
POLITECNICO DI TORINO

Master’s Degree in Electronic Engineering

Master’s Thesis

Design and analysis of a communication system for
industrial monitoring in the textile industry

Supervisor Candidate
prof. Renato Ferrero Michael Piran

Accademic Year 2020-2021

Ogni traguardo lo devo a
mio padre e a mia madre

Acknowledgements

Ringrazio il professor Renato Ferrero per avermi seguito in questa attività di tesi. Dedico
questo traguardo ai miei genitori. Sarò infinitamente grato per il loro aiuto e sostegno.
Ringrazio mio fratello Samuele, per essere sempre un punto di riferimento e un esempio
da imitare. Gran parte del merito lo devo a mio fratello Cristian per aver condiviso anche
questa avventura. A mia zia Cristina, un immenso grazie per avermi guidato durante gli
anni accademici e per essere sempre disponibile ad aiutarmi. Un grazie affettuoso ai nonni
per essermi sempre stati vicini. Al piccolo Mattia, auguro di poter esaudire i propri sogni.
Ringrazio Adelaide per avermi accompagnato in questi ultimi anni.

4

Contents

List of Tables 6

List of Figures 7

1 Introduction 9
1.1 Scenario . 9
1.2 Theoretical aspects . 12

1.2.1 Automation industry - Basic concepts 13
1.2.2 PLC and HMI . 16
1.2.3 Ethernet technology . 17
1.2.4 Protocol Layering . 19
1.2.5 Socket Programming . 21

2 Communication protocols’s overview 25
2.1 Modbus TCP/IP . 25

2.1.1 Protocol description . 26
2.1.2 Modbus Data model . 28
2.1.3 Command descriptions . 29
2.1.4 Error Handling . 31

2.2 EtherNet/IP . 31
2.2.1 CIP - Common Industrial Protocol 32
2.2.2 CIP Object Model . 35
2.2.3 Network adaption of CIP: EtherNetIP 37

2.3 OPC UA . 38
2.3.1 System Description . 39
2.3.2 Security Model . 41
2.3.3 AddressSpace Model . 42
2.3.4 Services . 43
2.3.5 Mapping . 44

3 Design choices’s motivation 47
3.1 Interoperability . 48
3.2 Security . 48
3.3 Vertical integration . 50

5

3.4 Frame Size . 50
3.5 Communication model . 53
3.6 Services provided . 55
3.7 Protocols comparison . 55

4 Implementation and evaluation 59
4.1 Data model . 61
4.2 OPC UA Server . 64
4.3 OPC UA Client . 65

4.3.1 PLC OPC UA Client . 66
4.3.2 Computer OPC UA Client . 67

4.4 Protocol analysis . 68
4.4.1 Packets exchanged analysis . 70
4.4.2 Performance analysis . 75

5 Conclusions 77
5.1 Future work . 80

Bibliography 83

6

List of Tables

2.1 Modbus Memory Area . 28
2.2 Modbus Function Code Description . 29
2.3 EtherNet/IP Status field . 38
3.1 Protocols’ integration . 50
3.2 Protocols’ frame size . 53
3.3 Protocols’ communication model . 54
3.4 Protocols’ summary table . 56
4.1 Packet length . 75
4.2 UAExpert performance analysis . 76

7

List of Figures

1.1 System Description . 10
1.2 Manufacturing systems’s categories . 13
1.3 Automation Pyramid . 15
1.4 Ladder logic . 16
1.5 Ethernet frame . 18
1.6 OSI information transmission . 19
1.7 ISO/OSI and TCP/IP models . 21
1.8 TCP socket programming . 22
1.9 UDP socket programming . 23
2.1 Modbus communication stack . 26
2.2 Modbus Transaction error-free . 27
2.3 Modbus Exception response . 27
2.4 Modbus Transaction . 28
2.5 CIP networks . 32
2.6 CIP Address Structure . 33
2.7 CIP Connection . 34
2.8 CIP I/O Message . 35
2.9 CIP Explicit Message . 35
2.10 CIP Object Model . 36
2.11 OPC_UA Client architecture . 39
2.12 OPC_UA Server architecture . 40
2.13 OPC_UA Security Architecture . 42
2.14 OPC_UA Object Model . 42
2.15 OPC_UA Stack . 44
2.16 OPC_UA Connection . 45
3.1 Modbus frame . 51
3.2 ModbusTCP/IP frame . 51
3.3 EtherNet/IP frame . 52
3.4 OPC_UA Message Chunks . 53
3.5 Client/Server model . 54
4.1 Project network . 60
4.2 Codesys Server’s device tree . 64
4.3 Codesys Client’s Data Source Object . 66
4.4 Codesys test Server’s variables and program 69

8

4.5 Codesys Client’s program . 70
4.6 UaExpert OPC UA Client . 70
4.7 OPC UA protocol analysis - open connection 71
4.8 Wireshark OPC UA data exchange . 72
4.9 Wireshark OPC UA packet fields . 73
4.10 OPC UA protocol analysis - close connection 74
4.11 UaExpert test OPC UA Client performance 75
5.1 System before . 79
5.2 System now . 79
5.3 System future . 81

9

10

Chapter 1

Introduction

1.1 Scenario

The master’s thesis activity was carried out at Officine Gaudino spa from the first of July
to the 30th November 2021, situated in via XXV Aprile, 16, Cossato(BI).

Company description

Officine Gaudino is located in Biella which is famous for being a textile hotspot where the
world’s greatest wool spinners are located. The company was born around 1920 and it is
specialized in the production of ring spinning machines for wool, fine and synthetic fibers.
In the last few years Officine Gaudino acquired the brand LEMA LEZZENI s.r.l., known
worldwide for the production of twisting machines, cops winders, fancy yarn twisters and
drawing frames. Today Officine Gaudino offers a wide range of textile machinery such as
Ring Spinning, Cops Winder, Doubling and Twisting, Twisting Doubling and Re-Twisting,
and Drafting machines.

Thesis goal

The goal of the thesis is to design a communication system that allows to interface a
production line to a central system. There is a PC or a PLC (Programmable Logic
Controller) that collects and modifies the key parameters and monitors the production
progresses. The communication system should be compatible with hardware devices used
in Officine Gaudino and should be able to work in a textile environment.
The necessity of this kind of activity arises because customers require a production line
that can be managed by a central system and can be interfaced with MES(Manufacturing
Execution System) systems.

11

https://www.gaudino.com

Introduction

Figure 1.1: System Description

Figure 1.1 gives a schematic overview of the system. Production line machines are
connected to a central system placed in the office room of the customer company. The
central system reads key parameters from PLCs inside each machines, so it can monitor
the real time status of the production, and should be able to change setting parameters.
In this way users have a complete overview on what is happening in the production line,
managing the technical information and reducing the human effort. The key parameters
that are monitored or can be modified are:

• Information on the production progresses such as remaining time, end of production,
package weight and meters of yarn processed;

• Properties of processed material such as yarn count, yarn ironing and final package
size;

• Error signals;

• Actuator settings such as speed of motors, positional information from encoders,
electrical absorptions (currents, voltages, electrical powers) and torques developed;

• Recipes management. A recipe contains the settings parameters required by ma-
chines to process a specific material. This allows to easily process different kind of
yarns, because users just have to choose the right recipe.

Requirements

The system will be employed on a textile industrial environment, such as spinning mill and
winding. These places are characterized by high temperature, dust and dirt due to wool
processing, presence of chemical agents and vibration due to machinery in the production
line. So the communication system needs to satisfy some base requirements:

• Few data losses;

• Electrical noisy resistant;

12

1.1 – Scenario

• Interoperability, i.e., ability to communicate with other devices from different ven-
dors and with different communication protocols;

• Dirty environment resistant;

• Vibration resistant;

• Time-critical communication;

• Security.

The most important requirement is interoperability. It is necessary a cross-platform com-
munication protocol that allows an easy communication among different vendor-specific
devices. Furthermore, it is crucial to adopt a protocol widely diffused in automation in-
dustry environments. In this way it is possible to integrate Officine Gaudino’s machines
with production machines of other brands.
The purpose is monitoring the production, so the environment conditions are not too hos-
tile, because the system is not placed on board, near sensors and actuators. This situation
allows to have a less resistant transport protocol that can reach high speed performance,
such as Ethernet.
Communication delay is not a fundamental prerequisite, because a real-time communi-
cation is not required. The central system monitors the production progresses and the
decisions taken involve the modification of setting parameters of the processed material.
Their effects are not instantaneous because usually they modify speed of motors or actu-
ators.
Another important parameter is security. The implementation of security expedients
is important to avoid external attacks, especially if the system is integrated with MES
equipment.

Hardware and Software

Here a description of the hardware and software tools adopted by Officine Gaudino is
presented. The company adopts Hardware devices from Eaton1 and these components
are employed in the project:

• PLC: Eaton XC-300 :

– CPU: 960MHz, ARM CortexA7 Dual Core;
– Memory: 512 MB DRAM, Flash 1 GB internal memory and 128 kB non-volatile

data memory;
– Supported protocol: CANopen, Modbus, EtherNet/IP, OPC-UA, easyNet, Ether-

Cat;

Datasheet available on PLC Datasheet.

1https://www.eaton.com/it/it-it/products.html

13

https://datasheet.eaton.com/datasheet.php?model=191080&locale=it
https://www.eaton.com/it/it-it/products.html

Introduction

• HMI (Human Machine Interface): Eaton XV-303 :

– HMI with an incorporated PLC;
– CPU: 800MHz, ARM Cortex-A9;
– Memory: 512 MB DRAM, Flash 1 GB internal memory and 128 kB non-volatile

data memory;
– OS: Windows Embedded Compact 7 operating system;
– Supported protocol: TCP/IP, Profibus, CAN, Modbus, EtherNet/IP, OPC UA;

Datasheet available on HMI Datasheet.

The company adopts the following software:

• XSOFT-CODESYS v3.5.16 for the PLC programming;

• Galileo v10.5.1 for programming the graphic interface of the HMI.

Based on the hardware specifications, these three protocols are considered for developing
the communication system: Modbus TCP, EtherNet/IP and OPC UA.

Document organization

The document presented is organized in this way;

• Section 1.2 illustrates the basic theory concepts of automation and a general overview
of Ethernet and PLC technologies;

• Chapter 2 gives an overview on the communication protocols considered. In partic-
ular, it describes Modbus TCP, EtherNet/IP and OPC UA specifications;

• Chapter 3 indicates the criteria used to individuate the best communication protocol
for this project;

• Chapter 4 describes the project implementation;

• Chapter 5 gives a general assessment of the work done, describes the difficulties
encountered and explains the future developments of the project.

1.2 Theoretical aspects
The theoretical concepts touched by the following chapters are introduced in this section.
A particular attention is given to automation, PLC, HMI, Ethernet, protocol layering and
socket programming.

14

https://datasheet.eaton.com/datasheet.php?model=191073&locale=en_GB

1.2 – Theoretical aspects

1.2.1 Automation industry - Basic concepts
A production system can be defined as a group of people, equipment and organized pro-
cedures with the goal of carry out manufacturer industry operations[1]. There is an
interaction between humans and machines. Considering the human role in the automatic
processes, three categories can be highlighted:

Figure 1.2: Manufacturing systems’s categories

a. Manual work systems (Figure 1.2a): Humans work only with manual tools, without
the help of machines;

b. Worker-machine systems (Figure 1.2b): Workers do their jobs together with the
production machines;

c. Automated systems (Figure 1.2c): A process is performed without a direct human
participation. There are two different levels:

1. Semi-automated machine: During the machine’s working cycle, the worker per-
forms small operations that allow to move forward the production;

2. Fully-automated machine: For a long time, more than one working cycle, the
machine can works without the human participation.

There are some advantages from the introduction of automation in manufacturer industry:

1. Increasing productivity;

2. Reducing products costs;

3. Improving worker safety;

4. Reducing or eliminate routine manual and clerical tasks;

5. Reducing manufacturing lead time;

6. Improving products quality;

7. Accomplishing processes that cannot be done manually.

15

Introduction

Pyramid of Automation (Figure 1.3) is defined as a representation of different automation
levels inside the industrial environments. Nowadays trend is to connect and exchange
information between all these different levels, starting from the field level toward the
office level. The idea of level connection is not new, already in 1970 the Computer-
Integrated Manufacturing (CIM) theory was conceived. There are different definitions for
that concept, some of them emphasize the role of information, other’s the importance of
integration:

• CIM is the application of computer science technology to the enterprise of manufac-
turing in order to provide the right information to the right place at the right time,
which enables the achievement of its product, process and business goals2;

• CIM is the integration of the total manufacturing enterprise through the use of inte-
grated systems and data communications coupled with new managerial philosophies
that improve organized and personnel efficiency3.

Overall there are different agreements on the name and number of levels, but the main
approach is to detect six functional levels: Field level, Control level, Supervisory level,
Planning level, Enterprise level and Cloud. They are organized in a pyramidal way,
the lowest levels manipulate signals from controllers, sensors and actuators employed in
a production line. A very detailed description of the system is required and information
change frequently in time. On the other hand, higher levels have a more general description
of the system, they manage information on the status and progresses of the production line.
This kind of data change less frequently in time and they are manipulated by the company
management. Finally a multi-level network is developed to allow the data exchange among
different levels. Communication over higher layers is IP network dominant over Ethernet,
while fieldbusses are involved in field levels. In the future, Ethernet networks will be
involved also in lower level, because the real-time problem of today standards will be
overcame. Here the six automation levels are described:

2Digital Equipment Corporation (DEC) (Ayres, 1991)
3Computer and automation Systems Association of the Society of Manufacturing Engineers (Singh,

1996)

16

1.2 – Theoretical aspects

Figure 1.3: Automation Pyramid

• Level 0 - Field Level:
It is the lowest level, also called the machine level. It manages devices like sensors
and actuators (electric motors, hydraulic pump, etc.), so in this level the physical
work is performed;

• Level 1 - Control level:
PLCs are present in this level. They receive electrical informations from sensors and
input devices. They manipulate data and provide output signals to the actuators;

• Level 2 - Supervisory Level:
Supervision and monitoring tasks are performed. Acquisition systems such as SCADA
(Supervisory Control And Data Acquisition) or user interfaces like HMIs manage the
information related to lower levels;

• Level 3 - Planning Level:
Management systems like MES are employed in this level. They monitor the entire
production process of a company, from the raw material to the final product. So
management receives these real-time informations, and get familiar with the status
of production resources and quantity of goods in stock;

• Level 4 - Enterprise Level:
It requires information from all the lower levels. ERP (Enterprise Resource Plan-
ning) systems are employed in this level. They are management software that can
be used to collect, store, manage and interpret data from many business activities;

• Level 5 - Cloud:

17

Introduction

Data coming from lower levels are directly sent to the cloud. This provides an easily
access to data and the possibility to implement web services.

1.2.2 PLC and HMI
PLCs are controllers that implement logic functions for the management of industrial
machines and processes. They can operate in electrical noisy environments. The base
components are: processor, memory unit, power and I/O modules. PLC scans input
signals from sensors, elaborates them based on a set of logical instructions stored in
a programmable memory and provides output signals to control actuators. There is a
scan cycle that defines the sample time of the inputs and how frequently the program is
executed. Standard IEC 61131-3, International Standard for Programmable Controllers,
defines five languages for PLC programming, three are graphic-based and the other two
are text-based.

1. Ladder logic: There is a set of symbols (Figure 1.4) that directly represent the
devices and their connection to the PLC, like relays, contacts, solenoids, timers,
counters and motors;

Figure 1.4: Ladder logic

2. Function block diagram: The instructions are made by function blocks implementing
specific functions that manage inputs and outputs;

3. Sequential function charts: It graphically represents sequential functions through
series of transition from one state to the next;

18

1.2 – Theoretical aspects

4. Instruction list: Text-based, low level programming language used to build lad-
der logic diagrams. The typical set of instructions adopted is: AND, OR, NOT,
STR(store in the accumulator), TMR(timer), CTR(counter) and OUT(output the
data);

5. Structured text: Ladder logic or Instruction list are limited to ON/OFF signals. This
is an high level programming language that allows to manage more complex data
structures. It is also possible to implement more complex control algorithms and
communicate with computer-based systems.

HMIs are user-friendly panels used in industrial systems that interface humans with the
machinery. They translate PLC signals to human informations, so the operator can mon-
itor production processes. Typically they are touch-screen devices with an operating
system.

1.2.3 Ethernet technology
Communication network can be divided in two categories[3]:

• Connection-oriented: also called Circuit-switched. There is dedicated connection
between transmitter and receiver. It is guaranteed that messages reach the final des-
tination and the network performance is not touched by other connections. The main
drawback is the cost: there is a fixed connection, so costs are fixed independently on
the network use;

• Connectionless: also called Packet-switched. Data transmitted are divided into pack-
ets. They are composed of hundreds of bytes and all of them have a destination ad-
dress. More connections can coexist in parallel, in other words the physical network
is shared among multiple devices, so less networks, lower costs. The drawback is the
degradation of performance due to bandwidth occupation.

Considering the distance covered, packet-switched networks can be divided in two cate-
gories:

• Wide Area Networks (WANs): They provide a communication over a long distances
and travel through continents and oceans. They typically work at lower speed, from
1.5Mbps to 155Mbps. The connection delays are from few milliseconds to tens of
seconds;

• Local Area Networks (LANs): They are shorter connections and can reach higher
speed, from 10Mbps to 2Gbps. Delays are around few milliseconds.

Ethernet technology, standard IEEE 802.3, is used in packet-switched LAN networks.
There are different version of Ethernet cables:

1. 10Base5 : Ethernet over coaxial cable;

2. 10Base2 (thin-wire Ethernet): cheaper than previous version;

19

Introduction

3. 10BaseT : Ethernet over twisted wires and without ground shield, 10Mbps;

4. 100BaseT (Fast Ethernet): 100Mbps;

5. 1000BaseT (Giga Ethernet): 1Gbps.

Ethernet is a bus technology, where each device is connected to the shared bus. The
access protocol of Ethernet is called Carrier Sense Multiple Access with Collision Detect
(CSMA/CD). CSMA means that more than one device can simultaneously access Ether-
net, a carrier signal determines if the bus is empty in a specific instance and a transmission
of data can start. CD means that when a data collision arises, the host stops the trans-
mission, waits for a little interval of time and then tries to retransmit.
An Ethernet address is 48 bits length and three categories can be distinguished:

• Unicast address: it indicates a physical device in a network;

• Broadcast address: it is used for sending messages to all connected devices. All
address bits are at one;

• Multicast address: it sends messages to a group of devices connected.

The Ethernet frame is organized in this way:

Figure 1.5: Ethernet frame

• Preamble: 8 Bytes. Allows sender and receiver to establish a synchronization;

• Destination address: 6 Bytes. Destination address of the communication;

• Source address: 6 Bytes. Source address of the communication;

• Frame type: 2 Bytes. Indicates the protocol used to process the frame;

• Frame data: 46 to 1500 Bytes. Data field;

• Cyclic Redundancy Check (CRC): 4 Bytes. Detects possible frame’s transmission
errors. The transmitter evaluates this code, the receiver, with the received data,
recalculates it. If the two CRC are different it means that an error arises.

20

1.2 – Theoretical aspects

1.2.4 Protocol Layering
A communication protocol indicates how data are exchanged between receiver and trans-
mitter and how errors, delays, faults and congestion are managed[2]. In a complex com-
munication systems, it is really hard to manage with a single protocol all these aspects of
the communication. So the entire communication management is organized in different
levels. Each of them is implemented with a single protocol and provides services to its
neighbours. In this way the network developer’s job is simplified, because it is focused
only on a sub-aspect of the communication.
Considering the communication between two devices, the information exchanged are writ-
ten in the highest layer. Then they are translated in the lowest layer and sent over the
physical network. This procedure is called Encapsulation, the transmission frame is cre-
ated by adding detailed fields to the originally frame. The receiver of the communications,
performs the inverse of the encapsulation until it retrieves the original packets.

Figure 1.6: OSI information transmission

OSI/ISO Model

OSI model was developed in‘70 by International Organization for Standardization and it
became a standard, ISO7498. OSI stands for Open Systems Interconnections. It helps
the network developers in the implementation of communication protocols. This is not a
strictly set of rules, but only general guidelines that a protocol should follow. Complex
communication systems exchange information with devices from different vendors, so it
is necessary a reference model hardware independent. If each manufacturer develops
a communication device with its own protocol, it is impossible to communicate with
other vendor-specific devices. So to avoid this protocol confusion, OSI inserts structure

21

Introduction

uniformity. Here the seven layers of the model are described:

• Level 1: Physical Layer
It takes into account the physical part of the communication. It exchanges unstruc-
tured raw data through a transmission medium. It considers all electrical and me-
chanical characteristics of the communication, which include tasks like activating,
maintaining, and terminating the physical connection. Typical protocols example
are: Bluetooth, RS-232, OTN (optic fiber) and RS-485 ;

• Level 2: Data-Link Layer
This level guarantees an error-free connection between two nodes. It uses error
correction algorithms to allow reliable transmission through the physical layer. It
also adds source and destination address to the packets that are transmitted. Typical
protocols example: Ethernet, Wi-Fi and Point-to-Point Protocol.

• Level 3: Network Layer
It is responsible of packets routing. Through specific algorithms, this level defines the
optimal path that packets should follow to reach the destination address. The net-
work layer also is responsible for establishing and terminating network connections
and re-establishing broken network connections. IP protocol is a typical example.

• Level 4: Transport Layer
Differently from previous levels, this one works only with starting and end users. It is
responsible of the flow of data exchanged between users and assigns logical addresses
to the physical addresses that are used in the network layer. TCP and UDP are
typical protocols example, both IP-based.

• Level 5: Session Layer
This level guarantees that final users use the same session protocol, in order to
establish a connection. The participants first have to negotiate a common protocol,
which is then used in the communication. Socks is an example.

• Level 6: Presentation Layer
This level defines how the information shall be formatted in order to make it un-
derstandable for the end user. If, for example, a string is transmitted, this level
recognizes the information and interprets the bytes. So it manages the syntax of the
frames transmitted. Conversion of data is covered here as well as optional encryption
of information.

• Level 7: Application Layer
Provides higher-layer services and interfaces to the application. This layer strongly
depends on the application and operating system used. SSH, IMAP and FTP are
typical protocols examples.

22

1.2 – Theoretical aspects

TCP/IP suite

Figure 1.7: ISO/OSI and TCP/IP models

This layering model does not come from standard organization, but directly from internet
communication protocols. TCP/IP suite is organized into five levels, four software and
one hardware. Figure 1.7 shows the differences between the OSI and the TCP/IP models.
Here the levels are described:

• Data-Link Layer and Physical Layer : Protocols present in these lowest levels are
related to the physical network employed (Ex: Ethernet). They accept and transmit
IP frames over specific network;

• Network Layer : Internet layer handles the communication between two end-points.
It encapsulates packets in a frame, uses routing algorithms to determine whether to
deliver the datagram directly or send it to a router. Besides it checks the correctness
of input packets and if they need to be processed internally or forwarded;

• Transport Layer : Regulates the information flow between two end-points, and it
ensures that data reach destination without errors and in the correct order. This is
implemented through acknowledge signals and retransmission of packets loss. TCP
and UDP are available protocols;

• Application Layer : It is the highest level, it invokes application programs that allow
to access TCP/IP services. The application program sends data in the required form
to the transport layer. HTTP, FTP and DNS are typical protocols example.

1.2.5 Socket Programming
Focusing on Transport and Network Layer of the OSI Model (or also the TCP/IP Suite),
TCP and UDP, over IP, are the most popular protocols adopted for network programming.
The Internet Protocol (IP) is a Network Layer protocol that allows the exchange of data
through an IP Address, typically on 32 bits. The Transport protocol can be implemented

23

Introduction

through Sockets. They are standard API and they are based on TCP or UDP. Berkeley
sockets is an example.

TCP - Transmission Control Protocol

Provides a reliable connection between Clients and Servers. It is a connection-oriented
protocol, it divides the data transmitted in packets called segments. It is guaranteed that
data reach the final destination and in the correct order. In case of losses or corrupted
data they are retransmitted.

Figure 1.8: TCP socket programming

Before the data transfer, a connection between two endpoints is established. Server
performs these steps:

1. Creates a socket with the function socket();

2. Through Bind function, it sets the port number and IP address;

3. The socket is in listening mode, waiting for a connection;

4. If the Client connects to the Server, it accepts the connection;

24

1.2 – Theoretical aspects

5. Exchanges segments through the Read and Write function;

6. Closes the socket.

On the other hand the Client:

1. Creates the socket;

2. Connects to the Server socket;

3. Exchanges data through Read and Write function;

4. Closes the socket.

UDP - User Datagram Protocol

Provides a connection between two endpoints with a minimum overhead, because acknowl-
edge and flow control of received data are not implemented. It is a connectionless protocol
because there is not a constant connection between two processes. It is not guaranteed
that packets reach the final destination and in the correct order. Data exchanged are
called datagrams.

Figure 1.9: UDP socket programming

25

Introduction

Server and Client create both new sockets, then with the Bind function they associate
the sockets with an IP address and a port number. After this setup phase, Servers
exchange data with Recvfrom and Write functions, while Clients use Send and Recvfrom.
As the the Figure 1.9 shows, there is no flow control between the datagrams exchanged.

26

Chapter 2

Communication protocols’s
overview

2.1 Modbus TCP/IP

Modicon created Modbus in 1979 and now the Modbus Organization follows the evolution
of the protocol. This organization is a group of independent companies, that operate in
the automation field, with the goal of updating the protocol and its variants. Besides they
provide information to users and help them to implement Modbus applications.
Modbus is a de facto standard for industrial communication, it is continuing to grow and
now can support more and more devices. One reason of this popularity is that this is a
open source protocol, so everyone can obtain its specification just by simply following the
instruction freely given by the manufacturer.
Today Modbus is present on different physical media and with gateways it is possible to
connect different releases of the protocol:

• Modbus TCP/IP over Ethernet;

• Modbus Serial Line over EIA/TIA-232-E or EIA/TIA-485-A;

• Modbus Plus.

This chapter describes the main attributes of the Modbus TCP/IP, focusing on the ap-
plication layer[4] and on the TCP/IP implementation[5].

27

http://www.mobus.org

Communication protocols’s overview

Figure 2.1: Modbus communication stack

Modbus can be defined as an application layer messaging protocol positioned at level 7
of OSI model. It allows the connection between different kind of devices, like PLC, HMI,
Control Panel, Driver, Motion control and I/O Devices.

2.1.1 Protocol description

Modbus is a Client-Server protocol and exchanges information through the registered
port 502. TCP frames are generally composed by a Function code, that indicates the
actions to perform, and a Data field.
When the Client initiates the request, puts in the function code field what kind of action
the Server should perform. The function code is represented on one byte and 0 is an
invalid code. So valid data only if in the range 1 to 255, but range 128-255 are reserved.
Specific functions require a Sub-function code to extend the previous field. The Data field
of the message contains additional information that the Server requires for implementing
the request, such as register addresses, number of elements to be handled or the number
of data bytes. In some cases the data field is not required, depends on the function code.

28

2.1 – Modbus TCP/IP

Figure 2.2: Modbus Transaction error-free

When the Server receives the frame, it elaborates the request, performs some action
and creates the response. If no error occurs, the function field of the response echoes
the code of the request, and the data field contains the information needed. Instead, if
an error arises, the Server detects the problem and sends an Exception response. The
function code contains the original code with the most significant bit (MSB) set to 1 and
the data field contains an Exception code that indicates the cause of the error.

Figure 2.3: Modbus Exception response

Figure 2.4 reports how the Server manage a Modbus transaction. Firstly it is listening
port 502 for a Request. After that, it checks, in sequence, the correctness of Function
Code, Data Address and Data Value. If it does not retrieve any errors, executes the
function and sends a Modbus Response.

29

Communication protocols’s overview

Figure 2.4: Modbus Transaction

2.1.2 Modbus Data model
Data Encoding

Data and addresses follow the Big Endian encoding format, so firstly the most significant
byte is sent. For example, if the word 0x0123 needs to be send, first the byte 0x01 is sent
and then the 0x23.

Memory Organization

Modbus provides a data model for Servers, that behaves as interface between an external
request and the physical memory of the device. There are four distinct data references,
listed in the table below. Two of them are organized on 16 bits and the remaining on 1
bit. Some data are Read-Only and can be provided by an I/O system, while others are
Read-Write and can be modified by an application program.

Name Register Size Access Permissions Data Type
Discrete Inputs 1 bit Read-Only Boolean
Coils 1 bit Read-Write Boolean
Input Registers 16 bits Read-Only Unsigned Word
Holding Registers 16 bits Read-Write Unsigned Word

Table 2.1: Modbus Memory Area

30

2.1 – Modbus TCP/IP

The protocol provides 65536 data items for each memory area. There is a mapping
policy, totally vendor-specific, that allows to bound these data references to the physical
address of the device. So a Client request, that want to access data of the Server device,
needs to address one of this interface.

Function Code

It is a 1 Byte field, so can support up to 255 different codes. There are three categories:
• Public Function Codes: They are well defined codes, certificated by Modbus Orga-

nization and publicly documented. Users cannot change their order;

• User-Defined Function Codes: Users can implement their own function code but it
is not supported by the specification and it is not guaranteed the uniqueness;

• Reserved Function Codes: They are reserved for companies, so not all users can
access them.

Name Function Code (hex) Sub Code Info
Read Coils 01 01 Single bit data access
Read Discrete Inputs 02 02 Single bit data access
Read Holding Registers 03 03 16 bits data access
Read Input Register 04 04 16 bits data access
Write Single Coil 05 05 Single bit data access
Write Single Register 06 06 16 bits data access
Read Exception status 07 07 Diagnostic
Diagnostic 08 08 00-18, 20 Diagnostic
Get Com event counter 11 0B Diagnostic
Get Com Event Log 12 0C Diagnostic
Write Multiple Coils 15 0F Single bit data access
Write Multiple Registers 16 10 16 bits data access
Report Slave ID 17 11 Diagnostic
Read File record 20 14 6 File record access
Write File record 21 15 6 File record access
Mask Write Register 22 16 16 bits data access
Read/Write Multiple Registers 23 17 16 bits data access
Read FIFO queue 24 18 16 bits data access
Read device Identification 43 2B 14 Diagnostic
Encapsulated Interface Transport 43 2B 13,14 Other
CANopen General Reference 43 2B 13 Other

Table 2.2: Modbus Function Code Description

2.1.3 Command descriptions
Function codes illustrated in the table above are all functions supported by Modbus
protocol, but TCP/IP version supports only some of them.

31

Communication protocols’s overview

• 0x01 - Read Coils: Allows to read up to 2000 contiguous status of coils in a remote
device;

• 0x02 - Read Discrete Inputs: Allows to read up to 2000 contiguous status of discrete
inputs in a remote device;

• 0x03 - Read Holding Registers: Allows to read up to 125 contiguous blocks of holding
registers in a remote device. Each register occupies two bytes, the first byte contains
the high order bits and the second contains the low order bits;

• 0x04 - Read Input Register : Allows to read up to 125 contiguous input registers in
a remote device. Each register occupies two bytes, the first byte contains the high
order bits and the second contains the low order bits;

• 0x05 - Write Single Coil: Allows to set ON or OFF a single output in a remote
device. Possible values in the data field are 0xFF00 for the ON state and 0x0000 for
the OFF state;

• 0x06 - Write Single Register : Allows to write a single holding register in a remote
device;

• 0x0F - Write Multiple Coils: Allows to set ON or OFF a sequence of contiguous coils
in a remote device;

• 0x10 - Write Multiple Registers: Writes a sequence of contiguous registers in a remote
device, up to 120. Each register occupies two bytes, the first byte contains the high
order bits and the second contains the low order bits;

• 0x14 - Read File record: Allows to implement a read operation on a file record.

• 0x15 - Write File record: Allows to implement a write operation on a file record.

• 0x16 - Mask Write Register : Using an AND or OR mask, it allows to modify the
content of a specific holding register. If the AND mask field is zero, the result is
the logical OR between the mask and the current content of the register. If the OR
mask field is zero, the result is the logical AND between the mask and the current
content of the register;

• 0x17 - Read/Write Multiple Registers: Performs a read and write operation on a
sequence of contiguous holding registers. Each operation is performed up to 120
registers. The write operation is performed before the read;

• 0x18 - Read FIFO queue: Allows to read the content of a FIFO queue, up to 32
registers.

32

2.2 – EtherNet/IP

2.1.4 Error Handling
Modbus provides features to manage transaction’s errors. When Client sends a request
message, if no errors occurs, the Server replies as expected. Unfortunately can happen
that, due to a communication error, the Server does not receive the request or receives
it but detects a parity or CRC error. Server is not able to return a response, so the
Client can understand the critical situation only via timeout condition. It can happen
that the Server receives the Request, no communication errors are present, but cannot
manage it. So the Server returns an exception response indicating the cause of the error.
In the exception response message, the function code field contains the function code of
the original request but the MSB is set to 1. This makes the code with a value higher
than 0x80, so the Client checking the MSB can recognize transaction error. Normal value
of function code has MSB at 0. Data field contains the information required by the client,
in normal situation. On the contrary, in a exception response, it contains an exception
code showing the source of error. Here the exception errors are listed:

• Illegal function: The function code received is not correct. It can also indicate that
the Server is not in the correct configuration to process a requests of this type;

• Illegal data address: The data address received points in a location that cannot be
managed by the Server;

• Illegal data value: The data value received is not correct. Maybe its length does not
correspond on what indicated in the Length field;

• Slave device failure: An unrecoverable error is occurred while the Server was at-
tempting to perform the requested action;

• Acknowledge: A request is accepted, but it needs a long time to be processed. Server
sends an acknowledge exception to inform the Client and avoid a timeout error;

• Slave device busy: The Server is processing other requests, therefore the Client needs
to retransmit the message at a later time;

• Memory parity error : It can arise when there is a file record access. The Server
wants to read a file, but detects a parity error in the memory;

• Gateway path unavailable: The gateway is not able to allocate a path from the input
to the output for processing the request;

• Gateway target device failed to response: It indicates that no response was obtained
from the target device, probably the device is not connected to the gateway.

2.2 EtherNet/IP
EtherNet/IP, introduced in 2000, is the Ethernet implementation of the CIP (Common
Industrial Protocol) protocol[6][7][8]. ”IP” stands for ”Industrial Protocol”. This protocol

33

Communication protocols’s overview

is managed by ODVA, that is a global association with the goal of developing communi-
cation technologies in industrial automation environments.
EtherNet/IP is an industrial communication system that allows industrial devices (sen-
sors, actuators, PLCs and so on) to exchange information through TCP/IP networks.
On Figure 2.5 is showed the structure of the CIP protocol. It implements all the lay-
ers of the OSI model, and only the lowest four are network dependent. This because
ODVA implements the CIP protocol also on other physical and transport layers such as
DeviceNet on CAN technology, ControlNet on CTDMA technology and CompoNet on
TDMA technology.

Figure 2.5: CIP networks

2.2.1 CIP - Common Industrial Protocol
CIP protocol is based on object modelling. Each node behaviour (communication services,
external interface and data exchanged) is described by an Object. It provides an abstract
representation of a particular component within a product. Different Object instances of
the same component in a node define a Class. They have the same set of attributes but
different attribute values. Attributes indicate a status information, a description of an
externally visible characteristic or feature of an Object. There are Services that allow to
execute tasks.

34

2.2 – EtherNet/IP

In a node there are mandatory Objects, required from the CIP Network Specification, but
also vendor-specific Objects can be defined. In this way, each manufacturer can customize
its EtherNet/IP devices. There are addresses that indicate specific Objects in a node
(Figure 2.6):

• Node Address: Integer value that identifies a node in a device. For EtherNet/IP is
the IP address;

• Class Identifier (Class ID): Integer value that identifies a Class in a device;

• Instance Identifier (Instance ID): Integer value that distinguishes an Object instance
in a Class;

• Attribute Identifier (Attribute ID): Integer value that identifies an Attribute in an
Object;

• Service Code: Integer value that identifies an Object instance function.
An external node that want to access a specific attribute needs to know all these addresses.

Figure 2.6: CIP Address Structure

The addresses described before can be divided in different categories:
• Pubblic: They are common to all CIP users;

• Vendor-Specific: Vendors manage this range of addresses for their devices;

• Reserved for future use: ODVA reserves some addresses for future use;

• Object Class Specific: Some Object classes require specific addresses.

35

Communication protocols’s overview

Messaging protocol

CIP is a connection-based protocol so the access to an internal Object is controlled by
the Connection Object. Each connection is associated by a Connection ID (CID). If the
transmission is bidirectional, then two CIDs are assigned.

Figure 2.7: CIP Connection

To establish a connection between two devices, the process Unconnected Message Man-
ager (UCMM) sends a UCMM Forward_Open request message. This service contains all
the information required to create a connection between Provider and Consumer, in par-
ticular it contains: time-out information, network CID from originator to target, network
CID from target to originator, information about the identity of the originator, maximum
data size of the message, data segment, routing information and so on. After the setup
phase, any message request is automatically routed to the destination device. Connection
Objects distinguish two different kind of messages:

• I/O connections: It is a dedicated, special-purpose communication path between a
producing application and a consuming one. The message is multicast, so it can be
sent toward multiple devices. Data exchanged are Application-specific I/O. It is also
called Implicit Connection because the meaning of the data transmitted is specified
in the Connection ID;

36

2.2 – EtherNet/IP

Figure 2.8: CIP I/O Message

• Explicit message connections: It is a generic, multi-purpose communication path
between two end-points. Explicit Message implements request/response model. It is
called ”Explicit” because the content of the message explicitly indicates what action
should be performed.

Figure 2.9: CIP Explicit Message

2.2.2 CIP Object Model

As said before, CIP is an object-based protocol. Its structure is composed of several
connected objects that implement some specific tasks. Different objects are identified
with an Object Id. A typical architecture can be seen on Figure 2.10 :

37

Communication protocols’s overview

Figure 2.10: CIP Object Model

There are some objects mandatory for all CIP devices: Message Router, Identity,
Connection and Network Specific. Here the most important objects usually present in a
CIP device are listed.

• Identity Object: Provides an identification and general information about the device.
ODVA registers different products of the same manufacturer with the same Vendor
ID. Devices of the same vendor are identified with different device type id. Then
there are identifiers that indicate the serial number and the revision number;

• Message Router Object: Provides a path in which an external device can access,
through the Connection object, whatever object instantiated. The Message Router
Object, firstly, receives the Explicit Message, then recognizes the Class Instance,
routes a service to the specified object and finally routes the response to the correct
source. It has a key role and all objects instantiated in a CIP node should be
connected to it;

• Assembly Object: Allows to map attributes owned by different application object
instances, into a single one. This binding is generally used by the I/O messages
to maximize the performance of the data exchanged and to reduce the number of
connection instances. The policy of mapping input and output data can be specified
by the developers, in a fully custom way;

• Connection Object Manager : Provides all resources to manage I/O and Explicit
Message Connection, for example: open connection, close connection, timeout setting
and connection diagnosis;

38

2.2 – EtherNet/IP

• Parameter Object: There must be an instance of this object for each configurable de-
vice. It provides an interface that describes and defines all configuration parameters
of a device, such as number of object instances and parameter descriptions.

2.2.3 Network adaption of CIP: EtherNetIP
EtherNetIP usually sends I/OMessages, over UDP/IP protocol, using port number 0x08AE
and Explicit Messages, over TCP/IP, using port 0xAF12. But it is also possible to use
UDP/IP for Explicit Messages.
CIP protocol needs to be extended by adding the TCP/IP Interface Object and Ethernet
Link Object.

• TCP/IP Interface Object: Allows to configure a device’s TCP/IP network interface.
In particular it contains information on the status of interface, IP address, name of
the server and network configuration capability supported by the device;

• Ethernet Link Object: Manages configuration parameters, error and status informa-
tion of the Ethernet IEEE 802.3 communications interface.

The protocol provides a very long Ethernet frame (packet fragmentation is rarely used)
and a multi-master structure allows to have no structure limitations. The frame specifies
the commands used in the communication and the status information that identify possible
errors. Available commands are:

• NOP: Used to check if the TCP connection is still open. No response should be
provided and receiver should ignore the data content;

• ListServices: Determines which services the target device supports. The data field
of the reply indicates the services supported;

• ListIdentity: The originator checks via UDP some potential target devices. The
reply contains the target device code;

• ListInterfaces: Looks for non-CIP communication interfaces associated to a target;

• RegisterSession: The originator wants to initiate a session. The target device replies
that the session is registered;

• UnRegisterSession: Originator or target device wants to terminate the session. No
reply is admitted for this request;

• SendRRData: Used to send explicit unconnected messages, between target and orig-
inator. This kind of messages allocate generally limited resources, because the con-
nection is not established;

• SendUnitData: Used to send explicit connected messages in both direction, from
originator to target and vice versa. They require to set up a connection before
the exchange of messages. This means allocate resources for all communications
established and remain allocated as log as the connection is alive.

39

Communication protocols’s overview

The table below illustrates the status field.

Error Code Meaning
0x0000 Success
0x0001 Invalid encapsulation command
0x0002 Insufficient memory resources
0x0003 Incorrect data in the Encapsulation Data field

0x0004 – 0x0063 Reserved
0x0064 Invalid Session Handle
0x0065 The message received has an invalid length

0x0066 – 0x0068 Reserved
0x0069 Unsupported protocol revision

0x006A – 0xFFFF Reserved for future expansion

Table 2.3: EtherNet/IP Status field

Some kind of messages require an active session established between originator and
target device.

1. Establishing a Session: The originator opens a TCP/IP connection to the target
and sends a RegisterSession command. The target checks if can support the same
protocol version of the originator. If the previous condition is satisfied, it assigns a
unique Session ID and sends a RegisterSession reply to the originator;

2. Maintaining a Session: The session remains active until the originator or target
closes the connection, one of them issues the UnRegisterSession command, or the
TCP connection is interrupted;

3. Terminating a Session: The session is terminated if originator or target loses the
TCP connection or one of them sends the UnRegister command.

2.3 OPC UA
OPC UA stands for Open Platform Communication Unified Architecture, published in
2008 from OPC Foundation. It is a platform independent, Service-Oriented Architecture
(SOA) that allows secure and reliable exchange of data in the industrial automation
environment. Different kind of systems and devices can communicate by sendingMessages
between Servers and Clients or NetworkMessages between Publisher and Subscribers. Here
more attention is paid to Client/Server architecture. OPC UA can be employed in all
automation pyramid levels, from actuators, sensors and PLCs to MES, ERP, HMI and
SCADA devices. Furthermore it can be employed in industrial domains such as Industrial
Internet of Things, Machine To Machine (M2M) and Industry 4.0.
Here a general description of the protocol is presented, for a more detailed explanation
refer to OPC Fundation and its specification files.

40

https://opcfoundation.org

2.3 – OPC UA

2.3.1 System Description
To meet portability and efficiency requirements, OPC UA can be mapped into several
communication protocols, such as OPC UA TCP, HTTPS and WebSockets, and data can
be encoded in three different format: XML, JSON and UA Binary[9].
Security is implemented through different activities:

• Authentication of Clients, Servers and users: Clients and Servers are identify with
digital Certificate. Users are authenticated only once, when the session is established;

• Session establishment to guarantee integrity of the Messages;

• Auditing, Encryption and signatures algorithms to guarantee security transport level.

OPC UA is an object-oriented protocol, the system includes the AddressSpace, where
Servers make available to Clients a set of Objects and information such as Data, Events
and Alarms. The AddressSpace is accessible only via the set of Services provided by the
Servers. This field is organized internally in a set of Nodes that represent Objects. Each
node is described in terms of Attributes, Events and Methods.

Client architecture

Figure 2.11: OPC_UA Client architecture

41

Communication protocols’s overview

The Client architecture (Figure 2.11) is composed of several components:

• Client-Application: Implements the functions of the Client;

• Client API : Isolates the Client-Application from an OPC UA Communication stack.
It sends service request/response to the Server;

• Communication stack: Converts Client API into Messages and sends them through
the communication network. It also receives Messages response and Notification-
Messages and delivers them to Client API.

Server architecture

Figure 2.12: OPC_UA Server architecture

The Server architecture (Figure 2.12) is composed of several components:

• Server-Application: Implements the functions of the Server;

• Real Objects: Physical or software objects accessible from the Server-Application;

• OPC UA AddressSpace: Composed of several Nodes accessible by Clients using OPC
UA Services (interfaces and methods). Nodes represent Objects, their definitions

42

2.3 – OPC UA

and their connection to others. Servers are free to organize Nodes in a full custom
way. A View is a subset of the AddressSpace. All Nodes inside a View are visible
from the Client, so the remaining are hidden. For a Client request, the size of the
AddressSpace is restricted to only visible Nodes. The default View is the entire
AddressSpace. Servers may optionally define other Views;

• Monitor Item: Monitors the AddressSpace Nodes and when detects a data change
or an event/alarm occurrence, it generates a Notification that is transferred to the
Client by a Subscription;

• Subscription: It is an endpoint in the Server that publishes Notifications to Clients
by sending Publish Messages;

• Server API : Isolates the Server-Application from an OPC UA communication stack.
It sends and receives OPC UA Messages from Clients;

• Communication stack: Converts Server API into Messages and sends them through
the communication network.

2.3.2 Security Model
OPC UA protocol is used at different industry levels, from management fields to the
control of hardware devices (sensors, actuators, motors, etc.)[10]. The integration of OPC
UA with ERP and MES systems, exposes the protocol to customers and suppliers. It may
be an attractive target for industrial espionage or sabotage and causes financial losses.
For these reasons, security in the communication protocols is a must for the industries
that implement automation. OPC UA provides a set of goals that guarantee security in
industrial automation systems:

• Authentication: Servers, Clients and users should provide their identity;

• Authorization: Read and write operations are allowed only for authorized entities;

• Confidentiality: Data is protected from external passive attacks by means of data
encryption algorithms;

• Integrity: The same information reaches sender and receiver, without the data being
changed during transmission;

• Non-repudiation: Guarantees that can not be rejected something marked as valid or
true;

• Auditability: System records operations in order to track successful actions and user
activities. Clients and Servers generate audit records of successful and unsuccessful
connection attempts, results of security option negotiations, configuration changes,
system changes, user interactions and Session rejections;

• Availability: It guarantees that the system works normally and no services have been
damaged in such a way to become unavailable or severely degraded.

43

Communication protocols’s overview

Security architecture

Figure 2.13: OPC_UA Security Architecture

Security architecture allows to implement security features in the OPC UA Client/Server
Architectures and it is structured in an Application Layer and a Communication Layer,
over the Transport Layer. A Session over a Secure Channel needs to be established in order
to exchange informations, settings and commands between Client and Server. Session is
implemented in the Application Layer, while Secure Channel in the Communication Layer.
Data are generated in the Application layer and are passed to the Transport Layer for the
transmission. During a Secure Channel establishment a Certificate is exchanged between
the OPC UA Application Instances. During the communication, the receiver checks this
Certificate and the result of this check determines if the request should be accepted or
rejected.

2.3.3 AddressSpace Model
AddressSpace allows Servers to provide Objects to Clients[11].

Figure 2.14: OPC_UA Object Model

Objects are defined in term of Variables and Methods. Variables represent Server-
defined data and define the content of an Object, while Methods are limited functions

44

2.3 – OPC UA

invoked through the Call service. Client calls Methods, they are executed on the Server
and the result of the function is returned to the Client. During the browsing Services,
Clients discover all Methods supported by Servers.
Different object elements are grouped in a NodeClass. Instances of NodeClass are called
Nodes. Nodes are defined in term of Attributes and they are connected through References.
Attributes are the data elements that describe Nodes. Clients can access Attribute values
using Read, Write, Query, and Subscription/MonitoredItem Services. Some Nodes are
used to organise the AddressSpace and others are used to represent real Objects.

2.3.4 Services
Client sends a Service Message request. Server decodes the request and detects all possible
communication errors. If no errors arises, it accesses the operation identifier and performs
the requested operation. Server includes in the response Message a success/failure code
and any data requested. Services provided by Servers are grouped in Service Sets[12].

• Discovery Service Set: Clients are allowed to discover all endpoints implemented by
Servers and read all the security configuration;

• SecureChannel Service Set: Clients are allowed to open a communication channel and
ensure the confidentiality and integrity of all messages exchanged with the Server.
Clients know the exact algorithms used to create a SecureChannel because they are
described in the SecurityPolicy field of a given endpoint;

• Session Service Set: These services manage the establishment of a Session and allow
the authentication of users;

• NodeManagement Service Set: Clients are allowed to add, modify and delete Ad-
dressSpace Nodes and References;

• View Service Set: Clients can navigate and manage the AddressSpace or the View;

• Query Service Set: Clients are allowed to directly obtain data from the AddressSpace
or the View without any knowledge of the data organization;

• Attribute Service Set: Clients are allowed to read and write attributes of Nodes.
They can also read and update historical data or events;

• Method Service Set: Manages the Methods call;

• MonitoredItem Service Set: MonitoredItems are created to monitor Attributes, Vari-
ables and Events. They generate a Notification when detect a changes;

• Subscription Service Set: Subscription are used to report Notification to the Client
by sending NotificationMessages.

45

Communication protocols’s overview

2.3.5 Mapping

All sections described before are technology independent. The goal of this section is to
map the protocol specifications to the network technology[13]. This is done through the
implementation of an OPC UA Stack (Figure 2.15).

Figure 2.15: OPC_UA Stack

Mapping is implemented through three protocols: DataEncoding, SecurityProtocol and
TransportProtocol.

DataEncoding

OPC UA defines three different standard for the data encoding. These standard define
how Messages frames are constructed.

• OPC UA Binary: Designed for fast encoding and decoding, it allows to reach high
speed performance;

• OPC UA XML: Data are encoded in XML format, following the XML Scheme;

• OPC UA JSON : Used to integrate OPC UA with web and enterprise software. The
JSON format is described in RFC7159.

46

https://www.w3.org/TR/xmlschema-2
https://www.ietf.org/rfc/rfc7159.txt

2.3 – OPC UA

SecurityProtocol

SecurityProtocols implement Services to establish a SecureChannel and apply security to
Messages exchanged. Specifically they define the encryption algorithm and the Public
Key (stored in Certificates) used to sent secure Messages over the SecureChannel.

TransportProtocol

A full-duplex channel is established between a Client and a Server, through a TCP/IP or
WebSockets. During the connection establishment, four different Messages types can be
distinguished:

• Hello Message: Indicates that an endpoint wants to be connected to the server;

• Acknowledge Message: Server sends this signal to accept the connection request;

• Error Message;

• ReverseHello Message: The Server says to the Client to establish a SecureChannel
using the socket created by the Server.

Figure 2.16 shows how a connection is established by a Client. If a Server wants to open
the connection, it sends a ReverseHello Message after the OpenConnection. For closing
a connection, Client sends a ClosesecureChannel Request and the Server replies with a
CloseSocket.

Figure 2.16: OPC_UA Connection

47

48

Chapter 3

Design choices’s motivation

This chapter tries to compare the protocols previously presented and indicates the moti-
vations of all design choices that make it possible to identify a winner of the competition.
The first thing to say is that all protocols previously considered can be adopted for this
system, they work well under the environment conditions. But there are differences that
allow to make a choice. So considering the environment conditions and network require-
ments, the best communication protocol shall be identified. In this way all production
machinery can exchange information with a central system and integration with MES
systems is allowed. The metrics considered are listed below in order of importance:

1. Interoperability: Ability of a system to be easily interconnected with other devices
without any restrictions. To reach high level of interoperability, it is required that
devices speak a common protocol language. For this reason it is important that a
varieties of devices can support the same protocol;

2. Security: Security policies, such as data encryption, protect system resources against
external unauthorized access. They allow a secure exchange of data between devices;

3. Vertical integration: Indicates a protocol that can be integrated with the other
levels of automation pyramid. In this application it is required a system that can be
interfaced with field level devices and MES systems;

4. Frame size: Indicates the maximum length of the messages. Protocols implement
encapsulation: in the application layer they create the frame with the data that need
to be sent and then fields are added to adapt the frame to the transmission networks
adopted. Protocols provide different frame size, an high value allows to send more
data simultaneously;

5. Communication model: Indicates the relationships among connected devices in a
network;

6. Services provided: Each communication protocol provides a set of custom services.

Delay and Jitter constraints are out of this list. The first indicates the time required for
the exchange of messages between devices. The second is a variation of the delay and

49

Design choices’s motivation

the biggest absolute value is a measure of the average delay approximation. They are not
considered as important metrics because a real time communication is not required, so
delay requirements can be relaxed.
The central system does not need to continuously read the input parameters because the
electric quantities and production progresses change slowly in time. So scanning the input
parameters one or two times every seconds is enough. Similarly, the setting parameters of
machinery and properties of processed material are initialized at the beginning and rarely
they are modified during the entire production process. For these reasons there are not
stringent delay requirements.

3.1 Interoperability
Interoperability is defined as the ability of two or more networks, systems or devices to
exchange informations[14]. It can be obtained if they both speak a common language or
there are standard interfaces that allow the communication between two different proto-
cols. Interoperability is the most important metric, because it is essential connects the
communication system with other devices from other vendors. It is also important to
individuate a widely diffused protocol because, a priori, it is not known on which devices
the system will be interfaced. So having a system that satisfies this requirement is a way
to be a better competitor in the market, because there is a higher probability that the
system will be integrated with customer existent devices.

• Modbus TCP: It is an open source protocol, freely available for users. The specifi-
cations for the protocol implementation are present in Modbus. It is widely diffused
in automation industry;

• EtherNet/IP: It is a vendor-specific protocols. ODVA provides a list of all members
and devices that support the protocol. In that list there are more than 300 com-
panies, so it is quite diffused in industrial field, but interoperability is not always
guaranteed. This because it offers a wide field devices integration but fewer with
HMI and Server devices;

• OPC UA: It is a platform independent architecture with a huge list of hardware
devices and operating systems that support the protocol. OPC UA provides the
necessary infrastructure for interoperability from machine-to-machine, machine-to-
enterprise and everything in between.

Interoperability in Modbus TCP and OPC UA protocols is better satisfied because the
former is an open source protocol and the latter is cross-platform.

3.2 Security
Security requirements are becoming more and more important nowadays. Especially in
automation fields, where the system is interfaced with management tools so it is exposed to
external customers and suppliers. Protocols provide different policies to exchange secure
data.

50

http://www.mobus.org
https://www.odva.org

3.2 – Security

Modbus

This protocol does not adopt any security policies. It detects possible communication
errors and data corruption in the CRC (Cyclic Redundancy Code) field, but no protection
of data is guaranteed.

EtherNet/IP

CIP provides services to guarantee high integrity levels in the exchange of data. It is a
network independent approach, in which safety functionalities are implemented directly
into each device. So both standard and safety devices can operate in the same network.
Transmission integrity is provided by:

• Time Expectation: Time stamp indications allow to detect transmission, data access
and routing delays;

• Production identifier : Guarantees that messages reach the correct destination. It
is obtained from an electronic key, the serial number of the device and the CIP
connection serial number;

• CRC : Detects possible corruption in transmitted data;

• Safety connection establishment: It is established between two end points in which
devices configuration, data configuration and connection type are well known;

• Safety network number : Provides a unique identifier for each network in the system;

• Password protection: Devices use password to protect their configurations;

• Configuration Ownership: Indicates who is allowed to configure a device.

OPC UA

Here huge attention is paid to security. In particular the protocol implements:

• Authentication of Clients and Servers through the exchange of digital Certificates
during the connection establishment;

• Encryption algorithms to protect data during the transmission;

• Auditability to record all actions and user activities.

Summary

Security on EtherNet/IP and OPC UA has a key roles. Both protocols guarantee a secure
transmission of data. On the other hand Modbus does not adopt any security policies, it
only manages exceptions that arise during communications.
Until now not many customers require the employment of security protocols because
textile industries have not yet reached an high-tech level, so this requirements is not
decisive in the final choice. But considering a future prospective in which the concept

51

Design choices’s motivation

of automation pyramid will be integrated in textile industries, it is advisable to select a
more secure protocol.

3.3 Vertical integration
An important requirement is the ability to cover different levels in the automation pyramid
and integrate different communication protocols. The table below indicates which proto-
cols can be integrated with the presented ones. Integration is done through gateways. As
can be seen, OPC UA can be integrated with a large number of protocols.

Protocol name Protocol integration Note
Modbus TCP Modbus family protocols Integration with protocols

of its family
EtherNet/IP Modbus TCP, CompoNet,

DeviceNet, ControlNet
Integration with protocols
of its family and Modbus
TCP

OPC UA Profinet, Modbus TCP,
EtherNet/IP, etc.

Wide list of protocols

Table 3.1: Protocols’ integration

Vertical integration considers the data exchange between all automation levels inside a
plant. In particular, it denotes the interconnection between production lines and offices,
a linkage between field level devices and management applications. OPC UA provides
Web Services and XML data encoding, so it allows a complete vertical integration from
PLCs, sensors and actuators to HMI, ERP and MES systems. Modbus and EtherNet/IP
do not provide any of these services. Consequently OPC UA plays a key role in modern
industrial communication systems.

3.4 Frame Size
Here the protocols frame sizes are presented.

Modbus TCP

The Modbus frame, the Figure 3.1 shows a generic one, is composed of two section. The
former is called Protocol Data Unit (PDU) and contains the basic information exchanged
(function code + data field). The total length is 253 Bytes. The latter, called Application
Data Unit (ADU), adds specific information fields and allows to map the PDU frame on
the network used to implement the Modbus protocol.

52

3.4 – Frame Size

Figure 3.1: Modbus frame

The Figure 3.2 shows how to encapsulate the Modbus request or response on a TCP/IP
network. The ADU frame includes the PDU plus a specific header, the MBAP header
(Modbus Application Protocol header). Here are illustrated all the MBAP fields:

• Transaction identifier : 2 Bytes length. Identification of a Request/Response trans-
action. Initialized from the Client during the request transaction, the Server copies
it in the response;

• Protocol identifier : 2 Bytes length. Identifies the protocol adopted, 0 for Modbus.
Initialized from the Client during the request transaction, the Server copies it in the
response;

• Length: 2 Bytes length. Counts the number of bytes contained in the following
fields, including Unit Identifier and Data field. Client and Server fill this slot with
the actual indication of the request and response frame;

• Unit identifier : 1 Byte length. Identifies the remote slave connected. The Client
sets this field in the request and it is recopied by the Server in the response.

Figure 3.2: ModbusTCP/IP frame

Considering the length of the PDU, the total TCP frame’s length:

ModbusTCPADU = PDU + MBAP = 253 + 7 = 260bytes

EtherNet/IP

CIP messages, sent with the EtherNetIP protocol, need to be encapsulated in a Ethernet
frame.

53

Design choices’s motivation

Figure 3.3: EtherNet/IP frame

The Ethernet Header, IP Header, TCP or UDP Header and Trailer are specific for the
Ethernet frame. The Encapsulation Header is formed by several fields with a total length
of 24 Bytes, followed by an optional data field. The Encapsulation data’s maximum length
is 65511 Bytes, so the total EtherNet/IP maximum frame length is 65535 Bytes. Here
the description of all fields:

• Encapsulation Header contains:

– Command: 2 Bytes. A session establishes a TCP/IP connection and allows to
send commands;

– Length: 2 Bytes. Indicates the length of the Encapsulation Data field;
– Session Handle: 4 Bytes. It is created by the target device after the Regis-

terSession request. This code is inserted in the following packets exchanged,
between target and originator devices, belonging to that session;

– Status: 4 Bytes. Indicates if the receiver was able to execute the requested
command. In all requests issued by the sender, the Status field shall contain
zero. If the receiver receives a request with a non-zero Status field, the request
shall be ignored and no reply shall be generated;

– Sender Context: 8 Bytes. The sender places any value in this field. The receiver
should return the same value. It is used for matching request and response
messages;

– Options: 4 Bytes. The originator sets it to zero. The target discards this packet
if this field is not-zero. This field allows to modify the encapsulation commands.

• Encapsulation Data contains the Command-Specific Data field. The content and its
length depend on the command field. Maximun length is 65511 Bytes.

OPC UA

Messages are break into several packets, called MessageChunks, with a maximum length of
8 192 Bytes. Thanks to this subdivision, security policies are applied to each individual
MessageChunk and not to the entire Message.

54

3.5 – Communication model

Figure 3.4: OPC_UA Message Chunks

MessageChunk is composed of:

• Message Header : Specifies the Message types, if it is the final chunks and the length
in bytes of the MessageChunk;

• Security Header : Indicates the cryptography operations applied to the Message;

• Sequence Header : Ensures that the first encrypted block of every Message sent over
a channel will start with different data;

• Body: Encoded with the OPC UA Binary encoding. This field is divided in multiple
MessageChunks;

• Padding: Inserted at the end of Message, it ensures that the data length to encrypt
is an integer multiple of the encryption block size;

• Signature.

Summary

The table below resumes the frame sizes of protocols:

Protocol name Frame size
Modbus TCP 260 bytes
EtherNet/IP 65 535 bytes
OPC UA 8 192 bytes

Table 3.2: Protocols’ frame size

EtherNet/IP’s frame size is the biggest, fragmentation of data rarely is required. Mod-
bus has a shorter frame size, so requires more frame transmissions to exchanged the desired
information. The goal is to reduce the quantity of frames transmitted in order to avoid
large communication delays, so a protocol with an higher frame size is welcomed.

3.5 Communication model
Considering the communication model, so how devices exchange informations in a network,
protocols adopt different models.

55

Design choices’s motivation

Protocol name Communication model
Modbus TCP Client-Server
EtherNet/IP Producer-Consumer
OPC UA Client-Server

Table 3.3: Protocols’ communication model

Client-Server

It is a many-to-one model in which a Server is connected to many Clients. It is based on
four type of messages (Figure 3.5) and only the Client is allowed to start the transaction.

• Request: The Client starts the transaction sending a message on the network;

• Indication: The Request message is received by the Server side;

• Response: Based on the Request, the Server replies with a Response transaction;

• Confirmation: The Response message reaches the Client side.

Figure 3.5: Client/Server model

So in this model, the Client asks for a service and the Server performs the task, providing
the information required. The Server answers to requests coming from multiple Clients.

Producer-Consumer

It is a many-to-many model in which Producers place messages on the network without
having the visibility of the receivers. The messages do not have a direct destination
address, but they have an identifier field. All Consumers receive the messages, but only
interested devices process the information. So there is a shared bus where messages reach
all the devices connected, then only the interested ones are allowed to read the information.

Summary

The Client-Server model is adopted when information is centralized, because a single
node provides all data required in the network. On the other hand, if multiple nodes
generate information, the Producer-Consumer model is better. Since this project em-
ploys a centralized architecture, the best communication model is the Client-Server. The

56

3.6 – Services provided

Producer-Consumer model can also be adopted, considering a single producer node, but
conceptually it is not the best choice.

3.6 Services provided

Protocols provide a set of services that simplify the management of connected devices.
Here are listed the main services that protocols provide.

• Modbus TCP: Provides only services related to read/write data and diagnostics. It
is a simple protocol but it does not provide flexibility and it is difficult to model
devices and connect to system software;

• EtherNet/IP: Implements common and object-specific services that provide general
tools for managing the communications between devices. Besides, it provides vendor-
specific services that guarantee a lot of flexibility, but they may not be understood
universally. CIP defines Devices Profiles, they are objects that represent groups of
devices with similar functionality. This functionality allows to simplify the integra-
tion of devices, because services and attributes are already implemented. Developers
must use a vendor ID to uniquely identify their product. Moreover, CIP provides
Electronic Datasheet (EDS) that allow to configure easily a device. They provide a
description of parameters, I/O connection and services supported by a device;

• OPC UA: Provides services that allow to search for endpoints and Servers on a
network. Then it is possible to establish a secure connection, to read/write attributes
and call methods. Machines and equipment are described with data structures and
interfaces.

EtherNet/IP provides object-oriented services, so it is easy to integrate field devices. OPC
UA does not focus the attention on modelling devices, but it allows to manage easily the
elements connected in the networks. Both protocols implement a large set of services,
OPC UA is better because it is not related to the hardware adopted. On the other hand,
Modbus provides only tools to exchange data and too few services.

3.7 Protocols comparison

The table below resumes all the network performance metrics considered before. For
Interoperability, Security and Vertical integration fields, ”yes” means that the protocol
pays attention to those arguments and implements solutions to satisfy the requirements.
While ”no” means that the protocol does not provides enough solutions.

57

Design choices’s motivation

Network performance
metrics

Modbus TCP EtherNet/IP OPC UA

Interoperability yes no yes
Security no yes yes
Vertical integration no no yes
Frame size 260 bytes 65 535 bytes 8 192 bytes
Communication
model

Client-Server Producer-Consumer Client-Server

Services provided read/write EDS, Devices Profiles
and common services

Server Browsing and
Communication han-
dling

Table 3.4: Protocols’ summary table

In particular:

• Modbus TCP:

– Interoperability: ”Yes” because it is an open source protocol and it is widely
diffused in industries;

– Security: ”No” because there aren’t services that monitor the data exchanged;
– Vertical integration: ”No” because it can be integrated only with protocols of

Modbus family.

• EtherNet/IP:

– Interoperability: ”No” because it is an hardware dependent protocol and only
registered devices can support the protocol;

– Security: ”Yes” because the protocol guarantees that messages reach the correct
destination and they are not altered;

– Vertical integration: ”No” because it can be integrated with protocols of its
family and Modbus TCP.

• OPC UA:

– Interoperability: ”Yes” because it is a cross-platform protocol;
– Security: ”Yes” because there are algorithms that implement data encryption

and authentication of Clients and Servers;
– Vertical integration: ”Yes” because it can be integrated with Profinet, Ether-

Net/IP, Modbus and other communication protocols adopted in the automation
fields.

Considering the availability of Eaton devices and the arguments previously considered it
is possible to derive a final conclusion:

58

3.7 – Protocols comparison

• Modbus TCP is easy to implement and open source, but it does not provide flexibility
and security. Eaton provides libraries to easily implement this protocol but modern
automation fields require more complex communication systems with more services
provided. So it can be employed in simple applications;

• EtherNet/IP is a powerful protocol but it is strictly dependent on the hardware and
there are few Eaton devices that support the protocol. So it is hard to implement a
system with this protocol, considering that a priori it is not known on which devices
the system is going to be interfaced;

• OPC UA provides a lot of services, security is crucial and it guarantees vertical inte-
gration and interoperability. Besides Eaton allows to easily implement the protocol.

The winner of the competition is OPC UA. It is the protocol adopted for this project.

59

60

Chapter 4

Implementation and evaluation

This chapter illustrates how the project is implemented and provides an evaluation of
the implemented communication protocol. A typical Officine Gaudino’s production line
is composed by two or three machines. Previously they were independent of each other,
so human effort was required to understand the general state of the production line. In
particular, more than one person was needed to organize and monitor the production
progresses. Now this figure is no more required because all machines are interconnected
and can exchange information with a central system that acts as a Server, while other
devices are the Clients of the communication.
Figure 4.1 shows the system architecture. Machines are sketched with a PLC, connected
to an HMI, that manages motors, sensors and actuators.

61

Implementation and evaluation

Figure 4.1: Project network

It is a common bus architecture where all devices share the same Ethernet bus, so
all of them can access the Server AddressSpace and read or write variables. The central
system is composed of a PLC connected to an HMI. It is placed in the office room and it
has a complete overview on what is happening in the production line. Clients are PLCs
placed on board of machines and they are connected via CAN protocol to motors, sensors
and actuators. There is the possibility to connect a computer in the network to monitor
the information exchanged and the network performance.
Server is identified by all Clients through a Server URI address. It is composed by the
prefix ”opc.tcp://” plus the IP address of the device. This address is used by Clients to
establish the connection to the Server device.
The software presented in this chapter allow to exchange variables among Clients and
Server through the OPC UA protocol. All exchanged variables can not be defined a
priori, because Officine Gaudino provides the possibility to customize their machines,
therefore some information exchanged with the central system are defined together with
the customers. However a data model, suitable for all machines, should be derived to
provides a general structure of the information that need to be exchanged between Client
and Server.
Here the software adopted in this project are listed:

62

4.1 – Data model

• Codesys 3.5.16 for managing the communication system through PLCs. Codesys1

is a software platform for industrial automation technology. It allows to program
PLCs following the international standards such as the IEC-61131-3;

• UA Expert Client 1.2 to implement an OPC UA Client on a computer. UA Expert2

is a full-featured OPC UA Client. It is a cross-platform OPC UA test client pro-
grammed in C++ and available for Windows and Linux. It supports the following
features:

– UaExpert Common Framework: the basic framework includes general function-
ality like certificate handling, discovering OPC UA Servers, connecting with
OPC UA Servers, browsing the information model, displaying attributes and
references of particular OPC UA Nodes;

– OPC UA DataAccess View: it allows to select multi-nodes in the Address Space
window and drag-and-drop them into the DataAccess View. After that it is
possible to monitor or write new values in the node;

– OPC UA Alarms and Conditions View: it shows detailed information of an
individually selected alarm, historical list of events and the current state of
pending alarms;

– OPC UA Historical Trend View: it represents the values of an attribute in a
graphical trend view related to the requested time frame;

– OPC UA Performance View: it measures the performances of the OPC UA
Services selected.

• Wireshark 3.4.9 to monitor the packets exchanged in the network. Wireshark3 is a
widely-used network protocol analyser. It is possible to see what’s happening on the
network at a microscopic level and it is the de facto standard across many commer-
cial and non-profit enterprises, government agencies and educational institutions.
Wireshark development thrives thanks to the volunteer contributions of networking
experts around the globe and is the continuation of a project started by Gerald
Combs in 1998. It offers a wide number of features such as: deep inspection of hun-
dreds of protocols, live capture and offline analysis, multi-platform, network filters
to analyse only a set of packets, live data read from Ethernet and export output to
XML, CSV, or plain text.

4.1 Data model
This section focuses on the information that the central system should collect. A data
model is implemented in order to identify which information should be exchanged. A

1https://www.codesys.com/
2https://www.unified-automation.com/products/development-tools/uaexpert.html
3https://www.wireshark.org/

63

Implementation and evaluation

production line can be composed of different machines, so each of them exchanges specific
information. However a general data model is derived in order to organize the information
common to all machines. Then, based on the kind of machines or customer requirements,
the data model of each Client connected to the central system is modified by adding spe-
cific attributes.
In order to create the data structure, variables usually reported on the HMIs of Officine
Gaudino machines are examinated. Therefore, a deep analysis of the textile machines
developed by the company is required. In particular the user interfaces of ring spinning
machines, doubling and twisting machines and cops winder machines are analysed. Then
only the information, common to all machines, that allow to have a general overview of the
system are considered and reported to the central system. The data model is divided into
four arguments: Alarms, Production control, Working recipe and Machine data. These
macro areas contain variables that allow to describe alarm conditions, production pro-
gresses, informations on the recipes processed and the status of machines connected in
the network. Server fills the working recipe field with the information of the processed
material and then reads the other fields. On the other hand, Clients report alarm condi-
tions, production progresses and status information of the machines. The central system
replicates this structure for each Clients connected. To avoid bandwidth occupation, only
some of the variables inside the data model are exchanged at each program cycle, the
others are exchanged only when required or when a change arises. In particular the infor-
mation regarding the production progresses, the electrical absorptions and the machines
status are always analysed.
Here the structure of the data model and the meaning of the variables is presented.

Alarms

Clients report to Server the failure conditions. When an exception arises, the central
system receives information on which machine has stopped and the cause of the error. In
particular this field contains:

• Time information: it indicates when the failure arises;

• Module in alarm: it indicates which device (inverters, sensors, PLCs, etc.) is in the
alarm condition;

• Alarm code: it allows to understand the cause of the error.

Production control

Here all information of the production progresses are reported. This field allows the
central system to have a complete overview on the production progresses so it is possible
to organize the production in order to reduce dead times. Specifically there are:

• Work shift indication;

• Lot: it indicates the code of the material processed;

• Bobbin start time: it reports the start time of the bobbin;

64

4.1 – Data model

• Bobbin end time: it predicts the end time of the bobbin;

• Working time: it is the time indication of the machine in running state;

• Stopping time: it is the time indication of the machine in stopping or alarm state;

• Production: it reports the yarn processed in kilometres or kilograms;

• Number of bobbins completed: it indicates the number of completed bobbins from
the beginning of the work shift.

Working recipe

Recipes are files that contain the settings parameters of yarn processed. In particular
they carry information on the characteristics of the material, yarn twist indications, yarn
draft indications and speed of motors. In this way, users have no difficulty in processing
different materials, they only need to change the recipe and all parameters are already
configured. The central system should be able to read and change the recipes that are
uploaded on the machines. The signals exchanged are:

• Kind of material: it indicates the name of the processed material;

• Input count: it is a number which indicates the mass per unit of length or the length
per unit of mass of the yarn. It expresses whether the yarn is thick or thin;

• Yarn twist: from a technology point of view, the yarn needs to be twisted;

• Yarn draft: from a technology point of view, the yarn needs to be drafted;

• Package shape: it is possible to define the shape of the final bobbin (cylindrical,
bottle, cops, etc.). This field describes in details all dimensions of the final package;

• Speed of motors: it influences the quality of the material processed;

Machine data

The last field reports information on the status of the system. The signals exchanged are:

• Kind of machines: it indicates the type of machine adopted in the system. Today
Officine Gaudino develops ring spinning, cops winder, doubling-twisting, twisting-
doubling-twisting and drafting machines;

• Absorptions: it indicates the electrical absorptions and torques developed of the
main motors in the system;

• User logged: it reports information on the user logged in;

• Machine state: it indicates the working conditions. Here all possible machine states
are listed:

1. Machine stopped;

65

Implementation and evaluation

2. Machine running;
3. Machine stopping;
4. Alarm;
5. Initialization;
6. Machine starting;
7. End of bobbin: it indicates that completed bobbins should be replaced by empty

ones in order to move forward the production;
8. Manual commands active: it indicates the possibility to move a singular motor

at time, it is used for debug purposes.

4.2 OPC UA Server
Codesys allows to easily implement an OPC UA Server that supports the following fea-
tures:

• Browsing of data types and variables;

• Standard read/write services;

• Notification for value changes;

• Encrypted communication according to ”OPC UA standard (profile: Basic256SHA256)” ;

• Sending events according to the OPC UA standard.

Firstly, Codesys requires to setup the device, inserting the device type (Eaton XV300)
and the IP address. There are some basic steps to perform in order to create an OPC UA
Server[15]:

1. Create a new project;

2. Declare some variables of different types in the program;

3. Add a Symbol Configuration object.

Figure 4.2: Codesys Server’s device tree

66

4.3 – OPC UA Client

4. In the Add Symbol Configuration dialogue, select the Support OPC UA Features
option;

5. Open the symbol configuration in the editor;

6. Click Build. The variables are shown in a tree structure;

7. Select the variables, previously defined, that want to be exchanged with an OPC UA
Client. Specify the access rights;

8. Download the project to the controller.

Codesys offers the possibility to easily implement OPC UA Servers, because each variable,
defined and configured as Symbols, is automatically implemented in the Address Space and
visible to all Clients connected. So Clients need to navigate the AddressSpace, accessing
all these objects to obtain the value of the variables.
There is also the possibility to create OPC UA Certificates in order to guarantee a secure
exchange of information through data encryption and user identification. To do this, it
is required to install the Codesys Security Agent add-on package and access the Security
screen dialogue. The steps to follow in order to create a certificate are the following:

1. Install the Codesys Security Agent add-on;

2. Access the Security Screen through the View page;

3. Select the Devices tab and then the controller in the left view;

4. In the right view all certificates are displayed. Select the service OPC UA Server ;

5. Click on create a new certificate and the Certificate Settings dialogue opens;

6. Define the certificate parameters, such as the length of the key, the validity period,
the username and the password. After that, click OK to close the dialogue;

7. Restart the runtime system.

4.3 OPC UA Client
A Client device needs to implement an interface able to exchange data with the Server
and support OPC UA Services. Here the software for implementing OPC UA Clients
on PLCs, with Codesys, and on computer with UaExpert are described. There is this
distinction because it is possible to connect a computer on the network and monitor the
Server’s data exchanged.

67

Implementation and evaluation

4.3.1 PLC OPC UA Client
In Codesys there are two ways to implement the OPC UA Client[15]:

1. Using the Data Source Manager ;

2. Using the CmpOPCUAClient and CmpOPCUAStack libraries.

In this project the first solution is used because managing the connection and the data
exchange is easier. But an overview of the second version is also given because older Eaton
devices support only the OPC UA libraries implementation.

Data Source Manager

Data source manager, with one or more data source objects, permits to have read/write
access to remote devices and their running applications. The functionality of the data
source manager allows to establish connections to remote devices and make its data avail-
able through data source variables. Depending on the network where the controllers are
located, a connection is established via different data source types and different connec-
tion types. Codesys requires the installation of the Communication package. This package
offers extensive support of communication protocols for data exchange with other systems
in the automation landscape. In particular, it implements interfaces to easily exchange
information through the integrated communication protocols. The basic steps that allow
to implement an OPC UA Client are the following:

1. Add Data Source Manager and a Data Source Object selecting OPC UA Server as
data source type;

(a) Client variables (b) Client configuration

Figure 4.3: Codesys Client’s Data Source Object

2. Set the Server URI address;

68

4.3 – OPC UA Client

3. Choose the nodes and the data that need to be exchanged;

4. Now all variables exchanged are visible, so implement a program that manages those
variables. For accessing a variable, it is required to provide the AddressSpace path.

Codesys libraries

They provide functions that allow to configure a Client device and create the connection
to the Server. Then it is possible to implement services like: Read data, Write data,
Discovery Server on network, monitor item, event creation, implement Subscription and
managing the View. Lastly, there are functions that disconnect the Client and eliminate
the Session. For more details on the Codesys libraries adopted refer to CmpOPCUAClient
and CmpOPCUAStack.
Here a description of the program flow that allows to establish a connection and exchange
data:

1. OPCUAClient_Create: It creates a new OPC UA Client instance and it is the base
of every further communication. It requires a Client description, in particular the
device name and the hostname. It returns a session code;

2. OPCUAClient_Connect: It connects an OPC UA Client to a Server. The created
session can be used to send services. It requires, for configuring the connection, the
session code, session name, Server URL, timeout value, security policies, security
level, security mode and server certificates. It returns a connection code;

3. OPCUAClient_Read: This function sends a Read request to the OPC UA Server.
It requires the connection code and the description of the attribute required;

4. OPCUAClient_Write: This function sends a Write request to the OPC UA Server.
It requires the connection code and the description of the attribute required;

5. OPCUAClient_Disconnect and OPCUAClient_Delete: They disconnect and delete
an OPC UA Client. All resources related to the session and the connection are
cleaned up.

This solution is more complex than the previous one but it is supported by a large number
of Eaton devices. After the creation of the Session and the connection to the Server, the
Client can manage specific attributes. Programmers need to know the AddressSpace
organization for managing the correct attribute. A suggestion is to run the UaExpert
Client (see next section), retrieves the attribute description and fills all the fields required
by the Codesys functions. In this way, programmers have a complete overview of the
Server structure and can manage easily attributes and services.

4.3.2 Computer OPC UA Client
There is also the possibility to connect a computer on the network. Here the UaExpert
Client is used: it is a free software that provides an easy connection to the Codesys OPC
UA Server. There are a lot of open-source programs written in Python and C++ that

69

https://help.codesys.com/webapp/idx-CmpOPCUAClient-lib;product=CmpOPCUAClient;version=3.5.16.0
https://help.codesys.com/webapp/idx-CmpOPCUAStack-lib;product=CmpOPCUAStack;version=3.5.16.0

Implementation and evaluation

implement the Client, such as Free OPC-UA, but here the UaExpert software is selected
because it provides a clear graphic user interface, an easy connection mode and a complete
attributes description. Firstly the Server URI address should be provided. After that, the
Client scans the network searching the endpoint with that address. Then, if authentication
is required, a Certificate or Password and Username must be provided. After this setup
phase, the Address Space is completely available. At this point it is possible to read and
modify some variables, create and monitor an event. On the left of the UAExpert inter-
face, there is the possibility to see the AddressSpace created by the Server. In the central
dialogue, variables can be inserted and their main attributes are shown. On the right
dialogue there is a complete overview of all the attributes of a selected variable. There is
the possibility to add a Performance View and perform some measurements on the delay
of reading and writing variables. First it is necessary to select, from the AddressSpace,
the Nodes that should be used for testing. Then the performance measurements must
be configured, in particular selecting the services employed, the number of nodes and the
duration of the measurement. The UaExpert will call the UA Service and measure the
duration of each call.

4.4 Protocol analysis

This section performs some tests that analyse the software implemented. The architec-
ture of the system is composed by a Client connected to a Server. The Server consists
of an Eaton XV300 device connected in the Ethernet network of the company and it is
identified with the IP address 192.168.1.141. A desktop PC simulates the Client and per-
forms the analysis over the communication protocols. It is identified with the IP address
192.168.1.25.
Figure 4.4a shows the test variables defined in the Server, they are inserted with the only
scope to illustrate the data exchange. The Server program (Figure 4.4b) simply writes
the content of some variables and increments one of them at each program cycle. The
remaining variables are set by the Client. Figure 4.4c illustrates the Address Spaces just
implemented.
In the Client program (Figure 4.5), simply, the first five rows are variables written by

the Server, the others are written by the Client. The complete variables AddressSpace
path must be provided in order to access their contents.

70

https://github.com/FreeOpcUa/opcua-asyncio

4.4 – Protocol analysis

(a) Server variables (b) Server program

(c) Codesys Server’s Address Space

Figure 4.4: Codesys test Server’s variables and program

71

Implementation and evaluation

Figure 4.5: Codesys Client’s program

Connecting the UAExpert Client to the Server implemented, it is possible to read the
variables exchanged. On the left of Figure 4.6 the AddressSpace created by the Server
is visible. In the central dialogue variables can be inserted and their main attributes are
showed. On the right dialogue there is a complete overview of all the attributes of a
selected variable.

Figure 4.6: UaExpert OPC UA Client

After writing these trivial software, detailed analysis of packets exchanged (with Wire-
shark) and a performance analysis (with UA Express) are implemented.

4.4.1 Packets exchanged analysis
The analysis of the packets received is performed with the Wireshark software. The
goal of this test is to verify the correctness of the data exchanged. In particular three
situations are analysed: the connection opening, the data exchange and the connection
closing. The setup phase of Wireshark consists in identifying the network to be analysed
and adding a filter in order to consider only the OPC UA packets. For each packet
exchanged, Wireshark indicates the addresses of the source and destination devices, the

72

4.4 – Protocol analysis

time indication, the length of the frame and a description of the message transmitted. It
is also possible to review the frames received, analysing the meaning of all frame fields.
At the end of this section a packet lengths analysis is presented.

Connection opening

Figure 4.7a illustrates the messages exchanged between Client and Server while establish-
ing the OPC UA connection.

(a) Wireshark OPC UA open connection

(b) Open connection diagram

Figure 4.7: OPC UA protocol analysis - open connection

Firstly the Client sends an Hello message to verify if the Server is able to listen to
it. The Server, if it is not busy, replies with an Acknowledge message. After that, the
Client sends an OpenSecureChannelRequest and waits for a OpenSecureChannelResponse,
in this way a secure channel is created. Then the Client sends a CreateSessionRequest
and the Server replies with a CreateSessionResponse. The session just created needs to

73

Implementation and evaluation

be activated with ActivateSessionRequest and ActivateSessionResponse messages. After
this setup phase the two devices are able to exchange messages.

Data exchange

The analysis of the data received is performed over the Company variables which the
Server fills with the string ”Officine Gaudino”. At the bottom of the figure 4.8 the entire
frame received by the Client is shown. The content of the variable observed is highlighted.
On the top of the figure there is a summary with the most relevant information such as
the message size, the timestamp and the status of the packet received.

Figure 4.8: Wireshark OPC UA data exchange

74

4.4 – Protocol analysis

Figure 4.9: Wireshark OPC UA packet fields

Figure 4.9 shows the Ethernet frame received by the Client after reading the Company
variable. The main fields are explained below:

1. Total length: it indicates the total length of the frame, 188 bits (0xbc);

2. Protocol: it indicates the protocol adopted, 0x06 stands for TCP;

3. Source address: 192.168.1.141;

4. Destination address: 192.168.1.25;

5. Source port: 4840;

6. Destination port: 52306;

7. Message type: MSG;

8. Chunk type: ”F” stands for final chunks. Since packets fragmentation was not
required, this is the only chunk received;

9. Message size: it indicates the length of the message, 148 bits;

10. Timestamp: it provides a time indication;

11. Service result: it indicates the status of the transmission, 0x00 means that no error
occurs;

12. Variant type: it indicates the type of data received, 0x0C stands for String;

13. Value: it provides the content of the data received. In this case, it contains the string
”Officine Gaudino” as expected.

75

Implementation and evaluation

Connection closing

Figure 4.10a illustrates the messages exchanged between Client and Server while closing
the OPC UA connection.

(a) Wireshark OPC UA close connection

(b) Close connection diagram

Figure 4.10: OPC UA protocol analysis - close connection

The Client, firstly, closes the session with a CloseSessionRequest. After receiving the
CloseSessionResponse, the Client sends a CloseSecureChannelRequest and the device is
disconnected from the Server.

Packet length

Wireshark provides the possibility to analyse the lengths of the packets exchanged. During
this test, Server and Client were running the programs presented before and 1366 packets
were collected. The services involved were: open connection, close connection, read and
write data. The table below provides detailed results of the test. Overall, the average
packets length is 189 bits, the shortest packet is 82 bits long while the longest is 1647
bits. There is an high percentage of packets exchanged with a length between 80 and 319
bits, this situation happens because the read and write services were the most adopted
and they exchange integer or short string.

76

4.4 – Protocol analysis

Packet lengths [bits] Count Average Max value Min value Percentage
0-19 0 - - - 0%
20-39 0 - - - 0%
40-79 0 - - - 0%
80-159 724 129,10 82 157 53,0%
160-319 603 214,85 162 309 44,14%
320-639 17 439,76 321 606 1,24%
640-1279 12 1037,08 716 1221 0,88%
1280-2559 10 1574,20 1307 1647 0,73%
2560-5119 0 - - - 0%
5120 and greater 0 - - - 0%
Total 1366 189,37 82 1647 100%

Table 4.1: Packet length

4.4.2 Performance analysis

The goal of the test is to measure the delay of the reading data service. This delay is
measured using the performance view of the UAExpert Client. The test is performed run-
ning the read service over the S_parameter[1] variable for 100 cycles. Then the response
delay is measured for all service calls. Figure 4.11 shows the result of the test. On the
x-axis, the cycles indication is reported. While on the y-axis, all the delays measurements,
expressed in milliseconds, are reported.
The results obtained in this test are the following:

• Average value: 3.07ms;

• Maximum value: 14.72ms;

• Minimum value: 1.27ms.

Figure 4.11: UaExpert test OPC UA Client performance

This tool is launched for all the variables defined in the AddressSpace and the results
obtained are listed below:

77

Implementation and evaluation

Variable Type Average value [ms] Maximum value [ms] Minimum value [ms]
ServerName STRING 2.77 3.76 1.52
Company STRING 2.66 3.60 1.43
S_parameter[0] UDINT 2.98 5.95 1.80
S_parameter[1] UDINT 3.07 14.72 1.27
S_parameter[2] UDINT 3.00 4.82 1.28
ClientName1 STRING 2.75 3.83 1.44
C1_parameter[0] UDINT 2.98 3.87 1.50
C1_parameter[1] UDINT 2.99 3.72 1.17
C1_parameter[2] UDINT 3.03 4.23 1.37

Table 4.2: UAExpert performance analysis

The data in the table shows that the read service has an average delay of 2.91ms. This
result is strongly influenced by the noise of the company network, but the test demon-
strates that packets exchanged between Client and Server are delivered in a reasonable
amount of time.

78

Chapter 5

Conclusions

This last chapter presents a final analysis of the work done and the future developments
of this project.
The connection of independent machines with a central system is a new topic for Of-
ficine Gaudino and it represents a starting point in the introduction of automation on
its production machinery. It will be a long process because nowadays the larger volumes
of yarn production are located in poor countries where the labour is cheaper and central
monitoring systems are not necessary. On the other hand, in Europe and United States,
companies need more sophisticated machines so these kinds of systems are already re-
quested. For this reason, until now, only few customers require a centralized monitoring
system but in future it will be more popular.
This kind of activity opens new opportunities for developing software that monitor the
production progresses and status of machines. Besides it allows the company to be a
better competitor in the market, because a system totally flexible with the customer re-
quirements is provided and it can be interfaced with existent systems also from other
vendors.

Activities performed

The steps performed in this activity and the difficulties encountered are described here
below.

1. The first activity performed was to examine the environment conditions and the
system requirements. An introduction of the textile theory concepts was required
to understand the machines features. In particular, the parameters that affect the
qualities of processed material, the meaning of yarn twist and draft were analysed.
After that, the operating principles of Officine Gaudino machines were examined;

2. The following months were devoted to individuate the communication protocols that
could be adopted. Starting from protocols supported by the existent hardware de-
vices, their specifications have been studied and in the end three potential protocols
have been individuated: Modbus TCP, EtherNet/IP and OPC UA;

79

Conclusions

3. The three protocols considered were compared and OPC UA was chosen as the best
communication protocol. This choice was made considering network performance
metrics such as interoperability, security, vertical integration, frame size, communi-
cation model and services provided. Besides, the protocol individuated must imple-
ment a flexible system that could be integrated with a wide number of automation
devices. The difficulties encountered in this step were to individuate the crucial
information that allow to make a comparison among protocols considered;

4. After selecting the communication protocol, the software that allow to exchange data
among Clients and Server were developed. Many difficulties have been encountered
here. Firstly, since OPC UA is a recent protocol, is not yet widely diffused on Eaton
devices so it was difficult to find the necessary documents and practical examples
for the protocol implementation. After that, it was necessary to update all software
adopted by Officine Gaudino to a newer version. Therefore, it was necessary to verify
the compatibility of hardware devices;

5. Then a data model has been developed. It took me some time because a deeper
knowledge of the machines behaviour and basic theory concepts of textile technolo-
gies were required. This model allows to exchange data common to all machinery of
the company, but it is possible to refine the model by adding specific variables;

6. In the final step, analysis of the software implemented are performed. These activities
were carried out with Wireshark and UAExpert tools. The former tool monitors the
packets exchanged while the latter allows to see the AddressSpace of the Server and
to run a performance analysis. In this way it is possible to verify the correctness of
the protocol implemented.

Structural developments

A summary of the structural developments is presented here. Originally the system was
composed of several independent machines. Human effort was required to understand
the status of each machine and the overall production progresses. Figure 5.1 schematizes
the original structure. Each machine is composed of a PLC, connected to an HMI, that
communicates with motors, sensors and actuators through the CAN protocol.

80

Conclusions

Figure 5.1: System before

Figure 5.2 shows the structural changes that this project has introduced. Now all
machines are interconnected through a common Ethernet bus and they can exchange
data with a central system. So from the central point is possible to organize and manage
the production with the goal of reducing the manpower. There is also the possibility to
insert a computer on the network to analyse the network performances and to exchange
data with the Server.

Figure 5.2: System now

Figure 5.3 illustrates the future developments of the system (see section 5.1).

81

Conclusions

Personal considerations

Personally i can be pleased with the activity carried out because the project specifications
have been satisfied. This project is a new topic for the company and it can have important
future progresses (see section below). In the past the province where I live, Biella, was
worldwide famous for textile industries, so I am proud to have had the possibility to study
basic textile theory concepts and to work in a company that design textile machines. Be-
sides this activity has greatly increased my professional knowledge.

5.1 Future work

This section illustrates the future system developments, specifying what the company has
already in mind and what can be done in the next years. The main system improvements
are listed here.

- Company will introduce Predictive failure analysis on its systems. They are methods
intended to predict imminent failure of systems or components (software or hard-
ware). They also enable mechanisms to avoid failure or recommend maintenance of
systems prior to failure. The idea is to replace the CAN protocol with the IO-Link
and implements these features. The predictive results are reported in the central
system and a more detailed description of the status of each machine is obtained;

- Some customers already require an integration of the central system with MES and
other management tools. In this way it is possible, following the Pyramid of Automa-
tion terminology, connect the control and field levels with the planning level. OPC
UA allows to implement vertical integration of information from sensors, actuators
and machines to ERP[16];

- Possibility to integrate the central system with cloud. Therefore a further solution
for data and information transport is given, in order to choose the best mechanism
for different scenarios.

The Figure 5.3 schematizes a future prospective of the system.

82

https://io-link.com/en/index.php

5.1 – Future work

Figure 5.3: System future

83

84

Bibliography

[1] M.P. Groover, Automation, Production Systems, and Computer-Integrated Manufac-
turing, Pearson.

[2] Bogdan M.Wilamowski, J.David Irwin, Industrial Comunications Systems, second edi-
tion, CR Press.

[3] D. Comer (2005), Internetworking with TCP/IP Vol. 1: Principles, Protocols, and
Architecture, Prentice Hall.

[4] The Modbus Organization, Modbus application protocol specification V1.1a, https:
//modbus.org/specs.php.

[5] The Modbus Organization, Modbus messaging on TCP/IP implementation guide
V1.0b, https://modbus.org/specs.php.

[6] ODVA, The CIP network library, Volume1, Common Industrial protocol.
[7] ODVA, The CIP network library, Volume2, EtherNet/IP Adaption of CIP.
[8] ODVA, Common industrial protocol and the family of CIP networks, https://www.

odva.org/technology-standards/document-library.
[9] OPC Fundation (2017), Overview and Concepts, http://www.opcfoundation.org/

UA/Part1.
[10] OPC Fundation (2017), Security Model, http://www.opcfoundation.org/UA/

Part2.
[11] OPC Fundation (2017), AddressSpace Model, http://www.opcfoundation.org/UA/

Part3.
[12] OPC Fundation (2017), Services, http://www.opcfoundation.org/UA/Part4.
[13] OPC Fundation (2017), Mappings, http://www.opcfoundation.org/UA/Part6.
[14] P.T. de Sousa, P. Stuckmann, Telecommunication Network Interoperability.
[15] Codesys Online Help, https://help.codesys.com/.
[16] P.Drahos, E.Kucera, O.Haffner, I.Klimo (2018), Trends in Industrial Communication

and OPC UA.

85

https://modbus.org/specs.php
https://modbus.org/specs.php
https://modbus.org/specs.php
https://www.odva.org/technology-standards/document-library
https://www.odva.org/technology-standards/document-library
http://www.opcfoundation.org/UA/Part1
http://www.opcfoundation.org/UA/Part1
http://www.opcfoundation.org/UA/Part2
http://www.opcfoundation.org/UA/Part2
http://www.opcfoundation.org/UA/Part3
http://www.opcfoundation.org/UA/Part3
http://www.opcfoundation.org/UA/Part4
http://www.opcfoundation.org/UA/Part6
https://help.codesys.com/

	List of Tables
	List of Figures
	Introduction
	Scenario
	Theoretical aspects
	Automation industry - Basic concepts
	PLC and HMI
	Ethernet technology
	Protocol Layering
	Socket Programming

	Communication protocols's overview
	Modbus TCP/IP
	Protocol description
	Modbus Data model
	Command descriptions
	Error Handling

	EtherNet/IP
	CIP - Common Industrial Protocol
	CIP Object Model
	Network adaption of CIP: EtherNetIP

	OPC UA
	System Description
	Security Model
	AddressSpace Model
	Services
	Mapping

	Design choices's motivation
	Interoperability
	Security
	Vertical integration
	Frame Size
	Communication model
	Services provided
	Protocols comparison

	Implementation and evaluation
	Data model
	OPC UA Server
	OPC UA Client
	PLC OPC UA Client
	Computer OPC UA Client

	Protocol analysis
	Packets exchanged analysis
	Performance analysis

	Conclusions
	Future work

	Bibliography

