

Politecnico di Torino

Master of Science in Engineering and Management Academic year 2021/2022 Graduation session March/April 2022

Master Thesis Title:

Risk analysis on a car-sharing project of an electric microcar through application of PM best practices and preliminary failure analysis

Supervisor: De Marco Alberto Author:

Frale Leonardo

Co-supervisor:

Ottaviani Filippo Maria

Abstract

Can electric microcars enter the world of car sharing? What are the risks associated with this project?

These are the questions answered in this experimental thesis, which proposes a model in which both project activities and individual process activities are analysed. Starting with an initial risk identification phase, the analysis goes on with a qualitative analysis to prioritise the risks identified.

This is followed by the preliminary RAMS analysis, in which the criticalities associated with the failure of each component are examined.

In the last step, there are the conclusions based on the results obtained, and the description of the strategies to apply.

Contents

Introduc	ction		.1			
Chapter	1 - Ar	nalysis of literature	. 2			
1.1	Prin	rinciples of Risk Management				
1.2	Defi	nition of key-concepts	. 3			
1.3	Risk	Management in organizations	. 5			
1.4	Field	ds of Risk Management	. 5			
1.4	.1	Risk Management in Projects	. 6			
1.5	Risk	identification	. 8			
1.5	.1	Ishikawa diagram	. 9			
1.5	.2	Checklist	. 9			
1.5	.3	SWOT Analysis	10			
1.5	.4	Risk breakdown Structure	10			
1.6	Qua	litative Risk Analysis	11			
1.6	.1	Probability and impact matrix	12			
1.6	.2	Risk Breakdown Matrix	12			
1.7	Risk	response strategies	14			
1.8	Met	hods for failure components identification	15			
1.8	.1	FMEA and FMECA	16			
1.8	.2	Pareto chart	17			
Chapter	2 - M	ethodological research	19			
2.1	Ana	lysis of the project	19			
2.1	.1	Work Breakdown Structure	19			
2.1	.2	Risks identification	25			
2.1	.3	Risk Breakdown Structure	32			
2.2	Ana	lysis of the process	37			
2.2	.1	Process Map	38			
2.2	.2	Risks identification	40			
2.3	Qua	litative Analysis	43			
2.4	Batt	ery pack analysis	52			
2.4	.1	Composition of battery pack	52			
2.4.2		Functionality Block Diagram	54			
2.4	.3	FMECA (Failure Mode and Effect Criticality Analisys)	55			
2.4	.4	Reliability Block Diagram	64			
Chapter	3 - Re	esults	67			

3.1 Probability Impact matrix	
Chapter 4 - Conclusions	78
Bibliography	91
Sitography	91

Introduction

The aim of this thesis is to apply preliminary RAMS and Project Risk Management techniques to a real case study. It is presented the possible failures, maintenance and safety related to accidental situations of the battery pack of an electric microcar. In addition, it is introduced a Risk management analysis of the battery swap process made at service stations. The carsharing project of the car starts from the engineering phase to the commissioning stage. The project is broken down into basic activities which are analysed individually to assess which strategies might be proposed.

In the first chapter, the main objective is to provide a general overview of what is Risk Management and how it is approached with respect to electric microcars. After providing an overview, the dissertation goes into detail by analysing the preliminary RAMS techniques used in the study of battery pack limits such as a standard FMECA (Failure Mode, Effect and Criticality Analysis). Risk Management concepts used in the identification and prioritization of Process and Project risks are presented, such as: Ishikawa Diagram, SWOT Analysis, WBS (Work Breakdown Structure), RBS (Risk Breakdown Structure) and RBM (Risk Breakdown Matrix).

In the second chapter there is the presentation of the methodological research conducted, where the analysis techniques explained in the previous chapter are applied to real case in examination. The first part of the chapter deals with the aspect of Project Management applied to a car sharing project in the city of Turin. The second part of the chapter is an exploratory part, where the physical and functional limits of the battery pack are studied from an engineering point of view, through a FMECA analysis and a Reliability Block Diagram.

In the third chapter, the results obtained from the identification and prioritization of the Project risks are highlighted through bar graphs and donut charts, to understand the relevance of risks in the Project. In addition, there is the evaluation of the results obtained from the preliminary RAMS analysis to understand how much the failures can affect the SWAP service.

In the fourth chapter are drawn the conclusions on the RAMS and Risk Management analyses, proposing a strategy for Project and Process risks, which can be: accepted, avoided, transferred, or mitigated.

Chapter 1 - Analysis of literature

In this chapter are provided the basic knowledges about the Risk Management techniques used to identify and prioritize risks before their occurrence; therefore, there is the planification of some oriented actions to manage them.

1.1 Principles of Risk Management

The processes that compose a project, from the initial stages to the commissioning final phase, deal with a certain level of uncertainty. For this reason, every project must deserve a particular attention about risk management. The most important principle of this field is the dynamicity of the risk state since a risk can change its status as time goes on. The behaviour of risk management approach in companies develops and advances in coexistence with strategy and governance attitudes. The status of portfolios, programmes and projects is likely to change frequently. In fact, continuous adjustments become necessary as the organisation grow up.

Most of the time, there is a specific need for an effective and efficient identification of risks that directly affect the aims and objectives of the organisation. The key challenge for many companies is to obtain the optimal management of the available resources by focusing on the right risks. Therefore, it is important to clarify the goals, requirements, and scope of initiatives, to facilitate the identification of risks and enhance the possibility to manage them in a clever way.

For a firm, the greater is the use of risk management techniques to address critical issues, the higher the performance in terms of efficiency and business results. It is also fundamental to maintain a good propension to the continuous improvement of risk management skills, to create a sustainable competitive advantage to the detriment of competitors in the market.

1.2 Definition of key-concepts

Each company in the market must deal with uncertainty of events that can be external or internal respect to the organization. The uncertainty related to a risk can be viewed as a threat or as an opportunity, in fact it is crucial for the firm to address them reaching the prefixed goals through specific strategies.

In the following lines are described the main concepts to apply Risk Management to these uncertain events.

"An individual risk is an uncertain event or condition that, if it occurs, has a positive or negative effect on one or more objectives. Overall risk is the effect of uncertainty that affects organizational objectives at different level or aspects"¹.

A certain risk has two fundamental dimensions:

- Likelihood;
- Impact.

The likelihood is intended as the probability that a specific uncertain event can occur, instead the impact is depicted as the effect on project's objectives if the risk occur.

Let P as the probability and I as the impact, it is common to define a measure of the risk R as:

$$R = P * I$$

Empirical studies show that in risk perception the importance given to impact is far greater than that given to probability², in fact the above equation can also be interpreted as:

$$R = I^k * P$$
 with k > 1

There may also be complex systems, where n events are associated with each risk to take into account all the risks that may exist, as shown below:

¹ Project Management Institute Inc., "The standard for Risk Management in Portfolios, Programs and Projects", 2021, Global Standard, Newton Square, Pennsylvania, USA, page 7.

² Enrico Zio, "Series on Quality, Reliability and Engineering Statistics – Vol. 13, An Introduction to the basis of the reliability and risk analysis", 2007, World Scientific Publishing Co. Pte. Ltd., Singapore, page 9.

Assessing the risks by distinguishing between two components is essential. You might have two equal risk values and think they have the same characteristics; instead, one might have a high impact with low probability, the other a negligible impact with high probability.

The individual risks can affect positively or negatively the goals, single tasks completion and elements of a project. The correct understanding of individual risks provides the possibility to allocate effort and resources efficiently reaching good chances to achieve successful KPI's in the project.

There are two types of risks in terms of effects:

- The opportunities are risks with positive effects on the pursuit of objectives, in fact a good management of opportunities gives a substantial contribution to detect ways in which the goal can be reached successfully;
- The threats are risks with negative effects on the pursuit of objectives. The threat management is used to deal with these risks and actuate a planned response when is appropriate.

Threats that occur are called issues, instead the opportunity that come on are named benefits.

Another essential element is the attitude to risk taken by individuals and groups that can be risk lovers or risk averse. This attitude is determined by the strength of public commitments made on project performance and the inclination of stakeholders to take risks.

The risk threshold is a metric of the tolerable variation around a target, which reflects the organisation's risk appetite. Examples of risk thresholds are:

- minimum level of risk exposition for a given risk to be accounted in the risk register;
- maximum level of risk exposure which can be handled before escalation is initiated.

1.3 Risk Management in organizations

Risk management in the company is used to avoid issues and to reach the benefits sought by the company's strategies. Moreover, risk management helps to ensure that certain results are achieved within the constraints of the business.

Governance organisations are concerned to understand which risk management process is better for the business context and strategies. These decisions about which risk management processes to choose are left to executive management, since the achievement of certain strategic aims and the use of a certain process are strongly related. The definition of risk includes both an event affected by uncertainty that can be clearly described, as well as a more general condition that may still give rise to uncertainty. It is important to separate the concept of risk from the concepts associated with it. For example, the concepts of cause and effect have a well-defined function in their identification.

Causes are events that already exist or will certainly exist in the future, which may lead to a risk. Effects are hypothetical events which, if the risk occurs, will affect the strategic objectives of the firm.

1.4 Fields of Risk Management

Risk Management influences strategic decisions at various levels: enterprise, portfolio, programme, and project.

At the enterprise level, all strategic decisions have the goal to limit threats and maximise opportunities. The Enterprise Risk Management (ERM) of a company reflects the culture and the way in which corporate value is created and sustained. This method is different for each company and supports PDCA³ (Plan, Do, Check, Act) to continuously enhance quality of business processes. ERM can vary from year to year, depending on the surrounding environment and the risk aversion of the stakeholders. It is important to make sure that between portfolio, programme and project management, there is a coherent alignment with the ERM used by the company.

³ The PDCA or Deming cycle is an iterative process used for the continuous improvement of management cycles, through the activities of: Plan, Do, Check and Act, in <u>https://www.insic.it/tutela-ambientale/plan-do-check-act-cose-il-ciclo-di-deming-e-come-funziona/</u>

Within portfolio risk management there are three types of risks: structural, component, and overall risk. Structural risks are related to risks in the composition of projects and their interdependencies. The component risks at portfolio level are the risks that are taken to a higher level by managers to gain more information and action. The overall portfolio risk considers the sum of all individual component risks and their correlations. Portfolio Risk Management is particularly important to conduct an optimal portfolio management, where value is lost on the failure of a single component and where the risk on one component impacts the risk of other components within the portfolio. The Program Risk Management strategy, deals with defining the program risk thresholds, initialising the risk assessment, and developing the appropriate response strategy. The risk strategy at this level requires that the risk thresholds consider the organisational strategy and the risk attitude. Program risk management combines all operational risks for projects and component activities.

1.4.1 Risk Management in Projects

Project Risk Management has a life cycle starting from the planning of the risk plan to the monitoring and control of the risks.

Figure 1 Project Risk Management processes

In risk management planning it is ensured that the risk management plan is well integrated with the individual activities that make up the project itself. Risk identification is the process of deriving a list of risks, which at the project level are based on operational and contextual inputs, defined by PMI and listed below. The operational inputs are⁵:

⁴ Alberto De Marco, "Risk Management, Identification, Analysis and Response", 2021, Turin, page 17

⁵ Project Management Institute Inc., "The standard for Risk Management in Portfolios, Programs and Projects", 2021, Global Standard, Newton Square, Pennsylvania, USA, page 58.

- Project scope statement: Risks associated to the methods of delivery for products, services, or other results that are expected to be delivered by the project;
- Project life cycle: The life cycle itself introduces several risks;
- Work breakdown structure (WBS), activity list: Risks connected with the breakdown
 of project work and caused by its execution;
- Estimates: Estimates are performed in terms of time, cost, effort, and resources. The desired accuracy of an estimate is the permissible level of risk for that estimate;
- Dependencies and sequence of work: The resulting interdependencies and work sequence are risk sources;
- Procurement plans: Outsourcing parts of the project scope may be a risk transfer action, but it may also create new risks;
- Change requests: Whenever a change is applied in a project, it may eliminate some risks but also initiate new ones;
- Historical data: Since previous experience, it is important to clearly identify systemic risks and automate their treatment.

Contextual risks arise from the consideration of environmental elements of the company and other strategic or organisational aspects that shape the project environment, such as⁶:

- Stakeholder analysis: Any key player can bring a range of opportunities to be exploited; however, if poorly managed, they can bring threats that need to be mitigated;
- Business case: The business case often involves a profitability factor or a positive return on investment that is subject to some level of uncertainty or risk. The capacity to reach and maintain benefits after project closure is part of the risk identification. Risks which affect the achievement of benefits can be confronted while the project is in progress;
- Program or portfolio governance-level success factors: These elements change over time and modify the priority level of the project under the programme or portfolio.

⁶ Project Management Institute Inc., "The standard for Risk Management in Portfolios, Programs and Projects", 2021, Global Standard, Newton Square, Pennsylvania, USA, page 58.

 Enterprise environmental factors: Factors such as the strategy of the organisation, its corporate structure, the Dynamical business environment and the variability of its regulatory environment are risk elements that impact on project.

The next step is the qualitative analysis, where the risks found in the previous step are qualitatively assessed and prioritised on the basis of probability and impact. In the qualitative analysis, the data are used to perform an assessment of the combined effects on the project outcome.

In the risk response planning phase, guidelines are outlined to implement strategies and act on each risk with the correct timing.

In the monitoring phase, the effects of the strategies planned in the previous step are viewed and adjustments are made with respect to the project's progress. In this thesis, the steps of risk identification, qualitative analysis and possible risk reponses are analysed in depth.

1.5 Risk identification

The process of identifying risks is characterised by a strong dynamism and reiteration, because some risks are not immediately visible and emerge later in the course of the activities that make up the project. Risks may be determined using various techniques, therefore empirical cases and documents relating to analyses carried out on similar projects can also be taken into account. A risk owner must be identified for each risk, who will then be the responsible to implement the response strategy.

The basic technique for identifying risks is that of the cause-effect relationship. This analysis starts from a cause, understood as a trigger or condition that leads to an uncertainty (risk) relating to the cause, leading in turn to an effect on the project.

1.5.1 Ishikawa diagram

An important tool to identy risks is the Ishikawa Diagram or Fishbone Diagram, devised by Kaoru Ishikawa.

Figure 2 Ishikawa Diagram

From the image above is possible to understand how this "skeleton of a fish" works. It has generic hierarchical headings (methods, machinery, management, etc.) and continues with "ribs" representing the causes leading to the effect, presented at the head of the skeleton. The task of this analysis is to present the problems related to a specific event or field underlying the related causes. In the case of this thesis project it is very useful to analyse some aspects of the service offered by the micro HV in the car-sharing environment.

1.5.2 Checklist

Checklists for risk identification are developed on the basis of data and information gained from the history of similar projects. It helps to divide the risks into categories and

⁷ Julie Bang, Investopedia, 2020 in <u>https://www.investopedia.com/terms/i/ishikawa-</u> <u>diagram.asp#:~:text=An%20Ishikawa%20diagram%20is%20a,are%20required%20at%20specific%20times</u>

subcategories, in order to have a clear view of all the various fields that may affect the project.

1.5.3 SWOT Analysis

SWOT stands for: Strength, Weakness, Opportunity and Threat. SWOT is an analysis that applied to risks, allows to understand how they can be analysed against the 4 pivotal points of the SWOT. Strenghts and weaknesses are focused on internal factors, while Opportunities and Threats are more focused on external factors. Each of these aspects allows elements to be listed by answering certain questions for each

field.

Strengths What do you do well? What unique resources can you draw on? What do others see as your strengths?

Opportunities

What opportunities are open to you? What trends could you take advantage of? How can you turn your strengths into opportunities?

Weaknesses

What could you improve? Where do you have fewer resources than others? What are others likely to see as weaknesses?

Threats

What threats could harm you? What is your competition doing? What threats do your weaknesses expose to you?

8

Figure 3 SWOT questions

1.5.4 Risk breakdown Structure

The RBS is a hierarchical structure used and approved by Risk Management standards. It is considered as the breakdown of the project carried out in the WBS ⁹, but for the risk field. The principal scopes for which this method is used are the following¹⁰:

⁸https://www.mindtools.com/pages/article/newTMC_05.htm#:~:text=SWOT%20stands%20for%20Strength s%2C%20Weaknesses,four%20aspects%20of%20your%20business.&text=A%20SWOT%20analysis%20exam ines%20both,inside%20and%20outside%20your%20organization.

⁹ The WBS is a hierarchical structure where the complexity of the project is broken down into basic activities, called work packages. Activities are categorised by function, area of competence or in other ways.

¹⁰ Rafele, C., Hillson, D., & Grimaldi, S. (2005). Understanding project risk exposure using the two-dimensional risk breakdown matrix. Paper presented at PMI[®] Global Congress 2005—EMEA, Edinburgh, Scotland. Newtown Square, PA: Project Management Institute.

- Risk assessment: Risks that are discovered are tracked in the RBS and classified by their source. This shows the most significant sources of risk for the project, and indicates areas of interdependence or correlation between the risks;
- Comparison of alternatives: The risks related to competing bids and tenders are confrontable if the same RBS is used to structure their associated risks. This can also provide an input to understand how to manage trade-offs for alternative development options or investment decisions;
- Risk reporting: The risks are reported to different levels of stakeholders, to the project team to the senior management.

1.6 Qualitative Risk Analysis

"A qualitative risk analysis prioritizes the identified project risks using a pre-defined rating scale. Risks will be scored based on their probability or likelihood of occurring and the impact on project objectives should they occur."¹¹

As reported by the table below, qualitative analysis is used to prioritise risks with respect to probability and impact. According to the Standards of the Project Management Institute, they are classified as follows:

CO.41 E		± IMPACT ON PROJECT OBJECTIVES				
SCALE	PROBABILITY	TIME	COST	QUALITY		
VHI	61-99%	>40 days	>US\$200K	Very significant impact on overall functionality		
HI	41-60%	21-40 days	US\$101K-US\$200K	Significant impact on overall functionality		
MED	21-40%	11-20 days	US\$51K-US\$100K	Some impact in key functional areas		
LO	11-20%	6-10 days	US\$11K-US\$50K	Minor impact on overall functionality		
VLO	1-10%	1–5 day	US\$1K-US\$10K	Minor impact on secondary functions		
NIL	<1%	No change	No change	No change in functionality		

12

Figure 4 Definitions for levels of Probability and Impact on Three Specific Objectives Used to Evaluate Individual Risks

¹¹ <u>https://www.pmlearningsolutions.com/blog/qualitative-risk-analysis-vs-quantitative-risk-analysis-pmp-concept-1</u>

¹² Project Management Institute Inc., "The standard for Risk Management in Portfolios, Programs and Projects", 2021, Global Standard, Newton Square, Pennsylvania, USA, page 136.

1.6.1 Probability and impact matrix

This type of matrix is fundamental to prioritize risks for further analysis and to provide responses. Thanks to this technicque is possible understand which risks influence more the project objectives in terms of likelihood and impact.

Figure 5 Probability-Impact matrix

13

1.6.2 Risk Breakdown Matrix

The RBM is a two-dimensional matrix combining the WBS and the RBS, which are multilevel hierarchical structures. By forming this matrix it is possible to conduct a risk analysis for each work package in the project. In the cells of the matrix where there is a link between RBS and WBS, the risk is assessed by probability and impact. In this way the criticality of each work package can be assessed by adding up all the risks to which it is linked on its row, as expressed by the formula¹⁴:

¹⁴ Rafele, C., Hillson, D., & Grimaldi, S. (2005). Understanding project risk exposure using the twodimensional risk breakdown matrix. Paper presented at PMI[®] Global Congress 2005—EMEA, Edinburgh, Scotland. Newtown Square, PA: Project Management Institute.

¹³ <u>https://www.researchgate.net/figure/Probability-impact-matrix_fig1_335181838</u>

$$R_{WP,i} = \sum_{j=1}^{n} P_{i,j} * I_{i,j}$$

With:

- *R*_{WP,i} : total incidence of risks for the work package i;
- *P_{i,j}* : probability of risk j arising in the WP-i;
- $I_{i,i}$: impact of risk j in the WP-i.

A similar reasoning is applied to detect which risk has the greatest impact on the project, this is done by adding up the individual risks per column, represented in the following formula¹⁵:

$$R_{ris,i} = \sum_{i=1}^{m} P_{i,j} * I_{i,j}$$

With:

- *R_{ris,i}* : overall effect of risk source risk-j in the entire project;
- *m* : number of columns.

As a response different strategies can be implemented depending on the type of results and the firm environment. Follow three possible strategies:

- Attention can be focused on the single most significant risk with highest $R_{i,j}$, and continuing to the lowest one in decreasing order;
- The risk associated with the most critical element (work package) of the project,
 i.e. the maximum value R_{WP,i}. The risk response must focus on improving and
 making efficient the execution of that single work package;
- Considering the impact of the most relevant risk source on WPs, calculated on *R*_{ris,i}. In this case the strategy would be to reduce the presence of that particular risk source in the project.

¹⁵ Rafele, C., Hillson, D., & Grimaldi, S. (2005). Understanding project risk exposure using the twodimensional risk breakdown matrix. Paper presented at PMI[®] Global Congress 2005—EMEA, Edinburgh, Scotland. Newtown Square, PA: Project Management Institute.

1.7 Risk response strategies

After a clear identification and prioritization of the risks there are the responses application strategies that can be categorized as:

- Avoiding: The avoidance of the risks comport very strong strategic maneuvers based on the consideration of alternative solutions and the change of project objectives;
- Transferring: The risk transfer is a basic solution where the risk is transferred to stakeholders or a specific insurer, with the payment of a risk premium;
- Mitigating: The mitigation strategy include a set of possibile activities to reduce the overall risk value of the project. Some activities to take in consideration are the schedulation of the risky activities out the critical path, the resource allocation in order to minimize risk risk impact, and having frequent meetings to brainstorm on the critical risks and monitor them;¹⁶
- Accepting: The acceptance of the risk is taken in consideration when the impact and the probability risk is not relevant compared to the whole project, but it is fundamental to not forget these risks and to monitor them as the time goes on, in order to control the changes in their characteristics.

The following graphic represents the typology of strategies to apply on the basis of impact and probability.

¹⁶ Alberto De Marco, "Project Management for Facility Constructions – A Guide for Engineers and Architects", 2011, Springer, Berlin, Heidelberg, page 179

Figure 6 Main types of risk control strategies

1.8 Methods for failure components identification

Risk can also be defined as the consequence of a hazard or damage. One of the first steps in analysing a risk is to analyse it from the root, identifying the single hazards for which it may occur. Generally, this analysis is performed at the qualitative level using methodologies such as:

- Checklist
- Hazard index method
- Hierarchical trees
- System identification of release Points (SIRP)
- Failure Mode and Effect Analysis (FMEA)
- HAZard and Operability analysis (HAZOP)

The use of one of the methodologies listed above does not exclude the other. In this paper we will only give an overview of FMEA and its extension, FMECA. For more details

¹⁷ Alberto De Marco, "Project Management for Facility Constructions – A Guide for Engineers and Architects", 2011, Springer, Berlin, Heidelberg, page 178

please refer to the textbook "An introduction to the basics of reliability and risk analysis"18.

1.8.1 FMEA and FMECA

The FMEA (Failure Mode and Effect Analysis) is an analysis that goes from the particular to the general, and is used to obtain an overall assessment of the availability of the product by analysing the failure rates. This method is aimed at identifying failure modes that may affect an entire system or lead to accidents. The first step is to break down the system under consideration into individual components and identify how they operate. For each line, it is important to include the failure modes and the effects that each failure may have on the system.

An update of the FMEA is the FMECA (Failure Mode, Effect and Criticality Analysis) where for each failure mode a criticality (severity) assessment is carried out:

Negligible/Insignificant, Marginal, Critical and Catastrophic¹⁹.

There is no standard procedure for carrying out FMECA, the following is an example of how such a table should be constituted.

Unique Ref.	Function	Operational Mode	Failure Mode	Effect	S	Failure Cause(s)	0	Detection System	D	RPN

Figure 7 Simplified FMECA worksheet

20

The first column asks for a reference regarding the component being analysed, which may be an ID number or the name of the component.

¹⁸ Enrico Zio, "Series on Quality, Reliability and Engineering Statistics – Vol. 13, An Introduction to the basis of the reliability and risk analysis", 2007, World Scientific Publishing Co. Pte. Ltd., Singapore, page 11. ¹⁹ https://en.wikipedia.org/wiki/Failure mode, effects, and criticality analysis

²⁰ Domenico Maisano, "FMECA – Failure Modes, Effects & Criticality Analysis", 2021, Turin, page 26.

In the second column the function or functions, if it has more than one, of the component is required.

In the third column, the operational mode where it is explained the state in which the component operates.

In the fourth column, failure modes are identified for each component function,

understood as the failure to execute the functions in column two.

The fifth column lists the effects of the failure modes on the system.

In the sixth column the Severity is indicated, understood as the impact that the failure has on the system and on customer satisfaction.

The sixth column lists the causes for which failure modes occur.

The seventh column lists the occurrence, which is the frequency with which a failure cause occurs.

The eighth column lists the possible techniques to detect the failure cause.

In the ninth column there is the detectability index, which indicates on a scale from 1 to 10 the probability that the failure mode related to the failure cause is detected before the customer notices it (in this case a negative connotation is used for high values). In the last column the RPN (Risk Priority Number) is calculated, which is given by the following formula:

RPN = S * O * D

This index has a negative correlation and has a specific meaning and evaluation for each different FMECA.

In the analysis provided in this elaborate the RPN index is not calculated, since the product (electric microcar) has been already manufactured.

1.8.2 Pareto chart

A Pareto chart is a bar graph. The lengths of the bars represent frequency or cost (time or money). They are arranged with the longest bars on the left and the shortest on the right. In this way the graph visually represents which situations are most significant. An example follows:

Figure 8 Example of Pareto Chart for Failure Modes

21

The Pareto 80:20 rule is the most appropriate method for prioritising and classifying the failure modes of the most critical components. In fact, the Pareto analysis starts with the prioritisation (bar graph) of failure modes, placing them in decreasing order, from left to right. The bar graph is combined with a line graph indicating the cumulative RPNs in percentage terms, from highest to lowest failure.

The line graph is very helpful in understanding where the company needs to invest to minimise failures.

²¹ https://www.researchgate.net/figure/Evaluation-of-RPN-threshold-using-Pareto-chart-and-8020-principle_fig5_338754721

Chapter 2 - Methodological research

The research part of this paper focuses on a risk analysis conducted from three different perspectives:

- The project on which the risk identification and prioritisation process is focused, is
 a car-sharing project. A manufacturer of electric vehicles wants to bring its
 microcars into the world of car sharing in Turin, to support Sustainable Urban
 Mobility, which has become a priority in the logistics of metropolitan cities;
- The battery swap process performed by a technician at the charging stations, whenever the customer has low batteries during a trip, or if he/she needs assistance;
- The battery pack is analysed in its individual components as a subsystem of the microcar system. It was chosen because it is the part affected during the process of battery swap.

2.1 Analysis of the project

The carsharing project was analysed regarding its risks using the Risk Breakdown Matrix. To do this, the risk management process started with a decomposition of the project by the WBS, then moved on to the identification of the risks with the appropriate identification methods. The latter led to the ramification of the Risk Breakdown Structure which, combined with the WBS, constitutes the model created for this specific project.

2.1.1 Work Breakdown Structure

In the first breakdown of the WBS the project is divided into six areas: Engineering, Agreements, Procurement, Building and civil works, Employees and Commissioning.

Each phase, in turn, branches out to form the most basic activities of the Work Breakdown Structure. As for the Engineering phase, it is understood as the phase in which the engineering of the charging stations needed for the car-sharing project is performed. It is divided into:

- Basic Design: a primitive design of how charging stations should be structured is provided;
- Detailed Engineering: the basic design carried out in the previous step is deepened and it is provided the final version of how the service stations should be built or modified;
- Submission and approval of engineering set of drawings: the detailed engineering output is sent and possibly approved by the competent authorities.

The next phase is the Agreements phase, where all agreements between the entities influencing the carsharing project, both public and private, are defined. This phase is divided into two parts:

- Partners' agreement: Agreements are defined between the partner companies in the car-sharing project, including: the company producing the micro EVs that supplies the vehicles used for the project, the company responsible for building or modifying the infrastructure, and other minor partnerships;
- Agreements with public entities: Agreements and permits with public bodies are defined for the erection of new stations and the commissioning of car-sharing.

Figure 11 Agreement's phase

The third phase is procurement, which branches out into:

- Procurement of the necessary material for the facility construction: Negotiations are carried out to procure raw materials in order to erect charging stations or modify existing ones;
- **Procurement of the necessary EVs**: Car-sharing company procures the necessary number of electric microcars to start the project.

Figure 12 Procurement Phase

The following phase is focused on Building and civil works which is composed of:

- **Clearing sites for new stations**: The places where the new charging stations are to be erected must be cleared for the start of works;
- Construction of charging station sites: The construction phase is itself divided into
 - Site preparation: The location where the work is to be done is prepared;
 - Foundations: Foundations are built from where charging stations can be constructed;
 - **Station erection:** Charging stations are built.
- Upgrade stations: If there are charging stations (already in use) that can be adapted to the new battery swap service offered, work is carried out directly on the following stations.

Figure 13 Building and civil works Phase

One of the crucial phases is the Employees' phase, where technical staff is recruited and trained on how the battery swap should be performed taking the appropriate precautions.

Figure 14 Employees Phase

The last phase is Commissioning, which represents the testing of the service and the launch on the market.

Figure 15 Commissioning Phase

These are all the components of the project, which is represented in its entirety as a WBS.

2.1.2 Risks identification

The identification of project risks is based on the techniques outlined in the Project Management Standards. The Risk Breakdown Structure is based on a checklist developed from historical information and from similar projects.

In the RBS six risk areas have been identified: Technical risk (TR), Project Management risk (PMR), Economic/Market risk (EMR), Commercial Risk (CR), Social/Environment risk (SER), External Risk (ER).

2.1.2.1 Ishikawa Diagram

The risk analysis was deepened with an Ishikawa Diagram where the safety of the micro EV is analysed, with the following hierarchical headings: Environment, Materials, Personnel, Driver.

The following analysis is based on a hybrid risk identification of project and process, in fact all the risks found in this type of analysis are explained, some risks being both process and project risks.

For the sake of simplicity, the risks directly linked to the causes, for which the safety of the electric vehicle is jeopardised, are shown below (unlike the classic fishbone diagram where only the causes are shown).

All the gills that make up the fishbone are analysed in the following branches:

Environment

The environment can be an element that can affect the customer experience, several risks have been identified that could affect the project:

- Traffic: Traffic can affect the driver's driving experience (process risk);
- Environmental/Weather: the risk that there may be dangerous weather, more generally the risk that there may be climatic or environmental impediments to the provision of the service (hybrid risk);
- Lights: City lights can affect the driver's visibility during the driving experience while driving (process risk);
- Topography: The risk that the topographical surveys applied to the technical map of the city of Turin were not conducted correctly (process risk);

• Urbanization: The presence of physical elements that can disturb the driven experience of the customer, such as: not signalled roundabouts, road condition, construction sites, etc. (Process risk)

Materials

Another area where the causes of possible vehicle unsafety have been analysed is that of materials, where those ones identified are:

- Suppliers reliability: Occurs, if something during the procurement of elements to perform the service goes wrong (project risk);
- Quality materials: Risk that the material used is different from the specifications indicated in the project (project risk);
- Choice materials: It represents the risk that the choice of materials during the engineering phase is incorrect (project risk).

Personnel

Figure 18 Personnel Branch

Within the Personnel, the risks shown in the image above have been identified. These are mainly process risks. They are reported in the following lines:

- Insufficient training of technicians: It represents the risk that the technicians are not trained properly to perform the work during the swap service (hybrid risk);
- Lack of attention during swap: It represents the risk that technicians do not take care enough about the work to perform (process risk);
- Lack of positive attitude toward work: It represents the risk that technicians do not take care enough about the work to perform (hybrid risk).

Driver

Figure 19 Driver Branch

In this section of the diagram has been analysed risks that may arise from the characteristics of the driver during the usufruition of the services, such as:

- Experience attitude: Experience to drive of customer (process risk);
- Driver inattention: Accident due to driver inattention like: anxiety or inappropriate physical condition (process risk).

2.1.2.2 SWOT Analysis

SWOT analysis is a managerial tool used to analyse the influence of internal factors (strengths and weaknesses) and external factors (opportunities and threats) on the project. This makes it possible to outline the shape of the present and future organisation by identifying its risks.

The following SWOT analysis has the aim to evaluate the service provided by the carsharing project and going more depth the process of battery swap, in fact some of the risks found below for internal factors have influence on both process and project. This happen because most of the process risks participate in the commissioning phase of the project. However, as in the previous analysis for each risk it will be indicated if it is involved in hybrid (both process and project), project or process field.

Figure 20 SWOT Analysis

The risks identified section by section are explained below:

Strenghts

- Zero charging time: Charging time is cancelled thanks to battery swap service (hybrid risk);
- Car compactness: Small and compact micro EVs to deal with travelling and parking in the city (hybrid risk);

- Less degradation: Less degradation of EVs components compared to other types of cars and consequently less maintainability costs (hybrid risk);
- Noiseless and sustainable cars: The micro EVs do not emit noises or vibrations, therefore they have zero emissions of CO2 (hybrid risk).

Weaknesses

- Trip length: It represents the risk that the vehicle can stop during a long trip, since Micro EVs are not suitable for this kind of rides (process risk);
- Insufficient training of technicians: It represents the risk that the technicians are not well trained to perform the work during the swap service (hybrid risk);

Threats

- Competition: This refers to the threats of other battery charging projects and battery swaps, thus of those businesses that are considered competitors. There are several entities in the current market for charging structures (Biro Estrima, Tazzari ZZero Junior, Aixam City Pack, Citroen Ami) (project risk);
- Not reached segment: More conservative people will not join the swap project now, especially segments of market like laggards in the Rogers Adoptive Curve (project risk);
- Safety of car reputation: small cars are therefore easier to destroy than the medium size cars (theme exploited in the Ishikawa Diagram).

Opportunities

- Restricted traffic zones: Electric microcars can enter restricted traffic zones (such as Area C in Milan and Via Garibaldi in Turin) free of charge (project risk);
- Target group: The extension of target group beyond teenagers to workers in big cities (project risk);
- Market growth: The society of the future will become sustainable, and these technologies will be increasingly in vogue (project risk).

2.1.3 Risk Breakdown Structure

The Risk Breakdown Structure below lists and classifies the risks associated with the project against the different levels that comprise the structure.

LEVEL 0	LEVEL 1	LEVEL 2		
	TECHNICAL RISKS	SCOPE DEFINITION		
		REQUIREMENTS' DEFINITION		
		ESTIMATES, ASSUMPTIONS, AND		
		CONSTRAINTS		
		TECHNOLOGY		
		FAILURES OF COMPONENTS		
		MAINTENANCE		
		LESS DEGRADATION		
		UNSATISFACTORY SWAP SERVICE		
		QUALITY MATERIALS		
		CHOICE OF MATERIALS		
ALL		TRIP LENGTH		
SOURCES	PROJECT MANAGEMENT RISK	COMPLETION RISK		
PROJECT		RELATED PROGRAM/PORTFOLIO		
RISK		MANAGEMENT		
ЛЭК		INADEQUATE MANAGEMENT		
		EXPERIENCE		
		OPERATIONS MANAGEMENT		
		RESOURCING		
		LACK OF COMMUNICATION		
		MISALLOCATION OF RIGHTS AND		
		RESPONSIBILITIES		
		POOR FUND SUPERVISION		
	ECONOMIC/MARKET RISKS	FINANCIAL RISK		
		INFLATION		
		REVENUE RISK		
		COMPETITION		
--	--------------------------	----------------------------------		
		MARKET GROWTH		
		NOT REACHED SEGMENT		
		TARGET GROUP		
	COMMERCIAL RISK	CONTRACTUAL TERMS AND CONDITIONS		
		SUPPLIERS RELIABILITY		
		PARTNERSHIPS AND JOINT VENTURES		
	SOCIAL/ENVIRONMENT RISKS	PUBLIC OPPOSITION		
		ENVIRONMENTAL RISK		
		NOISELESS AND SUSTAINABLE CARS		
		TRAFFIC		
		LIGHTS		
		TOPOGRAPHY		
		URBANIZATION		
		CAR COMPACTNESS		
		RESTRICTED TRAFFIC ZONES		
	EXTERNAL RISKS	CHANGE IN POLICY AND LAW		
		(LEGILATION)		
		DELAYS IN PROJECT APPROVALS AND		
		PERMITS		
		EXCHANGE RATES		
		SITE/FACILITIES		
		ENVIRONMENTAL/WEATHER		

Table 1 Project Risk Breakdown Structure

In the following table there are all the descriptions of the identified risks that are related to the Project.

RISK NAME	RISK DESCRIPTION
SCOPE DEFINITION	Changes in the scope may arise during the development of
	the project or redundant scopes may be discovered.
REQUIREMENTS'	What the customer wants to achieve or the usage the
DEFINITION	customer wants to attribute to the service changes over

	time.
ESTIMATES, ASSUMPTIONS,	The foresight assumed are not considered trustworthy.
AND CONSTRAINTS	
TECHNOLOGY	The risk may arise if the technology becomes obsolete.
FAILURES OF COMPONENTS	There could be some failures in the components involved
	in the swap of the battery during the extraction or
	insertion phases.
MAINTENANCE	The risk that some maintenance procedures are not
	executed properly.
LESS DEGRADATION	Less degradation of components and less maintainability
	compared to other types of cars.
UNSATISFACTORY SWAP	This refers to the quality and efficiency of the swap service
SERVICE	which is unable to meet the demand of EV drivers, which
	directly affects the project's income.
QUALITY MATERIALS	Risk that the material used is different from the
	specifications indicated in the project.
CHOICE OF MATERIALS	It represents the risk that the choice of materials during
	the engineering phase is incorrect.
TRIP LENGTH	It represents the risk that the vehicle can stop during a
	long trip, since Micro EVs are not suitable for this kind of
	rides.
COMPLETION RISK	This refers to the risk that the project cannot be
	completed within the planned timeframe due to
	insufficient staffing, financial difficulties, inadequate
	management experience, and so on.
RELATED	The impact that the issues/opportunities of the current
PROGRAM/PORTFOLIO	project may have on all other related projects or on the
MANAGEMENT	whole portfolio of firm.
INADEQUATE	The management board could not have the proper
MANAGEMENT EXPERIENCE	experience on this kind of project, then this led to human
	errors.

OPERATIONS	The risk of loss resulting from ineffective or failed internal
MANAGEMENT	processes, people, systems, or external events that may
	disrupt the flow of business operations.
RESOURCING	It is related to the possibility to have lack/absence of
	critical resources like charged batteries, raw materials for
	stations or technicians.
LACK OF COMMUNICATION	It indicates the risk that there is poor communication
	between operators inside the project or a lack of
	communication towards external entities.
MISALLOCATION OF RIGHTS	Agreements loosely define responsibilities and
AND RESPONSIBILITIES	commitments, which causes alterations and shirks their
	responsibilities.
POOR FUND SUPERVISION	Inadequate supervision of funds can lead to a loss of
	control over their use, which will result in indiscriminate
	use of funds and subsidies.
FINANCIAL RISK	Insufficient funds and change of interest rates interested
	from banks' loans, since this type of projects requires
	copious amounts of funds.
INFLATION	A rise in the price level leads to a reduction of purchasing
	power in terms of money and then increase staff cost and
	materials prices, increasing construction and operating
	costs.
REVENUE RISK	It represents the risk that the profits are lower than the
	anticipated revenue. This is since this type of innovation is
	still not in the stage of maturity, then the market price of
	the services can be initially lower than the cost to provide
	it.
COMPETITION	This refers to the threats of other battery charging
	projects and battery swaps, thus of those businesses that
	can be considered competitors. There are several entities
	in the current market that can copy the service of swap
	charging structures (Biro Estrima, Tazzari ZZero Junior,
	25

NOT REACHED SEGMENT More conservative per now, especially segme NOT REACHED SEGMENT More conservative per now, especially segme Rogers Adoptive Curve Rogers Adoptive Curve TARGET GROUP The extension of target Workers in big cities. CONTRACTUAL TERMS AND It occurs if the contract It occurs if the contract	re will become sustainable, and I be increasingly in vogue. ople will not join the swap project nts of market like laggards in the e. t group beyond teenagers (16+) to ts are not done properly and there onditions not defined in the uring the procurement of elements
NOT REACHED SEGMENT More conservative per now, especially segme NOT REACHED SEGMENT More conservative per now, especially segme Rogers Adoptive Curve Rogers Adoptive Curve TARGET GROUP The extension of targe Workers in big cities. CONTRACTUAL TERMS AND It occurs if the contract is the verification of contract	ople will not join the swap project nts of market like laggards in the e. t group beyond teenagers (16+) to ts are not done properly and there onditions not defined in the
now, especially segme Rogers Adoptive Curve TARGET GROUP The extension of targe workers in big cities. CONTRACTUAL TERMS AND It occurs if the contract CONDITIONS is the verification of contract	nts of market like laggards in the e. t group beyond teenagers (16+) to ts are not done properly and there onditions not defined in the
Rogers Adoptive Curve TARGET GROUP The extension of targe workers in big cities. CONTRACTUAL TERMS AND It occurs if the contract CONDITIONS is the verification of contract	e. t group beyond teenagers (16+) to ts are not done properly and there onditions not defined in the
TARGET GROUP The extension of target workers in big cities. CONTRACTUAL TERMS AND It occurs if the contract is the verification of contract of contract is the verification of contract of	t group beyond teenagers (16+) to ts are not done properly and there onditions not defined in the
workers in big cities.CONTRACTUAL TERMS ANDIt occurs if the contractCONDITIONSis the verification of contract	ts are not done properly and there onditions not defined in the
CONTRACTUAL TERMS ANDIt occurs if the contractCONDITIONSis the verification of contract	onditions not defined in the
CONDITIONS is the verification of co	onditions not defined in the
contracts.	uring the procurement of elements
	uring the procurement of elements
SUPPLIERS RELIABILITY Occurs, if something d	J ,
to perform the service	goes wrong (project risk);
PARTNERSHIPS AND JOINT It represents the possi	bility which occur other new
VENTURES partnerships or joint v	entures.
PUBLIC OPPOSITION This risk stems from p	ublic opposition due to improper
site selection and ever	ntual safety concerns.
ENVIRONMENTAL RISK It indicates types of po	Ilution as noise and dust during the
construction stage, wi	I bring negative effects to the
project.	
NOISELESS AND The micro EVs do not e	emit noises or vibrations, therefore
SUSTAINABLE CARS they have zero emission	ons of CO2.
TRAFFIC Traffic can affect the d	river's driving experience.
LIGHTS City lights can affect the	ne driver's visibility during the
driving experience wh	ile driving.
TOPOGRAPHY The risk that the topog	graphical surveys applied to the
technical map of the c	ity of Turin were not conducted
correctly.	
URBANIZATION The presence of physic	cal elements that can disturb the
driven experience of t	he customer, such as: roundabouts,
road condition, constr	

CAR COMPACTNESSThe micro-EV is small and compact, perfectly in line with actual requirements of the customers in big cities.RESTRICTED TRAFFIC ZONESElectric microcars can enter restricted traffic zones (such as Area C in Milan and Via Garibaldi in Turin) free of charge.CHANGE IN POLICY ANDChange of legislation concerning electric microcars and battery swaps.DELAYS IN PROJECTThis refers to the fact that the bureaucratic process of permits is often complicated, which causes less time efficiency that can affect the project.EXCHANGE RATESThe risk of a change in value between two monetary currencies during transactions to purchase equipment and materials.SITE/FACILITIESIt indicates the possibility that a certain site or facility is not suitable for the storage of charge battery or is not comfortable to provide the service of swap battery.ENVIRONMENTAL/WEATHERThe risk that there may be dangerous weather, more generally the risk that there may be climatic or environmental impediments to the provision of the		
RESTRICTED TRAFFIC ZONESElectric microcars can enter restricted traffic zones (such as Area C in Milan and Via Garibaldi in Turin) free of charge.CHANGE IN POLICY ANDChange of legislation concerning electric microcars and battery swaps.DELAYS IN PROJECTThis refers to the fact that the bureaucratic process of permits is often complicated, which causes less time efficiency that can affect the project.EXCHANGE RATESThe risk of a change in value between two monetary currencies during transactions to purchase equipment and materials.SITE/FACILITIESIt indicates the possibility that a certain site or facility is not suitable for the storage of charged battery or is not comfortable to provide the service of swap battery.ENVIRONMENTAL/WEATHERThe risk that there may be dangerous weather, more generally the risk that there may be climatic or environmental impediments to the provision of the	CAR COMPACTNESS	The micro-EV is small and compact, perfectly in line with
as Area C in Milan and Via Garibaldi in Turin) free of charge.CHANGE IN POLICY AND LAW (LEGISLATION)Change of legislation concerning electric microcars and battery swaps.DELAYS IN PROJECT APPROVALS AND PERMITSThis refers to the fact that the bureaucratic process of permits is often complicated, which causes less time efficiency that can affect the project.EXCHANGE RATESThe risk of a change in value between two monetary currencies during transactions to purchase equipment and materials.SITE/FACILITIESIt indicates the possibility that a certain site or facility is not suitable for the storage of charged battery or is not comfortable to provide the service of swap battery.ENVIRONMENTAL/WEATHERThe risk that there may be dangerous weather, more generally the risk that there may be climatic or environmental impediments to the provision of the		actual requirements of the customers in big cities.
charge.CHANGE IN POLICY AND LAW (LEGISLATION)Change of legislation concerning electric microcars and battery swaps.DELAYS IN PROJECT APPROVALS AND PERMITSThis refers to the fact that the bureaucratic process of permits is often complicated, which causes less time efficiency that can affect the project.EXCHANGE RATESThe risk of a change in value between two monetary currencies during transactions to purchase equipment and materials.SITE/FACILITIESIt indicates the possibility that a certain site or facility is not suitable for the storage of charged battery or is not comfortable to provide the service of swap battery.ENVIRONMENTAL/WEATHERThe risk that there may be dangerous weather, more generally the risk that there may be climatic or environmental impediments to the provision of the	RESTRICTED TRAFFIC ZONES	Electric microcars can enter restricted traffic zones (such
CHANGE IN POLICY ANDChange of legislation concerning electric microcars and battery swaps.DELAYS IN PROJECTThis refers to the fact that the bureaucratic process of permits is often complicated, which causes less time efficiency that can affect the project.EXCHANGE RATESThe risk of a change in value between two monetary currencies during transactions to purchase equipment and materials.SITE/FACILITIESIt indicates the possibility that a certain site or facility is not suitable for the storage of charged battery or is not comfortable to provide the service of swap battery.ENVIRONMENTAL/WEATHERThe risk that there may be dangerous weather, more generally the risk that there may be climatic or environmental impediments to the provision of the		as Area C in Milan and Via Garibaldi in Turin) free of
LAW (LEGISLATION)battery swaps.DELAYS IN PROJECTThis refers to the fact that the bureaucratic process of permits is often complicated, which causes less time efficiency that can affect the project.EXCHANGE RATESThe risk of a change in value between two monetary currencies during transactions to purchase equipment and materials.SITE/FACILITIESIt indicates the possibility that a certain site or facility is not suitable for the storage of charged battery or is not comfortable to provide the service of swap battery.ENVIRONMENTAL/WEATHERThe risk that there may be dangerous weather, more generally the risk that there may be climatic or environmental impediments to the provision of the		charge.
DELAYS IN PROJECTThis refers to the fact that the bureaucratic process of permits is often complicated, which causes less time efficiency that can affect the project.EXCHANGE RATESThe risk of a change in value between two monetary currencies during transactions to purchase equipment and materials.SITE/FACILITIESIt indicates the possibility that a certain site or facility is not suitable for the storage of charged battery or is not comfortable to provide the service of swap battery.ENVIRONMENTAL/WEATHERThe risk that there may be dangerous weather, more generally the risk that there may be climatic or environmental impediments to the provision of the	CHANGE IN POLICY AND	Change of legislation concerning electric microcars and
APPROVALS AND PERMITSpermits is often complicated, which causes less time efficiency that can affect the project.EXCHANGE RATESThe risk of a change in value between two monetary currencies during transactions to purchase equipment and materials.SITE/FACILITIESIt indicates the possibility that a certain site or facility is not suitable for the storage of charged battery or is not comfortable to provide the service of swap battery.ENVIRONMENTAL/WEATHERThe risk that there may be dangerous weather, more generally the risk that there may be climatic or environmental impediments to the provision of the	LAW (LEGISLATION)	battery swaps.
efficiency that can affect the project.EXCHANGE RATESThe risk of a change in value between two monetary currencies during transactions to purchase equipment and materials.SITE/FACILITIESIt indicates the possibility that a certain site or facility is not suitable for the storage of charged battery or is not comfortable to provide the service of swap battery.ENVIRONMENTAL/WEATHERThe risk that there may be dangerous weather, more generally the risk that there may be climatic or environmental impediments to the provision of the	DELAYS IN PROJECT	This refers to the fact that the bureaucratic process of
EXCHANGE RATESThe risk of a change in value between two monetary currencies during transactions to purchase equipment and materials.SITE/FACILITIESIt indicates the possibility that a certain site or facility is not suitable for the storage of charged battery or is not comfortable to provide the service of swap battery.ENVIRONMENTAL/WEATHERThe risk that there may be dangerous weather, more generally the risk that there may be climatic or environmental impediments to the provision of the	APPROVALS AND PERMITS	permits is often complicated, which causes less time
currencies during transactions to purchase equipment and materials. SITE/FACILITIES It indicates the possibility that a certain site or facility is not suitable for the storage of charged battery or is not comfortable to provide the service of swap battery. ENVIRONMENTAL/WEATHER The risk that there may be dangerous weather, more generally the risk that there may be climatic or environmental impediments to the provision of the		efficiency that can affect the project.
materials. SITE/FACILITIES It indicates the possibility that a certain site or facility is not suitable for the storage of charged battery or is not comfortable to provide the service of swap battery. ENVIRONMENTAL/WEATHER The risk that there may be dangerous weather, more generally the risk that there may be climatic or environmental impediments to the provision of the	EXCHANGE RATES	The risk of a change in value between two monetary
SITE/FACILITIES It indicates the possibility that a certain site or facility is not suitable for the storage of charged battery or is not comfortable to provide the service of swap battery. ENVIRONMENTAL/WEATHER The risk that there may be dangerous weather, more generally the risk that there may be climatic or environmental impediments to the provision of the		currencies during transactions to purchase equipment and
not suitable for the storage of charged battery or is not comfortable to provide the service of swap battery.ENVIRONMENTAL/WEATHERThe risk that there may be dangerous weather, more generally the risk that there may be climatic or environmental impediments to the provision of the		materials.
comfortable to provide the service of swap battery. ENVIRONMENTAL/WEATHER The risk that there may be dangerous weather, more generally the risk that there may be climatic or environmental impediments to the provision of the	SITE/FACILITIES	It indicates the possibility that a certain site or facility is
ENVIRONMENTAL/WEATHER The risk that there may be dangerous weather, more generally the risk that there may be climatic or environmental impediments to the provision of the		not suitable for the storage of charged battery or is not
generally the risk that there may be climatic or environmental impediments to the provision of the		comfortable to provide the service of swap battery.
environmental impediments to the provision of the	ENVIRONMENTAL/WEATHER	The risk that there may be dangerous weather, more
		generally the risk that there may be climatic or
		environmental impediments to the provision of the
service.		service.

Table 2 Project risks description

2.2 Analysis of the process

This section defines the step-by-step process of battery SWAP at the charging station. The real innovation in this project is the elimination of charging time when the batteries need to be recharged. In fact, the customer can go directly to the charging station, where specialised technicians will serve him, and have his discharged batteries exchanged for charged ones in a very short time. In this way the user benefits from the service in a very simple and fluid way, without having to wait for the battery to be charged.

2.2.1 Process Map

The Process Map is a tool that establishes the flowchart of the process through the individual steps. It shows who and what is involved in a process and may reveal areas in which a process should be improved.

The battery swap process map has two actors: Customer and Technician. In the following diagram, the map is divided in three phases.

Initial phase

In the initial phase it starts with the customer arriving at the service station, then there is a decision-making step where he has to decide whether he wants to use the battery swap service or not. If yes, the technician takes the empty batteries and checks that they are in good condition; if not, the customer swaps the microcar for the nearest free one or waits for the batteries to be charged at the service station.

Figure 21 Initial Phase Process Map

Intermediate phase

In the intermediate phase there is a decision-making step on the upper side, where the technician assesses the state of health of the batteries. If the result is positive, he goes to the charging storage and exchanges the charged batteries with the discharged ones he has just detected. If the result is negative, he reports faults to the maintenance centre and takes new batteries for the micro HV.

Figure 22 Intermediate Phase Process Map

Final phase

In the final stage the technician returns to the micro HV and inserts the charged batteries into the vehicle, after which the process ends with the departure and use of the vehicle

by the customer.

Figure 23 Final Phase Process Map

2.2.2 Risks identification

Process risks are all those risks related to the individual activities described in the Process Map. They have been identified through the use of the ABM (agent-based model), used to simulate the behaviour of autonomous agents in the system and the interaction between them.

The following pictures shows the possible risks for each activity.

Figure 24 Agent-Based Model Part one

In each of the first five steps of the process, the following risks were identified:

- Failure accidents: Accident due to vehicle failures;
- Driver inattention: Accident due to driver inattention (anxiety, physical condition);
- Different language: A foreign client does not know the home country language and there could be some problems in the communication with the technician;
- No microcar available: There are not micro HV available in the case where the user don't want to use the swap service;

- Wrong check of battery state: It represents the risk that during the check of the battery health something is not executed properly;
- Deterioration: The batteries extracted from the micro HV are deteriorated;
- Blocked battery: The battery is blocked in the vehicle and is not possible to extract it.

Figure 25 Agent-Based Model Part two

As regard the last five steps of the process, the following risks were identified:

- Dysfunctionality in charging: During the switch, the technician takes a battery that is not charged correctly;
- No availability of batteries: In the battery storage there are not available batteries;
- Technician illness: The technician has a sudden illness;
- Lack of positive attitude toward work: It represents the risk that technicians do not take care enough about the work to perform (contain 7.1, 7.2 and 8.2);
- Wrong insertion of charged batteries: The technician does not insert well the batteries, and do not make contact with the interfaces concerned;
- Departure accident: It happens an accident in the departure phase after the swap.

2.3 Qualitative Analysis

In the qualitative analysis carried out on the project and process, values from 1 to 5 (likelihood and impact) were assigned to each link between risk and work package.

To identify to which work packages refers each risk, they will be associated with an ID code in the table below:

ID CODE	WORK PACKAGE
1	ENGINEERING
1.1	BASIC DESIGN
1.2	DETAILED ENGINEERING
1.3	SUBMISSION AND APPROVAL OF
1.5	ENGINEERING SET OF DRAWINGS
2	AGREEMENTS
2.1	PARTNERS' AGREEMENTS
2.2	AGREEMENTS WITH PUBLIC ENTITIES
3	PROCUREMENT
	PROCUREMENT OF THE NECESSARY
3.1	MATERIAL FOR THE FACILITY
	CONSTRUCTION
3.2	PROCUREMENT OF THE NECESSARY EVs
4	BUILDING AND CIVIL WORKS

4.1	CLEARING SITES FOR THE NEW STATIONS
4.2	CONSTRUCTION OF CHARGING STATION
4.2	SITES
4.2.1	SITE PREPARATION
4.2.2	FOUNDATIONS
4.2.3	STATION ERECTION
4.3	UPGRADE STATIONS
5	EMPLOYEES
5.1	TRAINING AND RECRUITING OF
5.1	TECHNICIANS
6	COMMISSIONING
6.1	DELIVERING AND TESTING OF THE SERVICE
CH1	CUSTOMER ARRIVES TO THE ELECTRIC
	STATION (OR DEPARTURE FROM THE
	STATION)
CH2	EXTRACTION OF THE DISCHARGED
	BATTERIES
CH3	CHECK OF OUTGOING BATTERIES
	CONDITION
EM1	TECHNICIAN GOES TO THE STORAGE TO
	MAKE THE SWAP
EM2	SIGNALING EVENTUAL ANOMALIES
EM3	VEHICLE OR BATTERY IMMEDIATE
	MAINTENANCE
EM4	THE TECHNICIAN SENDS THE FAULTY
	COMPONENTS TO THE REPAIR CENTRES
EM5	TAKE NEW BATTERIES FROM THE STORAGE
EM6	RETURN TO THE MICROCAR AND INSERT
	THE CHARGED BATTERY
UE1	THE CUSTOMER DRIVES A SHORT ROUTE
UE2	THE CUSTOMER DRIVES A LONG ROUTE

Table 3 Identification codes of the WBS

RISK NAME	QUALITATIVE EVALUATION ON WPs
SCOPE DEFINITION	1.1 → P = 2 ; I = 1
	1.2 → P = 2 ; I = 1
	1.3 → P = 2 ; I = 1
	2.1 → P = 1 ; I = 1
	2.2 → P = 1 ; I = 1
	$3.1 \rightarrow P = 1; I = 2$
	3.2 → P = 1 ; I = 2
	4.1 → P = 1 ; I = 1
	4.2.1 → P = 1 ; I = 1
	4.2.2 → P = 1 ; I = 3
	4.2.3 → P = 1 ; I = 3
	4.3 → P = 1 ; I = 3
	5.1 → P = 1 ; I = 3
	6.1 → P = 1 ; I = 3
REQUIREMENTS' DEFINITION	2.1 → P = 2 ; I = 2
	2.2 → P = 2 ; I = 2
	3.1 → P = 2 ; I = 3
	3.2 → P = 2 ; I = 3
	5.1 → P = 2 ; I = 3
	6.1 → P = 3 ; I = 4
	CH3 → P = 2 ; I = 3
	EM2 → P = 2 ; I = 3
ESTIMATES, ASSUMPTIONS, AND	2.1 → P = 2 ; I = 3
CONSTRAINTS	2.2 → P = 2 ; I = 3
	3.1 → P = 2 ; I = 4
	3.2 → P = 2 ; I = 4
	5.1 → P = 2 ; I = 3

The following table shows the assigned probability (P) and impact (I) values for each risk related with the indicated Work Packages expressed in form of ID code.

TECHNOLOGY	$6.1 \rightarrow P = 1; I = 4$
FAILURES OF COMPONENTS	$CH2 \rightarrow P = 2; I = 4$
	EM4 → P = 2 ; I = 4
	EM6 → P = 2 ; I = 4
MAINTENANCE	EM2 → P = 2 ; I = 4
	EM3 → P = 2 ; I = 4
	EM4 → P = 2 ; I = 4
LESS DEGRADATION	6.1 → P = 5 ; I = 3
	CH2 → P = 5 ; I = 1
	EM3 → P = 5 ; I = 3
	EM4 → P = 5 ; I = 3
UNSATISFACTORY SWAP SERVICE	6.1 → P = 2 ; I = 4
QUALITY MATERIALS	3.1 → P = 2 ; I = 4
	3.2 → P = 2 ; I = 4
	4.2 → P = 2 ; I = 5
	4.2.1 → P = 2 ; I = 5
	4.2.2 → P = 2 ; I = 5
	4.2.3 → P = 2 ; I = 5
CHOICE OF MATERIALS	1.1 → P = 2 ; I = 4
	1.2 → P = 2 ; I = 4
	1.3 → P = 2 ; I = 4
TRIP LENGTH	6.1 → P = 2 ; I = 4
	UE2 → P = 2 ; I = 4
COMPLETION RISK	3.1 → P = 4 ; I = 3
	3.2 → P = 4 ; I = 3
	$4.1 \rightarrow P = 4; I = 4$
	4.2 → P = 4 ; I = 4
	4.2.1 → P = 4 ; I = 4
	4.2.2 → P = 4 ; I = 4
	4.2.3 → P = 4 ; I = 4
RELATED PROGRAM/PORTFOLIO	3.2 → P = 2 ; I = 3
MANAGEMENT	5.1 → P = 2 ; I = 3
l	

	6.1 → P = 2 ; I = 3
INADEQUATE MANAGEMENT EXPERIENCE	$2.1 \rightarrow P = 1; I = 3$
	2.2 → P = 1 ; I = 3
	$3.1 \rightarrow P = 1; I = 3$
	3.2 → P = 1 ; I = 3
	6.1 → P = 1 ; I = 3
OPERATIONS MANAGEMENT	2.1 → P = 2 ; I = 3
	2.2 → P = 2 ; I = 3
	3.1 → P = 2 ; I = 3
	3.2 → P = 2 ; I = 3
	5.1 → P = 2 ; I = 3
	6.1 → P = 2 ; I = 3
RESOURCING	$3.1 \rightarrow P = 1; I = 4$
	3.2 → P = 1 ; I = 4
	EM5 → P = 1 ; I = 4
	EM6 → P = 1 ; I = 4
LACK OF COMMUNICATION	1.1 → P = 2 ; I = 3
	1.2 → P = 2 ; I = 3
	1.3 → P = 2 ; I = 3
	2.1 → P = 2 ; I = 3
	2.2 → P = 2 ; I = 3
	3.1 → P = 2 ; I = 4
	3.2 → P = 2 ; I = 4
	4.1 → P = 2 ; I = 3
	4.2 → P = 2 ; I = 3
	4.2.1 → P = 2 ; I = 3
	4.2.2 → P = 2 ; I = 3
	4.2.3 → P = 2 ; I = 3
	5.1 → P = 3 ; I = 3
	EM2 → P = 2 ; I = 4
	EM4 → P = 2 ; I = 4
MISALLOCATION OF RIGHTS AND	$2.1 \rightarrow P = 1; I = 3$

RESPONSIBILITIES	2.2 → P = 1 ; I = 3
POOR FUND SUPERVISION	3.1 → P = 2 ; I = 3
	3.2 → P = 2 ; I = 3
	4.1 → P = 2 ; I = 3
	4.2 → P = 2 ; I = 3
	4.2.1 → P = 2 ; I = 3
	4.2.2 → P = 2 ; I = 3
	4.2.3 → P = 2 ; I = 3
	6.1 → P = 2 ; I = 3
FINANCIAL RISK	$2.1 \rightarrow P = 1; I = 4$
	2.2 → P = 1 ; I = 4
	3.1 → P = 1 ; I = 4
	3.2 → P = 1 ; I = 4
	5.1 → P = 1 ; I = 4
INFLATION	2.1 → P = 2 ; I = 3
	2.2 → P = 2 ; I = 3
	3.1 → P = 2 ; I = 3
	3.2 → P = 2 ; I = 3
	5.1 → P = 2 ; I = 3
	6.1 → P = 2 ; I = 3
REVENUE RISK	6.1 → P = 2 ; I = 3
COMPETITION	6.1 → P = 5 ; I = 3
MARKET GROWTH	6.1 → P = 3 ; I = 4
NOT REACHED SEGMENT	6.1 → P = 3 ; I = 2
TARGET GROUP	6.1 → P = 4 ; I = 3
CONTRACTUAL TERMS AND CONDITIONS	2.1 → P = 1 ; I = 4
	2.2 → P = 1 ; I = 4
SUPPLIERS RELIABILITY	$3.1 \rightarrow P = 2; I = 4$
	3.2 → P = 2 ; I = 4
PARTNERSHIPS AND JOINT VENTURES	$2.1 \rightarrow P = 1; I = 4$
PUBLIC OPPOSITION	4.1 → P = 1 ; I = 3

	$4.2 \rightarrow P = 1; I = 3$
	$4.2.1 \rightarrow P = 1; I = 3$
	$4.2.2 \rightarrow P = 1; I = 3$
	4.2.3 → P = 1 ; I = 3
ENVIRONMENTAL RISK	4.1 → P = 5 ; I = 2
	4.2 → P = 5 ; I = 2
	4.2.1 → P = 5 ; I = 2
	4.2.2 → P = 5 ; I = 2
	4.2.3 → P = 5 ; I = 2
NOISELESS AND SUSTAINABLE CARS	$6.1 \rightarrow P = 5; I = 5$
	CH1 → P = 5 ; I = 3
	UE1 → P = 5 ; I = 3
	UE2 → P = 5 ; I = 3
TRAFFIC	CH1 → P = 5 ; I = 2
	UE1 → P = 5 ; I = 2
	UE2 → P = 5 ; I = 2
LIGHTS	CH1 → P = 5 ; I = 2
	UE1 → P = 5 ; I = 2
	UE2 → P = 5 ; I = 2
TOPOGRAPHY	$UE1 \rightarrow P = 2; I = 1$
	UE2 → P = 2 ; I = 1
URBANIZATION	CH1 → P = 3 ; I = 2
	UE1 → P = 3 ; I = 2
	UE2 → P = 3 ; I = 2
CAR COMPACTNESS	6.1 → P = 5 ; I = 4
	CH1 → P = 5 ; I = 3
	UE1 → P = 5 ; I = 4
	UE2 → P = 5 ; I = 1
RESTRICTED TRAFFIC ZONES	6.1 → P = 5 ; I = 3
	UE1 → P = 4 ; I = 3
CHANGE IN POLICY AND LAW (LEGILATION)	2.1 → P = 2 ; I = 3
	2.2 → P = 2 ; I = 3

DELAYS IN PROJECT APPROVALS AND	1.3 → P = 2 ; I = 3
PERMITS	2.2 → P = 2 ; I = 3
EXCHANGE RATES	2.2 → P = 3 ; I = 2
	3.1 → P = 3 ; I = 2
SITE/FACILITIES	$4.1 \rightarrow P = 1; I = 4$
	$4.2 \rightarrow P = 1; I = 4$
	4.2.1 → P = 1 ; I = 4
	4.2.2 → P = 1 ; I = 4
ENVIRONMENTAL/WEATHER	6.1 → P = 1 ; I = 4
	CH1 → P = 1 ; I = 4
	CH2 → P = 1 ; I = 4
	CH3 → P = 1 ; I = 4
	$EM1 \rightarrow P = 1; I = 4$
	$EM2 \rightarrow P = 1; I = 4$
	EM3 → P = 1 ; I = 4
	$EM4 \rightarrow P = 1; I = 4$
	EM5 → P = 1 ; I = 4
	$EM6 \rightarrow P = 1$; $I = 4$
FAILURE ACCIDENTS	CH1 → P = 2 ; I = 3
	CH3 → P = 2 ; I = 3
	EM6 → P = 2 ; I = 3
EXPERIENCE ATTITUDE	CH1 → P = 2 ; I = 3
	UE1 \rightarrow P = 2; I = 3
	UE2 → P = 2 ; I = 3
DIRVER INATTENTION	$CH1 \rightarrow P = 1; I = 3$
	UE1 \rightarrow P = 1; I = 3
	UE2 \rightarrow P = 1; I = 3
DIFFERENT LANGUAGE	$CH1 \rightarrow P = 1; I = 1$
	EM2 → P = 1 ; I = 2
BLOCKED BATTERY	$CH2 \rightarrow P = 2; I = 3$
DETERIORATION	CH3 → P = 2 ; I = 3
	EM2 → P = 2 ; I = 3
L	1

	EM3 → P = 2 ; I = 3
	EM4 → P = 2 ; I = 3
DYSFUNCTIONALITY IN CHARGING	$EM1 \rightarrow P = 2; I = 4$
	EM5 → P = 2 ; I = 4
NOT AVAILABLE BATTERIES	$EM1 \rightarrow P = 1; I = 4$
	EM2 → P = 1 ; I = 4
	EM5 → P = 1 ; I = 4
TECHNICIAN ILLNESS	CH2 → P = 1; I = 5
	CH3 → P = 1; I = 5
	EM1 → P = 1 ; I = 5
	EM2 → P = 1 ; I = 5
	EM4 → P = 1 ; I = 5
	EM5 → P = 1 ; I = 5
	EM6 → P = 1 ; I = 5
WRONG INSERTION OF CHARGED	$EM6 \rightarrow P = 1; I = 4$
BATTERIES	
DEPARTURE ACCIDENT	CH1 → P = 1 ; I = 4
INSUFFICIENT TRAINING OF TECHNICIANS	5.1 → P = 2 ; I = 4
	CH3 → P = 2 ; I = 5
	EM1 → P = 2 ; I = 5
	EM2 → P = 2 ; I = 5
	EM4 → P = 2 ; I = 5
	EM5 → P = 2 ; I = 5
	EM6 → P = 2 ; I = 5
LACK OF POSITIVE ATTITUDE TOWARD	5.1 → P = 2 ; I = 3
WORK	CH2 → P = 2 ; I = 3
	CH3 → P = 2 ; I = 3
	EM1 → P = 2 ; I = 3
	EM2 → P = 2 ; I = 3
	EM4 → P = 2 ; I = 3
	EM5 → P = 2 ; I = 3
	EM6 → P = 2 ; I = 3
	1

NO MICROCAR AVAILABLE	CH1 → P = 1 ; I = 4
WRONG CHECK OF BATTERY STATE	CH3 → P = 2 ; I = 5
ZERO CHARGING TIME	6.1 → P = 5 ; I = 4
	EM6 → P = 5 ; I = 3

Table 4 Qualitative analysis evaluation

2.4 Battery pack analysis

In this paragraph the battery pack of the electric microcar is represented and analyzed via FMECA, considered the most influential element during the battery SWAP to the charging station.

2.4.1 Composition of battery pack

The battery pack is a subsystem that is carefully examined to understand how faults can occur on individual components and how the HV can be affected.

The following image shows a basic representation of how the battery pack is constructed.

COMPISITION OF BATTERY PACK

Figure 26 Representation of battery pack

There are three lithium batteries with series connection. They use power connectors and sensor connectors, in addition to centring pins used to provide mechanical support for the battery, without placing it completely on screws or connectors. The sensor connectors are wired to a Battery Management System which acts as the mind of the battery pack and evaluates all the input data provided by the sensors. The power connectors, on the other hand, are connected by cables to the converter, which manages the voltage of the electrical current flowing to the motor.

2.4.2 Functionality Block Diagram

The FBD (Functionality Block Diagram) is a tool used to describe how a system operates and all the interrelationships between the components.

The diagram below describes the division of the system in the red zone (electric current side) and green zone (sensors' signals side), represented by R-components and how they operate together.

In this block diagram it can be seen that there are two parts connected to the battery pack: one connected to the sensors and one connected to the electric current.

In the central block, which runs from R 2.1 to R 2.3, the electrical current circulates between the batteries in series, until it reaches the extremes, where the cables lead up to the converter, which first operates on the voltage and then delivers the electrical current to the motor. On the other hand, in the lower part it is possible to see how there is a unidirectional flow of data acquired by the sensors to the BMS via cables.

2.4.3 FMECA (Failure Mode and Effect Criticality Analisys)

In this section, through the use of an FMECA proposed by Teoresi Group Spa, on the basis of the one presented in chapter 1, the faults that may be present on the battery pack have been analysed. The FMECA analysis it is divided into the following sections:

Component Name, Component Function, Operation Mode, Component failure rate, Failure mode percentage, Failure mode, Failure cause, Local effects, System effects, Vehicle effects (Reliability), Vehicle effects (Safety), Detection, Maintenance, Mitigation, Failure mode failure rate, Frequency, Severity, Criticality.

Quantitative data on component failure rates are taken from Teoresi Group Spa databases; they are based on vehicle components used for similar projects.

Frequency classification is associated with failure mode failure rate values, categorized as follows:

Frequent	>1e-3
Probable	<1e-3
Occasional	<1e-4
Rare	<1e-5
Improbable	<1e-7
Highly improbable	<1e-9

Table 5 Frequency categorization table of electric automotive industry

Frequency of occurrence of an accident (caused by a hazard)	Risk Acceptance Categories					
Frequent	Undesirable	Intolerable	Intolerable	Intolerable		
Probable	Tolerable	Undesirable	Intolerable	Intolerable		
Occasional	Tolerable	Undesirable	Undesirable	Intolerable		
Rare	Negligible	Tolerable	Undesirable	Undesirable		
Improbable	Negligible	Negligible	Tolerable	Undesirable		
Highly improbable	Negligible	Negligible	Negligible	Tolerable		
	Insignificant	Marginal	Critical	Catastrophic		
	Severity of an accident (caused by a hazard)					

While the failure mode classification is constructed based on the following table:

Table 6 Risk acceptance categories based on electric automotive industry

For space reasons, each row has been divided in three parts that are presented in a subsequent way. Therefore the FMECA excel table has been divided into several section per component:

2.4.3.1 Battery

Component Name	Component Function	Operation mode	Component failure rate (10^-6)	Failure mode percentage (%)	Failure Mode
	PROVIDES	ALL	3,00E-05	50%	CONNECTOR OXIDATION
BATTERY	CURRENT	MICROCAR IN USE OR MAINTENANCE	3,00E-05	25%	STRUCTURAL (MECHANICAL) BATTERY DAMAGE
	THE MOTOR OF THE MICRO-HV	ALL	3,00E-05	25%	INTERNAL BATTERY (ELECTRICAL) DAMAGE

Failure Cause	Local effects	System effects	Vehicle effects (Reliability)	Vehicle effects (Safety)
WEAR AND TEAR AND LACK OF PROPER MAINTENANCE	BAD CONTACT AND THE CONNECTOR GETS OVERHEATED	THE POWER IS NOT THE REQUIRED ONE	TO BE DEFINED	TO BE DEFINED
VIBRATION AND MECHANICAL SHOCK THAT COULD HAPPEN DURING THE TRIPS OR DURING THE BATTERY SWAP	BATTERY IS LEAKING LIQUID	REDUCED BATTERY PERFORMANCE	TO BE DEFINED	TO BE DEFINED
ELECTRICAL OR MECHANICAL SHOCK	BATTERY PERFORMANCE GOES DOWN	REDUCED BATTERY PERFORMANCE	TO BE DEFINED	TO BE DEFINED

Detection	Maintenance	Mitigation	Failure mode failure rate (10^- 6)	Frequency	Severity	Criticality
DURING MAINTENANCE, DURING USE OF THE VEHICLE IF THERE IS A MALFUNCTION OR DURING BATTERY SWAP	NOT GIVEN	THE SENSORS SIGNAL THE CHANGE IN POWER AND MAINTENANCE IS DONE	1,50E-05	RARE	MARGINAL	TOLERABLE
DURING MAINTENANCE, DURING USE OF THE VEHICLE IF THERE IS A MALFUNCTION OR DURING BATTERY SWAP	NOT GIVEN	THE SENSORS SIGNAL THE CHANGE IN POWER AND MAINTENANCE IS DONE	7,50E-06	RARE	MARGINAL	TOLERABLE
DURING MAINTENANCE, DURING USE OF THE VEHICLE IF THERE IS A MALFUNCTION OR DURING BATTERY SWAP	NOT GIVEN	THE SENSORS SIGNAL THE CHANGE IN POWER AND MAINTENANCE IS DONE	7,50E-06	RARE	MARGINAL	TOLERABLE

2.4.3.2 Centring pins

Component Name	Component Function	Operation mode	Component failure rate (10^-6)	Failure mode percentage (%)	Failure Mode	Failure Cause
CENTRING PINS	GIVE THE BATTERY STABILITY BY KEEPING IT IN GOOD CONTACT WITH SENSORS AND POWER CONNECTORS	MICROCAR IN USE OR MAINTENANCE	2,00E-07	100%	STOP SUPPORTING THE BATTERY ADEQUATELY	MECHANICAL SHOCK OR INADEQUATE MAINTENANCE

Local effects	System effects	Vehicle effects (Reliability)	Vehicle effects (Safety)	Detection	Maintenance
THERE IS NO					
MECHANICAL				DURING	
SUPPORT AND	THE BATTERY MAY			MAINTENANCE,	
THERE MAY BE	BECOME	TO BE	TO BE	DURING USE OF THE	
POSSIBLE	DISCONNECTED AND	DEFINED	DEFINED	VEHICLE IF THERE IS A	NOT GIVEN
DAMAGE TO	DAMAGED FOT THE	DEFINED	DEFINED	MALFUNCTION OR	
THE	WHOLE SYSTEM			DURING BATTERY	
CONNECTORS				SWAP	
AND BATTERIES					

Mitigation	Failure mode failure rate (10^-6)	Frequency	Severity	Criticality
THE CASE ALLOWS THE BATTERY TO REMAIN SOLIDLY IN PLACE	2,00E-07	IMPROBABLE	MARGINAL	NEGLIGIBLE

2.4.3.3 Power connectors

Component Name	Component Function	Operation mode	Component	Failure mode percentage (%)	Failure Mode	Failure Cause
POWER CONNECTORS	AND PLUG-IN	MICROCAR IN USE OR MAINTENANCE	3,00E-06	100%	STOP TRANSMITTING	MECHANICAL SHOCK OR SHORT CIRCUIT

Local effects	System effects	Vehicle effects (Reliability)	Vehicle effects (Safety)	Detection	Maintenance
NO POWER	THE MOTOR DOES			DURING THE USE	
TRANSMISSION	NOT RECEIVE POWER	TO BE	TO BE	OF THE VEHICLE OR	NOT GIVEN
FROM THE	AND THE SYSTEM	DEFINED	DEFINED	THROUGH A	NOT GIVEN
BATTERIES	DOES NOT FUNCTION			SENSOR ALERT	

Mitigation	Failure mode failure rate (10^-6)	Frequency	Severity	Criticality
NO MITIGATION	3,00E-06	RARE	MARGINAL	TOLERABLE

2.4.3.4 Battery power sensors

Component Name	Component Function	Operation mode	Component failure rate (10^-6)	Failure mode percentage (%)	Failure Mode	Failure Cause
M	MONITOR THE CORRECT FUNCTIONING AND STATUS OF CHARGE OF THE BATTERY	ALL	5,00E-06	33%	CHARGE DETECTION SENSORS PROVIDE FALSE POSITIVES	INTERNAL SENSOR FAILURE
BATTERY POWER SENSORS		ALL	5,00E-06	33%	CHARGE DETECTION SENSORS PROVIDE FALSE NEGATIVES	INTERNAL SENSOR FAILURE
		ALL	5,00E-06	34%	SENSORS DO NOT PROVIDE SIGNALS	SENSORS DAMAGE

Local effects	System effects	Vehicle effects (Reliability)	Vehicle effects (Safety)	Detection
IT IS SIGNALED A CHARGE STATUS LOWER THAN THE REAL ONE	NO EFFECT ON THE SYSTEM	TO BE DEFINED	TO BE DEFINED	VEHICLE DIAGNOSTICS
IT IS SIGNALED A CHARGE STATUS HIGHER THAN THE REAL ONE	NO EFFECT ON THE SYSTEM	TO BE DEFINED	TO BE DEFINED	VEHICLE DIAGNOSTICS
NO SIGNAL FLOW INTO THE BATTERY MANAGEMENT SYSTEM	THE SYSTEM DOES NOT DETECT THE BATTERY STATUS	TO BE DEFINED	TO BE DEFINED	VEHICLE DIAGNOSTICS

Maintenance	Mitigation	Failure mode failure rate (10^-6)	Frequency	Severity	Criticality
NOT GIVEN	DIAGNOSTIC REDUNDANCY	1,65E-06	RARE	INSIGNIFICANT	NEGLIGIBLE
NOT GIVEN	DIAGNOSTIC REDUNDANCY	1,65E-06	RARE	INSIGNIFICANT	NEGLIGIBLE
NOT GIVEN	DIAGNOSTIC REDUNDANCY	1,70E-06	RARE	INSIGNIFICANT	NEGLIGIBLE

2.4.3.5 Temperature sensors

Component Name	Component Function	Operation mode	Component failure rate (10^-6)	Failure mode percentage (%)	Failure Mode	Failure Cause
	MONITOR THE CORRECT FUNCTIONING AND STATUS TEMPERATURE OF THE BATTERY	ALL	5,00E-06	33%	TEMPERATURE SENSORS PROVIDE FALSE NEGATIVES	INTERNAL SENSOR FAILURE
TEMPERATURE SENSORS		ALL	5,00E-06	33%	TEMPERATURE SENSORS PROVIDE FALSE POSITIVES	INTERNAL SENSOR FAILURE
		ALL	5,00E-06	34%	TEMPERATURE SENSORS DO NOT PROVIDE SIGNALS	SENSOR DAMAGE

Local effects	System effects	Vehicle effects (Reliability)	Vehicle effects (Safety)	Detection	Maintenance
THE SENSOR DETECTS A TEMPERATURE LOWER THAN THE REAL ONE	BATTERY OVERHEATING RISK	TO BE DEFINED	TO BE DEFINED	DURING THE MAINTENANCE	NOT GIVEN
THE SENSOR SIGNALS AN HIGHER TEMPERATURE THAN THE REAL ONE	NO EFFECT ON THE SYSTEM, BUT THERE IS THE BLOCKING OF A BATTERY IF THE REPORTED TEMPERATURE IS TOO HIGH.	TO BE DEFINED	TO BE DEFINED	DURING THE MAINTENANCE	NOT GIVEN
NO SIGNAL FLOW INTO THE BATTERY MANAGEMENT SYSTEM	THE SYSTEM DOES NOT DETECT THE BATTERY STATUS	TO BE DEFINED	TO BE DEFINED	VEHICLE DIAGNOSTICS	NOT GIVEN

Mitigation	Failure mode failure rate (10^-6)	Frequency	Severity	Criticality
NO MITIGATION	1,65E-06	RARE	MARGINAL	TOLERABLE
NO MITIGATION	1,65E-06	RARE	INSIGNIFICANT	NEGLIGIBLE
DIAGNOSTICS	1,70E-06	RARE	INSIGNIFICANT	NEGLIGIBLE

2.4.3.6 Internal screws

Component Name	Component Function	Operation mode	Component failure rate (10^-6)	Failure mode percentage (%)	Failure Mode	Failure Cause
INTERNAL SCREWS	KEEP CENTRING PINS, CONNECTORS AND SENSORS FIRMLY IN PLACE	MICROCAR IN USE OR MAINTENANCE	2,00E-07	100%		BAD MAINTENANCE OR SHOCK & VIBRATION

Local effects	System effects	Vehicle effects (Reliability)	Vehicle effects (Safety)	Detection	Maintenance
POSSIBLE	THE BATTERY PACK IS			DURING THE USE OF	
	MECHANICALLY	TO BE	TO BE	THE VEHICLE IF	
CONNECTORS,	DAMAGED AND THE	DEFINED	DEFINED	THERE IS A	NOT GIVEN
BATTERIES	SYSTEM OPERATION	DEFINED		MALFUNCTION OR	
AND CABLES	MAY BE DAMAGED			AN ALERT	

Mitigation	Failure mode failure rate (10^-6)	Frequency	Severity	Criticality
THE CASE ALLOWS THE BATTERY TO REMAIN SOLIDLY IN PLACE	2,00E-07	IMPROBABLE	MARGINAL	NEGLIGIBLE

2.4.3.7 Sensor cables

Component Name	Component Function	Operation mode	Component failure rate (10^-6)	Failure mode percentage (%)	Failure Mode	Failure Cause
SENSOR CABLES	TRANSFER SIGNALS FROM THE SENSORS TO THE BATTERY MANAGEMENT SYSTEM	MICROCAR IN USE OR MAINTENANCE	3,00E-06	100%	DO NOT CARRY SIGNAL	TOTAL/PARTIAL CABLE DAMAGE OR BAD MAINTENANCE

Local effects	System effects	Vehicle effects (Reliability)	Vehicle effects (Safety)	Detection	Maintenance
NO SIGNAL FLOW INTO THE BATTERY MANAGEMENT SYSTEM	THE SYSTEM DOES NOT DETECT THE BATTERY STATUS	TO BE DEFINED	TO BE DEFINED	DIAGNOSTICS AND MAINTENANCE	NOT GIVEN

Mitigation	Failure mode failure rate (10^-6)	Frequency	Severity	Criticality	
DIAGNOSTIC	3.00E-06	RARE	MARGINAI	TOLERABLE	
REDUNDANCY	3,002 00			I O LEIWIDEE	

2.4.3.8 Power cables

Component Name	Component Function	Operation mode	Component failure rate (10^-6)	Failure mode percentage (%)	Failure Mode	Failure Cause
POWER F CABLES F	TRANSFER ELECTRICAL ENERGY	MICROCAR IN USE OR MAINTENANCE	4,00E-06	90%	THE CABLE IS BROKEN OR BURNED	TOTAL/PARTIAL CABLE DAMAGE OR BAD MAINTENANCE
	FROM THE POWER CONNECTOR TO THE CONVERTER	MICROCAR IN USE OR MAINTENANCE	4,00E-06	10%	THE CABLE MAKES CONTACT WITH THE CASE	SHEATH USURY

Local effects	System effects	Vehicle effects (Reliability)	Vehicle effects (Safety)	Detection	Maintenance
THE CABLE	I DON'T HAVE			DURING THE USE	EVERY 6
DOES NOT	ELECTRIC POWER	TO BE	TO BE	OF THE VEHICLE	MONTHS OR
CARRY	IN/OUT FROM THE	DEFINED	DEFINED	OR BATTERIES	5000 km
ELECTRICITY	SYSTEM			SWAP	5000 KIII
THE CABLE IS					
NO LONGER	THE CASE COULD GIVE			DURING VEHICLE	EVERY 6
ISOLATED	ELECTRIC SHOCK AND	TO BE	TO BE	USAGE THE	MONTHS OR
FROM THE	THE OPERATOR COULD	DEFINED	DEFINED	POWER SENSORS	5000 km
REST OF THE	TAKE THE SHOCK			DETECT IT	JUUU KIII
SYSTEM					

Mitigation	Failure mode failure rate (10^-6)	Frequency	Severity	Criticality
NO MITIGATION	3,60E-06	RARE	MARGINAL	TOLERABLE
THE CASE HAS A GROUNDING THAT DISCHARGES POSSIBLE VOLTAGES, ALSO THE TECHNICIANS MUST USE PROTECTIONS DURING THE SWAP	4,00E-07	IMPROBABLE	CRITICAL	TOLERABLE

2.4.4 Reliability Block Diagram

In the Reliability Block Diagram is explained the type of link between the components and how these connections can affect the overall failure rates of the power system (red) and the sensors system (green).

In the following lines there is the legend by which the component diagram:

- R1: Battery Management System;
- R2: Battery;
- R3: Motor;
- R4: Converter;
- R5: Power connector;
- R6: Battery control sensor;
- R7: Power cable;
- R8: Sensor cable.

In terms of the sensor system, it is important to specify that there are multiple sensors for each conduction line. They detect more than one parameter, for example, temperature and battery state of charge are two of them. For simplicity they have been grouped in the single element R6.

Figure 28 Sensors path

In order to have an index of the reliability, the overall failure rate of the sensor system is calculated. The data used are the individual component failure rates obtained in the FMECA.

The first step is to calculate the failure rate for each branch, since the values for each of the three branches are equal just calculate one:

$$R 2.1 * R 6.1 * R 8.1 = R 2.2 * R 6.2 * R 8.2 = R 2.3 * R 6.3 * R 8.3$$

Substituting the number the result is:

$$3 * 10^{-5} * 5 * 10^{-6} * 3 * 10^{-6} = 4.5 * 10^{-16}$$

The next step is to calculate the total failure rate. Knowing the failure rate of each sensor branch the result will be as follows:

$$[1 - (1 - R 2, 6, 8)^3] * R1$$

When calculating the failure rate on parallel elements, it is always good to ask how many X elements/branches of the Y parallel elements/branches of the system must operate for the

system to work. In this case 1 out of 3 is enough and the formula used is the following $1 - (1 - R)^3$.

The value of Battery Management System is not given and for this reason R1 is not transformed in a quantitative value.

Substituting the number the result is:

$$[1 - (1 - 4.5 * 10^{-16})^3] * R1 = 0$$

The failure rate of the sensory system is approximately 0.

The power system of electric current is entirely in series, so it is easy to calculate it with the following formula:

 $R \ 7.1 * R \ 5.1 * R \ 2.1 * R \ 5.2 * R \ 7.2 * R \ 5.3 * R \ 2.2 * R \ 5.4 * R \ 7.3 * R \ 5.5 * R \ 2.3 * R \ 5.6 * R \ 7.4 \\ * R \ 4 * R \ 3 = Rtot$

Figure 29 Electric current path

The values of the converter and of the motor are not given and for this reason R4 and R3 are not transformed in quantitative values.

$$4 * 10^{-6} * 3 * 10^{-6} * 3 * 10^{-5} * 3 * 10^{-6} * 4 * 10^{-6} * 3 * 10^{-6} * 3 * 10^{-5} * 3 * 10^{-6} * 4$$

* 10⁻⁶ * 3 * 10⁻⁶ * 3 * 10⁻⁵ * 3 * 10⁻⁶ * 4 * 10⁻⁶ * R 4 * R 3
= 5.038848 * 10⁻⁶⁹ * R 3 * R 4

Chapter 3 - Results

This chapter presents the output results of the identification and qualitative analysis phases of the project and process.

A strong assumption that was made in performing the analysis is that all the activities have the same weight in the project. In the proposed excel model it is sufficient to add the cost of each unit to calculate the EMV (estimated monetary value).

In the first graph all risks are represented in terms of their influence on the project, i.e. how much each risk can influence the whole project in percentage terms.

The analysis shows that the risks with the highest percentages are:

- Completion risk (16,64%);
- Lack of communication (16,16%).

These are the risks with the highest incidence not because of the probability and impact values, but for the number of times they are involved in WBS work package activities.

The risks with the lowest impact include:

- Different language (0,48%);
- No microcar available (0.64%);
- Departure accident (0,64%);
- Wrong insertion of charged batteries (0,64%);
- Partnerships & Joint ventures (0,64%);
- Technology (0,64%);

In the second graph a study was made on how WPs influence each risk, so that it can be seen graphically how heterogeneous a risk is in this sense.

For example, there are risks like "Scope definition", which influences many WPs but it is not particularly relevant. Other risks with a positive impact on the project (opportunities), on the other hand, have relevance even if they do not influence many activities, such as:

- Zero charging time;
- Noiseless and sustainable cars;
- Less degradation;

There are also several minor risks affecting a single WP, for example:

- Wrong check of battery state;
- No microcar available;
- Departure accident;
- Target group;
- Not reached segment;
- Market growth;
- Competition;
- Reventue risk;
- etc.

Graph 2 Risk heterogeneity

- BASIC DESIGN
- SUBMISSION AND APPROVAL OF ENGINEERING SET OF DRAWINGS
- PARTNERS' AGREEMENTS
- AGREEMENTS WITH PUBLIC ENTITIES
- PROCUREMENT OF THE NECESSARY MATERIAL FOR THE FACILITY CONSTRUCTION
- PROCUREMENT OF THE NECESSARY MATERIAL FOR THE MICRO EVS
- SUBMISSION AND APPROVAL OF ENGINEERING SET OF DRAWINGS
- CLEARING SITES FOR NEW STATIONS
- SITE PREPARATION
- FOUNDATIONS
- STATION ERECTION
- UPGRADE STATIONS
- TRAINING AND RECRUITMENT OF TECHNITIANS
- DELIVERING AND TESTING OF THE SERVICE
- CUSTOMER ARRIVES TO THE ELECTRIC STATION (OR DEPARTURE FROM THE STATION)
- EXTRACTION OF THE DISCHARGED BATTERIES
- CHECK OF OUTGOING BATTERIES CONDITION
- TECHNICIAN GOES TO THE STORAGE TO MAKE THE SWAP
- SIGNALING EVENTUAL ANOMALIES
- VEHICLE OR BATTERY IMMEDIATE MAINTENANCE
- THE TECHNICIAN SENDS THE FAULTY COMPONENTS TO THE REPAIR CENTRES
- TAKE NEW BATTERIES FROM THE STORAGE
- RETURN TO THE MICROCAR AND INSERT THE CHARGED BATTERY
- THE CUSTOMER DRIVES A SHORT ROUTE
- THE CUSTOMER DRIVES A LONG ROUTE

For the representation of the third analysis a doughnut graph was chosen, where the weight of each WP on the project is represented.

It can be seen that the one with the highest percentage by far is "Delivering and testing of the service", while those with a lower relative weight are:

- Basic design;
- Detailed engineering;

• Submission and approvals of engineering set of drawings;

This result is due to the fact that in this case the risks associated with the engineering factor are low and related only to the engineering phase.

3.1 Probability Impact matrix

In this section the Probability and impact matrix technique was applied, where the parameters expressed in Section 1.6 were used for the values expressed on the y-axis and the x-axis. It is important to say that the following analysis, is based on the evaluation of each risk on the activities to which it is linked, and not as previously on all the activities of the project as a whole. In this way, the number of links that a risk has with the WPs of the project or process is not influential.

For simplicity and better understanding of the matrix, the risks have been numbered. The following table shows the correlations between the risks and their ID number.

RISK FACTORS NAME	RISK FACTORS ID
SCOPE DEFINITION	R1
REQUIREMENTS' DEFINITION	R2
ESTIMATES, ASSUMPTIONS, AND CONSTRAINTS	R3
TECHNOLOGY	R4
FAILURES OF COMPONENTS	R5
MAINTENANCE	R6
LESS DEGRADATION	R7
UNSATISFACTORY SWAP SERVICE	R8
QUALITY MATERIALS	R9
CHOICE OF MATERIALS	R10
TRIP LENGTH	R11
COMPLETION RISK	R12
RELATED PROGRAM/PORTFOLIO MANAGEMENT	R13
INADEQUATE MANAGEMENT EXPERIENCE	R14
OPERATIONS MANAGEMENT	R15
RESOURCING	R16
LACK OF COMMUNICATION	R17
MISALLOCATION OF RIGHTS AND RESPONSIBILITIES	R18
POOR FUND SUPERVISION	R19

FINANCIAL RISK	R20
INFLATION	R21
REVENUE RISK	R22
COMPETITION	R23
MARKET GROWTH	R24
NOT REACHED SEGMENT	R25
TARGET GROUP	R26
CONTRACTUAL TERMS AND CONDITIONS	R27
SUPPLIERS RELIABILITY	R28
PARTNERSHIPS AND JOINT VENTURES	R29
PUBLIC OPPOSITION	R30
ENVIRONMENTAL RISK	R31
NOISELESS AND SUSTAINABLE CARS	R32
TRAFFIC	R33
LIGHTS	R34
TOPOGRAPHY	R35
URBANIZATION	R36
CAR COMPACTNESS	R37
RESTRICTED TRAFFIC ZONES	R38
CHANGE IN POLICY AND LAW (LEGISLATION)	R39
DELAYS IN PROJECT APPROVALS AND PERMITS	R40
EXCHANGE RATES	R41
SITE/FACILITIES	R42
ENVIRONMENTAL/WEATHER	R43
FAILURE ACCIDENTS	R44
EXPERIENCE ATTITUDE	R45
DRIVER INATTENTION	R46
DIFFERENT LANGUAGE (FOREIGN CUSTOMER)	R47
BLOCKED BATTERY	R48
DETERIORATION	R49
DYSFUNCTIONALITY IN CHARGING	R50

NOT AVAILABLE BATTERIES	R51
TECHNICIAN ILLNESS	R52
WRONG INSERTION OF CHARGED BATTERIES	R53
DEPARTURE ACCIDENT	R54
INSUFFICIENT TRAINING OF TECHNICIANS	R55
LACK OF POSITIVE ATTITUDE TOWARD WORK	R56
NO MICROCAR AVAILABLE	R57
WRONG CHECK OF BATTERY STATE	R58
ZERO CHARGING TIME	R59

Table 7 Risks identification code

In the following graph, it can be seen that the risks with the greatest impact on the activities to which they are linked are R32 and R59 above all. They correspond respectively to "Noiseless and sustainable cars" and "Zero charging time". Furthermore, they are both risks with a positive impact on the project, and are therefore considered as opportunities. These two elements are considered together with R37 (Car compactness) the Core business and the strengths of the micro electric car-sharing project.

PROBABILITY IMPACT MATRIX

PROBABILITY

Figure 31 Probability Impact matrix

Other risks that have a relevant level of probability and risk in this respect are:

- R23 (Competition): This risk is only related to the commissioning activity and is significant, but you can see the difference with the first two bar graphs where compared to the whole project it is almost irrelevant (2.4%);
- R12 (Completion risk): This risk is relevant for all analyses since even in the bar graphs this is the risk with the highest weighting on the project (16.64%);
- R38 (Restricted traffic zone) and R7 (Less degradation): These are risks that are considered as opportunities to be exploited as shown by the matrix, while their weight on the whole project is not particularly relevant.

Moving closer to the yellow area of the graph are: R31 (Environmental risk), R33 (Traffic), R34 (Lights), R26 (Target group), R24 (Market growth).

These are risks on which it is certainly necessary to apply strategies because they are high in the contest of the activities in which they are involved , but they are not particularly relevant in the contest of the whole project.

As regard the part concerning component failure modes, it is summarized highlighting the criticality output in the following table:

Component Name	Failure Mode	Criticality
	CONNECTOR OXIDATION	TOLERABLE
BATTERY	STRUCTURAL (MECHANICAL) BATTERY DAMAGE	TOLERABLE
	INTERNAL BATTERY (ELECTRICAL) DAMAGE	TOLERABLE
CENTERING PINS	STOP SUPPORTING THE BATTERY ADEQUATELY	NEGLIGIBLE
POWER CONNECTORS	STOP TRANSMITTING ELECTRICITY	TOLERABLE
	CHARGE DETECTION SENSORS PROVIDE FALSE POSITIVES	NEGLIGIBLE
BATTERY POWER SENSORS	CHARGE DETECTION SENSORS PROVIDE FALSE NEGATIVES	NEGLIGIBLE
	SENSORS DO NOT PROVIDE SIGNALS	NEGLIGIBLE
	TEMPERATURE SENSORS PROVIDE FALSE NEGATIVES	TOLERABLE
TEMPERATURE SENSORS	TEMPERATURE SENSORS PROVIDE FALSE POSITIVES	NEGLIGIBLE
	TEMPERATURE SENSORS DO NOT PROVIDE SIGNALS	NEGLIGIBLE
INTERNAL SCREWS	SCREW FAILURE	NEGLIGIBLE
SENSOR CABLES	DO NOT CARRY SIGNAL	TOLERABLE
	THE CABLE IS BROKEN OR BURNED	TOLERABLE
POWER CABLES	THE CABLE MAKES CONTACT WITH THE CASE	TOLERABLE

Table 8 Failure modes criticality

The analysis performed did not reveal any particularly dangerous failure modes. For the majority of failure modes classified as tolerable, are planned mitigation actions as reported in the FMECA.

Chapter 4 - Conclusions

In the conclusive part of the elaborate are exposed the answer stragies put into effect on the base of the obtained results.

In the following diagram, the risks (threats and opportunities) have been analyzed on the basis of the activities to which they are correlated, in order to understand how to apply the strategies: Accept, Mitigate, Transfer or Avoid.

It is important to underly that for opportunities the meaning of response categories is the inverse, as indicated in the description.

RISK FACTORS NUMBERS

Figure 32 Response Strategies

In the following table are listed the response strategies inherent to the risks indicated through the ID code described in section 3.1.

RISK FACTOR NAME	RISK	RESPONSE	RESPONSE DESCRIPTION
	FACTORS ID		
SCOPE DEFINITION	R1	ACCEPT	This risk can be accepted
			because it is not high in the
			activities affected.

REQUIREMENTS'	R2	MITIGATE	This risk can be mitigated
DEFINITION			finding a deal where the
			possible changes of
			requirements are delimited.
ESTIMATES, ASSUMPTIONS,	R3	MITIGATE	This risk can be mitigated
AND CONSTRAINTS			enhancing the team that
			make these estimates and
			making a periodic revision
			to understand if those
			foresights are pertinent.
TECHNOLOGY	R4	MITIGATE	This risk is not dangerous
			now, but it is fundamental
			to monitor the market trend
			on micorcars.
FAILURES OF COMPONENTS	R5	MITIGATE	This risk can be mitigated
			improving the maintenance
			service in order to minimise
			the failure components
			during the usage of
			customers.
MAINTENANCE	R6	MITIGATE	This risk can be mitigated
			improving the maintenance
			service in order to minimise
			the failure components
			during the usage of
			customers and improving
			the quality of training for
			maintenance team.
LESS DEGRADATION	R7	AVOID	This risk needs to be
		(opportunity)	exploited using specific
			materials for electric
			microcars, because there

			are not others providing this
			specific service with electric
			vehicles.
UNSATISFACTORY SWAP	R8	MITIGATE	This risk can be mitigated
SERVICE			keeping constantly under
			monitoring the desires of
			customers, and taking care
			of service quality.
QUALITY MATERIALS	R9	MITIGATE	This risk can be mitigated
			putting additional controls
			in place to check that the
			materials used are the
			correct ones.
CHOICE OF MATERIALS	R10	MITIGATE	This risk can be mitigated
			putting additional controls
			to check if the choice of
			materials during Engineering
			Phase is correct.
TRIP LENGTH	R11	MITIGATE	This risk may be mitigated
			alerting the customer to
			change vehicles or to go to
			the nearest charging station.
COMPLETION RISK	R12	AVOID	This risk should be avoided
			having the appropriate float
			for activities on the critical
			path. It is also necessary to
			have the right monetary
			contingencies to
			accommodate the delay.
RELATED	R13	MITIGATE	This risk can be mitigated
PROGRAM/PORTFOLIO			finding the right balance of
MANAGEMENT			correlation to other

			projects.
INADEQUATE	R14	MITIGATE	This risk can be mitigated by
MANAGEMENT EXPERIENCE			paying particular attention
			to updating and improving
			management skills.
OPERATIONS	R15	MITIGATE	An effective mitigation
MANAGEMENT			action for subsequent
			operations would be to
			standardize business
			operations as much as
			possible. In the immediately
			it is appropriate to take
			advantage of budgeted
			contingencies and
			reschedule activities in case
			of delays.
RESOURCING	R16	MITIGATE	In this case, the mitigation
			strategy is to acquire scarce
			resources from third-party
			entities. If, on the other
			hand, it is possible to wait
			until resources are available
			without using the option of
			contacting outside firms,
			new supplies are awaited.
LACK OF COMMUNICATION	R17	MITIGATE	The lack of effective
			communication (internal
			and external to the firm) can
			be mitigated by
			rescheduling delayed
			activities or by using
			contingencies allocated for

			this risk. Therefore, it is
			fundamental the update of
			communication
			technicques.
MISALLOCATION OF RIGHTS	R18	MITIGATE	The mitigation strategy
AND RESPONSIBILITIES			includes a plan for reviewing
			commitments, so that work
			in WBS activities is
			redefined according to
			specifications. Project
			management tools help to
			ensure these types of risks
			can decrease in likelihood.
POOR FUND SUPERVISION	R19	MITIGATE	The mitigation strategy for
			this risk, includes in-depth
			inspections to understand
			the reasons for non-
			alignment on the use of
			funds and try to recover at
			least some of them.
FINANCIAL RISK	R20	CONTINGENCY	Application of an
			appropriate contingency
			plan for this type of risk.
INFLATION	R21	CONTINGENCY	Application of an
			appropriate contingency
			plan for this type of risk.
REVENUE RISK	R22	MITIGATE	This risk can be mitigated by
			trying to break down all
			costs related to secondary
			service functionality in the
			first few months after
			commissioning, so that you

			can have a surplus that can
			cover a lower revenue.
COMPETITION	R23	AVOID	In case other competitors
			decide to make a battery
			swap service, it is important
			to be able to create a new
			competitive advantage by
			implementing new
			strategies. These strategies
			will be designed on the basis
			of customer needs that will
			emerge in the first months
			of the car-sharing service.
MARKET GROWTH	R24	AVOID	This is a type of opportunity
		(opportunity)	that absolutely must be
			exploited trying to follow
			the needs of the market
			that is constantly growing.
NOT REACHED SEGMENT	R25	TRANSFER	This risk is transferred to
			stakeholders, who will have
			to figure out how to serve a
			market segment like
			laggards who still have
			doubts about the service
			and technologies used.
TARGET GROUP	R26	AVOID	For this risk, it is very
		(opportunity)	important for the company
			to address the needs of
			costumers ranging from 16+
			to younger workers, as
			these segments are the ones
			most often open to

			innovation.
CONTRACTUAL TERMS AND	R27	MITIGATE	This risk can be mitigated
CONDITIONS			through effective
			negotiation between the
			parties involved to establish
			new guidelines for
			conditions that were not
			anticipated during contract
			development.
SUPPLIERS RELIABILITY	R28	MITIGATE	This risk can be mitigated by
			secondary suppliers who
			can make up the shortfall if
			there are problems with the
			suppliers.
PARTNERSHIPS AND JOINT	R29	MITIGATE	A way to exploit this risk is
VENTURES		(opportunity)	to have a strong willingness
			to expand the business to
			different services reaching a
			service with multiple
			strenghts.
PUBLIC OPPOSITION	R30	MITIGATE	This risk can be mitigated
			finding a compromise with
			opposed entities to
			minimise the conflicts.
ENVIRONMENTAL RISK	R31	TRANSFER	This risk is transferred to a
			stakeholder that take care
			of this type of aspects and
			can minimise their impact.
NOISELESS AND	R32	AVOID	This is one of the core
SUSTAINABLE CARS		(opportunity)	characteristics of the
			microcar used in the project,
		1	in fact it is important to

			consider crucial this aspect
			as a point of strength.
TRAFFIC	R33	TRANSFER	This risk is transferred to a
			stakeholder that has the
			duty to provide the
			customer the route with less
			traffic during the usage.
LIGHTS	R34	TRANSFER	This risk is transferred to a
			stakeholder that has the
			duty to provide the
			customer the route with less
			lights considered dangerous
			during the usage.
TOPOGRAPHY	R35	ACCEPT	The topography risk is
			accepted.
URBANIZATION	R36	TRANSFER	This risk is transferred to a
			stakeholder that has the
			duty to provide the
			customer an update
			condition of the streets
			traveled during the route.
CAR COMPACTNESS	R37	AVOID	This is one of the core
		(opportunity)	characteristics of the
			microcar used in the project,
			in fact it is important to
			consider crucial this aspect
			as a point of strength.
RESTRICTED TRAFFIC ZONES	R38	AVOID	This risk represents the
		(opportunity)	possibility for the users of
			the service to enter inside
			the restricted traffic zones
			and it is a useful benefit that

CHANGE IN POLICY AND LAW (LEGISLATION)R39MITIGATEThis risk can be mitigated bringing the correct modification to the services provided, with the respect to the change of policies.DELAYS IN PROJECT APPROVALS AND PERMITSR40MITIGATEThis risk can be mitigated allocating the proper float to this activity thanks to a
DELAYS IN PROJECTR40MITIGATEThis risk can be mitigated allocating the proper float to this activity thanks to a
DELAYS IN PROJECTR40MITIGATEThis risk can be mitigated allocating the proper float to this activity thanks to a
DELAYS IN PROJECTR40MITIGATEThis risk can be mitigatedAPPROVALS AND PERMITSallocating the proper float to this activity thanks to a
DELAYS IN PROJECT R40 MITIGATE This risk can be mitigated APPROVALS AND PERMITS allocating the proper float to this activity thanks to a
APPROVALS AND PERMITS allocating the proper float to this activity thanks to a
to this activity thanks to a
reschedulation of the Gant
Chart plan.
EXCHANGE RATESR41TRANSFERThis risk can be transferred
to the suppliers that should
have the care to make the
transactions on the right
time.
SITE/FACILITIESR42MITIGATEThis risk can be mitigated
trying to use that type of
infrastructure or site for
other purposes useful to the
project or selling them if it is
convenient.
ENVIRONMENTAL/WEATHER R43 ANTICIPATE / No mitigation actions in this
TRANSFER case, but this risk can be
anticipated asking the car
manufacturer to take car of
this aspect.
FAILURE ACCIDENTS R44 MITIGATE The mitigation action is
given by the maintenace
service provided at the
recharge station by the
technitian.

EXPERIENCE ATTITUDE	R45	MITIGATE	This risk can be mitigated
EAPERIEINCE AT TITUDE	R43		This risk can be mitigated
			thanks to the sensors of the
			micorcar that can signal
			eventual dangers.
DRIVER INATTENTION	R46	MITIGATE	This risk can be mitigated
			thanks to the sensors of the
			micorcar that can signal
			eventual dangers.
DIFFERENT LANGUAGE	R47	ACCEPT	The risk that the customer
(FOREIGN CUSTOMER)			and the technitian are not
			able to communicate due to
			different languages is very
			unlikely and don't affect
			particularly the service.
BLOCKED BATTERY	R48	MITIGATE	In the case the battery is
			blocked the customer can
			simply change the micro-
			car.
DETERIORATION	R49	MITIGATE	In the case the battery is
			blocked the customer can
			simply change the micro-
			car.
DYSFUNCTIONALITY IN	R50	MITIGATE	For this risk, the mitigation
CHARGING			passes through the sensors
			that should signal
			immediately that the
			battery taken is not
			charged.
NOT AVAILABLE BATTERIES	R51	MITIGATE	The mitigation action is to
			send the customer to the
			nearest recharge station to
			make the swap on the

			microcar or making the
			customer wait for the
			recharge of the first
			available battery.
TECHNICIAN ILLNESS	R52	MITIGATE	The risk can be mitigated
			with the help of another
			available technician who can
			substitute him/her.
WRONG INSERTION OF	R53	MITIGATE	This risk can be mitigated
CHARGED BATTERIES			with the signal of the
			sensors that detect the
			mulfanction.
DEPARTURE ACCIDENT	R54	MITIGATE	The departure accident can
			be mitigated with a specific
			layout of the recharge
			station. The most delicate
			elements are put lantons
			from the customer's transit.
INSUFFICIENT TRAINING OF	R55	MITIGATE	Mitigation of this risk is
TECHNICIANS			covered by the sensors'
			running that indicate if the
			technician has not
			performed all actions
			correctly.
LACK OF POSITIVE ATTITUDE	R56	MITIGATE	Mitigation of this risk is
TOWARD WORK			covered by the sensors'
			, running that indicate if the
			technician has not
			performed all actions
			correctly.
NO MICROCAR AVAILABLE	R57	MITIGATE	This risk can be mitigated by
			waiting for the battery

			change of the microcar in use at that time by the customer.
WRONG CHECK OF BATTERY STATE	R58	MITIGATE	Mitigation of this risk should be covered by the sensors' running that indicate if the technician has not performed all actions correctly.
ZERO CHARGING TIME	R59	AVOID (opportunity)	This is the most important and unicque feature of the car-sharing project which makes the service offered truly innovative.

Table 9 Mitigation table

It is important to report possible response strategies for each risk to offer a possible solution on how to deal with the risk to managers working in the area of competence.

Considering also the weight of risks on the whole project, the response strategy is mainly focused on risks such as: Completion risk, Lack of communication, Noiseless and sustainable cars, Insufficient training of technicians.

These are the risks that have a percentage of risk greater than 10% on the whole project, therefore, they would deserve greater attention than others.

The part of the component failures, as already performed in the previous chapter, it does not detect dangerous failures but at the most tolerable ones. For each of the failure modes have been proposed a mitigation action when possible.

Component Name	Failure Mode	Mitigation	
	CONNECTOR OXIDATION	THE SENSORS SIGNAL THE CHANGE IN POWER AND MAINTENANCE IS DONE	
BATTERY	STRUCTURAL (MECHANICAL) BATTERY DAMAGE	THE SENSORS SIGNAL THE CHANGE IN POWER AND MAINTENANCE IS DONE	
	INTERNAL BATTERY (ELECTRICAL) DAMAGE	THE SENSORS SIGNAL THE CHANGE IN POWER AND MAINTENANCE IS DONE	
CENTERING PINS	STOP SUPPORTING THE BATTERY ADEQUATELY	THE CASE ALLOWS THE BATTERY TO REMAIN SOLIDLY IN PLACE	
POWER CONNECTORS	STOP TRANSMITTING ELECTRICITY	NO MITIGATION	
	CHARGE DETECTION SENSORS PROVIDE FALSE POSITIVES	DIAGNOSTIC REDUNDANCY	
BATTERY POWER SENSORS	CHARGE DETECTION SENSORS PROVIDE FALSE NEGATIVES	DIAGNOSTIC REDUNDANCY	
	SENSORS DO NOT PROVIDE SIGNALS	DIAGNOSTIC REDUNDANCY	
	TEMPERATURE SENSORS PROVIDE FALSE NEGATIVES	NO MITIGATION	
TEMPERATURE SENSORS	TEMPERATURE SENSORS PROVIDE FALSE POSITIVES	NO MITIGATION	
	TEMPERATURE SENSORS DO NOT PROVIDE SIGNALS	DIAGNOSTICS	
INTERNAL SCREWS	SCREW FAILURE	THE CASE ALLOWS THE BATTERY TO REMAIN SOLIDLY IN PLACE	
SENSOR CABLES	DO NOT CARRY SIGNAL	DIAGNOSTIC REDUNDANCY	
	THE CABLE IS BROKEN OR BURNED	NO MITIGATION	
POWER CABLES	THE CABLE MAKES CONTACT WITH THE CASE	THE CASE HAS A GROUNDING THAT DISCHARGES POSSIBLE VOLTAGES, ALSO THE TECHNICIANS MUST USE PROTECTIONS DURING THE SWAP	

Table 10 Failure modes mitigation table

Bibliography

- Project Management Institute Inc., "The standard for Risk Management in Portfolios, Programs and Projects," 2021, Global Standard, Newton Square, Pennsylvania, USA
- Alberto De Marco, "Risk Management, Identification, Analysis and Response," 2021, Turin
- Alberto De Marco, "Project Management for Facility Constructions A Guide for Engineers and Architects," 2011, Springer, Berlin, Heidelberg
- Enrico Zio, "Series on Quality, Reliability and Engineering Statistics Vol. 13, An Introduction to the basis of the reliability and risk analysis", 2007, World Scientific Publishing Co. Pte. Ltd., Singapore
- Domenico Maisano, "FMECA Failure Modes, Effects & Criticality Analysis," 2021, Turin
- Rafele, C., Hillson, D., & Grimaldi, S. (2005). Understanding project risk exposure using the two-dimensional risk breakdown matrix. Paper presented at PMI[®] Global Congress 2005—EMEA, Edinburgh, Scotland. Newtown Square, PA: Project Management Institute.

Sitography

- <u>https://www.insic.it/tutela-ambientale/plan-do-check-act-cose-il-ciclo-di-deming-e-</u> come-funziona/
- <u>https://www.investopedia.com/terms/i/ishikawa-</u> <u>diagram.asp#:~:text=An%20Ishikawa%20diagram%20is%20a,are%20required%20at%20sp</u> <u>ecific%20times</u>
- https://www.mindtools.com/pages/article/newTMC_05.htm#:~:text=SWOT%20stands%2
 Ofor%20Strengths%2C%20Weaknesses,four%20aspects%20of%20your%20business.&text
 =A%20SWOT%20analysis%20examines%20both,inside%20and%20outside%20your%20or
 ganization
- https://www.researchgate.net/figure/Probability-impact-matrix_fig1_335181838
- <u>https://en.wikipedia.org/wiki/Failure_mode,_effects,_and_criticality_analysis</u>
- <u>https://www.researchgate.net/figure/Evaluation-of-RPN-threshold-using-Pareto-chart-and-8020-principle_fig5_338754721</u>