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ABSTRACT 

CO2 emissions as the root of global warming have been intended to be cut by net zero 

until 2050. CCS is a technology capable of capturing produced CO2 in energy sectors and 

industries to be injected and stored into the subsurface geological formations like depleted 

oil and gas reservoirs and aquifers possessing effective trapping mechanisms rather than 

emissions in the atmosphere. CO2 storage involves drilling an injection well, injection, 

well control, and CO2 propagation within geological storage, governed by petroleum 

engineering principles. Therefore, oil and gas companies, besides petroleum engineers, 

are responsible for the exploration and assessment of viable storages in addition to 

execution.  

Among multiple risks, fracturing in caprock and around the wellbore, in addition to 

leakage through geological paths and legacy wells, are the predominant ones that follow 

CO2 injection and storage. Storage simulation is employed to monitor well performance 

and CO2 plume migration to optimize the progress with respect to the objectives and 

constraints. The common approach is a numerical simulation by commercial and open-

source simulators. A full field simulation may take a few hours, depending on the model's 

type, dimension, and resolution. Sensitivity analysis and optimization of CO2 storage by 

conventional numerical methods require several runs, which is not temporally efficient.  

During the last two decades, various types of proxy models have been developed to 

replicate the reservoir simulation results in the field, well, and grid scales from input 

features by mathematical, statistical, and AI approaches. The proxy models are able to be 

substituted for numerical simulators to apply sensitivity analysis, optimization, and 

history matching extremely quickly without sacrificing accuracy. The most current proxy 

models are AI and machine learning-based proxy models, called Smart Proxy Model or 

Surrogate Reservoir Proxy Model (SRM).   

In this study, after updating the numerical model and designing a feasible injection well, 

by training two DNNs, grid-based SRMs were developed to simulate dynamic CO2 

saturation and pressure distribution in the entire model's grid blocks in 1 minute with 99% 

accuracy. Subsequently, the Genetic Algorithm optimized the CO2 injection into the 

Smeaheia saline aquifer, which is placed in the North Sea, and found the optimum CO2 

injection rate and duration, maximizing storage capacity without leakage and fracturing. 
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1 INTRODUCTION 

1.1 Background 

After the Paris Agreement in December 2015, Framework Convention on Climate 

Change (FCCC) published a report on the Agreement and its adoption (Nations, 2015) 

that defined the Nationally Determined Contributions (NDC) regulations. The main target 

of NDCs is holding the global average temperature below 2 ˚C above pre-industrial levels 

and concentrating efforts on limiting temperature increase below 1.5 ˚C above pre-

industrial levels. Since then, a special report (Masson-Delmotte, 2018) revealed the 

emission trend, and NDC's ambition deviated from the path of limiting global warming 

to under 2 ̊ C. According to the research result, if greenhouse gas emissions do not decline 

sharply until 2030, global warming will surpass 1.5 ˚C; consequently, irreversible 

extinction of many frail ecosystems will occur. Carbon Capture and Storage (CCS) is a 

suitable technology that takes action against CO2 emission at the source directly and 

contributes to 15% of total emissions cut to achieve the global target of the net‐zero CO2 

energy sector and industrial activity emissions in 2050 (Bouckaert, 2021). 

A measure of challenges follows geological CO2 storage in terms of seismicity effect, 

economic factors, and leakage due to overpressure, transmissible faults and fractures, and 

legacy wells (Ajayi, 2019) that must be investigated and defined in every CCS project. 

Subsequently, the available risks can be avoided by monitoring pressure and CO2 plume 

migration in the porous media, and injection optimization (Santibanez-Borda, 2019). 

Indeed, it is required to run numerous numerical simulations to analyze the sensitivity of 

dynamic pressure and gas saturation distribution, and rock response respect to the well 

position and injection condition, as well as searching for the optimum condition without 

any risk in a computationally heavy and time-consuming process (Jiang, 2011). Proxy 

Modeling can be a complementary method for heavy numerical simulations and an 

alternative in the long term (Jaber, 2019), which enhances computation time by more than 

one hundred times (Hosseini Boosari, 2019). Smart Proxy Modeling (SPM), or Surrogate 

Proxy Reservoir Modeling (SRM), is an AI and machine learning-based data-driven 

model that can substitute large and complex numerical models and replicate pressure and 

saturation distribution throughout the grids at each time step with high pace and adequate 
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accuracy (Mohaghegh, 2018).  Mohaghegh (2012) and his research team, Gholami (2014) 

and Amini (2015) are pioneers in smart proxy modeling. This study uses grid-based SRM 

subsequent to Mohaghegh (2012) and Amini (2015). 

The case study for proxy modeling and optimization is Smeaheia CO2 Storage (Equinor 

& Gassnova, 2021), an aquifer in the Norwegian North Sea on the Horda Platform, east 

of the Troll Field. Smeaheia has been investigated and modeled by Erichsen, Rørvik, 

Kearney, & Haaberg (2013), Statoil (2016), and Brobakken (2018) as part of the Northern 

Lights' full-scale CCS project and a potential for future storage. Each one created a black 

oil model by Eclipse100 and Petrel based on different Geological perceptions. In 

Gassnova's model, an average property value is distributed for each layer, whereas 

properties of Statoil's model are distributed stochastically. Two exploration wells were 

drilled in the east and west of the field; they were dry and left abandoned. However, the 

acquired data from the wells and 2D and 3D seismic are employed for creating geological 

models. 

Nowadays, computationally expensive optimization problems, either for injection or 

production optimization, are being performed by Surrogate Models to reduce 

computation time and compensate for the lack of facility. For instance, Golzari (2015) 

and Ng (2021) utilized surrogate modeling for production optimization, or it is employed 

for injection optimization in CO2 Storage or CO2-EOR by Agada (2017), Nait Amar 

(2018), and Sun (2021). They used various optimization algorithms such as Genetic 

Algorithm (GA) (Liu, 2021; Agada, 2017; Agarwal, 2019), Ant Colony (ACO) (Nait 

Amar, 2018), Hooke–Jeeves Direct Search (HJDS) (Cameron, 2012), SIMPLEX, and 

Generalized Reduced Gradient (GRG) (Santibanez-Borda, 2019). GA is a popular 

optimization algorithm developed by John Holland (1975) from DNA evolution. The 

prevalence of GA can be due to its competence in dealing with complex problems, 

whether the objective function is stationary or non-stationary (changing with time), linear 

or non-linear, continuous or discontinuous, or with random noise (Yang, 2021). 

Moreover, in addition to unconstrained single-objective problems, it can be adapted for 

constrained single-objective and multi-objective problems (Konak, 2006). Indeed, GA 

can optimize CO2 injection, which may be a constrained or multi-objective problem. 
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1.2 Objective 

The core objective of the study is to create a full-scale grid-based SRM in lieu of typical 

numerical simulation facilities to achieve a dramatic enhancement in computation cost 

without sacrificing accuracy. The SRM will model CO2 storage, a practical solution for 

the energy transition (Arlota & de Medeiros Costa, 2021). Afterward, the volume of 

stored CO2 must be maximized as the optimization objective, in parallel with controlling 

the migration path and avoiding fracture pressure as safety constraints by selecting the 

optimum injection rate and duration, and well location.  

After selected geological model sensitivity analysis, the well location will be chosen in 

an acceptable location according to the bottom-hole pressure tolerance and the influence 

of virtual wells on the CO2 plume migration path. 

Briefly, the research objectives can be listed as follows: 

1. Defining the objectives of the optimization and the kind of optimization 

according to the field characteristics and challenges 

2. Developing a grid-based SRM as a substitute for computationally heavy 

numerical simulations to decline the running time. 

3. Optimizing CO2 injection according to defined objectives with the help of the 

created proxy model. 

 

1.3 Structure of the Report 

In this thesis, the literature review and theory of CCS, proxy modeling, optimization, and 

Genetic algorithm follow the thesis introduction. The third chapter will describe the 

project methodology, storage characteristics, model, and required optimization problem. 

In chapter four, the proxy model and optimization problem will be structured to represent 

the obtained results from the implementation in chapter five. Finally, the progress and 

results will be discussed and concluded in chapters six and seven, respectively. 
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2 LITERATURE REVIEW 

2.1 CO2 Capture and Storage 

Based on the IEA report (Bouckaert, et al., 2021), the energy sector participates in 75% 

of greenhouse gas production and is at the root of climate change disasters, perhaps the 

most tremendous challenge for humankind. Limiting the global temperature increase to 

1.5°C would be possible by falling total CO2 emissions to net-zero until 2050, which 

requires a wide range of technologies. Carbon Capture and Storage (CCS) is a feasible 

technology that has the task of annual capturing 7.6 Gt out of 36 emitted CO2 in a net-

zero emission path (Bouckaert, et al., 2021). 

 

 
Figure 2.1: Emissions reductions by mitigation measure in the NZE, 2020-2050 

(Bouckaert, et al., 2021) 

 

CCS is a remedy technology for climate change that consists of capturing and purifying 

CO2 produced in industrial and energy origins in preference to releasing into the 

atmosphere, transporting it to a suitable site location, both onshore and offshore, and 

storing CO2 in the subsurface for a long time (Bandilla, 2020), as shown in figure 2.2. 
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Figure 2.2: Conceptual diagram of carbon capture and storage. Image supplied by 

CO2CRC (Bandilla, 2020) 

2.1.1 Capture of CO2 

The first step of CCS is capturing carbon, and post-combustion capture, oxy-fuel 

combustion capture, and pre-combustion capture are the main capturing processes from 

the use of fossil fuels and biomass. Post-combustion capture is performed when the 

produced flue gas by fossil fuels and biomass combustion is captured. Rather than 

discharging flue gas into the atmosphere directly, it will be fed to a separator that filters 

a vast majority of CO2 and will be stored in a reservoir in addition to releasing the 

remaining gas into the air. The oxy-fuel combustion capture is the same as post-

combustion capture, with the difference of using pure oxygen instead of air for the 

combustion and recycling the CO2 and H2O-rich flue gas to the combustor in order to 

moderate inordinately high-temperature flame. During pre-combustion capture, fuel 

reacts with the mixture of air or oxygen and steam to produce syngas consisting of carbon 

monoxide and hydrogen. Subsequently, CO2 and hydrogen, created due to carbon 

monoxide reaction with steam, will be separated by a physical or chemical absorption 

process (Metz, 2005). 
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Figure 2.3: Carbon capture at power plants: (A) no capture, (B) post-combustion, 

(C) pre-combustion, and (D) oxyfuel combustion.  (Metz, 2005) 

2.1.2 Transport of CO2 

CO2 transport can be carried out in gas, liquid, and solid phase. Companies employ tanks, 

pipelines, and ships for economic and large-scale transport of CO2 in gas and liquid states. 

Low-pressure gas occupies a large volume; therefore, pipelines transport compressed gas. 

Furthermore, the gas volume is able to be reduced more by liquefaction, solidification, 

and hydration. Ships transport liquified CO2 as LPG (liquefied petroleum gas) and LNG 

(liquefied natural gas). Although, solidification is not reasonable in aspects of energy and 

cost because of too much energy consumption (Metz, 2005).  

2.1.3 Underground geological storage 

The last step of CCS is storing captured CO2 in the subsurface in place of discharging it 

into the atmosphere. The subsurface is the hugest carbon reservoir on the earth in the 

shape of coal, oil, gas, organic-rich shales, and carbonate rocks. The first structured CO2 

injection into the underground geological formations took place in Texas, USA, in 1972, 

with the intention of enhanced oil recovery (Hill, Hovorka, & Melzer, 2013). In this 

project, injecting 600 million metric tonnes of CO2 produced 1.4 billion barrels of oil, 

and produced CO2 was reinjected. Since then, a measure of subsurface storage options 

and purposes for CO2 have been designed, which are mentioned in table 2.1. 

 



Behzad Amiri  7 
_____________________________________________________________________________________ 

 

 
Figure 2.4: Options for storing CO2 in deep underground geological formations 

(after Cook, 1999;  Metz, 2005) 

 

Table 2.1: Subsurface carbon storage options (Rackley, 2017) 

Subsurface storage option Description 

Saline aquifer storage Injection into saline aquifers that are not 
considered potential drinking water resources 

Enhanced oil recovery (EOR) Injection into operating oil fields, typically those 
containing heavier oil, initially to maximize 
economic oil recovery and more recently to also 
achieve CO2 storage 

Enhanced gas recovery (EGR) Similar to EOR, injection into depleted or 
operating gas fields with the objective of co-
optimizing hydrocarbon recovery and CO2 storage 

Enhanced coal bed methane 
recovery (ECBM) 

Injection into unmineable coal seams, increasing 
CBM recovery by preferential adsorption of CO2 
and desorption of methane 

Enhanced geothermal 
systems (EGS) 

Use of CO2 as a working fluid in geothermal 
energy extraction and storage systems, a variant 
being the extraction of heat from an injected CO2 
plume in a saline aquifer (CO2 plume geothermal) 

Compressed air energy storage 
systems (CAES) 

Use of CO2 as a cushion gas to store energy from 
intermittent sources such as wind or solar power 
systems 
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In situ mineral carbonation Injection of CO2 into fractured alkali mineral 
deposits, such as sheet basalts, and storage via 
mineral carbonation 

(Rackley, 2017) 

After injection, CO2 distribution in geological storage will be ruled by fluid flow in 

consequence of induced pressure gradient by injection; natural hydraulic gradient in the 

storage; buoyancy due to CO2 and formation fluids density difference; molecular 

diffusion; dispersion and fingering in response of heterogeneity and mobility contrast 

between CO2 and formation fluids; dissolution into the formation fluids; mineralization 

by CO2 reaction with minerals and organic particles in the formation, pore space trapping, 

and CO2 adsorption by organic material. Moreover, CO2 must be trapped and 

immobilized for the long term by physical and chemical trapping mechanisms in table 

2.2. 

Table 2.2: Trapping mechanisms for geological carbon sequestration 

Subsurface storage option Description 

Static trapping Mobile CO2 is trapped in stratigraphic and 
structural traps, or in man-made caverns. 

Structural trapping Structural traps refer to geological media which 
precludes the upward and lateral movement of 
CO2 induced by crust movement (faults and 
folds). 

Stratigraphic trapping Stratigraphic traps refer to geological media 
which precludes the upward and lateral movement 
of CO2 induced by depositional and/or diagenetic 
processes. 

Hydrodynamic trapping 1.  The buoyant CO2 is kept underground by an 
impermeable caprock. 
2. The injected CO2 is primarily trapped as a gas 
or supercritical fluid. CO2 will rise up due to 
buoyancy effect until it approaches the seals. 

Capillary trapping 1.  It means the trapping by capillary forces in the 
pores on the trailing edge of the mobile CO2 
plume (typically). 
2.  CO2 phase is disconnected into an immobile 
(trapped) fraction (or called residual trapping). 

Residual trapping 1. CO2 can be stored as an immobile form in deep 
saline aquifers due to the density difference 
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between CO2 and brine. CO2 will be left behind 
as trapped (residual) saturation. 
2.CO2 is trapped in the pore space at irreducible 
gas saturation in which case CO2 is immobile 
because of the interfacial tension between CO2 
and formation water. 
3. It means the trapping by capillary forces in the 
pores on the trailing edge of the mobile CO2 
plume (Less commonly). 
4. Residual trapping happens when water is 
imbibed behind the migrating CO2 plume, and is 
caused by gas-water relative permeability 
hysteresis. 
5. Formation of disconnected blobs of CO2 phase 
is held by capillary forces. 

Solubility trapping 
(Dissolution trapping) 

1. CO2 dissolves in hydrocarbons or water 
contained in subsurface formations by diffusion. 
2. CO2 mixes with residual gas. 
3. CO2 dissolves in brine as aqueous species. 

Mineral trapping 1. CO2 reacts with minerals and organic matters in 
the geologic formations to become a portion of 
the solid matrix. 
2. CO2 is trapped by precipitation of carbonate-
bearing mineral phases, such as calcite, 
magnesite, siderite, and dawsonite. 
3. CO2 is trapped by the mineralization process of 
mineral dissolution and precipitation. 
4. CO2 is trapped by precipitation of dissolved 
carbonate anions and metal cations as solids. 

(Zhang & Song, 2014) 

2.1.4 CO2 Properties  

CO2 phase behavior and properties like density and compressibility are intensely pressure 

and temperature-dependent because CO2 is usually found around the critical point, 

Tc=31.1° C and Pc = 7.38 MPa, in the reservoir condition. The CO2 density in the standard 

condition is about 1.87 kg/m3, despite the fact that it varies between 300 and 700 kg/m3 

in the storage (van der Meer, Hofstee, & Orlic, 2009), as shown in figure 2.5. In contrast 

to density, the viscosity of CO2 has a lower variation interval with pressure and 

temperature change. 
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Figure 2.5: Density of CO2 as a function of temperature and pressure 

 (Rackley S. A., 2017) 

 
Figure 2.6: Viscosity of CO2 as a function of temperature and pressure 

 (Rackley S. A., 2017) 

2.1.5 Rock and Fluid Interaction 

CO2 injection in the saline aquifer will create a 2-phase system that causes CO2 migration 

and trapping in the porous media to be influenced by interfacial tension (IFT). Figure 2.7 

indicates IFT between CO2 and brine as the function of pressure, temperature, and brine 

salinity. 
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Figure 2.7: Brine CO2 IFT dependence on pressure, temperature, and brine 

salinity (Rackley S. A., 2017) 

Before injection, the reservoir is fully saturated by the formation water. CO2 injection 

causes the non-wetting phase, CO2, to displace the wetting phase, water, during drainage 

and induces a capillary pressure and rise in consequence of the pressure difference 

between the two partially immiscible phases in addition to the pressure gradient of 

injection. While drainage, the gas saturation cannot reach one because of IFT; a small 

amount of water adheres to the wall of the pores, equal to the irreducible water saturation. 

After stopping the injection, spontaneous imbibition will be created, and the water will 

force CO2 back to reach the phase and hydraulic equilibrium. Therefore, mostly CO2 will 

be placed in the upper part of the storage and above the water, which has a greater density. 

However, the water saturation will not return to one due to immobile gas called critical 

gas saturation. Finally, capillary pressure will generate a transition zone in addition to the 

gas and water zone (Rackley S. A., 2017). Figure 2.10 demonstrates capillary pressure 

change versus the water saturation during drainage and imbibition. The capillary pressure 

can be translated to capillary height by the density difference. 

 
Figure 2.8: drainage imbibition capillary pressure curves (Rackley S. A., 2017) 
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2.1.6    Risk assessment of CO2 Storage 

Five main types of risk follow geological storage of CO2 in terms of CO2 leakage, CH4 

leakage, seismicity, ground movement, and brine displacement, which are generalized in 

figure 2.9 (Li & Liu, 2016). The overriding concern that must be guaranteed before the 

injection is CO2 leakage through caprock capillary penetration, existing fractures and 

faults or induced fractures in caprock by pressures over fracture pressure, and legacy 

wells. Additionally, remedial measures for any possible leakage should be predicted, such 

as in figure 2.10. 

 
Figure 2.9: Risks associated with the geological storage of CO2 (Li & Liu, 2016) 

 

 
Figure 2.10: Some potential escape routes for CO2 injected into saline formations 

and remedial measures (Metz, 2005)  
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2.2 Proxy Modeling 

The nature of numerical reservoir simulation modeling involves uncertainty that requires 

uncertainty analysis and quantification for foolproof implementation of CO2 storage. On 

the other hand, these models contribute to overkill computation costs owing to using non-

academic and real cases, which are huge. Therefore, the utilization of numerical reservoir 

simulation models limits uncertainty analysis, full-field studies, and optimization. The oil 

& gas industry has been grappling with the mentioned problems by building proxy models 

(Mohaghegh, 2018), which reproduce simulation output from input features through 

mathematical or statistical functions, to substitute for complex reservoir simulation 

models (Zubarev, 2009). 

Generally, there are four types of proxy models: statistics-based technique, reduced 

physics approach, reduced-order modeling approach, and artificial intelligence (AI)-

based method. The statistical methods, such as Statistical Response Surfaces (SRSs), 

make a relationship between input and output parameters by a function that can be 

obtained by computational trials proportional to the complexity of the mathematical 

function. Reduced-order approaches work based on simplifying the physics of the model 

by making a measure of assumptions, and reducing the dimensions of the system 

equations matrix, respectively. Last but not least, AI-based proxy modeling employs the 

power of flexible AI and machine learning techniques to find highly complex 

relationships between input-output parameters participating in fluid flow simulation. In 

this study, AI-based proxy models will be used (Amini & Mohaghegh, 2019; Jaber, Al-

Jawad, & Alhuraishawy, 2019) 

2.2.1 Building SRM 

Smart Proxy Models (SPMs) or Surrogate Reservoir Proxy Models (SRMs) employ AI 

techniques to address geological CO2 storage challenges in an effective and accurate 

computation. SRM generation consists of four steps: 

1. Defining Objectives and Features 
SRMs are divided into three types Field-based, Well-based, and Grid-Based, 

and their resolution and complexity increase, respectively, according to figure 

2.11 (Matthew, 2021). the selection of the SRM type depends on the problem 

objective. A field-based SRM models a segment or whole of the field by the 
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field-scale parameters. Well-scaled proxies simulate pressure and rate change 

around the wellbore, and grid-based proxies monitor the alteration of pressure 

and saturation at each grid. Subsequently, the input features will be determined 

by general inputs of each proxy model in table 2.3 and the physics of the case 

study. 

 

 
Figure 2.11: Summary of proxy model scale and application (Matthew, 2021) 

Table 2.3: SRM input 

DATA 
Grid-based1 Well-based1 Field-based2 

Property Domain Property Domain Property Domain 

Static 

Grid Type 

Location (i, j, k, x, y) 

Thickness 

Porosity 

Permeability (x, y, z) 

Grid top 

Distance to boundary 

Grid 

Grid/Tier 

Grid 

Grid  

Grid 

Grid/Tier 

Grid/Tier 

Drainage Area 

Location (i, j, k, x, y) 

Thickness 

Porosity 

Permeability (x, y, z) 

Grid top 

Distance to boundary 

Well 

Well 

Tier 

Tier 

Tier 

Tier 

Well 

No input needed here 

(Constant geological/ 

static condition) 

 

Dynamic 

Time 

Pressure 

Saturation 

CO2 mole fraction 

COWs3 BHP 

COWs Amount of 

prod/inj (rate & cum) 

Amount of prod/inj (rate 

& cum) 

 

Grid/Tier 

Grid/Tier 

Grid/Tier 

Well 

Well 

 

Field 

Time 

Pressure 

Saturation 

CO2 mole fraction 

COWs BHP 

COWs Amount of 

prod/inj (rate & cum) 

Amount of prod/inj (rate 

& cum) 

 

Tier 

Tier 

Tier 

Well 

Well 

 

Field 

Time 

 

 

 

 

 

 

Amount of prod/inj 

(rate & cum) 

 

 

 

 

 

 

 

Field 

1. (Gholami, 2014) 

2. (Matthew, 2021) 

3. COW: Clossest offset wells 
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2. Numerical Simulation and Dataset Generation: 
The SRM requires several examples for learning and building a relationship 

among features. Hence, numerical reservoir models will generate simulation 

cases with various dynamic inputs and geological perceptions. Availability of 

a real case can reduce geological perception uncertainty by history matching. 

After that, according to table 2.3 and reservoir’s properties and condition, a 

dataset will be generated that combines input and output features to learn SRM. 

Each simulation scenario contains enormous data, especially on a grid-scale, 

leading to a long training time. Thus, data sampling is exploited for declining 

dataset volume based on more alternated dynamic parameters (Amini & 

Mohaghegh, Application of Machine Learning and Artificial Intelligence in 

Proxy Modeling for Fluid Flow in Porous Media, 2019). 

3. Developing and Validation of SRM: 
There are assorted AI and machine learning techniques for Proxy modeling that 

are usually applied to well-based and field-based proxies. Mohaghegh et al. 

(2012), Gholami (2014), and Amini (2015) developed grid-based SRMs by 

ANN. Until then, a few attempts existed for saturation and pressure distribution 

by AI methods, despite very simplified and limited applications. In this study, 

ANN will also be used to develop a grid-based SRM for CO2 Storage in a saline 

aquifer. 

ANN is a machine learning algorithm obtained through the network of 

biological neurons inside the brain. However, the ultimate version of ANN 

used in complex machine learning tasks differs from the simple version in the 

1940s (Géron, 2019; Nayak, 2001). Generally, ANN, like other machine 

learning models, learns a phenomenon's historical behavior and examples to 

predict its future performance. Moreover, a phenomenon is described by 

independent parameters or features with different characteristics in each 

example, m. As shown in figure 2.12, An ANN includes three layers: input 

layer, hidden layer, and output layer, and each layer contains some units. Input 

layer units correspond with the phenomenon features, x1, x2, ..., xi, plus the 

bias unit, and the input dataset equals the number of examples, n, that 

characterize features in diverse behaviors. 
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Figure 2.12: General schematic of ANN, based on (Silva, Spatti, Flauzino, Liboni, 

& Alves, 2017) 

 

Table 2.4: ANN input data structure 

Features x1 x2 xi 

Example 1 m1
1 m1

2 m1
i 

Example 2 m2
1 m2

2 m2
i 

Example 3 m3
1 m3

2 m3
i 

…….. ……. …….. …….. 

Example n mn
1 mn

2 mn
i 

 
Units of the hidden layer employ an activation function to activate weighted 

input data using the kernel matrix plus the bias matrix, similar to figure 2.13. 

The weighted outcome of the hidden layer plus its bias will be activated again 

by the activation function of the output layer, including units equal to 

predicting phenomenon. The mentioned process called Forward Propagation 

will contribute to the predicted result. While model training, the first forward 

propagation is carried out by random kernel and bias matrixes. 
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Figure 2.13: ANN forward propagation, based on (Géron, 2019) 

 

Where: 

x: Input data matrix 

W = Kernel matrix 

b = Bias matrix 

Z = Weighted sum 

σ(z) = Activation function 

Then, the difference between predicted values and true values will be computed 

by a loss function like Mean Absolute Error (MAE) and Mean Squared Error 

(MSE). Finally, the Back Propagation process employs the loss function to 

update the matrixes and reduce the prediction loss and error, proportional to 

the learning rate. The progress will be repeated until achieving the global 

minimum of the loss, and each endeavor is called one Epoch. Figure 2.14 

indicates the loss function vs. the number of epochs that the more epochs, 

leading to less loss. 
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Figure 2.14: Behavior of MSE function respect to training epochs (Silva, Spatti, 

Flauzino, Liboni, & Alves, 2017) 

 

Deep Neural Network (DNN) works the same as ANN with the difference of 

employing multi hidden layers. Within training an ANN, hyperparameters such 

as learning rate, the number of hidden layers, the number of units inside each 

layer, optimizer, and so on must be tuned for diverse cases by trials and error. 

Two main problems that may be faced during model training are underfitting 

and overfitting. Underfitting happens when the ANN is not trained perfectly; 

the model is much simpler than learning the phenomenon complexity. When 

the model has a great performance in training whereas it is not able to 

generalize well, the model is overfitted. Extending the model network, growing 

the learning rate as well as improving the features can overcome the 

underfitting. On the other hand, simplifying the model, employing 

regularization, and adding more data are the solutions to overfitting (Géron, 

2019). 

Consequently, the generated data set will be fed to an ANN to build and tune 

the SRM according to figure 2.15. In this regard, the dataset will be split into 

three groups training, validation, and test. The ratio of training data to the total 

data is 80% and 10% for each validation and test data. Finally, the model will 

be validated by a blind case that never is introduced to the model. If the model 

does not operate accurately, the model hyperparameters and dataset must be 

tuned, trained, and validated again. 
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Figure 2.15: Proxy modeling workflow, based on (Zubarev, 2009) 

 

4.  Model Implementation and Prediction: 

The validated SRM can predict CO2 storage performance, depending on the 

type of SRM, in a very short time instead of commercial simulators for 

uncertainty, sensitivity, and risk analysis, in addition to optimization. This 

study will exploit a grid-based SRM for CO2 injection optimization. 

2.2.2 Previous studies on proxy modeling 

Gholami (2014) coupled a grid-based and a well-based SRM for CO2-EOR optimization. 

She employed a cascading grid-based method to simulate CO2 mole fraction, pressure, 

water saturation, and oil saturation distribution in a compositional model. Cascading 

method generates separate SRMs in each time step and for each parameter. According to 

figure 2.16, the model input in time step t is the previous model output in the time step of 

t-1. Accurate results are demonstrated in 2.17, 2.18, 2.19, and 2.20. Moreover, the well-

based SRM modeled the oil production rate and cumulative oil production in production 

wells. Figure 2.21 compares the SRMw result and numerical simulation output. 
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Figure 2.16: Grid based cascading flow-chart (Gholami, 2014) 

 

 
Figure 2.17: CO2 mole fraction distribution map (Gholami, 2014) 

 

 
Figure 2.18: Pressure distribution map (Gholami, 2014) 
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Figure 2.19: Oil saturation distribution map (Gholami, 2014) 

 

 
Figure 2.20: Water saturation distribution map (Gholami, 2014) 

 

 
Figure 2.21: Oil production by SRMw (Gholami, 2014) 
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Amini (2015) developed both cascading and non-cascading grid-based full-field SRMs 

for coarse and fine grid models. In contrast to cascading, the non-cascading method 

develops one model for the whole simulation time per parameter, and only the initial 

condition of dynamic parameters at time step zero is fed to the model. Consequently, the 

cascading SRMG caused the error of each time step to accumulate with the last time steps 

and less accuracy than the non-cascading technique. Furthermore, the non-cascading 

SRMG developed by the fine-grid model results in more accuracy for the pressure and 

more error for the saturation in comparison with the coarse-grid model. The non-

cascading fine-grid SRMG for the pressure, CO2 saturation, and CO2 mole fraction led to 

figure 2.122. 

 
Figure 2.22: Distribution maps of Pressure, Gas saturation and CO2 mole fraction 

(from left: CMG output, SRM result and Error) (Amini, 2015) 

2.3 Optimization 

Optimization involves finding the best solution under the circumstances. Frequently, in 

the progress of engineering projects, critical decisions should be made to minimize costs 

and maximize the benefit (Rao, 2019). In this regard, mathematical models are 

constructed to describe the project, and predict and optimize its implication. A model can 

possess different output properties that lead to more than one acceptable design. Thus, a 

criterion must be selected to find the optimum design. The function f(x) with the design 



Behzad Amiri  23 
_____________________________________________________________________________________ 

 

variable vector x ∈ ℝn, as the optimization criterion, is called the Objective Function 

(Hendrix, Boglárka, & others, 2010). A problem that must satisfy multiple criteria and 

requires more than one objective function is a multi-objective optimization problem. 

Additionally, there may be some restrictions on design variables selection: Inequality 

Constraints, g(x), and Equality Constraints, h(x). In a constrained optimization problem, 

the limitations must be satisfied in parallel to objective functions (Snyman & Wilke, 

2018). 

 

 
 

(2.1) 

Where: 

x = Design variable vector 

n = The number of problem variables 

m = The number of inequality constraints 

r = The number of equality constraints  

 

As mentioned before, the best solution, minimum or maximum, will be chosen as the 

Global Optimum, and no existing better solution, plan, or design. Although, there are 

Local Optimums that are only optimum points in their neighborhoods, as illustrated in 

figure 2.23. The presence of local optimums can be a challenge in optimization because 

they may be mistaken for the global optimum.  

 
Figure 2.23: Global optimum & local optima (Hendrix, Boglárka, & others, 2010) 
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2.3.1 Optimization for CO2 storage 

CO2 injectivity and containment are two vital elements of subsurface CO2 storage 

(Harding, James, & Robertson, 2018) that should be maximized as the project’s 

objectives. Primary parameters which must be optimized can be listed as follows 

(Ettehadtavakkol, Lake, & Bryant, 2014): 

1. Well Design and Placement: 
An injection well must be able to deliver CO2 to the depth of subsurface geological 

storage at an appropriate pressure and transmit it to the reservoir without 

exceeding the bottom hole fracture pressure. Moreover, well location should be 

chosen concerning CO2 immobilization and trapping. Therefore, well location, 

perforation location and length, tubing size, surface facilities, etc. require 

optimization (Kuk, Kuk, Janiga, Wojnarowski, & Stopa, 2020). 

2. CO2 Injection Rate: 
Despite injection rate dependency on CO2 availability, the maximum possible rate 

must not lead to fracturing and CO2 plume migration toward possible leakage 

points (Cameron & Durlofsky, 2012). 

3. Injection Duration: 
The field cumulative CO2 injection volume is the function of the Injection rate 

and duration. Depending on the type and goal of the CO2 injection Water 

Alternate Gas (WAG) cycle or CO2 injection period requires optimization. In 

CO2-EOR, the WAG cycle is an uncertain variable that should be optimized to 

obtain the maximum storage capacity and recovery factor. While CO2 storage in 

saline aquifers only involves CO2 injection for a span to maximize storage 

capacity without any risk (Ampomah, et al., 2017; Santibanez-Borda, 2019). 

Economic efficiency is a priority in all industrial projects that can be considered an 

objective besides storage capacity to achieve the CCS goals with the lowest cost. Indeed, 

SRMs can be exploited for CO2 storage optimization alone or coupled with each other, 

depending on the objectives and uncertain variables. 

2.3.2 Genetic algorithm 

Holland (1975) was the first to develop GA, which was popularized by David Goldberg 

while solving a complex problem for the control of the gas-pipeline transmission 
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(Goldberg, 1983). GA is an optimization and search method based on genetic principles 

and natural selection. It helps a population, including a certain number of individuals, to 

produce a new generation leading to maximum fitness or minimum cost function (Haupt 

& Haupt, 2004). Widespread use of GA is because of its advantages over compliance 

with both continuous and discrete values, the simultaneous search of several samples 

from cost surface, no limitation in the number of variables, capability to escape from local 

optimums, and compatibility with numerically generated data, experimental data, or 

analytical functions. 

Algorithm 2.1 indicates a basic genetic algorithm procedure. The total population 

includes Npop individuals or chromosomes, which are all possible solutions, and each 

individual or chromosome is built on Nvar variables or genes. Individual genes can be 

represented in bits, numbers, trees, arrays, lists, or other objects by Encoding, the process 

of converting gene values (Sivanandam & Deepa, 2008). 

 

Algorithm 1: Basic Genetic Algorithm 

1: initialize population 
2: repeat 
3:     repeat 
4:         crossover 
5:         mutation 
6:         phenotype mapping 
7:         fitness computation 
8:     until population complete 
9:     selection of parental population 
10: until termination condition 
(Kramer, 2017) 

           

The initial population is a random matrix with the Npop*Nvar dimension. While 

initialization, the objective function for decoded individuals, real values, will be 

calculated. The obtained value for an individual is called its Fitness, revealing the equality 

of solution as well as closeness to the optimal chromosome. Decoding of gene values is 

performed by Genotype-Phenotype Mapping, which converts genotypes to phenotype, 

actual solution (Kramer, 2017). In the case of using continuous solutions, real values need 

not decode the genotype, and only normalized values must be denormalized. After fitness 

computation, two parents will be selected to reproduce the new generation. Ranking 

Selection, one of the best selection approaches, ranks the individuals according to their 
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fitness. The best parents are chosen by a selection ratio to pick two required parents 

among them randomely (Haupt & Haupt, 2004). Crossover, by swapping single or multi-

genes of parents, and Mutation, by random evolution of some genes inside the solution 

interval, reproduce a new generation (Sivanandam & Deepa, 2008). 

 
 
 
 
 
 

The foremost task of Mutation is preventing the algorithm from sticking to a local 

optimum by declining the tendency of GA to quick convergence (Haupt & Haupt, 2004). 

Algorithm 2.2 controls the mutation rate in the way of the global optimum. Finally, the 

new generation will replace the weak parents. The replacement too can be done randomly, 

or two parents can be replaced; however, they may disturb the search convergence by 

eliminating good individuals. Lastly, each individual’s fitness in the new population is 

computed, and the loop will be repeated to reproduce the next generations until achieving 

Termination or Convergence criteria. 

 

Algorithm 2: Global mutation rate control 

1: repeat 
2:     mutate local optimum 
3:     local search 
4:     if same local optimum, then 
5:         increase mutation rate 
6:     else 
7:         decrease mutation rate 
8:     end if 
9: until termination condition 
(Kramer, 2017) 

 

The most straightforward strategy to handle constraints in GA is using Death Penalty, 

according to algorithm 2.3, which checks the feasibility of constraints after crossover and 

Figure 2.24: One-point crossover that splits up the genome of two 

solutions at an arbitrary (Kramer, 2017) 
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mutation. In the condition of constraints’ unfeasibility, the loop will be repeated until 

satisfying them.  

Algorithm 3: Death penalty 

1: repeat 
2:     crossover 
3:     mutation 
4:     check constraints 
5: until solution is feasible 
(Kramer, 2017) 

 

Another method to tackle constraints is employing a penalty function to degenerate the 

fitness of an unfeasible solution and make it less applicable for selection by equation 2.2. 

Repair, Decoder, and Premature Stagnation are other options to overcome constraints in 

GA (Kramer, 2017). 

 
(2.2) 

 
Where: 
f (x) = Objective function 
g (x) = Constraint function 
f ′(x) = Penaltalized objective function 
x = Variable vector  
α = Penalty factor 
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3 METHODOLOGY, PROBLEM, AND MODEL DESCRIPTION  

Previous studies proved the competence of grid-based SRMs in CO2-EOR and CO2 

storage simulation and optimization. However, the studies’ time intervals have been 

limited to a few months or years. Gholami (2014) simulated CO2-EOR for 15 years, and 

Amini (2015) for 24 months. Growth in the prediction time can be challenging in terms 

of Processing an extensive dataset, the model training time, and error accumulation.  

Moreover, repeatedly CO2 injection rate and time interval optimization, and pressure and 

migration path control are performed by numerical models, which may require more than 

12 hours for a long-term simulation. Therefore, a gap exists in developing grid-based 

proxy models to be substituted for numerical models in the long-term simulation and 

optimization of CO2 storage. 

In this research, two proxy models will be created for saturation and pressure distribution 

prediction in a 50-year CO2 injection interval. The Smeaheia model (Equinor & 

Gassnova, 2021) from Eqiunor (Statoil) will be used to simulate CO2 storage in a saline 

aquifer and generate data. The models will be employed in an optimization problem. In 

this chapter, the study workflow and reservoir characteristics will be described. 

Additionally, the reservoir model will be updated before proxy modeling. 

3.1 Study Workflow 

Figure 3.1 demonstrates the thesis workflow based on previous studies in CO2 storage 

analysis, proxy modeling, and optimization, as well as trial and error during 

implementation. Finally, the workflow has been confirmed by the final result of the study. 
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Figure 3.1: Study workflow 
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3.2 Reservoir Description 

The Smeaheia CO2 storage prospect evaluated in this study lies on the Horda Platform 

east of the Troll field, mainly in Blocks 32/4 and 32/1, see Figure 3.2. The studied area is 

approximately 20km east of the Troll A platform and 40km northwest of the Kollsnes gas 

terminal. 

 
Figure 3.2: Smeaheia outline and location of this study’s AOI: GN1101 3D seismic 

survey (Statoil, 2016) 

The AOI was chosen based on the maturity of previous works on CO2 storage in this area 

(internal and external) and the availability of seismic data. A pre-requisite for this 

feasibility study was to investigate areas with little need for additional data acquisitions 

before a potential investment decision. Therefore, it was decided to focus on the area 

covered by the 3D survey GN1101. The regions, called Alpha and Beta, have been tested 

by exploration wells. Both wells, 32/4-1 and 32/2-1 were dry even though both confirmed 

good reservoirs (Sognefjord- and Fensfjord formations) and thick sealing formations 
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(primary seal: Draupne shales). There is also additional storage potential in the underlying 

Triassic Lunde Fm. 

3.2.1 Geology and Stratigraphy 

The tectonic activities and faulting of the North Sea at the beginning of Permian times 

dictated the geological evolution and depositional setting of the Horda Platform. On the 

Horda Platform, the Viking Group is composed of the shallow-marine Krossfjord, 

Fensfjord, and Sognefjord formations. Furthermore, basin-wide flooding led to the 

deposition of mudstones in the Draupne formation. Figure 3.3 shows the field 

stratigraphy. 

 

Figure 3.3: Correlation of the wells on the Smeaheia fault block (Erichsen, Rørvik, 

Kearney, & Haaberg, 2013) 

The Krossfjord formation was deposited during the initial phases of the rifting period. 

The progradation of sand-rich deltas characterizes it during relatively low normal faulting 

and fault-block rotation rates. 

The Fensfjord formation eventually covered the whole Horda Platform. The formation 

consists of well-sorted, fine to medium-grained sandstones where calcite cemented 

sandstones occur in bands, and minor shale intercalations occur throughout the formation. 



Behzad Amiri  32 
_____________________________________________________________________________________ 

 

In the late Callovian, fault-related subsidence outpaced sediment supply, and landward 

migration of the Fensfjord Delta happened. Meanwhile, fault-related activity created 

footwall islands which supplied additional sediment input. 

The Sognefjord formation is the main reservoir in the Troll area. The formation is 100-

170 m thick, and unique target sands are 3-45m with permeability ranging from 1-20 

Darcy. These sands alternate with finer-grained micaceous units. In addition, calcite 

cemented zones can be discovered in both Sognefjord and Fensfjord, commonly made of 

a couple of meters thick and a lateral extend between tens of meters to a few kilometers. 

The Draupne formation is the primary caprock to the Smeaheia storage complex and 

consists of marine, organic-rich claystone (figure 3.4). The Troll Field wells verify the 

trapping capacity of the Draupne formation, which is supposed to be present over the 

whole fault block. Limestone and shales of the Shetland and Cromer Knoll groups equip 

the storage complex with secondary seal units. Tertiary and Quaternary deposits are also 

assumed to boast sealing capability. The gross seal is approximately in a range of 750m 

and 1200m over the modeled CO2 plume areas (figure 3.5). 

 

 

Figure 3.4: Storage complex main seal units identified by well correlation and 

seismic interpretation (Erichsen, Rørvik, Kearney, & Haaberg, 2013) 
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The primary seal is thinned both eastward and westward parallel to the storage thinning 

from west to east. Indeed, the primary seal thickness varies from 70m to 300m. The well 

32/4-1 and 32/2-1 penetrated over 200m of mudstones and limestones representing the 

Shetland and Cromer Knoll groups in figure 3.4. The thickness map (figure 3.5) shows 

that the secondary seal unit varies between approximately 250m and 450m in the modeled 

CO2 plume area. 

The Smeaheia storage site is a portion of Troll Kystnær fault block located on the 

northeast region of the Horda Platform (Figure 3.6), east of the Viking Graben. Major 

faults bound the fault block to the west, north, and east (Figure 3.7). To the north and 

west, the storage formation constitutes the footwall of the Vette fault. In contrast, to the 

east, the storage location is limited by the hanging wall of the Øygarden Fault Complex 

(ØFC), which reflects a substantial sealing capacity in evaluations. The ØFC generates 

the border between the Norwegian territory to the east and the Horda Platform to the west. 

The ØFC and Vette fault are two out of several major faults between the shore of Norway 

and the North Viking Graben. 

 

 

Figure 3.5: Main seal unit thickness (m) maps for the Smeaheia Storage Complex 

(Erichsen, Rørvik, Kearney, & Haaberg, 2013) 
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Figure 3.6: Storage formation (Erichsen, Rørvik, Kearney, & Haaberg, 2013) 

 

 

Figure 3.7: Structural setting of the Smeaheia storage site, where the location of 

each seismic profile is posted on the Top Sognefjord Fm depth map in the upper 

left corner (Erichsen, Rørvik, Kearney, & Haaberg, 2013) 
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3.2.2 Prospects Characteristics 

The Smeaheia CO2 storage is composed of 3 prospects: Alpha, Beta, and Gamma. As 

shown in figure 3.8, the majority of Alpha and Beta are covered by the GN1101 survey, 

making them more reliable for investigation. Although, the Gamma zone carries a 

considerable storage potential due to its extension. Table 3.1 and table 3.2 indicates the 

general characteristics of zones Alpha and Beta, respectively   Moreover, the in-situ CO2 

density is used to compute the capacity of each zone. 

 

 
Figure 3.8: Alpha and Beta prospect location in respect to GN 101 survey and 

Smeaheia storage (Statoil, 2016) 

 

Table 3.1: Structural capacity estimate for Alpha prospect 

Property Low Mid High 

Bulk rock volume (m3) 634 000 000 634 000 000 634 000 000 

Net (%) 75 85 95 

Permeability (mD) 440 1300 4000 

Porosity (%) 31 35 39 

Saturation (%) 70 80 90 

Structural capacity (Mt) 82.7 98.6 117 
     (Statoil, 2016) 
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Table 3.2: Structural capacity estimate for Beta prospect 

Property Low Mid High 

Bulk rock volume (m3) 669 000 000 669 000 000 669 000 000 

Net (%) 75 85 95 

Permeability (mD) 440 1300 4000 

Porosity (%) 31 35 39 

Saturation (%) 70 80 90 

Structural capacity (Mt) 87.8 105 124 
   (Statoil, 2016) 

3.2.3 Stress Model and Geomechanical Properties 

The acquired data from wells 31/6-3, 31/6-6, 31/3-3, and 31/6-2 in the Eastern Troll and 

wells 32/2-1 and 32/4-1 in Troll Kystnær by drilling tracks, logs, pressure measurement, 

and LOT, created a stress model for the Smeaheia storage. Thus, the specific gravity of 

overburden stress, pore pressure, fracture pressure, and minimum horizontal stress is 

plotted in figure 3.9. Besides, the interpretation of test results on the wells 32/2-1 and 

32/4-1 cores revealed the rock mechanic properties of Smeaheia formations in table 3.3. 

 

Table 3.3: Smeaheia rock mechanic data 

 

Formation 

UCS  

(Mpa) 

Elastic modulus 

(Gpa) 
Poisson’s ratio Bulk modulus (Gpa) 

Uniaxial compaction 

modulus (Gpa)  
Cohesion 

(Mpa)* 

Friction 

angle            

(deg)* 

P10 Mean P90 P10 Mean P90 P10 Mean P90 P10 Mean P90 P10 Mean P90 

Draupne -- -- -- 2 5 7 -- 0.4 -- -- -- -- -- -- -- 7 13 

Heather 13 15 17 4 4 5 0.19 0.22 0.24 2 3 3 5 5 6 

5 15 

Sognefjord 9 15 19 3 5 6 0.20 0.24 0.29 2 3 5 4 6 9 

Fensfjord 11 19 25 4 7 9 0.19 0.24 0.28 2 4 7 5 8 12 

Krossfjord 16 25 34 5 8 11 0.18 0.22 0.27 2 5 8 6 9 15 

*Recommend considering variations of +/- 25% to these values 

 (Equinor & Gassnova, 2021) 
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Figure 3.9: Smeaheia stress model (Equinor & Gassnova, 2021) 

3.3 Reservoir Model 

Up to now, many models have been generated for Smeaheia CO2 storage with diverse 

geological perceptions, property distribution, covered area, and depletion scenarios. 

Gassnova and Statoil also developed their own models, which have been published in 

CO2 DataShare (Equinor & Gassnova, 2021). After investigating the available models, 

Statoil’s model was selected for this study because of considering property heterogeneity. 

The geological model, fluid model, and rock and fluid interaction will be discussed in the 

following. 

3.3.1 Geological Model and Properties 

The geological model consists of 101 horizons resulting from gathering 2D and 3D 

seismic surveys and wells correlation in Smeaheia. The model and horizons cover from 

the top of the Sognefjord formation to the bottom of the Krossfjord formation and extend 

from the south to the north between the Vette fault, in the west of storage, and the 
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Øygarden fault complex, in the east in figure 3.11. The lateral mesh was created with a 

resolution of 200*200 m regularly, and the reservoir depth was divided into 100 layers 

with a 1.6m resolution. 

 

 

In this model, the opposite of Gassnova’s model, which only assumed vertical 

heterogeneity in a way that an average property value has been assigned to all grid blocks 

in each layer, both vertical and horizontal heterogeneities are picked, and Porosity and 

permeability are diverse in each layer. Figure 3.11 indicates random and irregular 

distribution patterns regarding permeability and porosity, respectively. 

 

Figure 3.10: Smeaheia model's faults and horizons 
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Figure 3.11: Probability distribution of porosity and permeability 

3.3.2 Fluid Model 

Statoil is employed a black-oil fluid model for CO2 injection in Smeaheia in a way that 

there are 2 phases of gas and oil instead of CO2 and aquifer. In this regard, the PVT 

properties of CO2 and aquifer are plotted in figure 3.12. Moreover, table 3.4 represents 

the reservoir’s initial condition in 1999. 

 

Table 3.4: Initial Condition 

Property  Initial Value 

Datum depth -800 m 

Pressure 81 bar 

Oil density (aquifer) 1026.0302 kg/m3 

Gas density 1.872 kg/m3 

Rock compressibility @ P=10 bar 4E-05 bar -1 
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Figure 3.12: The PVT properties of Statoil’s model (exported from Petrel) 
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Starting CO2 injection will generate at first a 2-phase system and subsequently interfacial 

tension that influences flow, saturation distribution, and fluid penetration in caprock. 

Consequently, relative permeability and capillary pressure in figure 3.14 must be utilized 

for 2-phase simulation. 

 
Figure 3.13: The Relative permeability and capillary pressure of Statoil’s model 

(exported from Petrel) 

 

3.3.3 Numerical Simulation 

The Statoil’s dynamic model contains four virtual production wells in the south and one 

in the north to induce depletion owing to Troll field production. In 1999, wells began 

production until 2060, when three wells, WP1, WP2, and WP5, would be shut-in, and in 

2122 that WP1 and WP2 would be shut-in. Moreover, pore volume multipliers exist in 

the south and north of the model to compensate for the unexplored reservoir area and 

match the pressure depletion inside the storage.  

In the first step, the simulation data file was run by Eclipse 100 without considering pore 

volume multipliers. Since January 2022, CO2 was injected for 25 years at a 5872000 

sm3/day rate through well Alpha-N, and its post-injection migration was monitored until 
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2300. Figure 3.14 illustrates the CO2 saturation distribution in 2300, migrated to the Beta 

zone through a saddle point in the middle of the field. On the other hand, the bottom hole 

pressure shows violence with 1000 bar in figure 3.15, besides field pressure. 

 

 
Figure 3.14: Saturation distribution in 2300, after 25 years injection since 2022 

 
Figure 3.15: Bottom hole and field pressure 

 

According to observations, the pressure depletion in the middle of the storage is predicted 

to be 14 bar between 1999 and 2022. Hence, the southern and northern pore volume 

multipliers are fixed at 50 and 55, respectively, by a manual history matching. 
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Figure 3.16: Pore volume multiplier 

 

As mentioned before, the storage thins eastward as well as the caprock. Additionally, 

according to figure 3.17, there are a few minor faults and fractures at the top of the zone 

Beta, which is thinned. Therefore, the CO2 plume must be prevented from reaching zone 

Beta as a leakage potential. Furthermore, the default injection well led to bottom hole 

pressure violence to 1000 bar, which is not feasible. The entire above items and caprock 

fracturing are parts of CO2 storage risks, explained in section 2.1.4. In this regard, a new 

well design and injection optimization are required. 

 

 
Figure 3.17: Storage structure 
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3.3.4 Well Design 

Brobakken (2018) has analyzed the sensitivity of the field with respect to the well location 

in various locations; however, the employed model is different from Statoil’s model 

regarding the presence of the virtual production wells. Indeed, the response of Statoil’s 

model compared when the well is placed in the north of zone Alpha, near the zone Beta, 

and the south of the model and contributed to the CO2 plume migration path in figure 

3.18.  

 

 
Figure 3.18: Well location sensitivity analysis 

 

CO2 injection in the zone Beta will certainly cause leakage. Despite the fact that zone 

Gamma possesses high storage potential, it cannot be used in this study because of the 

property uncertainty and the deviation of CO2 plume from its natural path toward 

production wells, which are misleading. Zone Alpha is the best injection location, even 

though the well must be shifted upward and designed as a down-dip J-shaped directional 

well in the north of the zone with long displacement and perforation toward the northwest 

to prevent the bottom hole pressure from exceeding fracture pressure, and CO2 from 

migrating in the direction of zone Beta. In consequence, the well Alpha was designed, 

and the top of the perforation was placed at 1600 m depth. 
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Based on the stress model in section 3.2.3, the minimum horizontal stress (Min SH) as 

the bottom hole pressure limit and fracture pressure as the field pressure constraint have 

been computed and plotted in figures 3.19 and 3.20. 

 

Figure 3.19: Minimum horizontal stress 

 

 
Figure 3.20: Fracture pressure 
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The Min SH in the depth of 1600 m is 216 bar; by considering a safety factor, 200 bar is 

fixed as the bottom hole fracture pressure. A simulation case for a 35-year CO2 injection 

with a 5872000 sm3/day rate was created to confirm the well design, and the outcome 50 

years after starting injection is demonstrated in figures 3.21 and 3.22. 

 

 
Figure 3.21: Saturation distribution in 2072 after 35-year CO2 injection by newly 

designed injection well 

 

 
Figure 3.22: Bottom hole pressure of well Alpha with 5872000 sm3/day  

injection rate 
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3.4 Optimization Problem 

Based on previous studies by (Cameron & Durlofsky, 2012) and (Santibanez-Borda, 

2019), the other variables that should be set are injection rate and injection span. 

Moreover, similar to other engineering projects, the maximum benefits should be derived 

from CO2 storage implementation costs related to exploration, study, development, 

drilling, and maintenance. Hence, to maximize the project’s benefit, an optimization 

problem must be defined to find the optimum injection rate and injection span. 

3.4.1 Objective Formulation 

According to the CO2 storage goal and physic that is storing captured CO2 in subsurface 

geological formations, the objective of the problem can be defined as follow: 

• Maximizing the injected CO2 while limiting field pressure at the top of the 

Injection region to avoid caprock fracturing and controlling the CO2 leakage by 

preventing the CO2 plume from migrating toward zone Beta.   

Fracturing far from the injection well is unlikely due to the depletion impact of gas 

production in the Troll field. As the only alternative to fracturing, the shallowest part of 

zone Alpha is placed at 1240m depth, below the caprock that has a fracture pressure of 

187 bar. The maximum allowable pressure at the top of zone Alpha will be 150 bar if a 

safety factor is employed. 

While CO2 injection from well Alpha, the first arriving spill point is located in a grid with 

an i-index of 60. Therefore, the i-index of 50 was chosen as the saturation constraint to 

prevent the CO2 plume from reaching the 60th i-index. 

As mentioned in section 2.1.6, the capillary diffusion through the caprock is a leakage 

concern. Based on the available reports and previous studies on the Smeaheia CO2 

storage, the Draupne formation as the primary caprock is considered seal, and no 

threshold pressure exists from the laboratory core analysis. On the other hand, figure 3.13 

represents the capillary pressure of 0.2 bar optimistically. Owing to the very low average 

vertical permeability of Draupne formation (6 nano Darcy), the caprock appropriate 

thickness, and the presence of the secondary seal, the capillary diffusion can be assumed 

negligible. 
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The volume of injected CO2 can be represented as the multiplication of injection rate and 

time which are optimization variables. Moreover, a grid-based SRM can predict 

saturation and pressure distribution quickly. These mean that the objective function and 

constraints can be written as below: 

Maximize 𝑓(𝑅𝑎𝑡𝑒, 𝑇𝑖𝑚𝑒) = 𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 

Subjected to: 

𝑔1(𝑅𝑎𝑡𝑒, 𝑇𝑖𝑚𝑒) = 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖1, 𝑗1, 𝑘1
(𝑅𝑎𝑡𝑒, 𝑇𝑖𝑚𝑒) − 0.1 ≤ 0  

                         𝑔2(𝑅𝑎𝑡𝑒, 𝑇𝑖𝑚𝑒) = 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑘2
(𝑅𝑎𝑡𝑒, 𝑇𝑖𝑚𝑒) − 150 ≤ 0                (3.1)  

Where: 

2 ∗ 106 𝑆𝑚3

𝑑𝑎𝑦⁄ ≤ 𝑅𝑎𝑡𝑒 ≤ 7.6 ∗ 106 𝑆𝑚3

𝑑𝑎𝑦⁄  

25 𝑦𝑒𝑎𝑟𝑠 ≤ 𝑇𝑖𝑚𝑒 ≤ 50 𝑦𝑒𝑎𝑟𝑠 
𝑖1 = 50 
0 ≤ 𝑗1 ≤ 120 
1 ≤ 𝑘1 ≤ 2 
𝑘2 = 1 

3.4.2 Optimization Algorithm 

The optimization algorithm in this study is GA, imported from the Pymoo package in 

Python, without any hyperparameter tuning. The constraint handling method is the death 

penalty, which is the default solution of the package. 

3.5 Proxy Modeling 

The machine learning algorithm selected for proxy modeling is ANN, especially with 

DNN structure in case of complex behavior of data. The model implementation will be 

done in Python because of the diversity and simplicity of data processing and machine 

learning packages. The Keras TensorFlow package will develop the ANN in the next 

chapter. 
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4 PROXY MODELING AND OPTIMIZATION, BUILDING THE 

STRUCTURE 

In this chapter, two proxy models for saturation and pressure distribution will be built to 

satisfy the optimization objective and constraints. The process of creating the proxy 

model and performing optimization is based on the project workflow in figure 3.1 and is 

thoroughly explained in sections 2.2.1 and 2.3.2. In chapter 3, the Smeaheia storage and 

its model were investigated, and their constraints were defined. A new well was designed 

in the following, and the optimization objective was formulated. The next step will be 

carried out in this chapter by starting to generate SRM and, subsequently, the optimization 

foundation. 

4.1 Developing SRMs 

Generally, there are three types of SRMs: field-based, well-based, and Grid-based. 

Depending on the SRM application, one SRM or a coupled SRM can be chosen. Because 

the project requires controlling saturation and pressure at various points and depths during 

optimization, a grid-based SRM (SRMG) will be built. 

4.1.1 Data Generation 

An ANN needs strong and diverse input data to learn the previous performance of a 

phenomenon and predict its output in various conditions. In case of no existing or lack of 

real data, analytical or numerical models are able to generate synthetic data. As the 

Smeaheia project has not begun yet, and there is not any data about the storage 

performance, Numerical simulation will be employed to generate data by Petrel software. 

The optimization variables are injection rate and injection time; in consequence, it is 

required to create a number of simulation cases (training examples) with different 

injection rates to simulate the model’s behavior respect to the injection rate variation in 

specific time steps and introduce them to the ANN for training. 

Amini (2015) generated SRMG with three simulation cases with the same injection 

interval and increased it to five instances to improve SRM accuracy in the edge of the 

CO2 plume. As shown in the project workflow (figure 3.1), the number of numerical 

simulation cases is one of the hyperparameters that should be tunned while ANN training 
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to generalize output in prediction. Developing the proxy commenced with introducing the 

result of three simulation cases that were risen to seven instances until the acceptance of 

the model accuracy. 

Owing to better proxy models’ performance in interpolation than extrapolation, the 

injection rate range of numerical simulations should overlap the minimum and maximum 

usable rate. According to figure 3.19, the maximum possible rate, without exceeding 

bottom hole fracture pressure, is 5.5 Mt. Therefore, seven rates between 1.3Mt and 5.5 

Mt will be chosen, as shown in figures 4.1 and 4.2. 

 
Figure 4.1: Injection rate of numerical simulation cases 

 
Figure 4.2: Bottom hole pressure of numerical simulation cases 
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The SRM’s time step must be fixed to export the simulation result because both have the 

same time step. The best time step is one month to chase any minor change in property 

distribution; although, the SRM is intended to simulate 50 years of CO2 storage, and a 

too-short time step will cause difficulty in data handling due to heavy data. While 

developing proxy, an assortment of time steps from 1 month to 5 years was examined. 

Finally, a 6-month time step was selected, balancing accuracy and data volume. The data 

was exported from petrel as Gslib properties with ASCII format, compliant with Python 

standards. 

4.1.2 Input Features 

As explained in section 2.2.2, two different methodologies exist for building SRMG: 

cascading and non-cascading. This project began with cascading SRM, then modified to 

non-cascading, resulting from error accumulation, complexity, and time-consuming step-

by-step prediction. Therefore, table 2.3, reservoir physic, optimization objective, and 

SRM’s type and methodology employed to select input features in order for dataset 

generation. Table 4.1 summarizes 31 input features for training SRM’s ANN.   

Table 4.1: Input Features 

 

Cell Index (i, j, k)

Cell Coordinate (X, Y, Z)

Horizontal and Vertical Permeability

Porosity

Distance to injection well and production wells

Injection Rate

Saturation at 0th time step

Pressure at 0th time step

Tier Model at 0th time step

Time step
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The properties and conditions of surrounding cells around a grid block must be taken into 

account as the boundary condition in reservoir simulation because it influences fluid 

migration. While CO2 injection and storage, the CO2 migrates upward by gravity forces 

and alters the CO2 content and saturation of grids depending on the upper and lower layer. 

Thus, a tier model will be created in this study in the shape of figure 4.3 to calculate the 

average pressure, saturation, permeability, and porosity of surrounding grids in the 

current layer, above layer, and below layer that construct tier-1, tier-2, and tier-3.  

 
Figure 4.3: Tier model (Amini, 2015) 

Except for permeability, which uses a harmonic averaging method like equation 4.1, the 

average of all parameters is computed by the arithmetic method. 

 

                                      𝑘𝑎𝑣𝑒 =
∑ 𝑍𝑗

𝑛
𝑗=1

∑
𝑍𝑗

𝑘𝑗

𝑛
𝑗=1

⁄                                      (3.1) 

In this study, the boundaries are isolated, making the permeability and porosity of the 

layer above the first layer and below the last layer zero; indeed, the CO2 saturation will 

be zero in the mentioned layers. Furthermore, when the boundary is closed, the reservoir 

condition will be pseudo-steady state condition, and the pressure above the first layer and 

below the last layer will equal the concerning layer, and saturation will be zero. 
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The other input which requires calculation and pre-processing is the distance of grids to 

injection and production wells. In this regard, the perforation length is considered a line, 

and the distance of the grids’ central point coordinate to the line will be computed by the 

projection of the point coordinate on the line plane and calculating the minimum distance 

of the projected point and line. The below solution was implemented in Python to 

compute the distance of five production wells and one injection well, picking the first and 

last point of the perforation line (P1 and P2). 

Def point_to_line(point, P1, P2): 

    a = P1-P2 

    b = point-P2 

    distance = np.linalg.norm(np.cross(a,b))/ np.linalg.norm(a) 

    return distance 

4.1.3 Sampling Dataset 

The reservoir model contains 1510500 grid blocks that will require colossal memory and 

a long training time if the entire grids are included in the input dataset. Therefore, the 

input grids will be reduced by various sampling methods and criteria based on the output 

property of the model. 

The input dataset of the saturation model will be sampled based on the parameter 

alteration that selects more affected cells by CO2 injection. Injection with the highest 

possible rate influence more cells and propagate CO2 in a larger space. Indeed, the grids 

with non-zero saturation at the end of 50 years injection with maximum rate were sampled 

for the input of the saturation model, and other cells were eliminated for each numerical 

simulation case. 

However, this sampling method led to overfitting for the input of the pressure model due 

to its distribution in the entire storage, not only a region around the injection well. The 

trained model by parameter change sampled input could not generalize in the blind 

evaluation and was rejected. Therefore, the grids were sampled randomly for training the 

pressure model. In this order, 1485000 cells will be selected randomly and deleted from 

all cases. 

The final dataset comprises 31 features with different ranges of real numbers that may 

lead to instability in training. According to the physic of the problem, Relu and Sigmoid 

have been selected as the activation function with an output between 0 and 1. Therefore, 
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the dataset requires normalization by the min-max method (equation 3.2) to put all input 

characteristics, except saturation, in the range of 0 and 1. The minimum and maximum of 

each property are global, and no existing less or more than them. Furthermore, the final 

prediction of the pressure model can be denormalized to be comparable with its actual 

unit.   

                                             𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                                             (3.2) 

4.1.4 ANN Structure 

The last step is building the structure of an ANN, which provides sufficient accuracy in 

validation, test, and blind evaluation. In this aim, hyperparameters, including the number 

of layers, the number of units, activation function, and learning rate, in addition to feature 

and amount of data, must be tuned. Formerly, characteristics and examples numbers were 

fixed regarding the reciprocity of accuracy and computer facilities tolerance. The best 

hyperparameters related to the ANN structure were obtained by several trials and 

checking the error in the blind evaluation. In spite of the fact that Amini was employed 

and advised one hidden layer for SRM training, raising the hidden layers enhanced the 

model performance tremendously. The blow scripts show the DNN structures of the 

pressure and saturation model. 

Def Pressure_Model(Inputs_P): 

    first_dense_p = Dense(512 ,activation=’relu’,     

name=’hidden1_relu’)(Inputs_P) 

    second_dense_p = Dense(512, activation=’relu’, 

name=’hidden2_relu’)(first_dense_p) 

    third_dense_p = Dense(128, activation= ‘relu’, 

name=’hidden3_relu’)(second_dense_p) 

    Pressure = Dense(units=1, activation=’sigmoid’,  

name=’Pressure_sigmoid’)(third_dense_p) 

    P_model50 = Model(inputs=Inputs_P, outputs=Pressure) 

    return P_model50 
 

def Saturation_Model(Inputs_Sat): 

    first_dense_sat = Dense(units=512, activation=’relu’, 

name=’hidden1_relu’)(Inputs_Sat) 

    second_dense_sat = Dense(512, activation=’relu’, 

name=’hidden2_relu’)(first_dense_sat) 
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    third_dense_sat = Dense(128, activation= ‘relu’, 

name=’hidden3_relu’)(second_dense_sat) 

    fourth_dense_sat = Dense(128, activation= ‘relu’, 

name=’hidden4_relu’)(third_dense_sat) 

    fifth_dense_sat = Dense(128, activation= ‘relu’, 

name=’hidden5_relu’)(fourth_dense_sat) 

    Saturation = Dense(units=1,activation= ‘sigmoid’, 

name=’Saturation_sigmoid’)(fifth_dense_sat) 

    sat_model50 = Model(inputs=Inputs_Sat, outputs=Saturation) 

    return sat_model50 

 

Many optimization algorithms minimize the loss function output while training an ANN. 

SGD, RMSprop, Adam, Adadelta, Adamax, and Nadam are a group of available 

optimizers. In this study, Adam (Kingma & Ba, 2014) indicated better performance than 

others. Besides, an exponential learning rate decay function was utilized to make the 

learning rate stable and avoid any fluctuation in the learning and validation loss trend. 

 
Def Pressure_optimizer(): 

    lr_schedule_P = tf.keras.optimizers.schedules.ExponentialDecay( 

initial_learning_rate=0.0005, decay_steps=10000, decay_rate=0.9) 

    adam_P = tf.keras.optimizers.Adam(learning_rate = lr_schedule_P, 

beta_1=0.9, beta_2=0.999, epsilon=1e-07) 

    return adam_P 

 
def Sat_optimizer(): 

    lr_schedule_sat = 

tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_

rate=0.0005, decay_steps=100000, decay_rate=0.9) 

    adam_sat = tf.keras.optimizers.Adam(learning_rate = 

lr_schedule_sat, beta_1=0.9, beta_2=0.999, epsilon=1e-07) 

    return adam_sat 

 

Finally, the below script was used to save the trained model and its history after training 

the models by fit API. Due to high data volume, the mini-batch helped reduce training 

time by performing backpropagation for a group of samples equal to the batch size rather 

than every single example. This point should be emphasized that the mini-batch method 
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will cause fluctuation of loss function plot typically, which is different from the variations 

due to overfitting and instability.  

History_p_main_path = ‘D:\Master o 

science\Thesis\Export\pressure_history50’ 

model_p_main_path = ‘D:\Master o science\ 

Thesis\Export\pressure_model50’ 

history_P50 = P_model50.fit(Xp_train, Pressure_train,             

batch_size=1024, epochs=50, 

validation_data=(Xp_val, Pressure_val)) 

history_p_file = ‘P_history50.npy’ 

model_p_file = ‘P_model50’ 

history_p_path = joined_path = os.path.join(history_p_main_path, 

history_p_file) 

model_p_path = joined_path = os.path.join(model_p_main_path, 

model_p_file) 

np.save(history_p_path, history_P50.history) 

P_model50.save(model_p_path) 

 

history_sat_main_path = ‘D:\Master o 

science\Thesis\Export\Sat_history50’ 

model_sat_main_path = 'D:\Master o 

science\Thesis\Export\Sat_model50' 

 

history_sat50 = sat_model50.fit(X_train, Sat_train, 

                        batch_size=1024, epochs=150,        

                        validation_data=(X_val, Sat_val)) 

 

history_sat_file = 'sat_history50.npy' 

model_sat_file = 'Sat_model50' 

history_sat_path = joined_path = os.path.join(history_sat_main_path, 

history_sat_file) 

model_sat_path = joined_path = os.path.join(model_sat_main_path, 

model_sat_file) 

np.save(history_sat_path, history_sat50.history) 

sat_model50.save(model_sat_path) 

4.2 Optimization 

The optimization objective, described in section 3.4.1, must be restructured by adapting 

the problem variables to the model inputs. The rate variable has been exactly taken into 

account in the model. In contrast, the time has been introduced to the model in 6-month 
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time steps, and the injected volume equals the multiplication of rate and time, and each 

time step is 162.5 days. On the other hand, the function of GA in Pymoo is based on 

minimizing the objective. Consequently, the time will be replaced with 182.5 times by 

time step and the negative optimization objective will be minimized as below: 

 

Minimize 𝑓(𝑅𝑎𝑡𝑒, 𝑇𝑖𝑚𝑒) = −182.5 × 𝑅𝑎𝑡𝑒 × 𝑇𝑖𝑚𝑒 𝑆𝑡𝑒𝑝 

Subjected to: 

𝑔1(𝑅𝑎𝑡𝑒, 𝑇𝑖𝑚𝑒 𝑆𝑡𝑒𝑝) = 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖1, 𝑗1, 𝑘1
(𝑅𝑎𝑡𝑒, 𝑇𝑖𝑚𝑒 𝑆𝑡𝑒𝑝) − 0.1 ≤ 0  

                 𝑔2(𝑅𝑎𝑡𝑒, 𝑇𝑖𝑚𝑒 𝑆𝑡𝑒𝑝) = 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑘2
(𝑅𝑎𝑡𝑒, 𝑇𝑖𝑚𝑒 𝑆𝑡𝑒𝑝) − 150 ≤ 0       (4.3) 

Where: 

2 ∗ 106 𝑆𝑚3

𝑑𝑎𝑦⁄ ≤ 𝑅𝑎𝑡𝑒 ≤ 7.6 ∗ 106 𝑆𝑚3

𝑑𝑎𝑦⁄  

50 ≤ 𝑇𝑖𝑚𝑒 𝑆𝑡𝑒𝑝 ≤ 100 
𝑖1 = 50 
0 ≤ 𝑗1 ≤ 120 
1 ≤ 𝑘1 ≤ 2 
𝑘2 = 1 

4.2.1 Optimization Implementation 

The objective function can be written word to word by the variables to create the problem 

in Python. Nevertheless, constraints require two functions to compute the pressure and 

saturation in the desired grids by the pressure and saturation SRM. Now, the objective 

and problem can be written as below script by the functional problem, which has a default 

constraint feasibility check. In case of requiring another constraint handling method, it 

must be imported from the package and introduced to the problem or built by a separate 

function. 

 
from pymoo.problems.functional import FunctionalProblem 

 

def func_obj(x): 

    return -182.5*(x[0] * x[1] ) 

 

constr_ieq = [ 

    lambda x: np.amax(sat_prediction(x[0],x[1]))-0.1, 

    lambda x: np.amax(Pressure_prediction(x[0],x[1]))-150 

] 
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problem = FunctionalProblem(2, 

                            func_obj, 

                            xl=np.array([2e6,50]), 

                            xu=np.array([7.6e6,100]), 

                            constr_ieq=constr_ieq) 
 

The following script selects the GA as the optimization algorithm and defines the 

sampling, crossover, and mutation methods. Moreover, the time step must be an integer 

number, and picking an integer amount for the rate according to its range makes the 

optimization faster. 

 
from pymoo.factory import get_algorithm, get_crossover, 

get_mutation, get_sampling 

from pymoo.optimize import minimize 

 

method = get_algorithm("ga", 

                       pop_size=100, 

                       sampling=get_sampling("int_random"), 

                       crossover=get_crossover("int_sbx", prob=1.0, 

eta=3.0), 

                       mutation=get_mutation("int_pm", prob=1.0, 

eta=3.0), 

                       eliminate_duplicates=True, 

                       ) 
 

Finally, the optimizer computes the cost function of an initial population with 100 

individuals and minimizes them by substituting 100 generations. The optimum result 

corresponds to the individual with minimum objective in the final population.  

 
res = minimize(problem, 

               method, 

               termination=('n_gen', 100), 

               seed=1, 

               save_history=True, 

               verbose=True 

               ) 
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5 PROXY MODEL AND OPTIMIZATION PROGRESS, RESULT, 

AND VALIDATION 

In this chapter, the proxy modeling progress and results will be represented, and a blind 

simulation case will validate the final model. Subsequently, the optimization problem will 

be solved, and the constraints will be confirmed by performing a numerical simulation in 

both injection and post-injection interval. 

5.1 Developing Proxy Model 

In a non-cascading SRMG, besides static input, the dynamic features, including pressure, 

saturation, and their tier model, are in the initial condition, zero time-step. The output of 

each model is the CO2 saturation or pressure of grids at all time steps during the injection. 

As this study is composed of 100 time-steps with 6-month intervals, each grid will have 

100 outputs per simulation case. In fact, in a simulation case data, only the time step will 

change according to the output, and by altering the simulation case, the injection rate will 

change in a constant time step. Moreover, sampling declines the grids of each case to 

25000 more or less; considering seven simulation cases and 100 time-steps, the final 

dataset contains 17500000 examples. 

Developing an ANN involves the training, validation, and testing phase that requires a 

separate dataset. Consequently, the generated dataset must be split into three datasets for 

three stages. Frequently, the training, validation, and testing dataset ratios are 80%, 10%, 

and 10% of the entire data. While fitting the model, the model is trained by the training 

dataset, and after each epoch, the resulted model will be validated by the validation 

dataset. By finishing model training, the final model will be tested with the testing dataset. 

An appropriate model possesses the same loss and metrics in all steps approximately. 

MSE, equation 5.1 computes the loss function, and the metrics equal MAE, equation 5.2. 

 

                                        𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖𝑡𝑟𝑢𝑒

− 𝑌𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
)

2
𝑛
𝑖=1                                   (5.1) 

                                        𝑀𝐴𝐸 =
1

𝑛
∑ |𝑌𝑖𝑡𝑟𝑢𝑒

− 𝑌𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
|𝑛

𝑖=1                                      (5.2) 
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5.1.1 Model Training 

The CO2 saturation model error does not change significantly after 150 epochs; that is the 

evidence of approximate achieving the minimum loss. Figures 5.1 and 5.2 indicate loss 

function and MAE trend during training and validation. Due to employing the mini-batch 

method for fitting the model, some fluctuations can be observed in the diagrams, which 

are hidden by nearing the optimum model. Testing confirms the model by resulting in 

roughly similar and low errors of all model development steps, compared in figure 5.3.  

 
        Figure 5.1: Saturation model loss             Figure 5.2: Saturation model MAE 

 

 
Figure 5.3: Saturation model evaluation 
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In contrast with the saturation model, the pressure network approached the minimum 

loss quickly, only after 50 epochs, and reflected less disruption in the declining trend of 

errors. The model errors in all stages are meaningfully comparable, and the model can 

be verified in the preliminary evaluation. Figures 5.4 and 5.5 represents loss function 

and MAE while model training and validation. 

 

          Figure 5.4: Pressure model loss                 Figure 5.5: Pressure model MAE 

 

 

Figure 5.6: Pressure Model Evaluation 
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As the pressure data is normalized, the MAE of the pressure is different from the real 

MAE in the bar unit. The normalization function (equation 4.1) can be transformed into 

the denormalization function by keeping the real value of the parameter on one side and 

transferring the other variables to the other side, which leads to equation 5.3. 

 

                          𝑥 = 𝑥𝑛𝑜𝑟𝑚(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) + 𝑥𝑚𝑖𝑛                                 (5.3) 
 

By replacing the denormalized parameter inside the MAE formula (equation 5.2), the Ymin 

will be removed from the equation, and equation 5.4 will be obtained for the real MAE. 

The real MAE of the pressure model was calculated by the minimum and maximum 

pressure and plotted in figure 5.7. 

 

           𝑅𝑒𝑎𝑙 𝑀𝐴𝐸 =  (𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛)
1

𝑛
∑ |𝑌𝑖𝑡𝑟𝑢𝑒−𝑛𝑜𝑟𝑚

− 𝑌𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛−𝑛𝑜𝑟𝑚
|𝑛

𝑖=1             (5.4)     

 

 
Figure 5.7: Real MAE of the pressure model 
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optimization and sensitivity analysis. Figure 5.8 displays the MAE of the CO2 saturation 

SRM. A growth of error is visible in the diagram by increasing the time steps that differ 

from error accumulation in a cascading model. The main reason is concerning the physics 

of CO2 propagation in the storage by passing the time and increasing the number of cells 

with non-zero saturation because the model operates better in distinguishing between 

grids zero and non-zero saturation than predicting the CO2 saturation in grids with 

existing CO2. Hence, the number of cells with zero error decreases, and MAE increases.  

 

 
Figure 5.8: Saturation model blind evaluation 
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Figure 5.9: Pressure model blind evaluation 

 

5.2 Proxy Model Results       
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5.2.1 SRM Result 

 

25 years injection with the rate of 1798810 Sm3/day, 30th layer: 

 

 
 

 
 

 
Figure 5.10: Pressure and CO2 saturation distribution and error maps in the case 

of 25 years injection with the rate of 1798810 Sm3/day, 30th layer  
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25 years injection with the rate of 1798810 Sm3/day, 40th layer: 

 

 

 

 
 

 
 

 
Figure 5.11: Pressure and CO2 saturation distribution and error maps in the case 

of 25 years injection with the rate of 1798810 Sm3/day, 40th layer  
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25 years injection with the rate of 1798810 Sm3/day, 50th layer: 

 

 

 

 
 

 
 

 
Figure 5.12: Pressure and CO2 saturation distribution and error maps in the case 

of 25 years injection with the rate of 1798810 Sm3/day, 50th layer  
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50 years injection with the rate of 1798810 Sm3/day, 1st layer: 

 

 

 

 
 

 
 

 
Figure 5.13: Pressure and CO2 saturation distribution and error maps in the case 

of 50 years injection with the rate of 1798810 Sm3/day, 1st layer 
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50 years injection with the rate of 1798810 Sm3/day, 2nd layer: 

 

 

 

 
 

 
 

 
Figure 5.14:Pressure and CO2 saturation distribution and error maps in the case 

of 50 years injection with the rate of 1798810 Sm3/day, 2nd layer  
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50 years injection with the rate of 1798810 Sm3/day, 40th layer: 

 

 

 

 
 

 
 

 
Figure 5.15:Pressure and CO2 saturation distribution and error maps in the case 

of 50 years injection with the rate of 1798810 Sm3/day, 40th layer 
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25 years injection with the rate of 7610350 Sm3/day, 1st layer: 

 

 

 

 
 

 
 

 
Figure 5.16: Pressure and CO2 saturation distribution and error maps in the case 

of 25 years injection with the rate of 7610350 Sm3/day, 1st layer 
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25 years injection with the rate of 7610350 Sm3/day, 2nd layer: 

 

 

 

 
 

 
 

 
Figure 5.17: Pressure and CO2 saturation distribution and error maps in the case 

of 25 years injection with the rate of 7610350 Sm3/day, 2nd layer 
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25 years injection with the rate of 7610350 Sm3/day, 70th layer: 

 

 

 

 
 

 
 

 
Figure 5.18: Pressure and CO2 saturation distribution and error maps in the case 

of 25 years injection with the rate of 7610350 Sm3/day, 70th layer 
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50 years injection with the rate of 7610350 Sm3/day, 1st layer: 
 

 

 

 
 

 
 

 
Figure 5.19: Pressure and CO2 saturation distribution and error maps in the case 

of 50 years injection with the rate of 7610350 Sm3/day, 1st layer 
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50 years injection with the rate of 7610350 Sm3/day, 2nd layer: 

 

 

 

 
 

 
 

 
Figure 5.20: Pressure and CO2 saturation distribution and error maps in the case 

of 50 years injection with the rate of 7610350 Sm3/day, 2nd layer 
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50 years injection with the rate of 7610350 Sm3/day, 50th layer: 

 

 

 

 
 

 
 

 
Figure 5.21: Pressure and CO2 saturation distribution and error maps in the case 

of 50 years injection with the rate of 7610350 Sm3/day, 50th layer 
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5.2.2 Blind Evaluation Result 

 

25 years injection with the rate of 3459250 Sm3/day, 1st layer: 

 

 
 

 
 

 

Figure 5.22: Pressure and CO2 saturation distribution and error maps in the case 

of 25 years injection with the rate of 3459250 Sm3/day, 1st layer 
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25 years injection with the rate of 3459250 Sm3/day, 40th layer: 

 

 

 

 
 

 
 

 
Figure 5.23: Pressure and CO2 saturation distribution and error maps in the case 

of 25 years injection with the rate of 3459250 Sm3/day, 40th layer 
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25 years injection with the rate of 3459250 Sm3/day, 50th layer: 

 

 

 

 
 

 
 

 
Figure 5.24: Pressure and CO2 saturation distribution and error maps in the case 

of 25 years injection with the rate of 3459250 Sm3/day, 50th layer 
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50 years injection with the rate of 3459250 Sm3/day, 1st layer: 
 

 

 

 
 

 
 

 
Figure 5.25: Pressure and CO2 saturation distribution and error maps in the case 

of 50 years injection with the rate of 3459250 Sm3/day, 1st layer 
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50 years injection with the rate of 3459250 Sm3/day, 2nd layer: 
 
 
 

 

 
 

 
 

 
Figure 5.26: Pressure and CO2 saturation distribution and error maps in the case 

of 50 years injection with the rate of 3459250 Sm3/day, 2nd layer 
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50 years injection with the rate of 3459250 Sm3/day, 50th layer: 

 

 

 

 
 

 
 

 
Figure 5.27: Pressure and CO2 saturation distribution and error maps in the case 

of 50 years injection with the rate of 3459250 Sm3/day, 50th layer 
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5.3 Optimization Result 

The GA found the best population with 100 individuals after replacing 100 generations. 

The optimum rate and injection time that leads to maximum injected CO2 without 

exceeding the constraints refers to the first individual in the last population. Table 5.1 

represents the first 20 individuals in the best population. According to the table, injecting 

CO2 with the optimum rate of 4683495 sm3/day for 50 years will store nearly 160 Mt CO2 

safely. Consequently, near 3.2 Mt CO2 must be supplied annually, a reasonable value 

according to the CCS acceleration and companies’ investments. 

 

Table 5.1: The final population of the optimization 

Rank Rate (Sm3/day) Time Step Injected volume (Sm3) 
1 4683495 100 85473783750 
2 4683444 100 85472853000 
3 4683330 100 85470772500 
4 4682244 100 85450953000 
5 4681683 100 85440714750 
6 4681379 100 85435166750 
7 4681288 100 85433506000 
8 4680804 100 85424673000 
9 4680091 100 85411660750 
10 4678354 100 85379960500 
11 4677049 100 85356144250 
12 4675390 100 85325867500 
13 4673537 100 85292050250 
14 4673406 100 85289659500 
15 4671223 100 85249819750 
16 4669713 100 85222262250 
17 4668789 100 85205399250 
18 4667985 100 85190726250 
19 4666322 100 85160376500 
20 4665829 100 85151379250 

 

5.3.1 Optimum Plan Validation and Visualization 

As the optimization is performed with the proxy model, there is the possibility of 

prediction error. On the other hand, the constraint on the CO2 saturation is approximately 

fixed, and it is required to check the CO2 plume migration in the post-injection period. 
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Therefore, a simulation case with the optimum CO2 injection rate and time should be built 

not only to simulate the injection period but also to monitor a few years after stopping the 

injection. In the designed case, the injection begins in 2022 until 2072, and the simulation 

will be continued unit 2100. Figure 5.28 demonstrates the CO2 saturation distribution in 

2100 without any evidence of CO2 migration toward zone Beta. The optimum injection 

rate and period will be employed to verify the optimization accuracy in figure 5.29. 

 

 
Figure 5.28: CO2 Saturation distribution in 2100, 28 years after stopping CO2 

injection withe rate of 4683495 Sm3/day for 50 years 

 

Because of shutting in the wells WP1, WP2, and WP5 in 2060, the depletion effect in the 

south of the storage is dominant, and the CO2 plume tends to migrate to the south of the 

model after dying the depletion wave of well WP1.   
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Figure 5.29: Pressure and CO2 saturation distribution and error maps in the case 

of 50 years injection with the rate of 4683495 Sm3/day (optimum case), 1st layer 
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6 DISCUSSION 

The progress of building SRM was begun by the cascading method, which splits 

simulation time to multiple time steps and trains one model per time step. Later, the 

approach modified to the non-cascading because of the cascading method disadvantages. 

At first, in a cascading proxy, several models for each parameter should be trained and 

tunned, which were complicated and required more powerful systems. As mentioned 

before, error accumulation is the most critical problem of this method, especially in long-

term simulation. For instance, 50 models were trained to predict 50 years of CO2 storage 

with a 1-year time step. While training and testing a single CO2 saturation model, the 

MAE was around 1e-2, whereas the MAE reached 0.9 by a sequential blind evaluation. 

Additionally, the proxy is intended for optimization that needs to predict all models before 

the desirable time step in a cascading approach. If the current model were created with 

the cascading method, about 50 minutes would be taken to predict the last time step 

compared with numerical simulation with 6 hours and the non-cascading with 30 seconds. 

 

Concerning the dataset, the number of introduced scenarios (simulation cases), time step, 

features, and sampling is influential. The model was developed with various quantity and 

time-step durations to enhance the proxy accuracy. A high level of improvement was not 

observed in reducing the time step from 6 months to 3 months, nevertheless, increasing 

the simulation cases helped the model generalize with a higher standard. The only 

excluded input features are distance to the boundary and the bottom-hole pressure. 

Coupling a well-based SRM with this model in future works is recommended to add the 

bottom hole pressure to the model, assess and optimize the injectivity, and control well 

bore and wellhead conditions. Sampling depends on the property behavior and 

distribution. When the pressure was sampled by property value variation between time 

steps, only the points around the injection and production wells were selected, leading to 

overfitting and high error in points far from wells. Random sampling avoided overfitting 

by selecting cells throughout the reservoir where the error in most grids is less than 0.5%.  

 

The previous studies suggested utilizing an ANN with one hidden layer in building 

cascading proxies. However, in the non-cascading method, there is a giant dataset with 
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17500000 rows and 31 columns, in which situation, a simple ANN could not find the 

solution; in fact, underfitting occurred. Extending the model network improved the result. 

Not to be forgotten, too much expanding the ANN will be followed by overfitting and 

poorer accuracy in prediction. According to the problem structure, Relu and Sigmoid are 

the most appropriate activation functions. In comparison, the Relu activation has a better 

performance in the hidden layer, despite the fact that its presence in the output layer 

causes the algorithm to stick in a plateau. Employing the sigmoid in the output layer 

tackled the problem. Furthermore, the model training was highly sensitive to the learning 

rate insofar as training only with the initial rate of 5e-4. On the other hand, a constant 

training rate resulted in shooting the solution and demand for a learning rate decay 

function. 

 

The error of the CO2 saturation model in almost all cells does not reach 0.1 and is 

accumulated chiefly at the edge of the CO2 plume. This issue is more distinctive in figure 

5.20, which is injected with the highest injection rate in training cases. In this order, the 

model can be trained with a rate more than the maximum rate of the model application.  

 

In this study, the GA parameters were not optimized, even though the population and 

termination generation were modified a few times after ensuring the code and algorithm 

were workable. A low population or termination level may not lead to an optimum 

solution, but it will not be far from the global optimum. Initially, the optimization was 

performed with saturation constraint on the spill point between zones Alpha and Beta. 

The CO2 plume passed from the spill point by checking the post-injection interval. Thus, 

the condition is set behind the spill point to provide a vacant space for post-injection CO2 

migration.  
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7 CONCLUSION 

1. A non-cascading grid-based SRM is more appropriate for long-term proxy 

modeling and optimization. 

2. The best model structure is a DNN with 3 to 5 hidden layers activated by the Relu 

function in the hidden layers and Sigmoid for the output layer. 

3. The CO2 saturation data can be sampled based on the property change in time 

steps, in contrast with pressure data requiring random sampling. 

4. In case of memory and computer performance limitations, raising the number of 

simulation cases is a priority compared to the time-step reduction. 

5. The maximum injection rate in training cases should be fixed more than the 

required rate while SRM application. 

6. Proxy models provide flexibility and pace for reservoir simulation in exchange 

for a negligible error. According to the study results, grid-based SRMs are able to 

be substituted for commercial simulators in sensitivity analysis and optimization. 

7. The pressure SRM with an error less than 0.5% is capable for all industrial studies, 

especially for coupling with Geomechanical models.   

8. The captured CO2 can be injected into the Smeaheia CO2 storage with a rate near 

3.4 Mt per year to safely store 170 Mt CO2 in 50 years without any leakage or 

pressure violence. 
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