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Summary

Scene Segmentation is an important component for robots which are required to navi-
gate in an indoor environment. Obstacle avoidance is the task of detecting and avoiding
obstacles and represents a hot topic for autonomous robots. To obtain a collision free
motion, a robust module for obstacle detection is needed. The objective of this thesis is
to make a robot able to navigate autonomously, relying only on visual perception, per-
forming real-time segmentation of the indoor scene. In accordance with the state of the
art, the proposed method is based on a Deep Learning model for Semantic Scene Segmen-
tation. A Pyramid Scene Parsing (PSP) Net with a ResNet-34 as a backbone is chosen
as a model to train. At first, the backbone has been pre-trained on ImageNet dataset,
then, maintaining these weights fixed, the PSP Net is trained on the labeled dataset for
semantic segmentation. In order to detect the viable part of the scene with high robust-
ness, binary segmentation is chosen, so pixels are labeled as floor (1) or not floor (0). A
91% Intersection over Unit (IoU) score is achieved on the test set with this approach.
Once the image is correctly segmented, a post-processing is applied, in order to obtain
a “pixel-goal” for navigation purposes. Navigation is performed through a proportional
controller which links the steering angle with the coordinates of the pixel-goal. The linear
velocity is handled by the navigation algorithm too. A ROS2 net with a segmentation and
a navigation node is built. The model and the ROS2 net are then deployed on a Jetson
AGX Xavier platform and the pipeline is tested on a Turtlebot3 robot. The coefficient
of the proportional control is tuned directly with real world tries and multiple tests are
performed to analyze the performance, mainly from a qualitative point of view. The best
results are achieved in corridor scenarios, with the robot able to avoid obstacles along its
path, while staying far enough from the walls. In situation with multiple objects with
more complex shapes, such as people and chairs in an office, performances are worse, but
the robot still often exploit obstacle avoidance correctly.
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Chapter 1

MACHINE LEARNING AND
DEEP LEARNING

In the last decades the importance of having technologies able to solve problems and tasks
increasingly complex is growing in the Artificial Intelligence field. Machine Learning is
a technique developed to reach the objective of solving problems which are typical of
the human mind. Robotics, defined as the engineering field which studies and develops
systems and methods with the purpose of making robots reproducing automatically these
typical human tasks, highly draws from Machine Learning and Deep Learning.

1.1 Machine Learning
Machine Learning (ML) is the research field and science of programming computers so
they can learn from data. Two famous definitions are:

• “Machine Learning is the field of study that gives computers the ability to learn
without being explicitly programmed.” [Arthur Samuel]

• “A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.” [Tom Mitchell]

A system with these features often gives results with high accuracy, that’s why Machine
Learning is rapidly becoming a topic of high interest for the Artificial Intelligence field,
Gèron [2019]. The power of a ML approach is the possibility to get results without writing
rules but make the machine able to get the rules from data, that’s why in fields where
building the rules is very difficult, such as speech recognition, images segmentation and
object classification, is an essential technology.[Fig. 1.1]

In general, there are three types of Machine Learning: Supervised Learning, Unsuper-
vised Learning, Reinforcement Learning.

In supervised learning, a dataset is given, and it’s known what the correct output
should look like, having the idea that there is a relationship between the input and the
output.

Supervised learning problems are categorized into “regression” and “classification”
problems. In a regression problem, the objective is to predict results within a continuous
output, so trying to map input variables to some continuous function. In a classification
problem, the goal is to predict results in a discrete output. In other words, trying to map
input variables into discrete categories.

10



MACHINE LEARNING AND DEEP LEARNING

Figure 1.1. The Machine Learning approach.

Unsupervised learning allows us to approach problems with little or no idea what
results should look like. We can derive structure from data where it is not necessarily
known the effect of the variables. This structure can be derived by clustering the data
based on relationships among the variables in the data. With unsupervised learning,
there is no feedback based on the prediction results. Reinforcement learning is an area of
machine learning inspired by behaviorist psychology, concerned with how software agents
ought to take actions in an environment to maximize some notion of cumulative reward.

1.2 Neural Networks
There are various mathematical models used in Machine Learning problems, such as Naïve
Bayes Classifier, Support vector Machine, decision trees and multiple types of regressors.
The choice of the proper model to use is always based on the problems that need to be
solved. A very powerful and complex branch of Machine Learning models is represented by
Neural Networks. Artificial Neural Networks are mathematical models that are inspired
by the biological structure of the human brain. These models are composed of multiple
layers, with each layer connected with the previous one and the next one. Output data
of a layer is used as input by the following one. Nodes (or neurons) are the basic part of
each layer.

1.2.1 Perceptron and Multi-Layer Perceptron (MLP)
The simplest model of Artificial Neural Network is represented by the Rosenblatt percep-
tron: it is a classification model which receives as input a certain number d of elements
x1, x2. . . xd to give a binary output 0 if

q
(wi ∗ xi) is below the threshold, 1 otherwise. In

the Rosenblatt model we have only one input layer with a number of neurons equal to d
and an output layer.

The following steps define the learning algorithm of the model:
• At the start (t=0) wi(0) and bi(0) are defined for i=1. . . d
• An input vector X with its corresponding output Y is given
• The output is calculated with the former formula
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MACHINE LEARNING AND DEEP LEARNING

• The weights are updated, based on the difference between the real output (y) and the
calculated one (a), according to this formula: wi(t+1) = wi(t) + η ∗(y −a(t))∗xi(t).
η is a tuning positive parameter, between 0 and 1.

The steps are iterated until enough elements are classified correctly or when the max-
imum number of cycles is reached. According to Rosenblatt, the model can classify cor-
rectly all the elements only if they are linearly separable.

It’s clear that the former model has some big limitations, that’s why a more complex
one was created: the Multi-Layer Perceptron (MLP). Basically, there is the same structure
of the Rosenblatt model but with a higher number of layers. Each node of the input layer
is connected to every neuron of the following layer: fully connected layers. Moreover, to
handle non-linear problems, each node has a non-linear activation function to calculate
its output. For each couple of layers, the formula is the following:

alj = σ(
Ø

(wljk ∗ al−1k + blj))

Where:
• wljk is the weight for the link between the k-th node of the l-1-th layer and the k

node of the l-th layer
• blj is the j-th bias element of the l-th layer
• alj is the j-th element of the l-th node
• σ is the activation function
The MLP gives better results for problems where data are not linearly separable but

are equivalent to the single-layer structure in case of data which can be separated by a
hyperplane. The learning algorithm of the Multi-Layer Perceptron has the same steps of
the former model. There are some input vectors with the corresponding correct output
that are given to the model. At each iteration, the weights of the nodes are updated with
the aim of minimizing the error that the net can commit with its activity. For the training
of an Artificial Neural Network, the different methods previously analyzed can be used:
supervised learning, unsupervised learning, semi-supervised learning, and reinforcement
learning. The limits of the MLP are related to images as input data.

To better understand this, let’s analyze the structure of a MLP for a classic problem
of image classification on the MNIST dataset. The MNIST dataset is composed of 28x28
grayscale images (pixel values between 0 and 256) of numbers from 0 to 9. Images must
be given as arrays to the net, so 784 neurons (784 is defined as the number of features) for
the input layer are needed, then there is a hidden layer and 10 neurons for the output one.
The problems emerge when there are images with bigger size: for a 128x128 RGB image
dataset 49.125 features are present, so the number of neurons (and so the complexity
of the structure) becomes much bigger as the size of the images grows. Moreover, this
kind of Neural Network is not invariant to rotations, translation, and distortions of the
images. To handle these issues, networks with different structures are considered, with
a different approach for the feature extraction part: these are known as Convolutional
Neural Network which will be analyzed in the next chapter.

The choice of the activation function can be crucial in terms of convergence of the net;
the main function we can find are:

• Step Function
• Sigmoid Functions (Logistic Function and Hyperbolic Tangent)
• Rectified Linear Unit (ReLU) Function
Since 2017, Agarap [Feb. 2019], ReLU is the most popular activation function and the

only one that will be found in the models present in this thesis.
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1.2.2 ReLU Function
The Rectified Linear Unit Function (ReLU) is defined as following:

σ(z) = max{0, z}

Figure 1.2. Rectified Linear Unit Function (ReLU) graph.

The function gives positive output values for positive input values, whereas 0 for neg-
ative inputs. The first reason ReLU has so wide use today is because, differently from
other activation functions, it has the derivative which does not converge too fast to 0.
Avoiding this is, in general, very good, considering that the training of a neural network
is based on a gradient descent algorithm: if there are multiplications for values close to
zero, deep layers have slow learning. Moreover, both this function and its derivative have
a simple structure, which helps in case of training of a very deep network, limiting power
consumption.

1.2.3 Sigmoid Function
The sigmoid function is defined as:

σ(z) = 1
1 − e−z

Figure 1.3. Sigmoid Function graph.

This function can assume values between 0 and 1. As z increases, sigma goes closer to
1. The biggest use of sigmoid function in Artificial Neural Network occurs in the output
layer Gèron [2019], in case of 2 classes classification problems. When the output of the
sigmoid tends to 1, output is classified as part of a class, otherwise if it is closer to 0, the
label output is the other class.
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MACHINE LEARNING AND DEEP LEARNING

1.2.4 Softmax Function
The softmax function is defined as following:

σ(z) = ez∗jq
ez∗k

Figure 1.4. Softmax Function graph.

When there are problems with 2 or more classes, the sigmoid function is not sufficient
anymore. In these cases, the activation function of the output net layer is chosen as the
softmax. Considering a number d of output classes, what this function allows is to have
d probabilistic values, with each representing the probability of being in the j-th of the d
classes.

1.3 Deep Learning
When a Neural Network has two or more hierarchical hidden layers, it is defined as a
Deep Neural Network (DNN) model. More precisely, Deep Learning is defined as a class
of algorithms having these features:

• they use various levels of cascaded non-linear units to perform feature extraction and
transformation tasks. Each subsequent level uses the previous level’s output as its
input. Algorithms can be both supervised and unsupervised and applications include
pattern analysis (unsupervised learning) and classification (supervised learning)

• they are based on unsupervised learning of multiple hierarchical levels of data char-
acteristics (and representations). Higher-level characteristics are derived from lower-
level characteristics to create a hierarchical representation.

• they are part of the larger class of data representation learning algorithms within
Machine Learning.

• they learn multiple levels of representation that correspond to different levels of
abstraction; these levels form a hierarchy of concepts.

Usually, a DNN has a number of layers between 7 and 50, Nets with 100 Sayed [2018] or
more layers have often better performances, with lower efficiency as a drawback. Layers
are not the only parameter to consider when we talk about complexity of a network:
we must consider the number of neurons and connections (nets are not necessarily fully
connected, so this is not directly related to the number of nodes) too. The wide usage of
DNN is related to the following factors:

• presence of BigData: there is a wide presence of labeled data
• GPU Development: by means of technologies like CUDA for NVIDIA GPUs, time

of training has been strongly reduced
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• vanishing Gradient: this problem was solved by using ReLU function instead of
Sigmoid, as previously described

Models of DNN to approach regression and classification problems are categorized as
follows:

• Supervised Learning:
– Convolution Neural Networks (CNN or ConvNet)
– Fully Connected Nets (FC DNN): MLP nets with 2 or more hidden layers
– Hierarchical Temporal Memory (HTM)

• Unsupervised Learning:
– Stacked Auto-Encoders
– Restricted Boltzmann Machines (RBM)
– Deep Belief Network (DBN)

• Recurrent models:
– Recurrent Neural Network (RNN)
– Long Short-Term Memory (LSTM)

1.4 Convolution Neural Networks
Convolution Neural Networks are a class of DNN models mainly developed for image
processing. They differ from MLP because of two main reasons:

• local processing: neurons are locally linked with the ones of the former level and not
with all of them (NOT a fully connected structure)

• shared weights: weights are shared in the same level, so different nodes can process
different parts of the same input vector, reducing the total number of weights.

1.4.1 CNN Architecture
A CNN has a hierarchical structure of the layers:

• input layer, directly connected to the image pixel
• feature extraction layers, where the local processing and the shared weights are. Here

there is a repetition of three kinds of layers: convolutional layer, polling layer, ReLU
layer.

• fully connected layers (or dense layers), which work as a MLP classifier.
• output layer with softmax (or sigmoid) as activation function

• Convolutional Layer: the first layer is the convolutional one in which a digital filter
is applied to the image through a convolution. A digital filter means the application
of a 2D mask (matrix) of scrolled weights on the different positions of the input,
for each position a scalar product is generated as output (weighted sum) between
the mask and the covered portion by the input. An important parameter for this
operation is the stride, which modifies the amount of movement over the image in
terms of pixels (and so the mask overlap). For example, for a 4x4 mask, if the stride
is 4 there is no overlap.

(f ∗ g)(t) =
Ú +∞

−∞
f(τ)g(t − τ)τ ′

What the filter really does is a 3D convolution, because an image is represented as
a tensor (with 3 channels for an RGB and 1 for a greyscale). A hidden convolution
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Figure 1.5. Convolution Neural Network architecture.

layer is divided into different feature maps where each of them looks for the same
feature in a different portion of the image. Besides the number of filters (F) and the
stride (S), there is another important parameter of this layer, called zero-padding
(P), which allows control of the output size, giving the possibility of adding an edge
of zeros to the input tensor. This avoids the loss of information when information
passes to another layer. The output size is defined by this formula:

O = (I − F + 2P )
S

+ 1

ReLU function is then applied to the feature map, setting all the negative values to
0.

• Pooling Layer: the pooling layer is necessary to merge the results of the former
level in order to obtain feature maps with lower size. The downsampling is crucial to
achieve invariance to transformations, while maintaining the significant information
extracted with convolutions. The pooling layer is also necessary in order to deal with
two main problems introduced by the convolutional one. The first is the high com-
plexity of the output: analyzing every little part of the input with multiple overlaps
led the output of the convolution layer to have much bigger size than the input one.
Without downsampling, the size would become bigger for each convolution layer of
the net, making the final output untreatable. The other problem is related to over-
fitting: if the dataset is big, the convolutional level of the net adapts too much to
the training set, with poor inference performances. Pooling can be done by taking
the highest input of the filtered window (Max pooling) or going for the mean value
of the window (Average pooling).

• Fully Connected layers: the ending part of the net is an MLP. The input of the
dense part of the net is a 3-dimension tensor that needs to be flatted, obtaining a
vector. The final layer has usually a softmax (could be a sigmoid in case of binary
classification), so the output is a vector with size equal to the number of classes of
the problem, where each node is the probability of the initial input to be in that
specific class.
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1.4.2 Transfer Learning
Training complex CNNs on large datasets can take days or weeks, even if run on GPU (at
least only for the training phase). In addition, the training of a CNN on a new problem
requires a large, labeled training set Bryan S. [1998]. For these two reasons, training
is often not done starting from zero, but what is called transfer learning is carried out
through two techniques:

• Fine Tuning: a net already trained on a different problem is used. The output layer
is changed according to the number of classes of the current problems. Starting
weights are set as the final of the trained net, except for the ones between the last
two layers which are initialized randomly. Some training iterations are done on the
new dataset to optimize the weights for the current problem.

• Feature Reuse: features related to intermediate layers of a trained net are taken to
train another classifier.
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Chapter 2

ARCHITECTURES FOR
IMAGE UNDERSTANDING

Image understanding is the process of interpreting the various regions and objects ex-
ploited by low-level operation (described in the former chapter), in order to deal with
images related problems, such as segmentation, images classification, regression, object
recognition and segmentation, etc Bryan S. [1998]. Image understanding is strongly re-
lated to computer vision Jacome et al. [May 2019], the batch of processes with the aim
of reproducing human sight. Convolutional Neural Networks have the capacity to extract
features from images, without the need of ad-hoc algorithms, that’s why they are so impor-
tant for image understanding Jacome et al. [May 2019]. In the following paragraphs the
main tasks related to image understanding will be described with an analysis of the main
CNNs architectures related, with particular attention to semantic segmentation models.

2.1 Architectures for Image
Classification

Image classification is the task of assigning a single label to an image input data. CNN are
widely used for image classification. In fact, one of the main applications is the diagnosis
of cancer using histopathological images. There are several classification architectures
based on convolutional networks, which bring a revolutionary approach to the field of
image recognition, from the simplest AlexNet Simonyan and Zisserman [2012], to more
complex ones such as VGG Krizhevsky et al. [2015] and ResNet He et al. [2015]. In the
following paragraphs, some of the models used for image classification are presented. The
focus is on models which will be recurrent in the thesis.

2.1.1 LeNet
The LeNet architecture LeCun and al. [1995] can be considered as the first architecture of
CNN-based Deep Learning. CNNs were initially limited to handwritten numbers recog-
nition (MNIST dataset). These early techniques did not work very well with other types
of images. Architecture is the following:

First, after the input, there is a convolutional layer with 6 filters of 5x5 size.
Second layer is a subsampling/pooling one with each cell in each feature map that is

connected to 2x2 neighborhoods in the corresponding feature map in the former layer.
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Third layer is convolutional with 16 filters 5x5. The input of the first six feature maps
is each continuous subset of the three feature maps in the second layer, the input of the
next six feature maps comes from the input of the four continuous subsets, and the input
of the next three feature maps comes from the four discontinuous subsets. Finally, the
input for the last feature map comes from all feature graphs of the second layer.

Fourth layer is equal to the second one.
Then there is the fifth layer, a convolutional one with 120 kernels 5x5. Each cell is

connected to the 5*5 neighborhood on all 16 feature graphs of the fourth layer.
Last layer before the output one is fully connected with 84 features map as output.
The choice of the parameters of each layer are set with the idea to work on the MNIST

dataset (28x28 grayscale images), masks of size 5x5 avoid the input tensor to go out from
the boundary of the convolutional layer LeCun and al. [1998].

2.1.2 AlexNet
The LeNet’s successor, called AlexNet Simonyan and Zisserman [2012], is considered the
first architecture of deep CNN able to guarantee good results both on classification activi-
ties and image recognition. This architecture has improved the learning abilities of CNNs,
making them deeper by adding more hidden layers, and applying different optimization
strategies of the parameters Khan and al. [2019].

At the beginning of the 2000s, the evolution of hardware systems limited the deep
CNN learning skills. To overcome those limitations, AlexNet was trained in parallel on
two NVIDIA GTX GPUs of the highest level. The depth has been extended from 5
(LeNet) to 8 levels allowing to improve generalization at different levels of image reso-
lution. However, the large number of layers introduced an overfitting problem. For this
reason, superimposed subsampling and local response normalization was applied. Another
resolution to this problem was introduced based on the work of Hinton Srivastava et al.
[2014], which made it possible by creating an algorithm (called dropout) which consists
in skipping some drives on the network randomly during the training process, in order
to force the learning of more robust features. Furthermore, the ReLU was applied as an
activation function, to improve velocity of convergence, avoiding the problem of vanishing
gradient. Other changes introduced by AlexNet concerns the use of large filters (11x11
and 5x5) at the initial levels of the net. Thanks to all this, the effectiveness of learning
with the use of AlexNet was proven, thus leading to a significant evolution in the field
of CNN, initiating a new series of research for new types of architectures Khan and al.
[2019].

2.1.3 VGG Net
VGG, is a CNN architecture, which is based on a simple and efficient algorithm, realized
with 19 levels of depth, compared to the 8 of AlexNet. VGG starts from the observation
that smaller filters give higher net performances. Based on these results, VGG replaced
the 11x11 and 5x5 filters with a set of 3x3 filters, demonstrating in an experimental way
that the simultaneous use of small filters simulates the use of larger filters. The use of
these very small filters made it possible to reduce the computation complexity and learn
a feature maps linear combination, reducing the number of parameters. To achieve this,
1x1 convolutions were added too. Subsequently, to get more performance of the neural
network, a max pooling algorithm was used after the layer convolution, with the use of
padding to hold spatial resolution, avoiding the problem of the loss of features.
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Figure 2.1. AlexNet architecture.

The biggest limit of this architecture is based on the use of 138 million parameters that
make it heavy from a computational point of view, requiring high power to implement
Khan and al. [2019].

The original architecture of the net was proposed by Karen Simonyan in 2014. The
input image is passed through the stack of 3x3 (or 1x1) filters previously described. The
convolution stride is set to 1 pixel; the spatial padding of convolutional layer input is
set in order to preserve resolution after convolution, so the padding is 1 pixel for 3×3
convolutional layers. Pooling is carried out by five max-pooling layers, which follow some
(not all) of the convolutional layers. Max-pooling is performed over a 2×2 pixel, with
stride equals to 2. The convolutional part is then followed by three fully connected layers:
first two have 4096 channels and the last has total channels equals to 1000 multiplied by
the number of classes. Last layer of the net is the one with the softmax function. All the
hidden layers have ReLU as activation function. The original architecture of the VGG has
13 convolutional and 3 dense layers, so it’s also called VGG16. A variance is represented
by the VGG19 with a higher number of levels in the convolutional part Simonyan et al.
[2014].

2.1.4 ResNet
Residual Neural Network (ResNet) was introduced by Shaoqing Ren, Kaiming He, Jian
Sun, and Xiangyu Zhang in 2015. It is considered an extension of the deep CNNs because
the concept of residual learning was introduced, changing the entire architecture of convo-
lutional neural networks. This technology allows to elaborate a new method useful for the
construction of Deep Learning systems based on neural networks. Although this archi-
tecture has a greater depth than the previous ones, it is related to a lower computational
complexity. It has been shown Simonyan et al. [2014] that a ResNet with 50/101/152
(ResNet50, ResNet101, ResNet152) layers presents higher accuracy on the classification
of the images compared to the 34 layers of the normal network, achieving a performance
improvement of approximately 28% on COCO dataset Lin et al. [2014]. A crucial role in
the network is interpreted by the residual blocks, which are the revolutionary elements of
this architecture.

As one can notice, a direct connection which skips some layers in between is present
(this structure can vary according to the specific model). This is what is called skip
connection and represents the core of this block. If the skip connection is ignored the
input (let’s call it x), passes through the layers, and is multiplied by their weights and the
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Figure 2.2. Architecture of a VGG16.

Figure 2.3. ResNet residual block.

bias term is added. Then, this term goes as input of the activation function f(), generating
the output H(x), such as:

H(x) = f(w ∗ x + b)

or
H(x) = f(x)

With the presence of the skip connection, input x is added to f(x), so:

H(x) = f(x) + x

At this point, there is no guarantee that f(x) and x are of the same dimensions, because
of the possible presence of convolutional and pooling layers in f(). There are two main
approaches to deal with this:

• the skip connection is modified through zero padding to increase the dimensions
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• a 1x1 convolutional layer is added (projection method), so the output changes to be:

H(x) = f(x) + w1.x

with w1 as the added parameter
As said before, the presence of skip connections in ResNet avoids the problem of van-

ishing by allowing this alternate shortcut path for the gradient to flow through. Moreover,
these connections are very useful because they allow the model to learn the identity func-
tions, ensuring that the higher layer will perform at least as good as the lower layer, and
not worse. Here is a deeper explanation.

There is a shallow network and a deep network that map an input ‘x’ to output ’y’ by
means of the function H(x). The objective is that the deep network must perform at least
as good as the shallow network and not degrade the performance. One way of achieving
it is if the additional layers in a deep network learn the identity function and thus their
output equal inputs which do not allow them to degrade the performance even with extra
layers. To learn an identity function, f(x) must be equal to x which is grader to attain
whereas in case of ResNet, which has output:

H(x) = f(x) + x

f(x) = 0

H(x) = x

What is needed is to make f(x)=0, and x will be taken as output which is also the
input. In the best-case scenario, additional layers of the deep neural network can better
approximate the mapping of ‘x’ to output ‘y’ than it’s the less deep counterpart and
reduce the error by a significant margin. And thus, we expect ResNet to perform equally
or better than the plain deep neural networks. The usage of ResNet has significantly
increased the performance of neural networks with more layers and here is the plot of
error % when comparing it with neural networks with plain layers. It’s clear that the
difference is big in the networks with 34 layers where ResNet-34 has much lower error %
as compared to plain-34. Furthermore, it’s possible to see that the error % for plain-18
and ResNet-18 is almost the same (https://www.mygreatlearning.com/resnet).

The most common architectures of the ResNet are:
• ResNet18
• ResNet34
• ResNet50
• ResNet50V2
• ResNet101
• ResNet101V2
• ResNet152
• ResNet152V2
The number following the name is simply the total number of layers. In ResNet archi-

tectures there are always n-1 convolutional layers and only a fc1000 dense one, preceded
by an average pooling function. In V2 variance there is a batch normalization before each
weight layer and it is a nomenclature mostly used for coding frameworks useful for DL,
such as Tensorflow and Keras.

Here is a comparison, in terms of accuracy and prediction time between versions of
Resnet with 18, 52, 101 and 152 layers. The study is named “Evaluating the Performance
of ResNet Model Based on Image Recognition”, by Riaz Khan, Emella Opoku Abogye,
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Figure 2.4. ResNet architecture.

Rajesh Kumar, November 2018. Two datasets of medical images for cancer diagnosis
are used. The first, Malware Dataset, is a Microsoft dataset for 9 classes classification
challenge and contains 21741 images. In these tests, 10868 elements of the dataset are used
for training, the rest for testing. Test dataset is completed with 3000 more images from
different sources. Cancer Dataset is made by medical images for diagnosis of Chengdu
Sichuan Cancer Hospital, taken in a period of around 10 years. No specific indication is
given on hardware, but the OS (Ubuntu) and the RAM (8 GB) Riaz Khan [Nov. 2015].

Figure 2.5. Preditcion time of different ResNet architectures on two big datasets.
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Figure 2.6. Training and test accuracy of different ResNet architectures on two big datasets.

2.2 Architectures for Segmentation
Image segmentation is a key part for computer vision systems and consists in partitioning
an image into different regions representing different objects. This process is based on
extraction of sets of pixels, from the domain image, of one or more regions. Segmenta-
tion plays a particularly important role in various applications including face recognition,
image searching, medical imaging, video surveillance and augmented reality. Numerous
segmentation algorithms have been developed, from the most basic which are based on
histograms, to algorithms more advanced. We speak of semantic segmentation when the
model is also capable of establishing the class for each of the regions identified. In recent
years, the networks of Deep Learning have produced a new generation of semantic im-
age segmentation models with a noticeable performance improvement, reaching very high
accuracy values. The result of a segmentation technique must respect some properties:

• segmentation must be complete, so all the pixels of the image must belong to at least
one region of the partition.

• the set of pixels of a region of the image must be connected.
• all regions of an image must be separated from each other.
• it must satisfy the criterion of features homogeneity deriving from components spec-

tral defined based on intensity, color, or texture.

It’s possible to distinguish two main types of segmentation, based on the objective:
• Semantic Segmentation, which consist in giving a label to every image pixel of the

correct class (e.g. floor, window, wall, ceiling, table, chair for an indoor scenario)
• Instance Segmentation, that is a sort of merging of semantic segmentation and object

detection. The objective is always labeling the pixels correctly, according to the
classes of the task, but it’s also necessary to distinguish the different objects of the
same class.

It’s possible to identify a third type of segmentation, named Panoptic Segmentation which
is a further step and consists in combining semantic and instance segmentation. Both a
label and an instance ID are given to each pixel of the image: if two pixels have the same
class and the same ID, they are part of the same object.

Another kind of classification for image segmentation is done based on the segmentation
technique.

• Region-based Segmentation:
– Threshold Segmentation
– Regional Growth Segmentation
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Figure 2.7. Semantic and instance segmentation example.

• Edge Detection Segmentation
• Segmentation based on clustering
• Segmentation based on DL models

Threshold segmentation is the simplest approach for segmentation. It takes into account
only the greyscale information and labels the pixels based on the gray value of the target.
This method can be global, subdividing the image into two big regions (one for the targets
and one for the background) or local, subdividing the input in different regions with
different threshold values. This region-based technique is very fast but works properly
only if there is high greyscale contrast between target and background; it is also very
sensitive to noise and ignores the spatial information Yuheng and Hao [2017].

The regional growth method, instead, is based on the idea to put pixels with similar
properties on the same region. First a seed pixel is selected and then the similar pixels
are merged around the seed one into the region where it is located. This method is
able to provide good boundary information and segmentation results, because it usually
separates regions with the same characteristics. The disadvantages are related to the high
computational cost and (like the threshold method) the sensitivity to noise and greyscale
unevenness.

Edge Detection Segmentation is based on searching grey edges, which separates two
adjacent regions. With the usage of mathematical differential operators it is possible to
analyze the discontinuities of these boundary elements. Parallel edge detection is done
using a spatial domain differential operator to perform image segmentation by convoluting
its template and image Yuheng and Hao [2017]. The so-called parallel edge detection
is usually used as an image preprocessing method. First order most used differential
operators are Prewitt operator, Sobel operator and Robert operator. For the second
order there is the Laplacian operator, Kirsch operator and Wallis operator.

Image Segmentation can be seen as grouping pixels with the same characteristics. Clus-
tering is an unsupervised machine learning technique which is based on grouping elements
on the base of analogue characteristics and at the same time maximizing the difference
(in terms of features) with elements of other clusters. One of the most common clustering
algorithms is the K-means, which is specifically based on the distance among points and
can be used well in an image segmentation scenario. A clustering algorithm, in particular
the K-means, is usually fast, due to its simplicity, highly efficient and scalable for large
datasets Yuheng and Hao [2017]. The biggest drawback is related to the difficulty to
estimate or select K (the number of clusters). Moreover, it is important to remind that
K-means is a distance-based partition method, so it can work only for convex suitable
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datasets. Finally, there is another possible disadvantage: for each iteration of the algo-
rithm the set of data is traversed completely, so sometimes it is possible to have scenarios
with very expensive algorithm time.

There are several DL-based architectures for image segmentation. First well-performing
models were born around 2013 and 2014 and several have been developed until nowadays.
As for the case of image classification, some models are presented in the next paragraphs.

Figure 2.8. Segmentation models timeline.

2.2.1 Fully Convolutional Networks

Fully convolutional networks (FCN) represent the first DL-based approach to image seg-
mentation. They are composed only by convolutional layers, obtained starting from exist-
ing CNNs such as VGG16, and replacing the fully connected part with other convolutional
layers. These networks represent an important step for image segmentation, because they
were the first to demonstrate that CNNs can be trained for segmentation purposes. Long
et al. were the first in proposing a work of this kind but, even if their model worked
properly and became the state-of-the-art, there were some limitations related to the high
rime of inference and the difficulty in transferring the information in 3D. Moreover, FCN
did not consider the context information in an efficient way. A solution for this was found
by Liu et al. who proposed a network, called ParseNet, very similar to the FCN but with
some changes in the last convolutional layers with a module specifically built.

2.2.2 Convolutional Models with Graphical Models

In order to solve the limitation of FCN of ignoring some useful semantic context informa-
tion, a further step was done with convolutional models which incorporate probabilistic
graphical models. A relevant semantic segmentation algorithm proposed by Chen et al.
starts from the observation that the response of the final layers of CNNs are not suffi-
ciently localized for accurate object segmentation: it is possible to better recognize seg-
ment boundaries replacing the last convolutional layer of the FCN with fully connected
conditional random fields (CRF) layer. A similar work was proposed by Schwing and
Urtasun with a network made by a combination of convolutional layers and fully con-
nected CRFs for semantic segmentation, reaching good results on the PASCAL VOC
2012 dataset. A slightly different approach was related to Liu at al. work who proposed a
usage of MRFs, but instead of going for an iterative optimization, there is a CNN model
named Parsing Network Chaurasia and Culurciello [2017].
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2.2.3 Models with Encoder-Decoder Structures
Models with this structure have a wide use in the image segmentation field. The general
structure consists of two parts, an encoder which uses convolutional layers and is the
part with the feature extraction task, and a decoder, with the objective of building the
segmentation mask.

First work of this kind was proposed by Noh et al. and uses the convolutional layers
of a VGG16 as encoder, reaching a 72.5% accuracy Chaurasia and Culurciello [2017] on
the PASCAL VOC 2012.

Another important model is the SegNet, which still uses the VGG16 as encoder, but
it has a convolutional decoder, able to do up sampling of the input feature map: this is
done using the indices of the corresponding pooling part in the encoder. Compared to
its predecessors, SegNet has the big advantage of having a decoder part with no need for
learning to up-sample, reducing a lot the number of trainable parameters.

Another model with similar elements has been recently developed, the HRNet which
maintains the high resolution during the encoding process.

Several new works use this net as backbone. Several models with encoder-decoder
structure were born to address tasks related to medical and biomedical imaging: U-
net and V-net are an important example in this sense. U-net is analyzed in a deeper
way below; V-net was proposed for the segmentation of 3D medical images, by Milletari
et al. and, as well as the U-Net, a FCN-based model, related to the task of prostate
volume segmentation. In Milletari work, a particular objective function based on the Dice
coefficient is proposed, in order to deal with the high difference of the number of voxels in
foreground and background. Some variants of these nets have been also proposed during
years, usually to achieve good enough segmentation results on medical images of a specific
organ. An example in this sense is the Progressive Dense V-Net (PDV-Net).

U-Net

U-Net was proposed for the first time by Ronneberg et al. in 2015 with the purpose of
segmenting medical images obtained with a microscope. The CNN based on the U-Net
architecture Minaee et al. [2020] consists of a series of codes and contractions that serve
to extract the context of the image, followed by a sequence of decoding and symmetrical
expansion. The latter processes are useful to derive the classification of each single pixel.
Every step that concerns the contraction receives an image as input and is described by 4
blocks with chains, each of which has two convolutional layers, a batch layer normalization
and a ReLU activation function, and finally a last block of max pooling. For each block,
the number of filters that are applied will be the double of the previous one, i.e., it starts
from 32 feature maps extracted from the first block, up to 256 features of the fourth
block. During this phase we notice that information about features is incremented, while
information that concern spatial information diminishes through the sampling operation.

The second part of the architecture, that is the one that concerns the expansion, it
is also made up of 4 blocks and each of these allows to concatenate the over-sampled
image with the one that corresponds to the contraction path and then applies the two
convolutional units, the ones identical to the previous one.

In the end, the features that come out of the last level will be of the same size as
the input image but with a higher number of channels. So, for the U-Net there are two
main parts: the contracting path and the symmetric expanding path. The former is an
FCN-like that uses 3x3 convolutions to extract features, whereas the last one decreases
the number of feature maps while increasing the size of the tensor. It’s important to
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remark that the feature maps of the down-sampling part are copied to the up-sampling
part, with the objective to avoid loss of information.

Finally, the softmax classification layer, with 1x1 convolution processes which defines
the segmentation map, assigns the label to each pixel of the image, based on the category
to which it belongs.

Different variants of the U-Net have been developed during these years for different
tasks such as 3D images and road segmentation.

Figure 2.9. U-Net architecture.

LinkNet

The novelty introduced by LinkNet in 2017 was the way it links each encoder with de-
coder. This idea started from the observation that during the down-sampling process
some information is lost and impossible to recover only by the simple up-sampling pro-
cess of the decoder. Unlike the previous models, where the output of the encoder goes
directly to the decoder as input, in LinkNet each encoder layer is bypassed to the output
of its corresponding decoder layer, in order to recover potentially lost spatial information,
which results useful for the decoder task. Because of the communication at each layer
between encoder and decoder, the net results to have fewer trainable parameters in the
down-sampling part, resulting more efficient if compared with the predecessors. For what
concerns the architecture, it is shown in figure 2.10. Between each convolutional layer,
batch normalization is performed, then a ReLU function is applied. The first block of
the encoder applies a 7x7 kernel size convolution with stride equals to 2. It also performs
a max pooling in an area of 3x3 with stride 2, while the rest of the encoder is made by
residual blocks. The original work of Link-Net used a Res18 as backbone, instead of the
more used Res101 and VGG16, to have a lighter model overall Chaurasia and Culurciello
[2017].

In table 2.1 the LinkNet performance with Res18 backbone is shown, compared with
some models previously analyzed.
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Figure 2.10. LinkNet architecture.

Model Class IoU Class iIoU
SegNet* 56.1 34.2
ENet* 58.3 34.4
Dilation10 68.7 -
Deep-Lab CRF (VGG16) 65.9 -
Deep-Lab CRF (ResNet101) 71.4 42.6
LinkNet without bypass 72.6 51.4
LinkNet 76.4 58.6

Table 2.1. LinkNet performance with Res18 backbone compared with other models.

2.2.4 Pyramid Network-Based Models
Pyramid network-based models are a set of networks which in some sense incorporate
multi-scale analysis for image processing. Lin et al. developed the Feature Pyramid
Network (FPN), initially to perform object detection, but with time the models have been
used for image segmentation too. The idea is to mix features with high and low resolutions,
so there is an ascending path, a descending path, and some lateral connections. Then the
merged feature maps enter in 3x3 convolutional layers, to give an output for each stage.
The object detection is finally performed by each stage of the descending part. To obtain
segmentation instead of object detection, some MLPs layers must be added at the end.

Pyramid Scene Parsing (PSP) Network, developed in 2016 by Zhou et al. is a very
important and widely used multi-scale model. Its structure is described and analyzed
below. PSP net is very important to address scene parsing based tasks. The previous
approach was mainly related to FCNs that have the problem of the absence of a strategy
to understand complex scenes.

PSP-Net

Pyramid Scene Parsing Network for semantic segmentation was developed with the objec-
tive to obtain a good-performing DL model for the scene parsing task. With scene parsing
is intended a computer vision topic that consists in understanding the scene. Achieving
this in a good and complete way can be useful for applications such as robot sensing and
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autonomous navigation.

Figure 2.11. PSP-Net architecture.

What really characterizes this model is the pyramid pooling module, which constitutes
the core of the network. This module works as a global contextual prior and basically
merges features under four different pyramid scales Zhao et al. [2017].

The first level is the roughest one and is a global pooling, which gives a single unit as
output.

Second level, starting from the feature maps, operates a division in some sub-regions
and then applies pooling. The pooling operation on features is applied using 4 different
scales corresponding to 4 different pyramidal levels: 1x1, 2×2, 3×3 and 6×6. To reduce
the size of feature maps a convolution operation is applied using a convolutional layer
of 1×1 in order to sub-sample it. The features thus obtained are finally chained to the
initial feature maps in order to obtain contextual information global. Subsequently, these
results are subject to a new processing by a new convolutional layer in order to generate
the predictions regarding pixels. The network in question therefore allows us to examine
all the features for each sub-region in different positions to better understand the image
and have excellent results regarding semantic segmentation.

The whole structure can be seen in figure 2.11. So, given an input image, first it passes
through a CNN, which represents the backbone of the PSPN, to extract the feature map.
In the original work ResNet models with a different number of convolutional layers were
used. Once the feature map, which will be of a reduced size, compared to the input image,
is obtained, it enters the pyramid pooling module, which works as descripted. The 4 levels
work on the whole image, half of it and on some portions. Their fusion constitutes the
global prior. In the final part of this module, the global prior is concatenated with the
feature map at the end of the CNN module. The final part is made of some convolution
layers that build the segmentation map. In table 2.2, results of PSPN in terms of perfor-
mances with different versions of ResNet are shown. Statistics are directly taken from the
original PSP paper, as specified previously. In 2016, PSP was the best net in ImageNet
scene parsing competition and was 1st classified both on PASCAL VOC 2012 benchmark
and urban scene Cityscapes data benchmark.

2.2.5 Other Models
R-CNN Models

Other sets of models for image segmentation have been developed in these years, such
as the regional-convolutional neural network (R-CNN) and its variants. These networks
are mainly developed for object detection, but at the same time produce high quality
segmentation for each instance.
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Method Mean IoU(%) Pixel Acc.(%)
PSPNet(50) 41.68 80.04
PSPNet(101) 41.96 80.64
PSPNet(152) 42.62 80.80
PSPNet(269) 43.81 80.88
PSPNet(50)+MS 42.78 80.76
PSPNet(101)+MS 43.29 81.39
PSPNet(152)+MS 43.51 81.38
PSPNet(269)+MS 44.94 81.69

Table 2.2. Results of PSPN in terms of performances with different versions of ResNet.

Fast R-CNN, Faster R-CNN, Masked R-CNN, Path Aggregation Network (PANet) are
the best examples of this kind of model. The core they have is represented by a region
proposal network (RPN), that gives as output the so-called region of interest (RoI) and a
layer that applies polling to this output (RoIPooling) to finalize the object detection. With
some changes that we can notice in some extensions, instance segmentation is performed.

Other models are part of this family, like the one developed by Diu et al. which is
characterized by a very complex architecture based on 3 parallel networks with different
tasks: instance differentiation, masks estimation and object categorization. Feature maps
are continuously shared among all the three branches. Moreover, Hu et al. developed
a model which can be trained with datasets where just a little part has corresponding
labels. This is possible due to an innovative weight transfer function.

MaskLab by Chen et al is a relevant model developed for instance segmentation too,
based on Faster R-CNN. The three bins output produced (box detection, semantic seg-
mentation, and direction prediction) can be given as input of the Faster RCNN detector
to achieve object detection and instance segmentation.

RNN Models

Recurrent Neural Networks (RNN) based models represent an alternative to CNNs for
computer vision tasks. RNNs can be useful in the sense of handling the dependencies
among the pixels of an image: in this way segmentation maps could be predicted in a
better way. An important example of this set of models is ReSeg by Visin et al., developed
for semantic segmentation, which have a structure with four different RNNs that yield
to important global information. To perform semantic segmentation, convolutional layers
are taken from a VGG net and then some layers that work as a decoder are added to the
architecture.

Another model that achieves good performance in terms of both semantic segmenta-
tion and image classification is the one proposed by Byeon et al., called long-short-term-
memory (LSTM) network. A generalization of this model, named Graph Long Short-Term
memory network was developed afterwards. Images are not yet divided into pixels (like in
LSTM), each superpixel is taken and considered as an entity with semantic importance.
Then, with an adaptive approach, a graph for the image is built, where the relations
among the superpixels, from a spatial point of view, are used as edges. With the goal
of achieving both semantic segmentation and 3D mapping of the scene, Data Associated
Recurrent Neural Networks (DA-RNNs) was developed.
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Dilated Convolutional Models

These sets of models have as distinctive traits the dilation rate as a new parameter for
convolutional layers. The dilation operation is useful in the sense that a certain filter can
have a bigger size, while maintaining the same number of parameters. If a 2x2 kernel is
applied in normal conditions, it has a receptive field of size 2x2 and 4 parameters. With
dilation operation, supposing a rating of 2, the receptive field is increased to 3x3, but the
parameters are still 4. This operation has a wide usage in networks for segmentation, and
specifically for real time tasks.

DeepLab, proposed by Chen et al. (with the two versions DeepLab1 and DeepLab2) is
a milestone in this sense, bringing three big novelties: the presence of dilation operation
in convolutional layers; a spatial pyramid pooling module that allows to use features at
different sampling rate; improved localization of objects boundaries. With a Res-Net
101 as a backbone, this model can reach almost 80% mIoU score on the 2012 PASCAL
VOC challenge and more than 70% on the Cityscapes challenge Chaurasia and Culurciello
[2017]. Better results are obtained with the successors of these models: DeepLabv3 and
DeepLavv3+ with the addition of batch normalization and 1x1 convolution layer at the
level of the pyramid pooling module.

CNN Models with Active Contour Models

This family of models is based on the idea of merging fully convolutional networks and
Active Contour Models (ACM). This operation is mainly done by introducing an ad-hoc
loss function that is based on active contour models principles. The basic model of this set
is the one developed by Chen et al. that starts from a normal FCN and adds a supervised
loss layer that acts during the training of the FCN part.

The main works in this sense are the ones by Le et al. where the ACM is used only as
a post-processor; the Deep Active Lesion Segmentation (DALS), developed for semantic
segmentation of medical images; Deep Structured Active Contours, known as DSAC by
Marcos et al; Deep Active Ray Network (DarNet), by Cheng et al.

Models Based on Attention Mechanisms

In the history of computer vision, attention mechanisms represent a recurrent topic.
Models based on this are developed to address semantic segmentation. An attention
mechanism-based model is the one developed by Chen et al. that learns how to weight
multi-scale features at the location of each pixel. A model for semantic segmentation is
taken and trained with both multi-scale images and the attention model. The attention
mechanism surpasses both average and max pooling mechanisms and allows the model to
appraise the relevance of the features at different positions.

Another relevant work is the Reverse Attention Network (RAN) that is based on a
totally different idea of training with respect to all the examples named until now. When
the model is trained, the objective is to extract the features that don’t match with any of
the classes of interest. This is possible thanks to an architecture that is characterized by
three different branches, which allow to perform both the direct and the reverse learning
at the same time.

Other relevant works are represented by a Pyramid Attention Network by Li et al. that
puts together spatial pyramids and attention mechanisms to achieve semantic segmenta-
tion, Expectation-Maximization Attention Network (EMANet), OC Network, Criss-Cross
Attention Network (CCNet), Discriminative Feature Network (DFN).
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2.3 Metrics for Classification

2.3.1 Accuracy
To evaluate the performance of a given classification model, different and varied metrics
exist to analyze the results. These functions require in input the real ground truth labels
and those deriving from model inference. They return a numeric value indicating the
quality of the results. Before the analysis of them in detail, it’s necessary to define:

• True Positive (TP): the set consisting of the samples labeled and classified in the
same way.

• False Positive (FP): a set consisting of the samples classified by the system as be-
longing to one class, but really belonging to another.

• False Negative (FN): made up of samples classified by the system as not belonging
to a specific class which are part of it.

Starting from this definition, it is possible to define the confusion matrix. For a classifi-
cation problem with d classes, the confusion matrix M is a matrix dxd where the element
Mij corresponds to the number of samples belonging to the class i but it classified by
the network as j. The elements on the diagonal are the elements correctly classified. The
simplest confusion matrix is the one of a binary classification problem. Assuming you
have two labels, -1 and 1, the confusion matrix is a 2x2, where M11 corresponds to the
true-positive. The M12 element corresponds to a false negative (FN). Similarly, M21 is a
false positive and finally M22 a true negative (TN). For a multi-class classification prob-
lem, the matrix becomes larger, where the correctly classified samples (true positives)
appear on the diagonal, while FP and FN are present in the rest of the matrix. Thus, we
can conclude that the confusion matrix allows for understanding the performance of the
model used, in case the classes involved are not excessive.

In cases of classification where the number of classes is too large, it becomes very
difficult to extrapolate useful information for a first evaluation. In an image classification
problem, the term “accuracy” refers to the number of images correctly classified, over
the total number of images used in the test. It’s a usual practice, during the training,
doing an evaluation on a part of the training dataset (validation dataset), by means of
the accuracy metric.

2.3.2 Other Metrics
Accuracy can’t be always the only metric parameter to consider, especially in situations of
unbalanced datasets. Other significant metrics for image classification are the precision,
the recall and the F1 score (or harmonic mean).

Precision and recall are two indices that allow a simplified reading of the confusion
matrix allowing to measure the goodness of results. We define precision as the ratio of the
number of samples that have been correctly classified and the total of classified elements,
including FP.

Recall is defined as the ratio between the total number of correctly classified elements
and the total number of elements that the system should recover if this worked perfectly.

These two metrics are very useful for understanding the reliability of a system, but it
can often be convenient to consider only one value. For this reason, the F1 Score value is
calculated, that is the harmonic average of the two values previously calculated.

Precision = Miiq
j Mji
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Recall = Miiq
j Mij

F1 = 2
1

P recision + 1
Recall

F1 can assume values between 0 and 1, where 1 indicates a perfect result, while 0
indicates an unreliable result. In the case of multi-class problems, this value is equal to
the average of the F1 values of each class. In relation to the semantic segmentation, this
parameter indicates the proximity between the traced contour and segmented contour.
In particular, for each class, the average F1 is the average of the F1 of the class over all
images. For each image, the value of F1 is given by the mean of the F1 of all the image
classes for the single image. For the entire dataset, F1 is the average of F1 of all classes
in all images.

2.4 Metrics for Image Segmenation
Evaluation metrics for segmentation are useful to understand how good, from a quanti-
tative point of view, the image segmentation is. The importance of metrics is not only
limited to the evaluation of a model already trained, but they are crucial during the
training process: having knowledge of how some metrics change (both on the training
and validation dataset) at each step of the training gives information about the quality of
the training. For image segmentation there are always present, for a certain image, the
predicted mask and the actual mask, also named ground truth. The most used metrics
for image segmentation are described in this paragraph.

2.4.1 Pixel Accuracy
Accuracy (or precision) is the simplest function to measure the quality of a classifier and
corresponds to the fraction of correctly classified samples. Accuracy is the simplest metric
to consider. It’s a parameter expressed as the percentage of pixels correctly classified over
the total number of pixels.

In a semantic segmentation problem for each class, accuracy is the ratio between the
number of correctly classified pixels and the total number of the single class, as specified
from the ground truth. For each image, the accuracy value is the average accuracy of
all classes for the single image. For the entire dataset, the accuracy value is the average
accuracy of all classes in all images. The overall accuracy, on the other hand, is the
fraction of correctly classified pixels, regardless of the class. Accuracy can be useful to
evaluate how well a model performs segmentation, but it is not always significant. To
make an example, consider a binary segmentation where there is a dataset of images
of trees with apples and the semantic segmentation has the objective of labeling pixels
related to apples as part of class 1 and the rest as part of class zero. Consider a dataset
of images of 128x128, so the total number of pixels is 16 384. Number of pixels related to
apples, for each image are, on average, 64. Now, imagine having a model that labels every
pixel as non-apple, independently from the input image. It is clear that this hypothetical
model is totally useless, but if we consider only the accuracy, on the dataset, on average
there are 16 384 – 64 pixels correctly classified, so 99.6% accuracy is achieved. Accuracy
can be a relevant parameter in cases where numbers of pixels related to each class are
similar, but as the example above shows, there are cases of very bad performing models
that achieve high levels of accuracy.
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FPi =
q

i Miiq
i

q
j Mji

2.4.2 Intersection over Union (IoU)
The Intersection over Union, known also as Jaccard index, and the Jaccard similarity
coefficient (firstly proposed by Paul Jaccard), is a metric used for comparing the similarity
and diversity of two sets. The Jaccard coefficient measures similarity between finite sets
and is defined as the size of the intersection divided by the size of the union of the sets.

Figure 2.12. Intersection over Union (IoU) - Graphical representation.

The formula is:
J(A, B) = A ∩ B

A ∪ B

From a confusion point of view, it’s possible to define the IoU as follows. For each
class, the IoU is calculated as the ratio between the pixels that are correctly classified (true
positive) divided by the sum of the total number of pixels that have been labeled with that
class or that in the ground truth they belong to that same class. The numerator therefore
corresponds to the intersection between the class pixels according to the predictions and
according to the ground truth. The denominator, on the other hand, is the union of class
pixels for the ground truth and for predictions. For each image, the average IoU value
(mIoU) corresponds to the average of the values of all classes for the image considered.
For the whole dataset, mIoU corresponds to the average of the values of all classes for all
images. If the dataset is unbalanced, the average IoU value can be calculated based on
the number of total pixels for each image. Unlike accuracy, here there are no problems
related to how many pixels are present for each class, so this metric value best describes
the quality of the resulting segmentation.

IoU = TP

(TP + FP + FN)
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2.4.3 F-Score
In paragraph 2.3.2, F1-score is described as the harmonic mean of recall and precision. If
a weighted parameter is added to that formula, the more general (and weighted) F-Score
or Dice Coefficient is obtained. Considering beta as the weighting parameter, F-score can
be expressed as:

Fβ(precision, recall) = (1 + β2) precision · recall

β2 · precision + recall

From a confusion point of view:

L(tp, fp, fn) = (1 + β2) · tp

(1 + β2) · fp + β2 · fn + fp

With
• tp: true positives
• fp: false positives
• fn: false negatives

2.5 Loss Functions
The choice of the objective function for a deep learning application can be crucial and it
is typically based both on the specific model and type of problem. In this section, some
relevant losses for training image segmentation models are presented.

Jaccard Loss

L(A, B) = 1 − A ∩ B

A ∪ B

As one can notice by the expression above, it is a loss function which directly derives
from the jaccard loss metrics, discussed in paragraph 2.4.2. Normally, when Jaccard loss
is calculated all classes are considered, but there are some situations, i.e., an unbalanced
dataset, where it’s better to include only a few classes in the calculation. Jaccard loss can
refer directly to the whole batch or can be calculated for each image of a batch and then
averaged. Finally, a smooth parameter is introduced sometimes, to avoid division by zero.

Dice Loss

L(precision, recall) = 1 − (1 + β2) precision · recall

β2 · precision + recall

As well as the case of Jaccard Loss, Dice Loss is directly obtained by the metric with the
same name. From a type I and type II errors point of view, it is written as:

L(tp, fp, fn) = (1 + β2) · tp

(1 + β2) · fp + β2 · fn + fp

Where tp, fp and fn stay for true positive, false positive and false negative respectively.
β is an index for choosing the balance between recall and precision. As in the previous
case, it’s possible to include all the classes or only a fraction; loss can be calculated on
the complete batch or for each single image and then averaged; a smooth parameter can
be introduced to handle division by zero.
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Binary Cross Entropy

L(gt, pr) = −gt · log(pr) − (1 − gt) · log(1 − pr)

In a two classes problem of classification, binary cross entropy compares each of the
predicted probabilities to actual class output which can be either 0 or 1. Then, the
score that penalizes the probabilities based on the distance from the expected value is
calculated. Gt and pr are the ground truth and the prediction respectively.

Categorical Cross Entropy

L(gt, pr) = −gt · log(pr)

In a similar way to the previous loss, categorical cross entropy can be defined in this way.
In this case it’s possible to consider only a few classes instead of all.

Binary Focal Loss

L(gt, pr) = −gtα(1 − pr)γ − (1 − gt)αprγ log(1 − pr)

Parameter α carries out the same function of the weight in the F-score metric. γ can be
considered as a focusing parameter that modulates the factor (1 - pr).

Categorical Focal Loss

L(gt, pr) = −gt · α · (1 − pr)γ · log(pr)

An objective function similar to the binary focal loss, but for multiclass scenarios. Here
it’s possible to consider only a part of the total number of classes.

2.6 Datasets
In this section, the main datasets for image segmentation are presented. Even if the
core of thesis work is semantic scene segmentation, some datasets mainly used in image
classification or in cases of non-semantic segmentation are analyzed. This is important
because some modules of the models used during the work are trained or pretrained on
datasets not specifically related to semantic segmentation tasks.

MNIST and Fashion MNIST

Modified National Institute of Standards and Technology database (MNIST) is a dataset
of handwritten numbers from 0 to 9. 60 000 constitutes the training part and 10 000 the
validation one. Each image is a greyscale 28x28 pixels and the dataset was born on the
base of the old NIST database. MNIST is a very common dataset and is appropriate for a
10 classes classification problem. Nowadays, the main usage of this dataset is as a first test
to understand if a model works properly. Good performance on the MNIST is necessary
for a model to be good, but not sufficient to guarantee a good network behavior for more
complex scenarios. Fashion MNIST has the same concept and characteristics of the former
dataset, but instead of 10 digits, there are 10 different types of wearing articles. Images
are directly taken from Zalando catalog. The introduction of the FMNIST was necessary
because from a certain point of the story, models started to be too good for MNIST,
always achieving accuracy higher than 99%. FMNIST is a little bit more challenging but
remains simple enough to represent a good first step test for a new model.
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ImageNet

ImageNet dataset is composed of more than 14 million of images, divided in more than 20
000 categories, thought for object recognition. This database represents a key element for
computer vision and CNN training. Each year, as anticipated in paragraph 2.2.5, there
is a competition, named ImageNet Large Scale Visual Recognition Challenge (ILSVRC),
with the objective to test which model offers the best performance. This dataset was
fundamental also for the GPU training of CNNs: the first time a model was trained using
this hardware was in 2012, during the yearly ILVRSC edition. Even if ImageNet is a
dataset for object recognition, in a lot of models used for segmentation, there is a CNN
backbone trained on the ImageNet, making convergence faster for the main training of
the segmentation model.

Pascal Visual Object Classes (VOC)

A very famous and versatile dataset for computer vision tasks is the VOC, which contains
images for classification, segmentation, detection, recognition, and person layout. Nowa-
days, almost each model is tested on this dataset. For what concerns segmentation, 21
classes are present: vehicles, household, animals, airplane, bicycle, boat, bus, car, motor-
bike, train, bottle, chair, dining table, potted plant, sofa, TV/monitor, bird, cat, cow,
dog, horse, sheep, and person, plus the background class. 1464 images are present for
training and 1449 for validation. An extension of this dataset is represented by PASCAL
Context, which increases to 400 the number of classes. It is more specific for segmentation
tasks than the more general purpose VOC.

Microsoft Common Objects in Context (MS COCO)

MS COCO represents another big dataset used both for object detection and segmenta-
tion problems. There are 328 000 images which contain more than 2.5 million of object
instances (labeled) subdivided into 91 different types. Images with objects present are
taken in common situations. For the MS COCO detection challenge, there are more than
200 000 images divided into training, validation, and test set, with a total number of
classes equal to 80.

Cityscapes

Cityscapes is a dataset with focus on semantic segmentation of urban streets, by means
of short stereo videos recorded in the streets of over 50 cities with a high quality of the
pixels. In total there are more than 5 000 frames from videos and 20 000 static images, all
with the respective label associated. The classes are 30, subdivided into 8 macro classes.

ADE20K

All images belonging to this dataset have been annotated with objects. In turn, a good
part of the objects was annotated with the parts that compose them. For each object,
there is further information, such as the fact that objects are occluded or truncated.
The images of the validation sets are fully annotated, while training set images have not
annotated them exhaustively. Information regarding this dataset is constantly updated.
In total there are 20 210 images for the training set, 2 000 for validation and 3 000 for the
test set.
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SUN-3D and SUN RGB-D

SUN-3D is a dataset containing a large quantity of RGB-D videos. For each frame there
is the segmented ground truth and the depth information. In total there are more than
500 short videos with more than 300 different spaces and buildings. The SUN RGB-D
contains more than 10 000 RGB-D images and is widely used for scene understanding
tasks, providing a benchmark in this sense.
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Chapter 3

PRELIMINARY STEPS

The aim of the practical part of the thesis is to perform a robust semantic scene seg-
mentation with the usage of a suitable deep learning model. This segmentation must be
the perception information used as the base on which the navigation algorithm for an
autonomous indoor robot must be developed. The result must be a robot able to move in
an indoor environment performing obstacle avoidance, by using camera information only.

The provided hardware consists of a Jetson AGX Xavier and a Turtlebot3 for the
deployment, and a workstation for the deep learning part development. TensorFlow is
assigned as the framework to use for the DL part. No other constraint is present. The
first period of the work consists in getting information about ML, DL, scene segmentation
and significant paper about indoor robot navigation based on semantic segmentation of
the scene. All the concepts that are reported in part I of this thesis, such as basics of
machine learning, networks for image classification and segmentation, are a resume of
what has been learned during the initial period of the thesis: the aim is to have a strong
base from a theory point of view to handle the actual problem. Once the theory and
the state of the art are clear, it is necessary to learn the suitable tools that allow us to
implement a deep learning model for segmentation.

As previously said, the framework is TensorFlow, so the basics are studied and some
simple models are implemented in order to take confidence with data preparation, learn-
ing, validation and testing. First, a dense neural network is implemented to perform
classification on the Fashion MNIST dataset, then by adding some convolutional layers, a
model able to recognize if an input image represents a horse or a human is developed. The
last step consists in experimenting with segmentation, in particular a Unet with a VGG16
encoder is hardcoded, trained, validated and tested to perform segmentation of animal
images. In the following paragraphs of this chapter the description of the main hardware
components, TensorFlow and a brief presentation of the state of the art are reported.

3.1 Hardware Presentation
In this section there is a description of the three most important hardware elements:
Jetson AGX Xavier, Turtlebot3 and a workstation.

3.1.1 Jetson AGX Xavier
NVIDIA Jetson AGX Xavier is an embedded system-on-module (SoM), whose main char-
acteristic is the presence of an integrated Volta GPU with Tensor Cores and Deep Learning
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Accelerators that allow good performance in deep learning and computer vision applica-
tions. The limited dimension (100x87x16 mm) and power consumption (<30W) make this
module suitable for autonomous robots which requires powerful hardware for accelerated
AI applications. Here are the specifications and the performance (in terms of inference)
of different CNNs elinux.org [2022].

Figure 3.1. NVIDIA Jetson AGX Xavier shape.

Figure 3.2. NVIDIA Jetson AGX Xavier architecture.

The software support part is based on the NVIDIA Jetpack, which main components
are:

• L4T
– Linux kernel 4.9
– Reference filesystem based on Ubuntu 18.04 aarch64
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Figure 3.3. NVIDIA Jetson AGX Xavier Module Interface.

Figure 3.4. NVIDIA Jetson AGX Xavier Specifications.

• CUDA Toolkit
• cuDNN
• TensorRT
• Multimedia API
• GStreamer
• V4L2 media controller support
• VisionWorks
• OpenCV
• OpenGL / OpenGL ES / EGL
• Vulkan
• NVIDIA Nsight Systems
• NVIDIA Nsight Graphics
• NVIDIA Nsight Compute

For the specific case of the thesis, the 4.5 version of Jetpack is used, because, when the
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work started, it was the latest jetpack version. Moreover, it is necessary to specify that
in the work was specifically used the Jetson AGX Xavier Development Kit which bundles
together all the pre-assembled parts for developers to get started creating applications
and includes:

• Open source reference carrier board (105x105mm)
• Integrated active thermal solution
• Jetson AGX Xavier compute module
• USB 3.0 Type-A to Type-C cable (for flashing)
• USB 2.0 OTG adapter
• 19V power supply
• AC power cable

3.1.2 TurtleBot3

TurtleBot is a ROS standard robot. It is limited in terms of dimensions, manageable,
programmable with its own API, ROS-based mobile platform with use in several fields
such as prototyping and research, but for educational purposes too. TurtleBot3 has the
advantage to be very limited in terms of price and dimensions but without lowering its
functionality and quality, while at the same time giving the possibility to be expanded.
The TurtleBot3 platform offers high possibilities of customization from different points of
views depending on how the mechanical parts are reconstructed and optional parts such as
the computer and sensors are used. Moreover, TurtleBot3 is developed to be suitable for
robust embedded systems, by means of little and cheap SBC, 360-degree distance sensor
and additive manufacturing technology.

Two different versions are present for the Turtlebot3: TurtleBot3 Burger, more compact
and smaller, and TurtleBot3 Waffle Pi, larger in terms of dimensions. The last is the one
provided as hardware for the thesis work. Here it’s possible to notice the specifications,
the design and the main components for a TurtleBot3 Waffle Pi.

3.1.3 Workstation

Workstation is the hardware used for the code development behind the final application.
It is mainly used for the training of the deep learning model used to achieve a robust
semantic segmentation. What is important for a workstation in a project like this is
performing fast-enough training and this can be achieved by means of an NVIDIA GPU
with high CUDA capability. In this case there is an RTX 2080, which is not the ultimate
generation of NVIDIA GPUs, but good enough to train everything without big problems.
In the following table the workstation specifications:

Manufacturer INTEL
Hard Disk 512GB SSD NVME + 1TB HDD SATA
Processor Speed 3GHZ to 4.7GHZ
Operating System WINDOWS10 PROFESSIONAL
RAM 32GB DDR4
CPU I7-9700
Grade A
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3.2 TensorFlow
TensorFlow is an open source software python library for machine learning and deep
learning, which provides tested and optimized modules, useful in the realization of algo-
rithms for different types of perceptual and language comprehension tasks. It is a second
generation of API, used by about fifty teams active both in scientific research fields and
in production fields; it is the foundation of dozens of Google commercial products such
as voice recognition, Gmail, Google Photos, and Search. These teams previously used
DistBelief, the first generation of API. TensorFlow was developed by the Google Brain
team and released on November 9, 2015, under the terms of the Apache 2.0 open source
license. TensorFlow is compatible with major 64-bit operating systems (Windows, Linux
and Mac OS X) and Android. Although at the beginning the official documentation spoke
of limited hardware compatibility, the library can work on numerous types of CPUs and
even on GPUs, thanks to the support of languages such as CUDA or OpenCl. In addition,
Google has designed and built an ASIC processor specifically dedicated to this language,
called TPU (Tensor Processing Unit), with a computing capacity of 180 teraflops, in the
second version.

3.3 State of the Art
In chapter 2 the most used models to perform segmentation have been analyzed, with the
description of the structure, the segmentation results achieved on the most used datasets
and the specific learning processes. Scene segmentation is a specific kind of semantic or
panoptic segmentation that has, as aim, the analysis, from a perception point of view,
of a particular environment or a part of it. As previously specified, in this thesis work
the objective is performing real-time semantic scene segmentation to achieve indoor robot
navigation. As also seen in chapter 2, segmentation is a general technique, often obtained
via deep learning, that can be applied in a lot of different fields, so the examination of
the state of the art can result useless if done from a general point of view and is more
powerful if bounded to the interested scope.

The applications of segmentation in navigation problems are mostly related to outdoor
scenarios, such as streets for autonomous car driving; this is the reason why there are no
public semantic segmentation datasets to perform indoor robot navigation. By contrast,
some works that address this problem have been published in the last year, defining the
state of the art in indoor scene semantic segmentation for autonomous navigation.

One of the most relevant works in this sense is proposed by Yao Yeboah, Cai Yanguang.
Wei Wu and Zeyad Farisi with “Semantic Scene Segmentation for Indoor Robot Navigation
via Deep Learning”. The idea presented in this paper is to start from deep convolutional
neural network-based semantic scene segmentation to make an autonomous robot, with
limited embedded hardware, to navigate autonomously in a domestic environment, putting
the main focus on corridor scenarios.

The main part of the paper is about performing good and robust semantic segmentation
on top of which a navigation algorithm can be developed. To reach this goal, models with
encoder-decoder structure are chosen by the authors, in particular a SegNet, analyzed in
paragraph 2.2.3 and a Fully Convolutional Network, considered good choice to detect the
navigable part of the scene for the robot through semantic segmentation and let the robot
moving with a collision-free motion, while deploying the software in a limited embedded
hardware.

For the training of the two networks the approach is based on transfer learning, this is
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done because, as said previously, public scene semantic segmentation dataset for indoor
scenarios are just a few and not suitable for segmentation that is done to achieve navi-
gation, so where the most important class is represented by the usable path Yao Yeboah
and Farisi [2019]. A solution can be collecting images and doing manual labeling but
this is a very time-consuming solution, especially if the aim is to build a balanced and
large-enough set of images. To handle these problems, as said, the solution is to go for a
two phases transfer learning: pretraining and fine-tuning.

In the former step, what is done is to train the backbone of the model (in this case a
VGG16) on the ImageNet dataset: as seen in paragraph 2.6, this is not a set suitable for
segmentation, being built for image classification, but this allows the model to learn low-
level features, for example boundaries or object shapes, that results useful in the majority
of the tasks related to computer vision. At the end of this phase what is obtained is a
model that is not able to perform semantic scene segmentation, but with the weights of
the encoder that are near to the suitable values to achieve good enough segmentation.

For the pretraining phase, in order to significantly reduce the training time, the first
13 layers of the VGG16 are taken already trained on the ImageNet dataset from a work
with a different objective. Then, the fine-tuning step is entered: after the models are
pretrained until there is no more improvement in terms of loss and accuracy, the training
for segmentation starts. With the use of the camera mounted on the robot, a set of videos
are recorded while the robot moves with manual driving, then these videos are split in
order to obtain about 2000 single images. Each image is labeled, assigning at each pixel
the floor class or the obstacle class. During the frames collection the attention is put in
taking videos with textures, light conditions, obstacles that varies, to obtain a dataset
with variance high enough to get a robust segmentation. No rotation of the images is
considered since the z coordinate of the robot remain always the same during the motion.

Collecting the fine-tuning dataset in the same environment where the robot will move
through real-time segmentation is a solution that makes the network able to do good
predictions, but there is no guarantee that the segmentation is good in different indoor
scenarios than the one where it has been tested. In the training process, stochastic gradient
descent is used, with batch size equals to 8 with batch shuffling at every step. This is a
common choice that regards all the 4 models trained.

The hardware used for the training process results in a pair of GTX 1080Ti by NVIDIA
and Intel i7 processor (generation is not specified) with CUDAv8 and cuDNNv5 as libraries
for parallel computation. When the fine-tuning is terminated, a series of post-processing
operations are made by means of a series of morphological operations that make the edge
improved, connecting disjoint pixels that result from the raw prediction. In total there are
four different models trained, the first is a SegNet, while the other three are FCNs with
little changes in the hyperparameters. In table 3.1 they are shown in detail. In figure 3.5
qualitative examples of predicted images are reported. Each row represents a model and
each pair of columns reports the image overlapped by the mask and the inference. In the
second column, black represents the true positive and purple the false positive, while the
last column reports the true positive in purple.

Tables 3.2 and 3.3 show in detail the results of the model on the test set, for pixel
accuracy, Jaccard score and BF score, with all data referring to the mean values. Observ-
ing the reported score, one can notice that there is no difference between the models in
terms of pixel accuracy and IoU score, reaching values of more than 98% and 96% respec-
tively. For the BF Score there is a little difference, with the SegNet model reaching only
84% and the FCNs obtaining 92%, 90% and 84%. Although some differences are present,
they are very small and all networks perform segmentation with very good results from a
quantitative point of view.
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Models Learning Rate Momentum Epochs
Model-1 1e-3 0.9 100
Model-2-v1 1e-3 0.9 50
Model-2-v2 1e-3 0.9 50
Model-2-v3 1e-3 1.0 100

Table 3.1. Training parameters.

Figure 3.5. Qualitative examples of predicted images.

The biggest difference, as is shown in the table is on the base of the memory occupation:
SegNet performs better in this sense, with a 111 MB weight compared to the 501 of the
FCNs, being a much better candidate in condition of limited hardware. As a consequence,
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the load time of the model is smaller in the SegNet, 0.8s compared to 3.1/3.2s of the FCNs,
while for the inference time the difference is only 0.05s: 0.18s for the former model and
0.23s for the heavier ones.

Models Accuracy IoU BFScore
Model-1 0.9835 0.9669 0.8444
Model-2-v1 0.9905 0.9802 0.9293
Model-2-v2 0.9882 0.9756 0.9036
Model-2-v3 0.9840 0.9664 0.8477

Table 3.2. Metrics results on test set.

Models Memory (MB) Load Time (s) Inference Time (s)
Model-1 111.1 0.8 0.18
Model-2-v1 501.2 3.2 0.23
Model-2-v2 501.2 3.1 0.23
Model-2-v3 501.3 3.1 0.23

Table 3.3. Memory and time performance.

Another relevant work is “Corridor segmentation for automatic robot navigation in in-
door environment using edge devices” by Surbhi Gupta, Sangeeta R, Ravi Shankar Mishra,
Gaurav Singal, Tapas Badal and Deepak Ga.rg that proposes semantic segmentation with
focus on corridor scenarios with a region-based method that uses a series of mathemat-
ical operations such as gray conversion, detection of the edges and some morphological
operations, so segmentation is achieved without using any deep learning model. After the
pipeline, pixels are classified as part of the corridor class or part of the obstacle class.

The pipeline is composed of the following steps: data acquisition, frame extraction, pre-
processing, edge detection, line extraction (both horizontal and vertical), slope extraction
and actual corridor segmentation. The embedded hardware for the autonomous robot
is a 64-bit Raspberry Pi 3B+. First, by means of an RGB camera directly connected
to the raspberry (camera is the only sensor of the robot), videos are acquired while the
robot moves at speed of 0.6 m/s, then the recordings are split in order to obtain RGB
images with 1080x1920 resolution. Videos are taken with varying conditions in terms of
illumination and reflection, as table 3.4 shows.

The total number of frames can be different in recordings with different environment
conditions. Once the frame extraction is completed, the pre-processing phase is entered
with each image that is converted into grayscale, using the BT.601 formulation Helland
[2011]. With the frame in the greyscale and with the Gaussian blurring applied, the edge
detection step is carried out and represents the crucial phase, because of the importance
of edges in corridor segmentation Gupta et al. [2020]. A convolution filter with a specific
kernel is applied on the image in order to operate a discrete approximation of the pixel
values and then a suppression of the pixels that are not part of the boundaries is carried
out.

The extraction of both horizontal and vertical lines is the next passage of the pipeline
and is made through a series of morphological operations: dilation, erosion and closing.
The use of dilation is made with the objective of adding pixels at the boundaries of the
objects in the image, by contrast erosion operation has the effect to remove pixels at the
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Figure 3.6. Metrics vs memory consumption models comparison.

Video Environment Total number of videos Total number of Frames
High Illumination 9 2127
Low Illumination 8 1561
Reflection 12 3032
Standard 11 2139
Total 40 8859

Table 3.4. Number of acquisitions on the base of light conditions

object boundaries. In this way, both horizontal and vertical lines are obtained, then on
these bases the slope extraction phase is entered and allows to obtain two lines with the
appropriate slope that define the lateral limit of the corridor region. These lines with
the best candidate horizontal one and the bottom horizontal limit of the image, defines
the definitive segmented corridor area, that is the actual space that the robot can use to
navigate. In table 3.5 all the results in terms of TP, FP, FN, precision, recall, f1 score and
accuracy are reported changing the reflection and illumination environment conditions.
As one can notice, the accuracy values are in the 50-71% range, resulting significantly
worse than the ones of the former study, where more than 98% is achieved. This clearly
shows that an approach not based on deep learning is not a good choice, according to the
metrics. On the other hand, it is necessary to consider that in this study the hardware
used is only a Raspberry Pi, so there is a very big constraint in this sense and a DL model
would not work in such a limited hardware.

Daniel Teso-Fz-Betoño, Ekaitz Zulueta, Ander Sánchez-Chica, Unai Fernandez-Gamiz
and Aitor Saenz-Aguirre in 2020 proposed a work, called “Semantic Segmentation to
Develop an Indoor Navigation System for an Autonomous Mobile Robot” with the aim
of training a suitable deep learning model for semantic scene segmentation in order to
make an AMR able to recognize the viable path and on this base developing a navigation
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Video Type TP FP FN Precision Recall F1 score Accuracy
High Illumination 1328 138 661 0.91 0.69 0.77 62%
Low Illumination 781 405 375 0.66 0.68 0.67 50%
Reflection 2155 247 630 0.90 0.77 0.83 71%
Standard 1328 312 499 0.81 0.73 0.77 62%
Total 5592 1102 2165

Table 3.5. Test resutls.

algorithm to achieve obstacle avoidance. The only sensor used for the mobile robot is an
RGB camera.

In paragraph 2.1.4 the Residual Neural Network for image classification is described
and it represents the starting point for the choice of the model in this work. The selected
ResNet-18 is used as the backbone of an encoder-decoder structured model that is built on
the base of the DeepLabV3+ structure, in order to make the model suitable to perform
semantic scene segmentation. The learning process is developed in three main phases:
the acquisition of the data, the preparation of the data and the actual training. For the
acquisition what is made is a collection of images in the environment where the robot will
move. At the end of the acquisition phase, there are 391 images ready to be labeled. The
idea is to build an ad-hoc dataset since the availability of public dataset specific for indoor
segmentation for navigation is poor. The drawback of this is that, since the robot will
move in the same environment where the images of the training dataset are taken, there
is no information about the robustness of the obtained segmentation: it is impossible
to know if it would perform well even in a different indoor environment. The collected
images are then part of the manual labeling process. In this specific case, the semantic
scene segmentation discriminates two classes (binary segmentation): the pixels labeled in
blue are the viable path, while the ones in orange are part of every object that is not floor,
such as walls, chairs, people, ceiling and any other obstacle. What is done in a nutshell is
manually building a mask for each collected photo. The complete dataset is then organized
putting the 80% of the elements in the training part, 19% are reserved for the validation
dataset and the rest is for testing. For the images selected for the learning process,
improvements are introduced such as data augmentation with reflection and translation
function along both the horizontal and vertical directions. Authors decided to avoid the
presence of flipped or rotated images, because the robot actually moves only on the X and
Y plane, maintaining the Z coordinate constant. At this point all the elements are ready to
start the training of the neural network so the hyperparameters are set. In this study they
are not optimized Teso-Fz-Betoño et al. [2020a]. 100 is the maximum number of epochs
in the training, but some callbacks functions are developed to perform early stopping if
the loss on the validation set does not improve for a certain number of epochs (validation
patience). A batch of 10 images is used for validation at each step of the learning process,
to calculate the validation loss and accuracy. The metrics are evaluated once every 50
epochs. Learning rate is set initially to 0.003 in order to avoid a too slow process, but at
the same time getting a good sub-optimal solution (or maybe the optimal). Learning rate
is not necessarily always the same during the whole training: with a callback if the loss
does not decrease for a certain number of epochs (learn drop period), the rate is reduced
for a certain quantity (learn drop rate factor). The L2Regularization is present. In the
learning, the gradient threshold method is active and consists in controlling a learnable
parameter: if it results to be bigger than a set threshold (gradient threshold), the gradient
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is scaled according to a function, such as the L2 norm. The dataset is shuffled at each
epoch. In table 3.6 all the details and values about the used hyperparameters are reported.

The Training Parameters Values
Learning Rate Drop Factor 0.1
Learning Drop Period 5
L2 Regularization 0.005
Gradient Threshold Method L2norm
Gradient Threshold Infinite
Validation Frequency 50
Validation Patience 4
Shuffle Every epoch
Learn Rate Schedule Setting Method Piecewise
Learning Drop Rate Factor 0.01
Learn Drop Period 5
Initial Learn Rate 0.003
Max Epochs 100
Mini Batch Size 10
Momentum 0.9
Solver sgdm

Table 3.6. Hyperparameters configuration.

After the training, the network is ready to perform inference to help the navigation
algorithm. It is developed on the base of the predicted mask and consists in a sort of path
calculation on the part of the image recognized as navigable. The analysis and calculation
are done at the pixel level.

Figure 3.7. Example of inference.

The path obtained is then used to create the navigation commands for the AMR. In
this study, there is no embedded hardware, but a laptop is physically mounted on top
of the movable part of the robot, a big difference with the other works where there are
some limitations in this sense. With the described method, that is image acquisition,
image inference, path calculation, command extraction and publication, the system needs
between 1.05s and 1.24s to produce a navigation command using CPU. The hardware of
the laptop is a GTX 660 Ti as GPU and 4GB of RAM DDR5. No details about CPU
are given. CUDA libraries are used for inference acceleration. With GPU the network
can produce a segmented image in less than 0.1 seconds, but with path calculation and
definition of the navigation command, the robot needs 1s to actually react.

The study finishes with the implementation and the comparison of performance using
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similar models: DeepLabV3+ with ResNet18 and ResNet50m SegNet and U-Net with
VGG19 as backbone. Metrics for all the models are collected and reported in table 3.7.
From the data, it’s clear that the first two models behave well in every situation, while
SegNet has good results for what concerns accuracy and Jaccard metric, but the BF score
is only 68-76%, compared with the 90% of the other models. U-Net, as one can notice,
has significantly lower values in every metric compared to every other model used in this
work.

Name ResNet-18 ResNet-50 Segnet(vgg19) Unet
Floor Accuracy 0.9859 0.9934 0.9768 0.7383
Floor Intersection over Union 0.9608 0.9775 0.9318 0.6322
Floor MeanBF Score 0.8516 0.8943 0.6856 0.2916
Wall Accuracy 0.9836 0.9898 0.9697 0.8945
Wall Intersection over Union 0.9750 0.9857 0.9558 0.7682
Wall MeanBF Score 0.8786 0.9169 0.7636 0.4744

Table 3.7. Test results.
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Chapter 4

SCENE SEGMENTATION

As described in chapter 3, the approach to this work consists in discomposing the whole
problem in two main modules: the first has the objective to perform a semantic scene
segmentation with high score in terms of metrics and robustness. Then, on this base the
navigation module will be implemented with the final objective to generate the motion
command for the robot. In this chapter, the focus is on the analysis of the segmentation
module, such as the model choice, dataset construction, training process and test results
both from a quantitative and qualitative point of view.

4.1 NVIDIA SDK Isaac
In the presentation of the state of the art of indoor navigation based on semantic scene
segmentation, a recurrent issue is about the choice of the dataset. From a more detailed
perspective, public and widely used dataset for indoor segmentation are present, for ex-
ample the ADE20K and the SUNRGB-D, but they are datasets with a large number of
classes that goes from 13 up to 150. To perform a scene segmentation that can result
in useful indoor navigation tasks, it is crucial that the floor class is labeled as best as
possible, because it is on those pixels that the navigation command is calculated. The
problem with the named datasets is about a not large enough presence of floor elements
and this results in segmentation of a high number of elements that are completely use-
less for navigation (i.e. a window or a door), while the segmentation of the pixels of a
hypothetical navigable arises not sufficiently good.

To address navigation tasks is more convenient a dataset with binary masks that give
a high attention to the floor class. Public datasets with this structure are just a few and
usually related to a specific work and that’s why in all the studied papers the dataset
is built autonomously with manual labeling. In this thesis, the same kind of problem is
present and the first try for a suitable solution needs the usage of the NVIDIA SDK Isaac.

Isaac is a platform for robotics powered by the Isaac software development kit (SDK)
and offers a big number of high performant algorithms working on GPU (GEM) for ma-
nipulation tasks, navigation and computer vision. With the usage of the related engine it
is possible to develop applications with Isaac (C or python API) and do the deployment
on NVIDIA hardware platforms such as Jetson Xavier or Jetson NANO. Isaac already
offers some basic applications with the purpose of both presenting some examples of what
it’s possible to do and giving pre-developed starting points to the developer to make the
construction of advanced applications easier. It is also possible to do development and
tests using the Isaac Sim, a virtual environment specific for robotics.
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The “Free Space Segmentation” Isaac GEM is specifically implemented for semantic
segmentation of outdoor and indoor scenes. The aim of the GEM is to segment images
and videos into classes of interest such as navigable space and obstacles. The provided
input is an image or a frame of a video, while the output is represented by the mask of the
segmented image. The GEM proposes an easy way to train a model for the segmentation
of the free space in a simulated environment and then uses it to carry out inference in a
real-world scenario.

4.1.1 Data Collection
For what concerns the dataset problem for indoor segmentation, Isaac proposes two dif-
ferent possibilities: simulated data and autonomous data collection.

The first solution consists in building a virtual scenario (“Free Space Segmentation”
uses Unity3D) that simulates a real indoor environment in which the synthetic images can
be collected to build the dataset. In virtual environment, it is possible to achieve domain
randomization in various ways, such as changing the level of intensity and the colors of the
lights (light randomization), using different kind of materials (material randomization),
applying different textures on the materials (material randomization), changing color to
the textures (color randomization), changing the reflection and refraction properties of
the materials.

The second solution is related to a pre-developed application of Isaac that directly
allows autonomous collection of data. What is necessary is simply a Jetson Platform to
deploy the app and a Carter robot (a specific mobile robot powered by NVIDIA). For
the motion of the robot it’s possible to do both manual drive navigation and autonomous
navigation giving it a set of waypoints to reach, while images are collected. Each time an
image is taken, the mask is automatically produced by a set of built-in algorithms based
on the split of the image into a batch of superpixels and clustering.

Considering the hardware available for the thesis, this last solution can’t be used for
the definition of the dataset, simply because there is not a Carter bot. A solution could
be to try to do an exact replication of the Carter using the TurtleBot, but this is a time-
consuming process with low possibilities to work, so the solution that involves the synthetic
environment is chosen. A warehouse scenario is built in the Unity3D environment, based
on a similar pre-existing scenario: objects like boxes, shelves, trash bins, windows are
created and inserted, floor and walls with different textures and materials are present
and light conditions change in time. It’s important to remember that in the Unity3D
environment, there is a function that automatically segments the scenario, so for each
image collected the correct mask is available. In the synthetic warehouse a camera spawns
in a random position with 5Hz frequency, and each time collects an image to add to the
dataset. Photos are taken at totally random points, with different angles and heights.
It is possible to set the maximum inclination that the camera can have: 15 degrees is
considered a reasonable value, because it allows to add a little more variability in the
dataset, maintaining a realistic situation where the robot camera is still at zero degrees
and fixed height. A similar idea led to the choice of 0.20m as the maximum change of
the z coordinate during data collection. Random objects (boxes, bins, shelves) spawn and
disappear with the same camera frequency to increase the variability of the scene. In other
words, it’s like having a Carter robot with the autonomous data collection application of
Isaac, but in a virtual environment. The application parameters that can be changed are
the following:

• Number of collected images: 60 000
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• Camera frequency: 5Hz
• Object spawn rate: 5Hz
• Max camera rotation angle: 15deg
• Max z translation value: 0.20m

Figure 4.1. Warehouse top view.

Figure 4.2. Example of acquired image and label.

4.1.2 Training
“Free space segmentation” Isaac GEM already offers a series of nodes that are suitable to
perform training while the data collection app is running. TensorFlow is the framework
on which all deep learning tasks present in Isaac work. TensorRT is then used for model
optimization and inference. The pre-existence network in the Isaac app is a vanilla U-Net
(encoder-decoder structure) with a VGG13 backbone. For what concerns the set of the
trainig, it’s important to remember that no callbacks can be implemented and the choice
of the hyperparameters can’t be done directly on the TensorFlow script, but it’s necessary
a specific node. The size of the dataset is of 60 000 images with 10% used for validation,
and the rest for the learning process. A batch size of 128 is set, with 0.003 as the value
of the learning rate: this (first) choice is inspired by Teso-Fz-Betoño et al. [2020a]. The
number of epochs (fixed) is 100, but the final model is taken as the one with the lower loss
value during the process. Binary cross entropy is the metric, since the aim is to perform
two classes segmentation. The complete pipeline (collection + training) is run on a GTX
1060 3GB, AMD FX-8350 with 4.2Ghz clock, 16 GB RAM DDR4 workstation and takes
about 33h to complete. Because of the pre-built settings, there are no validation and
training metrics during the training process, so it’s necessary to export the weights of
the model in native TensorFlow environment and do the calculation to get a quantitative
evaluation. What the Isaac application allows us to do is image and video inference, for
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a qualitative evaluation of the trained model in doing segmentation. In total the training
process is repeated three times with the hyperparameters values reported in table 4.1.

Images Epochs Learning Rate Batch Size Loss Shuffle Metric
60 000 100 0.003 128 Binary Yes Accuracy

crossentropy
40 000 50 0.001 64 Binary Yes Accuracy

crossentropy
60 000 100 0.01 128 Binary Yes Accuracy

crossentropy

Table 4.1. Hyperparameters values of the training process.

4.1.3 Results and Conclusions
As one can notice in figure 4.3 just from a qualitative point of view the results of segmen-
tation are clearly not good enough to be the base for a navigation algorithm. The test
image put in the network is just a corridor with no obstacles, but the central part of the
floor is full of pixels labeled as obstacles (FN). The image is a test example of the first of
the three training but other cases result in similar situations.

Figure 4.3. Isaac inference result.

Viewing these qualitative results, it is considered not necessary to export the models
and go for a more significant metric evaluation to judge the resulting model not good
enough for the wanted application. To try to improve the results, two solutions are
considered: trial and error approach for hyperparameter tuning and a different model
than the VGG13 U-Net proposed by Isaac.

The first one was actually already carried out in the three different training previ-
ously presented, where the values of learning rate, batch size and datapoints change. It’s
necessary to consider that for the complete pipeline described (data acquisition in Unity
3D synthetic environment + actual network training), a time between 25 and 36 hours
is spent, depending on the quantity of datapoints. Considering that the results are not
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improving and the amount of time necessary for each training, the trial and error process
is stopped at the third model.

The last solution to improve segmentation is based on the idea of switching the pre-
defined VGG13 U-Net with a different model and doing some tries with a ResNet-50 U-Net
and LinkNet, so what is practically made is, using TensorFlow API, do some change in
the Isaac node that contains the hardcoded model, in order to try with a model, according
to the literature Chaurasia and Culurciello [2017], more suitable for scene segmentation.
However, even if the model is modified in the proper node, the complete Isaac app does
not work, because of some mismatch errors in the nodes. This is an issue that involves the
source C code of some specific nodes in the complete app, because of the lack of support
of Isaac to Unity3D (support completely ends in 2022).

At this point, the decision to stop trying to achieve scene segmentation with Isaac is
taken, mainly because of these remarks: from a setup point of view, there are problems
among the nodes that are very difficult to solve; Isaac team is stopping supporting on Unity
for its applications; the results obtained with the supported settings, such as the VGG13
U-Net model are not good enough; images collected in a synthetic environment, with
this model and these hyperparameters, led to not sufficient scene segmentation results; an
hypothetical trial and error approach for the correct tuning of hyperparameters takes high
quantity of time and it doesn’t seem to lead to any better result in terms of segmentation;
the community related to this SDK is very small if compared to the ROS and ROS2 one,
so it is more difficult to find user solutions to similar problems, detailed documentation or
Isaac app developed by other users to handle similar tasks. So, what is observed is that
Isaac, to achieve segmentation tasks offers some pre-developed solution, that is this specific
case, for the reasons previously described, lead to segmentation results that are not good
enough to achieve the thesis objective and so the decision to develop the segmentation
module in a different way, that does not involve Isaac SDK, is taken.

4.2 Working Approach
As reported multiple times in the examined literature, obtaining a suitable dataset for
scene segmentation-based navigation is a crucial topic. With an approach that can’t refer
to an SDK anymore, it’s necessary to directly write the code for everything in the pipeline.
For this reason and considering the poor results achieved in Isaac with a synthetic dataset,
the choice is to avoid a collection in a virtual environment and go with a different approach.

Most of the works analyzed in paragraph 3.3, independently from the used model,
prefer to train the backbone on a big and standard dataset for image classification, such
ImageNet, that is not specifically built for indoor segmentation, but allows the network to
learn the low and mid-level features of the images, such as object shapes and edges. Then,
when this step of transfer learning is done, there is a fine-tuning one where the complete
model is trained with the specific dataset, that is usually precisely built for the application.
The poor availability of public big datasets for indoor scene semantic segmentation for
navigation is the main reason why this way to operate is so popular Yao Yeboah and
Farisi [2019]. Considering this, the decision to go with a similar approach is taken, so
it is necessary to get the dataset for the fine-tuning phase. Before continuing with the
description of the practical work, it is important to remind that the idea is to perform a
binary segmentation, where the two classes are the navigable part and the non-navigable
part, which includes any kind of obstacles, such as people, chairs, tables, boxes, the
walls and the ceiling. As reported in Helland [2011], this choice has the advantage of
higher possibilities to have a segmentation with high metrics values, than the multiclass
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case. This is a crucial point, because the task to achieve is to perform navigation only
on the base of the segmented images, so the better the model is to recognize the pixels
of the travelable part, the more accurate is the navigation. Once the dataset for the
fine-tuning is collected, the idea is to perform training with different models recurrent
in literature, such as U-Net, Linknet, PSPNet or SegNet, with different backbones, like
VGG, Resnet or mobilenet and find the best combination from a quantitative point of
view, based on a metric value. For each model, a trial and error approach is thought for
the hyperparameters tuning.

4.3 Dataset
A recurrent approach in the examined literature in paragraph 3.3, consists in building
an ad-hoc dataset for the specific application for the fine-tuning step of the training. A
binary segmentation database used only on a model pre-trained on a bigger dataset can be
limited in terms of dimension: few hundreds of images with the corresponding true masks
can be sufficient for a good enough RGB scene segmentation. In this sense, in this thesis
the covered idea is looking for an available public suitable dataset for a similar application
on the web and if the research is not successful, proceeding with the autonomous collection
of images. Based on the works defining the state of the art, the characteristics to have a
dataset to be suitable for this application must be the following:

• Binary masks: floor e non-floor classes
• Indoor scenarios
• Focus on the floor class
• Presence of obstacles
• Suitable size: from a few hundreds to some thousands
The best result of a research on the web in this sense, is a dataset built for binary

segmentation with the following ID: “16yHVv2HIV2pqJj-Z1k8gRSb31enJeMdm”. The
dataset was found on Google drive with the label: “Corridor segmentation dataset” and is
not specifically related to a segmentation work, but considering the name and the content,
it is reasonable to think that it was built to perform binary corridor segmentation. The
total number of frames is 967 (each one with its correspondent mask), so based on what
is reported in the investigated literature, there is a proper quantity of images to perform
fine-tuning. All the frames represent indoor scenarios with a big presence of corridor
images, with a variety of textures, scenarios, angles, height, light conditions and there
is a recurrent presence of obstacles, such as chairs, bins and people. For what concerns
the masks, it’s possible to notice very different shapes of the travelable parts (fig. 4.4).
Comparing the features of the dataset with the ideal characteristics previously reported,
it is possible to say that it can be a good candidate for the fine-tuning step in the scene
segmentation module of the work.

4.4 Models
For the selection of a suitable model the starting point is the examined literature. In
applications presented in paragraph 3.3 that involve deep learning, the recurrent models
are the U-Net elinux.org [2022] Gupta et al. [2020], the LinkNet and the SegNet elinux.org
[2022] with ResNet and VGG as the most recurrent backbones elinux.org [2022] Helland
[2011] Gupta et al. [2020]. It’s important to remark that the chosen work approach is to
do a pre-training of the backbone on the ImageNet dataset and then a fine-tuning using
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Figure 4.4. Dataset inspection.

the dataset of the paragraph 4.3.
Moreover, in order to obtain the best results with a certain model, the idea is to do

an accurate tuning of the hyperparameters, via trial and error. For the reasons stated,
it is necessary to select a network capable of obtaining binary segmentation with high
performance and robustness while maintaining a small memory occupation in order to be
compatible with the dedicated robot hardware (NVIDIA Jetson AGX Xavier) and save
training time (for the hyperparameters tuning it is required to carry out the training mul-
tiple times). The working method is to attempt several models with different backbones,
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setting the optimal hyperparameters for each of them, and then comparing them to find
the best one for this particular application. The first implemented model is a hardcoded
U-Net. According to the inspected papers, in particular Gupta et al. [2020], even if this
specific model provides metrics results that are significantly lower than newer models
such as SegNet (65% vs 90% on pixel accuracy), it is implemented as a first test for the
segmentation pipeline. The following part of code shows how the model is implemented
according to the TensorFlow API.

ef get_unet(input_img, n_filters=16, dropout=0.1, batchnorm=True):
"""Function to define the UNET Model"""
# Contracting Path
c1 = conv2d_block(input_img, n_filters*1, kernel_size=3,

batchnorm=batchnorm)
p1 = MaxPooling2D((2, 2))(c1)
p1 = Dropout(dropout)(p1)

c2 = conv2d_block(p1, n_filters*2, kernel_size=3,
batchnorm=batchnorm)

p2 = MaxPooling2D((2, 2))(c2)
p2 = Dropout(dropout)(p2)

c3 = conv2d_block(p2, n_filters*4, kernel_size=3,
batchnorm=batchnorm)

p3 = MaxPooling2D((2, 2))(c3)
p3 = Dropout(dropout)(p3)

c4 = conv2d_block(p3, n_filters*8, kernel_size=3,
batchnorm=batchnorm)

p4 = MaxPooling2D((2, 2))(c4)
p4 = Dropout(dropout)(p4)

c5 = conv2d_block(p4, n_filters=n_filters*16, kernel_size=3,
batchnorm=batchnorm)

# Expansive Path
u6 = Conv2DTranspose(n_filters*8, (3, 3), strides=(2, 2),

padding=’same’)(c5)
u6 = concatenate([u6, c4])
u6 = Dropout(dropout)(u6)
c6 = conv2d_block(u6, n_filters*8, kernel_size=3,

batchnorm=batchnorm)

u7 = Conv2DTranspose(n_filters*4, (3, 3), strides=(2, 2),
padding=’same’)(c6)

u7 = concatenate([u7, c3])
u7 = Dropout(dropout)(u7)
c7 = conv2d_block(u7, n_filters*4, kernel_size=3,

batchnorm=batchnorm)

u8 = Conv2DTranspose(n_filters*2, (3, 3), strides=(2, 2),
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padding=’same’)(c7)
u8 = concatenate([u8, c2])
u8 = Dropout(dropout)(u8)
c8 = conv2d_block(u8, n_filters*2, kernel_size=3,

batchnorm=batchnorm)

u9 = Conv2DTranspose(n_filters*1, (3, 3), strides=(2, 2),
padding=’same’)(c8)

u9 = concatenate([u9, c1])
u9 = Dropout(dropout)(u9)
c9 = conv2d_block(u9, n_filters*1, kernel_size=3,

batchnorm=batchnorm)

outputs = Conv2D(1, (1, 1), activation=’sigmoid’)(c9)
model = Model(inputs=[input_img], outputs=[outputs],

name=’unet’)
return model

As it is possible to notice, there are 9 macro-layers, 5 for the encoder and 4 for the
decoder and then a final layer is inserted for the binary classification with the sigmoid
activation function. For the first four levels, the pattern is the same: a conv2d_block with
batch normalization activated and the number of filters that increase from the basic value
of the first layer to the 16-times greater of the last one, a 2x2 layer for max pooling and
a dropout one to reduce chances of overfitting. conv2d_block is shown in the following
part of code.

def conv2d_block(input_tensor, n_filters, kernel_size=3,
batchnorm=True):

"""Function to add 2 convolutional layers """
"""with the parameters passed to it"""
# first layer
x = Conv2D(filters=n_filters, kernel_size=(kernel_size, kernel_size),\

kernel_initializer=’he_normal’, padding=’same’) (input_tensor)
if batchnorm:

x = BatchNormalization()(x)
x = Activation(’relu’)(x)

# second layer
x = Conv2D(filters=n_filters, kernel_size=(kernel_size, kernel_size),\

kernel_initializer=’he_normal’, padding=’same’)(input_tensor)
if batchnorm:

x = BatchNormalization()(x)
x = Activation(’relu’)(x)
return x

As one can see, there is a pair of 2D convolutional layers with a ReLu function and
a settable kernel size. This way of implementation is basically a coding choice to easily
set some hyperparameters like the actual kernel size. For the decoding part of the model,
that involves the last 4 macro-layers, the repeated pattern is the following: a transposed
convolution layer concatenated with the correspondent layer of the contracting part, a
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dropout layer and a conv2d-block with number of filters starting form 16-times the original
values and decreasing to it.

The model is trained directly on the indoor segmentation dataset in the Google Colab
virtual environment, with no real concern for the quality of the segmentation (thus the
lack of hyperparameter adjustment), but only to test the training code pipeline. The next
paragraph contains additional information on model training as well as a description of
the pipeline. The "Segmentation Models" package by qubvel is used to implement the
different models. It is a python library with neural networks for image segmentation
based on Keras (TensorFlow) framework. The following are the key characteristics of this
library:

• API at a high level (just two lines to create NN)
• For binary and multiclass segmentation, there are four different model architectures

to choose from (Unet, FPN, LinkNet, PSPNet)
• For each architecture, there are 25 backbones accessible
• Weights have been pre-trained in all backbones for faster and better convergence

Because the library is based on the Keras framework, the segmentation model that is
constructed is simply a Keras model that can be easily created. You can vary the network
design depending on the task by selecting backbones with fewer or more parameters and
using pre-trained weights to initialize it. For each of the four different models, according
to the API, it’s possible to define the following parameters:

• backbone name: name of classification model used as feature extractor to build
segmentation model (without last dense layers).

• input shape: shape of input data/image (H, W, C). According to the specific model,
H and W of input images must be divisible by a certain number specified in the
documentation.

• classes: number of output classes.
• activation function of the final model layer (e.g. sigmoid, softmax, linear).
• weights: path to model weights, which is optional.
• encoder_weights: one of None (random initialization) or ImageNet (pre-training on

ImageNet).
• encoder_freeze: if True set all layers of encoder (backbone model) as non-trainable.
• encoder_features: a list of layer numbers or names starting from top of the model.

Each of these layers will be concatenated with a corresponding decoder block.
• decoder_block_type: list of numbers of Conv2D layer filters in decoder blocks
• encoder_use_batchnorm: if True, BatchNormalisation layer between Conv2D and

Activation layers is used.
The “Segmentation Models” library fits perfectly the requirements of the project, be-

cause allows to easily manage models that has wide use in segmentation fields and provides
backbones already pretrained on the ImageNet dataset. This last feature allows to avoid to
do the pre-training step manually, making the global learning process quicker. The draw-
back is that there are only four models, so some well performant networks (according to
the examined literature), such as SegNet will be not tested, as well as other segmentation
models described in chapter 2.

4.5 Training
The code flow for model training is examined in this paragraph. What is displayed is a
sequence of code cells from a Google Colab notebook that has been used to conduct the
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training. In order to speed up the global training process for all the models, some of them
have been implemented in this environment, another part using Kaggle and the rest have
been trained with local hardware. All the environments (both virtual and local) are GPU
accelerated.

!pip uninstall keras -y
!pip uninstall keras-nightly -y
!pip uninstall keras-Preprocessing -y
!pip uninstall keras-vis -y
!pip uninstall tensorflow -y
!pip uninstall tensorflow-gpu -y
!pip install tensorflow==2.3.0
!pip install keras==2.4

! pip install -U segmentation_models
import segmentation_models

For a virtual environment, it is required to set the correct version of TensorFlow and
Keras to allow the Segmentation Models library to work correctly.

# GET AND LOAD DATASET
get_cmu_corridor_dataset(dataset_path=’./dataset’)

X_train, X_test, y_train, y_test =
load_cmu_corridor_dataset(

dataset_path=/dataset/cmu_corridor_dataset’,
train_test_split=True,
image_size=(240, 336),
gray=False,
scaling = True,
verbose=True)

Here some basic python code is used to build a function to download and load the
dataset into train and test images and labels. Note that it’s possible to define the size of
the frames. In the reported case the unusual 240x336 is chosen because of the constraint
of the Pyramid Scene Parsing Network to ask for input to be divisible by 6 times the
downsample factor, and 4 for this specific case that produces a total factor of 24. For
the other networks (Unet, FPN, LinkNet) this constraint is different with the input that
must be divisible by 32. In the implemented function, dataset split is included (80-20 in
this specific case).

# MODEL
from segmentation_models import PSPNet
from segmentation_models import get_preprocessing
from segmentation_models.losses import bce_jaccard_loss
from segmentation_models.metrics import iou_score

BACKBONE = ’resnet34’
preprocess_input = get_preprocessing(BACKBONE)
x_train = X_train
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x_val = X_test
y_val = y_test
# preprocess input
x_train = preprocess_input(x_train)
x_val = preprocess_input(x_val)

# define model
model = PSPNet(BACKBONE,

encoder_weights=’imagenet’,
input_shape=(240,336,3),
classes=1,
activation=’sigmoid’,
psp_dropout=0.05,
psp_conv_filters=16,
psp_pooling_type=’max’,
psp_use_batchnorm=True,
encoder_freeze=True
)

model.compile(’Adam’, loss=’binary_crossentropy’,
metrics=[iou_score])

In these lines the definition of the model is carried out: as one can notice it is directly
imported by the qubvel library in the first line (PSPNet for the specific case) with the
losses and the metrics. A predefined function to preprocess data is applied to images and
labels of the training set and then the model is actually built. In the reported lines, it
can be observed that the chosen backbone is a ResNet34 already trained on the ImageNet
dataset (transfer learning phase); the input shape is set in accordance to the constraint
of the net; number of classes is set to 1 because the API already considers the non-classes
elements, by building the zero class, that in the case of this work is related with the
non-floor elements.

Specific hyperparameters for the PSP model are then specified, such as the dropout,
the type of pooling and the batch normalization. Last parameter tells that in the training
process the weights of the encoder must not change, so the fine-tuning affects only the
pyramid module and the output layers. Other models have a similar structure, as reported
in the following APIs.

UNet

segmentation_models.Unet (backbone_name=’vgg16’, input_shape=(None, None, 3), classes=1,
activation=’sigmoid’, weights=None, encoder_weights=’imagenet’, encoder_freeze=False,
encoder_features=’default’, decoder_block_type=’upsampling’, decoder_filters=(256, 128,
64, 32, 16), decoder_use_batchnorm=True, **kwargs)

LinkNet

segmentation_models.Linknet(backbone_name=’vgg16’, input_shape=(None, None, 3),
classes=1, activation=’sigmoid’, weights=None, encoder_weights=’imagenet’, encoder_freeze=False,
encoder_features=’default’, decoder_block_type=’upsampling’, decoder_filters=(None, None,
None, None, 16), decoder_use_batchnorm=True, **kwargs)
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FPN

segmentation_models.FPN(backbone_name=’vgg16’, input_shape=(None, None, 3), classes=21,
activation=’softmax’, weights=None, encoder_weights=’imagenet’, encoder_freeze=False,
encoder_features=’default’, pyramid_block_filters=256, pyramid_use_batchnorm=True,
pyramid_aggregation=’concat’, pyramid_dropout=None, **kwargs)

PSPNet

segmentation_models.PSPNet(backbone_name=’vgg16’, input_shape=(384, 384, 3), classes=21,
activation=’softmax’, weights=None, encoder_weights=’imagenet’, encoder_freeze=False,
downsample_factor=8, psp_conv_filters=512, psp_pooling_type=’avg’, psp_use_batchnorm=True,
psp_dropout=None, **kwargs)

Few callbacks functions are implemented to be recalled during the training process
for the fine-tuning. The first one is EarlyStopping which allows terminating the training
before processing all the epochs, according to some criteria. In this specific case if there
is no improvement of the validation loss for at least 20 consecutive epochs, the training
is stopped early. The ReduceLRonPlateau callback is used to mitigate the danger of
overfitting: if the validation loss does not decrease by at least a factor after a specified
number of epochs (5), the learning rate is reduced by a factor (10). The possibility
of being in a local minimum, which forces the loss to be too high, is lowered by this
technique. Finally, there is a simply function to save the model with the best weights
(ModelCheckpoint).

# CALLBACKS DEFINITION

from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint,
ReduceLROnPlateau, TensorBoard

callbacks = [
EarlyStopping( min_delta=0.01, patience=20, verbose=1),
ReduceLROnPlateau(factor=0.1, patience=5, min_lr=0.00001, verbose=1),
ModelCheckpoint(’/content/models/current_model’, verbose=1,
save_best_only=True, save_weights_only=False),
TensorBoard(log_dir=’.logs’)

]

#fit model
results = model.fit(

x=x_train,
y=y_train,
batch_size=16,
epochs=100,
callbacks = [callbacks],
validation_data=(x_val, y_val),

)

The actual start of the training process is made by calling the fit method, where the
last two hyperparameters, epochs and batch size, are defined. Then the learning curve is
printed, as shown in fig. 4.5
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Figure 4.5. Learning curve example.

At the end of this training pipeline, some predictions on training, validation and test
images are made, just for a preview of the qualitative performance of the network.

Figure 4.6. Image prediction examples.

4.6 Results
The results of the training of the models are reported in this section.

4.6.1 UNet
For the Unet the used metric is the mean intersection over unit score (mIoU) and the
chosen loss is a binary cross entropy. According to the API shown in paragraph 4.5, all
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the parameters that are not reported on the table are set on the standard value. The
input shape is 224x320x3 for all the models. Adam is used as a solver.

Backbone Decoder
Filters

Encoder
Weights

Encoder
Freeze

Batch
Normal-
ization

Batch
Size

Epochs Callbacks IoU
Score

Vgg16 256,
128, 64,
32, 16

ImageNet True True 16 100 Early Stopping, Re-
duce LR on Plateau
(Factor=0.1, pa-
tience 5)

74.11%

Vgg16 512,
256,
128, 64,
32

ImageNet False True 32 50 Early Stopping, Re-
duce LR on Plateau
(Factor=0.1, pa-
tience 5)

62.96%

ResNet50 256,
128, 64,
32, 16

ImageNet True True 16 50 Early Stopping, Re-
duce LR on Plateau
(Factor=0.1, pa-
tience 5)

90.01%

ResNet50 256,
128, 64,
32, 16

ImageNet False True 16 50 Early Stopping, Re-
duce LR on Plateau
(Factor=0.1, pa-
tience 5)

87.46%

ResNet50 256,
128, 64,
32, 16

None False True 16 100 Early Stopping, Re-
duce LR on Plateau
(Factor=0.1, pa-
tience 5)

67.36%

ResNet34 256,
128, 64,
32, 16

ImageNet True True 16 50 Early Stopping, Re-
duce LR on Plateau
(Factor=0.1, pa-
tience 5)

90.73%

ResNet34 256,
128, 64,
32, 16

ImageNet False True 16 50 Early Stopping, Re-
duce LR on Plateau
(Factor=0.1, pa-
tience 5)

88.84%

ResNet34 256,
128, 64,
32, 16

None False True 16 100 Early Stopping, Re-
duce LR on Plateau
(Factor=0.1, pa-
tience 5)

68.84%

ResNet18 256,
128, 64,
32, 16

ImageNet True True 16 50 Early Stopping, Re-
duce LR on Plateau
(Factor=0.1, pa-
tience 5)

85.09%

ResNet18 256,
128, 64,
32, 16

ImageNet False True 16 50 Early Stopping, Re-
duce LR on Plateau
(Factor=0.1, pa-
tience 5)

79.12%

ResNet18 256,
128, 64,
32, 16

None False False 16 50 Early Stopping, Re-
duce LR on Plateau
(Factor=0.1, pa-
tience 5)

71.34%

Table 4.2. U-Net training results.
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As one can notice the best result is achieved by a ResNet34 backbone with the encoder
weight trained on the ImageNet and fixed during the fine-tuning. The stated findings are
quite similar to those obtained on Teso-Fz-Betoño et al. [2020a], with the Vgg16 backbone
performing much worse than the ResNet: in the article, Vgg achieved 68-76% accuracy,
whilst ResNet guaranteed more than 90 percent accuracy. The results are much worse
in cases 5,8,11, where the encoder weights are set to None (the transfer learning phase is
skipped), than in cases with the same condition where ImageNet is used for pre-training
(mIoU score more than 20% lower). Best hyperparameters configuration is highlighted in
yellow.

4.6.2 LinkNet
For the LinkNet the input shape is fixed on 224x320x3 and Adam is used as solver. As
well as the U-Net case, if a parameter in the table is not specified, it has to be considered
as set on the default value according to the API.

Backbone Decoder
Filters

Encoder
Weights

Encoder
Freeze

Batch
Normal-
ization

Batch
Size

Epochs Callbacks IoU
Score

Vgg16 256,
128, 64,
32, 16

ImageNet True True 16 50 Early Stopping, Re-
duce LR on Plateau
(Factor=0.1, pa-
tience 5)

71.34%

ResNet50 256,
128, 64,
32, 16

ImageNet True True 16 50 Early Stopping, Re-
duce LR on Plateau
(Factor=0.1, pa-
tience 5)

82.26%

ResNet34 256,
128, 64,
32, 16

ImageNet True True 16 50 Early Stopping, Re-
duce LR on Plateau
(Factor=0.1, pa-
tience 5)

83.13%

ResNet34 256,
128, 64,
32, 16

ImageNet False True 16 50 Early Stopping, Re-
duce LR on Plateau
(Factor=0.1, pa-
tience 10)

82.16%

Table 4.3. LinkNet training results.

In contrast to what was expected based on what was learnt in Chaurasia and Culurciello
[2017], LinkNet performance is worse than what was observed in Unet, while remaining
at a good level. This may be due to the fact that the U-Net structure fits a dataset like
this better than the LinkNet one. Moreover, it is plausible to believe that the LinkNet
hyperparameters configuration is not one of the best, but given the good results already
acquired with U-Net, the choice is to not spend too much time tuning that. Finally, it’s
important to remark that even in this case the ResNet behaves significantly better than
the Vgg, with more than 10% reached on the Jaccard score.

4.6.3 FPN
As well as in the U-Net and LinkNet cases the input shape is set to 224x320 and Adam
is still the used solver, but differently from the previous models, here it’s necessary to
specify the number of classes (set to 1) and the activation function to sigmoid. Every
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other parameter that is not specified in the table is fixed on the default value. Here the
results are sufficient, but not good enough to be comparable with the best got on U-Net
and here again it’s possible to verify how the ResNet is performing better.

Backbone Encoder
Weights

Encoder
Freeze

Batch Nor-
malization

Batch
Size

Epochs Callbacks IoU
Score

Vgg16 ImageNet False True 16 60 Early Stopping, Reduce
LR on Plateau (Fac-
tor=0.1, patience 10)

66.68%

ResNet50 ImageNet False True 16 80 Early Stopping, Reduce
LR on Plateau (Fac-
tor=0.1, patience 10)

79.27%

ResNet34 ImageNet False True 16 80 Early Stopping, Reduce
LR on Plateau (Fac-
tor=0.1, patience 10)

77.14%

ResNet34 ImageNet True True 16 80 Early Stopping, Reduce
LR on Plateau (Fac-
tor=0.1, patience 10)

78.60%

Table 4.4. FPN training results.

4.6.4 PSPNet
The last experimented architecture is represented by the Pyramid scene Parsing Network.
Although there are no specific cases of scene segmentation-based indoor navigation papers
in which this model is used (as shown in paragraph 3.3), according to the theory Zhao et al.
[2017], it can be considered a competitive option to achieve the desired performance. The
solver of the training is once again Adam, the number of classes is set to 1 and sigmoid is
put as the function of the last layer. A little difference from the other three architectures
can be noticed in the input size: if in in U-Net, LinkNet and FPN, it’s necessary to be
divisible by 32 (so 224x320 was the solution), for the PSPNet, it must be equal to 6 times
the downsample factor of the pyramid module. This last value is set to 4 for all the trained
models (other values, according to quick experimentations led to worse results), so training
images are resized to be divisible by 24, finally getting 240x336. Non-specified parameters
are on the default value. Pooling type is set to ‘max’ and the dropout coefficient is set to
0.05.

The line highlighted in yellow represents the best hyperparameters configuration for
the PSPNet but the best overall performance of all the trained models; the only one
comparable is represented by the 90.73% of the U-Net. From a quantitative point of view
the scores are very close, so they are both suitable to be the core of the segmentation
module, but as images 4.7 and 4.8 report, there are little differences that makes the PSP
module better form a qualitative point of view.

The PSP seems to be more suitable to segment images that constitute the base of
autonomous navigation, mainly because of the lack of little lateral stains that sometimes
the U-Net model produces.

Moreover, PSP behaves well even if the scenario is more complicated, i.e. cases of
walls and floor of the same color, particular light conditions and reflections, resulting in
more robustness. In other words, even if the achieved score is more or less the same, PSP
is characterized by errors (FP and FN) at the boundaries of the segmented floor area,
maintaining just two figures: the navigable area and the non-navigable area. By contrast,
U-Net predictions are more often affected by holes or stains that are not connected to the
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Backbone Encoder
Weights

Encoder
Freeze

Batch
Normalization

Batch
Size

Epochs Callbacks IoU
Score

Vgg16 ImageNet False True 16 100 Early Stopping, Reduce
LR on Plateau (Fac-
tor=0.1, patience 10)

69.12%

Vgg19 ImageNet False True 32 100 Early Stopping, Reduce
LR on Plateau (Fac-
tor=0.1, patience 10)

56.13%

ResNet18 ImageNet False True 16 100 Early Stopping, Reduce
LR on Plateau (Fac-
tor=0.1, patience 10)

83.81%

ResNet18 ImageNet True True 16 100 Early Stopping, Reduce
LR on Plateau (Fac-
tor=0.1, patience 10)

85.08%

ResNet18 None False True 16 60 Early Stopping, Reduce
LR on Plateau (Fac-
tor=0.1, patience 10)

51.12%

ResNet34 ImageNet False True 16 60 Early Stopping, Reduce
LR on Plateau (Fac-
tor=0.1, patience 10)

87.53%

ResNet34 ImageNet True True 16 100 Early Stopping, Reduce
LR on Plateau (Fac-
tor=0.1, patience 10)

91.26%

ResNet34 ImageNet False True 32 100 Early Stopping, Reduce
LR on Plateau (Fac-
tor=0.1, patience 10)

81.45%

ReNet34 None False True 16 100 Early Stopping, Reduce
LR on Plateau (Fac-
tor=0.1, patience 10)

51.58%

ResNet50 ImageNet True True 16 100 Early Stopping, Reduce
LR on Plateau (Fac-
tor=0.1, patience 10)

88.21%

ResNet50 ImageNet False True 16 100 Early Stopping, Reduce
LR on Plateau (Fac-
tor=0.1, patience 10)

85.09%

ResNet50 None True False 16 100 Early Stopping, Reduce
LR on Plateau (Fac-
tor=0.1, patience 10)

79.65%

Table 4.5. PSPNet training results..

Figure 4.7. U-Net and PSPNet inference comparison
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Figure 4.8. U-Net and PSPNet Learning Curve comparison

floor area, representing a bigger problem to handle with in a potential construction of a
navigation algorithm.
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Chapter 5

NAVIGATION

In chapter 4 about scene segmentation, a suitable and robust model is selected. The best
candidate resulted in a Pyramid Scene Parsing Network with a ResNet34 as backbone,
achieving more than 91% on the Jaccard metric. On the basis of this segmentation results
the last challenge rises: building a navigation algorithm that allows an indoor service robot
to navigate avoiding collisions, only on the base of the RGB segmented images taken by
a camera.

In this chapter the presentation of similar works is done, then the actual code used to
implement the image post processing and the traits of the final navigation algorithm are
presented. The most inspiring work in this sense is represented by Daniel Teso-Fz-Betoño,
Ekaitz Zulueta, Ander Sánchez-Chica, Unai Fernandez-Gamiz and Aitor Saenz-Aguirre
with “Semantic Segmentation to Develop an Indoor Navigation System for an Autonomous
Mobile Robot”. In this paper, after the building of a deep learning module similar to the
one implemented here, there is a 2 classes RGB mask of the scene for each image taken
real-time by the camera. The idea is using the pixels related to the floor class to estimate
the middle point for every i-th row of the image, applying a simple formula:

Middlei = Endlocation − Starlocation

2 + Starlocation

Figure 5.1. Middle path estimation.

This method produces good results when segmentation is performed correctly and
when the pixels of the navigable class are all part of a unique block Teso-Fz-Betoño et al.
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[2020b]. The drawback is the lack of robustness, which results clearly in cases where an
obstacle is placed in the middle of the path: it’s not possible to handle these scenarios
with the above formula and a situation like the one in image 5.2 is obtained.

Figure 5.2. Example of bad detection when an obstacle is placed in the middle of the path.

In this thesis, the idea is to start from what is presented in this paper, but with the
addition of other pieces in the image processing, in order to obtain a unique waypoint for
each segmented image that can potentially represent the partial goal of the navigation. In
a nutshell, what is described in detail in the next paragraphs, is a series of post-process
steps on the segmented image obtained in chapter 4: middle path detection, segments
identification, waypoint construction. Then on the base of the obtained waypoint, the
navigation command (with the use of ROS), in terms of linear velocity and steering angle
are calculated.

5.1 Post-Processing
In this paragraph all the functions defining the passages of the post processing are shown
and analyzed. Let’s consider image 5.3 as the output of the segmentation module as well
as the input of the post-processing pipeline. As one can notice, there is a very smooth
inference, with no stairs and a simple geometry.

Figure 5.3. Segmented Images.
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def lasty(seg_array,flow=10):

seg_array = np.around(seg_array, decimals=0)
y_lim = seg_array.shape[0]
x_lim = seg_array.shape[1]
last = y_lim-1
for y in range(y_lim-1,-1,-1):

cc = 0
for x in range(x_lim):

if seg_array[y][x] == 1 and x < x_lim-1:
cc = cc + 1

if cc >= flow:
last = y
break

return last

First function is only used to detect which is the last row where a floor (white) pixel is
present, starting from the bottom of the image. The only parameter here is the so-called
“flow”, that is a way to handle bad segmentations. Let’s consider an image just like the
one used as example, but with a little stair on the top right corner, due to a bad inference.
In this case it’s clear that, considering the last floor row, the one on the top right corner
should be an error. With the flow parameter, the lateral dimension of the stair is checked
and if it is less than the calibrated threshold, it is simply ignored. This a simple but
effective method, based on the experimental observations, which reports the (not usual)
segmentation errors to be little white stairs on random position of the images.

5.1.1 Middle-Point
def meanrow_definition(seg_array,flow=10,lasty=-1,span=2):

if flow < 2*span:
print("WARNING - meanrow_definition: flow must

be at least 2*span, problems could be present")

seg_array = np.around(seg_array, decimals=0)
y_lim = seg_array.shape[0]
x_lim = seg_array.shape[1]

for y in range(y_lim-1,lasty,-1):
cc = 0
start = 0
end = 0
black = True

for x in range(x_lim):
if seg_array[y][x] == 1 and x < x_lim-1:

cc = cc + 1
if cc == 1:

start = x
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black = False
elif seg_array[y][x] == 0 and cc >= flow:

end = x
break

elif seg_array[y][x] == 1 and cc >= flow and x == x_lim-1:
end = x
break

if black == False and start < end
and seg_array[y][round((end+start)/2)-span :
round((end+start)/2)+span].all() == 1 :
seg_array[y][round((end+start)/2)-span :
round((end+start)/2)+span] = 0.5

return seg_array

Meanrow_definition function is used to detect, for each row with floor pixels, the pixel
in the middle position. The inputs are the last row to consider, obtained with the first
function of the post-processing, flow and span. The last has only the visual utility to
paint a number of pixels on the raw equal to that value, while flow, similarly for what was
done with the last function, checks if a certain row of floor pixels is a good candidate to
apply the middle pixel detection function. This is particularly useful in case of stairs or
when a certain segmented frame has an obstacle in the middle, resulting in two or more
branches of white pixels. If a branch is too narrow (so the number of white pixels is less
than the tuned threshold), that branch is ignored and a larger one is considered. The
result is shown in figure 5.4.

Figure 5.4. Image1 with meanrow function applied.

At this point, what is carried out in Teso-Fz-Betoño et al. [2020b] is achieved, but as
previously discussed this can’t be a robust method to build a navigation algorithm on top:
it could be possible to let the robot moving, trying to follow the trajectory defined by the
line, but it would be very problematic in cases like the ones shown in images 5.5 and 5.6.
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Figure 5.5. Image2 with meanrow function applied.

Figure 5.6. Image3 with meanrow function applied.

5.1.2 Waypoints
The meanrow_definition function is used as the starting point for the selection of the
waypoints, according to the keypoints function.

def keypoints(ppimage, span=2, lasty=-1, verticalflow=5,
normalized=True, isarray=True):

if isarray==False:
ppimage = img_to_array(ppimage)/255.0

if normalized == False: ppimage = ppimage/255.0
y_lim = ppimage.shape[0]
x_lim = ppimage.shape[1]
upper = y_lim-1
down = y_lim-1
pointlist = []
for y in range(y_lim-1,lasty-1,-1):

for x in range(x_lim):
if ppimage[y][x] == 0.5:

#print(y)
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#print(x)
if (ppimage[y][x:x+2*span-1] == ppimage[y-1][x:x+2*span-1]).any():

#print("corr")
upper = y-1

else:
#print("3")
if down-upper >= verticalflow:

pointlist.append(round(down/2+upper/2))
for x in range(x_lim):

if ppimage[round(down/2+upper/2)][x] == 0.5:
pointlist.append(x+span-1)
down = upper
break

break
return pointlist

The aim of this step is the production of a list of points on the segmented image
representing the intermediate goals that the robot should follow to carry out a collision
free motion. The output of the meanrow_definition is put as input of the keypoints
function with the objective of recognizing how many different segments are present in the
image. For example, in image 5.4 there is a continuous single segment, while in image 5.5
four pieces can be recognized. This last value can change in the same image, according
to the span parameter of the meanrow_definition: a thicker line has less possibilities to
produce different pieces (and different keypoints) with respect to a slim one.

With a control on pixels, these line bits are converted into key-points, whose x and
y coordinates produce a list used as output. Function parameters are the images with
the processed line; the last value discussed previously; the span that defines how big
is the range in which the continuity of line pixels between two rows of the image is
checked. It is simply expressed in pixels and it’s recommended to be consistent with the
meanrow_definition span parameter. Verticalflow defines how many consecutive pixels
must be found at minimum, in order to consider valid that piece of line to be converted
into a waypoint. Finally there is a function with the only objective to make visible the
obtained points.

def cross(seg_array, pointlist, thickness=2):

y_cords = []
x_cords = []
for i in range(len(pointlist)):

if i%2==0: y_cords.append(pointlist[i])
else: x_cords.append(pointlist[i])

for i in range(len(y_cords)):
x = x_cords[i]
y = y_cords[i]
seg_array[y][x-thickness-1:x+thickness] = 0.5
for i in range(thickness+1):

seg_array[y-round(thickness/2)+i][x] = 0.5

return seg_array
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Figure 5.7. Waypoints calculation.

5.2 ROS Integration
This point of the development process consists in building the ROS app that runs on the
Jetson hardware and make the robot able to carry out its function. The used framework is
ROS2 with two different nodes: the first totally dedicated to image reading, segmentation
and processing and the second where the motion command is calculated on the base of
the post-processed data output of the first node.

5.2.1 Scene Segmentation Node
In this node, by using OpenCV library, the image is read using the camera sensor mounted
on the robot, then with the PSP network previously trained, inference is carried out. The
last step consists in the cascade of post-processing functions described in paragraph 5.1
with the final goal to obtain a list of waypoints. This is the information published by the
node. In the code presented below, only the main class is reported. There are just some
differences from what is already shown, in particular in the first lines that are dedicated
to getting the images by camera using the OpenCV API. A 10ms timer period is set,
defining the rate of acquisition. It’s important to notice that based on the performance of
the camera, this rate can be reduced by the technological limits of the sensor. In the case
of the project a simple webcam is used, guaranteeing 30 images captured per second.

class SceneSegmentation(Node):

def __init__(self):
super().__init__("Scene_Segmentation")
timer_period = 0.01
self.timer = self.create_timer(timer_period, self.timer_callback)
self.cap = cv2.VideoCapture(0)
self.br = CvBridge()
self.waypoint_publisher = self.create_publisher(

Int16,
’/waypoint’,
10)

def timer_callback(self):
ret, frame = self.cap.read()

cv2.imshow("Camera Capturing", frame)
current_image = cv2.resize(frame, (img_width, img_height))
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current_image = np.array(current_image)
current_image = current_image/255.0
current_image = np.expand_dims(current_image, axis=0)
pred_misc = model.predict(current_image, verbose=1)
pred_misc = np.around(pred_misc[0])

cv2.imshow("Environment Segmentation", pred_misc*255.0)

last = lasty(pred_misc, flow=40)
seg_p = meanrow_definition(pred_misc, flow=40,

lasty=last, span=6)
pointlist = keypoints(ppimage=seg_p, span=6, lasty=last,

isarray=True)
print(pointlist)

waypoint_msg = Int16()
if len(pointlist)>0:

waypoint_msg.data = pointlist[len(pointlist)-1]
else: waypoint_msg.data = 0

self.waypoint_publisher.publish(waypoint_msg)
cv2.waitKey(1)

5.2.2 Navigation Node
Here the navigation node is analyzed. A list of waypoints x and y pixels is received by
the current node, operating as a subscriber of the segmentation one.

The starting idea consists in building a series of instructions that force the robot to
sequentially reach the waypoints reported in the list to carry out its navigation. Some
drawbacks feature the expressed strategy, in particular it’s important to remind that the
only present information is a list of pixels on a segmentation mask, without any kind of
distance knowledge, so it would be necessary to define multiple reference systems (global
and attached to the robot), in order to check the correct development of the motion.
Moreover, until the robot reaches his final goal, it is virtually blind, ignoring eventual
changes of the environment.

To handle this set of disadvantages, motion control strategy is changed to be logically
simple, reliable and easier to implement: from the set of waypoints only one of them is
extracted to be the actual goal. It expresses the hypothesis that the position of the robot
where the frame is acquired and processed is the central bottom part of the image (for a
240x336 mask, the starting robot position is thought to be in y = 240, x=336/2 position).
Starting from this information, the x coordinate of the pixel goal is used to calculate the
steering angle of the robot, through a proportional control.

• Xr: actual x coordinate of the robot
• Xg: actual x coordinate of the goal pixel
• Y = Kp*(Xg-Xr)

Linear velocity is set to be constant. The proportional coefficient is calibrated in real-
world tests to allow the robot to steer correctly and make the yaw rate consistent with
the linear motion rate, set to 0.1 m/s. The best waypoint on the list is considered to
be always the last one found, because it is the one that contains all the most complete
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information about the scene.
It’s salient to highlight that with this approach, there is no time of blindness for the

sensor: camera acquires the scene, the image is segmented, processed and then published
for the navigation node that calculates the motion command. As soon as the pipeline
allows, the next segmentation of the scene and the next navigation command are obtained,
modifying the motion of the robot in real-time, without waiting for it to actually be on
the goal point.

A last piece of code is added for the navigation algorithm, specifying that in cases of
void waypoints lists the linear velocity is decreased to be 0. In other words, this means
that if the robot is too close to an obstacle, it stops the foreword motion and steers only.

lin_vel = 0.1
Kp = 0.005
lin_null = 0.0
class TurtlebotController(Node):

def __init__(self):
super().__init__("vehicle_controller")

self.turtlebot_controller_publisher =
self.create_publisher(Twist, "/cmd_vel", 10)

self.waypoint_subscriber =
self.create_subscription(Int16,"/waypoint,
self.turtlebot_controller, 10)

def turtlebot_controller(self, msg):
waypoint_pixel = msg.data
if waypoint_pixel>0:

center_pixel = 168
yaw_rate = -Kp*(waypoint_pixel-center_pixel)
msg = Twist()
msg.linear.x = lin_vel
msg.angular.z = yaw_rate

else:
msg = Twist()
msg.linear.x = lin_null
yaw_rate = 0.5
msg.angular.z = yaw_rate

print(yaw_rate)
print(msg.linear.x)
self.turtlebot_controller_publisher.publish(msg)

5.3 Implementation
The final stage of the development process is related to the definition and implementation
of the ROS architecture, examined in the previous chapter. What is still missing at
this stage of the work is the real-world implementation, parameters calibration and some
practical tries to observe how good the entire pipeline works. In paragraph 3.1 the available
hardware has been discussed in detail, so in this paragraph there is a description of how
the robot is assembled to carry out its collision free motion.
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Figure 5.8. Robot front view.

Figure 5.9. Robot lateral view.

Turtlebot3 Waffle with Raspberry Pi represents the moving part of the structure and on
the top level of its chassis the Jetson module is fixed. Here is where the ROS2 application
(developed on the workstation) runs, performing real-time segmentation and generation
of navigation commands for the robot. By means of the teleop pre-defined node of ROS,
the values of linear velocity and yaw rate are transmitted to the actuators (Turtlebot3
wheels). Finally, the perception sensor, represented by an RGB webcam, is fixed on the
top front central part of the structure.

The position of the camera in terms of height and angle with respect to the ground
is crucial. To get the best results from segmentation it’s needed to make the acquired
real-time images to have the point of view as similar as possible to the one of the training
data.

The structure is completed with the battery for the robot and the Xavier. Moreover, a
batch of cables is present to connect the Jetson module to the camera and to the electronic
module of the robot.

At this point, as previously described, some parameters in the segmentation flow, like
the span and the verticalflow, are tuned to obtain the best results from segmentation
of a real-time real-world scenario. Furthermore, the proportional coefficient Kp of the
navigation node is tuned to make the robot able to steer with a rate consistent with the

81



NAVIGATION

Figure 5.10. Robot during navigation.

set linear velocity. The best value for the coefficient with a 0.1m/s linear velocity is 0.005.

5.4 Final Test
The complete pipeline is able to produce a navigation command for the robot (i.e. linear
velocity and yaw rate) every 200ms, with approximately 50 spent to produce the segmented
image and the rest for the post-processing operations and navigation commands definition.
With a 5Hz rate the expectations are to have a robot that is comfortable to navigate in
static scenarios, but also that behaves properly with scenes changing with a period lower
than 200ms. Both static and dynamic environment will be used in the testing phase.

A series of tests is carried out in order to verify the correct behavior of the robot in
an indoor environment. Test sessions take place in two main environments: a corridor
and an office. The difficulty of the experiments is changed by modifying light conditions,
presence of obstacles, as well as the number and the shape of them.

First test is carried out in a simple corridor scenario, with no obstacles at all and
artificial lights. Floor and walls surfaces don’t reflect light in a significant way and artificial
illumination is present. The robot is positioned in the middle part of the corridor, so what
is expected is it to go simply straight without modifying the trajectory. In the first try,
the Turtlebot behaves as expected, maintaining the position in the center of the corridor
for all the duration of the test.

Tests with the same conditions are then repeated, reporting a smooth behavior, with
sometimes some little changes of trajectory, due to a small variability in the results of
segmentation: this does not represent a problem, because the algorithm forces the robot
to correct the trajectory with the successive results of segmentations. At the end of the
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tries with this setup of the environment what is noticed is a 100% ratio of success over
tries, with the robot neither hitting obstacles (represented only by walls) or even going
close.

Second test is made in order to create harder conditions, but without going too deep
yet. Conditions are the same as the previous setup, with the only difference of putting
a box in the middle path of the corridor. The Turtlebot is able to avoid the obstacle,
then proceeds its motion going towards the left wall and then adjusts its trajectory to be
parallel to the barrier and continues the motions without other relevant changes. Test is
repeated with different illumination conditions, turning off the artificial lights and letting
the natural light in morning hours to be the only source. No relevant changes on the
behavior are reported.

At this point, in order to complicate the scenario, the intention is to use a set of
boxes to increase the number of obstacles and this is achieved using the same box and
changing its position real-time during the motion of the robot. Even if in this case a
dynamic situation is created, the following position of the box is chosen in order to make
the scenario very similar to a static one, considering that the vertical distance between
the box position is 3 meters and the robot proceeds with a velocity of 0.1m/s.

Figure 5.11. Test schemes.

In the third test the results are good again on the two replications carried out. The
robot avoids the first obstacle in the same way of test 2 and in a similar way is able to
not hit the second box on its trajectory, then continues its motion towards the right wall
and when the distance becomes too little, the trajectory is adjusted in order to avoid it.

Last test in the corridor scenario results to be the one with the worst conditions. This
time the box is positioned in the middle of the corridor for all the duration of the try and
a person represents the successive obstacles. In this new scenario the different conditions
are mainly two: first there is a human shape to segment, that is more complicated than
a box with a rectangular section; second the person moves in the corridor, defining a
dynamic scenario, increasing the probability of the robot to get confused.

The qualitative results of the test are the following: the robot is able to avoid the box
and the person, reporting no big issues in recognizing it as an obstacle, and then, with
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the human subject moving and representing another impediment, Turtlebot continues
behaving correctly. The fault arises when the person moves into the third position, that
is very close to the second one: the new command is not obtained fast enough to adjust
the trajectory correctly.

Figure 5.12. AMR test structure.

Test ID Obstacles-Boxes Obstacles-People Outcome
1 None None Successful
2 1 None Successful
3 2 None Successful
4 1 3 Collision with the last person

Table 5.1. Corridor test recap
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Chapter 6

CONCLUSION

The purpose of this thesis was the implementation of a solution for robot navigation in
indoor environment, using computer vision, and deep learning for image understanding.

The proposed solution consists in two sections: the part related to find and train a
suitable model for scene segmentation and the building of the navigation algorithm. For
the computer vision part, a research about a proper model was made, with a phase of
training of multiple models to get the a good enough network for the project needs. The
final choice was on a PSP network, with the backbone (ResNet-34) pre-trained on the
ImageNet dataset, upon which a fine-tuning is carried out, with a specific dataset for
binary RGB indoor segmentation. For the creation of the navigation algorithm, a series
of function which are directly related to the pixels of the segmented images are created
with the goal to obtain a waypoint, in terms of pixel coordinates on the binary mask. A
proportional controller based on the obtained coordinates is used to obtain the motion
commands of the robot. With the use of ROS and a Jetson AGX Xavier Hardware,
the algorithm has been tested on a Turtlebot3, with the results that testify that it’s
possible to achieve indoor navigation on the base of binary RGB scene segmentation. A
future improvements for the algorithm can be the add of an actual goal to reach: in this
configuration, the mobile robot navigates with the ability to carry out a collision free
motion, but without a real point to achieve in the space, continuing its activity until
stopped via software. Also, a point on which it’s possible to get better results is the
frequency with which the robot gets commands, for now at 5Hz. This improvement could
be achieved working on a strategy a further optimization of the post processing code,
reducing the number of operation and the pixels to be directly analyzed.
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