1016/j.pmcj.2019.02.007.

Michele Cocca, Douglas Teixeira, Luca Vassio, Marco Mellia, Jussara M. Almeida,
and Ana Paula Couto da Silva. On car-sharing usage prediction with open socio-
demographic data. Electronics, 9(1), 2020. ISSN 2079-9292. doi: 10.3390/
electronics9010072. URL https://www.mdpi.com/2079-9292/9/1/72.

Maria Pia Fanti, Agostino Marcello Mangini, Michele Roccotelli, Bartolomeo Silvestri, and
Salvatore Digiesi. Electric vehicle fleet relocation management for sharing systems based
on incentive mechanism. In 2019 IEEE 15th International Conference on Automation
Science and Engineering (CASE), pages 1048–1053, 2019. doi: 10.1109/COASE.2019.
8842852.

Edoardo Fassio, Alessandro Ciociola, Danilo Giordano, Michel Noussan, Luca Vassio, and
Marco Mellia. Environmental and economic comparison of icev and ev in car sharing. In
2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pages
1621–1626, 2021. doi: 10.1109/ITSC48978.2021.9564578.

Matteo Fischetti and Andrea Lodi. Heuristics in Mixed Integer Programming. John
Wiley & Sons, Ltd, 2011. ISBN 9780470400531. doi: https://doi.org/10.1002/

94

https://www.sciencedirect.com/science/article/pii/S0968090X18300020
https://www.sciencedirect.com/science/article/pii/S0968090X18300020
https://www.mdpi.com/1424-8220/18/2/512
https://doi.org/10.1016/j.pmcj.2019.02.007
https://doi.org/10.1016/j.pmcj.2019.02.007
https://www.mdpi.com/2079-9292/9/1/72

BIBLIOGRAPHY

9780470400531.eorms0376. URL https://onlinelibrary.wiley.com/doi/abs/10.
1002/9780470400531.eorms0376.

Fahimeh Golbabaei, Tan Yigitcanlar, and Jonathan Bunker. The role of shared au-
tonomous vehicle systems in delivering smart urban mobility: A systematic review
of the literature. International Journal of Sustainable Transportation, 15(10):731–
748, 2021. doi: 10.1080/15568318.2020.1798571. URL https://doi.org/10.1080/
15568318.2020.1798571.

Simen Hellem, Carl Andreas Julsvoll, Magnus Moan, Henrik Andersson, Kjetil Fager-
holt, and Giovanni Pantuso. The dynamic electric carsharing relocation problem.
EURO Journal on Transportation and Logistics, 10:100055, 2021. ISSN 2192-4376.
doi: https://doi.org/10.1016/j.ejtl.2021.100055. URL https://www.sciencedirect.
com/science/article/pii/S2192437621000248.

Junjie Hu, Hugo Morais, Tiago Sousa, and Morten Lind. Electric vehicle fleet management
in smart grids: A review of services, optimization and control aspects. Renewable
and Sustainable Energy Reviews, 56:1207–1226, 2016. ISSN 1364-0321. doi: https://
doi.org/10.1016/j.rser.2015.12.014. URL https://www.sciencedirect.com/science/
article/pii/S1364032115013970.

J. Lin and T. Chou. A geo-aware and vrp-based public bicycle redistribution system. In-
ternational Journal of Vehicular Technology, 2012, 12 2012. doi: 10.1155/2012/963427.

Yaghout Nourani and Bjarne Andresen. A comparison of simulated annealing cool-
ing strategies. Journal of Physics A: Mathematical and General, 31(41):8373–8385,
oct 1998. doi: 10.1088/0305-4470/31/41/011. URL https://doi.org/10.1088/
0305-4470/31/41/011.

Ling Pan, Qingpeng Cai, Zhixuan Fang, Pingzhong Tang, and Longbo Huang. Re-
balancing dockless bike sharing systems. CoRR, abs/1802.04592, 2018. URL http:
//arxiv.org/abs/1802.04592.

Julius Pfrommer, Joseph Warrington, Georg Schildbach, and Manfred Morari. Dynamic
vehicle redistribution and online price incentives in shared mobility systems. IEEE
Transactions on Intelligent Transportation Systems, 15(4):1567–1578, 2014. doi: 10.
1109/TITS.2014.2303986.

Peter Salamon, James D. Nulton, John R. Harland, Jacob Pedersen, George Rup-
peiner, and Luby Liao. Simulated annealing with constant thermodynamic speed.
Computer Physics Communications, 49(3):423–428, 1988. ISSN 0010-4655. doi:
https://doi.org/10.1016/0010-4655(88)90003-3. URL https://www.sciencedirect.
com/science/article/pii/0010465588900033.

Lei Shi, Yong Zhang, Weina Rui, and Xinzheng Yang. Study on the bike-sharing in-
ventory rebalancing and vehicle routing for bike-sharing system. Transportation Re-
search Procedia, 39:624–633, 2019. ISSN 2352-1465. doi: https://doi.org/10.1016/
j.trpro.2019.06.064. URL https://www.sciencedirect.com/science/article/pii/

95

https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470400531.eorms0376
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470400531.eorms0376
https://doi.org/10.1080/15568318.2020.1798571
https://doi.org/10.1080/15568318.2020.1798571
https://www.sciencedirect.com/science/article/pii/S2192437621000248
https://www.sciencedirect.com/science/article/pii/S2192437621000248
https://www.sciencedirect.com/science/article/pii/S1364032115013970
https://www.sciencedirect.com/science/article/pii/S1364032115013970
https://doi.org/10.1088/0305-4470/31/41/011
https://doi.org/10.1088/0305-4470/31/41/011
http://arxiv.org/abs/1802.04592
http://arxiv.org/abs/1802.04592
https://www.sciencedirect.com/science/article/pii/0010465588900033
https://www.sciencedirect.com/science/article/pii/0010465588900033
https://www.sciencedirect.com/science/article/pii/S2352146519301528
https://www.sciencedirect.com/science/article/pii/S2352146519301528

BIBLIOGRAPHY

S2352146519301528. 3rd International Conference "Green Cities – Green Logistics for
Greener Cities", Szczecin, 13-14 September 2018.

Qiong Tang, Zhuo Fu, Dezhi Zhang, Hao Guo, and Minyi Li. Addressing the bike repo-
sitioning problem in bike sharing system: A two-stage stochastic programming model.
Scientific Programming, 2020:1–12, 05 2020a. doi: 10.1155/2020/8868892.

Xindi Tang, Congyuan Ji, Fang He, and Meng Li. Online operation of bike sharing
system: An approximate dynamic programming approach. pages 2647–2658, 08 2020b.
doi: 10.1061/9780784482933.228.

Leonardo Tolomei, Stefano Fiorini, Alessandro Ciociola, Luca Vassio, Danilo Giordano,
and Marco Mellia. Benefits of relocation on e-scooter sharing-a data-informed ap-
proach. In 2021 IEEE International Intelligent Transportation Systems Conference
(ITSC), pages 3170–3175. IEEE, 2021.

Carlos M. Vallez, Mario Castro, and David Contreras. Challenges and opportunities in
dock-based bike-sharing rebalancing: A systematic review. Sustainability, 13(4), 2021.
ISSN 2071-1050. doi: 10.3390/su13041829. URL https://www.mdpi.com/2071-1050/
13/4/1829.

Ning Wang, Qiaoqian Liu, Jiahui Guo, and Tong Fang. A user-based adaptive joint
relocation model combining electric car-sharing and bicycle-sharing. Transportmetrica
B: Transport Dynamics, 10(1):1046–1069, 2022. doi: 10.1080/21680566.2021.2007174.
URL https://doi.org/10.1080/21680566.2021.2007174.

Konstanze Winter, Oded Cats, Gonçalo Homem de Almeida Correia, and Bart van Arem.
Designing an automated demand-responsive transport system: Fleet size and perfor-
mance analysis for a campus–train station service. Transportation Research Record, 2542
(1):75–83, 2016. doi: 10.3141/2542-09. URL https://doi.org/10.3141/2542-09.

Ruijing Wu, Shaoxuan Liu, and Zhenyang Shi. Customer incentive rebalancing plan in
free-float bike-sharing system with limited information. Sustainability, 11(11), 2019.
ISSN 2071-1050. doi: 10.3390/su11113088. URL https://www.mdpi.com/2071-1050/
11/11/3088.

96

https://www.sciencedirect.com/science/article/pii/S2352146519301528
https://www.sciencedirect.com/science/article/pii/S2352146519301528
https://www.sciencedirect.com/science/article/pii/S2352146519301528
https://www.mdpi.com/2071-1050/13/4/1829
https://www.mdpi.com/2071-1050/13/4/1829
https://doi.org/10.1080/21680566.2021.2007174
https://doi.org/10.3141/2542-09
https://www.mdpi.com/2071-1050/11/11/3088
https://www.mdpi.com/2071-1050/11/11/3088

	List of Tables
	List of Figures
	Introduction and motivation
	Scenario and Framework
	Research questions
	My contribution and results
	Overview of the thesis

	Literature Review
	Overview
	Vehicle Routing Problem (VRP)
	Fleet Operator based relocation
	User incentive based systems
	Optimisation algorithms
	Heuristics in mixed integer programming
	Simulated Annealing (SA)

	Research group works

	Methodology
	Problem formulation and objective
	Overview on implemented algorithms
	Implementation
	System simulation and objective evaluation

	Dynamic programming approach
	The dynamic programming principle
	Implementation

	Sequential approximated linear programming and mixed integer linear programming solution
	Theoretical background
	Linear programs (LP)
	Mixed integer linear programs (MILP)

	Implementation
	Linear program and solution rounding
	Mixed integer linear program
	Linear program + mixed integer linear program

	Neighbourhood search and simulated annealing
	Theoretical background
	Neighbourhood search
	Simulated annealing (SA)

	Implementation
	Neighbourhood structure definition
	Neighbourhood search
	Solution evaluation
	Parallelisation

	Data extraction and analysis
	Data extraction
	The dataset
	Dataset cleaning
	Data processing

	Data aggregation

	Numerical results
	The metrics
	Toy case and optimal solution
	Comparing approximated methods' performances
	Analysis on the maximum relocation budget
	Analysis on profits and relocation costs

	Conclusions
	Appendix Tuning simulated annealing

