
POLITECNICO DI TORINO

Master’s Degree in Electronic Engineering

Design and Optimization of a Winograd
aware IP for Quantized Neural Networks

Supervisor
Prof. Claudio PASSERONE

Advisor
Pierpaolo MORÌ

Candidate
Davide LEZZOCHE

April 2022

Abstract

Convolutional Neural Networks (CNNs) are increasingly used in the field of deep
learning. Among their possible applications are computer vision, speech recognition,
and image classification. Nowadays, CNNs have reached very high levels of precision,
at the cost of a huge amount of multiplications to perform and parameters to store.
GPUs are very popular in the field of CNNs since they are characterized by excellent
computing performance. However, their excessive power consumption does not
make them the best choice for embedded applications. Instead, FPGAs represent
a good compromise between throughput, flexibility, reconfigurability, and energy
efficiency. Given the limited resources of FPGAs and the large computational cost
and storage demand (both on-chip and off-chip) of CNNs, several optimizations
are required to implement an FPGA-based CNN accelerator. Quantization, loop
unrolling, and data vectorization help reduce resources demand and speeds up
inference. The Winograd algorithm can be used to reduce the computational cost
as well, it greatly decreases the number of multiplications required to perform
a convolution, however, it introduces a numerical error that is accentuated by
quantization. Methods, like residue number system (RNS) representation and
the introduction of the complex numbers field, that avoid or limit this error have
been introduced in the literature. This thesis analyzes and compares the possible
Winograd representations for the F (2 × 2, 3 × 3), F (4 × 4, 3 × 3) and F (6 × 6, 3 × 3),
to be used in an 8-bit fixed point quantized neural network. From the comparison,
the complex representation of F (4 × 4, 3 × 3) results in the best compromise
between complexity reduction and the numerical error introduced. Therefore, it is
implemented in a deeply pipelined IP aware of both the standard and Winograd
convolutions. The results achieved by the test on the latencies of the two algorithms
shows that the Winograd convolution outperforms the standard one. However, it is
also demonstrated that the Winograd awareness greatly affects the logic resources
demand, limiting the maximum level reachable by the parallelization.

Table of Contents

List of Tables 4

List of Figures 5

1 Introduction 7
1.1 Motivations . 7
1.2 Organization . 8

2 Background 9
2.1 Neural networks . 9
2.2 Convolutional neural networks . 10

2.2.1 Convolutional layer . 11
2.2.2 Pooling layers . 14
2.2.3 Non-linearity layers . 15
2.2.4 Normalization layers . 16
2.2.5 Fully connected layers . 16
2.2.6 Accuracy and data sets . 17

2.3 Hardware platforms . 17
2.3.1 High-Level Synthesis languages 19

2.4 Winograd Algorithm . 20
2.5 Quantization . 21
2.6 Residue number system . 21

3 Related works 23
3.1 PipeCNN: An OpenCL-Based FPGA Accelerator for Large-Scale

Convolution Neuron Networks . 23
3.2 Fast Algorithms for Convolutional Neural Networks 24
3.3 Efficient Winograd Convolution Via Integer Arithmetic 24
3.4 Efficient Residue Number System Based Winograd Convolution . . 24
3.5 Summary . 25

2

Table of Contents

4 Convolutional algorithms 26
4.1 Numerical simulations . 26
4.2 Standard convolution . 27
4.3 Winograd convolution . 27

4.3.1 Winograd F (2 × 2, 3 × 3) 28
4.3.2 Winograd F (4 × 4, 3 × 3) 29
4.3.3 Winograd F (6 × 6, 3 × 3) 30

4.4 Complex Winograd convolution . 31
4.4.1 Complex Winograd F (4 × 4, 3 × 3) 31

4.5 RNS Winograd convolution . 34
4.5.1 RNS(239, 241, 251) Winograd F (4 × 4, 3 × 3) 34
4.5.2 RNS(239, 241, 251) Winograd F (6 × 6, 3 × 3) 35

4.6 Algorithms comparison . 35

5 Methodologies 37
5.1 Winograd awareness . 37

5.1.1 IFMap tile reading and transformation 37
5.1.2 Offline weights transformation 37
5.1.3 Hardware sharing between standard convolution and EWMM 38
5.1.4 Outputs transformation . 38

5.2 Two multiplication in one DSP . 38
5.3 Loop unrolling . 40
5.4 Data vectorization . 41

6 IP design 43
6.1 Design flow . 43
6.2 Kernels structure . 44

6.2.1 Input transformation (IT) 45
6.2.2 Weights reading (WR) . 47
6.2.3 Processing kernel (PK) . 49
6.2.4 Output transformation (OT) 54

7 Experiments 57
7.1 C simulations . 57
7.2 C synthesis . 58
7.3 C/RTL co-simulations . 60

8 Conclusions 63
8.1 Summing-up and further works . 63

Bibliography 65

3

List of Tables

2.1 Platforms comparison . 19
2.2 XILINX Zynq UltraScale+ MPSoC ZCU104 features [14] 19

4.1 Winograd algorithms comparison 36

7.1 Synthesis summary of the IP using Pif = 16, Pof = 16, Pkx = 2 . . . 60
7.2 Relation between the unrolling parameters and the latencies ratio . 61
7.3 Relation between Pkx and the latencies ratio 62

4

List of Figures

2.1 Artificial Neuron representation . 10
2.2 Neural networks layered structure 10
2.3 Structure of a CNN for image classification 11
2.4 Representation of a kernel application in a 2D convolution 11
2.5 Representation of a multidimensional convolution 13
2.6 max and average pooling examples 14
2.7 Dots representation of a fully connected layer 16
2.8 FPGA structure is composed of configurable logic and programmable

interconnections . 18
2.9 Comparison between the 32-bit floating point and the 8-bit fixed-

point representations . 21

4.1 Standard convolution representation 27
4.2 Winograd convolution F (2 × 2, 3 × 3) representation 28
4.3 Winograd convolution F (4 × 4, 3 × 3) representation 29
4.4 Winograd convolution F (6 × 6, 3 × 3) representation 31
4.5 Matrices pattern in complex Winograd domain in F (4 × 4,3 × 3) . . 32
4.6 Complex Winograd convolution F (4 × 4, 3 × 3) representation . . . 33
4.7 RNS(m0, m1, m2) Winograd convolution F (4 × 4, 3 × 3) representation 35

5.1 Example of two multiplications simultaneously performed 39
5.2 DSP registers mapping . 39
5.3 3D unrolling of a convolution . 40
5.4 3 × 3 kernel 0 mapping using Pkx = 2 42

6.1 Vitis HLS based design flow . 44
6.2 IP kernels structure . 45
6.3 Input transformation kernel . 46
6.4 Weights reading kernel . 48
6.5 Processing elements structure . 50
6.6 Processing kernel structure . 51

5

List of Figures

6.7 Output transformation kernel structure 55

7.1 Changes in resource demand consequent to Pif ’s change 58
7.2 Changes in resource demand consequent to Pof ’s change 59
7.3 Changes in resource demand consequent to Pkx ’s change 59
7.4 Relation between unrolling parameters and convolutions latencies . 61

6

Chapter 1

Introduction

1.1 Motivations

Recent advances in convolutional neural networks (CNNs) [1] make them increas-
ingly used in the field of artificial intelligence (AI) for different applications such
as image classification [2], video analysis [3] and speech recognition [4].

Nowadays, FPGAs are becoming very popular in the CNNs field, especially on
embedded applications [5]. They can guarantee excellent flexibility and good power
efficiency thanks to programmable logic blocks and interconnections. However,
FPGAs have limited resources availability concerning computational hardware
and on-chip memory. The high performance reached by modern CNNs requires
performing a huge number of calculations and storing parameters. Therefore,
computational and architectural optimizations are needed when implementing
CCNs on FPGAs.

Winograd’s algorithm [6] is a computational optimization that makes it possible
to greatly reduce the multiplications required to perform a convolution [7], at the
cost of introducing a numerical error, unless a high-precision value’s representation
is used. A low-precision fixed-point quantization can bring benefits to a neural
network such as a reduced memory footprint and faster inference [8] and it becomes
essential in a resource-constrained device, such as FPGAs. The possibility to
combine the Winograd algorithm with a low-precision fixed-point quantization was
introduced by [9] and [10]. To achieve this, they have exploited representations to
replace the standard real number system with the complex field or Residue Number
System (RNS).

This thesis analyzes these two possible methods, to design an 8-bit quantized
Winograd aware IP for a convolutional neural network, to be implemented on a
XILINX FPGA.

7

Introduction

1.2 Organization
This document is structured in 8 chapters.

• The second chapter summarizes the basic knowledge of the CNNs and intro-
duces the theory behind the used optimization in the IP design.

• The third chapter is dedicated to the works that have represented the starting
point of this project.

• The fourth chapter analyzes the possible implementations of the Winograd
algorithm. The pros and cons of each are explained and then compared.

• The fifth chapter delves into the optimizations made. It explains how they
were applied in the design and what benefits they brought.

• The sixth chapter explains in detail how the project design is structured. It
also shows some relevant code examples and comments on them.

• The seventh chapter shows the results obtained from the implementations of
the designed system, using graphs and tables that collect the results of the
simulations and synthesis.

• The eighth chapter draws conclusions from this work and proposes possible
future developments.

8

Chapter 2

Background

This chapter shows the basic knowledge of neural networks and, in particular, the
convolutional ones (CNNs) whose structure is illustrated. The possible platforms
that can be used to implement CNNs are also listed. In the end, the Winograd
algorithm is shown: it will be the basis of computational optimizations carried out
in this project.

2.1 Neural networks
Neural networks are part of the artificial intelligence (AI) branch inspired by the
human brain. They use machine learning algorithms to perform their tasks, they
learn how to handle a problem through the training process [11].

The basic building block of neural networks is the neuron, like in the human
brain. The artificial neuron performs a weighted sum of different inputs. Its
function is represented in figure 2.1, where:

• Xi are the inputs

• Wi are named weights and each of them multiply its connected inputs

• Σ is the sum operator

• b is a bias that is possibly added

• f() is a non-linear function, also called activation function, and filters outputs
under a certain threshold

• Y is the output also called activation

In a neural network, neurons are grouped in layers. Figure 2.2 shows an example,
where a first layer receives the inputs and propagates them to a middle layer also

9

Background

Figure 2.1: Artificial Neuron representation

called "hidden" layer. Neurons in the hidden layer perform their weighted sums
and then propagate their activations to the last layer, which presents the outputs.
Neural networks with more than one hidden layer are considered Deep Neural
Networks (DNNs).

Figure 2.2: Neural networks layered structure

2.2 Convolutional neural networks
Convolutional neural networks are deep neural networks designed for processing
structured data arrays, such as images. Their structure can be composed of five
different types of layers: convolutional, pooling, nonlinearity, normalization and
fully connected. These layers alternate between them and each one applies a
mathematical function to their inputs and propagates their outputs to the next
layer.

10

Background

Figure 2.3: Structure of a CNN for image classification

2.2.1 Convolutional layer

The convolutional layer is in charge of performing the convolution operation, to
extract features from its inputs. A Convolution is a sparse linear transformation,
sparse because few inputs influence an output. Considering a two-dimensional
convolution, as in figure 2.4, the operation consists of sliding a kernel across an
input, also called input feature map (IFMap). At each position assumed by the
kernel, overlapped elements of the two operands are multiplied and the products
are summed, to result in an output element. The final output (OFMap) is a feature
map composed of the output of all the positions assumed by the kernel.

Figure 2.4: Representation of a kernel application in a 2D convolution

11

Background

The output dimensions are evaluated by equation 2.1, which is valid for both x
and y dimensions and where:

• No is the output dimension

• Ni is the input dimension

• Nk is the kernel dimension

• s is the value of the stride

• p is the value of the zero padding

No = ⌊Ni + 2p − Nk

s
⌋ + 1 (2.1)

The stride of a convolution is defined as the distance between two successive
positions of the kernel. Zero padding, instead, is a technique that consists of
padding with zeros on the edges of the IFMap, and the value p is referred to as
the thickness of these edges. This procedure is often used to obtain an OFMap of
the same dimensions of the IFMap using p equal to the lower half of the kernel
dimension (with s = 1).

Into the convolutional layer of a CNN the operation is performed between
multidimensional operands (figure 2.5):

• IFMaps: the input is composed of a set of Nif IFMaps

• weights: sets of Nif kernels are grouped in filters, the weights are composed
of Nof filters

To each input feature map corresponds an input channel, and to each output
feature map corresponds an output channel. The multidimensional convolution
works similarly to the 2D case. Each 3D filter slides on the IFMaps, in each
assumed position the overlapped values between the filter and IFMaps elements
are multiplied and their products summed. An OFMap is produced at the end of a
filter application. The output of the convolution is a set of Nof OFMaps, one for
each filter application.

12

Background

Figure 2.5: Representation of a multidimensional convolution

Summarizing a convolution consists of a MAC operation (multiply and accumu-
late) nested in a six-dimensional loop, as shown by algorithm 2. The total number
of MACs required is given by the product:

Nox × Noy × Nof × Nkx × Nky × Nif (2.2)

.

13

Background

Algorithm 1 6D nested loop of a convolution
for oy = 0; oy < Noy; oy + + do

for ox = 0; ox < Nox; ox + + do
for of = 0; of < Nof ; of + + do

for if = 0; if < Nif ; if + + do
for ky = 0; ky < Nky; ky + + do

for kx = 0; kx < Nkx; kx + + do
OFMaps(ox, oy, of)+=
Weights(kx, ky, if, of) ×IFMaps(s × ox + kx, s × oy + ky, if)
end

end
end

end
end

end

2.2.2 Pooling layers
Pooling layers can be used in a neural network to reduce the size of feature maps.
The layer works by dividing the input into tiles, typically not overlapped, and
summarizing them using a function. The most common used functions are max
and average pooling:

• max pooling: the input tiles are substituted by their maximum value

• average pooling: the input tiles are substituted by the average of their values
Their examples are shown in figure 2.6, where it is visible the size reduction: in
both two cases from a 4 × 4 input is derived a 2 × 2 output.

Figure 2.6: max and average pooling examples

14

Background

2.2.3 Non-linearity layers

Non-linearity layers apply a nonlinear function to all the elements of the previous
layer output feature maps, resulting in an output of the same dimension. They
usually are applied after convolutional or fully connected layers.

Commonly applied nonlinear functions are :

• rectified linear unit (ReLU): y = max(0, x)

• sigmoid: y = 1
1+e−x ;

• hyperbolic tangent (tanh): y = ex−e−x

ex+e−x ;

The main advantage of the sigmoid function is that its output range is 0 to 1. It
can be used for example to predict a probability. The tanh function ranges between
-1 and 1 and its main use is the classification between two classes. The ReLU
function is the faster function because it doesn’t involve a mathematical operation:
it only sets to 0 the negative values and, for this reason, it is widely used in CNN.
In addition, for training purposes, the ReLU outperforms the other two functions.

−4 −2 0 2 4−2

−1

0

1

2

x

y

Sigmoid

−4 −2 0 2 4−2

−1

0

1

2

x

y

tanh

−4 −2 0 2 4

−4

−2

0

2

4

x

y

ReLU

15

Background

2.2.4 Normalization layers
Their purpose is to accelerate the training process and to improve the net accuracy,
by normalizing the input data of the next layer. Batch normalization layers are
the most used. Their application results in an output with a mean (σ) equal to 0
and a standard deviation(µ) equal to 1. After batch normalization, the output is
scaled and shifted using parameters adjusted from training (γ and β). Equation
2.3 is used to derive the output y from an input x. To avoid dividing by zero, a
constant (ϵ) is added to the denominator.

y = x − µ√
σ2 + ϵ

γ + β (2.3)

2.2.5 Fully connected layers
CNNs analyze and abstract the content of the starting set of feature maps in a
multilayered sequence of convolutional, non-linear, pooling layers and normalization
layers. At the end of a CNN, a set of fully connected layers (FCs) is usually used
to achieve a final classification.

Fully connected layers (FCs) apply a linear transformation, as in the case of
convolutional layers. In this case, however, all the inputs influence all the outputs,
they are connected in a structure as the one illustrated in figure 2.7. In this layer,
the inputs are flattened before starting the kernel application ad the two operands
are of the same dimension.

Figure 2.7: Dots representation of a fully connected layer

16

Background

2.2.6 Accuracy and data sets
In the image classification field, the common parameter used to evaluate the
performance of a neural network in terms of correct predictions is the accuracy.
The accuracy is defined by the following formula:

Accuracy = number of correct predictions

total number of predictions
(2.4)

When comparing two different network models it is important to refer to the same
set of inputs. At this scope, different popular data sets can be used. For example,
some of the most popular data sets for image classification are MNIST [12] and
ImageNet [13].

MNIST is composed of 70000 images (10000 are used for testing and the others
are used for the training task) of 28×28 handwritten digits, so there are 10 possible
classes.

ImageNet is composed of 1.45 million RGB images of 256 × 256 pixels, divided
in 1000 classes. 100 test images are provided for each class, the others are used for
training and validation purposes.

2.3 Hardware platforms
The complexity in terms of the number of parameters and operations reached by
modern CNNs makes it crucial to choose the hardware device to implement them.
The various possibilities such as ASICs, CPUs, GPUs, and FPGAs offer different
advantages at the cost of different trade-off. This section aims to analyze the four
possibilities to find the best solution to accelerate the inference of a CNN on an
embedded device.

CPUs

Central processing units (CPUs) present a limited number of cores and are designed
to perform, in a sequential manner, a set of instructions. They are non-optimized
for parallelism. AI algorithms require parallel computations, performances on CPUs
are therefore limited. Being CPUs designed for general purpose, their hardware
offers great flexibility but at the cost of high power consumption.

GPUs

Graphics processing units (GPUs) are the most used accelerators. Their SIMD-
based architecture makes them the most effective in parallel computations, such
as those required by CNNs. Their biggest drawback, however, is their high power
consumption.

17

Background

ASIC

Application-Specific Integrated Circuits (ASICs) are highly optimized devices to
execute their function. ASICs have a long production cycle and are difficult to
program. Their hardware allows for achieving very good latency performance and
minimal power consumption, at the cost of sacrificing flexibility. An ASIC, in fact,
can only perform the task for which it is designed. For these reasons, their major
field is a massive production.

FPGA

Field Programmable Gate Arrays (FPGAs) are programmable logic devices struc-
tured as matrices of Configurable Logic Blocks (CLBs) connected by programmable
interconnections (see Figure 2.8), that allow excellent flexibility. They can be easily
programmed to solve specific functions and optimized for low power consumption.

Figure 2.8: FPGA structure is composed of configurable logic and programmable
interconnections

18

Background

Comparison

Table 2.1 summarizes the comparison between the possible platforms. CPUs result
as inefficient to accelerating a CNN. Since an embedded application requires low
power consumption also a GPU cannot be used. Due to its higher flexibility, FPGA
is preferred over an ASIC solution. Considering all this, the platform chosen to
accelerate the project of this thesis is an FPGA, in particular, XILINX Zynq
UltraScale+ MPSoC ZCU104 (its features are shown in table 2.2).

Platform throughput power consumption flexibility
CPUs low very high very high
GPUs very high very high high
ASICs very high very low very low
FPGAs high low very high

Table 2.1: Platforms comparison

System logic cells 504k
Memory 38Mb

DSP slices 1728
I/O pins 464

Table 2.2: XILINX Zynq UltraScale+ MPSoC ZCU104 features [14]

2.3.1 High-Level Synthesis languages
Hardware description languages (HDL), such as VHDL, are used to describe the
design of electronic systems specifying their low-level features, allowing complete
freedom to the designers. Using an HDL to develop complex systems, like this
project purpose, can be discouraging, because of the time required and the difficulty
of the task.

High-level synthesis languages were introduced to overcome these problems
by designing the hardware using a higher level of abstraction. They are FPGA
compatible, and allow designing systems using high-level specification languages,
such as C, C++, SystemC, and MATLAB and inherit some of their characteristics,
such as data types, structures, and loops.

This project is designed in HLS using the Vitis HLS tool. Vitis HLS allows
the RTL synthesis of C++ code. Directive or pragmas are used to describe low-
level characteristics, allowing different optimizations, such as pipelining and loop
unrolling.

19

Background

2.4 Winograd Algorithm
A standard convolution using a generic kernel r × s to compute an output m × n
requires m × n × r × s multiplications. Winograd algorithm, introduced in 1980 by
Shmuel Winograd [6], allows reducing this amount of multiplications to (m + r −
1) × (n + s − 1). This is possible to transform the convolution in an element-wise
matrix multiplication (EWMM). To apply the algorithm the IFMaps is divided
into (m + r − 1) × (n + s − 1) tiles (IFTiles) and then equation 2.5 can be used to
calculate m × n OFTiles (tiles of the OFMaps).

The used notation to refer to the Winograd algorithm is F (n × m, r × s).
The following steps summarize the procedure:

• IFTile and kernel transformation, applying two matrix multiplications to each
one. After the transformations, the domain is changed from the standard to
the Winograd one (WD), and inputs and weights matrices are indicated with
D and W, respectively.

• EWMM between D and W, the result matrix is indicated with E.

• Inverse transformation of E, two matrix multiplications are used to restore
the domain.

OFTile = IFT ile∗kernel = AT ((B ×IFT ile×BT)⊙(G×kernel×GT))A (2.5)
A, B and G are named Winograd matrices and they change together with the
kernel and output dimensions and the values of chosen interpolation points used to
derive them with the Toom-Cook algorithm [15].

The big difference from the standard algorithm is that with Winograd multiple
output pixels can be computed simultaneously. The ratio of the multiplications
needed by the standard convolution and the multiplications performed using
Winograd depends on the kernel and the output sizes:

multiplications reduction = m × n × r × s

(m + r − 1) × (n + s − 1) (2.6)

From this relationship, it is evident that the larger the kernel and the calculated
OFTile, the fewer the multiplications needed for convolution.

However, the Winograd algorithm has not only benefits but also 3 important
drawbacks [16]:

• the transformations to and from the WD requires computations that can
greatly increase the computational cost of a convolution

• the kernel transformation matrix has the same dimensions as the IFTile (bigger
than the kernel) so it increases the on-chip memory demand

20

Background

• the algorithm introduces a numerical error when combined with quantization

All these problems are more evident using larger operands’ tiles.

2.5 Quantization
The use of the floating-point arithmetic (figure 2.9a) in CNNs allows for keeping
numerical errors limited, avoiding negatively affecting accuracy. The complexity
reached by modern networks, however, requires a large number of calculations to
be performed and parameters to be stored.

Using high precision numbers in a neural network implemented in an embedded
system, such as an FPGA, can be expensive in terms of memory demand, both
on-chip and off-chip, and computational latency, due to the limited hardware
resources.

Moving from a floating-point representation to an N-bit fixed-point quantization
(figure 2.9b) can not only reduce the memory footprint but it can also allow reaching
higher throughput. Working on FPGAs it is also possible to exploit the DSPs
usage to parallelize integer multiplication execution, using a single DSP slice to
perform two multiplications in one iteration, as explained in section (5.2).

The price to pay to quantize the parameters of a net is the introduction of a
numerical error, due to the reduced set of representable values. This error can
negatively affect the network accuracy.

(a) The 32-bit floating point representation uses 1 bit as sign, 8 bits as exponent and 23 bits as
mantissa.

(b) The 8-bit fixed-point representation uses 1 bit as sign and 7 bits to store the value.

Figure 2.9: Comparison between the 32-bit floating point and the 8-bit fixed-point
representations

2.6 Residue number system
The residue number system (RNS) is an alternative to the standard decimal system.
As introduced by [10], this system can be used to represent the values involved in
a Winograd convolution.

RNS(m0, m1, ..., mn−1) can represent a value by n residues derived using n
different pairwise coprime modules m0, m1, ..., mn−1. For example, 17 in RNS(3, 7)

21

Background

can be represented as 2, 3. In fact:

17 (mod 3) = 2

17 (mod 7) = 3

It is possible to perform operations such as addition, subtraction, and multiplication
in RNS and then return to the standard numerical representation using the Chinese
Remainder Theorem (CRT). This is possible only if the value to be reconstructed
(x) is smaller than the product (M) of all the modules used for the representation.
CRT works as illustrated in the following equation.

x = (
n−1Ø
i=0

aibiNi)(mod M) (2.7)

Where:

• ai is the representation of (x) in modulo mi.

• Ni is the product of all the modules but mi

• bi is a value that satisfies the following equality: (bi × Ni)(mod mi) = 1

To reconstruct x, of the previous example, from RNS(3,7), where:

a0 = 2

a1 = 3

The values N0 and N1 can be easily determined as follows:

N0 = m1 = 7

N1 = m0 = 3

Correct values for b0 and b1 can be:

b0 = 1 → (1 · 7) (mod 3) = 7 (mod 3) = 1

b1 = 5 → (5 · 3) (mod 7) = 15 (mod 7) = 1

Applying equation 2.7:

x = (a0b0N0 + a1b1N1) (mod 21) = (2 · 1 · 7 + 3 · 5 · 3) (mod 21) =

(14 + 45) (mod 21) = 59 (mod 21) = 17 (mod 21)

22

Chapter 3

Related works

This chapter illustrates the works that represent the starting point of this thesis.
The first paper presents an FPGA-based CNN accelerator design, the second one
introduces the Winograd algorithm to the CNNs field. The last two works show
how two different numerical representations can be used to reduce the numerical
error introduced by the Winograd algorithm in quantized networks.

3.1 PipeCNN: An OpenCL-Based FPGA Accel-
erator for Large-Scale Convolution Neuron
Networks

This paper [17] published in November 2016 is the baseline of this thesis work. It
presents an FPGA design of a CNN accelerator based on the OpenCL framework.
In the PipeCNN project, an FPGA board and a desktop CPU are linked together
in a heterogeneous system, where the FPGA has the device role and the CPU is
the host. A C/C++ code running on the host provides APIs that communicate
with kernels running on the device, specified in an OpenCL code.

The developed architecture is composed of five deeply pipelined kernels com-
municating through FIFOs. Two of these kernels are in charge of reading and
writing data from/to the global memory. The reader kernel stores input features
and weights in local buffers. This avoids the global memory access from the com-
putational kernels, limiting the bandwidth requirements. One of the kernels is
demanded to perform the convolution, it exploits loop tiling and memory partition-
ing to improve throughput. Data vectorization and parallel computation units are,
instead, used to implement two levels of unrolling in the structure.

23

Related works

3.2 Fast Algorithms for Convolutional Neural
Networks

A. Lavin and S. Gray introduced, in paper [7], the Winograd algorithm to speed
up the convolution process in neural networks. Both the F (2 × 2,3 × 3) and
F (4 × 4,3 × 3) are analyzed. The first solution allows a multiplications reduction of
2.25× compared to the standard convolution, while the second reaches a reduction
of 4×. The two algorithms were tested and both reached good performance in
terms of latency and accuracy. However, in these experiments, floating-point
quantizations were used. Using, instead, a fixed-point low-precision quantization
the Winograd approach brings a significant numerical.

3.3 Efficient Winograd Convolution Via Integer
Arithmetic

The work done by Lingchuan Meng, John Brothers in 2019 [9], proposes to extend
the Winograd domain from the field of rational numbers to the field of complex
numbers. The purpose of this extension is to use symmetric interpolation points
that allow for matrices composed of small values, thus reducing the numerical error
due to the Winograd algorithm.

Looking at the F (4 × 4,3 × 3), they observed that representing the Winograd
domain using the complex field, it is composed of matrices that follow a precise
pattern, exploitable to reduce optimized the computation. They take advantage
of the redundancy of the conjugate complexes, halving the complex number in
the matrices. When the EWMM is applied the complex numbers are multiplied
recurring to the Karatsuba multiplication that makes use of 3 real multiplications.
The algorithm proposed by the authors reaches a multiplications reduction of
3.13×.

3.4 Efficient Residue Number System Based Wino-
grad Convolution

In [10], the Residue Number System (RNS) is used to solve the numerical error
problem, introduced by the Winograd algorithm. RNS, in fact, can avoid this error,
using small residues to represent higher numbers. However, it needs a Winograd
domain for each number system used, so on-chip memory demand and arithmetic
complexity grow linearly with the number of used modules. The survey shows
that the best results in terms of arithmetic complexity reduction (compared to the

24

Related works

standard convolution) can be reached when the Winograd algorithm is applied to
derive large output tiles (e.g 10 × 10).

3.5 Summary
Taking the PipeCNN work as the starting point, this project’s purpose is to further
optimize it. To do that, 8-bit fixed-point quantization, the insertion of a third
unrolling level, and the Winograd awareness are exploited. To introduce the
Winograd support in a quantized network, the complex field and the RNS are
considered.

25

Chapter 4

Convolutional algorithms

Section 2.2.1 provides an overview of the convolutional algorithm. The six nested
loops required by its computation need the execution of a huge number of multiplica-
tions, which limit the performance of a network in terms of latency. The Winograd
algorithm can be used to reduce the computational cost of the convolution, but it
introduces a numerical error, which can be amplified by quantization.

This chapter analyzes possible implementations of the convolution in an 8-bit
quantized network, starting with the standard method, which is taken as a reference.
The different solutions are evaluated in terms of computational cost and numerical
error. The error is calculated through numerical simulations. The methods are
evaluated by performing a 2D convolution using a 3 × 3 kernel (the most commonly
used in CNNs).

4.1 Numerical simulations
To test the following possible solutions, which implement the Winograd algorithm,
a MATLAB script was developed for each of them. These scripts evaluate the
numerical errors introduced by the under-test algorithm compared to the standard
quantized convolution. Therefore, each script runs two convolutions, with the same
random inputs, one using the standard method and one using a Winograd possible
implementation. The tests were performed running one million of these couple of
convolutions.

The error is evaluated considering the maximum absolute difference and the
average difference between the output features of the two convolutions. Before
evaluating the differences, the two outputs are scaled to the 8-bit fixed-point
representation, multiplying them by a scaling factor, evaluated as in the following
equation:

sf = 127/max(OFMaps) (4.1)

26

Convolutional algorithms

4.2 Standard convolution
Standard convolution requires a multiply and accumulate (MAC) operation for
each filter element to derive each output pixel, so in the case of a 3 × 3 kernel, 9
MACs are necessary for each OFMap element.

Figure 4.1 shows the convolution of a 6 × 6 IFMap using a 3 × 3 kernel, to derive
a 4 × 4 OFMap. It requires 144 MACs.

Figure 4.1: Standard convolution representation

4.3 Winograd convolution
Using the Winograd algorithm it is possible to transform an IFTile and the kernel
into matrices of the same size as the IFTile(D and W). The result of an element-
wise matrix (EWMM) between these matrices is the OFTile representation in the
Winograd domain (E). Once E is calculated, an inverse transformation can be used
to derive the right OFTile. Transformations to and from the Winograd domain
require multiplications between matrices:

• D = B × IFT ile × BT

• W = G × kernel × GT

• OFTile = AT × E × A

27

Convolutional algorithms

Their contribution to the computational cost grows with the operands dimensions.
Possible implementations of the algorithm are analyzed by resorting to

F (2 × 2, 3 × 3), F (4 × 4, 3 × 3) and F (6 × 6, 3 × 3).

4.3.1 Winograd F (2 × 2, 3 × 3)

Winograd standard algorithm F (2 × 2, 3 × 3) computes a 2 × 2 OFTile with the
EWMM of two 4x4 matrices, reducing the multiplication needed by a 2.25× factor
compared to the standard convolution (16 instead of 36), as shown in figure 4.2.

Looking at the A and B matrices (4.2), it is possible to notice that their values are
only ones and halves, so the inputs and outputs transformations can be performed
using only additions and logic operations. Also, thanks to the magnitude of the
Winograd matrices elements, the numerical error introduced in a quantized network
is small, during the numerical simulations the average absolute numerical error was
less than 1 and the maximum was 19.

AT =
C
1 1 1 0
0 1 −1 −1

D
BT =


1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

 G =


1 0 0

1/2 1/2 1/2
1/2 −1/2 1/2
0 0 1

 (4.2)

Figure 4.2: Winograd convolution F (2 × 2, 3 × 3) representation

28

Convolutional algorithms

4.3.2 Winograd F (4 × 4, 3 × 3)
In an F (4 × 4, 3 × 3), a 6 × 6 input and a 3 × 3 kernel are transformed resulting
in 6 × 6 size matrices (figure 4.3). The EWMM requires only 36 multiplications
to derive E against the 144 required by standard convolution to calculate a 4 × 4
output (4× reduction). Analyzing the A and B Winograd matrices (4.3), it is
possible to notice that they are composed of powers of 2 or a small integer number
(−5), so the transformations can be performed by additions and logic operations.

This algorithm works well in a single or double precision net, but when it is
quantized to 8-bit, as in the analyzed case, it introduces a high numerical error.
This error is due to the wide numerical range between A, B, and G values [16].

BT =



4 0 −5 0 1 0
0 −4 −4 1 1 0
0 4 −4 −1 1 0
0 −2 −1 2 1 0
0 2 −1 −2 1 0
0 4 0 −5 0 1



G =



1
4 0 0

−1
6

−1
6

−1
6

−1
6

1
6

−1
6

1
24

1
12

1
6

1
24

−1
12

1
6

0 0 1


AT =


1 1 1 1 1 0
0 1 −1 2 −2 0
0 1 1 4 4 0
0 1 −1 8 −8 1



(4.3)

Figure 4.3: Winograd convolution F (4 × 4, 3 × 3) representation

29

Convolutional algorithms

4.3.3 Winograd F (6 × 6, 3 × 3)
Solving formula 2.6 for an F (6 × 6, 3 × 3), the multiplications reduction is equal
to 5.06×, which is the highest reduction among the analyzed solution. Figure 4.4
shows the procedure: inputs and kernels are transformed in 8 × 8 matrices to be
multiplied in an EWMM. The number of multiplications needed to compute a 6 × 6
output is 64 instead 324 as the standard convolution.

However, looking at the Winograd matrices 4.4 two problems are evident:

• the complexity of the matrices elements considerably increases the computa-
tional cost of the transformations, introducing the need for multiplications

• the numerical interval is very high (the maximum ratio between two values is
equal to 2880) and so the numerical error cannot be avoided

BT =



1 0 −21/4 0 21/4 0 −1 0
0 1 1 −17/4 −17/4 1 1 0
0 −1 1 17/4 −17/4 −1 1 0
0 1/2 1/4 −5/2 −5/4 2 1 0
0 −1/2 1/4 5/2 −5/4 −2 1 0
0 2 4 −5/2 −5 1/2 1 0
0 −2 4 5/2 −5 −1/2 1 0
0 −1 0 21/4 0 −21/4 0 1



G =



1 0 0
−2
9

−2
9

−2
9

−2
9

2
9

−2
9

1
90

1
45

2
45

1
90

−1
45

2
45

32
45

16
45

8
45

32
45

−16
45

8
45

0 0 1


AT =



1 1 1 1 1 1 1 0
0 1 −1 2 −2 1/2 −1/2 0
0 1 1 4 4 1/4 1/4 0
0 1 −1 8 −8 1/8 −1/8 0
0 1 1 16 16 1/16 1/16 0
0 1 −1 32 −32 1/32 −1/32 1



(4.4)

30

Convolutional algorithms

Figure 4.4: Winograd convolution F (6 × 6, 3 × 3) representation

4.4 Complex Winograd convolution

Complex Winograd convolution was introduced to solve the problem of transforma-
tion matrices elements. The complex field can provide new interpolation points that
can be exploited to derive simpler matrices than in the standard Winograd. The
price to pay is the representation of complex numbers and their multiplications.

Complex F (2 × 2, 3 × 3) is not needed because standard Winograd already has
good matrices. In the case of F (6 × 6, 3 × 3), it is not possible to find interpolation
points that significantly reduce the numerical error, in every possible configuration
the matrix G presents fractional numbers with a very high denominator. The
only algorithm, among those analyzed, that can take advantage of the complex
representation, using 8-bit data, is F (4 × 4, 3 × 3).

4.4.1 Complex Winograd F (4 × 4, 3 × 3)

To derive the Winograd matrices of an F (4 × 4, 3 × 3) it is possible to use the
interpolation set [0, 1, −1, i, −i]. The symmetry in the interpolation points con-
tributes to reducing the magnitude of the elements in the matrices and this leads
to a significant reduction of the numerical error.

Another positive aspect of matrices values reduced magnitude, is that the

31

Convolutional algorithms

Winograd transformations are simpler to be implemented using logical elements.

BT =



1 0 0 0 −1 0
0 1 1 1 1 0
0 −1 1 −1 1 0
0 −i −1 i 1 0
0 i −1 −i 1 0
0 −1 0 0 0 1



G =



1 0 0
1
4

1
4

1
4

1
4 −1

4
1
4

1
4

1
4 −1

4
1
4 −1

4 −1
4

0 0 1


AT =


1 1 1 1 1 0
0 1 −1 i −i 0
0 1 1 −1 −1 0
0 1 −1 −i i 1



(4.5)

Being the matrices in the Winograd domain composed of complex values, both the
real and imaginary parts of these values must be represented. From the analysis of
the matrices W and D, it is possible to see that 20 out of 36 elements are complex
and they are pairs of conjugate complexes (figure 4.5).

Figure 4.5: Matrices pattern in complex Winograd domain in F (4 × 4,3 × 3)

Taking advantage of the redundancy of the conjugate complexes, it is possible to
consider only half of the 20 that are present in the matrices. There are, therefore,
only 10 complex multiplications to perform in the EWMM, and using Karatsuba
multiplication (equation 4.6), each of them can be replaced by 3 real multiplications,
so the total number of multiplications in an F (4 × 4,3 × 3) is 46 instead of the 144
of a standard convolution, leading to a multiplication reduction of 3.13×.

32

Convolutional algorithms

X = x0 + x1i, Y = y0 + y1i

XY = (x0y0 − x1y1) + ((x0 + x1)(y0 + y1) − x0y0 − x1y1)i
(4.6)

Figure 4.6 shows how the complex F (4 × 4,3 × 3) is applied. The complex values
of the matrices in WD are darker than the other values.

Figure 4.6: Complex Winograd convolution F (4 × 4, 3 × 3) representation

33

Convolutional algorithms

4.5 RNS Winograd convolution

RNS Winograd is the only way, among the analyzed solutions, to provide the
same results as the standard convolution in a quantized network. To avoid it, the
modules chosen to derive the residues must follow the rules expressed in section
2.6:

• modules must be pairwise coprime

• the numerical range width representable in RNS is equal to the product of
the modules

To comply with the first rule in an 8-bit quantized network it is possible to search
between prime numbers less than 28. Choosing the two highest possible values
(251, 241) the representable range is [−30245; 30245]. This interval doesn’t allow
the correct representation of the convolution. Adding 239 to the module set, on
the other hand, makes it possible to include all possible values reached by the
operation. This means that at least 3 residue systems are needed to represent the
convolution.

4.5.1 RNS(239, 241, 251) Winograd F (4 × 4, 3 × 3)

To apply the RNS Winograd method (Figure 4.7), the residues of the transformation
matrices are used, instead of the standard ones. In F (4×4, 3×3), since the matrices
A and B are composed only of integers, smaller than the chosen modules, they are
the same among the three systems, thus, the D matrix can be shared. Matrix G,
on the other hand, is also composed of fractional numbers, which require three
different G matrices and so 3 different representations of W matrices. It is therefore
necessary to triple the number of EWMMs to compute three different E matrices,
from which to derive three output matrices, on which to apply CRT to derive
the OFTile. Thus, without considering the CRT operation, the multiplications
reductions drop to 1.33×.

As for Winograd transformations, they can be carried out by logical elements,
because the same considerations on the A and B matrices of the standard F (4 ×
4, 3 × 3) are valid.

The main con of this solution is the CRT operation to be performed at the end
of the operation, which requires 6 multiplications for each output pixel.

34

Convolutional algorithms

Figure 4.7: RNS(m0, m1, m2) Winograd convolution F (4×4, 3×3) representation

4.5.2 RNS(239, 241, 251) Winograd F (6 × 6, 3 × 3)
In the case of F (6 × 6, 3 × 3), the same observations made on matrices A and B
are not valid. They are composed of fractional numbers which require different
representations in the 3 number systems. This greatly increases the number
of multiplications needed, canceling the advantage derived from the Winograd
algorithm.

4.6 Algorithms comparison
Table 4.1 represents a comparison between the analyzed methods, summarizing the
previous sections. The three parameters analyzed are complexity reduction (CR),
maximum absolute error (MAX err), and average absolute error (AVG err). In the
CR column only the multiplications used in the EWMMs are considered compared
to the quantized standard convolution. Also, the numerical errors are referred to
the standard algorithm and their values are derived as described in section 4.1.

Standard Winograd solutions F (4 × 4, 3 × 3) and F (6 × 6, 3 × 3) are the bests
in terms of the number of multiplications, but they are unreliable.

The RNS Winograd F (4 × 4, 3 × 3) is the only solution able to avoid the
numerical error, but, it requires the CRT operation that introduces multiplications
of each output pixel and has a higher memory footprint, due to the tripled WD
representation. For these reasons, the RNS Winograd doesn’t represent the best
solution among those analyzed. However, it can be of interest to analyze the RNS
benefits using higher operands dimensions or higher precision quantization in the
Winograd domain, because of the higher multiplications reduction in the first case,
and the possibility to use higher modules and so only 2 systems in the second case.

Complex Winograd F (4 × 4, 3 × 3) represents a trade-off between arithmetic

35

Convolutional algorithms

complexity and numerical error. Looking at the computational cost this solution is
also better than F (2 × 2, 3 × 3) because it allows a higher reduction (3.13× against
2.25×).

Winograd algorithm muls reduction MAX err AVG err
F (2 × 2, 3 × 3) 2.25× 19 0.76
F (4 × 4, 3 × 3) 4× 256 24.7
F (6 × 6, 3 × 3) 5.06× 256 38.16

Complex F (4 × 4, 3 × 3) 3.13× 18 1.53
RNS(239, 241, 251) F (4 × 4, 3 × 3) 1.33× 0 0

Table 4.1: Winograd algorithms comparison

36

Chapter 5

Methodologies

5.1 Winograd awareness
In chapter 4 analysis, Complex Winograd F (4 × 4, 3 × 3) represents the best
trade-off between numerical error and multiplications number. This section shows
the changes needed to make the PipeCNN [17] convolutional kernel aware of this
Winograd algorithm and the techniques used to optimize it.

5.1.1 IFMap tile reading and transformation
To apply a generic F (m × n, r × s) Winograd algorithm to an input of generic size
each of its channels must be divided in (m + r − 1) × (n + s − 1) tiles, with r − 1
and s − 1 overlapped elements in the corresponding dimensions [7]. This operation
can be performed offline, thus the inputs can be read as vectorized tiles and the
algorithm can be applied, starting from their transformation. Complex Winograd
F (4 × 4, 3 × 3) needs (6 × 6) tiles as input. The transformation of these tiles results
in 36 different elements.

5.1.2 Offline weights transformation
The chosen Winograd algorithm provides a fractional G matrix. This matrix is
involved in the kernel transformation. Performing this operation using integer
arithmetic can introduce a significant loss of information. An offline kernel transfor-
mation computed using a single-precision floating-point makes it possible to directly
read the 8-bit quantized transformed weights from the off-chip memory, reducing
the numerical error, but also avoiding the weights transformation computational
costs.

Once computed, the W matrix can also be scaled using a scaling factor to
represent weights with the whole admitted range by the quantization, reducing the

37

Methodologies

numerical error even more. In addition, this operation is performed offline.

5.1.3 Hardware sharing between standard convolution and
EWMM

A convolutional kernel aware of Complex Winograd F (4 × 4, 3 × 3) also needs to
support standard convolution to keep the compatibility with different convolution
parameters, such as stride or kernel dimensions.

Both algorithms make a massive usage of multiplications. The best way to
efficiently implement them in FPGA is using dedicated digital signal processors
(DSPs). However, the number of DSPs in an FPGA is limited, so to take full
advantage of them, they can be shared by the two convolution methods.

5.1.4 Outputs transformation
The last step to make a convolutional kernel aware of Complex Winograd F (4 ×
4, 3 × 3) is to implement its output transformation. This is the most expensive
part in terms of used logic because of the number of addictions and shifts required,
but also because of the width of the processed values. They are 32-bit wide since
they store the accumulated products of the EWMMs.

5.2 Two multiplication in one DSP
As explained in section 5.1.3, multiplications execution is demanded to DSPs. A
possible optimization to further exploit the available DSPs is to simultaneously
perform two multiplications in the same DSP [18]. In these two multiplications, the
two multiplicands (i.e. the first operands) are different, but the multiplicator (i.e.
the second operand) is the same. In a multiplication between n-bit wide operands
it is possible to apply this method if the following two conditions are met:

• the output value of the DSP must be at least 4n bits

• one of the two input values must be mapped with the two multiplicands
separated by at least n bits

For example, it is possible to map two multiplications, both signed or unsigned, of
two 8-bit operands using a single DSP that performs a multiplication between a
25-bit value and another value 8 bit wide. The 25-bit input is the one with the two
multiplicands (separated by 9 bits).

38

Methodologies

(a) Multiplication between the 25-bit and 8-bit operands

(b) A correction factor is applied to derive the final Res2

Figure 5.1: Example of two multiplications simultaneously performed

Figure 5.1a shows the multiplicator (23) that simultaneously multiplies the
multiplicands (-90 and -43). It can be seen that the second result is incorrect: the
returned value is 10787 instead of -989. The reason behind this is that in the case
of a negative first operand, multiplication alone is not enough. It is necessary to
subtract to the second result the multiplicator (23) shifted by n positions to make
the correct result succeed. This applies only to the multiplication performed in the
least significant bits, as the multiplier in the DSP correctly extends the sign in the
most significant bits.

The XILINX ZCU104 DPSs (DSP48) have multipliers with 45-bit wide outputs.
In the design proposed in chapter 6 multiplicands values are 9-bit and 12-bit wide,
thus, their multiplication can be mapped as shown in figure 5.2.

Figure 5.2: DSP registers mapping

39

Methodologies

5.3 Loop unrolling
Unrolling a loop with a P factor means reducing the number of its iteration P
times, parallelizing its loop body execution. Being the convolutional algorithm a
huge loop, its execution can be greatly improved by the loop unrolling usage.

This project exploits three levels of unrolling (figure 5.3), corresponding to three
different dimensions of the convolution:

• Pkx: kernel x dimension

• Pif : input channel dimension

• Pof : output channel dimension

Figure 5.3: 3D unrolling of a convolution

These unrolling factors reduce the convolutional loop iterations by Pkx × Pif × Pof .
The price to pay, however, is a higher hardware demand that grows linearly
with the unrolling levels. For example, looking at the DSPs usage, mapping

40

Methodologies

two multiplications in each of them, Pkx×Pif ×Pof

2 DSPs are required. Also, on-
chip memory demand and logical element usage are negatively affected by the
unrolling. The maximum level of possible unrolling is so set by the available
hardware. Unrolling the convolutional loop (algorithm 2) using the three introduced
parameters it is possible to derive the following unrolled algorithm:

Algorithm 2 Unrolled convolutional loop
for oy = 0; oy < Noy; oy + + do

for ox = 0; ox < Nox; ox + + do
for ky = 0; ky < Nky; ky + + do

for of = 0; of < Nof/Pof ; of + + do
for if = 0; if < Nif/Pif ; if + + do

for kx = 0; kx < Nkx/Pkx
; kx + + do

OFMaps(ox, oy, of)+=
Weights(kx, ky, if, of) ×IFMaps(s × ox + kx, s × oy + ky, if)
...

OFMaps(ox, oy, of + Pof)+ =
Weights(kx + Pkx, ky, if + Pif, of + Pof) ×
IFMaps(s × ox + kx + Pkx, s × oy + ky, if + Pif)
end

end
end

end
end

end

5.4 Data vectorization
To make the convolutional loop unrolling possible, as described in the previous
section, Pkx × Pif × Pof weights and Pkx × Pif inputs must be available at the
same time. To do that, it is possible to handle inputs and weights values as a set
of vectors. These vectors can be composed of Pif overlapped values in the input
channel dimension. To correctly feed the convolutional loop, inputs and weights
must be grouped as Pkx vectors and Pof sets of Pkx vectors, respectively. When
reading values as vectors it can be possible that operands sizes are not multiple
of the unrolling parameters; in this case, it is useful to map with zeros the read
vectors in the exceeding positions. For example, being weights size 3 × 3 × 64 × 64,
if all the unrolling parameters are equal to 2, each kernel can be read as if it was
a 4 × 3 matrix (figure 5.4). Thus, more data than needed are processed, wasting

41

Methodologies

multiplications and resources. This, however, allows a parallel implementation that
speeds up the execution of the convolutional loop.

Figure 5.4: 3 × 3 kernel 0 mapping using Pkx = 2

42

Chapter 6

IP design

The following sections describe the designed IP. The proposed architecture can
perform the convolution using both the standard method and Complex Winograd
F (4 × 4, 3 × 3) for an 8-bit fixed-point quantized neural network and it can be
adapted to different unrolling levels, honoring the FPGA’s flexibility.

6.1 Design flow

The structure of the developed system is composed of two main elements, which
cover the two different roles of host and device:

• a C + + code is run by a testbench, on a CPU (host), which has the task of
sending the input stimuli to the device, and of receiving the outputs, to be
evaluated

• an HLS code, compiled and synthesized to run on the XILINX FPGA (device),
which describes parallel compute units using kernel functions

Figure 6.1 illustrates the two development processes for host and device code, that
use separate compilers. The communication between host and device is demanded
to streaming data structures (streams), that are implemented as external ports of
the device.

43

IP design

Figure 6.1: Vitis HLS based design flow

6.2 Kernels structure
The IP structure is organized in four different pipelined kernels, communicating
through streams implemented as internal FIFOs. The four kernels are:

• Input transformation

• Weights reading

• Processing kernel

• Output transformation

In addition, each kernel exploits data vectorization and loop unrolling, to improve
the pipeline usage and therefore the computational throughput.

Since standard convolution doesn’t require transformations, the two types of
convolution follow two different datapaths. Standard convolution datapath is shorter
and it is composed only of the testbench and the processing kernel (represented in
blue in figure 6.2); the Winograd convolution datapath, instead, passes through all
the four kernels (represented in yellow).

44

IP design

Figure 6.2: IP kernels structure

6.2.1 Input transformation (IT)
The input transformation kernel (figure 6.3) is used to read the input data from the
testbench and to feed the processing kernel with the transformed values. It reads
streams of Pif × Pkx 8-bit data from an external port, communicating with the
testbench. These data are collected in Pif arrays of 36 elements, which represent
the IFMaps 6 × 6 tiles, inputs of the Winograd algorithm.

Once filled, the set of the array is simultaneously transformed into a Pif set of
46 elements vectors, recurring only to additions.

The 46 elements of the output vectors are divided as follows:

45

IP design

• 26 values representing the real part of the D matrix

• 10 values representing the imaginary part of the D matrix

• 10 values representing the sum of the real and imaginary parts of each couple
of complex conjugates

Only 10 of the 20 complex numbers are represented. This is because the redundancy
of the complex numbers has been exploited (section 4.4.1). The last 10 values
are used as operands of the third multiplication of the Karatsuba algorithm
(equation 4.6).

Figure 6.3: Input transformation kernel

Since the additions, used in the transformation, sums together up to 12 IFMaps
elements, the output data requires 4 bits more than the inputs, so the output
vectors’ data-width is about 12 bits.

In each iteration, Pif × Pkx outputs are written in the FIFO that communicates
with the processing kernel.

46

IP design

The kernel function is implemented as follows:

Algorithm 3 Input transformation loop
for of = 0; of < ⌈Nof

Pof
⌉; of++ do

for xy = 0; xy < ⌈Nif

Pif
⌉; xy++ do

for if = 0; if < Nox×Noy

16 ; if++ do
for r = 0; r < ⌈ 36

Pkx
⌉; r++ do

read Pif × Pkx element from TB
end
transformation of Pif arrays
for s = 0; s < ⌈ 46

Pkx
⌉; s++ do

send Pif × Pkx element to PK
end

end
end

end

At the and of the execution, ⌈Nof

Pof
⌉ × ⌈Nif

Pif
⌉ × Nox×Noy

16 iterations of the following
loop are executed:

• ⌈ 36
Pkx

⌉ stream reading (of Pif × Pkx value)

• Pif arrays transformation

• ⌈ 46
Pkx

⌉ stream writing (of Pif × Pkx value)

It is evident how by increasing the unrolling levels, the number of iterations
decreases. However, the higher the Pif is, the higher is the number of parallel
processed matrix transformations are, and so the logical elements usage increases.

6.2.2 Weights reading (WR)
Weights transformation is not needed because it is performed off-chip (section
5.1.2). However, only 36 values of the 46 needed by the processing kernel are
provided from the testbench. The missing 10 values are the operands of the third
multiplication in the Karatsuba algorithm (4.6). 10 additions are used to evaluate
them.

The weights reading kernel is in charge of reading the input weights, performing
the 10 sums, and sending the 46 values to the processing kernel.

Pof × Pif vectors of 36 values are processed in parallel, resulting in Pof × Pif

vectors of 46 values divided as in the input transformation case.

47

IP design

In one iteration the kernel reads Pof × Pif × Pkx 8-bit weights from the external
port, communicating with the testbench, and writes the same amount of output
weights in the FIFO communicating with the processing kernel. The output weights
are 9 bits wide because of the sums.

Figure 6.4: Weights reading kernel

The weights reading kernel function is described by the pseudo-code in algorithm
4. The number of total executions of its tasks is ⌈Nof

Pof
⌉×⌈Nif

Pif
⌉, therefore, is Nox×Noy

16
times less than the input transformations executions. This is because of the weights
reuse done by the processing kernel. In addition, in this case, increasing the
unrolling levels the number of iterations decreases and the logical elements demand
increases.

48

IP design

Algorithm 4 Weights reading loop
for of = 0; of < ⌈Nof

Pof
⌉; of++ do

for xy = 0; xy < ⌈Nif

Pif
⌉; xy++ do

for r = 0; r < ⌈ 36
Pkx

⌉; r++ do
read Pof × Pif × Pkx element from TB

end
10 × Pof × Pif sums
for s = 0; s < ⌈ 46

Pkx
⌉; s++ do

send Pof × Pif × Pkx element to PK
end

end
end

6.2.3 Processing kernel (PK)
The Processing kernel is the core of the IP. It is demanded to perform the multipli-
cations required by both the supported algorithms. It is the only kernel shared
among the two datapaths.

Each weight is read once and then it is stored in a local buffer. Weights are read
Pof × Pif × Pkx at a time, selecting from the streams connected to the testbench or
the weights reading kernel. Read weights are stored in a local buffer, to be reused
with different inputs, saving off-chip memory accesses.

In each iteration the kernel reads Pif × Pkx inputs data, selecting between the
two streams connected to the input transformation kernel or the testbench.

The read values feed the basic element of this kernel, a systolic array [19] of
processing elements (PEs) [20] (figure 6.5). The dimensions of the PEs array are
equal to the unrolling dimensions: they are grouped in Pof matrices of Pif × Pkx

elements (figure 6.7). The inputs values are shared between the different matrices,
weights are not shared.

Each PE performs a multiplication between an input and a weight and accumu-
lates its result with the result of the previous PE in the Pif dimension.

Couples of PEs, belonging to two neighboring PE matrices, share the same
DSP to perform their multiplications. They multiply the same input with two
different weights, so it is possible to map the DSPs as illustrated in section 5.2. It
is, therefore, possible to perform Pof × Pif × Pkx multiplications in one iteration
using Pof ×Pif ×Pkx

2 DSPs.
The outputs of the systolic array follow two different paths based on the applied

algorithm:

• In the case of standard convolution, the values are also summed in the Pkx

49

IP design

Figure 6.5: Processing elements structure

dimension, using Pof adder trees, and then the sums are sent to the testbench
Pof each iteration

• In the case of a Winograd convolution, values are sent directly to the output
transformation kernel through the correspondent FIFO, without an accumula-
tion in the Pkx dimension, so preserving the E matrices values. The FIFO is
filled with Pkx × Pof values each iteration

In both cases, the output values are 32-bit wide.

The code in algorithm 5 shows how the two convolutions are implemented in
the same kernel. A boolean variable set by the testbench is used to select between
the two different paths. The iterations number of two loops depends on the applied
algorithm. One of these two loops spans the output xy dimensions, it differs because
the F (4×4,3×3) produces 16 outputs at times while the standard convolution only
one. The other loop is the one that applies the multiplications and accumulations, it
differs because in the case of the Winograd algorithm the operations are performed
on 46 elements vectors, while the standard convolution is applied on vectors of
the same dimensions of the unrolling level. The derivation of the two iterations
parameter is performed by the testbench and it is shown in blue in the code.

50

IP design

Figure 6.6: Processing kernel structure

Also the total number of multiplications performed by the code execution changes
with the applied algorithm, equations 6.1 and 6.2 show how they are computed,

51

IP design

for the standard and the Winograd cases respectively.

mul (std) = ⌈Nof

Pof

⌉ × Nox × Noy × ⌈Nkx

Pkx

⌉ × Nky × ⌈Nif

Pif

⌉ × Pof × Pif × Pkx (6.1)

mul (W) = ⌈Nof

Pof

⌉ × ⌈Nox

4 ⌉ × ⌈Noy

4 ⌉ × ⌈ 46
Pkx

⌉ × ⌈Nif

Pif

⌉ × Pof × Pif × Pkx (6.2)

Approximating ⌈Nox

4 ⌉ × ⌈Noy

4 ⌉ = Nox×Noy

16 , from the ratio of the two values it is
possible to derive the multiplications saving of F (4×4,3×3) respect to the standard
convolution in the implemented design:

muls saving =
⌈Nkx

Pkx
⌉ × Nky

1
16 × ⌈ 46

Pkx
⌉

(6.3)

Being in F (4×4,3×3) the kernel dimensions equal to 3x3, the equation 6.3 becomes:

muls saving =
⌈ 3

Pkx
⌉ × 3

1
16 × ⌈ 46

Pkx
⌉

(6.4)

From this relation, it is possible to see that the ratio changes together with the
unrolling parameter Pkx. In particular, looking at (1,2,4) as a set of possible
Pkx values (because they are powers of 2 and values higher than 4 could be
counterproductive given the size of the kernel), the possible ratio values are:

• 3.13 using Pkx = 1

• 4.17 using Pkx = 2

• 4 using Pkx = 4

Only in the case of Pkx = 1, the value is equal to the theoretical one derived in section
4.4.1. In the other two cases, the standard convolution wastes 1 multiplication each
4, because of how the 3×3 kernels are read (section 5.4). In the Winograd algorithm
case, instead, inputs and weights are handled as sets of 46 elements vectors, this
avoids wasting multiplications in both the cases Pkx = 1 and Pkx = 2. When
Pkx = 4, 48 elements are read instead of 46 for each vector, so 2 multiplications are
wasted for each 48.

52

IP design

Algorithm 5 Processing loop
if winograd then

out_xy = Nox×Noy

16
MAC_loop = ⌈ 46

Pkx
⌉ × ⌈Nif

Pif
⌉

end
else

out_xy = Nox × Noy

MAC_loop = ⌈Nkx

Pkx
⌉ × Nky × ⌈Nif

Pif
⌉

end
for of = 0; of < ⌈Nof

Pof
⌉; of++ do

for xy = 0; xy < out_xy; xy++ do
for c = 0; c < MAC_loop; c++ do

if xy==0 then
if winograd then

load Pof × Pif × Pkx weights from IT
end
else

load Pof × Pif × Pkx weights from TB
end

end
if winograd then

read Pif × Pkx inputs from IT
end
else

read Pif × Pkx inputs from TB
end
Pof × Pif × Pkx multiplications
accumulation of the results in Pif dimension
if !winograd then

accumulate results in Pkx dimension
end

end
if winograd then

send Pof × Pkx element to OT
end
else

send Pof element to TB
end

end
end

53

IP design

Looking at the same algorithm, it is also possible to see how the unrolling levels
influence the on-chip memory demand. Considering that the weights are loaded
once for each iteration of the outer loop, the size of the weights buffer must be
equal at least to the number of loaded weights each outer loop iteration, so it is
possible to derive the following relations:

• weights buffer size ≥ weights width×Pof ×Pif ×Pkx ×⌈Nkx

Pkx
⌉×Nky ×⌈Nif

Pif
⌉

in the case of the standard convolution

• weights buffer size ≥ weights width × Pof × Pif × Pkx × ⌈ 46
Pkx

⌉ × ⌈Nif

Pif
⌉

in the case of the Winograd convolution

In both two cases, the on-chip memory usage depends on both the unrolling
parameters and the size of the parameters. However, to be feasible to synthesize
the IP, the weights buffer size must not depend on the inputs, and so on their sizes.
So an arbitrary constant value (size) must substitute the second part of both the
expressions. This value limits the maximum number of eligible input channels and
the kernel sizes. The final value corresponding to the on-chip memory demand, to
store the weights buffer, is:

weights buffer size = weights width × Pof × Pif × Pkx × size

Where:

size ≥ max(⌈maxNkx

Pkx

⌉ × maxNky × ⌈maxNif

Pif

⌉, ⌈ 46
Pkx

⌉ × ⌈maxNif

Pif

⌉)

In the HLS code, this buffer is implemented as an array of size structures of
Pof × Pif × Pkx weights.

6.2.4 Output transformation (OT)
This kernel aims to perform the transformations of processing kernel’s outputs, and
then send the transformed values to the testbench.

It reads Pkx × Pof 32-bit values each iteration. These values are used to fill Pof

array of 46 elements.
The first computational step performed by the kernel is to compute the differences

of the Karatsuba algorithm to derive the results of the complex multiplications.
Thus, the values can be organized in Pof arrays of 36 elements representing the E
matrices of the Winograd algorithm.

The output transformation is computed resorting to shifts and additions, the
results of this operation are Pof arrays of 16 elements 32-bit wide representing the
4 × 4 OFMaps tiles. Their values are sent to the testbench, through a stream,
Pkx × Pof values each iteration.

54

IP design

Since the whole kernel works using 32-bit values, its logical element demand
(that is also linear together with Pof) highly contributes to increasing the one of
the whole IP.

Figure 6.7: Output transformation kernel structure

Algorithm 6 shows that there are ⌈Nof

Pof
⌉ × Nox×Noy

16 iterations of:

• ⌈ 46
Pkx

⌉ stream reading (of Pof × Pkx value)

• Pof arrays transformation

• ⌈ 16
Pkx

⌉ stream writing (of Pof × Pkx value)

55

IP design

Algorithm 6 Weights reading loop
for of = 0; of < ⌈Nof

Pof
⌉; of++ do

for xy = 0; xy < Nox×Noy

16 ; xy++ do
for s = 0; s < ⌈ 46

Pkx
⌉; s++ do

read Pof × Pkx element from PK
end
karatsuba subtractions
transformation of Pof arrays
for s = 0; s < ⌈ 16

Pkx
⌉; s++ do

send Pof × Pkx element to TB
end

end
end

56

Chapter 7

Experiments

This chapter describes firstly how the algorithms were validated through C sim-
ulations, then analyzes the reports of the synthesis of different solutions, which
implement different unrolling levels, and, in conclusion, the results of the C/RTL
co-simulations, which establish if the synthesized RTL solutions work correctly and
estimate the solutions latencies.

7.1 C simulations
The C simulations were performed by flanking a MATLAB script with the C
testbench. The MATLAB script produces random input and weights, performs the
same convolution required of the C++ code, and produces the expected results.
Inputs, weights, and outputs are saved in .txt files which are then read by the
testbench. The testbench vectorizes inputs and weights and sends them to the
kernels. Once the kernels have produced their results and the testbench has received
them, they are compared to the ones produced by the MATLAB script. Several
simulations were run, to test both the standard convolution algorithm and the
Complex Winograd algorithm, with different configurations of the IFMaps and
weights dimensions, also using different unrolling levels. Each test gave positive
results confirming that the implemented algorithm worked as expected. The
two solutions were also compared between them and the error introduced by the
Winograd algorithm was in line with the results observed in chapter 4 (18 as
maxiumum absolute value and 1.53 as average absolute value).

57

Experiments

7.2 C synthesis

Once the algorithm is validated, the C synthesis is used to derive an RTL imple-
mentation. Chapter 6 discusses how the unrolling levels theoretically influence the
hardware demand. The graphs below show how these relations really influence the
percentage of DSPs, on-chip memory and LUTs in synthesized solutions for the
XILINX Zynq UltraScale+ MPSoC ZCU104. In particular, the graphs in figures
7.1, 7.2 and 7.3 show, respectively, the Pif , Pof and Pkx parameters effects.

In the first graph configurations, the values of Pof and Pkx are both held constant
at 4, while the parameter Pif varies from 2 to 16. It is notable that the on-chip
memory and the DSPs usage increase linearly together with the parameter under
test. The LUTs usage, instead, grows slower because the output transformation
logic demand depends only on the Pof parameter. Its usage is about 7 percent for
all four configurations.

Figure 7.1: Changes in resource demand consequent to Pif ’s change

To evaluate the changes introduced by the Pof variations, the Pif and Pkx

parameters are held constant at 4, while the parameter Pof varies from 2 to 16. The
synthesis results are similar to the Pif case because the two parameters influence
the DSPs and memory usage in the same way and Pof does not influence the input
transformation logic usage that is kept constant at 3% but is related to the output
transformation LUTs usage.

58

Experiments

Figure 7.2: Changes in resource demand consequent to Pof ’s change

Keeping the Pof and Pif values constant at 8 and varying the Pkx parameter,
it is possible to notice how also in this case the use of DSP and on-chip memory
grows linearly with Pkx, while that of the LUTs does not. In this case, however,
the LUTs demand differences are less noticeable, this is because only the logic
elements used in the processing kernel change together with the parameter changes,
while the LUTs needed by the other three kernels are kept constant in the four
configurations.

Figure 7.3: Changes in resource demand consequent to Pkx ’s change

The results shown by the 3 graphs are in line with the theoretical relationships
obtained in the previous chapter. Looking at them is also evident that the LUTs
demand is the most critical value, which limits the maximum achievable level of

59

Experiments

unrolling. Therefore, even if the number of available DSPs is 1728, their maximum
usage in a synthesizable configuration is only 256 (14%), allowing a maximum of
512 multiplications in parallel (performing two multiplication in a single DSP). The
table below shows the hardware usage summary of the configuration implementing
Pif = 16, Pof = 16 and Pkx = 2.

DSPs BRAM (%) LUT (%)
256 39 89

Table 7.1: Synthesis summary of the IP using Pif = 16, Pof = 16, Pkx = 2

7.3 C/RTL co-simulations

To validate the synthesized RTL solutions, C/RTL co-simulations are run. They
allow knowing if the RTL implementation is functionally identical to the C++
code. The same testbenches used in the C simulations can be used to run the tests.
Co-simulations can also be used to estimate the latencies. They return the numbers
of clock cycles required to execute the run tests. Therefore, it is possible to see how
the execution latency changes with the unrolling parameters and to evaluate the
Winograd algorithm benefits. A C/RTL co-simulation was run for each synthesized
configuration, and all the RTL implementations resulted in functionally identical
to the C++ code. They were tested using a sample layer of the same size as the
Conv2_1 layer of the ResNet18 [21], so: Nix = Niy = 56; Nif = Nof = 64; Nkx =
Nky = 3; stride = 1; padding = 1. The obtained latencies were then compared to
derive the following considerations.

How it is possible to imagine, the higher unrolling factors values are, the lower the
overall latency is, because of the operations parallelization. This relation is shown
in the graph in figure 7.4, where both the standard and Winograd convolutions are
analyzed.

60

Experiments

Figure 7.4: Relation between unrolling parameters and convolutions latencies

Table 7.2, instead, shows how the ratio between the latencies of the two different
algorithms is higher as the unrolling parameters increase. Therefore, it becomes
closer to the multiplication ratio, which, using Pkx = 2, is equal to 4.17 as derived
in section 6.2.3. The two ratios are more different in smaller configurations because
there are fewer multiplications performed simultaneously, so the contribution to
the latency of the rest of the circuit is more noticeable.

Pif × Pof × Pkx latencies ratio
4 × 4 × 2 2.74
8 × 4 × 2 2.99
8 × 8 × 2 3.00
16 × 8 × 2 3.44

Table 7.2: Relation between the unrolling parameters and the latencies ratio

Lastly, table 7.3 shows the latency of three configurations, which have different
Pkx values but they make use of the same DSPs number. It is interesting to see
how the ratio between the two latencies changes together with the Pkx parameter.

61

Experiments

This is because the multiplications are the major contribute to the overall system
latency.

Pif × Pof × Pkx multiplications ratio latencies ratio
8 × 4 × 1 3.13 2.11
4 × 4 × 2 4.17 2.74
4 × 2 × 4 4 2.66

Table 7.3: Relation between Pkx and the latencies ratio

62

Chapter 8

Conclusions

8.1 Summing-up and further works
This thesis work proposes a design of an IP able to perform the convolution
operation for a quantized neural network. Taking the convolutional kernel of [17]
as the baseline, several optimizations were applied to maximize resource utilization
and reduce the computational cost.

An 8-bit fixed-point quantization is applied to reduce the memory footprint.
This allows also exploiting the parallel computation mapping two multiplications
in a single DSP slice.

To further exploit the parallelization, a three-dimensional unrolling is imple-
mented, increasing the throughput of the system and resource utilization. The
three unrolling levels are scalable allowing control of the latency and resource
demand, giving the system certain flexibility, typical of FPGA solutions.

Complex and RNS representations of the Winograd algorithms F (2 × 2, 3 × 3),
F (4×4, 3×3) and F (6×6, 3×3) were analyzed, to reduce the computational cost of
the convolution, with a limited numerical error. Complex Winograd F (4 × 4, 3 × 3)
was preferred among the possible solutions, to be implemented in the design.
It introduced a multiplications reduction of 3.13× compared to the standard
convolution.

The solution was synthesized for a XILINX Zynq UltraScale+ MPSoC ZCU104
FPGA and then tested. The collected results confirmed the benefits of the imple-
mented optimizations. However, the results also demonstrated that the Winograd
awareness greatly affects the logic resources demand, limiting the maximum level
reachable by the parallelization.

As a next step, the developed IP has to be implemented and validated in
hardware. After that, an evaluation of the ResNet-18 inference, for both algorithms,
will be able to quantify the real advantage introduced by the Winograd algorithm

63

Conclusions

in terms of latency.
The RNS solution was not the best option in this project, however, it would be

interesting to study the possibility of using it in Winograd algorithms applied on
larger input tiles and/or with larger kernels because they should ensure a greater
reduction in complexity, and the CRT operation drawbacks can be overcome.

64

Bibliography

[1] Jiuxiang Gu et al. «Recent advances in convolutional neural networks». In:
Pattern Recognition 77 (2018), pp. 354–377 (cit. on p. 7).

[2] Qing Li, Weidong Cai, Xiaogang Wang, Yun Zhou, David Dagan Feng, and
Mei Chen. «Medical image classification with convolutional neural network».
In: 2014 13th international conference on control automation robotics & vision
(ICARCV). IEEE. 2014, pp. 844–848 (cit. on p. 7).

[3] Inad Aljarrah and Duaa Mohammad. «Video content analysis using convolu-
tional neural networks». In: 2018 9th International Conference on Information
and Communication Systems (ICICS). IEEE. 2018, pp. 122–126 (cit. on p. 7).

[4] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, Li Deng, Gerald
Penn, and Dong Yu. «Convolutional neural networks for speech recognition».
In: IEEE/ACM Transactions on audio, speech, and language processing 22.10
(2014), pp. 1533–1545 (cit. on p. 7).

[5] Jiantao Qiu et al. «Going deeper with embedded fpga platform for convolu-
tional neural network». In: Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. 2016, pp. 26–35 (cit. on
p. 7).

[6] S Winograd. «Arithmetic complexity of computations, CBMS-NSF Reg». In:
Conf. Series in Applied Math., Philadelphia. 1980 (cit. on pp. 7, 20).

[7] A. Lavin and S. Gray. «Fast Algorithms for Convolutional Neural Net-
works». In: 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). Los Alamitos, CA, USA: IEEE Computer Society, June
2016, pp. 4013–4021. doi: 10.1109/CVPR.2016.435. url: https://doi.
ieeecomputersociety.org/10.1109/CVPR.2016.435 (cit. on pp. 7, 24, 37).

[8] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. «Quantized neural networks: Training neural networks with
low precision weights and activations». In: The Journal of Machine Learning
Research 18.1 (2017), pp. 6869–6898 (cit. on p. 7).

65

https://doi.org/10.1109/CVPR.2016.435
https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.435
https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.435

BIBLIOGRAPHY

[9] Lingchuan Meng and John Brothers. «Efficient Winograd Convolution via
Integer Arithmetic». In: ArXiv abs/1901.01965 (2019) (cit. on pp. 7, 24).

[10] Zhi-Gang Liu and Matthew Mattina. «Efficient Residue Number System
Based Winograd Convolution». In: ECCV. 2020 (cit. on pp. 7, 21, 24).

[11] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. «Efficient
processing of deep neural networks: A tutorial and survey». In: Proceedings
of the IEEE 105.12 (2017), pp. 2295–2329 (cit. on p. 9).

[12] Li Deng. «The mnist database of handwritten digit images for machine
learning research». In: IEEE Signal Processing Magazine 29.6 (2012), pp. 141–
142 (cit. on p. 17).

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. «Ima-
genet: A large-scale hierarchical image database». In: 2009 IEEE conference
on computer vision and pattern recognition. Ieee. 2009, pp. 248–255 (cit. on
p. 17).

[14] XILINX official site. url: https://www.xilinx.com/products/boards-
and-kits/zcu104.html (visited on 03/23/2022) (cit. on p. 19).

[15] Barbara Barabasz, Andrew Anderson, Kirk M Soodhalter, and David Gregg.
«Error analysis and improving the accuracy of Winograd convolution for deep
neural networks». In: ACM Transactions on Mathematical Software (TOMS)
46.4 (2020), pp. 1–33 (cit. on p. 20).

[16] Javier Fernandez-Marques, Paul Whatmough, Andrew Mundy, and Matthew
Mattina. «Searching for winograd-aware quantized networks». In: Proceedings
of Machine Learning and Systems 2 (2020), pp. 14–29 (cit. on pp. 20, 29).

[17] Dong Wang, Jianjing An, and Ke Xu. «PipeCNN: An OpenCL-based FPGA
accelerator for large-scale convolution neuron networks». In: arXiv preprint
arXiv:1611.02450 (2016) (cit. on pp. 23, 37, 63).

[18] Dong Nguyen, Daewoo Kim, and Jongeun Lee. «Double MAC: Doubling the
performance of convolutional neural networks on modern FPGAs». In: Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017. IEEE.
2017, pp. 890–893 (cit. on p. 38).

[19] HT Kung and Charles E Leiserson. «Systolic arrays (for VLSI)». In: Sparse
Matrix Proceedings 1978. Vol. 1. Society for industrial and applied mathemat-
ics. 1979, pp. 256–282 (cit. on p. 49).

[20] Xinheng Liu, Yao Chen, Cong Hao, Ashutosh Dhar, and Deming Chen.
«WinoCNN: Kernel sharing Winograd systolic array for efficient convolutional
neural network acceleration on FPGAs». In: 2021 IEEE 32nd International
Conference on Application-specific Systems, Architectures and Processors
(ASAP). IEEE. 2021, pp. 258–265 (cit. on p. 49).

66

https://www.xilinx.com/products/boards-and-kits/zcu104.html
https://www.xilinx.com/products/boards-and-kits/zcu104.html

BIBLIOGRAPHY

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. «Deep residual
learning for image recognition». In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 770–778 (cit. on p. 60).

67

	List of Tables
	List of Figures
	Introduction
	Motivations
	Organization

	Background
	Neural networks
	Convolutional neural networks
	Convolutional layer
	Pooling layers
	Non-linearity layers
	Normalization layers
	Fully connected layers
	Accuracy and data sets

	Hardware platforms
	High-Level Synthesis languages

	Winograd Algorithm
	Quantization
	Residue number system

	Related works
	PipeCNN: An OpenCL-Based FPGA Accelerator for Large-Scale Convolution Neuron Networks
	Fast Algorithms for Convolutional Neural Networks
	Efficient Winograd Convolution Via Integer Arithmetic
	Efficient Residue Number System Based Winograd Convolution
	Summary

	Convolutional algorithms
	Numerical simulations
	Standard convolution
	Winograd convolution
	Winograd F(22, 33)
	Winograd F(44, 33)
	Winograd F(66, 33)

	Complex Winograd convolution
	Complex Winograd F(44, 33)

	RNS Winograd convolution
	RNS(239, 241, 251) Winograd F(44, 33)
	RNS(239, 241, 251) Winograd F(66, 33)

	Algorithms comparison

	Methodologies
	Winograd awareness
	IFMap tile reading and transformation
	Offline weights transformation
	Hardware sharing between standard convolution and EWMM
	Outputs transformation

	Two multiplication in one DSP
	Loop unrolling
	Data vectorization

	IP design
	Design flow
	Kernels structure
	Input transformation (IT)
	Weights reading (WR)
	Processing kernel (PK)
	Output transformation (OT)

	Experiments
	C simulations
	C synthesis
	C/RTL co-simulations

	Conclusions
	Summing-up and further works

	Bibliography

