POLITECNICO DI TORINO

MASTER’s Degree in MECHATRONIC
ENGINEERING

MASTER’s Degree Thesis

Data augmentation for neural network
generalization optimization for indoor
localization using infrared sensors

Supervisors Candidate

Prof. MIHAI TEODOR LAZARESCU MUNISKHON ABDURASHITOVA
Prof. LUCIANO LAVAGNO

APRIL 2022

Summary

Data augmentation is a technique for increasing the size of a training dataset
artificially by producing modified versions of the original dataset. The ability of
Neural Network models to generalize what they have learned to new data can be
improved by training neural network models on more data, and the augmentation
techniques can create variations of the datasets that can improve the ability of
the fit models to generalize what they have learned to new unseen data. In this
work, we will look at improving model inference generalization robustness by
employing data augmentation techniques when training neural networks. There are
a variety of strategies for generating augmented data depending on the problem
at hand. The most widely used methods are primarily based on computer vision.
In our situation, we are looking into human indoor localization in a constrained
environment. Experimental data is time-series data taken with a low-resolution
infrared(IR) camera (4x4 pixels). Well-known augmentation methodologies like
Cropping, Flipping, Padding, Rotation, or Scaling may not work well on this
occasion. We refer to systematic errors present both in instruments and in the
experimental environment, such as ambient temperature, changing illuminations,
and the use of electronic gadgets that produce heat. Different sorts of noise can be
used to simulate all of these occurrences, which will be our strategy for generating
augmented data. Our experiment explores Gaussian white noise and pink noise
models at different amounts to improve the model inference generalization ability.
Firstly, the model baseline obtained without augmentation techniques is generated
and compared against the model results obtained with augmented data. Then
we calculate considerable portions of IR sensor signal variation between a human
detection and human absence as a starting noise amount for augmentation. The
model is trained on one set and tested on three other sets. The generalization
quality is calculated as the sum of all sets’ mean square errors(MSE). Based on
the experiment results, noise amplitude is modulated to improve generalization
performance. All sets show various characteristics in the noise amplitude under
investigation, with one showing a significant improvement and the others showing
no improvement. When we add up MSE measurements, big gains in one or two sets
may outweigh losses in other sets, making it difficult to determine which model

11

generalization is better. After obtaining the overall sum of MSEs, we extract the
areas with decreased MSE sum values relative to the baseline to avoid "misleading"
points. We should examine the extracted areas and conclude that the model has
improved generalization for all sets if at least three sets show improvements in
these intervals. The white noise amplitude ranges between [0; 0.6], consisting of
10 percent of the signal variation between person presence and person absence is
investigated to check the model inference generalization. After analyzing the results,
it is found that the model’s overall behavior is best in the range [0; 0.3] showing
improvements of at least three sets. For pink noise, reasonable amplitudes are
higher than white noise because it represents small frequencies for high amplitudes
and higher frequencies for small noise levels. Explored amplitude range is between
[0; 3], giving the most promising noise range of [0;1], improving the overall model
generalization. Finally, the combination of two noises is investigated simultaneously,
giving the best model inference generalization in the white noise amplitude range
[0; 0.2] and pink noise amplitude range [0; 1].

II1

Acknowledgements

ACKNOWLEDGMENTS

v

Table of Contents

List of Tables VII
List of Figures VIII
Acronyms XI
1 Introduction 1
1.1 Neural network training 1
1.2 Data augmentation for the improvement of neural networks perfor-
MANICE .+« v v v e e e e e e e e e e e 2
2 Neural network architectures and data augmentation techniques 5
2.1 Neural network architectures L. D
2.2 Augmented data generation 10
2.3 NN training with augmented data 12
3 Experimental results 21
3.1 Augmentation for optimal generalization 21
3.2 White noise augmentation generalization 22
3.3 Pink noise augmentation generalization 28
3.4 Combined noise augmentation generalization 31
4 Conclusion 38
Bibliography 40

VI

List of Tables

2.1

2.2

3.1

3.2

3.3

Examples of activation functions, operating either element-wise or
vector-wise, depending on the function
y is the output of the network, N is the batch size multiplied by the
number of outputs (e.g. pixels), C' is the number of classes and 7 is
the correct output. oo

Model training results at different white noise amplitudes are com-
pared to the baseline. For each noise parameter corresponding MSE
metrics for sets A, B, C, D are shown.
Result of the model trainings at different white noise amplitudes.
For each noise parameter corresponding MSE metrics for sets A, B,
C, D and best training are shown.
Result of the model trainings at different pink noise amplitudes. For
each noise parameter corresponding MSE metrics for sets A, B, C,
D and best training are shown.

VII

List of Figures

1.1

1.2

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10

2.11
2.12

3.1

3.2

3.3

Noise parameter optimization flow for data augmentation based on

the NN generalization capability. 3
Flow of the model generalization capability inspection. 4
The feed forward neural networks general structure [1]. 6
The residual networks general structure [1].. 6
The recurrent neural networks general structure [1]. 7
The long short term memory neural networks general structure [1]. 8
General structure of the echo state networks [1]. 8
The convolutional neural networks general structure [1]. 9
General structure of the generative adversarial networks [1]. 9
General structure of the auto encoder [1]. 10
General structure of the variational auto encoder [1]. 10
IR sensor 1 pixel output signal variation collected at 5 Hz for 18

minutes. The horizontal axis represents original training data set
samples. The vertical axis represents the corresponding temperature

variation detected by a single pixel. 12
Plot of the experimental CNN model layers as a graph. 14
Neural net internal structure change after applying dropout [5]. . . 15

Model output MSE values(red line) obtained by augmentation with
white noise amplitude range [0; 0.6], for data sets A, B, C and
D. Blue line represents the model MSE baseline obtained without
augmented data.o 23
The model overall inference generalization obtained by white noise
augmentation.o Lo Lo 24
The second experiment. Model output MSE values(red line) with
augmented data generated in white noise amplitude range [0; 0.6],
for data sets A, B, C and D. Blue line represents the model MSE
baseline obtained without augmented data. 26

VIII

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

The model overall inference generalization obtained by white noise
augmentation (the second experiment).
Model output MSE values(red line) with augmented data generated
in pink noise amplitude range [0; 3], for data sets A, B, C and
D. Blue line represents the model MSE baseline obtained without
augmented data. oL
The model overall inference generalization obtained by pink noise
augmentation. L
Model MSE value(obtained by the combination of white and pink
noise amplitudes) compared to the baseline.
Model MSE value(obtained by the combination of white and pink
noise amplitudes) compared to the baseline.
Comparison of the model overall generalization(obtained by the
combination of white and pink noise amplitudes) with the baseline.
Flat surface represents overall baseline.
Inverted representation of the model overall MSE sum to analyze
the areas with improved generalization.
Comparison of the model overall generalization with the baseline.

IX

34

37

Acronyms

Al

artificial intelligence
NN

neural networks
IR

infrared
ANN

artificial neural network
RNN

recurrent neural network
NLP

natural language processing
LSTM

long short-term memory network
CNN

convolutional neural network
MSE

mean square error
VAE

variational autoencoder

XI

GAN

generative adversarial network

XII

Chapter 1

Introduction

1.1 Neural network training

Modern technology has advanced so far in our innovative world that we are all
connected to artificial intelligence in many aspects of our life. Nowadays, artificial
intelligence and machine learning are prevalent and in-demand topics among
many scientists, researchers, and analysts. It is frequently debated among people
in many other spheres like business, medicine, society, and industry. Creating
intelligent systems or computers that can learn and train themselves, not requiring
explicit programming or human interaction, is the main goal in this field. Systems
deploy different machine learning techniques based on consideration and conscious
reasoning on the problem, available data type, and size.

One of the methods used in machine learning, which describes data using the
interconnection of neurons, is Neural Networks (NN). Each neuron receives a signal,
analyses it, and then sends signals to other neurons it is connected to. Both the
inputs and outputs are provided during training. The network processes the input
data, generates output data, and compares its outputs to the desired outputs.
Errors between desired and generated outputs are subsequently propagated back
through the system, causing the weights that regulate the network to be adjusted.
As the weights are gradually changed, this process repeats again.

The “training set” is the set of data used for the NN training. The same set
of data is processed numerous times throughout the training of a network as the
connection weights are improved, reducing the inference errors. Low training errors
do not guarantee the quality of the NN model because the model must generalize
well for new data sets, never seen by the model.

Based on the evolution of the error during training (training loss) and during
validation (validation loss), the NN model can be overfitting or underfitting, both
leading to poor generalization quality. Overfitting occurs when a NN model fails to

1

Introduction

fit effectively on previously unseen data. Underfitting behavior represents a model
that can neither model the training dataset nor generalize to the new dataset.

The NN generalization capacity is mainly determined by the network’s system
complexity and training. Application of regularization techniques like dropout,
transfer learning, and batch normalization can overcome poor generalization of the
model.

Another way to improve the model performance is by improving input data
quality by employing augmentation techniques because insufficient input data during
the “training” phase does not allow the model to learn adequately. Many different
methods exist to generate augmented data based on the problem under consideration.
Most popular techniques are mainly based on image recognition. In our case, we
are exploring human indoor localization in a restricted area. Experimental data is
time-series data collected by means of a very low resolution (4 x4 pixel) infrared
camera. In this scenario, the changes in the environment like ambient temperature,
different illuminations, use of electronic devices which produce heat are systematic
factors affecting collected experimental data. All these phenomena can be modeled
by different types of noise, which will be our method to generate augmented data.
We will discover appropriate noise levels by producing augmented data to increase
input data size, which in turn improves model generalization.

1.2 Data augmentation for the improvement of
neural networks performance

Data augmentation techniques artificially generate different versions of a real
dataset to increase its size. Many practices have shown an increase in the accuracy
of machine learning models after applying them. Although data augmentation can
be utilized in various fields, it is most typically used in computer vision. According
to an experiment, a deep learning model after image augmentation performs better
in training loss & accuracy and validation loss & accuracy than a deep learning
model without augmentation for the image classification task.

The following are some of the most frequent image data augmentation tech-
niques: Cropping, Flipping, Padding, Rotation, Translation, Affine transformation,
Scaling, Brightness, Contrast, Saturation, Color enhancement. Another technique
of generating synthetic data is noise. Augmented sets are generated by adding dif-
ferent amounts of noise to the original data.

A common type of noise is white noise. It is a stochastic signal with the same
intensity at all frequencies, resulting in a constant power spectral density. A white
noise signal samples can be time-ordered or structured in one or more spatial
dimensions.

Another type of noise that can be applied to our problem is the pink noise, which

2

Introduction

Model flow diagram

Noise parametersl Augmented sets |
Convolutional
Neural Tune Noise
Networks Parameters

—>
‘ Min validation
No improvement

Data
Augmentation

error

|

Best Model
> Inference
Generalization

—

+ Improvement

Inference

Figure 1.1: Noise parameter optimization flow for data augmentation based on
the NN generalization capability.

emulates the long-term drifts in the system. It has amplitude at high frequencies,
and increasing as the frequency decreases.

As shown in Figure 1.1, we start with four different sets of experimental data
collected in various conditions like different ambient temperatures, walking at a
different speed, and in different environments. The NN model is trained on one set
and tested on the other three sets. Since the conditions for collecting the data are
constrained in terms of time, the training data size is small.

We increase training data size by generating augmented sets with the addition of
noise of different parameters. The purpose is to obtain higher generalization quality
of the model because the same model is tested on three other sets. Noise parameters
are tuned based on the model generalization capability, until the best one is found.
All sets show various characteristics in the noise amplitude under investigation, with
one showing a large improvement and the others showing no improvement. When
we add up MSE measurements, big gains in one or two sets may outweigh losses in
other sets, making it difficult to determine which model generalization is better.
After obtaining the overall sum of MSEs, we extract the areas with decreased MSE
sum values relative to the baseline to avoid "misleading" points. We should examine
the extracted areas for each set separately. We can conclude that the model has
improved generalization for all sets if at least three sets show improvements in these
intervals. Assume that fewer than three sets demonstrate significant improvements

3

Introduction

l Yes

¥
¥
—

Figure 1.2: Flow of the model generalization capability inspection.

over the dismal outcomes of other sets. These noise intervals aren’t deemed a
noise range with greater generalization quality in that scenario. Considering this
phenomenon we perform one more checking condition, that is described in Figure
1.2, to clarify the actual noise amounts giving better inference generalization.

Chapter 2

Neural network
architectures and data
augmentation techniques

2.1 Neural network architectures

An Artificial Neural Network (ANN) is a data processing paradigm modeled after
the biological human brain. ANNs, like human brain, learn by doing. An ANN is
tuned for a specific purpose through a learning process, such as pattern recognition
or data classification. Although there are numerous neural network architectures, we
discuss essential ones in this text that are as follows: feed-forward neural networks,
recurrent neural networks, convolutional neural networks and long short term
memory neural networks.

The feed-forward network is made up of perceptrons with three different types
of layers: input layers, hidden layers, and output layers as shown in Figure 2.1.
The signal from the preceding layer is multiplied by a weight, added to a bias, and
sent via an activation function during each connection. Backpropagation is used in
feed-forward networks to iteratively adjust the parameters until they achieve the
desired performance.

The vanishing gradient problem, which occurs when networks are too long
for valuable information to be backpropagated across the network, is one issue
with deep feed-forward neural networks. The signal that updates the parameters
gradually fades as it passes through the network until the front weights of the
network are not altered or used. A Residual Network (shown in Figure 2.2) uses
skip connections to propagate signals across a ‘jumped’ layer to solve this problem.
By using less prone connections to vanishing gradients, the problem of disappearing

5

Neural network architectures and data augmentation techniques

W = <7

N7 N ftfwv
i Yo <X

‘ Hidden cell LER ;}},{:‘f 4\

X XN /’
‘ Output cell //\\ //\y

Figure 2.1: The feed forward neural networks general structure [1].

Input cell

Input cell

Figure 2.2: The residual networks general structure [1].

gradients is reduced. As the network learns the feature space, it learns to recover
skipped layers over time, but it is more efficient in training because it is less subject
to vanishing gradients and needs to explore less feature space.

A recurrent neural network(RNN) is a specific network with loops that recurs over
themselves, hence the name “recurrent.” RNNs use reasoning from previous training
to make better, more educated judgements about upcoming events since they allow
knowledge to be stored in the network. It accomplishes this by using past forecasts
as ‘context cues’. It is commonly used for ordinal or temporal problems, such as
language translation, natural language processing (NLP), speech recognition, and
image captioning; they are incorporated into popular applications such as Siri, voice
search, and Google Translate. Like feedforward and convolutional neural networks,
recurrent neural networks utilize training data to learn. They are distinguished
by their “memory” as they take information from prior inputs to influence the
current input and output. While traditional deep neural networks assume that
inputs and outputs are independent of each other, the output of recurrent neural
networks depend on the prior elements within the sequence. While future events
would also be helpful in determining the output of a given sequence, unidirectional
recurrent neural networks cannot account for these events in their predictions [2].
In Figure 2.3, we can see the general structure of this NN architecture.

6

Neural network architectures and data augmentation techniques

Input cell

Recurrent cell

Hidden cell

Output cell

[‘Context signal’

Figure 2.3: The recurrent neural networks general structure [1].

Recurrent neural networks (RNN) have a relatively narrow range of contextual
information in practice. As a particular input is cycled around the network’s
connections, its influence (backpropagated error) on the hidden layer (and hence on
the network’s output) either explodes exponentially or decays to zero. A Long Short-
Term Memory Network, or LSTM, is the answer to this vanishing gradient problem.
This RNN architecture is tailored to solve the vanishing gradient problem by
incorporating memory blocks into the topology. These blocks are similar to computer
memory chips. They each contain many recurrently connected memory cells and
three gates (input, output, and forget, equivalents of write, read, and reset). Because
the network can only communicate with cells through each gate, the gates learn to
open and close wisely to avoid exploding or vanishing gradients while simultaneously
propagating important information via “constant error carousels” and rejecting
useless memory content. Where standard RNNs fail to learn the presence of time lags
larger than five to ten time steps between input events and target signals, LSTM,
with general structure described as in Figure 2.4, is not affected and can learn to
connect time lags even 1,000 time steps by enforcing a useful constant error flow [1].

A recurrent neural network with a sparsely connected hidden layer is called an
echo state network (typically, a one-percent connectivity). The connectivity and
weights of neurons are given at random, with no regard for layer or neuron differences
(skip connections). The network learns the weights of output neurons such that
it can make and reproduce specified temporal patterns. The idea for this network
stems from the fact that, while being nonlinear, the synapse connections are the only
weights that change during training, and so the error function can be differentiated

7

Neural network architectures and data augmentation techniques

Input cell
Memory cell % %
' Output cell

Figure 2.4: The long short term memory neural networks general structure [1].

Input cell M
Recurrent cell % ,
. Output cell

Figure 2.5: General structure of the echo state networks [1].

into a linear system. We can see in Figure 2.5 the structure of this network type.

Image processing is one of the popular practices in machine learning problems.
Images have very high dimensionality and size. Training a standard feed-forward
network to recognize them would necessitate hundreds of thousands of input
neurons, which, aside from being prohibitively expensive computationally, can lead
to a slew of issues related to the curse of dimensionality in neural networks. The
Convolutional Neural Network (CNN) solves this problem by using convolutional
and pooling layers to reduce an image dimensionality. Convolutional layers can
highlight crucial areas of an image and pass each of them along because they
are trainable but have fewer parameters than a standard hidden layer. The last
few layers of a CNN are usually hidden layers that process the condensed picture
information. Figure 2.6 describes the general structure of the CNN.

A Generative Adversarial Network (GAN) is a specialized sort of network that
is made up of two networks: a discriminator and a generator. It is used to produce
graphics. The discriminator job is to tell whether an image came from the dataset
or was created by the generator. The generator job is to create convincing images
that the discriminator cannot tell whether they are real or not. These two enemies
compete over time, with rigorous regulation. Each one is driving to succeed in
improving the other. Consequently, we will have a well-trained generator that
can produce a realistic-looking image. The discriminator is a convolutional neural
network to increase its accuracy in distinguishing real /fake images. At the same
time, the generator is a deconvolutional neural network to reduce the discriminator

8

Neural network architectures and data augmentation techniques

Input cell

Convolution or
pooling cell

‘ Hidden cell
‘ Output cell

Figure 2.6: The convolutional neural networks general structure [1].

Noise input cell

Convolution or
pooling cell

. Output cell

Figure 2.7: General structure of the generative adversarial networks [1].

performance.

An autoencoder basic concept is to take in high-dimensional input, compress it
into highly informative and low-dimensional data, and then project the compressed
data onto a new space. Dimensionality reduction, picture compression, denoising
data, feature extraction, image synthesis, and recommendation systems are just
a few autoencoder uses. It can be used as an unsupervised or supervised method,
and it can provide a lot of information about the data. Convolutional layers can be
used to replace hidden cells while processing photos as described in Figure 2.8.

A variational autoencoder (VAE) learns the probability distribution parameters
representing the data. In contrast, an autoencoder learns a compressed representa-
tion of an input, which could be images or text sequences, for example, by com-
pressing the input and then decompressing it to match the original input. Rather
than just learning a function to describe the data, it acquires a more thorough and
nuanced understanding of the data by sampling from the distribution and creating
fresh input data samples. In this way, it is similar to a GAN in that it is entirely

9

Neural network architectures and data augmentation techniques

Input cell

‘ Hidden cell
. Output cell

‘Compressed’
Latent space

T ' ' T
Encoder Decoder

Figure 2.8: General structure of the auto encoder [1].

1

Input cell 4\\‘¢ \ H W/
(<\Q
Probabilistic ‘ “ “'W
hidden cell ‘ “ \"’
X

Output cell ‘//i} /'\ ‘\ /,\‘\\{

Compressed
Latent space

T ' ' T

Encoder Decoder

Figure 2.9: General structure of the variational auto encoder [1].

generative. Using a radial basis function, a VAE employs a probabilistic hidden
cell that calculates the difference between the test case and the cell mean.

2.2 Augmented data generation

Data augmentation refers to a set of strategies for creating new training samples
from existing ones by introducing random variations and disturbances, ensuring
that the data is not destroyed. Our purpose is to boost the model generalizability
using data augmentation. We are considering two types of noise: white noise and
pink noise. First, we discuss the generation of augmented sets with the addition of
Gaussian white noise to original data. We are exploring human indoor localization
in a restricted area because it is trendy in the fields like energy management, health
monitoring, and security. The purpose is to explore cheap but efficient techniques
for indoor localization because for outdoors person tracking, there exists GPS
technology that can quickly determine a person location through the wearable

10

Neural network architectures and data augmentation techniques

tag or cell phone. At home or inside a room, a person is not always carrying a
phone; that is why we should search approaches for tagless localization. Four sets
of experimental data are collected in a 3x3 meter room for a short period. A 4x4
pixel Omron D6T-441-06 thermopile infrared sensor is installed on the ceiling of a
room, and the person reference location is collected with an ultrasound-based tag
of the Marvelmind Starter Set HW v4.9 [3]. Each tuple of experimental data has
18 elements: 16 pixels of the infrared sensor (IR) plus the X and Y coordinates of
the person representing the label.

The first set of experimental data is used for the model training in a 60/20,/20
ratio representing training/validation/test sets. The other three sets are used only
for inference because our purpose is to improve the model generalization, which
refers to model performance for unseen data. Since the amount of training data
is small, we generate synthetic data by adding Gaussian white noise. Noise has a
normal distribution with zero mean and finite variance

1 _
f(x)zo_\/%e

Function f(z) is the probability density, o is the standard deviation, p is the mean.
Mean determines how far the sample average of the data is expected to differ from
the actual mean, whereas standard deviation assesses the variability (or dispersion)
between individual data values and the mean. We consider nonzero variance, and
zero mean to describe white noise parameters. Since the collected data is time-series
data, we should keep the order unchanged. To combine original and augmented
sets, we refer to each set as a batch and put all the batches sequentially, one on top
of another, so that scenario fractions are not destroyed. Overall, 29 augmented are
generated, resulting in a 30 times increase of original training data. Validation and
test sets are not changed. The critical point is determining the amount of noise
improving model generalization. A reasonable range for noise could be related to
the signal variations of the sensor detecting a person and no person. Inside the
sensor, 16 pixels values are translated into temperature values representing a person
presence with a higher temperature.

We start by analyzing the sensor single-pixel variations. The highest point
means person presence, while the lowest point refers to the absence of a person.
The difference between these two magnitudes will be the basis for searching noise
amounts. In Figure 2.10, we can see the sensor one-pixel output variations. The
deviation between max and min points is approximately 5°C. We investigate noise
levels at different ratios of signal magnitude obtained from deviation like %, 2—10,
and %o which could be reasonably small noise amounts. Another type of noise, pink
noise (1/f noise), is used to generate augmented data for emulating long-term drifts
in the system. It represents a frequency spectrum where the power spectral density
(power per frequency interval) is inversely proportional to the signal frequency.

11

N

(=", (2.1)

Neural network architectures and data augmentation techniques

- Signal variation of a single pixel
T T T

27 - -

n n
(5] o
T T

| |

Temperature in C°

)
=
T

1

I LA UM,

22 | | | | |
0 1000 2000 3000 4000 5000 6000
Number of samples

Figure 2.10: IR sensor 1 pixel output signal variation collected at 5 Hz for 18
minutes. The horizontal axis represents original training data set samples. The
vertical axis represents the corresponding temperature variation detected by a
single pixel.

Each octave interval in pink noise delivers the same amount of noise energy. The
power spectral density of pink noise is represented as follows:

S(f) x ch (2.2)

We use the same techniques that we have used for white noise for deciding noise
levels of pink noise. Independent exploration of two noises to improve model gener-
alization quality gives an insight into using a combination of noises to generate aug-
mented sets. Naturally, all systems undergo different perturbations simultaneously
at the same time. The third method of augmented data generation is combining
white and pink noises. This section mainly focused on the different augmentation
techniques we applied to our problem without explicitly giving noise levels. Rea-
sonable noise levels will be determined after performing many trainings. We will
discuss reasonable noise levels in the following sections.

2.3 NN training with augmented data

We use the CNN architecture in our problem because the IR sensor captures a room
pictures dynamically with 16 pixels. Overall data is the time series organization

12

Neural network architectures and data augmentation techniques

of each frame which generates a “movie”. Once the appropriate architecture for
the model is decided, next step is working on the model input data. The neural
network can be seen as a function that accepts some input and outputs a response.
It has a domain, just like all other functions. To ensure that the values we wish to
provide to the neural net are in the domain, we must first normalize them. If the
arguments are out of the domain, the outcome is not guaranteed to be appropriate,
as it is with all functions. The actual behavior of the NN on arguments outside
of the domain is determined by the neural net implementation. However, if the
arguments are not within the domain, the result is worthless. Except for the labels,
all the input data are rescaled between [0; 1]. Both the original IR sensor data and
augmented sets are normalized and fit the model input domain. The next step is
feeding the input to our model with CNN architecture. Let us discuss what kind of
layers are used in our model in detail.

In convolutional neural networks, the principal building elements are convolu-
tional layers. Convolution refers to a process of applying a filter to an input data to
produce an activation. When the same filter is applied to input multiple times, a fea-
ture map is created, displaying the positions and strength of a recognized feature in
input, such as an image. The capacity of convolutional neural networks to learn many
filters in parallel, particularly to a training dataset, under the restrictions of a spe-
cific predictive modeling problem, such as image classification, is its unique feature.
As a result, exact traits appear on input photographs that can be identified every-
where. The CNN is a neural network model created for working with two-dimensional
picture data. At the same time, it can also be utilized with one-dimensional and
three-dimensional data. The convolutional layer, which gives the network its name,
is at the heart of the convolutional neural network. This layer performs a process
known as “convolution.” A convolution is a linear process in a convolutional neural
network that involves the multiplication of a set of weights with the input, similar
to a standard neural network. The multiplication is done between an array of input
data and a two-dimensional array of weights, called a filter or a kernel, because the
approach was created for two-dimensional input. The filter size is more compacts
than the input, and the dot product is used to multiply a filter-sized patch of the
input with the filter. A dot product is the element-wise multiplication of the input
and filter filter-sized patch, which is then summed, always yielding a single value.
The procedure is often referred to as the “scalar product” because it produces a sin-
gle value. It is intentional to use a filter that is smaller than the input because it fa-
cilitates the same filter to be multiplied by the input array several times at different
points on the input. From left to right, top to bottom, the filter is applied system-
atically to each overlapping section or filter-sized patch of the incoming data. This
notion of applying the same filter to an image systematically is a great one. Suppose
the filter is designed to detect a specific feature in the input. In that case, applying
it systematically throughout the entire image gives the filter the chance to find that

13

Neural network architectures and data augmentation techniques

convid_1_input: convid_1: convid_1:
> | conviD : Dropout

InputLayer

dence_2: dence_1: flatten_1:
Dence Dence Flatten

Figure 2.11: Plot of the experimental CNN model layers as a graph.

average_poolingid_1:

AveragePooling1D

feature anywhere in the image. This property is known as translation invariance, and
it refers to the general interest in whether a feature exists rather than where it exists.

The CNN architecture does not always guarantee appropriate model fit. In order
to avoid overfitting, we add to our model some regularization techniques. A simple
and powerful regularization method for neural networks and deep learning models
is a dropout. Dropout is a technique where randomly selected neurons are ignored
during training. They are “dropped out” randomly as described in Figure 2.12. This
means that their contribution to the activation of downstream neurons is temporally
removed on the forward pass, and any weight updates are not applied to the neuron
on the backward pass [4]. As a neural network learns, neuron weights settle into
their context within the network. Weights of neurons are tuned for specific features
providing some specialization. Neighboring neurons rely on this specialization,
which, if taken too far, can result in a fragile model too specialized to the training
data. This reliance on context for a neuron during training is complex co-adaptation.

Other neurons will have to take an action and manage the representation required
to make predictions for missing neurons if neurons are randomly dropped out of the
network during training. As a result, the network learns numerous distinct internal
representations becoming less sensitive to the weights of individual neurons. In
other words we can say that, the network is better equipped to generalize and is less
prone to overfit the training data. Convolutional layers summarize the existence of
features in an input image in a convolutional neural network. The placement of the
features in the input is sensitive to the location of the features in the output feature
maps, which is an issue. Downsampling the feature maps is one way to deal with
this sensitivity. This has the effect of making the downsampled feature maps more
resistant to changes in the position of the feature in the image, which is referred to
as “local translation invariance” in technical terms. By summarizing the existence
of features in portions of the feature map, pooling layers provide a method for

14

Neural network architectures and data augmentation techniques

§
3

X
7}
0
B
A

v,.
oA
"'z\ ".’-
w0
X XK
X3~
‘\‘.lf

2\Y%

M

’l’
@Y
K8
X%
U

A}

X

o

(a) Standard Neural Net (b) After applying dropout.

Figure 2.12: Neural net internal structure change after applying dropout [5].

downsampling feature maps. Average pooling and max pooling are two prominent
pooling approaches that recap the average feature existence. A convolutional neural
network convolutional layers apply learned filters to input images systematically to
build feature maps which summarize the presence of those features in the input.
Convolutional layers are particularly successful, and stacking them in deep models
allows layers adjacent to the input to learn low-level characteristics (e.g., lines)
while layers farther in the model learn high-order or more abstract features, such
as forms or individual objects. The feature map output of convolutional layers
has the drawback of recording the exact position of features in the input. This
means that even tiny changes in the feature position in the input image will result
in a different feature map. Re-cropping, rotation, shifting, and other techniques
can cause this problem. In this case downsampling is a typical signal processing
technique for overcoming the issue. This is when a reduced resolution version of an
input signal is made, keeping the main or critical structural features but removing
the fine detail that may not be as valuable to the task. A pooling layer is a more
robust and standard method of downsampling. After the convolutional layer, a new
pooling layer is introduced, specifically after applying a nonlinearity (e.g., ReLLU)
to the feature maps produced by a convolutional layer.The activation function goal
is to introduce non-linearity into a neuron output. We know that neurons in a
neural network work in accordance with their weight, bias, and activation function.
We would change the weights and biases of the neurons in a neural network based
on the output error. Back-propagation is the term for this procedure. Because
the gradients are supplied simultaneously with the error to update the weights
and biases, activation functions enable back-propagation. Without an activation
function, a neural network is just a linear regression model. The activation function
transforms the input in a non-linear way, allowing it to learn and accomplish more

15

Neural network architectures and data augmentation techniques

complex tasks. In Table 2.1 we can see the most used activation functions.

A popular strategy for arranging layers within a convolutional neural network is
to add a pooling layer after the convolutional layer. This pattern could be repeated
one or more times in a particular model. The pooling layer works on each feature
map separately to build a new set of pooled feature maps with the same number of
features. Pooling is similar to applying a filter to feature maps in that it entails
selecting a pooling procedure. The pooling operation or filter is usually smaller
than the feature map. The following are two standard pooling functions:

o Average pooling calculates the average value for each patch on the feature map.

o Max pooling calculates the largest value for each patch of the feature map.

A final version of the features detected in the input results from using a pooling layer
and creating downsampled or pooled feature maps. They are helpful because small
changes in the feature location in the input that the convolutional layer detects
will result in a pooled feature map with the feature in the same place. The model
invariance to local translation is a feature added via pooling. When creating deep
learning neural network models, weight initialization is a critical design decision.
Weight initialization used to be done with small random integers, but over the
last decade, more specific heuristics have been created that take variables like
the type of activation function being used and the number of inputs to the node
[4]. The stochastic gradient descent optimization approach can be used to train
neural network models more effectively with these more personalized heuristics.
In creating a neural network model, weight initialization is an essential factor. In
neural networks, nodes are made up of weighted parameters used to produce a

Table 2.1: Examples of activation functions, operating either element-wise or
vector-wise, depending on the function

0 f <0
ReLU f(z) = { o=
xz forx >0
Softmax | fi(Z) = Jeiz =1,...,J
j=1€"
(@ —e)
tanh f(.%') = tanh(m) = m
. . 1
Slngld f(ll?) = m

16

Neural network architectures and data augmentation techniques

weighted total of the inputs using this formula:

output = factivation (Z input; + bz’as) (2.3)

#neurons

Stochastic gradient descent is an optimization approach for fitting neural network
models that incrementally modify the network weights in order to minimize a loss
function, resulting in weights for the mode that may make compelling predictions.
This optimization procedure requires a beginning point in the space of possible
weight values to begin the optimization process. Weight initialization is a process
that involves setting the weights of a neural network to small random values that
serve as the beginning point for optimization (learning or optimization). A neural
network is initialized with a distinct set of weights each time, which results in a
different optimization process starting point and, possibly, a different end set of
weights with varied performance characteristics. We cannot set all weights to 0.0
since the optimization technique causes some asymmetry in the error gradient,
making it impossible to search effectively.

The compile() function is used to specify the loss function, optimizer, and
metrics for a pre-built model, all of which will be detailed later. These are crucial
characteristics of a neural network final predictions. Let us start discussing the
function of loss that is set inside the compile function. On a high level, the model
established in the starter notebook will learn how to identify particular images
as digits, and it will do so by generating a forecast, determining how far off its
prediction was from the true answer, and then updating itself to predict those
types of digits better. The loss function is the part of the model that calculates
the distance between a prediction and the correct answer. Different types of loss
functions will be required for different types of models. The loss function for a
situation like this, where the outputs to our model are probabilities, would have
to be substantially different from the loss function for a model trying to forecast
something like price in dollars. This model loss function is sparse categorical cross-
entropy, which is suitable for multi-class classification situations such as this one.
A significant loss will result in our scenario if the model predicts that an image has
just a tiny chance of being its accurate label. After initializing the model weights
training is repeated several times to reduce the value of loss function. In Table 2.2
we can see the most employed loss functions in practice.

Another way to put it is that you are trying to minimize the loss when you
train a model. If loss measures how far a forecast is from the correct answer,
and a higher loss indicates a more erroneous prediction, minimizing loss is a
measurable way of measuring how well a model performs. As previously stated,
updating the mathematical parameters of the nodes of a network based on how
effective those parameters were in categorizing a picture is an important aspect of

17

Neural network architectures and data augmentation techniques

training neural networks. Backpropagation is a technique in which neural networks
adjust parameters to improve the model using a mathematical tool called gradient
descent. The intricacies of those terms are outside the scope of this article, but the
optimizer parameter of the model is essential to grasp what the essential notebook
is doing. The compile() function offers a method for speeding up and improving the
backpropagation process. The “adam” optimizer is a widely used optimizer that
performs well in this situation. In this algorithm 1 we can see the full procedure
with the sequence of instruction that performs the adam optimizer.

The metrics to evaluate the model are specified by the compile() function.
Accuracy is a valuable but flawed statistic for assessing model performance. It
should be used with caution when used alone. Many hyperparameters have to be
tuned to have a robust convolutional neural network that will be able to accurately
classify images. One of the most important hyperparameters is the batch size,
which is the number of images used to train a single forward and backward pass
[6]. The number of times the model sees all of the training data is specified by
the epoch parameter in the fit() function. We want the model to see all of the
training data several times because one pass may not be enough for the model to
change its weights sufficiently when computing weighted sums to enhance prediction
power significantly. Every machine learning algorithm has a set of basic parameters
that can be tweaked to improve accuracy. During the fitting phase, we create a
machine learning model by running an algorithm on data for which you know
the target variable, also known as “labeled” data. The correctness of the results
is then determined by comparing them to actual, observed values of the target
variable. Then we use that data to tweak the algorithm standard settings to reduce
error and improve its accuracy in detecting patterns and relationships between the
rest of its features and the target. We repeat this procedure until the algorithm
discovers the best settings for producing valid, practical, and usable insights for
our real-world business challenge. The outcomes produced by our model will not be

Table 2.2: y is the output of the network, IV is the batch size multiplied by the
number of outputs (e.g. pixels), C' is the number of classes and ¢ is the correct
output.

N a2
MSE / L2 Loss / Quadratic Loss Tz (i = 5i)

N
(Binary) Cross Entropy >y, 25:1 i log (yi ;)
(average reduction on higher dimensions) N

Categorical Cross Entropy

N g N ¢ g
(sum reduction on higher dimensions) izt 9+ log (lel 2j=1Yig)

18

Neural network architectures and data augmentation techniques

Algorithm 1 Adam optimizer algorithm. All operations are element-wise, even
powers. Good values for the constants are o = 0.001, 31 = 0.9, B, = 0.999, € = 1078,
€ is needed to guarantee numerical stability.

1: procedure ADAM(«, 1, fo, f,00)

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

23:

24:

25:
26:

> « is the stepsize

> 51, By € [0,1) are the exponential decay rates for the moment estimates
> f () is the objective function to optimize

> O is the initial vector of parameters which will be optimized

> Initialization

mgy < 0 > First moment estimate vector set to 0
v9 < 0 > Second moment estimate vector set to 0
t< 0 > Timestep set to 0

> Execution
while 6; not converged do
t—t+1 > Update timestep
> Gradients are computed w.r.t the parameters to optimize
> using the value of the objective function
> at the previous timestep
gi < Vof (0,-1)
> Update of first-moment and second-moment estimates using
> previous value and new gradients, biased
my <= By -my—1 + (1= B1) - g
Vg 4= B v + (1= B2) - g7
> Bias—c%l;ection of estimates

My
1B
o

1—p%

Qt%ﬁt,l—ow

U

my
Vo +e
end while

return 6, > Optimized parameters are returned

> Update parameters

27: end procedure

19

Neural network architectures and data augmentation techniques

accurate enough to be useful for actual decision-making if it does not fit your data
appropriately. Hyperparameters in a correctly fitted model capture the complicated
interactions between known factors and the target variable, allowing the model to
identify useful insights and generate accurate predictions. Fitting is an automated
process that ensures our NN models have the particular parameters that are most
suited to solving our specific real-world problem with high accuracy.

20

Chapter 3

Experimental results

3.1 Augmentation for optimal generalization

The model architecture and input data are designed based on the state-of-the-
art. Next, we explore the augmentation parameters that improve best the neural
network generalization performance. For each combination of parameters, the neural
network model is trained 30 times with the same input data because the training
process is stochastic. Each time model weights are initialized with random variables
resulting in different output values for each training. Out of these 30 independent
trainings, the best one is chosen based on the generalization ability. To determine
the generalization capability of the neural network model, we use four sets of
experimental data, denoted as A, B, C, D. They are collected in different days, for
different movement trajectories, and in different environmental conditions. As a
metric for the generalization capability is calculated the sum of the mean square
error (MSE) for each of the four sets, A, B, C, and D, as follows:

Overall Performance = MSE A + MSEg + MSEc + MSEp. (3.1)

We consider only the training with the lowest Overall Performance out of the 30
that we do for each parameter set. First, we generate a baseline against which to
track the generalization improvement. The baseline is obtained by training the model
with original data without augmented sets, and resulting values are given in the table
3.1. Our aim at generating augmented sets is to acquire improved generalization
compared to the model training without augmentation. As we previously discussed,
noise amplitude is related to the signal amplitude, i.e., between the signal when a
person is detected and when there is no person. The signal change is calculated based
on the variance of the sensor pixel outputs. Figure 2.10 shows the maximum signal
variance around 5 °C, because the corresponding IR sensor pixel values are converted
into temperature by the sensor. We explore thus the behavior of the model with

21

Experimental results

noise amplitudes a fraction of the maximum signal, starting from 1 %, and increasing
until the effect of the noise is detrimental for the generalization (at around 12 %).

3.2 White noise augmentation generalization

For the white noise, the standard deviation parameter allows modulating the noise
amplitude. That is why the first experiment trains the model with the following
values {0.01, 0.11, 0.21, 0.31, 0.41, 0.51, 0.61}. Table 3.1 represents the output of
the model for each white noise parameter. For each white noise amplitude in the
range {0.01, 0.11, 0.21, 0.31, 0.41, 0.51, 0.61}, based on the best training giving
the smallest Overall Performance, obtained MSE metrics for sets A, B, C and D
are given in the table 3.1.

Table 3.1: Model training results at different white noise amplitudes are compared
to the baseline. For each noise parameter corresponding MSE metrics for sets A, B,
C, D are shown.

Noise Amplitude MSE_ A MSE B MSE_ C MSE D
Baseline 0.001565 0.040742 0.113454 0.080686
0.01 0.001904 0.037636 0.033084 0.062054

0.11 0.002187 0.055132 0.053950 0.068099

0.21 0.001810 0.052376 0.054861 0.075765

0.31 0.001577 0.055950 0.075206 0.090898

0.41 0.002161 0.070060 0.051307 0.077119

0.51 0.002728 0.068208 0.040365 0.085448

0.61 0.002427 0.076800 0.035568 0.093364

Now we can compare the model results trained on augmented data with our
baseline. Let us represent the model results in a graphical way so that we can
easily extract the features. Figure 3.1 shows that for set A, the model behavior
fluctuates in an interval. For smaller values of the noise amplitude, the model
output seems to have smaller MSE values, while for higher noise values, MSE is also
increasing. Overall results show that model training with augmented sets does not
improve with respect to the baseline. The model shows a more coherent behavior
for the set B. The MSE is steadily rising for increasing amounts of noise, showing
improvements in a neighborhood of 0.01 noise standard deviation. Set C is the
only one fully improved by the training with augmented data. It has smaller MSE
values compared to baseline over the whole noise range. Finally, set D expresses

22

Experimental results

-3
SetA Set B
3 210 ° 0.08
0.07
[0)] 2.5 (]
=) =)
2 = 0.06
> >
& $ 0.05
= 5 ="
0.04 7
1.5 0.03
0 0.2 0.4 0.6 0 0.2 0.4 0.6
Noise amount in (sdt) Noise amount in (sdt)
0.12 SetC 0.1 SetD
0.1
0.09
g S
E 0.08 g o8
i i O- \VZ4
(7} (7}
= 0.06 =
0.07
0.04
0.02 : : : 0.06 : : :
0 0.2 0.4 0.6 0 0.2 0.4 0.6
Noise amount in (sdt) Noise amount in (sdt)

Figure 3.1: Model output MSE values(red line) obtained by augmentation with
white noise amplitude range [0; 0.6], for data sets A, B, C and D. Blue line represents
the model MSE baseline obtained without augmented data.

better model improvement up to noise standard deviation 0.5 except for the peak
around a point 0.3 and increasing MSE for higher noise standard deviations.

Since we are interested in overall model generalization quality, we should merge
all independent results of the four sets according to the formula. Summing the
results of all sets can generate inappropriate decisions as described in the Figure 1.2.
In the noise amplitude under the exploration, all sets show different characteristics,
one showing very significant improvement while others without any improvements.
When we sum MSE metrics, significant improvements of one or two sets could
exceed losses in other sets, so it could be a misleading point to decide as a better
model generalization. To avoid these kinds of "misleading" points after generating
the overall sum of MSEs, we extract the areas with smaller MSE sum values with

23

Experimental results

0.24 §um of MSEsT

0.22 7

MSE value
o
)
1

014} 8

——— Baseline
—— MSE sum

1 1
0 0.1 0.2 0.3 04 0.5 0.6 0.7
Noise amount in (sdt)

Figure 3.2: The model overall inference generalization obtained by white noise
augmentation.

respect to the baseline. We should further inspect extracted areas for each set
independently. If at least three sets have improvements in these intervals, we can
decide that the model has improved generalization for all sets. Suppose less than
three sets show more extensive improvements that surpass the unsatisfactory results
of other sets. In that case, these noise intervals are not considered as a noise range
with better generalization quality. Going back to our results in the figure 3.2, we
have overall model results for all sets. It is showing improvement in a total interval
of investigated noise standard deviation. However, it is not enough to decide on
the improved generalization. We go back to independent plots of sets and search
for the areas with more than two sets showing smaller MSEs than the baseline. It
gives the range roughly around zero.

We perform another experiment in the same interval, but with a higher resolution.
White noise standard deviations, which are directly proportional to white noise
amplitudes, are chosen as follows: {0.01 0.06 0.11 0.16 0.21 0.26 0.31 0.36 0.41
0.46 0.51 0.56 0.61}. With experiment 1, we have completed one loop described in
the flow in Figure 1.1. Changing the noise amplitude ranges corresponds to block
Tune Noise Parameters. When we analyze the results for every 30 trainings best

24

Experimental results

model is chosen near to 200 epochs, which means that the model was still able
to learn. According to the second experiment, model training with specified noise
parameters (by performing 30 trainings for each noise value and choosing the best
one) generates the following results given in Table 3.2. Since the resolution of the
given interval is higher than the previous experiment, we can precisely extract the
sections of the range with better model generalization. Let us visually analyze the
model output with graphs to determine the most promising areas in Figure 3.3.
Mean square error loss function values for set A show smoother behavior in this
experiment. MSE value is slightly higher than the baseline at the beginning of the
noise range. Then it gradually decreases below the baseline, demonstrating model
improvement until around 0.3. After that, it continuously increases with increasing
noise amplitude. It is evident that more significant noise amounts does not help the
training generate improvements for set A. Analyzing the plot of set B, we can say
that set B is less resistant to noisy data showing slight improvement of the model
for small amounts of noise approximately up to 0.05. After that point, the model
MSE value starts to increase gradually as for set A. Set C has total improvement in

Table 3.2: Result of the model trainings at different white noise amplitudes. For
each noise parameter corresponding MSE metrics for sets A, B, C, D and best
training are shown.

Noise Amplitude MSE A MSE B MSE C MSE D
Baseline 0.001565 0.040742 0.113454 0.080686
0.01 0.0016 0.039653 0.049996 0.065936
0.06 0.001485 0.040832 0.041435 0.062892
0.11 0.001424 0.04568 0.037765 0.063757
0.16 0.001463 0.050361 0.043676 0.069003
0.21 0.001434 0.05065 0.05417 0.068153
0.26 0.001488 0.066244 0.060627 0.062341
0.31 0.001564 0.067676 0.066316 0.06029
0.36 0.001637 0.093435 0.070558 0.05868
0.41 0.001805 0.099847 0.057439 0.056119
0.46 0.001938 0.117797 0.050876 0.071523
0.51 0.002039 0.142877 0.072843 0.084473
0.56 0.002214 0.141222 0.076763 0.087068
0.61 0.002502 0.196399 0.072507 0.137806

25

Experimental results

-3
SetA Set B
2.6 10 ° 0.2
2.4+
022" o 0.15 ¢
=] =]
g g
W 27 L
% UE) 0.1
1.8¢ ’
1.6 [a 1
14 Ne—— 0.05
0 0.1 02 03 04 05 06 0 0.1 02 03 04 05 06
Noise amount in (sdt) Noise amount in (sdt)
SetC SetD
0.12 ° 0.14 °
0.1 1 0.12 ¢
o o
3008+ 2 017
© ©
> >
A 0
< 0.06 | 1 = 0.08
0.04 ¢ 1 0.06
0.02 : : : : : : 0.04 : : : : : :
0 0.1 02 03 04 05 06 0 0.1 02 03 04 05 06
Noise amount in (sdt) Noise amount in (sdt)

Figure 3.3: The second experiment. Model output MSE values(red line) with
augmented data generated in white noise amplitude range [0; 0.6], for data sets
A, B, C and D. Blue line represents the model MSE baseline obtained without

augmented data.

this range, as in the previous experiment. Considering the graph of set D, we can
say that we could generate more stable and understandable behavior with respect
to the previous experiment. It shows model improvement in a noise range of [0;
0.5], which is the same as the initial results. After noise amplitude 0.5, the MSE
starts to increase abruptly.

Now we can generate a plot to check model overall improvement as we decided
according to (3.1). The sum of the MSE values for all sets is represented on the
vertical axis in Figure 3.4, while on the horizontal axis, noise amplitudes are
described. Overall model behavior shows a gradual MSE increase for increasing
amounts of noise amplitude. Up to 0.45, MSE is below the baseline, which means
the model has overall improvement. However, Figure 3.4 is not enough factor to

26

Experimental results

0.45 ‘Sum of MSEs‘

0.4 b

0.35 - b

MSE value

0.2 b

0.15 - b

Baseline
—— MSE sum

0.1 I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Noise amount in (sdt)

Figure 3.4: The model overall inference generalization obtained by white noise
augmentation (the second experiment).

decide on model generalization quality because we should further check the plots
of each set to avoid points in which improvements of one or two sets are big so
that it surpasses the destructive results of other sets. At the upper end of the
noise interval, the overall model characteristic shows higher MSE values than the
baseline, which means the model has poor performance.

The model overall generalization quality is determined both by the improved
MSE sum of all sets and individual improvements of at least three sets. Based on
Figure 3.4, it is obvious that MSE sum is below the baseline in a noise range of [0;
0.45]. In this range sets C and D have total improvement. Fields of improvement
for sets A and D are smaller than [0; 0.45]. Set A starts to go above the baseline
after point 0.3, which means that we should reduce our initial range from [0; 0.45]
to [0; 0.3] to have at least three sets with individual improvements. For set B, noise
amounts in the range [0; 0.3] could result in MSE values above and below the
baseline. However, we can accept this range as a reasonable interval giving better
model generalization quality since at least sets A, C, D are performing adequately.
The last experiment is accomplished to precisely determine the noise amplitude.
All the sets have simultaneous improvement concerning the corresponding baselines
and improved overall model generalization. We will not explicitly state the resulting

27

Experimental results

table and plots here. The noise amplitude in the interval [0; 0.046] gives the best
model inference generalization quality.

3.3 Pink noise augmentation generalization

The model is characterized by adequate input data and architecture and trained
with augmented data generated by white Gaussian noise. We will explore pink noise
ranges that provide higher performance as a second method to generate augmented
sets. First, we create a baseline from which we may track the generalization
improvement. The baseline is obtained by training the model without augmented
data. Our goal in creating augmented sets is to achieve better generalization of
the model. The first intuition on noise parameter is related to the signal variance
between a person detection and without detection, as indicated in previous sections.
The signal deviation is derived using the maximum and minimum sensor one-
pixel output variance values obtained from the Figure 2.10. All 16 pixels of the
IR sensor are transformed into temperature inside the sensor. We look at how
the model behaves when the noise amplitude is up to 50 % of the signal level
because the power of the pink noise decreases with the frequency. Thus, we use
noise amplitudes in range [0; 3]. Because training is a stochastic process, we select

Table 3.3: Result of the model trainings at different pink noise amplitudes. For
each noise parameter corresponding MSE metrics for sets A, B, C, D and best
training are shown.

Noise Amplitude MSE A MSE B MSE C MSE D
Baseline 0.001565 0.040742 0.113454 0.080686
0.01 0.001538 0.039735 0.046079 0.061516
0.34 0.001481 0.038605 0.04483 0.059618
0.67 0.001427 0.037736 0.048638 0.050147
1.00 0.001577 0.043275 0.042183 0.04185
1.33 0.00185 0.047579 0.044584 0.041498
1.66 0.002317 0.043262 0.033977 0.042545
1.99 0.002867 0.043579 0.032207 0.042899
2.32 0.003487 0.041271 0.02802 0.044242
2.65 0.004355 0.048448 0.020107 0.047483
2.98 0.004683 0.047419 0.027579 0.045834

28

Experimental results

-3
SetA SetB
5 <10 ° 0.05
0.048
4
@ o 0.046
= =
) [0
>3 = 0.044
Ll L
7} 9}
= = 0.042
2 4
0.04 \/
=.____/
1 . . 0.038 ‘ ‘ .
0 1 2 3 0 1 2 3
Pink noise amplitude Pink noise amplitude
0.12 SetC 0.09 SetD
0.1 0.08
S S
= 0.08 2 0.07
> >
® 7
< 0.06 < 0.06
0.02 : : 0.04 : :
0 1 2 3 0 1 2 3
Pink noise amplitude Pink noise amplitude

Figure 3.5: Model output MSE values(red line) with augmented data generated in
pink noise amplitude range [0; 3|, for data sets A, B, C and D. Blue line represents
the model MSE baseline obtained without augmented data.

the best of 30 trainings using unchanged data and parameters. Since we have
four sets of experimental data collected under different conditions with different
environments and ambient temperatures, the same criteria are used to evaluate the
model overall generalization quality calculated using (3.1). We analyze the model
behavior trained with augmented sets generated based on pink noise amplitude
in this range: {0.01 0.34 0.67 1.00 1.33 1.66 1.99 2.32 2.65 2.98}. For every noise
amplitude in the range, the model is trained 30 times and based on the minimum
MSE sum of all sets, the best model is chosen. Table 3.3 reports the best results of
trainings, shown in Figure 3.5 and Figure 3.6. For set A, model behavior shows a
monotonic increase as the noise amount increases. In an interval [0;1], MSE is below
the baseline, which means the model can obtain better results with augmented

29

Experimental results

Sum of MSEs

0.24

Baseline |
——— MSE sum

0.22 |- h

0.2 h

o
—_
2]
T
1

MSE value

0.16 7

0.14 - J

0.12 |- b

0.1 | | |
0 0.5 1 1.5 2 25 3

Pink noise amplitude

Figure 3.6: The model overall inference generalization obtained by pink noise
augmentation.

data. Noise values greater than one seem to reduce the original data quality so
that the model output is increasing very high above the baseline. Considering pink
noise, set B has more improved characteristics than white noise. The model output
is below the baseline until the noise amplitude one and starts to fluctuate with
higher MSE values above the baseline. The plots of sets C and D have almost
similar behavior. Both of them are below the corresponding baselines in full range,
even showing better generalizations for higher noise amplitudes.

After analyzing all sets independently, overall model generalization quality is
evaluated based on Figure 3.6. General behavior describes decreasing output which
is always below the baseline showing total improvement of the model. We should
exclude from this range the pink noise amplitude intervals in which one or two sets
of improvement overcomes other sets MSEs that are above the baseline. Going back
to Figure 3.5 it becomes clear that in a range [0;1], the model has the most improved
area with all individual sets improvements. Only the set A results at the beginning of
the noise interval could be a bit confusing. We can clarify it with a further experiment
in which the range [0; 1] is explored with high resolution obtained by dividing the
range into several intervals. Pink noise amplitudes greater than 1 show the model

30

Experimental results

improvement for sets C and D, which overcome the terrible results of sets A and B.
However, it does not satisfy the stated criteria for good generalization. We performed
one more experiment to check the model behavior for the pink noise amplitude range
in [0; 1] to double-check our previous results. We will not expressly state the results
and plots here, but the results prove that the interval [0; 1] is indeed a range giving
the model the best generalization quality. After determining the reasonable intervals
of white and pink noise amplitudes, we can further continue our trainings to explore
the model characteristics with the combination of white and pink noise amplitudes.

3.4 Combined noise augmentation generalization

In general, all the systems are simultaneously affected by different kinds of noises.
We have seen the model behavior that is affected by white and pink noises separately.

To better model real-world settings, we explore the effects of combinations of
white and pink noises. We use the results of our previous training. We choose the
interval [0; 0.2] for white noise ranges, which is proven as a maximum noise amount
improving the model overall generalization. While for the pink noise possible range
is proven as [0; 1]. We use white and pink noise amplitudes as two parameters
describing the model MSE represented in 3D plots. Let us divide the chosen intervals
of white and pink noises as follows: white noise amplitude ranges are selected as
{0.001 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200} and pink noise amplitudes
are considered as {0.01 0.21 0.41 0.61 0.81 1.01 1.21 9.41 1.61}. The model is
trained 30 times and out of 30 trainings, the best model which shows the best
model generalization is chosen.

In Figure 3.7, plots of the model MSE for sets A and B are described. Overall, set
A behavior replicates the model characteristics of white and pink noises explored
individually. The model shows almost stable characteristics over the white noise
amplitude axes. While the pink noise amplitudes significantly affect the overall
results, the pink noise amplitude range of [0; 1] shows total improvement of the
model results regardless of the white noise magnitude added on top of it. In the
area close to the origin of the noise amplitudes model, MSE slightly increases
to reach the baseline except for the point [0.001; 0.01], corresponding white and
pink noise amplitudes. The point [0.001; 0.01] shows MSE that is slightly greater
than the baseline. Pink noise amplitude values greater than one show results more
remarkable than the baseline referring model worse generalization in this area. In
the same Figure 3.7, we can analyze the model plots for set B. The model results
for set B do not show smooth behavior. The results fluctuate both for white and
pink noise amplitudes. In the diagonal direction close to the origin, there is a small
area in which we can observe the model improvement with smaller MSE values
than the baseline. It corresponds to the pink noise amplitude range of [0;1] and

31

Experimental results

Set A (Baseline->Flat surface) %1073

12.4
12.3
12.2

12.1

0.5 0.05
Pink Noise Amplitude 0 o
White Noise Amplitude

Set B (Baseline->Flat surface)

40.08
10.075
0.08
0.07
0.07 0.065
w 0.06
%) 0.06
s
0.05 0.055
0.04 0.05
2
0.045
0.04

0.5 0.05
Pink Noise Amplitude 0 o

White Noise Amplitude

Figure 3.7: Model MSE value(obtained by the combination of white and pink
noise amplitudes) compared to the baseline.

32

Experimental results

Set C (Baseline->Flat surface)

10.055

10.05

10.045

0.04

0.035

0.03

Pink Noise Amplitude 0 o
White Noise Amplitude

Set D (Baseline->Flat surface)

10.065

10.06

1 0.055

0.05

0.045

1.5
1
0.5

Pink Noise Amplitude

White Noise Amplitude

Figure 3.8: Model MSE value(obtained by the combination of white and pink
noise amplitudes) compared to the baseline.

33

Experimental results

Overall improvement with sum of MSEs

1017
1016
0.24 -
022 -
1015
02
€ 0.18 -
s 0.14
€ 0.16 -
(7]
0.14 013
0.12 - 0.
01 - 0.12
2

1 0.05
0.5

Pink Noise Amplitude 0
White Noise Amplitude

Figure 3.9: Comparison of the model overall generalization(obtained by the
combination of white and pink noise amplitudes) with the baseline. Flat surface
represents overall baseline.

white noise amplitude interval of about [0; 0.15]. There are three more points
[0.001; 1.41], [0.05; 1.61] and [0.1; 1.61] which are below the baseline giving the
model improvement. Only the point [0.001; 1.41] is visible in the Figure 3.7 while
others are invisible due to the covering surfaces. From the plots, we can conclude
for set B that all rising edges of the plot correspond to either bigger white noise
amplitude or higher pink noise amplitude or the combination of the two.Regarding
the plots of the sets C and D described in Figure 3.8, we can say that the model
has improvement in the full range of white and pink noises for both sets. For set D,
overall model behavior for white noise shows smooth characteristics, while for pink
noise until the point [0.001; 1], the model MSE increases for decreasing amounts of
the pink noise amplitude, trying to reach the baseline. Finally, let us analyze the
model overall generalization ability by combining the individual results of all sets.
Overall results are obtained as the sum of MSEs of four sets using (3.1) and the
baseline is calculated as the sum of individual baselines

OverallBaseline = Baselines + Baselineg + Baselinec + Baselinep. (3.2)

Figure 3.9 describes the model overall generalization ability considering all the

34

Experimental results

sets. The flat blue surface represents the sum of the baselines of individual sets,
and the irregular surface is obtained as the sum of all independent sets MSEs.
The rough surface has several local minimum points, which are considered points
of best generalization because the smallest MSE below the baseline is the best
improvement point. In Figure 3.9, all local minimum points are not visible due to
overlapping other parts of the surface. We change the representation of the rough
surface in another way to enable analyzing the promising areas. We calculate the
difference between the baseline and the irregular surface using this formula:

NewSurface = Baselinea + Baselineg + Baselinec + Baselinep—

3.3
(MSEx + MSEy + MSEc + MSEDp) . (3:3)

The longest distance (or the most prominent difference) is the most promising
point due to the smallest MSE sum. After calculating the difference for all the
surface points, we generate another surface in which calculated deviations are placed
on the original coordinate surface of the X and Y axes. As a result, we obtain

Overall improvement with sum of MSEs

0.12
0.11
0.1
0.09
0.
0.156 0.08

0.1

0.07
1 0.05

0.5

Pink Noise Amplitude
White Noise Amplitude

Figure 3.10: Inverted representation of the model overall MSE sum to analyze
the areas with improved generalization.

35

Experimental results

another surface in Figure 3.10 where local maximum points refer to the model best
generalization. The next step is to check each local maximum point representing
better model generalization and exclude false local maxima in which one or two
sets of improvements exceed the terrible results of the other sets. Referring to the
criteria that we decided to analyze better generalization points, we check individual
improvements of at least three sets giving overall model generalization. The surface
is represented by a 2D matrix calculated with respect to two coordinates, X and Y,
referring to corresponding white and pink noise amplitudes. Since each element of
the surface matrix is obtained as the sum of each individual set MSE, we introduce
a variable check_matriz with the same size as the MSE surface matrix to track
the overall generalization. Check__matriz is initially initialized to zero. For each
element of the MSE surface matrix, we count (with another variable count_ sets)
the independent improvements of sets. If the count of individual improvements is
greater than or equal to three, then the corresponding element of check matriz is
converted to one. After performing the same operation for each element of the MSE
surface matrix, we end up with check matriz filled with either zero or ones. Zero
means no improvement, while one means improvement points. In Figure 3.10, we can
see the plots of the MSE surface matrix highlighted with star symbols, representing
the points with improved generalization, obtained from a result examination stated
below.

check Matrix = zeros(9,9);

for i = 1:9
for j = 1:9

count_sets = 0;

if baseline_ A—mse A(i,j)>0
count__sets = count_ sets+1;

end

if baseline_ B—mse B(i,j)>0
count_sets = count_ sets-+1;

end

if baseline_ C—mse_C(i,j)>0
count__sets = count_ sets+1;

end

if baseline_ D—mse D(i,j)>0
count__sets=count_ sets+1;

end

if (count_sets>=3) && (baseline_ A—mse A(i,j)+baseline_ B—

mse_ B(i,j)+baseline. C—mse C(i,]j)+baseline. D—mse D(i,j))>0
check Matrix (i,j)=1;

end

end

2| end

36

Experimental results

Overall improvement with sum of MSEs

012
0.14 0.1
0.12
0.1 0.1
LU
2 0.08
UE:) 0.06 0.09
0.04
0.

0.08

0.15

0.1 0.07

05 0.05

Pink Noise Amplitude
White Noise Amplitude

Figure 3.11: Comparison of the model overall generalization with the baseline.

In this work, all the plots are generated in Matlab, and the examination process of
determining better generalization points is also done on the same platform. From
the Figure 3.10, it is evident that the overall model generalization is highly affected
by the pink noise amplitude ranges. The area covered with white noise amplitude
range [0; 0.2] and pink noise amplitude range [0; 1] shows the model improvement
by induced noise levels. For the pink noise ranges greater than one model shows
rare improvement points for small amounts of white noise specifically at points
[0.001; 1.01] , [0.001; 1.41], [0.05; 1.61] and [0.1; 1.61].

To further determine the areas of the surface in which all the sets show individual
improvements, we set the condition count_sets = 4) in the code and evaluate
the most promising areas as represented in Figure 3.11. Finally, we can conclude
that by considering the model overall generalization concerning the combination
of white and pink noise amplitudes, the diagonal section of the surface considered
in white noise intervals of [0;0.15] and pink noise of [0; 1], gives the model best
improvement points.

37

Chapter 4
Conclusion

The application of machine learning techniques in many spheres is making ease the
solution of challenging parts of the problem. Different machine learning algorithms
are applied to many fields like healthcare, transportation, security, and industry.
The neural networks, the set of algorithms used in machine learning problems, are
considered one of the many used techniques. In most cases, NN generates satisfying
results, whereas, in some cases, the model poor performance could be improved
by applying augmentation or regularization techniques. This work has explored
the data augmentation techniques to improve model performance by artificially
increasing input data size. Augmentation techniques are prevalent in computer
vision, and they are mainly applied to images. Random rotation, zoom, cropping,
flipping, and brightness adjustment are the most widespread techniques. Since
we are analyzing human indoor localization in a small 3x3m area using a 4x4
pixel IR sensor, the resolution of each frame generated by the sensor is relatively
low. The corresponding person location with X and Y coordinates for each sensor
frame is also collected. Person tracking is performed for 30 minutes at 5 Hz overall,
generating experimental data of around 9000 tuples consisting of 16 IR sensor
values and corresponding X and Y coordinates. We have collected four different
sets of experimental data generated in different conditions with different ambient
temperatures. The first set of experiments is used to train the network, and the rest
three sets are used to evaluate the model inference. For improving the overall model
inference, data augmentation by noise is employed because the sensor data could be
affected by the environmental noise. The first type of noise, white noise, is a common
type of noise that is everywhere around us, and the second one, the pink noise, is
used to emulate the drifts in the system. We have explored different white and pink
noise levels to obtain good results. The white noise amplitude ranges between [0;
0.6], consisting of 10 percent of the signal variation between person presence and
person absence, are investigated to check the model inference generalization. In
Figure 3.3, we can see that the model overall behavior is best in the range [0; 0.3]

38

Conclusion

showing improvements of at least three sets. For pink noise, reasonable amplitudes
are higher than white noise because, for high amplitude, it gives small frequency,
and for small noise amplitudes, higher frequency levels. Explored amplitude range is
between [0; 3], giving the most promising noise range of [0;1],as described in Figure
3.5, improving the overall model generalization. Finally, the combination of two
noises is investigated simultaneously, representing the model characteristics in 3D
for white and pink noise amplitudes. From the Figure 3.10, the model improvement
by induced noise levels is visible in the area covered by white noise amplitude range
[0; 0.2] and pink noise amplitude range [0; 1]. The diagonal part of the diagnosed
surface provides the model with the best improvement points.

39

Bibliography

Andre Ye. 11 FEssential Neural Network Architectures, Visualized € Fxplained.
https://medium.com/analytics-vidhya/11-essential-neural-network-
architectures-visualized-explained-7£fc7da3486d8. 2020 (cit. on pp. 6-
10).

IBM cloud education. Recurrent Neural Networks. https://www.ibm.com/
cloud/learn/recurrent-neural-networks. 2020 (cit. on p. 6).

Osama Bin Tariq, Mihai Teodor Lazarescu, and Luciano Lavagno. «Neural
networks for indoor person tracking with infrared sensors». In: IEEE Sensors
Letters 5.1 (2021), pp. 1-4 (cit. on p. 11).

Jason Brownlee. Dropout Regularization in Deep Learning Models With Keras.
https://machinelearningmastery.com/dropout-regularization-deep-
learning-models-keras/. 2016 (cit. on pp. 14, 16).

Amar Budhiraja. Dropout in (Deep) Machine learning. https://medium. com/
@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-
learn-better-dropout-in-deep-machine-learning-74334dadbfcbh. 2020
(cit. on p. 15).

Ibrahem Kandel and Mauro Castelli. « The effect of batch size on the general-
izability of the convolutional neural networks on a histopathology dataset».
In: ICT Express 6.4 (2020), pp. 312-315. 1SSN: 2405-9595. DOI: https://doi.
org/10.1016/j.icte.2020.04.010. URL: https://www.sciencedirect.
com/science/article/pii/S2405959519303455 (cit. on p. 18).

40

https://medium.com/analytics-vidhya/11-essential-neural-network-architectures-visualized-explained-7fc7da3486d8
https://medium.com/analytics-vidhya/11-essential-neural-network-architectures-visualized-explained-7fc7da3486d8
https://www.ibm.com/cloud/learn/recurrent-neural-networks
https://www.ibm.com/cloud/learn/recurrent-neural-networks
https://machinelearningmastery.com/dropout-regularization-deep-learning-models-keras/
https://machinelearningmastery.com/dropout-regularization-deep-learning-models-keras/
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://doi.org/https://doi.org/10.1016/j.icte.2020.04.010
https://doi.org/https://doi.org/10.1016/j.icte.2020.04.010
https://www.sciencedirect.com/science/article/pii/S2405959519303455
https://www.sciencedirect.com/science/article/pii/S2405959519303455

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Neural network training
	Data augmentation for the improvement of neural networks performance

	Neural network architectures and data augmentation techniques
	Neural network architectures
	Augmented data generation
	NN training with augmented data

	Experimental results
	Augmentation for optimal generalization
	White noise augmentation generalization
	Pink noise augmentation generalization
	Combined noise augmentation generalization

	Conclusion
	Bibliography

