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https://www.britannica.com/science/gradient-mathematics
https://www.britannica.com/science/differential-operator
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Abstract 
 

One of the most challenging issues in computational modelling of a multiphase 
flow is spurious currents. Spurious currents arise by the errors in the interface 
curvature computations between two fluids in the computational domain. Being 
predominant in porous media at small capillary numbers, they might cause 
numerical instabilities and compromise the quality of the results in terms of fluid 
velocity and capillary pressure within the numerical simulation. In this work, as an 
attempt to fix this issue, we investigate and implement the solutions proposed in 
the literature to develop a set of optimal computational settings that mitigate their 
impact. First, we provide numerical simulations for the classical case of a circular 
stationary droplet of oil relaxing from an initial square shape surrounded by water 
using the open-source finite-volume computational fluid dynamics (CFD) code 
OpenFOAM. The investigation is conducted setting the interfacial compression 
coefficient (Cα) equal to zero (no interface compression) and higher than zero. 
Then, in order to reduce spurious currents, the volume of fluid (VOF) index 
function is smoothed by applying the so-called smoother ‘Laplacian filter’ aiming 

to decrease the curvature computation errors. It was proved that applying the 
Laplacian filter twice smooths sufficiently the index function. Since this filter is not 
implemented in the OpenFOAM library, an external code found in the literature is 
used and linked to the VOF solver. Furthermore, an error analysis on the accuracy 
of the numerical solution of the Laplace pressure for a stationary droplet with 
respect to the exact (analytical) solution of the Laplace pressure for a sphere has 
been performed. The obtained results show that introducing the interface 
compression has led to a sharp (thinner) interface, but increased the magnitude of 
spurious currents which has been reduced later by almost one order of magnitude 
when the smoother was applied. The error in the Laplace pressure calculations has 
also decreased by almost 36%. This work demonstrates the potential and stability 
of the proposed computational rules to adequately reduce the magnitude of spurious 
currents when simulating multiphase flow phenomena in real porous media.
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Chapter 1: Introduction 
 
Due to the relevance and complex nature of multiphase flows in porous media, 
numerical simulations, and particularly computational fluid dynamics (CFD), have 
rapidly arisen as a promising and powerful tool to understand multiphase flows 
(Vachaparambil et al., 2019) in most oil and gas applications, such as natural gas 
storage, geological carbon dioxide storage, enhanced oil recovery (EOR) (Raeini et 
al., 2012). One of the key parameters of concern in numerical simulations is 
modelling the interface between two immiscible fluids. To do so, CFD strategies 
can be broadly divided into two categories: Lagrangian and Eulerian 
(Vachaparambil et al., 2019). Both have been used with considerable success, each 
with its own advantages and disadvantages (Mei, 2001). Lagrangian methods (or 
Front-Tracking methods) consider each one of the fluid particles as a discrete 
phase, track them and describe the variations in physical quantities (such as density, 
velocity, pressure, temperature, stresses, … etc.) as functions of time around each 
individual particle along its own path. Therefore, they accurately resolve the 
interface shape and apply the interfacial boundary conditions at the exact position 
of the interface (Francois, 1998). However, it is a bit complicated to use them for 
problems with large interface movements and severe topological changes. On the 
other hand, Eulerian methods (or Front-Capturing methods, like volume-of-fluid 
(VOF) method and Level-Set (LS) method) are ideally suited to handle such 
complex problems (Hoang et al., 2013). Variations in the physical quantities are 
described, as a function of time, at fixed points by which different particles pass at 
different times. Eulerian methods, in contrast to Lagrangian ones, employ a fixed 
grid and the fluid interface is not explicitly tracked but reconstructed from 
appropriate field variables (Francois, 1998).  
   
Despite its simplicity, VOF method is considered one of the most robust methods 
used in multiphase simulations (Hirt et al., 1979). Simple, because it is based on 
the concept of the volume of fluid index function (α) in each cell of the 
computational domain, where 0 ≤ α ≤ 1. A value of 0 indicates one phase and a 

value of 1 indicates the second phase. Values between 0 and 1 refer to the fluid 
interface, where both phases are present. It is such popular that it is implemented 
in many CFD packages: both commercial and open-source ones.  
  
A well-known associated problem is spurious currents, which have been recently 
an active topic of research (Vachaparambil et al., 2019). Spurious currents lead to 
unphysical fluid dynamics which adversely affect the predictive capability of these 
simulations and compromise the quality of the obtained results, like fluid velocity 
and capillary pressure. Unfortunately, they are predominant in low capillary 
number flows which typically characterize the porous media problems of our 
interest. They are mainly induced due to the numerical errors in the surface tension 
calculations in Front-Capturing methods, such as volume-of-fluid (VOF) method. 
At the expense of significant numerical cost, special treatment procedures must be 
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followed to reduce spurious currents and thus accurately model low capillary 
number flows. Two techniques can be used to treat this problem, one is using an 
extra different field variable (like a height-function or a level-set function) only for 
calculating the interface curvature. This should help accurately calculate the surface 
tension. The other is smoothing the VOF index function over the interface region. 
This would result in avoiding the sharp steep gradient of the VOF index function 
over this thin interface region, and hence improving the surface tension 
calculations. Consequently, spurious currents would significantly decrease.   
 
One of the most commonly used methods to model surface tension forces is the 
Continuum Surface Force (CSF). CSF, which is implemented in openFOAM, 
represents the fluid interface as a transition region and thus alleviates these previous 
interface topology constraints without sacrificing accuracy.  
 
This study is organized as follows. We start with a short description for the theories 
behind OpenFOAM. Then, we present a well-characterized benchmark (static 
droplet) as an attempt to find the optimal computational rules that can be extended 

to real porous media.  
  



ABDALLAH ELHAMADY 
S289668 

3 
 

Chapter 2: Literature review 
 
2.1. Navier-Stokes Equations 
 
2.1.1. Overview 
 

Despite the fact that the motion of fluids has always been of the utmost importance 
for human beings, the evolution of mathematical models only emerged after the 
industrial revolution at the end of 19th century. The first appropriate description of 
the viscous fluid motion had been proposed in “Principia” paper written by Sir Isaac 
Newton (1687), presenting the dynamic behavior of fluids under constant viscosity. 
Over time, Daniel Bernoulli (1738) and Leonhard Euler (1755) had provided an 
equation for the inviscid fluid flow, known as Euler’s equation. These Euler’s 

equations, which predate the Navier–Stokes equations by many decades, do not 
account for the viscosity effects. Then, Navier-Stokes equations were developed 
over several decades. Claude Louis Marie Henri Navier (1827), Augustin Louis 
Cauchy (1828), Siméon Denis Poisson (1829), and Adhémar St.Venant (1843) had 
all carried out independently their studies on Euler’s equations introducing the 

viscous (frictional) force. In 1845, Sir George Gabriel Stokes had derived the 
motion equation for a viscous flow by adding Newtonian viscous terms. Finally, 
the Navier-Stokes Equations had been brought to their final form which has been 
used to provide numerical solutions for fluid flow ever since (White, 1991) (Stokes, 
1851).  
 

The Navier–Stokes equations are considered the heart of fluid flow modelling 
(Heywood, 2006). When solved for a certain set of boundary conditions, like walls, 
inlets and outlets, they can predict both the fluid pressure and velocity for a given 
geometry. They can be used to model ocean currents, the weather, water flow in a 
pipe, air flow around a plane wing and many other fluids accurately over a wide 
range of conditions. Since they provide a rigorous analysis for the physics of many 
phenomena of scientific and engineering interest, they can help with the design of 
aircraft and cars, the analysis of pollution, the blood flow studies, the power stations 
design, ...etc. Moreover, they can be used to model magneto-hydrodynamics if 
coupled with Maxwell's equations.  
 

The Navier-Stokes equations mainly govern the motion of fluids and describe how 
the velocity, pressure, temperature, and density of a moving fluid are related. They 
are just extensions of the Euler Equations, but include the viscosity effects on the 
flow. They are a set of coupled partial differential equations (not ordinary ones) and 
theoretically could be solved for a given flow problem using calculus methods. For 
instance, it is relatively easy to solve these equations for a flow between two 
parallel plates or for the flow in a cylinder, as we shall see. But, in practice and due 
to their complex nonlinearity, these equations are too difficult to be solved 
analytically. The fundamental issues of uniqueness and smoothness of their 
physically reasonable solutions in three-dimensional cases actually are relatively 

https://en.wikipedia.org/wiki/Model_(abstract)
https://en.wikipedia.org/wiki/Ocean_current
https://en.wikipedia.org/wiki/Airfoil
https://en.wikipedia.org/wiki/Scientific
https://en.wikipedia.org/wiki/Engineering
https://en.wikipedia.org/wiki/Magnetohydrodynamics
https://en.wikipedia.org/wiki/Maxwell%27s_equations
https://en.wikipedia.org/wiki/Magnetohydrodynamics
https://www.grc.nasa.gov/www/k-12/airplane/pressure.html
https://www.grc.nasa.gov/www/k-12/airplane/temptr.html
https://www.grc.nasa.gov/www/k-12/airplane/fluden.html
https://www.grc.nasa.gov/www/k-12/airplane/state.html
https://www.grc.nasa.gov/www/k-12/airplane/eulereqs.html
https://www.grc.nasa.gov/www/k-12/airplane/airsim.html
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challenging and still are open problems (Friedlander, 2006). Even, the Clay 
Mathematics Institute (CMI) of Cambridge in Massachusetts, U.S. has considered 
it as a “Millennium Problem”, one of seven mathematical problems selected by the 
institute, and has offered a USD 1-million award for its solution (Mclean, 2012) 
(claymath.org).  
 

In the past, engineers used to make further approximations and simplifications to 
the equations till they had a set of equations that they could solve. Recently, super 
speed computers have been used to solve approximations to the equations using a 
set of different techniques like finite difference, finite element, finite volume, and 
spectral, referring to Computational Fluid Dynamics (CFD) (grc.nasa.gov/www/k-
12/rocket/nseqs.html). 
  
The Navier-Stokes equations are based on two assumptions. First, the fluid is 
a continuum, a continuous substance rather than discrete particles. Second, the 
quantities of interest like pressure, temperature, density and flow velocity are 
sufficiently smooth or, in other words, weakly differentiable. In such case, the 
representative physical length scale of the system is much larger than the mean free 
path of the fluid molecules. The ratio of the mean free path of the fluid particles at 
the scale of interest, λ, to the representative length scale of the system, L, is referred 

as the Knudsen number, Kn = λ/L. As long as Kn < 0.01, the NS equations have 
been found valid. For 0.01< Kn <0.1, they may be still used, but require special 
boundary conditions. For Kn > 0.1, they become invalid anymore. For instance, at 
the ambient pressure of 1 atm, the mean free path of air molecules – is 68 
nanometers. The characteristic length of your model should therefore be larger than 
6.8 μm so that the NSE can be valid. 
 

Furthermore, the Navier–Stokes equations have been recently used extensively 
in video games and computer animation industry in order to model a wide variety 
of natural phenomena, such as simulations of small-scale gaseous fluids (fire and 
smoke) (Stam, 2003).   
  

https://www.britannica.com/science/Millennium-Problem
https://en.wikipedia.org/wiki/Video_games
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Mathematically, the Navier–Stokes equations are expressed based on the principles 
of conservation of mass, conservation of momentum and conservation of energy. 
Sometimes, they are accompanied by an equation of state relating the pressure, 
temperature and density of the gas (McLean, 2012).  
  
  
Conservation of Mass: Continuity Equation  
Conservation of Momentum: Newton’s Second Law  
Conservation of Energy: first Law of thermodynamics (referred as Energy 
Equation)  
 
 
There are various ways for deriving these equations. In this work, the classical one 
of continuum mechanics will be used. Since we consider an isothermal flow, a 
constant-temperature flow, the Navier-Stokes equations are reduced to represent 
only the first two conservation laws – the conservation of mass and the conservation 
of momentum. 

Firstly, let us consider a finite arbitrary volume, called a control volume, over 
which these principles can be applied. This control volume is denoted by Ω and its 
bounding control surface is ∂Ω. Ω must be a reasonably large finite volume of the 

fluid. 

 

2.1.2. Navier-Stokes equations derivation 
 

2.1.2.1. Continuity equation 
 

The mass continuity equation, or simply the continuity equation, states the 
preservation of mass. The mass in the control volume cannot neither be created nor 
destroyed, i.e. the mass flow difference through the system between inlet and outlet 
is zero. 
  
To formulate this definition mathematically, we proceed as follows 
𝜕

𝜕𝑡
∫ 𝜌𝑑𝑉
 

Ω⏟    
𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑚𝑎𝑠𝑠

𝑖𝑛 𝑡𝑖𝑚𝑒

+ ∮ 𝜌�⃗⃗� 
 

𝜕Ω
�̂�𝑑𝑆⏟      

𝐹𝑙𝑜𝑤 𝑜𝑓 𝑚𝑎𝑠𝑠

𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡ℎ𝑒 

𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠

  = 0⏟
𝑚𝑎𝑠𝑠 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑟𝑒𝑎𝑡𝑒𝑑
𝑜𝑟 𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝑒𝑑

                            Eq. (1) 

  

https://en.wikipedia.org/wiki/Conservation_of_momentum
https://en.wikipedia.org/wiki/Control_volume
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where 

 t is time 

𝜌  is the fluid mass density  

�⃗⃗�  is the fluid velocity vector  

�̂� is the normal unit vector 

 

Since the boundaries are fixed and do not change in time: 
𝜕

𝜕𝑡
∫ 𝜌𝑑𝑉
 

Ω
= ∫

𝜕

𝜕𝑡
𝜌𝑑𝑉

 

Ω
 =  ∫ 𝜕𝜌

𝜕𝑡
𝑑𝑉

 

Ω
                             Eq. (2) 

The surface integral is transcribed into a volume integral using divergence theorem 
(Gasuss’ theorem), based on the concept that all the mass that diverges out of the 
control volume must inherently pass by the boundary of the control volume at a 
certain time: 

∮ 𝜌�⃗� 
 

𝜕Ω
�̂�𝑑𝑆 = ∫ 𝛻. (𝜌�⃗⃗� )

 

Ω
𝑑𝑉                                                Eq. (3) 

where  

𝛻 indicates the gradient differential operator 

Substituting from Eq. (2) and (3) into Eq. (1): 

∫
𝜕𝜌

𝜕𝑡
𝑑𝑉

 

Ω
+  ∫ 𝛻. (𝜌�⃗⃗� ) 

Ω
𝑑𝑉 = 0 

By integration: 
𝜕𝜌

𝜕𝑡
+ 𝛻. (𝜌�⃗⃗� ) = 0                                                                                   Eq (4) 

For an incompressible fluid, i.e. 𝜌 is constant, Eq (4) becomes 

∇. �⃗⃗� = 𝟎                                                                                                   Eq (5) 

 

  
  
2.1.2.2. Momentum conservation 
 
The conservation of momentum implies that the momentum in a control volume is 
kept constant. According to Newton’s second law, mass times acceleration is equal 

to the sum of forces that act on a volume unit.  
  

https://www.britannica.com/science/gradient-mathematics
https://www.britannica.com/science/differential-operator
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The total force F acting on the control volume consists of two parts: surface and 
volume (body) forces: 
 
∑𝐹 = 𝐹𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + 𝐹𝑣𝑜𝑙𝑢𝑚𝑒 
 
The surface forces are formally expressed in terms of the stress tensor matrix: 
 

 𝜎 ⏟
𝑆𝑡𝑟𝑒𝑠𝑠 𝑡𝑒𝑛𝑠𝑜𝑟

= (

𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝜎𝑦𝑦 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧𝑧

)  

 

 
Fig. 1. Stress components on an infinitesimal rectangular (Salih, 2012) 
 
 
There are two contributions to this stress tensor matrix:  
 

-  a contribution due to normal forces resulting from pressure gradients (ex. 
pressure), referring to the diagonal components of the stress tensor   
-  a contribution due to shear forces resulting from gradients in the fluid flow 
velocity (ex. viscous shear), referring to the non-diagonal components of the stress 
tensor. 
  
The volume forces are those forces exerted on the fluid by external fields like 
gravity.  
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This is expressed mathematically as follows 
  
𝜕

𝜕𝑡
∫ 𝜌�⃗⃗� 𝑑𝑉
 

Ω
+ ∮ 𝜌 (�⃗⃗� ⨂�⃗⃗� 

 

𝜕Ω
). �̂�𝑑𝑆⏟          

Nonlinear advection term

 = ∮ 𝝈. �̂�𝑑𝑆 
 

𝜕Ω⏟      
 Surface  forces 

(Normal and Shear)

 + ∫ 𝜌𝑔𝑑𝑉
 

Ω⏟    
 Volume (Body )forces

     Eq. (6) 

where 

𝑔 is the gravitational acceleration 

⨂ represents the dyadic product 

 

The stress tensor matrix is split up into two terms: 

 𝜎 ⏟
𝑆𝑡𝑟𝑒𝑠𝑠 𝑡𝑒𝑛𝑠𝑜𝑟

= 𝜎𝐼⏟
𝐼𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐 𝑡𝑒𝑟𝑚

+ 𝜎𝐷⏟
𝐷𝑒𝑣𝑖𝑎𝑡𝑜𝑟𝑖𝑐 𝑡𝑒𝑟𝑚

 

 𝜎 ⏟
𝑆𝑡𝑟𝑒𝑠𝑠 𝑡𝑒𝑛𝑠𝑜𝑟

= −(
𝑃 0 0
0 𝑃 0
0 0 𝑃

) + (

𝑃 + 𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝑃 + 𝜎𝑦𝑦 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝑃 +  𝜎𝑧𝑧

) 

where 𝑃 is the hydrostatic pressure: 𝑃 = -
1

3
 (𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧) 
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Considering a Newtonian fluid where the stress tensor is assumed to be linearly 
related to the rate-of-strain tensor. For example, in the 1-D case: 𝜏𝑦𝑥=  µ 

𝜕𝑢𝑥

𝜕𝑦
 

 
In the general case: 

𝜏𝑖𝑗 =  µ (
𝜕𝑢𝑖
𝜕𝑗
+
𝜕𝑢𝑗

𝜕𝑖
) 

 

Fig. 2. Shear Stress for Newtonian fluids 

 

 

Thus, the stress tensor can be reformulated as follows: 

𝜎

=  −(
𝑃 0 0
0 𝑃 0
0 0 𝑃

) + {  (

𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝜎𝑦𝑦 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧𝑧

)

+

(

 
 
 
−
1

3
 (𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧) 0 0

0 −
1

3
 (𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧) 0

0 0 −
1

3
 (𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧))

 
 
 

}
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= −(
𝑃 0 0
0 𝑃 0
0 0 𝑃

) + 

{
  
 

  
 

  

(

 
 
 
 

 µ(

2 µ
𝜕𝑢𝑥
𝜕𝑥

 µ(
𝜕𝑢𝑥
𝜕𝑦
+
𝜕𝑢𝑦

𝜕𝑥
)  µ(

𝜕𝑢𝑥
𝜕𝑧
+
𝜕𝑢𝑧
𝜕𝑥
)

𝜕𝑢𝑦

𝜕𝑥
+
𝜕𝑢𝑥
𝜕𝑦
) 2 µ

𝜕𝑢𝑦

𝜕𝑦
 µ(
𝜕𝑢𝑦

𝜕𝑧
+
𝜕𝑢𝑧
𝜕𝑦
)

 µ(
𝜕𝑢𝑧
𝜕𝑥
+
𝜕𝑢𝑥
𝜕𝑧
)  µ(

𝜕𝑢𝑧
𝜕𝑦
+
𝜕𝑢𝑦

𝜕𝑧
) 2 µ

𝜕𝑢𝑧
𝜕𝑧 )

 
 
 
 

+

(

 
 
 
 
−
1

3
 (2 µ

𝜕𝑢𝑥
𝜕𝑥
+ 2 µ

𝜕𝑢𝑦

𝜕𝑦
+ 2 µ

𝜕𝑢𝑧
𝜕𝑧
) 0 0

0 −
1

3
 (2 µ

𝜕𝑢𝑥
𝜕𝑥
+ 2 µ

𝜕𝑢𝑦

𝜕𝑦
+ 2 µ

𝜕𝑢𝑧
𝜕𝑧
) 0

0 0 −
1

3
 (2 µ

𝜕𝑢𝑥
𝜕𝑥
+ 2 µ

𝜕𝑢𝑦

𝜕𝑦
+ 2 µ

𝜕𝑢𝑧
𝜕𝑧
)
)

 
 
 
 

}
  
 

  
 

 

= −(
𝑃 0 0
0 𝑃 0
0 0 𝑃

) + µ 

(

 
 

2
𝜕𝑢𝑥

𝜕𝑥

𝜕𝑢𝑥

𝜕𝑦
+
𝜕𝑢𝑦

𝜕𝑥

𝜕𝑢𝑥

𝜕𝑧
+
𝜕𝑢𝑧

𝜕𝑥

𝜕𝑢𝑦

𝜕𝑥
+
𝜕𝑢𝑥

𝜕𝑦
2
𝜕𝑢𝑦

𝜕𝑦

𝜕𝑢𝑦

𝜕𝑧
+
𝜕𝑢𝑧

𝜕𝑦

𝜕𝑢𝑧

𝜕𝑥
+
𝜕𝑢𝑥

𝜕𝑧

𝜕𝑢𝑧

𝜕𝑦
+
𝜕𝑢𝑦

𝜕𝑧
2
𝜕𝑢𝑧

𝜕𝑧 )

 
 
−

2

3
µ

(

 
 

𝜕𝑢𝑥

𝜕𝑥
+
𝜕𝑢𝑦

𝜕𝑦
+
𝜕𝑢𝑧

𝜕𝑧
0 0

0
𝜕𝑢𝑥

𝜕𝑥
+
𝜕𝑢𝑦

𝜕𝑦
+
𝜕𝑢𝑧

𝜕𝑧
0

0 0
𝜕𝑢𝑥

𝜕𝑥
+
𝜕𝑢𝑦

𝜕𝑦
+
𝜕𝑢𝑧

𝜕𝑧 )

 
 

 

 

 

𝜎⏟
𝑆𝑡𝑟𝑒𝑠𝑠 𝑡𝑒𝑛𝑠𝑜𝑟

 = −𝑝I⏟
𝐻𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

 + µ(𝛻�⃗⃗� + (𝛻�⃗⃗� )𝑇)⏟          
𝑉𝑖𝑠𝑐𝑜𝑢𝑠 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠

− 
2

3
µ(𝛻. �⃗⃗� )𝐈⏟      

𝑉𝑖𝑠𝑐𝑜𝑢𝑠 𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠⏟                        
𝜎𝐷

          Eq. (7) 

Knowing that “momentum” is nothing else the product of the mass density and the 
flow velocity (𝜌�⃗⃗� ), we solve the integration in Eq. (6) as we did before in the 
continuity equation. Then, substituting from Eq. (7) gives: 

𝜕(𝜌�⃗⃗� )

𝜕𝑡
+ 𝛻. (𝜌�⃗⃗� × �⃗⃗� )= -∇p + µ(𝛻�⃗⃗� + (𝛻�⃗⃗� )𝑇) −

2

3
µ𝛻. ((𝛻. �⃗⃗� )𝐈) + 𝜌𝑔 

where I is the 3 × 3-dimensional unit matrix. 
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While, 

 µ(𝛻�⃗⃗� + (𝛻�⃗⃗� )𝑇) = µ𝛻2�⃗⃗� +µ∇(∇.�⃗⃗� ) 

where 𝛻2 is the Laplacian operator. 

Hence, 

𝜕(𝜌�⃗⃗� )

𝜕𝑡
+ 𝛻. (𝜌�⃗⃗� ⨂�⃗⃗� )⏟      
𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚

= −∇p ⏟
𝑆𝑡𝑎𝑡𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑡𝑒𝑟𝑚

 +  µ𝛻2�⃗⃗� +
1

3
µ𝛻. ((𝛻. �⃗⃗� ))⏟              

𝑉𝑖𝑠𝑐𝑜𝑢𝑠 𝑡𝑒𝑟𝑚

+ 𝜌𝑔⏟
𝑽𝒐𝒍𝒖𝒎𝒆 (𝑩𝒐𝒅𝒚)𝒇𝒐𝒓𝒄𝒆

 

Eq. (8) 

 

Eq. (8) is among of the most generalized forms for the Navier-Stokes equations 
written in a vector form. 

For an incompressible fluid flow: 
𝜌 is constant, and  
the divergence of the velocity is equal to zero. So, we can remove the term 
1

3
µ𝛻. ((𝛻. �⃗⃗� )) from the viscous force term. 

 
Therefore, Eq. (8) reduces to: 
 

𝜌 [
𝜕 �⃗⃗� 

𝜕𝑡
+ �⃗⃗� . 𝛻 �⃗⃗� ] =  −𝛻𝑝 + µ𝛻2 �⃗⃗� + 𝜌𝑔                                                             Eq. (9) 

 

  



ABDALLAH ELHAMADY 
S289668 

12 
 

2.1.3. Application of NSE in a Poiseuille flow between parallel plates 
 

For an incompressible, isothermal and Newtonian fluid flow, Navier-Stokes 
equations are stated as: 
 
∇. �⃗⃗� = 0 

 

𝜌 [
𝜕 �⃗⃗� 

𝜕𝑡
+ �⃗⃗� . 𝛻 �⃗⃗� ] =  −𝛻𝑝 + µ𝛻2 �⃗⃗� + 𝜌𝑔 

 

 
Fig. 3. a Poiseuille flow between parallel plates 
 
Assumptions: 
 

- Incompressible fluid 
- Steady-state flow (i.e. 𝜕 �⃗⃗� 

𝜕𝑡
 = 0) 

- Negligible gravity effects (i.e  𝜌𝑔 ≈ 0)                            
- Laminar flow (i.e. 𝑢𝑦 = 0) 
- Constant cross-section in X (i.e. 𝜕𝒖𝒙

𝜕𝑥
 = 0) 

 
These assumptions lead to:  
 

−
𝜕𝑝

𝜕𝑥
+  µ 

𝜕

𝜕𝑦
 (
𝜕𝑢𝑥
𝜕𝑦
) = 0 

−
𝜕𝑝

𝜕𝑦
= 0 

 
Boundary conditions are defined as: 
 
𝑢𝑥 = 0 at y =0 
𝑢𝑥 = 0 at y =H 
 
Hence, 
 
 𝑢𝑥(y) =  1

2µ
 y (y - H) ∆𝑝

𝐿
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Each of rate, maximum velocity and average velocity can be calculated as 
follows: 
 
Q = − 𝐻3

12µ
 ∆𝑝
𝐿

 
 
𝑢𝑚𝑎𝑥 = − 𝐻2

8µ
 ∆𝑝
𝐿

 
 
𝑢 = − 𝐻2

12µ
 ∆𝑝
𝐿
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2.1.4. Application of NSE in a Poiseuille flow in a cylinder 
 
For an incompressible, isothermal and Newtonian fluid flow, Navier-Stokes 
equations are stated as: 
 
∇. �⃗⃗� = 0 

𝜌 [
𝜕 �⃗⃗� 

𝜕𝑡
+ �⃗⃗� . 𝛻 �⃗⃗� ] =  −𝛻𝑝 + µ𝛻2 �⃗⃗� + 𝜌𝑔 

 

 
            Fig. 4. a Poiseuille flow in a cylinder 

 
Assumptions: 
 

- Incompressible fluid 
- Steady-state flow (i.e. 𝜕 �⃗⃗� 

𝜕𝑡
 = 0) 

- Negligible gravity effects (i.e.  𝜌𝑔 ≈ 0)       
- 1-D radial symmetry                      
- Laminar flow (i.e. 𝑢𝑟 = 0) 
- Constant cross-section in X (i.e. 𝜕𝒖𝒙

𝜕𝑥
 = 0) 

 
These assumptions lead to:  
 

−
𝜕𝑝

𝜕𝑥
+  µ 

1

𝑟

𝜕

𝜕𝑟
 (𝑟
𝜕𝑢𝑥
𝜕𝑟
) = 0 

−
𝜕𝑝

𝜕𝑟
= 0 

 
Boundary conditions are defined as: 
 
𝑢𝑥 = 0 at r =R 
 
 
Hence, 
 𝑢𝑥(r) =  1

4µ
  (𝑟2 - 𝑅2) ∆𝑝

𝐿
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Each of rate, maximum velocity and average velocity can be calculated as 
follows: 
 
Q = − 𝜋𝑅

4

8µ
 ∆𝑝
𝐿

 
 
𝑢𝑚𝑎𝑥 = − 𝑅2

4µ
 ∆𝑝
𝐿

 
 
𝑢 = − 𝑅2

8µ
 ∆𝑝
𝐿
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2.1.5. Dimensionless incompressible NSE 
 

As a standard procedure, when we deal with differential equations, the first step is 
often to redefine them into a dimensionless form. And there are many reasons 
behind that. “Small” and “large” are meaningless for dimensional values; because 
it is always possible to change the system of units used. Also, nature knows no 
units.   
Dimensionless Navier-Stokes equations are considered a powerful tool that can be 
used to generalize the fluid flow behavior into nearly all systems and domains. They 
are even especially suited for mathematical analysis and numerical simulation 
which are mainly based on dimensionless equations.  
  
To derive the dimensionless Navier-Stokes equations, the following 
quantities/scaling parameters  

• U [m/s]– the characteristic flow velocity scale  
• L [m]– the characteristic flow length scale   

are introduced.  
 
By rescaling the space and time variables, and even the gradient operator, one 
obtains:  
 �⃗⃗� ∗ = 

�⃗⃗� 

𝑈
 ,    𝑝∗ = 𝑝 

1

𝜌𝑈2
 ,  𝑔*= 𝑔 

𝐿

𝑈2
   ,      

𝜕

𝜕𝑡∗
= 

𝐿

𝑈
 
𝜕

𝜕𝑡
 ,     𝛻∗ = 𝐿𝛻 

Rearranging the above relations and inserting into Eq. (9) to obtain:  

 ρ[𝑈
2

𝐿

𝜕�⃗⃗� ∗

𝜕𝑡∗
 + 𝑈 �⃗⃗� ∗. 𝛻

∗

𝐿
 (𝑈 �⃗⃗� ∗)] = -  𝛻

∗

𝐿
 𝑝∗ 𝜌𝑈2 + µ 𝛻

∗2

𝐿2
𝑈 �⃗⃗� ∗ + ρ 𝑔∗ 𝑈

2

𝐿
 

 
Dividing both sides by 𝜌 𝑈

2

𝐿
 yields:   

𝜕�⃗⃗� ∗

𝜕𝑡∗
 + �⃗⃗� ∗. 𝛻∗�⃗⃗� ∗⏟    
𝐴𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚

  = −𝛻∗ 𝑝∗⏟    
𝑆𝑡𝑎𝑡𝑖𝑐 
𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
𝑡𝑒𝑟𝑚

  + 
µ

𝜌𝑈𝐿

⏞

1

𝑅𝑒

 𝛻∗2 �⃗⃗� ∗
⏟      
𝑉𝑖𝑠𝑐𝑜𝑢𝑠
𝑡𝑒𝑟𝑚

+ 𝑔∗⏟
𝐵𝑜𝑑𝑦 𝑓𝑜𝑟𝑐𝑒 𝑡𝑒𝑟𝑚

               Eq. (10) 

  
  
Now, it is clear that Re is the only parameter of the problem and describes the 
contribution of viscosity:  

- Low Re flows are dominated by viscosity and remain laminar  
- In high Re flows, viscosity effects are limited to very narrow regions 
along walls (boundary layers), or along boundaries of different flow streams 
(shear layers). Such flows are always highly turbulent.  
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Therefore, we can easily identify the relative importance of each part of the 
equation. When there is no exact solution -and this is often the case-, we can neglect 
the terms which are significantly small in comparison with the others, therefore 
leading to appropriate solutions for complex problems.  
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2.2. Finite volume method 
 

The finite volume method (FVM) is a discretization technique used for the 
numerical simulation of partial differential equations of various types (for instance, 
elliptic, hyperbolic or parabolic) (Eymard et al., 2019). Generally, it is well-suited 
for those PDE arising from physical conservation laws (typically, the Navier-
Stokes equations and the turbulence equations) (Chen, 2009). It had been firstly 
introduced into the field of computational fluid dynamics (CFD) in the beginning 
of the 1970s “McDonald 1971, MacCormack and Paullay 1972” (Kolditz, 2002). 
FVM solvers are among the most popular ones in CFD, being implemented in 
numerous commercial software packages like Phoenics, ANSYS Fluent, 
SOLIDWORKSFloWorks and Flow-3D, and non-commercial packages like 
OpenFOAM (Rapp, 2017). 
 
In the finite volume method, the domain of interest is first discretized into a number 
of equally spaced nodes surrounded by non-overlapping finite volumes (control 
volumes) (Neill et al., 2018). Next, unlike the finite element method and the finite 
difference method, the conservation laws are applied to each individual control 
volume in an integral form (Reynolds transport theorem) rather than in a partial 
differential form. That should lead in the end to enough linear algebraic equations 
which can be solved numerically to compute the unknown physical parameters at 
each node. 
 
In general, we distinguish between the two approaches adopted for the 
discretization of the computational domain into finite volumes (control volumes): 
cell-centered approach and cell-vertex approach (Kolditz, 2002). In the cell-
centered approach, the control volumes coincide with the mesh cells. While in the 
cell-vertex approach, each node of the mesh is the center of a control volume, 
whose boundaries are assigned by connecting the centroids of each cell and the 
midpoints of each cell edge as depicted in figures (5), (6) for a two-dimensional 
case. 

 

Fig. 5. Meshes and control volumes of two types of FVM. The unknowns are 
associated to the black nodes (Chen, 2009). 
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Fig. 6. Mesh and dual mesh in vertex-centred FVM (a,b) and cell-centred FVM 
(c,d). Control volumes are defined by the grey-coloured areas (Aleksendrić et al., 

2015) 

 

The finite volume method is a bit different from (but sometimes related to) the finite 
element method which or the finite difference method (Eymard et al., 2019). In 
contrast to FEM which is based on the discretization of the weak formulation and 
FDM which is based on the classic formulation, FVM is based on the discretization 
of the balance equation. 
 
Since the FVM is based on the discretization of the balance equation directly in 
space, an obvious virtue of it is the conservation of quantities, such as mass, 
momentum and energy, on a discretized (local) level, i.e. the flux entering a given 
cell is identical to that leaving the adjacent one over the entire computational 
domain. In other words, that is to say one cell’s loss is always another cell’s gain. 

This feature makes it is extensively used in several fundamental engineering fields 
in general and quite attractive when modelling problems where the flux is of great 
importance, such as fluid mechanics, mass transfer, heat transfer, semi-conductor 
device simulation and oil recovery simulations. Experience has proved that 
conservative schemes are generally more accurate and stable than non-conservative 
ones, particularly for strong gradients (large derivatives) inside a certain domain 
(Kolditz, 2002).  
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As flexible as the FEM, the finite volume method can handle any type of mesh; 
structured and unstructured, (Aleksendrić et al., 2015) leading to robust schemes. 
Structured meshes are often comprised of orthogonal quadrilaterals (2D) or 
hexahedrons (3D) that follow a uniform pattern. Unstructured meshes do not follow 
a uniform pattern, but are arbitrary combinations of triangles, quadrilaterals (2D), 
and tetrahedrons, hexahedrons or pyramids (3D). These unstructured meshes take 
full advantage of modeling complex and irregular geometry configurations. The 
FVM, therefore, is more flexible and adequate than the finite difference method 
where the latter is mainly defined based on structured grids, simple domains and 
homogeneous geometries. That is why, from the numerical point of view, the FVM 
is a generalization of the FDM in terms of geometry and topology because simple 
and uniform finite volume schemes can be reduced to finite difference ones 
(Kolditz, 2002). 
 
Roughly speaking, given a number of discretization points defined by a mesh, the 
finite difference method is based on assigning one discrete unknown and writing 
one equation per each discretization point. Then, the derivatives of that unknown 
are replaced by finite differences using Taylor expansion (Eymard et al., 2019). 
However, it becomes difficult to use the finite difference method in case the 
coefficients involved in the equation suffer discontinuity (e.g., in case of a 
heterogeneous medium). With the finite volume method, such discontinuity of the 
coefficients will not be a problem provided the mesh is chosen in a way that these 
discontinuities occur on the boundaries of the control volumes (Eymard et al., 
2019). 
 
From an industrial perspective, the finite volume method has been found a cheap 
and robust technique for the discretization of conservation laws (Eymard et al., 
2019). It is cheap thanks to its advantage in terms of memory storage requirement 
and solution speed providing short and reliable computational coding for complex 
problems, such as high Reynold number turbulent flows and source-term 
dominated flows (e.g. combustion) (Patankar, 1980). However, in some cases, it 
becomes difficult to design schemes with a certain given precision. Indeed, the 
finite element method can be much more precise than the finite volume method 
when using higher order polynomials, but it requires an appropriate functional 
framework which is not always available in industrial problems. Other more precise 
methods include, for instance, spectral methods or particle methods but these 
methods can be more expensive and less robust than the finite volume method. By 
robust, we mean a scheme that works well even for relatively difficult equations, 
e.g. nonlinear systems of hyperbolic equations, and can easily be extended to more 
physical and realistic contexts than the classical academic problems) (Eymard et 
al., 2019).  
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2.3. Lagrangian and Eulerian 
 

2.3.1. Overview 
 

Describing the fluid motion has always been an active research topic in the field of 
CFD numerical simulations. To do so, one needs to know the variations of physical 
quantities such as, density, velocity, pressure, temperature, stresses, etc., as 
functions of time, everywhere within a certain spatial region. Generally, there are 
two ways to describe the fluid motion in CFD simulations, the Lagrangian and the 
Eulerian method. In fluid dynamics, both have been used with considerable success, 
each with its own advantages and disadvantages (Mei, 2001).  
 
2.3.2. Lagrangian Method (surface tracking method) 
 

It considers particles as a discrete phase, tracks all of them and describes the 
variations around each individual one along its own trajectory (Mei, 2001). In 
Lagrangian methods, the grid can be configured to fit the shape of the interface, 
and thus adapted continually to it. The two main advantages of Lagrangian methods 
are: (i) explicitly tracking the interface, (ii) applying interfacial boundary 
conditions at the exact position of the interface. However, the main disadvantage 
with Lagrangian methods is the lack of the numerical accuracy due to that irregular 
grid (Francois, 1998). 
 
2.3.3. Eulerian Method (volume tracking method) 
 

In Eulerian methods, variations in physical quantities are described at fixed points 
as a function of time, i.e. different particles pass the same point at different times 
(Mei, 2001). The fluid particle is treated as a continuum where its conservation 
equations are developed on a control volume basis and in a similar form as that for 
the fluid phase itself. In contrast to Lagrangian methods, a fixed grid is employed, 
and the fluid interface is not explicitly tracked but reconstructed from appropriate 
field variables, such as the volume fluid fraction. That is why further procedures 
are needed to deduce the interface position from the volume fluid fraction. Also, 
these interfacial boundary conditions will have to be manipulated to be shown in 
the governing transport equation (Francois, 1998). The main advantage of Eulerian 
methods is the ability to accurately calculate the field variables due to their fixed 
grid. However, their two major disadvantages are: (i) the position of the interface 
is not handled with a high precision (ii) the possible smearing of the discontinuous 
surfaces; due to the manipulation of the interfacial boundary conditions (Francois, 
1998). 
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For multiphase flows, it is necessary in Eulerian methods to compute the flow of 
fluid through the whole mesh which results in averaging the flow properties, such 
as density, viscosity, ... etc. This “averaging process” leads to smoothing of all 

variations in flow quantities, especially smearing surfaces of discontinuity such as 
free surfaces. Thus, some special treatment is required to overcome this loss in 
resolution within the interface, recognize the discontinuity and avoid averaging 
(Hirt et al., 1979). 

 

 

If we know the position of each particle as a function of time, we can transform the 
conservation laws from a Lagrangian system into an Eulerian system through 
Taylor expansion, as follows: 

𝑓(𝑡 + ∆𝑡, 𝑥0 + �⃗⃗� ∆𝑡 ) ≈ 𝑓 (𝑡, 𝑥0) +
𝜕𝑓

𝜕𝑡
∆𝑡 + ∑

𝜕𝑓

𝜕𝑥𝑖

3
𝑖=1  𝑢𝑖  ∆𝑡 

𝑓(𝑡 + ∆𝑡, 𝑥0 + �⃗⃗� ∆𝑡 ) − 𝑓(𝑡, 𝑥0)

∆𝑡
 ≈  
𝜕𝑓

𝜕𝑡
+ ∑

𝜕𝑓

𝜕𝑥𝑖
𝑢𝑖

3

𝑖=1

 

𝐷𝑓

𝐷𝑡
=  
𝜕𝑓

𝜕𝑡
+ 𝛻𝑓. �⃗⃗� = (

𝜕

𝜕𝑡
+ �⃗⃗� . 𝛻) 𝑓

⏟        
𝑫 ( )
𝑫𝒕

 

𝐷 (  )

𝐷𝑡⏟
𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑖𝑎𝑛 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒
(𝑜𝑟 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒)

=
𝜕 (  )

𝜕𝑡⏟
𝐿𝑜𝑐𝑎𝑙 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒

(𝐸𝑢𝑙𝑒𝑟𝑖𝑎𝑛 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒)

⏞            
𝑈𝑛𝑠𝑡𝑒𝑎𝑑𝑦 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

   +  �⃗⃗� ⏟
𝐻𝑜𝑤 𝑞𝑢𝑖𝑐𝑘𝑙𝑦
𝑓𝑙𝑢𝑖𝑑 𝑐ℎ𝑎𝑛𝑔𝑒𝑠
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

. 𝛻 (  )⏟  
𝑅𝑎𝑡𝑒 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ

𝑝𝑟𝑜𝑝𝑝𝑒𝑟𝑡𝑦 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 
𝑤𝑖𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

⏞                  
𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

 

 

2.3.4. NSE in Lagrangian formulation 
 

2.3.4.1. Continuity equation 
𝜕𝜌

𝜕𝑡
+  𝛻. (𝜌�⃗⃗� ) = 0⏟          
𝐸𝑢𝑙𝑒𝑟𝑖𝑎𝑛

   
𝛻.(𝜌�⃗⃗� )= 𝜌𝛻.�⃗⃗� +�⃗⃗� .𝛻𝜌
⇒                  

𝐷𝜌

𝐷𝑡
 +  ρ∇. �⃗� = 0⏟        
𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑖𝑎𝑛
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2.3.4.2. Momentum equation 

𝜕(𝜌�⃗⃗� )

𝜕𝑡
+ �⃗⃗�  . 𝜵(𝝆�⃗⃗� ) =  −∇p +  µ𝛻2�⃗⃗� +

1

3
µ𝛻. ((𝛻. �⃗⃗� )) + 𝜌𝑔

⏟                                      
𝐸𝑢𝑙𝑒𝑟𝑖𝑎𝑛

 

𝐷 (  )

𝐷𝑡
=
𝜕 (  )

𝜕𝑡
+  �⃗⃗�  .𝛻 (  )

⇒               

𝐷 ((𝜌�⃗⃗� )

𝐷𝑡
= −∇p +  µ𝛻2�⃗⃗� +

1

3
µ𝛻. ((𝛻. �⃗⃗� )) + 𝜌𝑔 ⏟                              

𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑖𝑎𝑛

  

 

          

Navier-Stokes equations in Largangian formulation become: 

 

 
𝐷𝜌

𝐷𝑡
 + ρ∇. �⃗⃗� = 0                   Eq. (11) 

𝐷 (𝜌�⃗⃗� )

𝐷𝑡
= −∇p + µ𝛻2�⃗⃗� +

1

3
µ𝛻. ((𝛻. �⃗⃗� )) + 𝜌𝑔                Eq. (12) 

 

 

 

 

Finally, choosing which type of methods to use highly depends on the objective 
and characteristics of the problem under examination (Zhang et al., 2007). For 
example, if the interface details are unlikely to have an impact on the flow features, 
Eulerian methods are more attractive. On the other hand, if the discontinuity nature 
across the interface is to be simulated with a high precision, Lagrangian methods 
could be preferable (Francois, 1998). Moreover, there are also combined Eulerian-
Lagrangian methods yielding solutions with combined characteristics of both 
Eulerian and Lagrangian methods. 
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2.4. Volume-of-fluid (VOF) method 
 

A free surface is defined as a surface on which discontinuities arise in one or more 
variables (Hirt et al., 1979). In CFD, therefore, the free surface is the interface 
separating between two immiscible fluids. A simple yet powerful method which is 
applicable to both two- and three-dimensional computations, is the volume of fluid 
method (VOF), first introduced by Nichols and Hirt in 1981. Due to its robustness 
and ease of implementation and parallelization together with its ability to conserve 
mass and to produce reasonably sharp interfaces (Hoang et al., 2013), VOF is very 
popular in multiphase simulations and has been implemented in both commercial 
(ANSYS Fluent and Flow-3D) and open-source (OpenFOAM) CFD packages. It is 
based on the concept of the fractional volume of fluid (α) in each cell of the 

computational domain, where α is a continuous function with 0 ≤ α ≤ 1. A volume 

fraction value of 1 indicates that the cell is completely filled with phase A and a 
volume fraction of 0, indicates that the cell is completely filled with phase B. The 
values between 0 and 1 represent the interface between the two fluids. 

 

            Fig. 7. Volume of fluid approach (Haider, 2013) 

 

Classified as an Eulerian method, the VOF method has naturally shown its strength 
to deal with highly non-linear problems characterized by large interface movement 
and topological changes (Hoang et al., 2013). It has been proved to be more flexible 
and efficient than the other methods for dealing with complicated interfaces (Hirt 
et al., 1979). It is also considered computationally friendly with minimum storage 
requirements, because it introduces only one additional storage variable in each 
mesh cell to define the interface.  
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This makes it consistent with the storage requirements for all other dependent 
variables, such as pressure, temperature, density ... etc., since it is customary to use 
only one numerical value for each dependent property defining the fluid state in 
each grid cell. That is why its conservative use of storage is highly advantageous 
from the economic point of view, especially when applied to three-dimensional 
computations (Hirt et al., 1979). 

 

By definition, it is necessary for the VOF method in multiphase flows to compute 
the flow of fluid through the whole mesh, and this requires averaging the flow 
properties. Thus, the density and viscosity are averaged as follows, respectively 
(Hirt et al. 1979): 

 

𝜌 = α 𝜌1 + (1 −𝛼) 𝜌2                  Eq. (13) 

µ = α µ1 + (1 − 𝛼) µ2                  Eq. (14) 

1,2 denote the two immiscible phases  

 

This “averaging process”, however, is one of the biggest drawbacks of the VOF 

method, like all other Eulerian methods. That is because it leads to smoothing all 
variations in the fluid flow quantities, and, particularly, a smearing of surfaces of 
discontinuity such as free surfaces. Consequently, interfaces lose their definition, 
and the volume fractional variable loses its supposed discontinuous nature. One 
method proposed to avoid averaging across the free surface and thus overcome this 
loss in resolution and recover its shape, is advecting the volume fluid fraction with 
the local fluid flow velocity (Hirt et al. 1979). 

The governing equation for α, referred as the volume fraction equation or the 

transport equation is: 
𝜕𝛼

𝜕𝑡
 + 𝛻. (𝛼 �⃗⃗� ) = 0                   Eq. (15) 

Another disadvantage of the VOF method is the presence of non-physical spurious 
currents. The reason behind them is that the curvature interface is not handled with 
high precision, originating from the fact that the interface is not explicitly tracked 
or defined but reconstructed based on the fractional volume of the fluid (Hoang et 
al. 2013). Only in 1992, a technique, referred to as the Continuum Surface Force 
(CSF) model, has been developed to impose the surface tension effects in a more 
efficient manner. The smaller the error in surface tension calculations, the less 
significant spurious currents are induced. 
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2.5. Continuum Surface Force (CSF) 
 

Although they possess an elastic skin, liquid surfaces are in a state of tension due 
to the uneven molecular forces of attraction exerting on the fluid molecules at or 
near the surface (Brackbill et al., 1992). Both surface tension and contact angle 
arise from these interaction forces between the particles of these two different 
immiscible fluids (Raeini et al., 2012). These abrupt changes in molecular forces 
taking place through an interface when fluid properties change discontinuously, can 
easily show how much the surface tension is an inherent characteristic of material 
interfaces. Surface tension results in a localized, microscopic "surface force" 
exerting itself on fluid elements at interfaces in both directions: normal and 
tangential. Fluid interfacial motion induced by surface tension plays a fundamental 
role in many natural and industrial phenomena such as: capillarity studies, 
hydrodynamic stability, low-gravity fluid flow, cavitation, surfactant behavior and 
droplet dynamics in clouds and in fuel sprays utilized in internal combustion 
engines. Typically, numerical models are involved in the analysis of such processes 
as a means to understand the resulting nonlinear fluid flows (Brackbill et al., 1992).  
 
Modelling multiphase flows in porous media concerns forces acting at different 

scales: viscous, capillary and wall adhesion. At the pore scale, which is of our 
interest here, the capillary forces are more significant than the viscous ones in most 

transport problems. For example, capillary numbers in oil and gas reservoirs are 
typically in the range Nc = µ.ud/σ = 10 -10 to 10 -5 ; where µ is viscosity, 𝑢𝑑 is the 
Darcy velocity and σ is the interfacial tension. Consequently, any small errors in 

the computation of the surface tension, if not handled carefully, will lead to errors 
in the numerical calculations of the capillary forces and will introduce instabilities 
in the numerical simulation up to a point where it has no predictive capability 
(Raeini et al., 2012). Moreover, these errors in the surface tension computation will 
cause Front-Capturing methods (such as Volume-of-Fluid and Level-Set method) 
to induce non-physical spurious currents at the interface (Inguva et al., 2020). 
 
However, previous methods have suffered from difficulties in modeling interfaces 
with complex topologies. A method, Continuum Surface Force, has been developed 
where interfaces between fluids of different properties are represented as transition 
regions of finite thickness. A force density is defined at each point in that transition 
region, which is proportional to the curvature of the surface at each point. 
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𝐟𝐬 = 2 𝜎 𝜅 ∇𝛼                     Eq. (16) 
 

where  

𝐟𝐬 is the force term generated due to the interfacial tension 
𝜎 is the interfacial tension 
𝜅 is the interfacial curvature: 
 
𝜅 = 

1

2
 ∇ . �̂� = 

1

2
 ∇ . 

𝑛

|𝑛|
 =  

1

2
 ∇ . (

∇𝛼

|∇𝛼|
)                 Eq. (17) 

 
It is normalized to recover the conventional description of surface tension on an 
interface when the ratio of local transition region thickness to local radius of 
curvature approaches zero (Brackbill et al., 1992). 
 

The Continuum Surface Force (CSF) is the most commonly used surface tension 
force model. It is implemented in many CFD packages, such as: OpenFOAM, 
Fluent and StarCCM+ (Vachaparambil et al. 2019). It alleviates these previous 
interface topology constraints without sacrificing accuracy, simplifies the 
calculation of surface tension, enables accurate modeling of two- and three-
dimensional fluid flows driven by surface forces, eliminates the need for interface 
reconstruction, and does not impose any modeling restrictions on the complexity, 
number or dynamic evolution of the fluid interfaces. One more of its characteristics 
is being perfectly suited for Eulerian interfaces which are not generally aligned with 
the computational grid. In addition, the CSF model has been found successfully 
applicable to a large number of fluid phenomena influenced by the interfacial 
surface tension with similar mathematical structure and many new and physically 
interesting problems, such as modelling incompressible fluid flow in low-gravity 
environments, droplet dynamics and capillarity. Even, it has been validated on both 
static and dynamic interfaces (Brackbill et al., 1992).  
 
In fact, the explicit time step constraint is often more restrictive than other 
constraints. The continuum formulation, however, does not increase the severity of 
this constraint but may enable us to formulate implicit equations. This implicit 
formulation which removes that constraint would decrease the cost of surface 
tension calculations by enormous factors. Unfortunately, the nonlinearity and 
complexity of surface tension equations still make it a challenging problem. So 
clearly, there can be improvements in the numerical implementation of the method 
even though it has been verified that reformulating a discontinuous interface 
problem as a continuum problem has demonstrably improved describing surface 
tension phenomena (Brackbill et al., 1992).  
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2.6. OpenFOAM 
 
OpenFOAM is a three-dimensional CFD tool and a multiphasic simulation platform 
mainly devoted to fluid flow and based on a finite-volume code (Soulaine, 2018). 
It was primarily developed by Imperial Collage London in 1989. In 1996, its first 
version was lunched. Since 2004, it has been released under GPL license owned by 
OpenCFD Ltd. It is a freely available open-source package whose toolbox is written 
by C++ (object-oriented programming) and can be easily downloaded at 
www.openfoam.org. "OpenFOAM" stands for "Open Field Operation And 
Manipulation". It is used over a wide variety of engineering and science areas by 
both commercial and academic organisations. In contrast to the other commercial 
tools like Fluent and StarCCM+ which require users to abide by the frameworks of 
the software, OpenFOAM has the greatest flexibility due to the availability to 

access and modify its source code (Inguva et al., 2020). It provides friendly syntax 
for partial differential equations solving. Its parallel computation is implemented at 
the lowest level. It is characterized by a cross-platform installation, i.e. working on 
both Windows and Linux. It has a huge solver database covering the breadth and 
depth of CFD. 
 
 
OpenFOAM consists of more than 200 programs and is not only one executable. 
Its utilities are subdivided into three categories: 

1- Pre-processing 
- Meshing (blockMesh, snappyHexMesh, foamHexMesh, …) 
- Mesh conversion generated by a third-part meshing tool (Ansys, 
ideas, CFX, Gambit, Salomé, Gmsh, Gambit, …) 

2- Solvers 
a. incompressible flow solvers 
b. compressible flow solvers 
c. multiphase flow solvers (VOF, Euler-Euler, …) 
d. Particle-tracking solvers 
e. Buoyancy-driven flow solvers 
f. Solid mechanics solvers 
g. Solvers for combustion problems 
h. Solvers for heat transfer problems 
i. Molecular dynamic solvers 
j. Electro-magnetic solvers 
k. Turbulence approach solvers like DNS, LES and RANS… 
l. Direct Simulation Monte Carlo solvers 

 
In addition to these standard built-in solvers, OpenFOAM’s syntax easily lends 

itself to create custom solvers and boundary fields. 
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3- Post-processing 

a. Distribution to visualize the modelling process with ParaView (or the 
more famous paraFoam) 

 
b. Exporting to other post-treatment softwares; such as Fluent, 

EnSight, Fieldview, Tecplot, Mayavi … 
 

c. postprocess command for 1-D or 2-D sampling (exporting to 
gnuplot, Grace/xmgr et jPlot) 

 
 
 
 
PROS 

- Completely-free (unlimited license) 
- Regularly updated every 6 months 
- An extra tool for code-to-code benchmarks 
- Availability of several out-of-the-box solvers and their tutorials 
- Simplicity to program partial differential equations 
- An important and highly reactive community (summer schools, online forum, 

conference) 
- Providing a direct access to the source code (it is not a black-box) 

 
CONS 

- Need time and effort to learn. 
- Lack of literature documentation 
- Too many forks 
- No presence for an official GUI 
- Need to deal with the Unix command lines and C++ programming 
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General structure of an OpenFOAM case 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Fig. 8. General structure of an OpenFOAM case 

 
 

Firstly, according to the solver or application we would like to use, we will need 
different files in each subdirectory.  
 
0: 

- contains initial conditions (IC) and boundary conditions (BC). 
 
 
constant: 

- contains all the physical properties with constant values (e.g., turbulence 
modeling properties, advanced physics, thermodynamic properties, 
transport properties … etc. 

- The sub-directory polyMesh includes all the information regarding the grid. 
 

 
 
system: 

 

- contains the simulation setup settings, run-time control and solver numerics 
(e.g., choice of the linear solver, of the time step, of the discretization 
schemes, the output files … etc). 
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time_directories: 

 

- one folder per each time step. In each folder, there are as many files as the 
computed fields (U, p, T, k, Omega, Yi, …) 
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Chapter 3: Methodology 
 

In this work, using OpenFOAM v8, we simulate the relaxation of a 2D, stationary, 
square oil droplet immersed in a continuous water phase to its final circular shape, 
in the absence of the gravity effect. The densities of water and oil are 1000 kg/m3 
and 500 kg/m3 respectively, the viscosities of water and oil are 0.001 Pa.s and 
0.0025 Pa.s respectively and the surface tension between both fluids is 0.0236 N/m. 
The diameter of the relaxed droplet is set to 2R = 338.52 µm, which reasonably 
represents the typical dimension of a segmented flow in a microfluidic system. The 
computational domain size is (600 × 600) µm2, corresponding to 100 ×100 cells. 
(Therefore, the grid cell size is ∆𝑥=∆𝑦 = 6 µm) 

 

 
 

Fig. 9. A stationary droplet case study (before relaxation) 
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𝐴𝑠𝑞𝑢𝑎𝑟𝑒 = 𝐴𝑐𝑖𝑟𝑐𝑙𝑒 

𝑆2 =  𝜋𝑅2 

𝑅 =  
𝑆

√𝜋
=  
300

√𝜋
= 169.26 µm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                     Fig. 10. Relaxation of the static droplet 
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In OpenFOAM, a single set of Navier–Stokes equations is discretized on the basis 
of a finite-volume approach and solved simultaneously with the transport equation 
for the VOF index function, α. Considering Newtonian, incompressible, and 

immiscible two fluids (water and oil), the governing equations can be formulated 
as: 

 

∇. �⃗⃗� = 𝟎 

 

𝜌 [
𝜕 �⃗⃗� 

𝜕𝑡
+ �⃗⃗� . 𝛻 �⃗⃗� ] =  −𝛻𝑝 + µ𝛻2 �⃗⃗� + 𝜌𝑔 + 𝐟𝐬 

 
𝜕𝛼

𝜕𝑡
+ ∇. (𝛼𝑢) = 0 

 

Weighted by the VOF index function (α), the density and viscosity are averaged 

over the two phases as follows, respectively: 
 

𝜌 = α 𝜌1 + (1 − 𝛼) 𝜌2 
µ = α µ1 + (1 − 𝛼) µ2 

Subscripts 1 and 2 denote water and oil phases, respectively. 

𝐟𝐬 is the force term generated due to the interfacial tension, modeled as a volumetric 
force applying the Continuum Surface Force (CSF) method: 
 

𝐟𝐬 = 2 𝜎 𝜅 ∇𝛼 

 

where 𝜎 is the interfacial tension, and 𝜅 is the interfacial curvature: 
 
𝜅 = 

1

2
 ∇ . �̂� = 

1

2
 ∇ . 

𝑛

|𝑛|
 =  

1

2
 ∇ . (

∇𝛼

|∇𝛼|
) 

 

In order to obtain a sharp fluid interface, an artificial compression velocity term 
∇. [𝑢𝑟𝛼(1 − 𝛼)] is introduced in the VOF index function, to become: 
𝜕𝛼

𝜕𝑡
+ ∇. (𝛼�⃗⃗� ) + ∇. [𝑢𝑟𝛼(1 − 𝛼)] = 0 

where 𝑢𝑟 is the relative compression velocity, defined as the velocity of the phase 
1 (the wetting fluid) minus the velocity of the phase 0 (the non-wetting fluid); 𝑢𝑟 =
 𝑢𝑤 − 𝑢𝑛𝑤, and evaluated as follows: 

𝑢𝑟 = 𝑛𝑓min [𝐶∝
|𝐹|

|𝑆𝑓|
,   max(

|𝐹|

|𝑆𝑓|
)  ]   
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where  

𝑛𝑓 is the normal vector to the cell face 

𝐶∝ is an adjustable coefficient to control the level of compression, called 
“cAlpha” in OpenFOAM within the range 0 < cAlpha < 2 

𝐹 is the volume flux across the cell face 

𝑆𝑓 is the cell surface area 

The term 𝛼(1 − 𝛼) guarantees that this equation is only active in the interface area 
where 0 < α < 1  

Thus, we can evaluate the influence of the interface sharpening coefficient (𝐶∝) 
when cAlpha = 0, 1 and 2 

 

 

To reduce the magnitude of spurious currents arising from the numerical errors in 
the surface tension calculations due to using the VOF method, the VOF index 
function is smoothed by twice applying the ‘Laplacian filter’ proposed by Lafaurie 

et al., 1994. Since this smoother is not implemented in the OpenFOAM library, an 
external code found in literature is used and linked to the VOF solver. The 
smoothed index function �̃� is given by: 
 

�̃�𝑝= 
∑ 𝛼𝑓𝑆𝑓
𝑛
𝑓=1

∑ 𝑆𝑓
𝑛
𝑓=1

 

 
where the subscript P refers to the cell index and f refers to the face index. The 
interpolated value of 𝛼𝑓 at the face centre is computed using linear interpolation. 
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Chapter 4: Simulation steps and results 
 

1- Using the blockMesh utility, a default multi-hexahedral block mesh 
generator of OpenFOAM, and according to the dictionary file named 
blockMeshDict located in the system directory, our computational 
domain is discretized over a two-dimensional mesh. Because the number of 
mesh cells in z-direction is one, and also in the boundary section, the surface 
along the z-direction (frontAndBack) is defined as empty. The 
generated hex block is defined by eight vertices, in a sequential order, 
considering a given mesh density (i.e. number of cells) and a uniform mesh 
stretching in each direction. Edges are set to be straight by default. 

 

 

 

2- Assigning the oil droplet in its initial square shape to the domain by defining 
the box region in the setFieldsDict dictionary, also located in the 
system directory, and then using the setFields utility. 
 

 

 

Fig. 11. Simulation domain used. Assigning the oil droplet (blue) into the 
continuous water phase (Red) 

  



ABDALLAH ELHAMADY 
S289668 

37 
 

3- In order to minimize the inter-processors communication and the processor 
workload and subsequently reasonably decrease the computational time 
and the numerical cost, we decompose our domain into 4 sub-domains (refer 
to the number of available processors among which our case will be 
distributed) using the decomposePar utility which reads the file 
dictionary decomposeParDict, also located in the system directory. 
We used scotch as a decomposition method in our case, which requires 
no geometric input from the user and attempts to minimize the number of 
processor boundaries. 

 

 

 

Fig. 12. Decomposition the computational domain over 4 processors 

 

 

4- After decomposition, we run the standard VOF solver available within 
OpenFoam, interFoam, in parallel using the public domain openMPI 
implementation of the standard message passing interface (MPI).  

 

5- For post-processing purposes, we reconstruct the mesh and field data to 
recreate the complete domain and fields by executing reconstructPar 
without any additional options where the sets of time directories stored in 
each processor directory are merged into a single set of time directories 
being saved in the main case directory. 
 
 

6- We run paraFoam to visualize our simulation results 
 
 

7- We extract the centroids coordinates at the latest time (𝑡 = 0.1), for the 
three cases typing the following command: 

 
postProcess -func writeCellCentres -latestTime 
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8- We plot the distribution of alpha.water over a cross-section at the half 

coordinates of the computational domain at time t=0.05 for cAlpha = 0, and 
at time t=0.1 when cAlpha = 1 and 2 
 

 
 

Fig. 13. Evolution of the VOF index function (α) over a cross section, 

indicating the interface sharpening when cAlpha=0  
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Fig. 14. Evolution of the VOF index function (α) over a cross section, 

indicating the interface sharpening when cAlpha=1 
 

 
 

Fig. 15. Evolution of the VOF index function (α) over a cross section, 

indicating the interface sharpening when cAlpha=2 
 

9- We compute the magnitude of the velocity at every single cell by typing 
the command: 

postProcess -func “mag(U)” 

This generates a file named mag(U) in each saved time step directory. 

10- In order to obtain the maximum magnitude velocity at each time step, we 
can type: 

postProcess -func “cellMax(mag(U))” 

Results are stored in a file named volFieldValue, located in the postProcessing 
directory. 
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11- We plot the maximum magnitude velocity vs. time, for the three cases. 
 

 
 

 
Fig. 16. Evolution of the maximum magnitude velocity through the 

computational domain, for cAlpha=0, 1 and 2 
 
Results: From the figures shown above, it is evident that due to 
compressing the interface by increasing cAlpha from 0 to 1, the 
corresponding thickness of the interface decreases approximately from 7 
grid cells to 4 grid cells. Further increasing cAlpha from 1 to 2 not 
considerably decreases the interface thickness. On the other side, the 
magnitude of spurious currents significantly increases as cAlpha 
increases. Therefore, we decide to use cAlpha = 1 for all the remaining 
simulations which gives a sharp fluid interface, but at the same time keeps 
spurious currents relatively small. 
 

12- Compiling the smoother code in OpenFOAM: 
 

- kva_interfaceProperties library is the library that includes the smoothing 
application of interest. 

   
- Starting with Compiling kva_interfaceProperties library, whose the whole 

code documentation is available at https://github.com/floquation/OF-
kva_interfaceProperties and linking it to OpenFOAM v8. 

 
- Then, compiling a user defined version of interFoam, linked to 

kva_interfaceProperties library, called myInterFoam_smoothing. 

https://github.com/floquation/OF-kva_interfaceProperties
https://github.com/floquation/OF-kva_interfaceProperties
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- Renaming the recompiled solver (myInterFoam_smoothing) to distinguish 
between it and the original one, and thus avoid modifying the existing 
interFoam solver. 
 
 

13- The steps from (1) to (8) are repeated for running a new case where 
application in the controlDict dictionary file (located in the 
system directory) is modified from interFoam (the original VOF 
solver) to myInterFoam_smoothing (the recompiled solver). 
 

14- We plot, on the same graph, the maximum magnitude velocity vs. time for 
both cases:  
 

a. no smoothing (cAlpha=1 and m=0) and  
b. smoothing (cAlpha=1, m=2) 

 

            Fig. 17. Evolution of the maximum magnitude velocity through the 
computational domain, without (m=0) and with smoothing (m=2) 

 

Results: The graph above evidently shows that the magnitude of spurious currents 
has been decreased by almost one order of magnitude when applying that Laplacian 
filter twice (m=2) 
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15- Calculating the exact (analytical) solution of the Laplace pressure through 
the following formula: 
 
 

Results: 𝑝𝑒𝑥𝑎𝑐𝑡 = 
𝛾

𝑅
= 

23.6×10−3

169.26×10−6
= 139.43 Pa 

 

16-  We plot the Laplace pressure magnitude over a cross-section at the half 
coordinates of the computational domain at the latest time, 𝑡 = 0.1, for both 
cases:  

a. no smoothing (cAlpha=1 and m=0) and  
b. smoothing (cAlpha=1, m=2) 

 

 
Fig. 18. Computation of the Laplace pressure over a cross section in case 

of no smoothing (cAlpha=1) 
 

Results: The numerical solution of Laplace pressure gives 𝑝𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 128.233 Pa  
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Fig. 19. Computation of the Laplace pressure over a cross section in case 

of smoothing (cAlpha=1) 
 

Results: The numerical solution of Laplace pressure gives  𝑝𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 132.243 Pa 

 

17- We perform an error analysis to evaluate the accuracy of the numerical 
solution of the Laplace pressure with respect to the exact (analytical) 
solution. 

 

Results: Error in the Laplace pressure calculation in both cases: 

a. no smoothing (cAlpha=1 and m=0) 

%𝐸(𝑝) =  
𝑝𝑒𝑥𝑎𝑐𝑡 − 𝑝𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑝𝑒𝑥𝑎𝑐𝑡
=
139.43 − 128.233 

139.43
= 8.0377% 

 

b. smoothing (cAlpha=1, m=2) 

%𝐸(𝑝) =  
𝑝𝑒𝑥𝑎𝑐𝑡 − 𝑝𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑝𝑒𝑥𝑎𝑐𝑡
=
139.43 − 132.243 

139.43
= 5.1546% 

 

The error in the Laplace pressure calculations has decreased by: 

= 
8.0377−5.1546

8.0377
= 35.8697% ≈ 36% 
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Chapter 5: Conclusion  

Errors in computing the surface tension are mainly induced because of the abrupt 
change of the VOF index function over the thin interface region between two fluids. 
These errors lead to non-physical spurious currents with velocities which can be 
even larger than the actual ones throughout the flow domain. Although several 
attempts have been made to understand and solve this problem, it is still a main 
obstacle in the numerical modelling of multiphase flow in porous media. In this 

work, we have presented a review of the VOF standard solver in OpenFOAM, 
interFoam, forming one rigorous benchmark: static droplet. We have shown that 
introducing the interface compression up to the level 𝐶𝛼 =1 provides balance 
between the interface sharpening and the spurious currents magnitude and thus 
leads to a sharp (thinner) interface and quite high spurious currents. In order to 
reduce spurious currents, we have smoothed the VOF index function twice using 
“Laplacian filter”, which is not implemented in OpenFOAM library, but we 

recompiled it from an external code. We have found out that applying the smoother 
has decreased spurious currents by almost one order of magnitude. 

The obtained numerical solution of the Laplace pressure for the static droplet in 
case of no smoothing was 128.233 Pa, while in case of smoothing, it was 132.243 
Pa. Therefore, when we performed an error analysis with respect to the exact 
(analytical) solution of the Laplace pressure for a sphere (139.43 Pa), it was proved 
that the error in the Laplace pressure calculations has decreased by almost 36%.
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Appendix 
 

Stationary droplet test 
 

1. Directory: 0  
 

1.1. Dictionary: alpha.water 

FoamFile 

{ 

    version      2.0; 

    format       ascii; 

    class        volScalarField; 

    object       alpha.water; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * *// 

  

dimensions       [0 0 0 0 0 0 0]; 

  

internalField    uniform 1; 

  

boundaryField 

{ 

     

    wall 

    { 

        type   constantAlphaContactAngle; 

        theta0  90; 

        limit   gradient; 

        value   uniform 1; 

    } 

     

    frontAndBack 

    { 

        type   empty; 

    } 

  

} 

  

// * * * * * * * * * * * * * * * * * * * * * * * * *// 
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1.2. Dictionary: P_rgh 
 

FoamFile 

{ 

    version      2.0; 

    format       ascii; 

    class        volScalarField; 

    object       p_rgh; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * *// 

  

dimensions       [1 -1 -2 0 0 0 0]; 

  

internalField    uniform 0; 

  

  

boundaryField 

{ 

    wall 

    { 

        Type  fixedFluxPressure; 

    } 

     

    frontAndBack 

    { 

        Type  empty; 

    } 

  

} 

  

// * * * * * * * * * * * * * * * * * * * * * * * * *// 
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1.3. Dictionary: U 
 

FoamFile 

{ 

    version      2.0; 

    format       ascii; 

    class        volVectorField; 

    object       U; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * *// 

  

dimensions       [0 1 -1 0 0 0 0]; 

  

internalField    uniform (0 0 0); 

  

boundaryField 

{ 

    wall 

    { 

        Type  noSlip; 

    } 

     

    frontAndBack 

    { 

        Type  empty; 

    } 

     

} 

  

// * * * * * * * * * * * * * * * * * * * * * * * * *// 
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2. Directory: constant 
 

2.1. Dictionary: g 
FoamFile 

{ 

    version      2.0; 

    format       ascii; 

    class        uniformDimensionedVectorField; 

    location     "constant"; 

    object       g; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * *// 

  

dimensions       [0 1 -2 0 0 0 0]; 

value            (0 0 0); 

  

  

// * * * * * * * * * * * * * * * * * * * * * * * * *// 
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2.2. Dictionary: transportProperties 
FoamFile 

{ 

    version      2.0; 

    format       ascii; 

    class        dictionary; 

    location     "constant"; 

    object       transportProperties; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * *// 

  

phases (water oil); 

  

water 

{ 

    transportModel  Newtonian; 

    nu              nu [0 2 -1 0 0 0 0]  1e-06; 

    rho             rho [1 -3 0 0 0 0 0]  1000; 

} 

  

oil 

{ 

    transportModel  Newtonian; 

    nu              nu [0 2 -1 0 0 0 0]   5e-06; 

    rho             rho [1 -3 0 0 0 0 0] 500; 

} 

  

sigma              0.0236; 

 

// For smoothing, the following lines are added: 

 

curvatureModel      vofsmooth; // normal; 

 

vofsmoothCoeffs 

 

{ 

 

    numSmoothingIterations 2; // default: 2 

 

} 
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2.3. Dictionary: turbulenceProperties 
FoamFile 

{ 

    version      2.0; 

    format       ascii; 

    class        dictionary; 

    location     "constant"; 

    object       turbulenceProperties; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * *  // 

  

simulationType   laminar; 

  

  

// * * * * * * * * * * * * * * * * * * * * * * * * *// 
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3. Directory: system 
 

3.1. Dictionary: blockMeshDict 
FoamFile 

{ 

    version      2.0; 

    format       ascii; 

    class        dictionary; 

    object       blockMeshDict; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * *// 

  

convertToMeters 1e-6; 

  

vertices 

( 

   (0 0 0) 

   (600 0 0) 

   (600 600 0) 

   (0 600 0) 

   (0 0 0.01) 

   (600 0 0.01) 

   (600 600 0.01) 

   (0 600 0.01) 

); 

  

blocks 

( 

    hex (0 1 2 3 4 5 6 7) (100 100 1) simpleGrading (1 

1 1) 

); 

  

edges 

( 

); 

  

boundary 

( 

     wall 

     { 

        type  wall; 

        faces 

        ( 

          (3 7 6 2) 
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          (0 4 5 1) 

          (3 7 4 0) 

          (2 6 5 1) 

        ); 

     } 

      

          frontAndBack 

     { 

         type  empty; 

         faces 

         ( 

             (0 1 2 3) 

             (4 5 6 7) 

         ); 

     } 

  

); 

      

mergePatchPairs 

( 

); 
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3.2. Dictionary: controlDict 
FoamFile 

{ 

    version      2.0; 

    format       ascii; 

    class        dictionary; 

    location     "system"; 

    object       controlDict; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * *// 

  

application      interFoam; //myInterFoam_smoothing 

  

startFrom       latestTime; 

  

startTime        0; 

  

stopAt           endTime;//writeNow;//  

  

endTime          0.1; 

  

deltaT           1e-7; 

  

writeControl     adjustableRunTime; 

  

writeInterval    2e-4; 

  

purgeWrite       0; 

  

writeFormat      ascii; 

  

writePrecision   8; 

  

writeCompression  off; 

  

timeFormat       general; 

  

timePrecision    6; 

  

runTimeModifiable  yes; 

  

adjustTimeStep   yes; 

  

maxCo            0.3; 
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maxAlphaCo       0.3; 

  

maxDeltaT        9e-7; 

  

  

// * * * * * * * * * * * * * * * * * * * * * * * * *// 
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3.3. Dictionary: decomposeParDict 
 

FoamFile 

{ 

    version      2.0; 

    format       ascii; 

    class        dictionary; 

    location     "system"; 

    object       decomposeParDict; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * *// 

  

numberOfSubdomains  4; 

  

method           scotch; 

  

  

  

  

// * * * * * * * * * * * * * * * * * * * * * * * * *// 
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3.4. Dictionary: fvSchemes 
FoamFile 

{ 

    version      2.0; 

    format       ascii; 

    class        dictionary; 

    location     "system"; 

    object       fvSchemes; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * *// 

  

ddtSchemes 

{ 

    default          Euler; 

} 

  

gradSchemes 

{ 

    default          pointCellsLeastSquares; 

    grad(U)          Gauss linear; 

} 

  

divSchemes 

{ 

    div(rhoPhi,U)  Gauss linearUpwind grad(U); 

    div(phi,alpha)  Gauss vanLeer; 

    div(phirb,alpha) Gauss interfaceCompression; 

    div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear; 

} 

  

laplacianSchemes 

{ 

    default          Gauss linear corrected; 

} 

  

interpolationSchemes 

{ 

    default          linear; 

} 

  

snGradSchemes 

{ 

    default          corrected;  
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3.5. Dictionary: fvSolution 
FoamFile 

{ 

    version      2.0; 

    format       ascii; 

    class        dictionary; 

    location     "system"; 

    object       fvSolution; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * *// 

  

solvers 

{ 

    "alpha.water.*" 

    { 

        nAlphaCorr       1; 

        nAlphaSubCycles  2; 

        cAlpha           0; //1; 2; 

  

        MULESCorr        yes; 

        nLimiterIter     5; 

  

        solver           smoothSolver; 

        smoother         symGaussSeidel; 

        tolerance        1e-8; 

        relTol           0; 

    } 

  

    "pcorr.*" 

    { 

        solver           PCG; 

        preconditioner   DIC; 

        tolerance        1e-10; 

        relTol           0; 

    } 

  

    p_rgh 

    { 

        solver           PCG; 

        preconditioner   DIC; 

        tolerance        1e-07; 

        relTol           0.05; 

    } 
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    p_rghFinal 

    { 

        $p_rgh; 

        relTol            0; 

    } 

  

    U 

    { 

        solver           smoothSolver; 

        smoother         symGaussSeidel; 

        tolerance        1e-06; 

        relTol           0; 

    } 

} 

  

PIMPLE 

{ 

    momentumPredictor     no; 

    nOuterCorrectors      1; 

    nCorrectors           3; 

    nNonOrthogonalCorrectors 0; 

    pRefCell             1; 

    pRefValue            0; 

} 

  

relaxationFactors 

{ 

    equations 

    { 

        ".*" 1; 

    } 

} 

  

  

// * * * * * * * * * * * * * * * * * * * * * * * * *// 
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3.6. Dictionary: setFieldsDict 
FoamFile 

{ 

    version      2.0; 

    format       ascii; 

    class        dictionary; 

    location     "system"; 

    object       setFieldsDict; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * *// 

  

defaultFieldValues 

( 

    volScalarFieldValue alpha.water 1 

); 

  

regions 

( 

    boxToCell 

    { 

        box (150e-6 150e-6 0) (450e-6 450e-6 0.01); 

        fieldValues 

        ( 

            volScalarFieldValue alpha.water  0 

        ); 

    } 

); 

  

  

// * * * * * * * * * * * * * * * * * * * * * * * * *// 

 

 

 


