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Abstract

In the last decades, the Aeronautical industry had to face with important challenges to-
wards improving sustainability and reducing environmental impact on climate changes.
In this overview, great emphasis is placed on producing engines more efficient and with
excellent performance and reliability. These improvements also come from new and in-
novative analysis techniques applied to the key engine’s components; among them, Low
Pressure Turbine (LPT) which plays a crucial role.
This thesis deals with the modal and forced response analysis (in which synchronous of
engine order type excitations are considered) of a multi-stage assembly of cyclic struc-
tures such as, for example, turbine engine bladed disks. Such assemblies are traditionally
modeled stage by stage but, in this way, the inter-stage coupling effect can sometime
be erroneously neglected. As an answer to this issue, a new method which combines a
cyclic modeling of each stage with a realistic inter-stage coupling is here proposed. Study
cases and confronts with single stage models and 360 full models are presented in order
to evaluate the efficiency of the method first on a simple case study and, then, on a more
realistic industrial example.
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Chapter 1

Introduction

1.1 The GREAT 2020

The GREAT 2020 (GReen Engine for Air Traffic), is a research project started in 2009
financed by Regione Piemonte in which, the European Commission, together with experts
group ACARE (Advisory Council for Aviation Research and Innovation in Europe), set
a list of strategic goals to be reached by the aeronautical sector within 2020 and 2050
in terms of environmental impact and efficiency. These goals can be summarized in the
following points:

• higher efficiency related to an overall quality improvement of the service offered to
the user, including safety, vehicle on-board comfort and flight punctuality;

• a drastic reduction of the environmental impact.

The above-mentioned purposes bring into play every level of the aeronautic and research
sector. So that, this thesis work is part of a project in which several companies are
involved:

• AvioAero: a GE Aviation business, leader in the design, maintenance and man-
ufacturing of aeronautical components, which constitutes a center of competence
for the entire General Electric group regarding mechanical transmissions and low-
pressure turbines design, suited in Turin, Pomigliano D’Arco and Poland.

• Politecnico di Torino: one of the most prestigious public organizations worldwide
for its formation and research activities in engineering and architecture. A prime
actor of the project is the Greatlab, a shared working area born in 2008 from the
partnership between Politecnico di Torino and AvioAero.
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• ISTEC-CNR: The Turin detail of the Istituto di Scienza e Tecnologia dei materiali
Ceramici which as part of the GREAT2020 carries out research on enviromentally-
friendly processing systems of aeronautical alloys.

• La Regione Piemonte: host of the project and ideal soil for the development and
the growth of the GREAT 2020, who has always been committed to the promotion
of industrial competitiveness, resulting in an active support for the GREAT2020
project.

Those ambitious goals, regarding a reduction of 50% of CO2 emissions, of 80% of NOx
one and a reduction of 18dB about the perceived noise can be reached by a strong
collaboration among cited companies and an huge research in new technologies. The
quantity of CO2 produced is proportional to the fuel burned, therefore, a reduction in
the emission could be reached increasing the total efficiency of the engine or decreasing the
weight of the components of the engine. This means to develop lighter and more resistant
blades, more performing combustors and thus new manufacturing processes allowing to
handle innovative materials.

Figure 1.1: ACARE objectives [12].

1.2 The aircraft engines

In the history of aviation several solutions are proposed as propulsion system for aircrafts
[22]. The first attempts of using gas turbine engines as aircraft power plants date back to
1913 when René Lorin, a French engineer, patented the first jet propulsion engine that,

2
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due to undeveloped suitable heat resisting materials and inefficiency at low speeds, could
not be manufactured or used at that time. Later, in 1930, Frank Whittle obtained his
first patent for using a gas turbine to produce a propulsive jet. Even though it completed
its first flight only eleven years later, it can be said that Whittle’s engine set the basis for
the modern gas turbine. In this chapter only a general overview of the most important
ones is described.
Jet propulsion is a practical application of Newton’s Third Law that states:"for every
force acting on a body, there is an opposite and equal reaction". In this case, the engines
take the atmospheric air, energize it (accelerating it), and the resultant of this force
applied to the air, is a reaction to the engine in the opposite direction. Since the engine
is linked rigidly to an aircraft, the same force is transmitted to the last one. This reaction
force, called thrust, is proportional to the variation of velocity and to the mass flow rate
of air managed by the engine. Thus, the same thrust can be obtained by giving a small
acceleration to a large mass of air or by giving a large acceleration to a small quantity of
air. In practice, the former option is preferred in order to maximize the efficiency: the
higher is the velocity, the higher can be the losses.
The engine working cycle is the Bryaton’s cycle represented in Figure 1.2 and composed
by four phases: induction, compression, combustion and exhaust.

Figure 1.2: Thermodynamic cycle of jet engine [7].

As shown in the Figure 1.3, each engine is made by those components:

• Air intake: the channeling part in which the air enter to the engine system;

• Compressor : often divided in Low Pressure Compressor (LPC) and High Pressure
Compressor (HPC) and it is aimed to compress air mass flow rate;

• Combustor : in which part of the air is mixed with the fuel with a stechiometric
ratio around 50:1 and it is burnt;

3
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• Turbine: as the compressor, it is often divided in Low Pressure Turbine (LPC)
and High Pressure Turbine (HPT) and it expands the exhaust gas;

• Exhaust system: accelerates the exhaust gasses in order to get the thrust.

Compressor and turbine are divided in Low and High parts in order to decoupling rota-
tional velocity. This partition reduce the mass flow rate of air to elaborate in order to
produce the same thrust resulting in an aerodynamic efficiency improvement.

Figure 1.3: Aircraft engine [1].
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1.2.1 Turbojet

Even if turbojet engine model is outdated, it can be considered as the starting reference
point of the other engines (turbofan, turboprop and turboshaft). Observing the Figure
1.4, after entering the engine through an inlet duct, the air is channeled entirely in the
compressor that increases its pressure and then reach the combustion chamber, where
fuel is injected. The heat developed by the combustion leads to an expansion into the
turbine. The turbine exhaust is then expanded in the nozzle, where it is accelerated to
high speed to provide thrust.

Figure 1.4: Turbojet engine [26].
Figure 1.5: Turbojet engine sketch.

1.2.2 Turbofan

Starting from the turbojet model, the turbofan engine is characterized by a fan before the
compressor stages, Figure 1.6. In this case, the quantity of air processed is bigger than
the previous one but not all the air goes in the combustor. An important parameter is the
bypass ratio defined as the ratio between the air elaborated in the combustor and the total
air processed. In modern engines ratios from 4:1 to 8:1 are employed. This configuration
allows to produce the same thrust of the turbojet engine, with a low velocity variation,
this means lower losses and thus higher efficiencies.

Figure 1.6: Turbofan engine [25].
Figure 1.7: Turbofan engine sketch.
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1.2.3 Turboprop

In the turboprop engine (jet engine derivatives) a portion of the engine’s thrust is pro-
duced by spinning a propeller and the remaining part comes from the high-speed jet
exhaust. Instead of turbofans, where the fan only contributes to a minor part of the
thrust production, in turboprop the propeller usually provides the majority of thrust. As
can be seen in Figure 1.8, most turboprops use gear reduction between the turbine shaft
and the propeller. These engine have better performance than turbojets or turbofans
at low speeds (where propeller efficiency is high), while they tend to become noisy and
inefficient at high speeds due to turbulence and sonic conditions.

Figure 1.8: Turboprop engine [27].

1.2.4 Turboshaft

The turboshaft engine is similar to the turbojet engine with a post expansion after turbine
stages, Figure 1.9, in which the fluid is much more accelerated producing a much higher
thrust. This type of engine is used in case of high power output, small size and weigth
and high reliability.

Figure 1.9: Turboshaft engine[28].

6



Introduction

1.3 Low Pressure Turbine - LPT

As highlighted before, the turbine has the task of providing the power to drive the
compressor and the shaft power to the propeller or rotor when they are present. High
compression ratio engines usually feature two shafts, so two turbines: the high-pressure
turbine drives the high-pressure compressor, while the low-pressure turbine drives the
low-pressure compressor and, for turbofan engines, the fan. In this section components
belonging to a LPT and their main features are described. Turbines are classified de-
pending on gas-flow direction:

• axial: the fluid moves parallelly to the rotation axis;

• radial: the fluid moves radially to the rotational axis.

Moreover, turbines can be divided in stages which is the fundamental operating macro-
group that exploits energy from the fluid, Figure 1.5.

Figure 1.10: Turbine sketch with highlighted stage.

The single stage of a turbine is made by two groups:

• Stator : it is the fixed part of a turbine and it is composed by statoric blades which
prepare the fluid to be exploitable from rotor imposing a velocity direction and by
case which is the structure.

• Rotor : it is the rotating part composed by rotoric blades linked to the rotating
disk, which is jointed to the main shaft.

The turbines’ design process requires the best compromise between efficiency and relia-
bility. In this purpose, several parameters must be considered:

7
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• Mechanical power : it is the power which is possible to extract from the engine.
Under 1D hypothesis it is equal to ṁ(u1c1u − u2c2u) where ṁ is the mass flow
rate of processed fluid, u is the blade peripheral speed and cu is the fluid velocity
projected along u while (1,2 ) stand for inlet and outlet respectively.

• Degree of reaction: it is the ratio between the enthalpy extracted in the rotor and
the energy extracted in the stage:

R = ∆Hrotor

∆Htotal
= h2 − h1
h01 − h02

. (1.1)

It is a measure of the allocation of expansion made in the stator and in the rotor.
Typical values are:

– R = 0 for an impulse turbine in which expansion is totally made in the stator;

– R = 0.5 which defines a reaction turbine where expansion is split equally in
the rotor and in the stator. Under isotropic condition, in this case airfoil shape
generates counter symmetric velocity triangles.

Centrifugal forces cause a changing in degree of reaction along the radial coordinate
of high blades: twiset-blades.

• Thermo-structural parameters like mechanical strength, High Cycle Fatigue (HCF),
Low Cycle Fatigue (LCF) and Creep.

The first two are related with aerodynamic aspects which affects the efficiency, while the
latter with dynamic one which affects reliability. As explained before, higher power means
higher mass flow rates (to keep the velocity lower because of efficiency), which leads to
an higher quantity of fluid to deflects and so higher loads. This bring to a reduction of
the blade life (and reliability).
Summarizing, the rotor components are:

• Airfoil: it is the operative component in which the fluid flows and produce work.

• Shroud: it is at the blade tip and provide many functions: ensure tightness, increase
blade stiffness, enhance damping contribution.

• Shank: it is the linkage between airfoil and the part anchored to the disk.

• Dovetail: it is the linking part between blade and disk and can have several shapes
(also fir tree).
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Chapter 2

Rotor Dynamics

In order to optimize the design of bladed disks, all the sources of stresses have to be taken
into account. Among these, a particular importance is usually given to the time-varying
excitation, as they are the major responsible of failure due to HCF (High Cycle Fatigue).
Therefore, studying the bladed discs dynamics is essential in order to obtain an accurate
prediction of natural frequencies and mode shapes and avoid resonances and instabilities.

2.1 Cyclic symmetry

Bladed disks fall in the category of structures showing cyclic symmetry, which means
that they consist of a finite number of identical substructures or sectors forming a closed
geometry. In case of LPT the cyclic symmetry is characterized by identical sectors defined
by the sector angle α = 2π

N , the so-called sector angle where N is the number of sectors,
which is, for LPTs, the number of blades.
Discretizing the bladed disk in Finite Elements [5], it is possible to obtain the equation

of motion:
[M ]{ẍ} + [K]{x} = {F} (2.1)

where {x} is the position vector relative to degrees of freedom of Finite Element nodes,
while [M ] and [K] are respectively the mass and the stiffness matrices and {F} is the
vector of the external forces. These vectors have the following dimension: {x} is 3nn × 1
as well as {F}, while [M ] and [K] are square matrices of dimension 3nn × 3nn where nn

is the number of nodes of the entire system.
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Figure 2.1: Example of cyclic symmetry structure.

Usually, assuming z− axis as the rotating one for a cyclic symmetry structure, the node
vector {x} is rewritten in cylindrical coordinate applying the transformation:

x = ρ cos θ

y = ρ sin θ
(2.2)

Moreover, considering the cyclic symmetry properties, the vector {x} can be decomposed
in a sub-set of nodal vectors for each sector, as well as the force vector, obtaining:

{x} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{x1}
{x2}
{x3}

...
{xN−1}
{xN }

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
{F} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{F1}
{F2}
{F3}

...
{FN−1}
{FN }

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.3)

where {xi} represents the nodal coordinate of the sector ith for i = 1, ..., N .
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These steps allow the following re-arranging for the mass and stiffness matrices:

[M ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M0 M1 M2 · · · M2 M1

M1 M0 M1 · · · M3 M2

M2 M1 M0 · · · M4 M3
...

...
... . . . ...

...
M2 M3 M4 · · · M0 M1

M1 M2 M3 · · · M1 M0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.4)

[K] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K0 K1 K2 · · · K2 K1

K1 K0 K1 · · · K3 K2

K2 K1 K0 · · · K4 K3
...

...
... . . . ...

...
K2 K3 K4 · · · K0 K1

K1 K2 K3 · · · K1 K0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.5)

Where the sub-matrices [Mn] and [Kn] (n = 0, . . . , floor(N/2) if N is even or n = 0, . . . ,
floor((N-1)/2) if N is odd) are symmetric as well as [M ] and [K] that have a block circulant
symmetric structure. Defining ns the number of DOF belonging to a sector, the dimension
of [Mn] and [Kn] is ns × ns.
A single sector can be divided in three different parts:

• left-hand side nodes defined as those nodes at left interface between 2 consecutive
sectors;

• right-hand side nodes defined as those nodes at right interface between 2 consecutive
sectors;

• inner nodes which are the not above-mentioned nodes.

In this way the displacement vector {xj} and the force vector {Fj} can be rewritten as:

{xs} =

⎧⎪⎪⎨⎪⎪⎩
{xs

R}
{xs

L}
{xs

I}

⎫⎪⎪⎬⎪⎪⎭ (2.6)

{F s} =

⎧⎪⎪⎨⎪⎪⎩
{FR}
{FL}
{FI}

⎫⎪⎪⎬⎪⎪⎭ (2.7)
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Another important parameter for a cyclic symmetry structure is the Inter Blade Phase
Angle (IBPA), defined as the ratio between the number of nodal diameters and the number
of blades. In a cyclic symmetric structure, a nodal diameter is the place of aligned points
passing through the center of rotation characterized by null nodal displacements (see
Figure 2.2).

Figure 2.2: Cyclic symmetry structure with two nodal diameters.

IBPA can be defined as:
φn = 2πn

N
(2.8)

where n is the nodal diameter and N is the number of sectors. In a cyclic symmetric
structure, the nodal diameters and so IBPA assume values included in these ranges:⎧⎨⎩0 ≤ n ≤ N

2 if N is even

0 ≤ n ≤ N−1
2 if N is odd

(2.9)
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Thus, with IBPA, it is possible to link Left and Right interfaces according to:

{xs
R} = {xs

L}eiφn , (2.10)

and so:

{xs} =

⎧⎪⎪⎨⎪⎪⎩
{xs

L · eiφn}
{xs

L}
{xs

I}

⎫⎪⎪⎬⎪⎪⎭ . (2.11)

Remembering the Eulero’s Identity (eiφn = cos
(︂

2πn
N

)︂
+ i

(︂
2πn
N

)︂
), it can be easily under-

stood that the first row of the previous vector has imaginary part equal to 0 for n = 0
and n = N/2. This means that, for those values, the eigen problem returns only real
displacements.
Moreover, with the IBPA it is possible to link displacements and forces between sectors
allowing to reduce the system analysis to the single sector. This reduction is provided
by the fact that the Left-side for a sector is the Right-side of the adjacent one,. Thus,
defining a force vector to a sector as F s = F s

0 e
iωt the stationary solution can be written

as:
([Ks] − ω2[M s]){xs} = F s

0 (2.12)

and the solution can be expanded cyclically by the IBPA obtaining overall solution.
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2.2 Modal Analysis

Modal analysis is the study of the free vibration of a dynamic system. After the mass and
the stiffness matrix are obtained through the FE model, natural frequencies and mode
shapes can be extracted solving the following eigenproblem:

([K] − ω2
i [M ]){ui} = 0 (2.13)

where [K] and [M ] are the block cyrculant matrices defined in (2.4) and (2.5) while ωi

and {ui} are respectively the i-th eigenvalue and eigenvector.
When looking at the mode shapes of a cylindrical symmetrical structure, there three
possible cases [21]:

• Stationary modes: each sector has the same mode shape as its neighbors and
vibrates in-phase with them:

{uni} = {un+1i} ∀n (2.14)

As it is shown in Figure 2.3, a rotation of the mode shape of an arbitrary number
of sectors would leave the mode shape unchanged. In this case what we observe is
a standing wave mode shape, which is described by a single eigenvalue and a single
eigenvector. This mode is obtained when φn = 0 and so, recalling equation (2.8),
when the number of nodal diameter is equal to 0.

Figure 2.3: Stationary mode.

• Stationary anti-phase modes: each sector has the same mode shape as its neigh-
bors, but it vibrates in anti-phase with them, Figure 2.4:

{uni} = −{un+1i} ∀n (2.15)

This mode is obtained when φn = ±π and it is valid only if N is even. In this
case, a rotation of the mode shape of an even number of sectors leaves the mode
shape unchanged, while a rotation of an odd number of sections will result in a
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mode shape with inverted sign. However, it is still a standing mode and so it can
be described by a single eigenvalue and a single eigenvector.

Figure 2.4: Stationary anti-phase mode.

• Rotating modes: the sector moves with different phases, Figure 2.5, and so:

{uni} /= ±{un+1i} ∀n (2.16)

This mode is obtained for all the other values of φn.

Figure 2.5: Rotating mode.

These last modes occur in orthogonal pairs of standing waves, described by the same
eigenvalue and the same eigenvector. Their combination results in a rotating mode shape.
Since all the sectors are identical, by shifting a mode shape {ui} of one sector’s angle αn,
the new mode shape {u′

i} will have the same eigenvalue as the starting mode shape. In
other words it is possible to define, for a given eigenvalue, a couple of eigenvectors such
as:

{ui} · {ui} = 0 (2.17)

and so the new mode can be defined as:

{u′
i} = c{ui} + s{ui} (2.18)
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where, assuming normalized eigenvectors c and s coefficient can be written as:

c = cosφn

s = sinφn

(2.19)

Repeating the same passages to the eigenvector {ui} applying the sector angle shift, it is
possible to obtain an other eigenvector {ui

′} which is orthogonal to {u′
i} and equal to:

{ui
′} = −s{ui} + c{ui} (2.20)

Thus: {︄
u′

i

ui
′

}︄
=

[︄
cINns sINns

−sINns cINns

]︄ {︄
ui

ui

}︄
= R

{︄
ui

ui

}︄
(2.21)

This results allows to represent the modeshape of consecutive sectors, in fact:{︄
u(n−1)1

u(n−1)1

}︄
= R

{︄
uni

uni

}︄
∀n (2.22)

Moreover, if u′
i and ui

′ are the solutions for the equation (2.13), also a linear combination
of both is again a solution like:

zi = ui + jui

zi = ui − jui

(2.23)

which are solutions of the eigenproblem. Thus, under a physical point of view, mode
shape of stationary evolution is graphically shown in Figure 2.6 and expressed by the
following equation:

Re({ui}ejωt) = {ui} cos(ωt) (2.24)

In general, it is possible to have real and complex eigenvectors that differ in that for real
ones all the DOFs pulsate without any relative delay between them, while for complex
eigenvectors the same instantaneous spatial configuration appears rotated of one sector
after an interval of time t = φh/ω as shown in Figure 2.7. So that, in case of complex
eigenvectors the mode shape is:

Re({zi}ejωt) = {ui} cos(ωt) − {ui} sin(ωt) (2.25)

in which, for t = 0 → Re({zi}ejωt) = Re({ui}ejωt), while for t = φn/ω → Re({zi}ejωt) =
Re({u′

i}ejωt).
This result can be explained considering that the complex eigenvector contains both

16



Rotor Dynamics

Figure 2.6: Time evolution of
eigenvector ui.

Figure 2.7: Time evolution of rotating
eigenvector.

modes ({ui}, {ui}) and so, for a given sector at a specific time t0, shows the same ampli-
tude of the consecutive sector at time t0 + φn/ω. Moreover, if the complex eigenvector
{zi} presents a clockwise motion, the eigenvector {zi} shows a counter-clockwise motion
and finally the relation which links the deformed shape between 2 consecutive sectors is:

{z(n−1)i
} = {zni}ejφn (2.26)

Generally speaking, for a bladed disk we are more interested in complex modes rather
than the real modes since the latter can then be interpreted as the sum of the two counter
rotating traveling waves. Note that, if we want to investigate the mode shapes belonging
to a the whole bladed disk, in addition to the rising of computational costs and processing
time, we could only find real modes since FEM solvers resolve the eigenproblem 2.13 in
the real domain.
As highlighted before, due to cyclic symmetry properties, performing a modal analysis
of the single sector (Figure 2.8) allows to extend this analysis to the entire bladed disk
without prohibitive computational costs.

Figure 2.8: Sector of a cyclic symmetry structure.
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At this point, several ways to perform modal analysis [4] can be presented. Among these,
that one proposed by D.J. Mead according to which it is possible to express (referring
also to Figure 2.9) the vector containing the sector DOFs as follows:

{xs} =

⎧⎪⎪⎨⎪⎪⎩
xl

xi

xr

⎫⎪⎪⎬⎪⎪⎭ (2.27)

where xl represents the DOFs at the left frontier of the fundamental sector; xi represents
the internal DOFs of the fundamental sector, i.e. those not shared with the neighbor
sectors; xr represents the DOFs at the right frontier of the fundamental sector.

Figure 2.9: FEM sectors modelling [4].

Moreover, it is possible to state that the number of DOFs at the left and at the right
frontier is the same and that the DOFs at the right frontier of one sector can be seen as
the left ones of the following sector. Then, because of cyclic symmetry

{xr} = {xl}eiφn (2.28)

and the nodal vector can be written as:

{xs} =

⎧⎪⎪⎨⎪⎪⎩
xl

xi

xr

⎫⎪⎪⎬⎪⎪⎭ =

⎡⎢⎢⎣
I 0
0 I

Ieiφn 0

⎤⎥⎥⎦
{︄
xl

xi

}︄
; {xn

s } = [Tn]
{︄
xn

l

xn
i

}︄
(2.29)
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where [Tn] is the Mead’s transformation matrix and {zn
i } = {{xn

l }T {xn
i }T }T is the

vector of reduced nodals DOFs of the single vector. In an analog way, the force vector
can be written as:

{fs} =

⎧⎪⎪⎨⎪⎪⎩
fl

fi

fr

⎫⎪⎪⎬⎪⎪⎭ . (2.30)

Thus, because of equilibrium:
{fr}n = −{fl}n+1 (2.31)

and for cyclic symmetry:
{fr} = −{fl}eiφn . (2.32)

Therefore, Mead’s approach start from the model of an isolated sector consisting of nl +
ni +nr DOFs and leads to a reduced model with nl +ni DOFs. In other words, by varying
the value of φn it is possible to evaluate the dynamic behavior of the whole structure
starting from the matrices of isolated sectors, thus making the whole modal analysis more
simple and less time-consuming.

Modal families and FreND diagram

The dynamics of a bladed disk can be synthesized by mean of the FreND diagram, which
represents the plot of the natural frequencies versus the number of nodal diameters char-
acterizing the associated mode shapes. This diagram can be obtained performing several
modal analysis varying the IBPA, and so the nodal diameter. Note that the number of
natural frequencies of a discretized system is equal to its DOFs, while for a continuous
system is infinite, this means that, in cyclic symmetry structures, for a given nodal di-
ameter, the higher is the number of sector nodes, the higher is the number of natural
frequencies that can be found. The most important blade modes can be seen in Figure
2.10 in which:

• EW : the blade tip moves axially;

• FW : the blade tip moves tangentially;

• F : the blade mid-span shows the maximum displacement;

• T : torsion around radial axis.

Thus, for a given cyclic symmetry structure, it is possible to plot the FreND diagram
(Figure 2.11). As image shows, each modal family is represented by a line connecting
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Figure 2.10: Blade mode shapes.

modes from h = 0 to h̃ and modes having the same sector deformed shape (i.e. 1F-2F,
1T-2T,...) are grouped into distinct families.

Concerning the blade mode shapes, the number before the mode letter highlights the

Figure 2.11: Example of FreND diagram.

number of semi-waves while the second one the number of mode for that semi-wave.
Moreover, the higher is the number of nodal diameter, the lower is the natural frequency
variation between that and the previous one. In fact, for low values of h, the blades are
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dragged by the discs during vibration. As the number of nodal diameters increases, the
disc becomes stiffer and the natural frequencies increases until the curves for each modal
family asymptotically approach one natural frequency, which corresponds to that of the
clamped, blade-alone configuration. Therefore, this portion of the diagram where quasi-
horizontal curves are present is related with blade-dominated vibration modes, where
the disk can be considered nearly motionless and the blades are weakly coupled among
themselves.
In conclusion, it is possible that, for a given nodal diameter, 2 different modes have similar
natural frequencies. This is called veering (Figure 2.12).

Figure 2.12: Veering region example [8].
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2.3 Reduction techniques

The system described by the equation (2.1) is not easily resolvable. First, it is necessary
to discretize a continuous system with infinite DOFs to a system with finite ones. This
can be reached by FEM analysis that leads to the definition of a finite number nodes and
elements and their relative formulations in order to get a system described by the equation
(2.1). So, the problem moves towards the computational cost of inverting a matrix of
dimension n×n where n is the number of DOFs of this system. In this perspective, several
techniques are proposed to manage smartly this computation like LU decomposition and
Cholesky factorization [15],[9], as well as the reduction techniques [10][2][3] in which a
system of complexity n is reduced to another one of complexity m where m < n. In the
latter technique, the DOFs vector is divided into master and slave coordinates and the
relative mass and stiffness matrices are rearranged as well.

2.3.1 Modal reduction

Before introducing this reduction technique, modal transformation matrix will be defined
for a given system of n DOFs as follows:

[Ψ] = [{ψ1} · · · {ψn}] (2.33)

where {ψi} is the i-th eigenvector. Defining {η} as the modal DOFs of the system, it can
be defined the relation:

{x} = [Ψ]{η} (2.34)

So, the modal system becomes:

[Mmod]{η̈} + [Kmod]{η} = [Ψ]T {F} (2.35)

where [Mmod], [Kmod] are diagonal matrices composed respectively by modal mass and
stiffness.
It can be assert that the modal system is uncoupled and so each equation can be studied
as a system of one degree of freedom. Thanks to superposition principle, results from
each equation can be combined.

Referring to the modal reduction, the system defined above can be reduced basing on the
assumption that, for a specific condition (i.e. the operating one), only a limited subset of
modes participate significantly to the motion and so it is possible to neglect the others.
This means that, given a system of n DOFs and neglecting n−m modes (where m < n),
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the modal transformation matrix becomes:

[Ψ′] = [{ψ1} · · · {ψm}] (2.36)

And so:
{x} = [Ψ]{η} → {x} ≃ [Ψ′]{η} (2.37)

Thus the modal system becomes:

[Mred]{η̈} + [Kred]{η} = [Ψ′]T {F} (2.38)

where [Mred], [Kred] are diagonal matrices composed respectively by modal mass and
stiffness, in fact, neglecting modes doesn’t change diagonability because of [Ψ] transfor-
mation. This simplified approach leads to two main sources of errors:

• error due to neglected n−m modes;

• not consider the modal coupling due to damping in fact under the hypothesis of
non proportional damping, the quantity [Ψ′]T [C][Ψ′] is not diagonal.
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Chapter 3

Aeromechanical instabilities

When considering a turbine rotor, aeromechanical instabilities must be taken into ac-
count. One of the most important among these is flutter that occurs when, following
an initial structure displacement, the fluid enhances the vibration. The consequential
increment in amplitude may lead to structure rupture long before than the classical fa-
tigue analysis prediction. The discipline that studies the interaction between the modal
behavior of a structure and the fluid flow is called Aeroelasticity and it can be described
as the interaction between 3 different fields according to the Collar triangle [13].

Figure 3.1: Collar’s triangle.

As shown (Figure 3.1), the also known Collar Diagram is composed by several areas:

• Structure dynamics: discipline where inertial and elastic forces are considered (Vi-
bration mechanic);

• Flight Mechanic: with inertial and aerodynamic forces (Aerodynamic stability);

24



Aeromechanical instabilities

• Static aeroelasticity: when elastic and aerodynamic forces are present (Divergence);

• Dynamic aeroelasticity: all fields are included, elastic inertial and aerodynamic
forces (Forced response and flutter).

In general, the aerodynamic field represents the excitation source while elastic and inertial
fields represents the system response. The flutter phenomenon falls in the subcategory
of dynamic aeroelastic stability problem. Its origin may be related to the detachment of
the fluid flow from the airfoil (case of Stall Flutter), or to the detachment of the wake
vortex from the LE (Transonic buffering) which both cause auto-excited vibrations. In
turbine rotors usually only Stall Flutter is analyzed since the other types of flutter are
not considered to be dangerous from a structural point of view.

3.1 Aerodynamic of turbines

A better comprehension of matters related with aeromechanical instabilities requires the
knowledge of Aerodynamic of turbines that, despite the more traditional 1D formulation
of an airfoil hit by air, cannot be described without neglecting multi-dimensional aspects
[6] since the motion field is affected by interactions between rotating and non rotating
parts (stator and rotor), centrifugal forces as well as wall effects.
Whenever high pressure gradient occurs between upstream and downstream of an airfoil,
vortexes can be generated leading to one of the most important phenomenon that affects
turbine’s aerodynamic: the "stall condition" in which the main flow is stalled forcing the
fluid flowing in the near regions to accelerate and so increasing the crossing speed at the
midspan.
Other cases in which vortexes are generated are the ones that occur when the wall flow
encounter the fluid at the stagnation condition. In this case it can be observed a couple
of vortexes that shows a different behavior depending if those are in the suction side
(vortexes remain attached to the airfoil due to blade motion) or in the pressure side
(those continue to proceed axially but moving towards the adjacent blade interacting
also with the main fluid stream).
In addition, the high gradient of the pressure field creates secondary flows between stator
and rotor blades that cross the entire stages until the downstream region. Those secondary
flows interact with high and low pressure regions creating vortexes.
The above-mentioned phenomena, which are source of the aerodynamic losses with an
high impact to the turbine efficiency, may lead to unsteady condition.
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Potential disturbs

Under the hypothesis of irrotational motion field, i.e. ∇ × u = 0, the velocity field
flowing around an airfoil profile can be described by the gradient of a potential function.
Moreover, according to the Kutta-Joukowsky theorem, if the circulation around an airfoil
profile, defined by the equation (3.1), is different from 0, then there will be a change of
the velocity field also at the upstream and downstream. As a consequence, unsteady
pressure generates disturbs in terms on pressure waves which propagates at the upstream
and downstream. These are characterized by an exponential decay governed by the Mach
number, the pitch and axial distance.

Γ =
∮︂

airfoil
u · ˆ︁ndℓ (3.1)

Shock waves

Shock waves are a type of propagating disturbance faster than the local medium speed
of sound that occurs when there is a stream discontinuity between sub-sonic and super-
sonic velocity. In these conditions the thermodynamic properties (pressure, temperature,
density) change drastically generating shock waves which can propagate horizontally or
obliquely. The main source for the former are generally choking conditions (a situation
in which the critical pressure is reached and the fluid flow results chocked); oblique shock
waves depend, instead, by the flow deflection and by the Mach number. Whenever down-
stream condition changes the flow characteristic curve changes too, generating a sort of
pressure jump (discontinuity) in a local region. This phenomenon creates a pressure hor-
izontal wave that preserve flow energy but increase entropy.

Wakes

Wake can be defined as the region of disturbed flow (often turbulent) downstream of a
solid body moving through a fluid, caused by the flow of the fluid around the body (Figure
3.2). It occurs due to the not negligible pressure gradient related to fluid viscosity. The
wake area affects the surrounding flow field, modifying its velocity components and so
aerodynamic efficiencies. Moreover, during the fluid motion, the wakes are modified by
the pressure fields characterizing a circumferential a-periodicity when the fluid returns to
the original reference system.
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Figure 3.2: Example of wake [29].

3.2 Aeroelasticity in turbomachines

Aeroelasticity is the branch of engineering that studies the mutual interaction between
aerodynamic forces, structural dynamics and elasticity leading to a change of stability con-
dition of an aeromechanical system. Referring to steady condition (static aeroelasticity),
stability is achieved when there is equilibrium between elastic forces and aerodynamic
ones. If it does not happen, divergence (which can be seen like Euler instability [11])
occurs, causing amplified strain of structure which can bring to its damage.

3.2.1 Flutter

Flutter is the most important phenomena linked with dynamic aeroelasticity. It is caused
by asynchronous vibrations (see next chapter) and, when it occurs, aerodynamic forces
produce an excitation to the system which self excite the structure. Under an energetic
point of view it is possible to define the work per cycle of an exciting force as:

Wcycle =
∫︂ t+T

t

∫︂
S

−pˆ︁n · −→v dSdt (3.2)

If Wcycle > 0 the system is stable, if Wcycle < 0 the system in unstable. The former case
occurs when force obstructs motion and vice versa: damping turns up.
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Classic flutter

The above-mentioned Stall Flutter is a complex phenomenon and it can be described in
according to various physical models. However, in the current thesis, only the Classic
Flutter semi-stationary model will be considered. This is based on the idea that, once the
airfoil motion is known, it is possible to express the aerodynamic forces as functions of
h, θ, Ih, Iθ,mh and mθ. As flutter takes place when the real part of the system’s eigenvalue
becomes null, the blade’s motion can be assumed purely harmonic. It is possible to express
the vector of the aerodynamic forces as:

{Fa(t)} = Ma{ẍ} + Ca{ẋ} +Ka{x}, (3.3)

where the vector {x} contains the coordinates h and θ (see Figure 3.3) and the matrices
Ma, Ca and Ka represent, respectively, the aerodynamic inertia, damping and stiffness
of the system. Considering a generic multiple DOF system like the one shown below, the
governing equation can be written as:

M{ẍ} + C{ẋ} +K{x} = {Fm(t)} + {Fa(t)}. (3.4)

At this point, using the hypothesis that all the external loads that are not of aerodynamic
nature can be neglected ({Fm(t)}) and replacing the second therm of the right hand side
with the expression in Equation (3.3), the following equation can be obtained:

(M −Ma){ẍ} + (C − Ca){ẋ} + (K −Ka){x} = 0. (3.5)

Figure 3.3: Example of a 2 DOF system.
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General solution of the above equation (3.5) can be written as follows:

{x(t)} = {xj̄}esjt, (3.6)

where s represents the eigenvalue and it is a complex number:

sj = ζj + iωj . (3.7)

The term ωj governs the frequency of the system (est = eζ+iω = eζt · eiωt and eiωt =
cos(ωt) + i sin(ωt)), while ζj expresses the stability of the system:

• if Re(s) > 0 the system is unstable (Figure 3.4);

• if Re(s) = 0 the system is obscillatory (Figure 3.5);

• if Re(s) < 0 the system is asympotically stable and shows an exponetial decay
(Figure 3.6).

Since ζ = f(velocity) and flutter occurs when ζ > 0, there will be a vcritical that defines
the dividing line between stable and unstable region.

Figure 3.4: Unstable system response.

Figure 3.5: Obscillatory system response.
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Figure 3.6: Stable system response.

Flutter in turbomachines

Considerations applied for the single airfoil profile in the previous section, can be extended
to the whole rotor flow taking into account the coupling of disturbances between blades.
The so-known aerodynamic coupling [20] causes that a disturbance on one blade will not
only change the conditions of the flow that surrounds it but it will move around the rotor
and affect the neighboring blades (Figure 3.7). A further interaction takes place between

Figure 3.7: Aerodynamic coupling on a blade row.

rotor and stator where angle of incidence, together with flow’s velocity and blade’s mode
shapes, will play a crucial role in the possible occurrence of flutter.
According to A.V. Srinivasan [23], the most important parameters affecting flutter are:

• IBPA: is the angle representing the phase shift between adjacent blades during their
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vibration motion. It defines the characteristics of the coupling among the blades.

• Shroud: contact between adjacent blades shrouds introduces a certain damping due
to friction forces that modifies the modal shapes and loads at the interface.

• Shock waves: strongly influence the pressure load at leading edge.

• Inlet and outlet conditions: pressure and temperature affects the aerodynamic
damping.

• Reduced frequency: defined as the ratio between the axial semi-chord and the time
needed for the aerodynamic profile to complete a full vibration cycle:

k = cω

2V . (3.8)

When this parameter is low, the flow can be considered quasi-static, otherwise it is
unsteady.

• Mistuning: it is based to non-homogeneity between blades which modifies mass
and stiffness of blades in order to modify the aerodynamic coupling reaching flutter
stability.

In order to analyze the flutter stability it is necessary to understand how blades interact
from both an aerodynamic and a structural point of view. Even though in this thesis the
detailed process will be not explained, the approach requires the knowledge of blades’
displacements. Thus, a previous modal analysis is needed basing on the hypothesis that
the influence of gas flow on natural frequencies and mode-shapes can be neglected.
As written above, flutter instability can be identified thanks to aerodynamic damping
coefficient ζ. If this parameter has a negative value, the structure in not able to dissipate
energy: unstable aeroelastic condition. Aerodynamic coupling represents the influence
of near vibrating blades as written in the lines above. ζ, as a function of the IBPA,
can be a valid parameter to understand of how blades influence each other vibration
(Figure 3.8). It is possible to observe that if a single oscillating blade is considered (blade
0), the aerodynamic damping is obviously constant with respect to the IBPA. Instead,
considering more blades, flutter instability is influenced by the value of the IBPA and
shows a sinusoidal trend. Moreover, the farther is the blades (example of blades with
indices ±2) respect to the reference one, the lower is the influence.
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Figure 3.8: Aerodynamic coupling as function of IBPA.

Furthermore, assuming, in a row in which all blades are vibrating, small displacements
and thus that the system is linear, it is possible to apply the superposition principle.
Thanks to this assumption, damping coefficient variation versus the IBPA is commonly
represented by the aeroplot showed in Figure 3.9.
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Figure 3.9: Example of aeroplot.
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Chapter 4

Forced Response

4.1 Static and Dynamics loads

According to Maggiore, Moletta et al. [17], the main excitation sources affecting a Low
Pressure Turbine can be classified in: static loads made by constant or limited time
variation forces; quasi-static loads: forces with constant temporal characteristics but
related with dynamic phenomena; dynamic loads: time-depending forces. Note that the
lasts can be considered static if compared with a much higher natural frequency, otherwise
loads can be considered dynamic. Thus, what really matters is the natural frequency of
the system compared to the frequency of excitation source.
The main static loads of LPT are four:

• Steady pressure field: linked with a different pressure field between suction side and
pressure side due to the gas-flow passing along blades. Defining with p the pressure
field and with S the blade surface, the resultant force can be computed as:

Fp =
∫︂

S
pˆ︁ndS. (4.1)

• Inertial load: rotating parts are subjected to centrifugal force expressed by the
following equation:

Fc =
∫︂

m
dFc =

∫︂
V
ρω2rˆ︂µrdV. (4.2)

• Temperature load: deriving from the hot gases that not only transfer energy to
blades under the form of mechanical work, but also warm them creating a high
thermal gradient which leads to creep phenomena.

• Pre-Twist load: a kind of pre-loading of blades due to achieve the right position of
the airfoil respect the gas flux.
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Time-depending forces in a LPT may have many sources. Generally they origin from
unsteady pressure field and the harmonic terms are function of blades’ number and angu-
lar velocity. In this case, dynamic excitations induce synchronous vibrations. Differently
other dynamic loads’ sources are linked with flux instability as separations, vortex shed-
ding or rotor stall. Excitations originated by these cases do not show frequencies that
are multiplies of rotational speed of the system: a-synchronous vibrations.
Talking about the former, those harmonic forces are identified by a parameter called
Engine Order defined as:

EO = ω

Ω . (4.3)

Generally, forced response can be associated to high EOs or low EOs. First case is caused
by the interaction between rotor and stator row; second one concerns to high nodal
diameter discontinuities like unbalanced rotating masses, asymmetry in tree’s supports,
interaction with distorted flow arriving from combustor.
Returning to the generic excitation with synchronous vibrations, thanks to periodicity, it
is possible to apply the Fourier series in order to represent it:

F (α) = F0 +
∑︂
eo

F (eo)
c cos(eo · α) + F (eo)

s sin(eo · α), (4.4)

where α = ωt and eo is the engine order.
So that, most of the dynamic loads (with the exception of mechanical impacts and self-
excited phenomena) induce synchronous vibrations since that excitation frequency de-
pends on the rotational speed. Moreover, natural frequencies of a rotor-dynamical system
depend on the rotational speed, especially due to stiffening induced by large centrifugal
forces.
In this overview, Wilfred Campbell provided an important contribute. In fact, in order
to study the forced response of a bladed disk, Campbell’s Diagram is commonly used
(Figure 4.1). In the diagram, with rotation speed on horizontal axis and frequency on
the vertical one, the natural frequencies are represented as a set of lines which trend
depends on the rotation speed, while the EO excitation frequencies are represented by
straight lines starting from axis origin. Potential resonance situations occur when exci-
tants’ curves cross the ones of natural frequencies. However crossing is a necessary but
not sufficient condition to resonance.

In particular, the critical intersections are those for which the following relations holds:

EO = m ·N ±ND (4.5)

which can be graphically represented by the zig-zag diagram 4.2.
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Figure 4.1: Example of a Campbell diagram [16].

Figure 4.2: Zig-zag diagram.

Equation 4.5 demonstrates that resonance response can occur also when m /= 0 due to
aliasing phenomenon: since the rotor blades represent a discrete system they can be
forced in a finite number of points; higher value EOs are detected by the system with
reduce frequencies. These shifts depend on the number of discretized sectors. Thus, the
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resonance condition can be expressed as follows:

EO′ = EO −m ·N = ND (4.6)

To a better understanding of this phenomenon, refer to the Figure 4.3 in which two
different periodic functions (EO = 4 and EO = 17) show same values (red dots) and
so effects. As zig-zag diagram shows, different EOs put in resonance the same nodal
diameter. In this example, if an excitation with EO = 4 represents a resonance condition,
the same occurs with the one of EO = 17, since this force is seen by the row of blades
as a wave characterized by EO = 4 (obviously this EO is able to excite in resonance
condition a mode shape with ND = 8).

Figure 4.3: Aliasing.

The Campbell diagram is useful during the design phase in order to highlight different
resonant conditions which have to be matched with the operating condition of the Low
Pressure Turbine. Whenever possible resonances may occur, the rotational speed or the
natural frequencies will be modified in order to manage this problem.
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Chapter 5

Dynamical Analysis of Multistage
Cyclic Structures

Aircraft engines are made up of different rotational periodic structures such as turbine
bladed disks or gear wheels (Figure 5.1; Figure 5.2). It is well know that the dynamics of
such structures can be studied using the cyclic symmetry reduction. Using this method
(explained in the Section 2.1), a complete cyclic structure can be analyzed considering
a single elementary sector. Starting from the early developments of cyclic symmetry
structure [24], the are numerous examples in the literature on this subject. Nevertheless,
although some applications involve assemblies made up of cyclic structures leading to a
multistage pattern (i.e. compressors or turbines), most existing studies focus on single
stage analysis neglecting the influence of the interstage. One of the consequence of this
carelessness can be the underestimation of vibratory levels.
Despite this problem, the cyclic symmetry reduction cannot be applied directly to the
multistage assembly; so that, full 360 models are required to study the dynamics of
multistage systems often leading to prohibitive computation costs.
In the present thesis work, we focus on a new strategy to study the dynamics of multi-
stage assemblies using a cyclic symmetry reduction. The method presented in the next
section, handles the sector finite element cyclic modeling of each stage and involves a
realistic interstage coupling.

5.1 Multistage Cyclic Symmetry method

Referring to the above-mentioned problems, in this section a strategy to analyze the dy-
namics of multistage cyclic structures is presented. The interstage coupling is ensured
through a cyclic expansion of the interface DOFs of each stages. Methodology will be
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Figure 5.1: Turbomachinery Multistage Cyclic Structure [18].

Figure 5.2: Gear (A) modeled as a Multistage Cyclic Structure with two stages (B) [18].

detailed based on two stages composed of N1 and N2 sectors (N1 /= N2), but can be
easily extended to more stages. Furthermore, mesh compatibility is assumed for the the
interstage coupling, but, it is important underline that, in case where interfaces would
not match, a solution can be the use of multi-point constraints.
First, we will define for both stages the vector containing the degrees of freedom of the
reference sector in physical (u(i)

n ; i = 1,2) and cyclic bases (ũ(i)
n ; i = 1,2). The latter coor-

dinates are used in each reduced problem and the transformation in physical coordinates
is given by:

u = en ⊗ ũ ; en = [1 e
2iπn

N e
4iπn

N ... e
2(N−1)iπn

N ]T (5.1)
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where ⊗ is the Kronecker product (or matrix direct product). Then, we will indicate,
in physical and cyclic bases, bu(i)

n and bũ(i)
n DOFs referring to the interstage of each

stage. All DOFs different from these will be designated as ou(i)
n and oũ(i)

n . Additionally,
the following identity matrices are necessary: Ibi

and Ioi which size correspond to the
number of boundary and internal DOFs of i-th stage.
Referring to the physical base, to ensure compatibility, the boundary degrees of freedom
between stages are enforced to be equal. So that:

bu(1) =b u(2) (5.2)

Then, according to (5.1), we have:

bu(1) = (eN1,n ⊗ Ib1)bũ(1)
n and bu(2) = (eN2,n ⊗ Ib2)bũ(2)

n

Using cyclic coordinates, (5.2) can be rewritten as:

bũ(2)
n = Bn

bũ(1)
n with Bn = (e∗

N2,n ⊗ Ib2)(eN1,n ⊗ Ib1)

The matrix Bn is the projection matrix of the n-th cyclic vector of stage 1 on the n-
th cyclic vector of stage 2. At this point, assembling the two stages degrees of freedom
vector, the eigenvalue problem can defined (5.3):

⎡⎣ũ(1)
n

ũ(2)
n

⎤⎦ = Tnũ(1∪2)
n with Tn =

⎛⎜⎜⎜⎜⎜⎝
Ib1 0 0
0 Io1 0
Bn 0 0
0 0 Io2

⎞⎟⎟⎟⎟⎟⎠ and ũ(1∪2)
n =

⎡⎢⎢⎣
bũ(1)

n

oũ(1)
n

oũ(2)
n

⎤⎥⎥⎦ ;

K(1∪2)
n ũ(1∪2)

n = M (1∪2)
n ũ(1∪2)

n λ (5.3)

with

K
(1∪2)
n = T T

n

⎛⎝K(1)
n 0
0 K

(2)
n

⎞⎠Tn and M
(1∪2)
n = T T

n

⎛⎝M (1)
n 0
0 M

(2)
n

⎞⎠Tn

Using this method, the size of problem is close to the sum of the two individual stages
problem sizes. If the interstage boundary DOFs are not aligned, a mapping matrix is
applied to relate interstage boundary DOFs.
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5.2 Multistage Cyclic Symmetry application

In order to perform the above-described method, a commercial fem tool, capable to pro-
vide a way to combine two or more independent cyclically symmetric systems with dif-
ferent sector counts, will be used.
The functionality of the Multistage Cyclic Symmetry application can be summarized in
the following example:

• Modeling of different stages with different sectors counts (Figure 5.3) without the
need of a 360 full model (lowering of computational costs).

• Figure 5.4 shows a possible rotating stage attached to the driving axle of an aircraft
engine. This stage is made up of 43 sectors. In order to modeling the connections
with the rotating tree, we will refer to the drilled part shown in the Figure 5.5.
Supposing that 18 screws are used to tie together stage and rotating tree, using
Multistage Cyclic Symmetry is the best way to modeling this problem since stages
can have different number of sectors. Further, as written above, if the interstage
boundary DOFs are not aligned, a mapping matrix is applied to relate them and
connect the two stages through their interface.

Figure 5.3: Finite element model of 2 cyclic structures with 24 and 45 sectors [14].
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Figure 5.4: Example of a sector from a rotating stage.

Figure 5.5: Example of a sector from a rotating stage with a drilled part.

42



Dynamical Analysis of Multistage Cyclic Structures

Regarding the last example shown in the Figure 5.5, a commercial fem tool will be used
here to run a modal analysis. Since we want to model a rotating stage attached to the
driving axle, displacements along z-axis and y-axis (a z-axis cylindrical coordinate system
is set - Figure 5.7) are not allowed for the nodes of the drilled part FEM model on the
inner radius (minimum y coordinate) (Figure 5.6).

Figure 5.6: Nodes whose displacements along z-axis and y-axis are forbidden.

Running the modal analysis with a harmonic index equal to 0, we will obtain the results
showed in the Figure 5.7. As we can see, HI = 0 is related with real modes where all the
blades vibrate in phase (when HI has different values from 0 or N/2, with N equal to the
number of sectors, it is related with complex modes). Additionally, results show how a
360 full model is not required since using the above-mentioned method we can obtain the
modal shapes with a much lower impact on computational costs (in terms of execution
time and memory used).

Other consideration are related with the unmatched nodes or elements at the interstage
boundaries of adjacent stages (note that in Figure 5.6). The used fem tool assures the
constraint equations (and so the continuity) between interstage nodes.
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Figure 5.7: Modal shape, Harmonic Index equal to 0 , Frequency = 617.8 Hz ,
Displacements in [mm] - back and front view -.

5.3 Modal Assurance Criterion (MAC)

In order to check the goodness of results obtainable using the above-mentioned method,
Modal Assurance Criterion (MAC) calculation is presented here. MAC is a statistical
indicator that is most sensitive to large differences and relatively insensitive to the small
ones in mode shapes. It is important to underline that MAC considers only modal shapes
without referring to frequency comparison (usually used in conjunction with MAC). In
this thesis, it will be used as a degree of consistency between mode shapes derived from a
360 full model with those obtained from Multistage Cyclic Symmetry application. MAC
is bounded between 0 and 1, with 1 indicating fully consistent mode shapes while 0 not
consistent ones.
Since mode matching is an important and essential step before undertaking any com-
parison, there are several modal properties that are related to it, including natural fre-
quencies, real mode shape vectors, modal masses, modal kinetic and strain energies and,
for complex modes, modal damping ratios and complex mode shapes. Between these,
one of the most popular tools for the quantitative comparison of modal vectors is the
above-mentioned Modal Assurance Criterion.
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5.3.1 MAC calculation

The MAC is calculated as the normalized scalar product of the two sets of vectors {VA}
and {VB}. Scalar results are arranged in the MAC matrix [19]:

MAC(r, q) =

⃓⃓⃓
{VA}T

r {VB}q

⃓⃓⃓2
({VA}T

r {VA}r)({VB}T
q {VB}q) ; (5.4)

the previous equation can be reformulated for complex modes of vibration as:

MAC(r, q) =

⃓⃓⃓
{ΨA}T

r {ΨB}∗
q

⃓⃓⃓2
({ΨA}T

r {ΨA}∗
r)({ΨB}T

q {ΨB}∗
q) ; (5.5)

and is clearly a real quantity, even though related to complex mode shapes.
As explained before, MAC takes value from 0 (in case of no consistent correspondence) to
1 (representing the case in which mode shape pairs exactly match). However, value larger
than 0.9 can be related to the latter case, indicating great resemblance of the two shapes.
Note that, MAC can take a value near unity even if the following reasons occur: number
of response DOFs is insufficient to distinguish between independent mode shapes; mode
shapes are a result of unmeasured forces to the system; mode shapes represent the same
motion different only by a scalar. Thus, results of a modal assurance criterion calculation
must be carefully interpreted, remembering that MAC can only indicate consistency and
not validity. As a consequence, it is mainly used in pre-test mode pairing.
Magnitude data from MAC analysis are often represented through 2D or 3D plot (Figure
5.8). Considering that MAC is a discrete calculation, what is highlighted with a color
contour plot only represents the discrete mode to mode comparison.

Figure 5.8: 3D MAC plot example.
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5.4 Results

In order to demonstrate Multistage Cyclic Symmetry functionality, in the following sub-
sections two examples will be presented: the first (case A) is related with a simple multi-
stage structure, the second (case B) is more realistic and made up of two blisks with 48
and 54 sectors.
Blisks, or Integrally Bladed Rotors (IBR), are turbomachine components comprising both
rotor disk and blades. They can be easily made using additive manufacturing or welding
together individual blades to a rotor disk. Since blisks consist of a single part instead
of disk assembled with individual removable blades, they are lighter and have better
efficiency related to air compression in the engine (up to 8%).

5.4.1 Test case A

The following case of study (Figure 5.9) regards two different stages made up of 8 and 11
sectors. Starting from the base sectors, the multistage cyclic symmetry method will be
used running a modal analysis with different harmonic indexes. Furthermore, a modal
analysis will be also run for 360 full model representing the cyclic expansion of sectors from
both stages of multistage case (Figure 5.10). This confront wants to prove the goodness
of results reached using Multistage Cyclic Symmetry as well as the advantages linked
with used resources: as we aspect, using a complete model leads to a higher execution
time and computation costs required.

Figure 5.9: Sector from stage 1 (green color) and sector from stage 2 (orange color).
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Figure 5.10: 360 full model with two stages of 8 and 11 sectors.

Before presenting results for 360 model, it is important to underline that in this kind of
analysis information about Harmonic Index (alias Nodal Diameters) are lost. So that, it
is very easy (especially for higher frequencies) confront the wrong 360 model’s mode shape
with the one from the Multistage model. As an answer to this issue, a best practice can
be to diagram displacements of each sectors (from 360 model) and define the "Harmonic
Index" referring to the half number of peaks or null displacements. So, in the following
example linked with the mode shape shown in Figure 5.11, shelves’ nodes are selected
from the lower stage (8 sectors) (Figure 5.12) and their displacements along x−,y−, and
z− axis are plot in Figure 5.13. The latter figure demonstrates how this mode is related
with a Harmonic Index equal to 4.

Figure 5.11: Modal shape of 360 full model, Frequency = 71 Hz.
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Figure 5.12: nodes selected due to extract Harmonic Index from 360 full model.

Figure 5.13: Displacements of node selected in Figure 5.12, Fr = 71 Hz.

Using this approach for all the modes from a 360 full model, confront with Multistage
model can be conducted avoiding errors. In the next pages results of modal analysis for
both models are presented.
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Figure 5.14: Modal shape, Harmonic Index equal to 2 , 360 Model Frequency = 71 Hz
(left figure), Multistage Model Frequency = 75 Hz (right figure).

Figure 5.15: Modal shape, Harmonic Index equal to 3 , 360 Model Frequency = 157 Hz
(left figure), Multistage Model Frequency = 157 Hz (right figure).

Figure 5.16: Modal shape, Harmonic Index equal to 4 , 360 Model Frequency = 198 Hz
(left figure), Multistage Model Frequency = 197 Hz (right figure).
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Figure 5.17: Modal shape, Harmonic Index equal to 4 , 360 Model Frequency = 220 Hz
(left figure), Multistage Model Frequency = 220 Hz (right figure).

Figure 5.18: Modal shape, Harmonic Index equal to 0 , 360 Model Frequency = 228 Hz
(left figure), Multistage Model Frequency = 239 Hz (right figure).

Figure 5.19: Modal shape, Harmonic Index equal to 3 , 360 Model Frequency = 240 Hz
(left figure), Multistage Model Frequency = 241 Hz (right figure).
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Figure 5.20: Modal shape, Harmonic Index equal to 4 , 360 Model Frequency = 306 Hz
(left figure), Multistage Model Frequency = 305 Hz (right figure).

Figure 5.21: Modal shape, Harmonic Index equal to 1 , 360 Model Frequency = 340 Hz
(left figure), Multistage Model Frequency = 340 Hz (right figure).

Figure 5.22: Modal shape, Harmonic Index equal to 4 , 360 Model Frequency = 461 Hz
(left figure), Multistage Model Frequency = 459 Hz (right figure).
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MAC results case A

Pointing out results obtained above, here MAC is computed for the previous analyzed
modes due to check their accuracy; results follow below.

Figure 5.23: MAC calculation: Multistage VS 360 full model (case A).

As image shows, Multistage and 360 full model have consistent mode shapes. Due to
clarify MAC results, a table, reporting the obtained MAC values and the difference in
terms of frequencies (5.6) from Multistage and 360 model, is attached below (Table 5.1).

err = |FrMS − Fr360|
FrMS

(5.6)

Mode Frequency Error (eq. 5.6) MAC
Fig. 5.14 5.63 % 0.9973
Fig. 5.15 0.32 % 0.9983
Fig. 5.16 0.51 % 1
Fig. 5.17 0.23 % 1
Fig. 5.18 4.82 % 0.9682
Fig. 5.19 0.42 % 0.9996
Fig. 5.20 0.33 % 1
Fig. 5.21 0.15 % 0.9922
Fig. 5.22 0.43 % 0.9981

Table 5.1: Modal Analysis confront between Multistage and 360 full model (case A).
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5.4.2 Test case B

In the following example two blisks are used. The first (the blue one shown in the Figure
5.24) is made up of 48 sectors, the second (the green one) consists of 54. As done in
the previous test case, starting from the base sectors, Multistage Cyclic Symmetry will
be applied due to obtain modal analysis. Results will be also compared (using MAC
computation) with the ones from a 360 full model (Figure 5.25).

Figure 5.24: Sector from stage 1 (blue color) and sector from stage 2 (green color). Left
figure shows isometric view; right one top view.

Figure 5.25: 360 full model with two stages of 48 and 54 sectors (mesh has been hided due
to obtain a clearer visualization).
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Figure 5.26: Modal shape, Harmonic Index equal to 3 , 360 Model Frequency = 1529 Hz
(left figure), Multistage Model Frequency = 1507 Hz (right figure).

Figure 5.27: Modal shape, Harmonic Index equal to 1 , 360 Model Frequency = 1521 Hz
(left figure), Multistage Model Frequency = 1525 Hz (right figure).

Figure 5.28: Modal shape, Harmonic Index equal to 0 , 360 Model Frequency = 1620 Hz
(left figure), Multistage Model Frequency = 1620 Hz (right figure).
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Figure 5.29: Modal shape, Harmonic Index equal to 4 , 360 Model Frequency = 1637 Hz
(left figure), Multistage Model Frequency = 1634 Hz (right figure).

Figure 5.30: Modal shape, Harmonic Index equal to 1 , 360 Model Frequency = 2571 Hz
(left figure), Multistage Model Frequency = 2562 Hz (right figure).

Figure 5.31: Modal shape, Harmonic Index equal to 5 , 360 Model Frequency = 4114 Hz
(left figure), Multistage Model Frequency = 4109 Hz (right figure).
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MAC results case B

Pointing out results obtained above, here MAC is computed for the previous analyzed
modes due to check their accuracy; results follow below. As image shows, Multistage

Figure 5.32: MAC calculation: Multistage VS 360 full model (case B).

and 360 full model have consistent mode shapes. Due to clarify MAC results, a table,
reporting the obtained MAC values and the difference in terms of frequencies (5.6) from
Multistage and 360 model, is attached below (Table 5.2).

Mode Frequency Error (eq. 5.6) MAC
Fig. 5.26 1.44 % 0.9873
Fig. 5.27 0.26 % 0.9913
Fig. 5.28 0.03 % 1
Fig. 5.29 0.18 % 0.9646
Fig. 5.30 0.23 % 0.9592
Fig. 5.31 0.19 % 1

Table 5.2: Modal Analysis confront between Multistage and 360 full model (case B).
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Chapter 6

Forced Response of Multistage
Cyclic Structures

A best practice during the project of a LPT, as bladed disks, is to design this component
by avoiding any coincidence of the modal response to the engine excitation. Since, in
the previous section, results from modal analysis have been presented, here a confront of
harmonic analyses obtainable with a Multistage Cyclic Symmetry and a 360 full model
is proposed for both test cases. Additionally, it is also considered the forced response of
single stages extracted from the the above-mentioned models.
For the multistage case of study forced response is computed using the "superposition
principle" (that sums factored mode shapes obtained from a previous modal analysis)
to calculate the harmonic response) following the same procedure adapted in a typical
single stage cyclic symmetry analysis. In the following examples nodal diameters, alias
harmonic index, are set for both stages with the same value. However, according to
Laxalde et al. [14], the dynamics of the multi-stage system can feature simultaneous
contributions of different nodal diameters.
In order to excite our system, a traveling wave excitation will be applied:

Fz = F0e
i·EO·th , th = {0, dth, 2 · dth, . . . ,2π − dth} , dth = 2π

nb
, (6.1)

with F0 max excitation’s value, nb number of blades and EO engine order.
Due to understand the advantages of using Multistage Cyclic Symmetry as an useful tool
coupled with Single Stage Cyclic Symmetry, forced response will be also computed for
single sector in cyclic symmetry. Even if the commercial fem tool used in this thesis does
not allow harmonic analyses for Multistages, we were able to obtain some results. Since
this problem, the 360 full model’s results will be our "reference case".
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First, a modes comparison between Single Stage, Multistage and 360 Full Model is re-
quired. Once we are sure that mode shapes are consistent, these will be excited using a
traveling wave excitation (eq. 6.1). Results follow for both test cases.

6.1 Results

As shown below, for each models harmonic analyses are computed for two main cases: the
former in which the mode shape is confined only to the single stage (that shares the same
boundary conditions of Multistage and 360 full model); the latter in which the coupling
effect between the two stages plays an important role. In this last case, analyses show
not a good matching in terms of frequency and max amplitude between the three models
(360, Multistage, Single Stage).

6.1.1 Test case A

Figure 6.1: 360 Full Model (left) vs Multistage (center) vs Single Stage (right) - Mode 1 -
Harmonic Index = 2.

Figure 6.2: Excitation applied on the upper stage. Good matching in terms of Frequency
Response in case no coupling effect is shown.
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Figure 6.3: 360 Full Model (left) vs Multistage (center) vs Single Stage (right) - Mode 4 -
Harmonic Index = 4.

Figure 6.4: Excitation applied on the upper stage. Not good matching in terms of
Frequency Response in case coupling effect is significant.
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6.1.2 Test case B

Figure 6.5: 360 Full Model (left) vs Multistage (center) vs Single Lower Stage (right) -
Mode 10 - Harmonic Index = 4.

Figure 6.6: Excitation applied on the lower stage. Good matching in terms of Frequency
Response in case no coupling effect is shown.
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Figure 6.7: 360 Full Model (left) vs Multistage (center) vs Single Lower Stage (right) -
Mode 4 - Harmonic Index = 2.

Figure 6.8: Excitation applied on the lower stage. Not good matching in terms of
Frequency Response in case coupling effect is significant.
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Chapter 7

Conclusions and future
developments

Modal Analysis

Multistage cyclic symmetry gives access to the actual shaft geometry. It is based on the
cyclic symmetry modeling of individual stages then coupled. This method appears quite
simple since coupling is possible even if stages have different interstage mesh.
In this thesis a commercial fem tool has been used due to apply cyclic symmetry to
multistage structures. So that, modal analysis has been conducted confronting results
with the ones from a 360 full model. These confronts, also in terms of MAC calculation,
prove that the Multistage Cyclic Symmetry method shows good accuracy with a less lower
computational costs compared to the full model. In the present application, complete
analysis ran in less than 5 mn, while 360 full models’ analysis ran in almost 1 hour.

Forced Response

As written above, a best practice during the project of a LPT, as bladed disks, is to
design this component by avoiding any coincidence of the modal response to the engine
excitation. So that, in this overview, harmonic analyses can be an useful substep to define
the system response to external loads. Even though the FEM tool here used does not
allow this type of analysis for a Multistage structure using cyclic symmetry, some results
(showed in the previous chapter) have been obtained and confronted to a Single stage
and a 360 full model. The last confront is necessary in order to be confident with results
from Multistage model.
Comparison between results proves how coupling effect plays an important role: both
test cases show good matching in terms of Frequency Response in case of mode shape
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confined to the single stage, while frequencies and max amplitudes are different for Single
Stage and Multistage or 360 when coupling between stages is significant.
So that, Multistage cyclic symmetry method can be an useful tool for all the cases in
which interstage coupling cannot be neglected as well as a good approach for a preliminary
assessment.
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