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Summary

Mobile applications often must synchronize their local state with a backend
to maintain an up-to-date view of the application state. Nevertheless, in
some cases, the application’s ability to work offline or with poor network
connectivity may be more significant than guaranteeing strong consistency.
We present a method to structure the application state in a portable way
using the Redux pattern and the properties of strongly typed languages.
This method allows employing Conflict-free Replicated Data Types to
create a custom converging state: this way, each replica can edit its local
state autonomously and merge conflicts with other replicas when possible.
Furthermore, we propose to keep a server as the communication channel
and analyze how this architecture impacts design choices and optimizations
related to CRDTs. Finally, we evaluate our method on a note-taking
application using a few well-known CRDT designs and quantitatively justify
our design choices.
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Chapter 1

Introduction

This chapter describes the specific problem that this thesis addresses, the
context of the problem, the goals of this project, its main contributions and
outlines the structure of the thesis.

1.1 Background
Mobile clients usually synchronize local states with a central back-end to
maintain an updated view of the application state. When users interact with
the same application on different platforms (i.e., multiple smartphones or
tablets), they expect a consistent experience between devices. Nevertheless, a
consistency issue occurs if the user can use different platforms simultaneously
or offline.

Conflict-free Replicated Data Types (CRDTs) are abstract data types that
can solve this consistency issue. In fact, they allow for optimistic updates
and merge without any conflict. To allow for this behavior, they loosen
their consistency semantics requirements and adhere to a set of mathematical
properties such as commutativity, associativity, and idempotence [1].

Nowadays, most industrial CRDT use has been in distributed systems,
but this technology can also be used in the context of local-first applications.
While many libraries exist to support web applications in adopting CRDTs [2,
3], the same can not be said for mobile applications. In fact, the two fields
adopt a different technology stack: the first is primarily based on weakly
typed languages (i.e., Javascript), while the latter is based on strongly typed
ones (i.e., Swift, Java, Kotlin).
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Introduction

1.2 Problem
This thesis investigates a method to structure ad hoc convergent mobile
application states with CRDTs. Furthermore, it studies adapting and
optimizing CRDTs to a client-server architecture.

1.2.1 Research questions
• Client-server architecture: How does a client-server architecture

influence the CRDT technology?

• Integration into codebase: How can CRDTs be seamlessly integrated
into a native mobile application? What are the benefits and drawbacks
of this method?

1.2.2 Original problem and definition
This thesis project has been carried out with Bending Spoons [4]: an Italian
company that develops mobile applications, founded in 2013 and based in
Milan. The research questions of this thesis derive from a problem presented
by Bending Spoons.

In its first years of work, the company followed a commercial strategy that
led to creating and publishing a significant number of applications on the
AppStore. Given the high number of products, the company used to have a
single server supporting all backed operations (i.e., authentication, storage).
Since the server had to support many different applications, the applications’
architecture was designed to have a thick front end: most of the application
logic was handled on the client. Over the years, the company’s strategy
has significantly shifted, leading to fewer and more dedicated products;
nevertheless, the architecture of the applications has remained the same.

A common characteristic of Bending Spoons’ mobile applications is that
they are not content-based but provide the user with a service (i.e., training,
diet coach, video editing). Most of these services are also made available
offline. Consequently, different devices connected to the same profile can
encounter inconsistencies between their local state and the backed-up one.

Therefore, Bending Spoons’ proposal to study how to implement CRDTs
into their applications to solve the consistency issues has led to the creation
of this thesis.

14



1.3 – Main contributions

1.2.3 A note-taking application
In order to propose clear and valuable practical examples, both when talking
about functionalities and code snippets, this thesis will primarily use a single
illustration. The illustration in question is a note-taking application. This
subject was chosen because it is suitable for offline use and collaboration, but
it is also simple and familiar enough to understand its functionalities clearly.

The imaginary note-taking application offers functionalities such as:
adding a new note, removing notes, and editing them. A note contains a
title, a description, a set of categories it refers to, and whether it is pinned.
The application also allows a user to log in and keeps track of its name and
age. Finally, the application lets the user filter notes according to categories.
When trying to picture the example, the reader can imagine a product
similar to ‘Apple Notes’ or ‘Google Keep’. The main scenario in which we
expect our note-taking application to function is where multiple devices are
connected to the same user account. Devices may be simultaneously online
or intermittently offline. We expect the user to modify the application’s
state (i.e., add, edit and remove notes) on all devices at different moments
or concurrently and still end up in a consistent state once all devices have
been synchronized with the server.

1.3 Main contributions
The first contribution of this thesis is the study of how client-server
architecture influences CRDT technology. This analysis is made of different
factors. We discuss why state-based CRDTs are the optimal choice in this
context, and we use a benchmark to support the thesis that state-based
CRDTs require less memory than their operation-based counterpart. We also
evaluate the different types of logical clocks and explain why Hybrid Logical
clocks are the best option to support both causality and relation with physical
time. Furthermore, we discuss which synchronization strategies are possible
and why the client-server architecture generally decreases the number of
merge operations performed by the system. We also examine the advantages
regarding distributed garbage collection and the handling of dynamic nodes.
In fact, in both cases, a server allows to aggregate information in a central
place which is beneficial both to know which replicas are part of the system
and whether they are up to date.

The second contribution of this thesis is the definition of a method to
build convergent mobile application states. We discuss the elements that

15



Introduction

compose the application state and how they relate to one another. Then we
propose a way to remodel the CRDT interface and suggest an optimal way
to use the remodeled CRDTs in the most widespread languages for native
app development. The remodeled CRDTs are also used to formalize a way
to implement a map CRDT by specifying which set and CRDT behavior
to adopt. Furthermore, we use a mock note-taking application to perform
benchmarks and compare three scenarios: one without CRDTs, one with
standard ones, and one with remodeled ones. The benchmarks evaluate
the single CRDT performances, the performance of the mock application’s
execution, and the number of lines of code in each scenario. The results are
used to conclude that while the remodeled CRDTs do lead to an increase in
execution time, they also allow for increased code portability and modularity.

1.4 Purpose
This thesis project aims to research the best way to apply the CRDT
technology to the problem proposed by Bending Spoons. Nevertheless, the
project looks at the problem from a more general point of view and tries to
provide discussion and solutions that can be useful outside of the company.

This thesis can be a valuable read for anyone who is trying to implement a
solution that adopts CRDTs within a native mobile framework. Furthermore,
we believe that some concepts described in the thesis, could be generally
relevant to anyone that is trying to gain a knowledge and innovate in this
research field.

1.5 Outline
Chapter 2 introduces the required technical background needed for this
thesis. In this chapter we give an overview of relevant mobile paradigms
and explain the concept of consistency model and concurrency semantics
necessary to understand CRDTs characteristics. Furthermore, we describe
the optimizations that have been studied in this field and offer a portfolio of
CRDTs.

Chapter 3 dives into the two objectives of the thesis. Firstly, we discuss
the consequence that opting for a client-server architecture has on different
elements such as the choice of the CRDT type, the timestamp in use, the
synchronization strategy, and the handling of garbage collection and dynamic
nodes. Secondly, we propose a high-level overview of the integration into
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1.5 – Outline

the codebase objective. This solution combines a remodeling of the CRDT
interface with the definition of the hierarchical structure of the application
state.

Chapter 4 aims to present some benchmarks that can support the design
choices and evaluate the performance of the solution proposed in the
Methodology section. Furthermore, in this chapter we conduct an analysis
and discussion of the results of the evaluation.

Chapter 5 summarizes the results and analysis as a conclusion and
introduces future work to further evaluate and utilize the findings of this
thesis.
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Chapter 2

Background and State of
the art

In this chapter, we aim to give a high-level overview of the topics needed to
understand the context of the thesis. For this reason, we start by clarifying
the relationship between mobile computing and distributed systems, and
we describe some mobile paradigms that have been formalized over the
years. We continue by introducing the concept of a consistency model
and characterizing strong eventual consistency. After that, we dive deep
into concurrency semantics to explain which techniques can be adopted to
order events (partially or totally) in a distributed system. We continue by
introducing CRDTs formally and explaining the difference between state-
based and operation-based CRDTs and the optimizations that have been
proposed in the research. A portfolio of notable CRDTs is also presented.
Finally, we offer some background knowledge on the Redux paradigm and
type systems, and we propose a few relevant implementations adopting
CRDTs.

2.1 Mobile paradigms

2.1.1 The Context of Mobile Usage
Mobile devices have become a fixture of everyday life for millions of people.
Across the globe, devices such as smartphones and tablets have evolved into
essential tools for communication, information, and entertainment alike. The
mobile market share not only has already surpassed the desktop one in 2017
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but has also been steadily growing since then. In fact, in 2021, mobile devices
accounted for up to 55% of the global market share.[5]

Furthermore, research shows that 88% of the time spent using mobile
internet in the US is within apps, while only the remaining 12% is spent
using a mobile browser.[6]

This switch from desktop-based to mobile-based technologies has also led
to a change in product requirements. For instance, in 2010, during the Mobile
World Congress, the CEO of Google introduced the “mobile-first” rule and
suggested designers follow this approach in product design. “Mobile-first”
means starting the design and optimization process with mobile devices in
mind.[7]

Nevertheless, differences between mobile and desktop do not only boil
down to design patterns. Users have higher expectations for mobile apps in
comparison to their web counterparts: faster speed, better responsiveness,
and increased usability are expected.

Furthermore, users hope to use mobile applications even when offline or
while experiencing poor network connectivity. This customer desire has
sparked the need to find a better solution to access applications and web
services from mobile devices, even when offline.

2.1.2 Mobile as a distributed system
Typically, when working on new technologies in a mobile scenario, we should
consider the main challenges of the mobile computing context, such as power
consumption, security/privacy, and connectivity/reliability. Nevertheless,
this thesis looks at the problem by a higher level of abstraction and is
primarily interested in the mobile user experience challenges.

Mobile devices can be seen from the point of view of distributed
systems: systems with multiple components located on different machines
that communicate and coordinate actions in order to appear as a single
coherent system to the end-user. Nevertheless, mobile distributed systems
add the complexity of being composed of dynamic nodes that can connect
and disconnect freely.

In 1997 Baquero and Moura pointed out that by resorting to the
traditional client-server architecture, we are not exploiting the full potential
of distributed systems and mobile computing and that it is worth sacrificing
consistency for allowing availability. In fact, both of these fields go against
the traditional expectation of steady and continuous communication among
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2.1 – Mobile paradigms

machines. Therefore, network partitions should not be regarded as occasional
faults in these scenarios but should be considered early in the design phases
as they can occur frequently or during long periods.[8]

2.1.3 Offline-First paradigm
Offline-First is a software paradigm that requires software to work offline as
well as it does online. As a baseline, the app is assumed not to have a working
network connection with Offline-First. Then, the app can be progressively
enhanced to take advantage of network connectivity when available. The
paradigm leads to a shift in mindset by not associating lack of connectivity
to an error condition.

Implementing a solution that follows the Offline-First paradigm requires
storing data at the client-side so that the application can still access it when
the internet goes away.
One possible solution is to “cache data”: data previously pulled down from
remote is re-used later on. As the user encounters unstable networking
situations with intermittent or no connectivity, the application will look to
the local data cache to perform functions and render displays. However, if the
user wanders into a part of the application they have not visited recently, the
user experience is subject to the same problems as a live-data-only design. To
overcome this problem, it is possible to store an entire replica of the online
version; nevertheless, this solution has the drawback of requiring a much
higher local memory space. If we go back to the note-taking application
example, caching data would imply downloading part of the state from the
server so that a user can freely read and filter all the cached notes while
offline.

2.1.4 Local-First paradigm
Storing data at the client-side is fundamental to allow for offline behavior
(see Section 2.1.3). However, it comes with some additional challenges: what
happens if the user tries to modify the local data? In this context, the Local-
First paradigm comes into play. Local-First software proposes principles that
enable both collaboration and ownership for users.

Typically, the server’s data is considered the primary source of truth,
while the copy on the client is seen as a cache subordinate to the server. If
a modification of the local data is not notified to the server, it is not taken
into consideration. In Local-First applications, these roles are swapped: the
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copy of the data on the local device is considered the primary copy. Servers
still exist, but they hold secondary copies of the data to assist with access
from multiple devices.[9]
The principles of Local-First software are:

1. Fast: Because the primary copy of the data is retained on the local
device, the user never needs to wait for a server request to finish. The
system can handle all operations by reading and writing files on the local
memory, and data synchronization with other devices happens quietly
in the background.

2. Multi-device: Since data is kept in the device’s local storage, that data
must be synchronized across all devices on which a user does their work.

3. Offline: Local-First applications store the primary copy of their data
locally, the user can read and write this data anytime, even while offline.
Therefore, Local-First apps are Offline-First by design.

4. Collaboration: Local-First app’s ideal is to support real-time
collaboration that is on par with the best cloud apps.

5. Longevity: Local-First software enables greater longevity because the
data, and the software that is needed to read and modify your data, are
all stored locally.

6. Privacy: Local-First apps have privacy and security built in at the
core: local devices store only personal data, avoiding the centralized
cloud database holding everybody’s data. Local-First apps can use end-
to-end encryption so that any servers that store a copy of personal files
hold only encrypted data.

7. User control - with Local-First software, personal data is stored on
the device, so the user has the freedom to process his data in arbitrary
ways.

In the paper “Local-First Software: You Own Your Data, in spite of the
Cloud”, Martin Kleppman et al. not only define the Local-First paradigm
but also examine a wide range of existing technologies that can satisfy the
Local-First ideals. After concluding that none of the examined technologies
fully satisfy the Local-First ideals, they identify Conflict-free Replicated Data
Types (CRDTs) as a family of distributed systems algorithms able to support
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the proposed paradigm.

A small dive into some background topics is required to explain better
what CRDTs are and how they can be used to support the Local-First ideals.
For this reason, section 2.2 introduces consistency models and the concept of
eventual consistency, while section 2.3 introduces the concept of concurrency
semantics.

2.2 Consistency models
A consistency model can be seen as a contract between the system and the
developer who uses it. A system is said to support a particular consistency
model if operations on memory respect the rules defined by the model.

This section aims to give a brief overview of consistency models by firstly
introducing the CAP theorem and then describing different models relevant
to the scope of the thesis.

2.2.1 CAP Theorem
In 2000, Dr. Eric Brewer gave a keynote at the Proceedings of the Annual
ACM Symposium on Principles of Distributed Computing in which he laid
out his famous CAP Theorem: a shared-data system can have at most two
of the three following properties: Consistency, Availability, and tolerance
to network Partitions.[10] In 2002, Gilbert and Lynch converted Brewers
conjecture into a more formal definition with an informal proof.[11]

To better understand the CAP theorem, it is important to specify what
the three properties encompass:

• Consistency guarantees that every node in a distributed cluster returns
the same, most recent, successful write.

• Availability guarantees that each read or write request for a data item
will receive a response.

• Partition Tolerance means that the system can continue operating if
the network connecting the nodes has a fault that results in partitions,
where the nodes in each partition can only communicate among each
other.
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Selecting a consistency model usually implies picking between correctness
and availability. As the CAP theorem says, more synchronization will be
needed if we require a higher level of consistency with our underlying data,
hence decreasing the availability.

2.2.2 Strong Consistency

Traditional replication techniques strive for single-copy consistency because
they want to give users the impression that they have a single, highly
accessible copy of data [12].

A standard consistency model used to handle concurrent operations is
called strong consistency. An informal description of the consistency model is
that it always follows a sequential execution. In a distributed environment, it
assigns a node as a leader, which dictates the order of operations, preventing
conflicts from occurring.

However, strong consistency requires clients to constantly communicate
with the leader in order to perform operations; if a node cannot reach the
leader due to a network fault, its execution is stalled [13]. This imposes
unacceptable constraints on mobile devices systems that, by nature, have
intermittent network connectivity and must work offline.

2.2.3 Strong Eventual Consistency

If we require that applications work regardless of network availability, we
must assume that users can make arbitrary modifications concurrently on
different devices.[3] This means that data on different devices may diverge
for a certain amount of time and that eventually, any resulting conflicts must
be resolved. To address this issue, one widely implemented model is Strong
Eventual Consistency (SEC).

Eventual Consistency To define SEC, simple Eventual Consistency (EC)
must be first introduced. This consistency model guarantees that “if no
new updates are made to the shared state, all nodes will eventually have the
same data” [14]. Eventual consistency is especially suited in contexts where
coordination is not practical or too expensive (i.e. in mobile settings) [12].
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Strong Eventual Consistency Strong eventual consistency (SEC) is a
model that strikes a compromise between strong and eventual consistency.
Informally, it guarantees that whenever two nodes have received the same
set of updates, possibly in a different order, their view of the shared state is
identical, and any conflicting updates are merged automatically.[13]

By implementing Eventual Consistency, we are choosing to forfeit the
strong consistency property of the CAP Theorem. In other words, we are
creating an AP system: a system that selects availability and partition
tolerance over consistency. The system will respond to all requests,
potentially returning stale reads and accepting conflicting writes.[12] In the
scope of this thesis, the resulting inconsistencies will be handled via the use
of Conflict-free Replicated Data Types.

2.3 Concurrency semantics

The updates defined in a data type may intrinsically commute or not. As
we will see in Section 2.4, some CRDTs naturally converge towards the
expected result independently of the order of updates. Nevertheless, for
most data types, this is not the case and many concurrency semantics are
possible. Therefore, we should select the most suitable one depending on the
application. [15]

2.3.1 Happens before relationship

To discuss concurrency semantics, it is essential to first describe the concept
of the happens-before relationship [16]. In this thesis we refer to this
relationship with the symbol ≺.

In a distributed system e1 ≺ e2, iff:

1. e1 occurred before e2 in the same replica

2. e1 is the event of sending message m and e2 is the event of receiving that
message

3. there exists an event e such that e1 ≺ e and e ≺ e2
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2.3.2 Total ordering of events
The happens-before relationship can be used to partially order events. Still,
sometimes we need to provide a way to deterministically define a total order
among updates.

Total ordering can be obtained through the combination of clocks with a
unique node identifier. Nevertheless, because of the clock skew among nodes,
these tuples (clock, identifier) do not necessarily respect the happens-before
relationship.

To overcome this issue different solutions have been proposed. In the next
section three types of logical clocks are introduced.

2.3.3 Logical clocks
Lamport Clocks

Logical Clocks (LC) were proposed in 1978 by Lamport for ordering events
in an asynchronous distributed system.[16]

Lamport brought up two valid points concerning distributed systems:

1. there is no need to keep non-interacting nodes synchronized since no
difference would be observed

2. time is less important than agreement across components of the order
of events in which things occur.

Furthermore, Lamport introduced Lamport Clocks by proposing an
algorithm for partial causal ordering and a relative extension for totally
ordering. The paper describes Lamport clocks as event counters that are
incremented with every interaction. The causality relationship captured
by these clocks, called happened-before, is defined based on the passing of
information rather than the passing of time.

Lamport Clocks can be extended to provide total ordering. In this case,
a tie-breaker value such as a derived process identifier is needed. Therefore,
nodes should hold both the Lamport timestamp value and a unique process
identifier. With this extension, Lamports logical clocks prescribe a total
order on the events.
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Therefore, given two events A and B, if A happened before B, then
A’s timestamp is be smaller than B’s timestamp, but vice a versa is not
necessarily true.

A ≺ B ⇒ lcA < lcB

.
Lamport clocks have several drawbacks: they cannot tell us if a message

was concurrent and cannot be used to infer causality between events.
Furthermore, they are divorced from physical time, which signifies that events
can not be associated with real-time.

Vector Clocks

In 1988, Vector Clocks (VC) were proposed as an extension to Lamport
clocks. These clocks maintain a vector at each node which tracks the
knowledge this node has about the logical clocks of other nodes. [17, 18]

Vector Clocks allow us to understand the ordering of events across multiple
nodes; therefore, they are valuable in understanding the flow of messages in
a distributed system.

Vector clocks prescribe a partial order on the events. Therefore, given two
events A and B, if A happened before B, then A’s timestamp is smaller than
B’s and if A’s timestamp is smaller than B’s, then A happened before B.
Furthermore, two events are considered concurrent if we can neither say that
A happened before B nor that B happened before A.

We can again express these properties as follows:

A ≺ B ⇔ vcA < vcB

A ≡ B ⇔ (¬(vcA < vcB) ∧ ¬(vcB < vcA).

Unfortunately, the space requirement of Vector Clocks is on the order
of nodes in the system, which is considered prohibitive in the context of
distributed systems.

Hybrid logical clocks

As explained in the previous sections, both Lamport Clocks and Vector
Clocks are disconnected from the concept of physical time. This deficiency
is a significant drawback in distributed systems. However, it is an even
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bigger issue in mobile computing where updates can be sporadic or even
wholly missing for an exceptionally long time. Therefore a user making
offline updates on multiple devices in our note-taking application both in
the morning and in the afternoon could find himself with the morning events
overwriting the afternoon ones. In fact, according to the clocks’ perspectives,
the events from the devices are unrelated.

Hybrid Logical Clocks (HLC) were first introduced by Kulkarni et al. in
2014 [19] and put together the strengths of both logical clocks and physical
clocks. They capture the causality relationship like Logical Clocks and enable
easy identification of consistent snapshots in distributed systems, but, most
importantly, they build on top of the physical clock of the system’s nodes
and try to tie themselves closely with physical time.[20]

Hybrid Logical Clocks are made up of two components:

• a physical component: keeps track of physical time

• a logical component: keeps track of the causality of events happening
within the same physical time

Experiments show that such algorithm and clock representation is pretty
resilient to both stragglers (nodes with their physical time in the past) and
rushers (in the future).[19]

2.4 Conflict-free Replicated Data Types
Adopting a weak consistency model allows replicas to diverge by design.
Therefore, we require a mechanism for merging concurrent updates into
a common state (see Section 2.2). Conflict-free Replicated Data Types
(CRDT) have been first introduced in 2011 by Shapiro et al. [1] and provide
a principled approach to address this problem [15].

A CRDT is an abstract data type characterized by a well-defined interface,
designed to be replicated at multiple nodes and exhibiting the following
properties:

• any replica can be modified without coordinating with other replicas.

• when two replicas receive an identical set of updates, they deterministi-
cally reach the same state. This is done by using mathematically correct
rules that ensure state convergence.
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2.4.1 The interface
Traditionally, CRDT types can be considered to have two values: their real
value (containing all the metadata and structures needed to implement the
logic) and their wrapped value (the symbolic value of the abstract data type)
calculated starting from the real value. Furthermore, CRDTs offer different
methods that can be divided in two groups:

• query: the query method returns the CRDT wrapped value

• update: update methods allow modifying the CRDT real value
According to different papers, these two groups can be called in different
ways. This thesis uses the names query and updates, proposed in a A
comprehensive study of Convergent and Commutative Replicated Data Types
[21].

2.4.2 CRDTs types
Two types of CRDT have been formerly defined: state-based and operation-
based CRDTs. In principle, op-based designs are supposed to disseminate
operations, while state-based designs disseminate object states.[22] Both
styles of CRDTs are guaranteed to converge towards a common, correct state
without requiring any synchronization.[21]

State-based CRDT

In state-based synchronization, replicas synchronize by sending their entire
local state to another replica that incorporates the received state into its own
state via a merge function that, deterministically, reconciles the two states.
In this way, every update eventually reaches every replica, either directly or
indirectly.[1]

State-based objects require only eventual communication between pairs
of replicas, and updates are idempotent. Thus, replicas receiving the
same update multiple times still reach the correct final state. The only
requirement to guarantee updates to reach all replicas is to have a connected
synchronization graph [15, 21].

Since the requirements for the communication channel are weak, state-
based CRDTs make it easier to deal with an unknown number of replicas.
Furthermore, they are simpler to reason about. The main drawback of state-
based CRDTs is that they can become inefficient for replicas with large states
because they need to transmit their whole state around the network [21].
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Operation-based CRDT

In operation-based CRDTs, the execution of an operation on the replicated
data is performed in two phases:[22]

• prepare: this is performed only on the local replica and looks at the
operation and current state to produce a message that represents the
operation. The message is then sent over the network to all replicas

• effect: once the message from a remote replica is received, it is applied
locally using effect.

The system must ensure that operations are not lost and that each operation
is applied once. If operation-based CRDTs ensure that any two concurrent
operations commute, replicas can apply those operations in either order, and
the outcome is the same.

Different from state-based CRDTs, operation-based replication requires
reliable broadcast communication with delivery in a well-defined delivery
order.[21]

Equivalence between types

It is always possible to emulate a operation-based object using the state-based
approach, and vice-versa [21].

Emulation of operation-based The emulating operation based object
has a prepare that returns the full state, and an effect that performs full
state-merge.[21, 22]

Emulation of state-based State-based emulation of an operation-based
object essentially formalizes a reliable broadcast mechanics. Each operation-
based update adds a message to a set of to-be-delivered messages while
merging two replicating types takes the union of the two message sets. [21]

2.4.3 Optimizations
In the last decade, research has focused on possible optimizations. When
working in this field, the primary thing to optimize is memory occupation:
CRDTs are memory-expensive because of the space needed to store them
and the size of the messages they have to exchange.
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This section presents two of the most relevant CRDTs optimizations:
delta-state CRDTs and garbage collection.

Delta-state CRDTs

As explained before, two types of CRDTs exist: state-based and operation-
based. The first ensures convergence by disseminating their entire state
and merging it to other replicas, while the second disseminates operations
assuming an exactly-once reliable dissemination layer.

Op-based CRDTs have different advantages: they are simpler to imple-
ment, occupy less memory, and exchange smaller messages. Nevertheless,
they also have limitations: they require a reliable broadcasting channel, and
require operations to be executed individually on each node.

State-based CRDTs, on the other hand, do not have the same constraints.
However, a fundamental disadvantage of state-based CRDTs is the high
communication overhead associated with transmitting the entire state.

To solve this issue, Delta-State Conflict-Free Replicated Data Types were
introduced in 2014 by Almeida et al. [23]. They are a kind of state-based
CRDTs, in which delta-mutators are defined to return a delta-state: a value
representing the updates induced by the mutator on the current state.

The authors also propose to coalesce local operations (deltas) together
into a single state update (delta group). This way, state updates can be
disseminated at a lower rate allowing for a lower communication overhead.

A trivial example of a delta-CRDT is a grow-only set, where the delta is
simply a singleton set containing the element to be added.

Garbage collection

Garbage collection in CRDTs is based on the concept that the metadata
accumulated in replicas during their life cycle (i.e., identifiers and
tombstones) becomes useless as soon as all replicas fully converge and there
are no more possible concurrent operations. Therefore, it makes sense to
remove all unneeded metadata to make memory usage more efficient.

In the scope of op-based CRDTs, operations that have been observed
by all replicas and thus cannot have any concurrent operations ongoing
are called “causally stable”. Nevertheless, determining if an operation has
reached casual stability is not trivial.

Baquero et al.[24] proposed to rely on a Reliable Causal Broadcast
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middleware which tracks causal information for all messages transmitted in
a system. They define causal stability as follows:

“A timestamp T, and a corresponding message, is causally stable
at node i when all messages subsequently delivered at i will have
timestamp t greater than T.” [24]

This simple definition leads to two problems. The first issue is that a few
nodes may not yet be aware of an operation’s causal stability state, whereas
others are. Because causal stability is used to delete superfluous meta-data,
a node unaware of an operation’s causal stability may receive an operation
that is missing meta-data. Baquero et al. solve this by ensuring the RCB
middleware buffers the operation until the node knows the causality state
[24].

The second problem is the causal stability of an operation can only be
determined if and only if every other node sends a message after they receive
the operation. If one node does not issue any operations, no causal stability
can be determined at any node.

Furthermore, Baquero et al. [24] also assume a fixed network where every
network replica is known at setup. This is a realistic scenario in some
contexts but limits the applicability of CRDTs in many modern distributed
applications which are collaborative or require that the number of replicas
can grow dynamically.

For these reasons, in the paper “Memory efficient CRDTs in dynamic
environments”, Bauwens et al. [25] propose a solution that allows new nodes
to join the network and construct a proper state for their local replica and
perform eager garbage collection by broadcasting information regarding the
casual stability of nodes.

Another possible direction to implement garbage collection is to study
adding small doses of synchronization to support infrequent, non-critical
client operations, such as committing a state or performing a global reset. [21]
This may seem counterintuitive since it requires blocking synchronization,
which is the limitation CRDTs are addressing in the first place. Nevertheless,
synchronization between nodes implies cleaning all metadata accumulated
until that moment. Sporadically performing strong synchronization may be
a good compromise that shortly scarifies the system’s availability for more
efficient memory occupation.
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2.5 CRDTs Portfolio
As mentioned before, the formal definition of Conflict-free Replicating Data
Types dates back to 2011[1], but since then, additional work has been
done to collect and formalize different CRDT designs. In particular, this
section strongly references two papers: A comprehensive study of Convergent
and Commutative Replicated Data Types by Shapiro et al. [21] for the
presentation of the different designs, and Conflict-free Replicated Data Types:
An Overview by Preguiça et al. [15] for the discussion on concurrency
semantics.

This section does not aim to specify the implementation details of each
CRDT, but rather tries to give a general description of the CRDT in question.
Suppose the reader is interested in the actual pseudo-code definition of each
CRDT. In that case, we suggest reading A comprehensive study of Convergent
and Commutative Replicated Data Types[21] where all relevant state-based
and operation-based CRDTs algorithms are proposed.

The portfolio aims to show how different concurrency strategies can be
chosen to allow different conflict resolution behaviors and it helps understand
the challenges, possibilities, and limitations of CRDTs.

All designs that refer to the Last Writer Wins strategy are expected to
define a total ordering of events according to what was specified in section
2.3.2.

2.5.1 Flags
The flag is a data structure holding a boolean value. The value represents
disabled or enabled state. In the context of CRDT, the flags are not
commutative since (enable, disable) and (disable, enable) doesn’t mean the
same.

Because of the not-commutative character we distinguish 2 types of flags:

Enable-Wins Flag

Two concurrent disable and enable always leave the flag in enable state.

Disable-Wins Flag

It’s the opposite of the above, the disable flag is always left when 2 concurrent
writes happen.
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2.5.2 Counters
The general idea of a Counter is to keep track of a numeric value that can
be either increased or decreased by one unit. Because updates are inherently
commutative, a counter CRDT’s natural concurrency semantics is to have a
final state representing all executed updates’ effects.[15]

Positive-Negative Counter

Positive-Negative counters keep track of all increments and decrements
applied to them at each node. Therefore, the value of the counter can
be computed by subtracting the number of decrements from the number
of increments:

{inc | inc ∈ O} − {dec | dec ∈ O}

Grow-only Counter

As the name suggests, a Grow-only Counter can only be incremented. This
data type can be seen as a simplification of the Positive-Negative Counter.
The counter value can be computed by counting the number of increments.

{inc | inc ∈ O}

Bounded Counter

A Bounded Counter is a counter where a particular constraint is specified.
The constraint limits the counter from going above or below a certain
threshold. The bounded counter prevents its value from violating this
constraint by limiting the number of operations that can be executed in each
replica before synchronizing the changes with other replicas. To do this,
the bounded counter stores the number of decrement/increment operation
executions available in each replica. Furthermore, replicas are allowed to
transfer the availability of operations between each other.[15]

2.5.3 Registers
A register maintains an opaque value and provides a single update: wr(value).
Two concurrency semantics have been proposed leading to two different
CRDTs: the multi-value register and the last-writer-wins register.
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Multi-value Register

The Multi-value Register CRDT keeps track of all concurrently written
values. Trivially, the read operation returns the set of concurrently written
values.

Last-write-wins Register

In the Last-write-wins (LWW) Register CRDT, only one value is kept, if any:
the last written value.

2.5.4 Sets
A set is a collection of unique elements. A set data type provides two updates:

• add(e), for adding element e to the set

• rmv(e), for removing element e from the set

In this case, many concurrency semantics are possible when a concurrent add
and remove must be handled:

• Add-wins: the element will belong to the set.

• Remove-wins: the element will not belong to the set.

• Last-write-wins: the element will be in the set if the add is ordered after
the remove in the total order among updates.

Grow-Only Set

The simplest solution is to avoid removals altogether. A Grow-Only Set
(G-Set) supports operations add and lookup only and, by design, does not
require the definition of a concurrency semantic. The G-Set is useful as a
building block for more complex constructions.

Two-Phase Set

The Two-Phase Set (2P-Set) is a Set in which an element can be added and
removed but never added again. The Two-Phase Set combines an adding
G-Set with a removing G-Set, the latter of which is known as the tombstone
set. To avoid anomalies, an element can only be removed if, for the replica,
it is in the set.
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The lookup operation returns elements that have been added but not been
removed yet. Adding or removing the same element twice, as well as adding
an element that has already been removed, has no effect.

Positive-Negative Set

The Positive Negative Set (PN-Set) associates a counter to each element,
initially set to zero. Adding an element increments the associated counter,
and removing an element decrements it. The element is considered in the set
if its counter is strictly positive.

Observed-Remove Set

Observed Remove Set (OR-Set) uses unique tags instead of timestamps. For
each element in the set, a list of add-tags and a list of remove-tags are
maintained. An element is inserted into the OR-Set by having a new unique
tag generated and added to the add-tag list for the element. Elements are
removed from the OR-Set by having all the tags in the element’s add-tag list
added to the element’s remove-tag (tombstone) list. To merge two OR-Sets,
for each element, let its add-tag list be the union of the two add-tag lists,
and likewise for the two remove-tag lists. An element is a member of the set
if and only if the add-tag list is a superset of the remove-tag list.

2.5.5 List / Sequence
A list (or sequence) data type can be used to maintain an ordered collection
of elements and allows two updates:

• ins(i, e) - insert element e in position i, shift element in position i, if
any, and subsequent elements to the right

• rmv(i) - remove element in the position i, if any, and shift subsequent
elements to the left.

The design of an ordered sequence is one of the main research focuses in the
field of CRDTs: this is because sequences are what hides behind collaborative
text editing algorithms. Different solutions have been proposed, such as
Logoot/LSeq[26], RGA[27], TreeDoc[28], etc. The main idea behind these
designs is to keep a graph or tree data structure to keep track of tombstones
or unique ids.
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2.5.6 Maps
A map is an object that maps keys to values, the keys are unique and each
key can map to at most one value. Maps export two updates:

• put(k, o), associates key k with object o

• rmv(k), removes the mapping for key k, if any

In this case, different concurrency semantics are possible in case of a
concurrent remove and update associated with the same key.

• Remove-as-recursive-reset: a reset update is performed on object o
associated with k, and recursively in all objects embedded in o. If we
were to choose this semantic, we should define a reset update for each
CRDT: a function that sets the object’s value to a bottom value.

• Remove-wins: gives priority to removes over updates

• Update-wins: gives priority to updates over removes.

Some references [29, 30] have pointed to the fact that handling the keys
of a map leads back to implementing a Set specification. In the following
paragraphs, we build further on this concept.

Map of literals

Map of literals are maps that can only contain literals, namely, non-CRDT
elements. In this case, we must devise the concurrency semantics to answer
two questions. First, what is the value associated with a key k in the presence
of two concurrent puts for k. This question can be answered by tracing it
back to the semantics of registers. The second question is how we should
handle a concurrent removal and put for the same key. Similarly, we can
answer by associating this concurrency event to the semantic of sets. As a
matter of fact, a set can be seen as a simplified map where the key is the
value itself. Therefore, specifying the concurrency semantics of a map boils
down to specifying the semantic of a set and register.

Map of CRDTs

Maps of CRDTs are maps whose entries are CRDT elements. In this case,
the put and remove updates can still be traced back to the semantic of sets.
On the other side, the value associated with a key k in the presence of two

37



Background and State of the art

concurrent puts for k should instead rely on the semantics of the embedded
CRDT. Therefore, specifying the concurrency semantics of a map boils down
to specifying the semantic of a set and the embedded CRDT.

2.5.7 Other CRDTs
Several other CRDTs have been proposed in the literature, including CRDTs
for elementary data structures, such as graphs, more complex structures,
such as JSON documents[3], and for collaborative text editing [26].

Even if these topics are highly relevant in the research area of CRDTs,
they fall out of the thesis’s scope and, therefore, will be no further discussed
in this work.

2.6 Technical background
This section introduces a few technical topics necessary to define the thesis’s
scope.

2.6.1 Redux
Redux is a pattern for managing and updating application state, using events
called “actions”. It serves as a centralized store for the state that needs to
be used across the entire application, with rules ensuring that the state can
only be updated predictably.[31]

• Single source: the logic of the state is not scattered around in different
components, but it is kept in a single object: the AppState.

• State is read-only: not every function in the app can update the state;
instead, a consistent mechanism is used to perform a state-update.

• Only pure function change the state: state changes are obtained
through functions, called reducers, that take the current state and an
action and return the next state.

CRDTs and Redux

In this section we examine why the Redux pattern lends itself very nicely to
CRDT implementations.
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In Redux, dispatched actions are applied to a state, resulting in a new
state. Actions are always applied in order of their timestamp. Therefore,
Redux makes it easy to define the state’s boundary and identify which
operations should be considered state changes and therefore be kept in the
“memory” of CRDTs.

In figure 2.1 a diagram of the Redux pattern is shown to make explicit
which part of the architecture should be aware of the CRDT logic. In fact,
not only should the state be able to implement the correct logic, but reducers
should be aware of which operations must be performed on the type.

Figure 2.1. CRDT boundary with Redux pattern

It is relevant to note that Bending Spoons does not precisely use Redux but
develops its applications using a proprietary framework called Katana[32],
which is strongly inspired by the Redux framework. Nevertheless, in
this thesis, we will always refer to the Redux framework for the sake of
generalization.

2.6.2 Type system
A type system is a logical system in which a type is assigned to each language
construct, such as variables, expressions, or modules. Type systems are
frequently specified within programming languages and built in interpreters
and compilers. The primary purpose of the type system is to define the
interfaces between different parts of the codebase clearly and, therefore,
reduce bugs and check whether the parts have been put together consistently.
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Type checking is the process of verifying and enforcing the constraints of
types: this operation may occur at compile-time (a static check) or at run-
time.

Static and dynamic typed language

In statically-typed languages variables’ types are known already at compile-
time, while in dynamically-typed languages they are known at run-time.

Strongly and weakly typed language

A strongly-typed language is one in which variables are bound to specific
data types. Type errors will occur if the types in the expression do not
line up as expected regardless of when type checking occurs. Variables in
weakly-typed languages, on the other hand, still have a type, but type safety
constraints are less stringent than in strongly-typed languages.

Characteristics of mobile frameworks’ languages

When talking about native mobile development, the most commonly used
languages are:

• Swift - iOS

• Kotlin - Android (official language for Android app development)

• Java - Android (most used language for Android app development)

For the scope of this thesis, it is essential to note that each of these languages
is considered both statically typed and strongly typed.

Type systems and CRDTs

When integrating Conflict-free Replicated Data Types into the code-base, a
decision should be made on who should handle the replicating data logic.
Two possible options are available; choosing between them mainly depends
on the properties of the languages and framework in use.

1. Weakly typed languages - The first solution has been proposed by
Martin Kleppmann et al. [3]: the idea is to arbitrarily nest lists and maps
and other leaf data types, which can be modified by insertion, deletion,
and assignment. In this case, each object takes care of handling its logic.
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2. Strongly typed languages - The second solution, proposed by this
thesis, assigns each property a specific type and semantic behavior (ex:
Integer - Counter). In this case, each type takes care of handling the
logic.

The work done in A Conflict-Free Replicated JSON Datatype [3] is in
Javascript: in this language, maps also represent classes/objects with their
properties. Furthermore, properties can be added and removed freely from
an object and are not bound to a specific data type: specifying a type for
each property is not possible.

On the other hand, applying the first solution to a statically and strongly
typed language is impossible because the structure of the state and the type
of each property should be specified from the start.

2.7 Implementations
The CRDTs concepts can be used in the scope of different applications. Some
examples of relevant implementations in the field are:

• General-purpose libraries

– Automerge[33]: a JavaScript CRDT implementation with a JSON
data model.

– Yjs[34]: a modular framework for building collaborative applications
on the web.

• Distributed databases

– The Riak database[35]: one of the first to add CRDT support in
2013 (implemented in Erlang).

– Ditto[36]: uses CRDTs for data sync between mobile devices.

• Text editors

– crdt.el[37]: a real-time collaborative editing environment for Emacs
using Conflict-free Replicated Data Types.

Nevertheless, probably the most relevant implementation for this thesis is
the one proposed by Figma. Figma’s technology is inspired by CRDTs, but
since Figma is centralized, they have simplified their system by removing
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this extra overhead and benefit from a faster and leaner implementation.
Figma’s data structure is not a single CRDT; however, it has been inspired
by multiple separate CRDTs and uses them in combination to create the final
data structure that represents a Figma document[38]

These concepts are incredibly close to what this thesis aims to do.
Nevertheless, Figma is a proprietary product, and even if they offered good
insights on their technology in the article How Figma’s multiplayer technology
works, none of their work is open source.
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Method

In this chapter, we dive into the two different objectives. Firstly, we discuss
the influence that opting for a client-server architecture has on different
elements such as the choice of the CRDT type, the timestamp in use, the
synchronization strategy, and the handling of garbage collection and dynamic
nodes. Secondly, we propose a high-level overview of the integration into
the codebase objective. This solution combines a remodeling of the CRDT
interface with the definition of the hierarchical structure of the application
state. This chapter does not contain the description of the evaluation
strategy, which can be instead found in Chapter 4 together with the results.

3.1 Specification and Technical details
Programming language The work done in this thesis has been conducted
by using the Swift programming language. Considerations and algorithms
will be kept as general as possible, but all examples will be proposed in Swift.

Server The server used is Firebase Realtime Database: a cloud-hosted
database. It only plays the role of storing the state and does not implement
any additional logic. Its native API for performing transactions (atomic
operations) will be used to update the remote state. Nevertheless, using this
technology is not mandatory: a similar functionality can be implemented
with any server by having the client send a “compare and set” operation.

Firebase Realtime Database does offer native offline support, which
implements conflict resolution through a last-writer-win strategy. Since the
main focus of the thesis is solving the problem in a more refined way, this
functionality will not be used.
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3.2 Client-server architecture
The primary context of Conflict-Free Replicated Data Types research is
distributed systems. These abstract data types are suitable for use in this
context because they do not require a single source of truth (i.e., a server),
which is not present by design in distributed systems. On the other side,
mobile devices can also be regarded as distributed system nodes because they
maintain a local copy of data, which can be modified but must look consistent
between devices (see Section 2.1.2). Nevertheless, differently from traditional
distributed systems, using a server as a communication channel in the mobile
context is a viable option. Therefore, we aim to discuss how opting for a
client-server architecture influences Conflict-Free Replicated Data Types. In
our opinion, the research area has neglected to investigate the advantages and
optimizations that client-server architecture can bring to this technology.

3.2.1 State based vs. Operation based
This section examines how the two different CRDTs types (see section 2.4.2)
can be applied to a client-server architecture and justifies why we have chosen
to adopt state-based CRDTs to implement our work.

Operation based Applying operation-based CRDTs to a client-server
architecture would mean following a strategy similar to the one proposed
by Shapiro et al. [21]. when describing the emulation of state-based CRDTs.
Each replica would send its operations to the server, which would keep a
set of messages that should be forwarded to all replicas that have not yet
received them.

This solution has primarily one advantage: the reduced size of messages
sent across the network. The size of the remote state would be bigger than
the one in the state-based solution, and the memory complexity of checking
which messages have not been received by each replica could be a bottleneck.

A new device joining the network would have to download and apply all
the messages to their initial state. For this reason, in a dynamic system, no
message could ever be deleted (outside of garbage collection) since new nodes
would need to see the system’s entire history.

State based State-based CRDTs are the most obvious choice for the given
context. In this case, we would keep the entire state saved on the server, and
each replica would download the remote state, merge it with the local one
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and re-upload the resulting state; these operations should be performed in
an atomic fashion.

This choice has multiple consequences:

• The server would act as an accumulator, putting together all the states
received until that moment. Therefore, the number of messages sent
across the network would decrease, making the size of the messages less
relevant.

• The data stored on the server would be smaller than in the operations-
based solution.

• A new device connecting to the system would only need to download the
remote state to be up to speed with the others.

For these reasons, we decided to base our work on state-based CRDT.

3.2.2 Timestamps and concurrency semantics
There are many strategies to order events in distributed systems (see
Section 2.3). The first option is to provide a partial order of events and
select a concurrency semantic to solve conflicts between concurrent updates.
In this case, we will need to select a clock (i.e., the vector clock) that allows
us to detect concurrent events.

The second option is to provide a total ordering of events by adding to
the clock a unique identifier that allows us to solve conflicts deterministically.
We can pick between any clock in this case, but the most suitable options are
Lamport clocks or Hybrid logical clocks. In this case, choosing a vector clock
would be overkill since we do not use the information concerning concurrency
that this logical clock provides.

When making this choice, it is fundamental to consider the context: we
expect nodes (i.e., devices) to be offline and edit their local copy for an
extended time. This scenario would lead to a considerable number of events
being considered ‘concurrent’. Therefore, opting for a clock wholly detached
from the concept of physical time can be dangerous. Hence, this work
suggests using Hybrid Logical clocks as the timestamp provider.

Casual information is necessary for some CRDTs (i.e., Multi-value
Register, Flag), which lose their meaning without it. In these cases, we may
decide to combine a Hybrid Logical Clock with a Vector Clock, therefore
adopting a Hybrid Vector Clock (HVC).
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3.2.3 Synchronization strategy
Selecting state-based CRDTs in combination with a client-server architecture
has the advantage of decreasing the number of merges performed by replicas.
In fact, without a server, each replica would broadcast to other replicas a
copy of its state. In the best-case scenario, namely a fully connected mesh,
all replicas should merge the received state with their local one. In other
topologies, replicas should instead keep disseminating the received state to
ensure all nodes receive it.

By offering a client-server architecture, replicas only need to communicate
with a single actor that accumulates all the information received from the
other nodes. Nevertheless, it is up to us to decide when the communication
between clients and servers should occur. We can select different events to
trigger a client-server synchronization:

• at every local state change

• at every remote state change

• periodically (ex: every five minutes)

• forced by the user

While we usually want to keep collaborative software as strictly
synchronized as possible, the same design requirement may not hold for
different kinds of products. Considering our note-taking application example,
we may be interested in synchronizing the behavior between devices once in
a while without making the user feel like the application’s state is changing
under his nose. Nevertheless, updating the remote state with the local
changes does not imply that we also have to apply the remote changes to
the local state. Therefore, we could decide that some events may trigger
a remote state update, leaving the local state unchanged. This is especially
meaningful when synchronization is triggered by local changes or a periodical
update.

Therefore, selecting how and when to synchronize requires considering the
user’s experience we want to provide. Naturally, a diverse number of merges
will be performed depending on the synchronization strategy. Nevertheless,
as long as we do not merge multiple times with the same remote state,
which can be avoided by checking the state id, we can be sure that we will
not surpass the complexity upper bound given by the serverless peer-to-peer
scenario.
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3.2.4 Garbage collection
Garbage collection is one of the most relevant optimizations that can be
applied to a CRDT solution, because of their characteristic monotonic
increase in the size (see Section 2.4.3).

Garbage collection is difficult to implement, but client-server architectures
make it easier. The primary way to perform a complete garbage collection
is to achieve consensus: the unanimous agreement between all replicas. By
using the server as a communication channel, we know that the server will
store the most up-to-date information that the replicas have shared, and we
can keep track of who has seen that information.

We can store a table that monitors which replica has downloaded the most
recent server state. If a replica alters the remote state, the table is refreshed.
This way, once all replicas are up-to-date with the remote state, all metadata
can be removed. A trivial but relevant consequence is that no metadata will
be stored as long as only one replica is present in the system.

This simple solution does have significant limitations. The most evident
is that all devices must download the remote state without modifying it to
trigger garbage collection. Furthermore, even if the remote state has been
cleaned of all metadata, we need a way to let all replicas know that they
should perform garbage collection too. If we do not achieve this goal, all
removed metadata will be re-introduced in the state as soon as a replica
performs a merge. Because of this limitation, it may be reasonable to try
forcing garbage collection when detecting a stable remote state.

3.2.5 Handling of dynamic nodes
One of the most significant issues regarding dynamic distributed systems
like the one in question is the lack of knowledge regarding the elements
present in the system. Generally, a gossip protocol is used to disseminate
information regarding the system’s state. Nevertheless, having a client-server
configuration makes it much easier to navigate this issue. We can easily keep
track of all nodes (i.e., devices) that have communicated with the server and
remove them from this list if they notify us of their departure.

In the scope of mobile applications, shutting down a node indicates the
explicit removal of the application from a device with all its local data.
However, it is impossible to know when this happens and notify the server
accordingly. Therefore, a criterion must be used to discern inactive nodes
from nodes that have definitively left the system.
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Furthermore, knowing how many and which nodes compose the system is
fundamental for performing garbage collection because it relies on reaching
a consensus between all nodes (see Section 2.4.3).

The simplest way to do this is to set a time threshold. The threshold
could be different depending on the nature of the application. Nevertheless,
we should decide how to behave when a longly-disconnected node reconnects.
As a matter of fact, if we have performed garbage collection, states will
possibly not be merged correctly.

Therefore, it could be relevant to determine whether we should consider
outdated information. It may be meaningful to ignore metadata produced
before the threshold to avoid merge errors due to garbage collection and
because we may generally deem such data irrelevant.

3.3 Integration into codebase
One of the reasons that have allowed CRDTs to be adopted thoroughly in
web based technology in the last years is the development of libraries such
as automerge [33] and Yjs [34]. Both libraries are implemented in Javascript
and offer a collection of data structures that can be used for building
collaborative applications. The flexibility of languages such as Javascript
allows the developer to manipulate variables without knowing their type.
Nevertheless, languages typically used in native mobile development differ
radically from Javascript in their characteristics. Variables are statically and
strongly typed, and the state structure is fixed. Therefore, studying how to
adopt CRDTs with a mobile stack is radically different from doing the same
within a web development framework. Therefore, in this section, we examine
how to integrate CRDTs seamlessly in a general native application.

The concepts explained in this section have been ideated and discovered
while implementing a library supporting CRDTs in Swift. This library will
not be made public with the thesis and is left as a property of Bending
Spoons.

3.3.1 Hierarchy of CRDTs
This section describes how to compose different elements to build an ad hoc
app state within the Redux pattern while adopting a strongly typed language.
To achieve this goal, it first introduces the building blocks of a generic app
state and then explains how to piece them together.
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The building blocks

An excellent place to start is examining the state’s different elements, namely
basic data types (i.e., strings, integers), optional properties, collections, and
nested structures.

It is essential to also keep in mind that some properties may be considered
replicables, while others (that possibly only matter locally) may not.

We will consider a specific state example to examine the problem space
thoroughly. The app state in listing 3.1 comes from the note-taking
application example (see Section 1.2.3) and offers a complete example that
comprehends the different elements. Category can be considered by the
reader as an Enumerated Type (enum), but it is not shown in the listing
because it falls outside the scope of the example.
struct AppState {
var notes: [UUID: Note]
var selectedCategories: Set<Category>
var user: User?

struct Note {
var title: String
var description: String
var categories: Set<Category>
var pinned: Bool

}

struct User {
var name: String
var age: Int

}
}

Listing 3.1. AppState

Non-replicable Properties Non-replicable properties are properties that
are not replicated across nodes. These properties usually express the
execution state of the application. For instance, selectedCategories is
a property that works as a filter: it states which categories have been chosen
by the user to be displayed. It is not meaningful to replicate this concept
across devices because two devices displaying different filtered notes are
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not experiencing a conflict. When merging two app states, non-replicable
properties should not be considered and should remain unchanged after the
merge.

Replicable Properties When deciding how to handle basic replicable
properties, we have to determine the CRDT associated with the semantic
behavior of the property.

In the example, we can take in consideration the pinned value of each
Note. We may pick a Register CRDT if we want its value to be the last
value set by a replica. Instead, we may choose a Flag CRDT if we want the
status to be pinned if at least one replica has marked it as pinned.

It is relevant to note that only a subset of CRDTs can be used to map the
behavior depending on the original type of the property: trivially, a Counter
can not be used to express a String property.

Collections Similar to what was done for basic data types, we associate a
relevant CRDT to each collection.

For instance, Note.categories expresses the set of categories associated
with each note. We should pick a Set CRDT (i.e., LWWSet, ORSet, PNSet)
to handle the behavior of this property.

Nevertheless, the map CRDT can contain CRDT entries itself (see
Section 2.5): in this case, map CRDTs are responsible for correctly handling
and merging their entries. An example of this is the notes property of
AppState. This property is a map of all notes available in the application;
therefore, if a replica edits a note associated with a particular id, we want the
change to be reflected in the note associated with the same id in the other
replicas.

Option Types Option Types are types that represent the encapsulation of
an optional value. In the library implemented by Martin Kleppmann et al. [3]
objects are handled using the logic of a map and therefore have the natural
ability to add and remove properties. In this thesis, given the properties of
the languages under consideration, only properties marked as optional can
be added (given a value) and removed (set to null).

The concept of having optional properties implies the idea of a hierarchy
between replicable types. In fact, if the property has a value, its internal
implementation should handle the logic. On the other side, if the property is
set to null, the absence or presence of the property overpowers the internal
logic.
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Consequently, we should answer the questions: what happens when the
property is set to null? Moreover, who should be responsible for handling
this logic?

From the standpoint of this thesis, we can see being an Option Type as a
CRDT behavior itself; in fact, we can use a Register CRDT to represent the
optional behavior. When the value goes from none to some and vice versa,
the Register will handle the logic, while when the value changes without
reverting to null, the encapsulated replicable will handle it.

Structures App states are a composition of different structures, each
possibly containing properties with associated replicable behavior. A
structure containing at least one replicable property should be considered
a replicable element. In this case, the element does not implement a specific
logic but instead manages its replicable properties. For instance, merging a
CRDT structure with another implies merging all the replicable properties
of the two structures.

An example of this is the user property. If we consider its properties
CRDTs, the user structure must contain the logic to handle it correctly.
Therefore, the AppState will have to handle user not too different from
what it does with other replicable properties.

Putting it all together

We can derive from the previous section that there are three types of elements
that can create a hierarchical structure of replicables:

1. Structures - each structure instantiation handles its replicable
properties

2. Maps with replicable entries - each map instantiation handles its
replicable entries

3. Optional properties - each optional instantiation handles its
replicable value

If we go back to the note-taking app example, we can rewrite the state by
associating to each property a CRDT. In listing 3.2 we can see a potential
state declaration.
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struct AppState {
var notes: ReplicableDictionary<UUID, Note>
var selectedCategories: Set<Category>
var user: OptionalReplicable<User>

struct Note {
var title: ReplicableRegister<String>
var description: ReplicableRegister<String>
var categories: ReplicableSet<Category>
var pinned: ReplicableFlag<Bool>

}

struct User {
var name: ReplicableRegister<String>
var age: ReplicableRegister<Int>

}
}

Listing 3.2. AppState with CRDTs

In this case the AppState hierarchy will work as follows:

• AppState will manage its replicable properties: notes and optional of
user

• the optional of user will manage user

• user will manage its replicable properties: name and age

• notes will manage all of its note entries

• each note entry will manage its replicable properties: title,
description, categories and pinned

In figure 3.1 we can see a diagram representing the above described hierarchy.

3.3.2 CRDT Interface
An interface defines the operations supported by a data structure and
those operations’ semantics or meaning. This section explores how CRDTs
interfaces are described in the literature and how they can be modernized to
make their use more flexible and clean.
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Figure 3.1. AppState hierarchy

The standard interface

Generally, a CRDT interface offers access to two values (the real value and the
wrapped value) and a series of functions: a query and a few update methods
(see Section 2.4.1).

In figure 3.2 and listing 3.3 we can look at the standard interface of
a Counter CRDT and its usage. The counter has a real value made up
of different properties such as maps and ids, while its wrapped value is a
single numeric value obtained by applying the query method to the real
value. Furthermore, the counter interface contains the query method itself
(getWrappedValue()) and two update methods to increase and decrease its
value.

var counter: Counter<Int>(0)

// increase
counter.increase() // wrapped value = 1
// decrease
counter.decrease() // wrapped value = 0

Listing 3.3. Literature Counter usage

53



Method

Figure 3.2. Counter CRDT from literature

Remodelling

CRTDs try to look and act as their wrapped value from the outside while
simultaneously hiding additional data and computations. If we want to
further this idea, we could combine the update methods into a single
one. In fact, we can build a single update method that modifies the
real value by specifying the desired wrapped value. We call this function
setWrappedValue.

The getWrappedValue / setWrappedValue pair can be more elegantly
implemented with a computed property: a property where we declare custom
getters and setters. Nevertheless, for the clarity of this thesis, we will keep
referencing these methods explicitly.

Figure 3.3. Revisited Counter CRDT

var counter: Counter<Int>(0)

// increase
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counter.setWrappedValue(newValue: 1) // wrapped value = 1
// decrease
counter.setWrappedValue(newValue: 0) // wrapped value = 0

Listing 3.4. Revisited counter usage

For instance, we can transform the Counter structure from figure 3.2 to
figure 3.3. In this case, if a Counter’s wrapped value is equal to 2, and we
set its new wrapped value to 5, this will be translated to an increase of three
units.

This idea, naturally, can be applied to all CRDTs, as long as we can devise
a function that can translate an initial wrapped value - final wrapped value
pair into a series of proper edits. While for most CRDTs this function can
be trivially written, this is not true for all. The following paragraphs discuss
the challenges of adopting the remodeled interface.

Invalid operations Not all CRDTs allow all operations to be performed
on them. Notably, the Grow-only Counter and Add-only Set respectively
allow only to be increased or enlarged. Therefore, we should decide how to
handle situations where these CRDTs are set to an invalid value. We have
three main options: fail, rollback, or perform a partial operation.

We can use the example of an Add-only Set to explain the three options.
We have an Add-only Set with initial value [a, b] and we set its new wrapped
value to [a, c]: this translates to removing b and adding c. If we choose to
fail, we should ask the program to abort after detecting a removal. Instead,
if we choose to roll back, we should return from the function without editing
the real value. Finally, if we choose to perform a partial operation, we should
add c to the real value before returning.

It is evident that by performing rollback or partial operations, we allow
the final wrapped value to be different from the one we specified. For this
reason, this work opts for the first option. Failing also allows the system
to let the developer know that the wrong CRDT was associated with a
specific property. This gives the developer the possibility to correct his choice.
Performing rollback or partial operations, instead, could lead to unexpected
bugs.

Shortest edit script in list CRDTs Implementing the setWrappedValue
function is not always as straightforward as in the Counter example, and it
can lead to additional complexity. In fact, when working with list/sequence
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CRDTs, we need a way to determine a sequence of edits that can lead us
from the initial state to the final state.

A straightforward solution to this problem is to delete all elements of the
initial state and then insert each element of the final state in the sequence.
However, we would not consider this a good-quality solution since it does
not let our CRDT behave as it should: a function that replaces the entire
sequence is not of much use.

Thankfully, this is not a new problem in computer science. Myers
Difference Algorithm (MDA) [39] is an algorithm that finds the longest
common subsequence (LCS) or shortest edit scripts (SES) of two sequences.
The common subsequence of two sequences is the sequence of elements that
appear in the same order in both sequences. Therefore, the Myers algorithm
can be used to determine a sequence of changes that should be applied to
sequence A to become sequence B.

Wrapped CRDTs

This thesis proposes one last step towards code portability, which is highly
dependent on the programming language in use. In fact, this last step is based
on a programming language concept called property wrappers (Swift [40]) or
delegated properties (Kotlin [41]).

When dealing with properties representing some form of state, it is
widespread to have some associated logic that gets triggered every time a
value is modified. For example, we might validate each new value according
to a set of rules, transform our assigned values somehow, or notify a set of
observers whenever a value is changed. Property wrappers and delegated
properties add a layer of separation between code that manages how a
property is stored and the code that defines a property.

Using this concept, we can define our properties with their original
type and add a wrapper/delegate to implement the replicable logic. The
wrapper/delegate will overwrite the getter and setter of the property with the
getWrappedValue and setWrappedValue functions. This way, the property
will be used as a simple property while simultaneously encapsulating the
CRDT logic.

In listing 3.5, we can see how these types of properties can be used.
@Counter var counter: Int = 0

// increase
counter = 1 // wrapped value = 1
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// decrease
counter = 0 // wrapped value = 0

Listing 3.5. Wrapped Counter usage

Both wrappers and delegates offer a way to access the wrapper/delegate
itself. In fact, while we want to access the CRDT through the simple
property interface in most of the application codebase, it is also crucial to
have access to the CRDT itself to perform native operations such as merges
and equalities.

By adopting the syntax and structures explained in this section, we can
have a significant advantage: reducing the portion of the codebase that must
be aware of the CRDT nature of the state. In figure 3.4, we can see how the
boundary of the CRDT logic is now only contained in the state.

From this point on, we will refer to properties that encapsulate the CRDT
logic using a wrapper/delegate as “wrapped”.

Figure 3.4. Reduced CRDT boundary with Redux pattern

3.3.3 A complete flow
Now that we have introduced both the CRDT hierarchy and the interface we
want to use, it is time to give a complete view of the built system and how to
use it. Listing 3.6 displays the note-taking application state rewritten using
the property wrapper interface.
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struct AppState {
@ReplicableDictionary var notes: [UUID: Note]
var selectedCategories: Set<Category>
@OptionalReplicable var user: User?

struct Note {
@ReplicableRegister var title: String
@ReplicableRegister var description: String
@ReplicableRegister var categories: Category
@ReplicableFlag var pinned: Bool

}

struct User {
@ReplicableRegister var name: String
@ReplicableRegister var age: Int

}
}

Listing 3.6. AppState with property wrappers

As introduced in section 3.3.1, we can look at this state as a hierarchical
structure able to handle replicable behavior.

However, what do we mean by replicable behavior? Of course, we imply
that all replicable properties should act as such, but we also want the whole
state to behave as a composition of those properties. In particular, there
are a few methods that we want to implement globally. First and foremost,
we want to merge one state with the other. Secondly, we want to compare
states, and finally, we may want to add some additional methods such as
garbage collection that act on the whole state.

To add all these functionalities, it is necessary to specify one piece of
information for each structure: the properties that should be considered
replicable. Once this is done, it is possible to programmatically define
methods that can iteratively and recursively traverse the tree and evaluate
the function on each "node".

Merge

Merging is the strategy that state-based CRDTs use to combine two states.
Merge functions are defined to be commutative, associative, and idempotent.
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• CRDTs: each CRDT implements its merge method. For instance, the
Counter CRDT merge functions apply a union of the increments and
decrements sets.

• Replicable structures: replicable structures merge by merging each
of their replicable properties, while leaving non-replicable properties
unaltered.

• Option types: option types merge by merging their register if at least
one value is null and by merging their values otherwise.

Equality

It is helpful to define two types of equality: shallow and deep equality.
Shallow equality compares wrapped values, while deep equality compares
real values (see Section 2.4.1).

• CRDTs: each CRDT implements its equality functions. Deep equality
compares all metadata contained in the CRDT; therefore, two CRDT
must be identical to conform to this standard of equality. Shallow
equality only compares wrapped values.

• Replicable structures: replicable structures are equal in depth if all
their replicable properties are equal in depth. Therefore, non-replicable
properties are not considered in deep equality. Shallow equality takes
into consideration all properties of a given structure.

• Option types: two option types are equal in-depth, either if they
are both null and their replicable register is equal in-depth, or if they
have equal in-depth values. Shallow equality only compares the register
wrapped values.

Additional methods

Additional methods such as garbage collection are propagated down the tree
similarly to what is done with merging and equality.

3.3.4 Composition of maps CRDTs
One last contribution coming from this thesis is the idea of composing maps
CRDTs starting from simpler CRDTs to allow for additional flexibility of the
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data types. The fact that we can trace maps’ concurrency semantics back to
the semantics of a set and another CRDT is not a coincidence; in fact, maps
can be implemented by putting together a set CRDT and a map of CRDTs.

• The set CRDT decides which keys have a corresponding value in the
map. We can choose from any set CRDT design to specify how we want
the map to behave.

• The map CRDT decides the value associated with each key contained in
the set. Therefore all keys present in the set have a one-to-one mapping
to the values present in the set.

– A map is simple if its entries are literals. In this case, the internal
map will contain Registers.

– A map is complex if its entries are CRDTs themselves. In this case,
the internal map will contain any other CRDT design.

The concept of associating the map’s keys to a Set specification and the
entries to a CRDT one is not an innovation (see Section 2.5). Nevertheless, a
new map should have been defined for each CRDT specification in previous
implementations because each CRDT interface was different and required a
slightly different algorithm. By remodeling the CRDT interface by offering a
single and general update method, we can collapse all these implementations
together.

Editing the map

In listing 3.7 the algorithm for setting a value in an entry of the map is
shown.
switch (oldValue, newValue) {

// insert
case (.none, .some(let newValue)):
self.replicableMap[key] = Entry(wrappedValue: newValue)
self.replicableSet.insert(key)
// remove

case(.some, .none):
self.replicableMap[key] = nil
self.replicableSet.remove(key)
// update

case (.some(let oldValue), .some(let newValue))
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where oldValue != newValue:
self.replicableMap[key]?.wrappedValue = newValue
self.replicableSet.updateEntry(key)

default:
return

}
Listing 3.7. Composed dictionary behaviour

• Insert: we insert the key in the set and insert a new CRDT with a
specific wrapped value in the map.

• Remove: we remove the key from the set and remove the value
associated with that key in the map.

• Update: we set the new wrapped value in the map and update the set.
In this case, the updateEntry function is called directly on the CRDT;
this is in order to allow for additional flexibility. In fact, from the set
point of view, we may want to consider updates similarly as insertions
or choose to ignore them.

Merge

Merging two maps is equivalent to merging the related set and map. In
listing 3.8 we can have a look at the algorithm. First, we merge their sets,
and second, we use the resulting set’s wrapped value to fill an empty map
with entries. If only one replica contains the entry, that entry is inserted
directly; if both replicas contain the entry, a recursive merge is performed.
result.replicableSet = self.replicableSet

.merged(with: other.replicableSet)

for key in result.replicableSet.wrappedValue {
switch (self.replicableMap[key], other.replicableMap[key]) {

case (.some(let element), .none), (.none, .some(let element)):
result.replicableMap[key] = element

case (.some(let this), .some(let other)):
result.replicableMap[key] = this.merged(with: other)

}
}

Listing 3.8. Composed dictionary merge
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Chapter 4

Results and Analysis

This chapter describes the strategy used to evaluate the thesis, presents the
results, and discusses them. The chapter is divided into two sections which
refer respectively to the sections defined in Chapter 3.

4.1 Client-Server architecture
4.1.1 Evaluation strategy
This section aims to justify quantitatively the design choices explained in the
methodology section (see Section 3.2). More in detail, the following choices
will be evaluated:

• Adopting state-based CRDTs over operation-based ones

• Quantitative evaluation of the advantage of sporadically performing
garbage collection

• Evaluation of the number of merges in the client-server architecture
compared to the peer-to-peer one

4.1.2 Benchmark on CRDT types
We have motivated the design choice of adopting state-based CRDTs by
stating that it leads to a reduction in the size of the occupied memory of the
server (see Section 3.2.1). This statement comes from the idea that even if
operations are smaller than the whole state, they have to be kept in memory
as long as all devices read them. On the other hand, if we save the state, we
are interested only in the newest value.
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To properly evaluate this, we should perform a few benchmarks comparing
state-based and operation-based designs’ memory occupation. Nevertheless,
this requires fully implementing operation-based CRDTs, which falls outside
the scope of the thesis. Therefore, we only present a single benchmark run on
an LWWSet (see Section 2.5.4) that can help us visualize the CRDT behavior
and understand the reasoning behind the statement.

This benchmark compares a state-based and operation-based version of an
LWWSet under the assumption that twenty insert operations are performed
for ten different elements. This benchmark also supposes that the replicas
synchronize with the server after each update and that no garbage collection
is performed.

Results and Discussion

Figure 4.1 shows the results of the benchmark. The size reported on the
ordinal axis is the size of the serialized CRDT, which corresponds to the
format on the server. During the first ten operations, distinct elements are
inserted; from the eleventh operation, the benchmark adds elements already
present in the set. We can see in the figure that the state-based solution size
is slightly larger than the operation-based one during the first ten operations.
We can also notice how the operation-based implementation surpasses the
state-based one from the eleventh operation onwards. This behavior can be
explained by the fact that when adding elements already present in the set,
the state-based solution only needs to update the timestamp associated with
each element; on the other hand, the operation-based solution keeps storing
messages of the same size.

4.1.3 Benchmark on garbage collection
Garbage collection can be implemented by adding small doses of
synchronization to perform a global reset (see Section 2.4.3). In this section,
we want to evaluate the effect that garbage collection of all tombstones can
have on the size of the app state. We take the state of the mock note-taking
application as a case study. We evaluate the space saved by garbage collection
in different phases of mock application execution. The mock execution is
made up of these steps:

1. Login

2. Add twenty notes
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Figure 4.1. Memory occupation comparison between state and
operation based LWWSet

3. Edit twenty notes (modify title and description, add a category)

4. Remove the same twenty notes

5. Logout

It must be highlighted that garbage collection can only be performed if
we are forcing strong synchronization or if we are sure that all replicas are
up to date.

Results and Discussion

Figure 4.2 shows the size of the application state after performing each
modification. In the first part of the graph, the trend is monotonically
increasing for both solutions, and we can start noticing a difference between
the two lines from the “RemoveNotes” operation. While previous operations
only added actual data, this is the first operation transforming data into
tombstones. The solution with garbage collection goes back to the same size
it had before adding any note. On the other side, the one without garbage
collection maintains approximately 4000 Bytes of tombstones. At the end of
the execution, the solution without garbage collection is approximately three
times as big as the one with garbage collection.
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Figure 4.2. Comparison of Appstate size with and without garbage collection

From this benchmark we can see that the impact tombstones have on the
state after just a few operations is significant. This observation justifies the
idea of sporadically performing a complete garbage collection on the state.

4.1.4 Number of merges

This section evaluates the variation in the number of merges given a peer-
to-peer or client-server architecture. This value changes depending on the
synchronization strategy that we adopt (see Section 3.2.3). Therefore,
instead of evaluating the number of merges over time, we choose to evaluate
them in a scenario where n replicas are trying to synchronize their local
changes. Given this scenario, we want both architectures to reach a final
state where all replicas have a consistent and complete state. Within the
client-server architecture, we will need each replica to synchronize with the
server, performing one merge. On the other hand, within the peer-to-peer
architecture, we will need each replica to send its state to the other n − 1
replicas, which will perform one merge each.

Therefore in this scenario, complete synchronization with a client-server
architecture requires n − 1 merges (assuming the server as initially empty),
while in the peer-to-peer architecture, it requires n ∗ (n − 1) merges.
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4.2 Integration into code base
4.2.1 Evaluation strategy
This section aims to evaluate the integration into the codebase. To achieve
this goal, it considers three scenarios and compares them from a quantitative
point of view on different dimensions.

The three scenarios are the following:

1. Base: a scenario that does not use CRDTs.

2. Replicable: a scenario that uses CRDTs directly, by declaring them
explicitly. It also uses the traditional queries and updates functions as
described in the literature.

3. Wrapped: a scenario that uses CRDTs indirectly: it declares them
implicitly (making use of property wrappers). This scenario uses the
getWrappedValue, setWrappedValue methods ( see Section 3.3.2).

The first part of the evaluation will be conducted through some
benchmarks. The benchmarks will evaluate the change in execution time
and will be divided into two sections: the first will be more fine-grained and
benchmark CRDTs individually. On the other side, the second will try to
give a complete picture by benchmarking the influence of their use in the
note-taking application. The second part will evaluate the impact of the
scenario choice regarding the portability of code. This goal will be reached
by examining the lines of code (LOC) necessary to implement the note-taking
application in the three scenarios.

4.2.2 Benchmarks on CRDT designs
This section of the benchmarks considers CRDT designs individually. For
each design it compares the execution time for the following operations:

• Initialization

• Query method (read)

• Update methods

While the initialization benchmarks and the query method are present
for each design, the update methods vary in number and type depending
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on the CRDT. The initialization and query method execution time will be
approximately equal in the replicable and wrapped scenario for all designs,
beacuse this part remains identical in the two scenarios.

Benchmark visualization

For each benchmark two elements are shown:
• A graph showing mean and standard deviation of the execution time for

each operation in the three scenarios. This graph was chosen to give
a general view of how CRDT based solutions perform compared to the
base scenario.

• A table showing the percent variation of each update operation from
the replicable to the wrapped scenario ( meanwrapped−meanreplicable

meanreplicable
× 100).

In this case, the initialization and query operations are not considered,
given that their value is approximatively equal in all designs.

CRDT designs

The following CRDTs are examined in this section:
• Register

– Register<Int>

• Counter

– GCounter<Int>
– PNCounter<Int>

• Counter

– AddOnlySet<Int>
– LWWSet<Int>
– PNSet<Int>

• Map

– Map<LWWSet<Int>, Register<Int>>
– Map<LWWSet<Int>, Counter<Int>>

• List/Sequence

– Array<Int>

68



4.2 – Integration into code base

Testing enviroment

Tests have been run on MacBook Pro (2019) with processor 2,4 GHz 8-Core
Intel Core i9. Each benchmark has been run 1.000.000 times, with 10.000
warm-up iterations with Google’s swift-benchmark library [42]. The IQR
method has been used to identify outliers, which have been not considered
in the evaluation.

Results

Register The register benchmark shown in graph 4.3 was performed on
three operations: initialization, read and set.

Figure 4.3. Register’s benchmarks

Table 4.1 shows that operations from the wrapped scenario have a similar
execution time compared to the ones of the replicable one. This similarity
can be explained because Register CRDTs have just one update function,
which is logically equivalent to setting the wrapped value.

Design Set (%)
Register<Int> -9.00

Table 4.1. Register’s operations percent variation from replicable to
wrapped scenario

Counter In figure 4.4 we can see the execution time of the Grow-only
Counter put in comparison to the Positive-Negative Counter.
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Figure 4.4. Counters’ benchmarks

Table 4.2 shows that both counters behave similarly regarding the
variation of execution time from the replicable to the wrapped scenario. In
both cases, the increase operation leads to a time increase around the 700-
800% mark. The same also holds for the decrease operation of the PNCounter
(which is not a valid operation for the GCounter).

Design Decrease (%) Increase (%)
Counter<Int> nan 691.41
PNCounter<Int> 823.14 813.47

Table 4.2. Counters’s operations percent variation from replicable to
wrapped scenario.

Set In figure 4.5 three sets designs are taken into consideration:
AddOnlySet, LWWSet and PNSet. Depending on how the logic of each
design is implemented, we can see how the update operations’ execution
time differs significantly. If we put in comparison the LWWSet and PNSet
with the AddOnlySet, we can see a big difference in the execution time for
the insert operation. This difference is also a consequence of the complexity
of the read operation: we must keep in mind that all wrapped CRDTs must
calculate this value to decide which operations to apply.
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Figure 4.5. Sets’ benchmarks

Table 4.3 also highlights the fact that choosing between different designs
can have a significant impact on update operations. This phenomenon is
particularly evident for the insert operation, where percent variations can
lead from 100% up to 500% depending on the design.

Design Insert (%) Remove (%)
AddOnlySet<Int> 140.02 nan
LWWSet<Int> 451.56 652.46
PNSet<Int> 505.45 411.71

Table 4.3. Sets’s operations percent variation from replicable to
wrapped scenario.

Map Maps are a composition of a Set and another CRDT (see
Section 3.3.4). In the benchmark shown in figure 4.6 we put in comparison

71



Results and Analysis

four maps obtained by combining a LWWSet with a Counter or Register
CRDT. The first can fall under the category of map of CRDT, while the
second is a map of literals.

Generally, we expect execution times to be influenced by the Set and
CRDT design that compose the map. In fact, in figure 4.6 we can see how
the Register map has a better performance than the Counter map.

Figure 4.6. Maps’ benchmarks

In table 4.4 we do not see a big difference between the two maps. The
overhead is given mainly by the map logic that checks whether each element
has been added, removed, or updated, which is equally present in both
benchmarks.

Design Edit (%) Insert (%) Remove (%)
Map<LWWSet<Int>, Counter<Int>> 348.09 532.39 489.64
Map<LWWSet<Int>, Register<Int>> 336.62 348.72 534.07

Table 4.4. Maps’s operations percent variation from replicable to
wrapped scenario.

List/Sequence Calculating the operations that transform an array from
an initial to a final state is complex (see Section 3.3.2). In figure 4.7 we can
observe how this factor greatly influences the execution time of the wrapped
scenario.
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Figure 4.7. Array’s benchmark

In table 4.5 we can see how the Array has the highest percent variation
from replicable to wrapped scenario both for the insert and remove operations
among all studied CRDT designs.

Design Insert (%) Remove (%)
Array<Int> 795.07 1316.85

Table 4.5. Array’s operations percent variation from replicable to
wrapped scenario.

4.2.3 Benchmarks on note-taking application
The second section of benchmarks considers the note-taking app example
and takes into consideration the execution time of a mock application run.

The mock run is made up of these steps:

1. Login

2. Add n notes

3. Edit n notes (modify title, description and categories)

4. Set n notes as pending

5. Remove n notes

6. Logout
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This benchmark aims to give a broader understanding of how using
one of the two CRDT solutions influences the application’s execution
time. Naturally, this benchmark is tightly dependent on the application’s
architecture.

Testing enviroment

Tests have been run on an Iphone 12. Each benchmark has been run 1.000
times.

Results

As expected, the results displayed in figure 4.8 show again that the replicable
scenario performs better than the wrapped one because of the additional
computational complexity of the wrapped CRDTs. Nevertheless, the relative
difference between the average execution values is not huge between the three
scenarios: the base scenario average value falls around 50 ms, the replicable
scenario falls around 57 ms, and the wrapped scenario falls around 85 ms.
When comparing them with the base scenario, the replicable one averages a
26% increase in execution time, while the wrapped averages a 68% increase.
Finally, we calculate, similarly to what we have done with CRDT designs, the
percent variation from the replicable to the wrapped scenario, which results
in 33%.

Figure 4.8. Note-taking application mock execution benchmark
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4.2.4 Lines of code comparison
This last evaluation step aims to measure the code portability in the different
scenarios quantitatively, namely how flexibly we can switch from a non-
CRDT solution to a CRDT one. Therefore, we consider the LOCs necessary
to implement the different scenarios. In particular, we look at what these
LOCs implement within the Redux pattern. It is noteworthy to highlight
that these numbers do not comprehend the lines of code contained in the
CRDT library.

Results

The Venn diagram in figure 4.9 shows how the lines of code of the whole
application are distributed between the different scenarios. First, we can see
that most of the code is shared within all implementations. Secondly, we
can notice an increase in the line of codes in both solutions implementing
CRDTs. Nevertheless, the most relevant aspect is the size of this increase
in the replicable and wrapped scenario. As a matter of fact, the replicable
scenario requires approximately two times as many lines of code to implement
the same feature.

Figure 4.9. Note-taking application line of codes distribution (whole application)

If we want to understand more in detail how the wrapped scenario entails
a reduction in LOCs, we can look at the two diagrams in figure 4.10. The
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diagram on the left shows the LOC distribution for the Redux store, while
the one on the right shows the LOC distribution for the reducers. We can
see how these two design pattern elements contain all the lines of code
present exclusively in the replicable and wrapped implementations (62 for
the replicable scenario and 28 for the wrapped one).

In the replicable scenario, the 62 lines are divided between the Redux
application state and the reducers. The store properties must be declared
as CRDT types, and the reducers must be rewritten to modify the CRDT
types instead of the basic ones.

While the store properties of the wrapped scenario must be declared
slightly differently from the base one, the reducers do not need modification.
Therefore, the 28 lines are only due to the Redux store definition in this case.

Figure 4.10. Note-taking application lines of code distribution
(AppState and Reducers)

4.2.5 Discussion
Both the first and second sections of benchmarks show that the wrapped
solution performs worse than the replicable solution from an execution time
point of view. This phenomenon is due to the overhead given by interpreting
which operations are necessary for each CRDT to move from the initial state
to the final state. This overhead is more meaningful in some designs and
almost insignificant in others (i.e., the Register CRDT), reaching up to a
1300% of execution time increase for complex data structures such as the
arrays. On the other side, the benchmark performed on the mock execution
of the note-taking application shows that the wrapped scenario had a 33%
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increase in execution time compared to the replicable one. This data indicates
that by putting the CRDTs into their context of use, the actual overhead does
not influence execution time as drastically. On the other side, the information
regarding the lines of code clearly shows that the wrapped scenario requires
fewer code modifications and is, in general, easier to handle since it does not
require editing the logic contained in the Redux reducers.

Therefore, it is clear that deciding how to add a CRDT feature depends
on striking a compromise between performance and code portability.
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Chapter 5

Conclusions and Future
work

5.1 Conclusions

The first objective of this thesis was to discuss the design choices that must
be taken given a client-server architecture and the adoption of Conflict-free
Replicated Data Types. We determined that state-based CRDTs are the best
choice because they lead to decreased memory occupation given the dynamic
environment. We supported this statement with a benchmark. Furthermore,
we stated that Hybrid Logical clocks are the optimal logical clock in the
given scenario, and we can pair them with Vector Clocks if the casual order
of events is required. We also discussed which strategies we can adopt to
perform synchronization and what having a system composed of dynamic
nodes entails.

The second objective was to investigate a method to build convergent
mobile application states and evaluate its advantages and disadvantages. We
identified the elements that compose the application state, their hierarchy,
and how they can be composed together. Furthermore, we proposed
remodeling the CRDT interface, making the CRDT feature easier to
implement. We have also explained how the new interface allows for a more
flexible map CRDT implementation. We have confirmed that the proposed
remodeling leads to a decrease in performance. However, we have shown
that the increase in execution time may fall in an acceptable range given the
advantage of implementing portable code.

All in all, we can say that we have been able to answer the research
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questions proposed by this thesis thoroughly, and we have offered a valid
solution to integrate CRDTs seamlessly within a mobile stack.

5.2 Limitations

The main limitations in this thesis are related to the results. Concerning
the client-server architecture, the proposed benchmarks give the reader
a basic understanding of the reasons that support the design choices.
Nevertheless, these benchmarks are incredibly simplified and are not meant
to be considered actual proof of the statements. Concerning the integration
into the codebase, the comparison of the lines of code is relevant because it
gives us a high-level understanding of how opting for one solution or the other
influences the codebase’s structure and the developers’ work. Nevertheless,
this evaluation has several drawbacks. Firstly, it is done on a simplified
application and therefore cannot exhaustively represent what would happen
in a real application scenario. Secondly, it operationalizes the code portability
by examining the number of lines of codes and their position in the codebase;
this may be a relevant data point, but a decrease in the number of lines of
code does not directly imply a more maintainable codebase. Therefore, we
should also evaluate the experience of the developers adopting the different
solutions.

5.3 Future Work

Future work has to focus primarily on a more complete evaluation of what
has been proposed in this thesis. Concerning the client-server architecture,
it would be interesting to conduct more generalized benchmarks about
the server’s memory occupation and the outcomes of garbage collection.
Concerning the integration into the codebase, it would be interesting to study
whether users would perceive the execution time increase and how it would
influence their user experience. On the other side, it would also be valuable
to evaluate the experience of developers adding the CRDT feature in the two
ways described by the thesis.

Furthermore, it would be relevant to evaluate this solution in production.
Therefore, we hope to have the opportunity to apply the library developed
in parallel to the thesis to one of the products of Bending Spoons.
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5.4 Reflections
The work performed in this thesis does not relate to any relevant ethical
aspects: no experiment involving people has been conducted, and the thesis
does not contain any private or sensitive data. The thesis does not strictly
relate to sustainability either; nevertheless, we could see the considerations
about performance and synchronization from the energy consumption point
of view. In general, decreasing the synchronization cost could lead to a
decrease in the energetic impact of the system.
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