
POLITECNICO DI TORINO
Master’s Degree in Physics of Complex Systems

Master’s Degree Thesis

Impact of Encoding Techniques
on the Classification of Raw
Time-Variant Signals with
Spiking Neural Networks

Supervisors
Gianvito Urgese
Evelina Forno
Vittorio Fra

Candidate
Riccardo Pignari

April 2022

Abstract

Spiking Neural Networks (SNNs) represent the third generation of neural networks,
whose technology is inspired by the human brain. Preliminary analysis carried
out in state of the art neuromorphic works, highlight a number of advantages in
the use of these technologies compared to the modern techniques used for data
analytics. Since the information is processed in the form of an electrical impulse
also referred to as spike, and by exploiting a sparsely connected neural structure and
asynchronous processing of the neurons, these networks promise to be the solution
to the enormous energy consumption of the ANNs, while maintaining competitive
accuracy. Therefore, proceeding with a complete analysis of a machine learning
pipeline on the analysis of sensor samples, I analyzed the preprocessing, coding,
modeling and classification steps in a neuromorphic key.

As first I selected two type of dataset of time-varying signals, to be encoded
in the spike domain, the Free Spoken Digit (FSD) and the WISDM. By carrying
out an analysis of the types of data processed, I outlined a first classification,
based on the organization of the information, identifying the temporal, spatial or
a combination of the two, defining the classes of Temporal data, Spatial Data and
Spatial-Temporal Data. This allowed me to identify the characteristics of a signal
in order to choose the processing technique.

Referring to bio-inspired techniques, I was able to identify a plethora of pre-
processing and coding techniques capable of encoding audio, video, olfactory, tactile
signals, etc., which can be divided into classes, such as the Rate Encoding class
where the information is encoded in the number of spikes per unit of time, and
the Temporal Encoding where the information is included in the number of spikes,
the interval between two spikes, the spike time, etc. By applying these techniques
on temporal and spatial data, I identified specific criteria for selecting the most
suitable technique.

Then as third phase I implemented a SNN construction and training process,
based on the Transfer Learning method, performed by training an artificial neural
network ANN and then inject the trained weights in a SNN twin. Specifically, in
this work, this procedure was adopted to switch from a convolutional neural net-
work CNN to a spiking CNN. The data to train the CNN architecture, achieved
through the production of the sonogram, a reprocessing of the spike data converted

2

into an image. Finally, the last step implemented is the encoding the sonogram
through the rate coding, in order to make the information suitable for SNN pro-
cessing. This method might seem laborious, however these steps allowed me to
define a unique evaluation criterion of the various coding techniques. Observing
test accuracy sets, 98% accuracy was recorded for some types of encoding algo-
rithms, while for others up to 8%, this confirms that some encoding techniques are
specifically implementable for Temporal data while others on Spatial data.

Once the best performing techniques were identified, I decided to conduct fur-
ther investigations on synapse reduction techniques, which allow to reduce the size
of the network making it suitable for use on embedded devices, thanks to a reduced
memory footprint and a smaller computational cost. In some cases I have found
that the accuracy of the reduced network exceeds the classification capabilities com-
pared to the complete one, as in the case of the WISDM for which I observed an
increase in accuracy starting from 86.7% up to 95%

3

Contents

List of Figures 7

List of Tables 11

1 Introduction 13
1.1 Machine Learning . 13
1.2 Neuromorphic Engineering . 15
1.3 Spiking Neural Network (SNN) . 16

2 Background 19
2.1 Nervous System . 19

2.1.1 Neuron . 20
2.1.2 Synapse . 21

2.2 Neuron model . 23
2.2.1 Hodgkin-Huxley model . 24
2.2.2 Leaky integrate-and-fire model 26

2.3 Neural code . 29

3 Materials and methods 31
3.1 Temporal data and Spatial data . 31

3.1.1 Temporal data . 32
3.1.2 Spatial data . 33

3.2 Preprocessing . 36
3.2.1 Filter bank . 36

3.3 Encoding Algorithms . 40
3.3.1 Rate Coding . 40
3.3.2 Temporal Coding . 44

3.4 Datasets . 71
3.4.1 The Free Spoken Digit Dataset (FSD) 71
3.4.2 Wireless Sensor Data Mining dataset (WISDM) 72

3.5 Learning process . 73
3.5.1 Sonogram . 73

4

3.6 Neural Network Architecture . 76
3.6.1 Convolutional Neural Network (CNN) 76
3.6.2 Spiking Neural Network (SNN) 77

3.7 Model Compression . 79
3.7.1 Synapses reduction . 80
3.7.2 Pruning . 80

3.8 Inapplicable encoding cases . 81

4 Results and discussion 83
4.1 Performance evaluation for FSD dataset 83

4.1.1 Density of Spike . 83
4.1.2 Architecture CNN/SNN . 86
4.1.3 Encoding . 89
4.1.4 Feature Extraction . 90
4.1.5 Visual analysis through feature reduction techniques 91
4.1.6 Comparisons between different classes of algorithms 95
4.1.7 Synapse reduction . 95
4.1.8 Pruning . 98

4.2 Performance evaluation for WISDM dataset 100
4.2.1 Visual analysis through statistical methods and feature re-

duction techniques . 100
4.2.2 Density of Spike . 109
4.2.3 Architecture CNN/SNN . 109
4.2.4 Encoding . 110
4.2.5 Feature Extraction . 111
4.2.6 Comparisons between different class of algorithm 111
4.2.7 Synapse reduction . 112
4.2.8 Pruning . 113

5 Conclusion 121

A Accuracy tables for Free Spoken Digits (FSD) dataset 123
A.1 Complete network . 123
A.2 Model compression . 125

A.2.1 Synapse reduction model . 125
A.2.2 Pruned model . 126

B Accuracy tables for Wireless Sensor Data Mining (WISDM) dataset127
B.1 Subset1 . 127

B.1.1 Complete network . 127
B.2 Model compression . 128

B.2.1 Synapse reduction model . 128

5

B.2.2 Pruned model . 129
B.3 Subset2 . 129
B.4 Model compression . 130

B.4.1 Synapse reduction model . 131
B.4.2 Pruned model . 131

Bibliography 137

6

List of Figures

1.1 Classification methods . 14
1.2 Machine learning pipeline . 16

2.1 Human Brain; Medical gallery of Blausen Medical 2014 [19] (CC BY 3.0) . . . 20
2.2 Minimal neuron structure; Quasar Jarosz (CC BY-SA 3.0) 20
2.3 In this case is reported a little neural network composed by two Pre-synaptic

neuron that interact with one Post-synaptic neuron 21
2.4 Here are reported the three fundamental step of the propagation of the action

potential from the Pre-synaptic neuron to the Post-synaptic neuron 22
2.5 Action Potential; Jarvisa (CC BY-SA 3.0) 23
2.6 Equivalent circuit Hodgkin-Huxley model 24
2.7 Equivalent circuit Leaky integrate-and-fire model 27
2.8 Representation of spike train in the Rate coding case, adapted from [24] 29
2.9 Representation of spike train in the Temporal coding case, adapted from [24] . 30

3.1 Machine learning pipeline . 31
3.2 FSD audio sample . 32
3.3 Pearson Correlation Coefficient for Temporal Data, this type of coefficient allow

to determine the correlation of the data between two consecutive instant of the
audio sample . 33

3.4 MNIST sample, the MNIST dataset is a collection of handwritten digit composed
by 60000 training image and 10000 testing image, with 28×28 pixel 34

3.5 Moran’s I example . 35
3.6 Moran’s I for Spatial Data . 35
3.7 Filter bank example scheme . 37
3.8 The ciliated structure of the cochlea and the relative resonance frequencies based

on their length, adapted from [27] . 37
3.9 Butterworth filter bank . 38
3.10 Gammatone Time and Frequency response 39
3.11 Here is an example of splitting into 16 channels through a filter bank consisting

of butterworth filters of a sample of the FSD 40
3.12 Algorithms that are part of Rate coding 40

7

3.13 ISI distribution, adapted from [39] . 41
3.14 Comparisons between Spatial data and Temporal Data with Rate Encoding al-

gorithm . 43
3.15 Algorithms that are part of Temporal coding 44
3.16 Example of signal and the content in the variable V ariation 45
3.17 TBR encoding parameters comparisons 46
3.18 MW encoding parameters comparisons 48
3.19 Example of reconstruction (orange curve) of the sinusoidal signal (blue curve)

through the SF algorithm . 50
3.20 SF encoding parameters comparisons . 51
3.21 PFM pre-processing step . 52
3.22 Representation of the same sample with different encoding algorithms 52
3.23 The first image is an example of MNIST sample, while in the second row the

same sample is treated but in a linear array form, in the second figure instead is
generated an image with invariant central section at different length 53

3.24 HSA example encoding procedure . 55
3.25 MHSA encoding example . 57
3.26 BSA encoding parameters comparisons 58
3.27 Representation of the same sample with different encoding algorithms 59
3.28 The first image is an example of MNIST sample, while in the second row the

same sample is treated but in a linear array form, in the second is generated an
image with invariant central section at different length 60

3.29 Phase encoding step . 61
3.30 TTFS encoding example . 62
3.31 Encoding distribution . 63
3.32 Representation of the same sample with different encoding algorithms 64
3.33 Encoding comparison in Spatial Data . 65
3.34 Spectrogram obtained from one sample of the FSD dataset 66
3.35 Threshold Profile used to generate the mask in the case of Simultaneous Masking 66
3.36 Spatial map generated by the comparisons between the spectrogram and the

threshold function . 67
3.37 Spatial map generated by the comparisons between the spectrogram and the

threshold function . 68
3.38 Temporal map generated by the comparisons between the spectrogram and the

threshold function . 68
3.39 Complete map generated by the dot product between the Spatial map and the

Temporal map . 69
3.40 Complete map generated by the dot product between the Spatial map and the

Temporal map . 69
3.41 Example of SDR encoding performed with 30 neurons per channel 70
3.42 Example of SDR encoding with 30 neurons per channel in the case of MNIST . 70
3.43 FSD audio sample, standardization process referred to the time duration . . . 71

8

3.44 WISDM sample . 72
3.45 Binning procedure, adapted from [55] . 74
3.46 Feature extraction with Binning methods 74
3.47 This fig. shows an example of a number of bins that is too large (a), and too

small (b) respect to the spike per channel 75
3.48 In this image is reported the sonogram of the various axis of sample 76
3.49 Rate encoding of the sonogram for SNN classification 78
3.50 Spike Train in the various layer . 79
3.51 Box plot for the SNN c6c12f2 . 80
3.52 The left panel shows a sonogram relating to rate encoding, made up of a num-

ber of very large pixels, while on the left is the sonogram relating to the SDR
presenting the same problem . 81

4.1 In this box plot the distribution of the number of spike for different algorithms
necessary to encode the entire FSD dataset are reported, having applied different
pre-processing filter bank . 84

4.2 Spike Train in the various layer in the presence of refractory period in the en-
coding step . 85

4.3 Box plot evaluating the refractory period performance in the SNN c12c24f2 . . 86
4.4 Separation of feature extraction and classification layers in CNNs 87
4.5 Tested Architectures . 87
4.6 Comparison of accuracy performance in different SNN architectures 88
4.7 Comparison between Butterworth and Gammatone filter bank for Global Refer-

enced class . 90
4.8 Comparisons between different type of binning dimension for Butterworth and

Gammatone filter bank . 91
4.9 Results of the PCA feature reduction algorithm for the FSD dataset in which

the sample is pre-processed with Butterworth filter bank with 32 channel, with
18 bins partition for TBSC feature extraction process 92

4.10 Results of the TSNE feature reduction algorithm for the FSD dataset in which
the sample is pre-processed with Butterworth filter bank with 32 channel, with
18 bins partition for TBSC feature extraction process 93

4.11 Results of the UMAP feature reduction algorithm for the FSD dataset in which
the sample is pre-processed with Butterworth filter bank with 32 channel, with
18 bins partition for TBSC feature extraction process 94

4.12 Comparisons between different classes of encoding algorithm 95
4.13 Accuracy for Synapse reduction in the architecture c6c12f2 and c12c24f2 for

Temporal Contrast class . 96
4.14 Spike Count for Temporal Contrast algorithm after synapses reduction in c6c12f2 97
4.15 Pruning performance in c6c12f2 . 98
4.16 Spike Count for Temporal Contrast algorithm after pruning in c6c12f2 99
4.17 Kernel density estimation for the two subset 101

9

4.18 In this fig. is reported the PCA feature reduction algorithm for the subsets1 in
which the sample is pre-processed with Butterworth filter bank with 8 channel,
with 18 bins partition for TBSC feature extraction process 102

4.19 In this fig. is reported the PCA feature reduction algorithm for the subsets2 in
which the sample is pre-processed with Butterworth filter bank with 8 channel,
with 18 bins partition for TBSC feature extraction process 103

4.20 In this fig. is reported the TSNE feature reduction algorithm for the subsets1 in
which the sample is pre-processed with Butterworth filter bank with 8 channel,
with 18 bins partition for TBSC feature extraction process 104

4.21 In this fig. is reported the TSNE feature reduction algorithm for the subsets2 in
which the sample is pre-processed with Butterworth filter bank with 8 channel,
with 18 bins partition for TBSC feature extraction process 105

4.22 In this fig. is reported the UMAP feature reduction algorithm for the subsets1 in
which the sample is pre-processed with Butterworth filter bank with 8 channel,
with 18 bins partition for TBSC feature extraction process 106

4.23 In this fig. is reported the UMAP feature reduction algorithm for the subsets2 in
which the sample is pre-processed with Butterworth filter bank with 8 channel,
with 18 bins partition for TBSC feature extraction process 107

4.24 In this box plot is reported the distribution of the number of spike for different
algorithms encoding the entire subset1 dataset, having applied different pre-
processing filter bank . 109

4.25 Comparisons of accuracy performance in different SNN architecture 110
4.26 Comparisons between PFM and the other of encoding algorithms 110
4.27 Comparisons between different type of binning dimension for Butterworth and

Gammatone filter bank . 111
4.28 Comparisons between different class of encoding algorithm 112
4.29 The sonogram of the various axis of sample 112
4.30 Accuracy for Synapse reduction in the architecture c6c12f2 and c12c24f2 . . . 113
4.31 Pruning performance in c12c24f2 . 114
4.32 In this box plot is reported the distribution of the number of spike for differ-

ent algorithms necessary to encode the entire subset2 dataset, having applied
different pre-processing filter bank . 115

4.33 Comparisons of accuracy performance in different SNN architecture 116
4.34 Comparisons between PFM and the other of encoding algorithms 116
4.35 Comparisons between different type of binning dimension for Butterworth and

Gammatone filter bank . 117
4.36 Comparisons between different class of encoding algorithm 117
4.37 Accuracy for Synapse reduction in the architecture c6c12f2 and c12c24f2 . . . 118
4.38 Pruning performance in c12c24f2 . 118

10

List of Tables

2.1 Hodgkin-Huxley model parameters . 26

3.1 This table shows the classes associated with subset1 and subset2, isolated from
the WISDM dataset . 72

4.1 This table shows the classes associated with subset1 and subset2, isolated from
the WISDM dataset . 100

5.1 Summary encoding technique based on the best performances in relation to the
type of data, indicating with ✓ the technique is particularly suitable for the
purpose, − these techniques can be used even if they have some disadvantages
and ✗ they are not suitable for the purpose 122

A.1 Network structure c12c24f1 accuracy (%) 123
A.2 Network structure c6c12f2 accuracy (%) 124
A.3 Network structure c12c24f2 accuracy (%) 124
A.4 Network c6c12f2 after synapses reduction accuracy (%) 125
A.5 Network c12c24f2 after synapses reduction accuracy (%) 125
A.6 Network c6c12f2 after pruning accuracy (%) 126

B.1 Network c6c12f2 accuracy (%) . 127
B.2 Network c12c24f2 accuracy (%) . 128
B.3 Network c6c12f2 after synapses reduction accuracy (%) 128
B.4 Network c12c24f2 after synapses reduction accuracy (%) 128
B.5 Network c12c24f2 after pruning accuracy (%) 129
B.6 Network c6c12f2 accuracy (%) . 130
B.7 Network c12c24f2 accuracy (%) . 130
B.8 Network c6c12f2 after synapses reduction accuracy (%) 131
B.9 Network c12c24f2 after synapses reduction accuracy (%) 131
B.10 Network c12c24f2 after pruning accuracy (%) 131

11

12

Chapter 1

Introduction

1.1 Machine Learning

Machine learning represents a branch of artificial intelligence, if with the latter we
mean the abilities of a machine in showing human abilities such as reasoning, learn-
ing, planning and creativity, for machine learning we mean the capabilities by a
machine to automatically extract information without the aid of an external agent,
from the surrounding environment. These tasks are developed through mathemati-
cal models or more sophisticated methods such as artificial neural networks, to solve
tasks that are very difficult or otherwise impossible to achieve with traditional pro-
gramming techniques, such as image classification [1], image processing [2], audio
segmentation [3].

In this thesis the main focus is to combine the concepts and models developed in
the field of state of the art Machine learning, with the most recent studies addressed
in the field of Neuroscience and Neuromorphic Engineering, highlighting advantages
and disadvantages in the use of methodologies and bio-inspired models.

But before diving into this study, let’s try to describe what Machine Learning
are, and the key elements that we are going to use during our study.

There are several criteria that can be used to classify the Machine learning
models, given the vastness of method, the possible tasks that can be performed
and their versatility.

Analyzing the criteria individually with reference to fig. 1.1 we have:

13

Introduction

Figure 1.1: Classification methods

• Classification based on the method [4], by method we mean the approaches
from the modeling point of view to extract information from raw data:

– Statistical models: historically this is first type of model, that use the
classical statistical tools, for the identification of a probabilistic model
and a set of parameters necessary to describe the data analyzed;

– Artificial neural networks: used in more recent applications, these mod-
els instead are adaptive systems capable of modifying their behavior
based on the internal interactions between the elements that constitute
it, and the data that are used during the training phase.

• Classification based on the learning process. The learning process represents
the set of operations carried out in order to obtain the value parameters
capable of describing the data under examination, obtaining:

– Supervised learning: this learning process consists in providing to the
algorithm the data to be analyzed such as an image [5], or in less direct
cases quantities collected by a set of sensors [6] [7], and the corresponding
outputs, i.e. the class to which it belongs of the data in a classification
problem, the action to be carried out in the control of systems or the
output value of a continuous quantity as in regression problems. This
couple of quantity define the pair datum and label;

– Unsupervised learning: in this case, on the other hand, the algorithm is
supplied only with the data to be analyzed without providing a corre-
sponding label;

– Reinforcement learning: this particular approach, unlike the previous
ones, is used in a dynamic environment for which data are provided
during the temporal evolution of the system, such as learning a game.
Recent examples have been applied in the case of Chess [8], Go [9],
Atari [10].

• Classification based on the task to be performed, we have:

14

1.2 – Neuromorphic Engineering

– Classification/Clustering problem: although these two tasks seem very
different from each other, in reality they represent the same problem but
seen from two different perspectives. In both cases an attempt is made
to make a prediction of the class to which the data analyzed belongs, but
in the first case in classification problem, the model used derives from a
supervised learning process, in which the number of classes is known,and
the target is to define the class. In the case of clustering the number
of classes is not known a priori, consequently the goal is to identify the
number of classes most suitable for data modeling and define the class
they belong to through an unsupervised learning;

– Regression analysis: this method as opposed to the previous ones tries
to model outputs in a continuous space, an example of this model can be
applied in the field of finance for the prediction of the stock market [11],
the prediction of the position of a vehicle based on the GPS data [12];

– Generative Models: these models are more recent implementations, in
which the aim is ti generate new data starting from an ensemble of pre-
existing data. An example of this application is the generation of a new
dataset of faces starting from a dataset of real faces [13].

1.2 Neuromorphic Engineering
Focusing now on the definition and fields covered by Neuromorphic Engineering;
the concept of Neuromorphic Engineering was first introduced by Carver Mead [14]
in 1980 to describe a new field of engineering which focuses attention to the study
and realization of models and devices, whose architecture and functioning try to
mimic the same functionalities of a nervous system human or animal. Examples
of devices made through these studies using biological systems as inspiration are
silicon cochlea [15], silicon retina [16], devices whose operation tries to reproduce
the operations carried out by the ear and the human eye respectively. Obviously
the biggest challenge is to develop models and devices capable of replicating the
cognitive abilities of the human brain in order to exploit its great potential in terms
of cognitive abilities, great computing power and low energy consumption.

Research conducted in this new branch of the science has numerous advantages
in various fields, such as in the medical environment for the creation of prostheses
which can interface directly with the nervous system, creating stand-alone systems,
very compact in terms of computing and energy consumption, or the study of
diseases that affect the brain such as schizophrenia, dementia, parkinson, in the
IT field through the development of low energy consumption processors but with
performance comparable to the most advanced chips made in a classical way [17],
sensors, and so on.

15

Introduction

1.3 Spiking Neural Network (SNN)
The union of the Machine Learning and Neuromorphic Engineering has given rise
to the Spiking Neural Network (SNN) defined as the third generation of natural
networks [18]. This new typology of neural networks has shown complementary ad-
vantages compared to the classic Artificial Neural Networks (ANN), demonstrating
a reduction of several orders of magnitude in terms of energy consumption, and
very high computation speed and other possible advantages inherited from biolog-
ical systems, while maintaining accuracy comparable with the state of the art in
ANN.

Through the use of SNNs we will study the impact of the different encoding
techniques on time-variant signals, obtained through the analysis of the datasets
Free Spoken Digits (FSD) composed of audio signals of spoken digits and the Wire-
less Sensor Data Mining (WISDM) a dataset a dataset aimed at collecting sensory
signals of human daily activities.

In order to proceed we analyze the all machine learning pipeline from the neu-
romorphic point of view, using the classical structure present in the case of state
of the art machine learning procedure, referring to the diagram show in fig. 1.2:

Figure 1.2: Machine learning pipeline

• Raw data: represent the set of samples collected through and their respective
labels, since in this case a supervised training process is carried out;

• Pre-processing: represent the techniques used to elaborate the raw data in
order to make the network training process easier, such as the normalization
process, filter decomposition, whitening and so on;

• Encoding: are the ensemble of techniques used to translate the analyzed
sample in a neural coding structure, allowing to be processed by the SNNs;

• ANN/SNN: this block describes the structure of the networks used and the
learning process implemented to train the Spiking Neural Network. Since
to date no efficient algorithms have been found to train an SNN, a hybrid

16

1.3 – Spiking Neural Network (SNN)

method called transfer learning will be used to proceed in this step. In which
the learning process of the network is divided into 2 phases:

1. the training process is carried out on the ANN, which constitutes the
mother network from a structural point of view and the parameters;

2. once the learning process is performed, a structurally identical SNN is
generated, and the parameters used for the description of the model are
inherited from the mother ANN.

• Performance Evaluation: in this last step in which the performance of the
different encoding techniques is evaluated, and we try to define the main
fields of application.

17

18

Chapter 2

Background

The human brain, (...) is the most
complicated organization of matter
that we know.

Isaac Asimov (1987). “Past,
Present, and Future”

In order to understand the structure and functioning of SNNs, in this section
we will introduce the key concepts related to the biological systems to which these
networks draw inspiration, describing the nervous system from a generic point of
view and describing in detail the neuron and its models in order to describe the
basic element of SNN artificial neuron, which tries to mimic the behavior of the
real neuron as faithfully as possible.

2.1 Nervous System
By neuroscience we mean the set of studies carried out on the nervous system,
through which we can determine the morphology and its functioning. Focusing the
attention on the nervous system of vertebrate organisms, we can identify two types
of nervous system. The Peripheral Nervous System (PNS) consists of the set of
nerve cells capable of collecting information from the external environment, such
as the collection of light signals by the eyes, or audio signals through the auditory
system system and so on and the Central Nervous System (CNS) that has the task
of combining, controlling and processing the information coming from the PNS,
and provide a response stimulus. Although these nervous systems have a large
heterogeneous cell typology, from the point of view of structure and specialization,
the common element is how these cells treat the information to be processed, that
is, in the form of an electrical impulse.

19

Background

2.1.1 Neuron
The human brain fig. 2.1 represents the main organ of the CNS, whose purpose is
to collect, process, send and store information. Observing its functioning in detail,
it can be seen that it is made up of highly specialized areas, capable of carrying
out well-defined tasks. Although the constituent element of the brain are neurons,
the following degree of specialization is obtained based on the different structure
that neurons have within the region, defining neural networks, such as feedforward,
recursive, convolutional or hybrid, whose element base we repeat is the neuron.

Figure 2.1: Human Brain; Medical gallery of Blausen Medical 2014 [19] (CC BY 3.0)

The neuron is the building block of every neural network in the brain, so knowing
how it works, is necessary to understand how information is processed, and referred
to this the only elements of our interest in this case are reported in fig. 2.2:

Figure 2.2: Minimal neuron structure; Quasar Jarosz (CC BY-SA 3.0)

By describing the role and structure of each element we have:

• Soma: the central body of the neuron where all stimuli are collected in the
form of electrical impulses;

• Dendrites: they are a dense network of ramifications, that starting from the
soma extend allowing to communicate with the synaptic terminals of other
neurons, thus defining the input terminals of the neuron;

20

2.1 – Nervous System

• Axon: it is the only branch that has the task of carrying to all the connected
neurons the electrical impulse also called Action potential produced through
stimulation of the soma;

• Axonal terminals: it defines the second network of branches that allow the
output communication of the neuron with those to which it is connected, thus
defining the output terminals of the neuron.

2.1.2 Synapse
The communication between two or more neuron is obtained through the couple
dendrite and axonal terminal represent the synapses (fig. 2.3), this connection allows
neurons to exchange information in the form of an electrical impulse.

Figure 2.3: In this case is reported a little neural network composed by two Pre-synaptic neuron
that interact with one Post-synaptic neuron

In order to observe how stimuli are collected, and used to communicate with
other neurons we analyze in detail the physical structure and the communication
process of the synapse between two neurons.

From the point of view of the nomenclature it is indicated with:
• Pre-synaptic neuron: neuron that sends the action potential;

• Post-synaptic neuron: neuron that receives the action potential;
The parameter that allows us to describe the state of a neuron is the Membrane
Potential Vm, through the study of this parameter we can deduce the behavior of
the neuron and how it is influenced by the stimuli received. In order to analyze the
communication process, the diagram of fig. 2.4, identify three main communication
steps are 3:

21

Background

1. starting from rest condition of the synapse, inside the pre-synaptic terminal
there are vesicles that contain receptors (proteins) capable of interacting with
the ion channels of the post-synaptic terminal, opening them or asking them
by changing the membrane potential of the post-synaptic neuron. If an action
potential is produced by the pre-synaptic neuron, these vesicles are expelled
releasing the receptors towards the post-synaptic terminal;

2. the newly released receptors reach the active sites of the ion channels favoring
their opening or closure, based to the type of synapse;

3. once opened, these ion channels allow the passage of positive ions outside
the neuron, causing a polarization of the membrane potential, producing an
action potential.

Figure 2.4: Here are reported the three fundamental step of the propagation of the action
potential from the Pre-synaptic neuron to the Post-synaptic neuron

Analyzing in detail the production of the action potential from the point of view
of the membrane potential Vm we have:

1. starting from a rest level Vrest it takes a value −60mV ≤ Vm ≤ −70mV , the
arrival of an action potential by the pre-synaptic neuron causes progressively
polarization of the membrane increasing its potential up to a threshold value
of Vth ≃ −50mV ;

2. a further increase in the level causes a sudden increase generating our action
potential reaching about Vap = 40mV , generating the action potential that
propagates along the axon up to axonal terminals;

3. subsequently the production of the action potential cause the closure of the ion
channel, and the ion pump trying to restore the correct membrane potential
level, this re-polarization process however causes a hyperpolarization of the
membrane reaching potential around −80mV ≤ Vrest ≤ −100mV , preventing

22

2.2 – Neuron model

in this region an emission of another action potential, this condition is quan-
tified over a period of time called the refractory period 1ms ≤ τrefra ≤ 3ms.

Figure 2.5: Action Potential; Jarvisa (CC BY-SA 3.0)

Experimentally it has been observed that the duration and intensity of the
various action potentials emitted by the neurons are similar, however other obser-
vations have shown that although the action potential received by the post-synaptic
neurons in a network are the same, some neurons in a network emit more action
potentials than others. This discrepancy is justified by the degree of excitability
of a neuron based on what is called "synaptic weight", linked to the number of ion
channels, which can increase or decrease depending on the degree of interaction
between the neurons involved. During the learning process in the field of machine
learning it is precisely the "synaptic weight" that we try to extrapolate.

2.2 Neuron model
There are numerous models that try to describe the behavior of a single neuron,
such as the Hodgkin-Huxley model, Perfect Integrate-and-fire, Leaky integrate-and-
fire, and so on, or models that take into account stochastic signals coming from the
contribution of the neurons inside a network, Noisy input model (diffusive noise),
Noisy output model (escape noise), and more accurate model.

Focusing on a model that tries to describe the interaction process described
in the previous chapter we will analyze the Hodgkin-Huxley model and a simpler
version of it used for future purposes the Leaky integrate-and-fire models.

23

Background

2.2.1 Hodgkin-Huxley model
Developed in 1952 by Alan Hodgkin and Andrew Huxley, through the study of
the action potential that propagated in the squid giant axon [20], the value of the
membrane potential Vm as a function of the ion channels. Since the ion channels
allow to carry out a charge transport, these channels can therefore be modeled
through current generators, consequently we can model the neuron as an equivalent
circuit of the type fig. 2.6,

Figure 2.6: Equivalent circuit Hodgkin-Huxley model

from this circuit we deduce that Vm depends on:
• Cm: a capacity due to the presence of a different concentration of ions between

the inside and outside of the membrane;

• INa, IK : they model the charge transport due to the sodium and potassium
ion channels respectively,; since these terms are modeled as a current genera-
tor, using Ohm’s law, this terms can be interpreted as a voltage generator Ek,
ENa and corresponding admittance gNa(Vm), gK(Vm), through experimental
observations it was observed that this parameter depends on the membrane
potential:

INa = ENa · gNa(Vm), IK = EK · gK(Vm) (2.1)
focusing attention on potassium channel K, the same conclusion it can be ap-
plied in other channels. Analyzing the relations that link the various param-
eters we have that the voltage value EK is related through the Nernst equa-
tion obtained from the results of statistical mechanics through the Boltzmann
weight [21], which expresses the potential that is established in a solution in
presence of a charge imbalance:

nK
1 ∝ e−βµK

1 , nK
2 ∝ e−βµK

2 | β = 1
kBT

(2.2)

24

2.2 – Neuron model

where nK
1 , nK

2 are the ionic charge concentration, defined respectively inside
and outside the membrane; µK

1 , µK
2 the respective chemical potential; q =

Z · e ionic charge that allow to convert the chemical potentials into electrode
potentials EK

1 = µK
1 /q, EK

2 = µK
2 /q:

nK
1

nK
2

= e−βµK
1

e−βµK
2

nK
1

nK
2

= eβ(µK
2 −µK

1)

β(µK
2 − µK

1) = ln
(︄

nK
1

nK
2

)︄

µK
2 − µK

1 = kBT ln
(︄

nK
1

nK
2

)︄
µK

2 − µK
1

q
= kBT

q
ln
(︄

nK
1

nK
2

)︄

EK
2 − EK

1 = kBT

q
ln
(︄

nK
1

nK
2

)︄

(2.3)

EK = EK
2 − EK

1 = kBT

q
ln
(︄

nK
1

nK
2

)︄
(2.4)

the term gK(Vm) it allows to define the equivalent admittance of the ion chan-
nel whose value depends on the equilibrium value gk that is, in the case of
Vm = Vrest and from the membrane potential through a dimensionless pa-
rameter n which is between 0 and 1, which respectively indicate a completely
closed and completely open channel.

gK(Vm) = gK · n4 (2.5)

The temporal evolution as function of Vm is obtained through a master equa-
tion approach:

dn

dt
= αn(Vm)(1− n)− βn(Vm)n (2.6)

where αn(Vm) refers to the probability of passing from an open channel start-
ing from a closed channel, while βn(Vm) is the opposite. Consequently the
value of gK is expressed as the quantity in the rest condition:

• Il: defined as leakage current a constant value, this term takes into account
the continuous current that passes through the membrane due to a diffusive
phenomenon, caused by the different concentration of ions.

25

Background

The set of differential equations that allow to describe the output action poten-
tials produced by a neuron, as a function of an external current I(t) that takes into
account, the action potential received are:

dVm

dt
= I(t)− INa(Vm, m, h)− IK(Vm, n)− Il(Vm)

Cm

dm

dt
= αm(Vm)(1−m)− βm(Vm)m

dn

dt
= αn(Vm)(1− n)− βn(Vm)n

dh

dt
= αh(Vm)(1− h)− βh(Vm)h

(2.7)

INa = gNam3h · (Vm − ENa)
IK = gkn4 · (Vm − EK)

Il = gl · (Vm − El)
(2.8)

αm = 0.1(25− V)
e

25−V
10 − 1

αn = 0.01(10− V)
e

10−V
10 − 1

αh = 0.07e− V
20

βm = 4e− V
18

βn = 0.125e− V
80

βh = 1
e

30−V
10 + 1

(2.9)

with V = Vm − Vrest.

Parameter Value
Cm 1.0 µF cm−2

gNa 120.0 mS cm−2

gK 36.0 mS cm−2

gl 0.3 mS cm−2

ENa 50.0 mV
EK -77.0 mV
El -54.387 mV
Vrest -65.0 mV

Table 2.1: Hodgkin-Huxley model parameters

2.2.2 Leaky integrate-and-fire model
The leaky integrate-and-fire model (LIF) described by Louis Édouard Lapicque [22],
represents a simplified version of the model described above, in which the individual

26

2.2 – Neuron model

ion channels are not considered, but only the admittances related to the global
behavior of the channels. As can be seen in fig. 2.7 within this model we can
identify two voltage generators with different signs, this means that the presence of
an admittance other than 0 for the different generators allows to describe a process
of membrane polarization or depolarization, favoring or not the production of an
action potential. This allows us to identify two types of synapses:

• excitatory synapses: these types of synapses if stimulated through the action
potentials favor the depolarization of the membrane, allowing the emission of
a action potential;

• inhibitory synapses: in this case the opposite behavior occurs;

Figure 2.7: Equivalent circuit Leaky integrate-and-fire model

In order to obtain the equations of this LIF model, we refer to the master
equation relation obtained in the Hodgkin-Huxley model, and we reorganize the
terms as follow:

dn

dt
= αn(Vm)(1− n)− βn(Vm)n

dn

dt
= αn(Vm)− αn(Vm)n− βn(Vm)n

dn

dt
= αn(Vm)− [αn(Vm) + βn(Vm)]n

1
αn(Vm) + βn(Vm)

dn

dt
= αn(Vm)

αn(Vm) + βn(Vm) − n

τn(Vm)dn

dt
= n∞(Vm)− n

dn

dt
= n∞(Vm)

τn(Vm) −
n

τn(Vm)

(2.10)

27

Background

n∞(Vm) indicates the value assumed at t → ∞, while τn(Vm) indicates the time
needed to reach the n∞(Vm) value after a perturbation.

Making a comparison between the equation obtained in the Hodgkin-Huxley
model and the Leaky integrate-and-fire model:

τm
dVm

dt
= ge(Ee − V) + gi(Ei − V)− (Vm − El)

dge

dt
= we

I∑︂
i=1

δ(t− ti)−
ge

τe

dgi

dt
= wi

J∑︂
j=1

δ(t− tj)−
gi

τi

V = Vm − Vrest

(2.11)

the parameter τm indicates the time necessary for the membrane potential Vm to
return to the equilibrium value Vrest after a perturbation, in a similar way we
interpret τi, τe for admittances.

The Ee, Ei indicates the electrical potential relating to the excitatory and in-
hibitory synapses, while ge, gi the admittances valued that are function of the
weight of the synapses we, wi, these parameters indicate the effect of excitability
or inhibition of the neuron after receiving an action potential, the greater they are
the greater the degree of excitability or inhibition of the synapse. Finally the Dirac
delta function takes into account the instant the action potential is received.

δ(t− ti) =

⎧⎨⎩1 t = ti

0 t /= ti

(2.12)

28

2.3 – Neural code

2.3 Neural code
By neural code we mean the way in which the stimuli received from a biological
system, are encoded in the form of a series of action potentials, called spikes in
neuromorphic engineering. By analyzing the behavior of different neurons subjected
to external and internal stimuli, a variety of response can be observed, which can
be enclosed in two encoding techniques, the Rate Coding and Temporal coding.

Analysing separately the cases we have:

• Rate Coding: in this case the information is encoded in the number of spikes
per unit of time. As can be seen in fig. 2.8 two different quantities are encoded,
and this is reflected in having a number of spikes. This kind of behavior can
be obtained by through a constant stimulus of different intensity, from which
is easily deduced that the information of this stimulus is contained in the
number of spikes per unit of time. Examples of this behavior have been
observed in muscle control process [23].

(a) Rate Coding (b) Rate Coding

Figure 2.8: Representation of spike train in the Rate coding case, adapted from [24]

• Temporal coding: in this second category of coding, the information is con-
tained in different elements of the series of spikes [25] such as:

– the time a spike was emitted, respect to the source;

– the time interval between the various spikes called Inter-Spike Interval
(ISI);

– the maximum or the minimum number of spike;

– the combination by reinterpreting the spikes as a sort of binary code.

29

Background

Figure 2.9: Representation of spike train in the Temporal coding case, adapted from [24]

30

Chapter 3

Materials and methods

SNNs represent the new generation of neural networks, whose functioning and
structure are inspired by the networks of organisms present in nature. During
the evolutionary process the various organisms have developed different biological
systems specialized in collecting, coding and processing based on the nature of the
stimuli received. As described in section 2.3, the information inside the neurons is
encoded in the form of electrical impulses, so to be correctly processed it is necessary
to identify the most suitable coding method based on the data. Below will discuss
using the diagram shown in fig. 3.1: the properties of the three categories of data,
the pre-processing techniques, the coding algorithms and the pros and cons of using
them based on the data and finally the evaluation of the use of such methods as
coding for SNNs.

Figure 3.1: Machine learning pipeline

3.1 Temporal data and Spatial data
A first criterion that can be used to determine the most suitable type of encoding,
that can be used to treat the information can be extracted through the type of
data, being able to identify 3 classes: temporal data as in the case of audio signals,

31

Materials and methods

spatial data for example of the images and the spatio-temporal data in the case of
the data that is a combination of the two, which however will not be treated here.

3.1.1 Temporal data
With temporal data we refer to signals whose information content is coded in
sequence, i.e. in order to understand the information contained in an audio signal,
it is necessary to carry out a serial analysis of the data, analyzing in sequence the
various instants.

Obviously, there could be objections to this, given the multitude of techniques
inside and outside the field of machine learning that allow to elaborate a parallel
analysis using different methods like: wave form analysis, Fourier transform, deep
neural network or other kind of methodology that permit to perform a change of
space reorganization of the data in a different perspective respect to the temporal
organization.

However, this class separation between temporal and spatial data, is based on
a bio-inspired analysis procedure. An example of temporal data can be defined by
an audio signal as shown in the fig. 3.2.

Figure 3.2: FSD audio sample

To verify the temporal structure of the analyzed data it can be used a quantity
called in physics temporal correlation, this quantity allows to define how much the
value of the data in an instant t is affected by the previous instants t−1, t−2, A
suitable approach is to employ the Pearson correlation coefficient rxy, which in this
case gives us that exists a correlation between two consecutive temporal instants:

rxy =
∑︁n

i=1(xi − x̄)(yi − ȳ)√︂∑︁n
i=1(xi − x̄)2

√︂∑︁n
i=1(yi − ȳ)2

(3.1)

32

3.1 – Temporal data and Spatial data

where x represents the vector of our sample, while y is obtained through a shift of
the original data, and the x̄, ȳ, is the expected value, being a coefficient of correla-
tion this factor can assume values between −1 ≤ rxy ≤ 1, with +1 corresponding
to a positive correlation, −1 defined as negative correlation or anti-correlation and
0 indicating non-correlation.

(a) FSD dataset (b) Randomly generated dataset

Figure 3.3: Pearson Correlation Coefficient for Temporal Data, this type of coefficient allow to
determine the correlation of the data between two consecutive instant of the audio sample

Graphically representing the distributions of the Pearson correlation coefficient
fig. 3.3, obtained through a dataset of audio signals the Free Spoken Digits (FSD),
and a dataset of the same size of samples built through a random distribution. In
the fig. 3.3(a) shows the distribution relative to the FSD where the maximum peak
is at 0.9, index that there is a strong direct correlation between two instants in the
samples index, that these data turn out to be temporal data. But in the second
case fig. 3.3(b), related to random dataset the peak is around 0 which corresponds
to non-correlation.

The comparison between these two cases allows us to demonstrate that a sample
in order to be classified as a temporal data, it must possess a fundamental property,
there must be a temporal correlation between the successive instants of the signal.

In identifying the coding techniques that can be used to process these types of
data, it is necessary to identify algorithms that allow to preserve the temporal link
of the information.

3.1.2 Spatial data
In the case of Spatial data, the information appears to have a spatial organization.
This means that considering a point in the sample under examination, it presents
links with other points based on the dimension of the data. Obviously the following
definition is applicable in generic cases such as in case of chemical bonds in crystals
that bind atoms, edge in graphs that connect the vertex and so on.

33

Materials and methods

In the case under consideration, however, we will limit ourselves to simple spatial
data such as images, to obtain information from this type of data, one has to analyze
the structure as a whole, or by analyzing the various clusters, as in the case of image
segmentation [26]. A classic example is obtained from the MNIST dataset.

Figure 3.4: MNIST sample, the MNIST dataset is a collection of handwritten digit composed
by 60000 training image and 10000 testing image, with 28×28 pixel

As in the case of temporal data, we can identify a parameter that allows us to
determine the degree of correlation between the different points in the sample, by
defining a spatial correlation. This parameter is defined as Moran’s I, which allows
to define the degree of clustering within a connected graph.

I = N

W

∑︁
i

∑︁
j wij(xi − x̄)(xj − x̄)∑︁

i(xi − x̄)2 (3.2)

Analyzing the various parameters, we have that N represents the size of the image;
xi defines the point of the image; x̄ indicates the expected value; wij indicates the
map value of the first nearest neighbors, while W = ∑︁∞

i=1 wij. Also in this case,
since this parameter is a correlation coefficient, its value can be −1 ≤ I ≤ 1, an
toy example of a spatial data and the corresponding Moran’s I, can be appreciated
in fig. 3.5:

34

3.1 – Temporal data and Spatial data

(a) Negative correlation (b) Non correlation (c) Positive correlation

Figure 3.5: Moran’s I example

As in the previous case, also in this case we try to determine the value of
this index, in order to understand if a particular dataset fall into the category of
Spatial data. To do this we compare the value of the Moran’s I, between the MNIST
dataset composet of a set of written digits and one generated through a random
distribution.

(a) MNIST dataset (b) Randomly generated dataset

Figure 3.6: Moran’s I for Spatial Data

As in the previous case in fig.3.3, also in this case we can observe the same
behaviour presenting in the fig. 3.6(a), the distribution of the Moran’s I of the
MNIST with peak at 0.8, as you can easily guess the presence of such a high value
indicates a correlation between the various points in the image, obtaining a spatial
correlation of the data. In the second case fig. 3.6(b) the same index is evaluated
but in the case of a dataset composed by sample generated randomically, and as
can be seen the peak is at 0, this means that no spatial information appears to be
contained in these samples.

Therefore, so that such a sample can belong to the set of Spatial data, it is
necessary that there is a correlation from the spatial point of view between the
various points, of which it is composed.

35

Materials and methods

In this data instead it is not necessary to use coding techniques that preserve
the data structure, delegating the task of extracting this link to the neural network,
rather an appropriate coding algorithm must be identified, on the contrary must
be identified a suitable encoding algorithm, in order to associate a spike code for
each pixel as faithfully as possible.

3.2 Preprocessing
In the field of machine learning with pre-processing we mean the set of techniques
that allow you to adapt the information to be processed to the system used, making
the training process simpler. Examples of such procedures are: the analysis of the
samples and their labels to verify possible class imbalance, standardization of the
feature having zero mean, the adoption of feature reduction techniques to identify
the most relevant characteristics of the data, and all the possible process that
applied to the data improve the learning process.

In our case, since time-varying signals are analyzed, the pre-processing step
applied is that of decomposition the signal into frequency channels through the
use of a filter bank, the application of this method it is founded on the way the
human ear processes audio information, furthermore this step not only useful from
the point of view of network learning but also makes encoding techniques more
effective, because performing such operation results in two main advantages:

1. by decomposing the signal into various channels, we obtain a sufficiently large
number of features from which our neural network can extract a more robust
model;

2. using this method, Fourier series development is exploited, describing the
signal as a combination of n sinusoidal signals. This allows to standardize the
criterion by which the various parameters used in the encoding algorithms are
defined, since each component has a pseudo-sinusoidal structure.

3.2.1 Filter bank
By filter bank we mean an array of filters that allow you to separate the various
frequency components of an input signal. There are different architectures with
which the various filters at different frequencies can be connected in order to develop
this decomposition based on the type of filter which can be: low-pass filter, high-
pass filter or band-pass filter.

Assuming to use a band-pass filter type, the architecture used is reported in
fig. 3.7, the next steps to define the characteristics of our filter bank, is to choose
how many channels do we need, the technical design specifications of the single filter,
that allow to define the gain, bandwidth and the slope of the Transfer function.

36

3.2 – Preprocessing

Through the theory of signal analysis there are numerous types of filters, for
example the Butterworth, Chebyshev, Bessel, and so on, each of these types of filters
has different characteristics, which make them suitable for very specific purposes,
respectively, such as the introduction of low distortion for audio applications, or the
presence of ripple for mechanical applications or phase shifts in phase components.

Figure 3.7: Filter bank example scheme

Consequently, since we want to use bio-inspired techniques, for the choice of
the type of filter most suitable for the purpose, the characteristics of the biological
systems analyzed must be taken into consideration, which in this case refer to the
auditory system of the human ear. By this analogy the sensory organ capable of
carrying out this filter decomposition is the cochlea [15] whose structure is shown
in fig. 3.8.

Figure 3.8: The ciliated structure of the cochlea and the relative resonance frequencies based
on their length, adapted from [27]

The cochlea represents the terminal part of the auditory apparatus, consisting
of a spiral structure very reminiscent of a snail. Inside this spiral there are a
series of lashes of gradually increasing length [28], this allows each lash to have its
own oscillation frequency, triggered by the resonance phenomenon through external

37

Materials and methods

stimuli. Since an audio signal is made up of different frequency components, each
component stimulates a specific cilia based on its intensity, subsequently these
oscillations are encoded into electrical impulses which are transposed and finally
processed [29]. Through the following analogy it can be observed that the cochlea
essentially represents a filter-bank where each cilia represents a specific band-pass
filter.

Through the study of the acoustic spectrum and psychoacoustics, it is hypoth-
esized that the decomposition performed by the cochlea can be modeled as a filter
bank consisting of Butterworth [30] or Gammatone [31] [32] filters.

Butterworth Filter

By Butterworth filter we mean a filter whose transfer function is defined by means of
a Butterworth polynomial B(n)(s/ω0) where n define the degree, the corresponding
transfer function is:

H(s) =
B(n)(s

ω0
)

B(m)(s
ω0

) | m > n (3.3)

analyzing in detail the Butterworth polynomial:

Bn(s) =
n∑︂

k=0
aksk | ak =

k∏︂
l=1

cos((l − 1)γ)
sin(lγ) ; γ = π

2n
; a0 = 1 (3.4)

A graphic example of a Butterworth band-pass filter bank with is shown below:

Figure 3.9: Butterworth filter bank

Gammatone Filter

The Gammatone filter represents another type of filter that tries to model the
acoustic spectrum of the human ear; it assumes a slightly more complex structure

38

3.2 – Preprocessing

compared to that of Butterworth from the point of view of the transfer function
H(s) eq. 3.5 [32].

H(s) =
eiϕ[s + ω0

2Q
+ iω0

√︂
1− 1

4Q2]N + e−iϕ[s + ω0
2Q
− iω0

√︂
1− 1

4Q2]N

[s2 + ω0
Q

s + ω2
0]N (3.5)

A more informative analysis is obtained through the Gammatone impulse response
function f(t) eq. 3.6 [32], which allows to describe the response over time by the
Gammatone in response to a stimulus described by a Dirac delta δ(t = 0)

f(t) = AtN−1e−bt cos (ωrt + ϕ) (3.6)

analyzing this function we can easily understand where the term Gammatone comes
from:

• AtN−1e−bt: gamma-distribution, where A represents the amplification factor,
while N indicates the filter grade and b the bandwidth;

• cos (ωrt + ϕ): tone-function ωr is the oscillation pulsation, ϕ the phase shift.

A graphic example of a band-pass filter bank with Gammatone is shown below
fig. 3.10.

(a) Gammatone impulse response,
adapted from [32]

(b) Gammatone filter bank

Figure 3.10: Gammatone Time and Frequency response

A notable difference between the two types is the overlap of the bands, which
is greater in the case of Gammatone for a high number of filters; this will prove to
be an important aspect in the encoding performance.

An example of the application of the application of the filter bank on a sample
of the FSD is shown in fig. 3.11:

39

Materials and methods

Figure 3.11: Here is an example of splitting into 16 channels through a filter bank consisting
of butterworth filters of a sample of the FSD

3.3 Encoding Algorithms
In this section we will explore the various coding techniques that can be used to
encode information, in order to be properly processed by SNNs.

As mentioned in Section 2.3 during the evolutionary process organisms have
developed biological systems specialized in the collection of various external stimuli
and in the encoding in the form of electrical impulses, also called spike trains. Based
on the way the information is encoded, two coding techniques can be identified, Rate
Coding and Temporal Coding, each of which has different classes to which different
methods are associated.

3.3.1 Rate Coding
Rate coding was one of the first classes of algorithms hypothesized through exper-
imental observations, performed in the nervous system specialized in the transport
of information [33]; in this case the information is encoded within the number of
spikes per unit of time. Further studies on the analysis of the reaction time, for
the visual [34], olfactory [35], tactile [36] and auditory [37] systems, have shown
that this coding method it would take a very long time of analysis to collect the
stimuli necessary to obtain an exhaustive response [38], for this reason, the use of
this method in time-varying signals has a limited application.

Figure 3.12: Algorithms that are part of Rate coding

40

3.3 – Encoding Algorithms

Count Rate/Poisson Rate

The algorithm that is part of Rate Coding is called Count Rate or Poisson Rate,
the name of this technique derives from the probability distribution used to model
the experimental results, i.e. the Poisson distribution.

This coding method was experimentally observed for the first time in nerve
cells specialized in the transport of information. The experimental procedure em-
ployed [24] to observe this behavior consisted in recording the spikes in time of a
set of neurons. Subsequently, in order to extract information from the spike train,
the probability distribution of the time intervals between one spike and the next
was analyzed, obtaining the graph shown in fig. 3.13

Figure 3.13: ISI distribution, adapted from [39]

Through the following experimental analysis it can be concluded that the Pois-
son distribution allows to describe this time interval between two spikes, also re-
ferred to Inter-Spike Interval (ISI) [40], consequently the information inside this
encoding is obtained from the number of spikes per unit time.

In order to use this method for our purposes we develop the inverse process, i.e.
starting from the information we want to encode, a spike train will be generated
whose interval between the two spikes is generated using the Poisson distribution.

Assuming that the value to be encoded is equal to the value r ∈ R, to determine
the various intervals, we start from the classical definition of Poisson probability
distribution (eq. 3.7):

Pn(∆t) = (r∆t)n

n! e−r∆t (3.7)

this function allows to define probability of obtaining n ∈ N spikes in the time
interval [t, t + ∆t] with a production rate of r.

In order to determine the time interval between only two spikes we impose
n = 0 and start from the complement of the probability distribution, we reverse

41

Materials and methods

the function by isolating ∆t:

P (∆t) = 1− e−r∆t

e−r∆t = 1− P (∆t)
r∆t = − log (1− P (∆t))

∆t = − log (1− P (∆t))
r

(3.8)

ISI = − log (1− P (∆t))
r

(3.9)

The function described by eq. 3.9 it allows to define the time interval between two
pulses whose spike rate is r, consequently ISI is the key parameter for the encoding
of the information of our interest.

The procedure to be used in order to obtain a rate encoding of a value x ∈ R
which in the following coding corresponds to the spike rate x = r, is described in
the following points:

1. first of all it is necessary to define the duration of the stimulus ∆t, i.e. how
long we want the information to be encoded according to the method used
for processing, in the following cases it will be used as stimulus time ∆t = 1s;

2. in order to describe the interval of the first spike with respect to time t = 0,
eq. 3.9 is used, where the value P (∆t) is a value generated according to a
random distribution in an interval of 0 ≤ P (∆t) < 1, obtaining the first spike
at time t1 = ISI;

3. the subsequent spikes are obtained using the same procedure as the previous
point by defining the time of the nth spike by means of the relation tn =
tn−1 + ISI;

4. spike production stops when the time of the next spike is greater than the
total duration of the stimulus if tn+1 = tn + ISI > ∆t;

Conclusion As we can see, in fig. 3.14 the application of the Rate encoding
technique is shown on the two types of data belonging to the class of Spatial data
fig. 3.14(a), which shows an image formed by 4 pixels with a different intensity and
Temporal data fig. 3.14(c), consisting of a signal lasting 2 seconds at different levels
of intensity.

42

3.3 – Encoding Algorithms

(a) Spatial data example (b) Spike train encoding

(c) Temporal data example (d) Spike train encoding

Figure 3.14: Comparisons between Spatial data and Temporal Data with Rate Encoding algo-
rithm

As can be clearly observed, a better coding performance is obtained in the case
of the Spatial data class (fig. 3.14(b)), for which each pixel is treated individually,
whose spike production is proportional to the intensity of the same, allowing to
encode in the time interval by 1s the whole image.

On the other hand, in the case of temporal data (fig. 3.14(c)), one can immedi-
ately notice some great disadvantages. Although in this particular case the different
intensity produces a well-defined region in which it can be identified the amount
of spike related to the level, in the case of weakly variable signal one would have
an almost equal distribution of spikes, making it impossible to recover the correct
level. Furthermore in order to have an correct encoding as shown turns out to be
much longer than the duration of the signal itself. For this reasons the use of this
algorithm is inapplicable in the case of rapidly varying signals, since a very long
time interval is required to obtain correct encoding [25].

From this analysis it can be concluded that rate encoding is particularly suitable
for the encoding of data belonging to the class of Spatial data.

43

Materials and methods

3.3.2 Temporal Coding
Temporal Coding represents the second type of logic that can be used to encode
the data, presenting a great variety of classes of algorithms each having advantages
and disadvantages depending on the field of application. Compared to the case of
Rate encoding, however, they have greater advantages in terms of the number of
degrees of freedom that can be used to encode the information, including it in four
elements:

• number of spikes;

• the time interval between two spikes;

• time to spike;

• the spike sequence, by treating this combination as some sort of binary code.

through the following criteria we can identify four Classes of encoding techniques as
reported in the fig. 3.15, Temporal Contrast, Filter & Optimizer, Global Referenced,
Latency/ISI and Correlation & Synchrony.

Figure 3.15: Algorithms that are part of Temporal coding

Temporal Contrast

The algorithms in this class are suitable for the coding of time-varying signals, as
they are able to detect the variations of between two or more instants of time,
making them suitable for the analysis of audio signals [15], measurements for elec-
trocardiogram [41], vibrations in a failure prediction of machine [42], and other
type of problem that involve time varying signals.

Belonging to this class of algorithms are Threshold-Based Representation (TBR),
Moving Window (MW), Step-Forward (SF), Pulse-Frequency Modulation (PFM).

44

3.3 – Encoding Algorithms

Threshold-Based Representation (TBR)

Channels← length(Sample)
L← length(Sample[0])
SpikeTrain← zeros(Channels, L)
for c = 0 : Channels do

SpikeT ime←∞
V ariation← zeros(1, L)
for i = 0 : L− 1 do

V ariation[i + 1]← Sample[c][i + 1]− Sample[c][i]
end for
Threshold = mean(V ariation) + factor · std(V ariation)
V ariation[0]← V ariation[1]
for i = 0 : L do

if V ariation[i] > Threshold and SpikeT ime > τrefra then
SpikeTrain[c][i]← 1

else if V ariation[i] < −Threshold and SpikeT ime > τrefra then
SpikeTrain[c][i]← −1

end if
end for

end for

Using as reference the signals in fig. 3.11 which shows the 16 frequency channels
of a sample of the FSD, let us briefly describe the key steps for the implementation
of this coding method.

1. treating each channel individually, first of all a parameter called V ariation
is defined, which allows to determine the variation of the signal amplitude of
the signal between the instant considered and the previous one as shown in
fig. 3.16;

Figure 3.16: Example of signal and the content in the variable V ariation

45

Materials and methods

2. through the previous parameter, we can obtain another very important quan-
tity, the Threshold, which allows to define the band beyond which, if the
signal intensity is greater, a spike will be emitted:

Threshold = mean(V ariation) + factor · std(V ariation) (3.10)

the width of this band is regulated by the parameter factor, the greater this
value, the greater the threshold band, this parameter also plays a more im-
portant role from the point of view of noise suppression based on the assumed
value:

• factor = 0: encode all variation that is different from the mean;
• 0 < factor < 1: used for signal without noise, but take also low variation

that produce high number of spike;
• factor = 1: used for signal without noise, but suppress a low variation;
• factor > 1: used to suppress noisy signal.

the different encoding performances based on the range of values described
above are shown in fig. 3.17;

(a) factor = 0 (b) factor = 0.5 (c) factor = 1 (d) factor = 3

(e) Spike train encod-
ing

(f) Spike train encod-
ing

(g) Spike train encod-
ing

(h) Spike train encod-
ing

Figure 3.17: TBR encoding parameters comparisons

3. finally, for the production of spikes it is sufficient to compare the level of the
input signal with the threshold values, and in the event that this value is
greater in a positive or negative sense than the threshold, a spike is emitted.

46

3.3 – Encoding Algorithms

The fig. 3.17(e)-(f)-(g)-(h) represent the coded information, in a series of spikes
+1 and −1. Even if the information in the brain is encoded through positive
impulses, this does not represent a contradiction, as two types of synapses can be
identified within the connections:

• excitatory synapse: in this case the spike is translated by the neuron as a +1
stimulus bringing it towards a state of depolarization;

• inhibitory synapse: in this case the spike is translated by the neuron as a −1
stimulus bringing it towards a state of hyperpolarization.

Moving Window (MW)

Channels← length(Sample)
L← length(Sample[0])
SpikeTrain← zeros(Channels, L)
for c = 0 : Channels do

V ariation← zeros(1, L)
for i = 0 : L− 1 do

V ariation[i + 1]← abs(Sample[c][i + 1]− Sample[c][i])
end for
Threshold = mean(V ariation)
Base = mean(Sample[c][0 : Window])
for i = 0 : Window do

if Sample[c][i] > Base + Threshold then
SpikeTrain[c][i]← 1

else if V ariation[i] < Base− Threshold then
SpikeTrain[c][i]← −1

end if
end for
SpikeT ime←∞
for i = 0 : Window : L do

Base = mean(Sample[c][i : i + Window])
if Sample[c][i] > Base + Threshold and SpikeT ime > τrefra then

SpikeTrain[c][i]← 1
else if V ariation[i] < Base− Threshold and SpikeT ime > τrefra then

SpikeTrain[c][i]← −1
end if

end for
end for

MW encoding uses more or less the same logic as TBR, also in this case using a
variant of the Threshold value, to define the range of values beyond which a spike
is emitted. Although in the case of the TBR the threshold band is fixed for the

47

Materials and methods

entire duration of the signal, in the case of the MW the reference position depends
on the instant of the signal to be encoded, while the amplitude derive from the
Windows parameter, that define how many how many instants before and after
compared to the one to be encoded and the Base with in a Window indicating the
central point of the range.

Regarding the size of the window, we can use the expansion series of sine trun-
cated to first order, to understand the logic behind the definition of the amplitude
of the Window, since according to the Fourier decomposition, the signal is obtained
as a linear combination of sinusoidal signals:

f(x) = sin x ≈ x + O(x) (3.11)

as you can see f(x) is a monotonically increasing function, this means that an
increase in the signal appears to be present in the immediately following instants,
consequently to capture even small variations it is sufficient to fix the value of the
Window between 3 and 4.

By exploiting this property, a sort of filtering of the signal from noise is also
obtained in this case.

(a) Window = 3 (b) Window = 7

(c) Spike train encoding (d) Spike train encoding

Figure 3.18: MW encoding parameters comparisons

In fig. 3.18 (a)-(b) the construction of the threshold of values is obtained in the
following way: the central line represents the expected value of the signal in the
dimension of the considered window, while the ranges are obtained through the sum
and difference between the mean and the Threshold. From here it can be deduced

48

3.3 – Encoding Algorithms

that if the parameter Window is sufficiently small and the level of signal exceeds
the range described previously, a spike is produced fig. 3.18(c); on the contrary if
the window is too large, the data for signals whose variation is too small will always
be contained in the range and this prevents correct conversion fig. 3.18(d), from
this example we can conclude that also in this case it is possible to obtain a noise
suppression effect, based on a careful choice of the parameter value, which in this
case is represented by the Window parameter. In order to obtain the desired noise
suppression, an optimization process is carried out on the Window starting from
very low values such as 3 and progressively increases to the desired level.

Step-Forward (SF)

Channels← length(Sample)
L← length(Sample[0])
SpikeTrain← zeros(Channels, L)
for c = 0 : Channels do

Jump← max(Sample[c])−min(Sample[c])
Threshold← mean(Jump)/factor
SpikeT ime←∞
Base← Sample[c][0]
for i = 0 : L do

if Sample[c][i] > Base + Threshold and SpikeT ime > τrefra then
SpikeTrain[c][i]← 1

else if Sample[c][i] < Base− Threshold and SpikeT ime > τrefra then
SpikeTrain[c][i]← −1

end if
end for

end for

The SF [43] algorithm also known as Delta Encoding, has a completely different
coding logic than the TBR or MW, in which the implementation procedure is
inspired by digital analog conversion techniques and vice versa.

Applying this coding method for each channel individually, the basic idea for
the realization of such encoding is based on the reconstruction of the signal through
a step function whose jump is defined through the maximum excursion of the signal
in terms of amplitude, an example of the reconstruction is shown in fig. 3.19:

49

Materials and methods

Figure 3.19: Example of reconstruction (orange curve) of the sinusoidal signal (blue curve)
through the SF algorithm

The procedure that allows you to define the spikes associated with the signal to
be coded are described below:

1. the first step is to define the amplitude of the step between one instant and
the next used to reconstruct the signal, that is defined by the Threshold
parameter, as function of the maximum excursion of the signal known as
Jump and the parameter factor whose value can be equal to 5 or 10 or
greater depending on the number of spikes we want, the greater is this factor
and the greater is the number of spikes;

Jump = max(Sample[c])−min(Sample[c])
Threshold = mean(Jump)/factor

(3.12)

2. in the second step the value of Base is defined, which essentially represents
the value of the reconstruction signal at a certain instant based on the value
of the original signal, whose initial value coincides with the value at time
t = 0 of the signal to be encoded;

3. in the following steps the value of the original signal is compared with the
reconstructed signal value Base and the value of Threshold, defining an upper
threshold is lower. The emission of a spike is obtained if the value of the
original signal differs by the value of Base with respect to the Threshold in
a positive or negative sense.

Examples of SF encoding for different values in fig. 3.20

50

3.3 – Encoding Algorithms

(a) factor = 5 (b) factor = 10

(c) Spike train encoding (d) Spike train encoding

Figure 3.20: SF encoding parameters comparisons

Pulse-Frequency Modulation (PFM)

Channels← length(Sample)
L← length(Sample[0])
SpikeTrain← zeros(Channels, L)
for c = 0 : Channels do

Jump← max(Sample[c])−min(Sample[c])
Threshold = mean(Jump)/factor
SpikeT ime←∞
for i = 0 : L do

if Sample[c][i] > Threshold and SpikeT ime > τrefra then
SpikeTrain[c][i]← 1

end if
end for

end for

The PFM [44] [45] [46] encoding algorithm appears to have an implementation
logic very close to that of the SF, however carrying out a further pre-processing
operation which in this case consists in eliminating the negative half-wave of the
signal, exploiting the property of the Fourier decomposition stating that informa-
tion for a sinusoidal signal can be extracted by considering only the positive half
wave [15]:

51

Materials and methods

Figure 3.21: PFM pre-processing step

unlike SF, the spike emission occurs if the value of the original signal is greater
than the Threshold value.

Conclusions
As regards data belonging to the temporal data class, this class of algorithms are

ideal for describing time-varying signals, as they are able to encode the variations
of the signal, allowing to reduce the number of spikes to encode signals that do not
contain relevant information, such as small variation.

(a) TBR encoding (b) SF encoding

(c) MW encoding (d) PFM encoding

Figure 3.22: Representation of the same sample with different encoding algorithms

This fig. 3.22 shows an example of a spike train, for which the sample time is
shown on the x axis, while the channels obtained as pre-processing of the filter bank

52

3.3 – Encoding Algorithms

are shown on the y axis, obtaining an increase in frequency moving away from the
x axis, while the blue segments indicate the spikes that are produced.

On the contrary in the case of spatial data given the use of such algorithms, it
has several disadvantages:

• the dimensionality with which the data can be treated is not clear, whether
in an original 2D structure or in a 1D structure;

• it is not useful to decompose the 1D signal into channels since there is no
sampling frequency and there are large variations, such as the presence of
steps;

• for images that have large invariant sections, in most cases no conversion is
performed in those sections, since such classes of algorithms are designed to
capture variations in signals;

• loss of spatial correlation in the converted data.

(a) MNIST Sample

(b) Image with invariant central section

Figure 3.23: The first image is an example of MNIST sample, while in the second row the same
sample is treated but in a linear array form, in the second figure instead is generated an image
with invariant central section at different length

53

Materials and methods

Filter & Optimizer

It describes a different class of encoding algorithms which exploits the use of a
convolution-like operation through the use of a filter to determine spikes. The
basic idea used for the emission of a spike is through the use of the comparison
of the area obtained from the convolution operation and a certain threshold value,
consequently a major disadvantage is linked to the fact that it is necessary to have
a priori knowledge of the signal, in order to determine the structure of the filter to
be used, that allow to obtain a signal coding, as selecting an unsuitable filter could
lead to the non-emission of any spike, or an emission for each instant, obtaining a
coding without information.

Part of this class are the algorithm Hough Spiker Algorithm (HSA), Modified
Hough Spiker Algorithm (MHSA) and Ben’s Spiker Algorithm (BSA).

Hough Spiker Algorithm (HSA)

Channels← length(Sample)
L← length(Sample[0])
LF ← length(Filter)
SpikeTrain← zeros(Channels, L)
for c = 0 : Channels do

SpikeT ime←∞
for i = 0 : L do

Counter ← 0
SpikeT ime+ = 1
for f = 0 : LF do

if i + f < L and Sample[c][i + f] ≥ Filter[f] then
Counter+ = 1

else
break

end if
end for
if Counter == LF then

for f = 0 : LF do
if i + f < L then

Sample[c][i + f]← Sample[c][i + f]− Filter[f]
end if

end for
if SpikeT ime > τrefra then

SpikeT ime← 0
end if

end if
end for

end for

54

3.3 – Encoding Algorithms

In the case of HSA algorithm [47], the quantities that must be fixed to define
the quantities used during the encoding are type and structure of the filter. By
type of filter we mean the structure, which can be assumed as for example boxcar,
cosine, hamming, gaussian and so on, while by structure we mean its width and
amplitude, these parameters are extremely important to obtain a correct encoding,
which must be fixed in relation to the signal to be analyzed.

The choice of these parameters must be very careful, because in order for a spike
to be emitted, the filter area must be completely included in the subtended area of
the signal to be encoded.

Finally, since the filter can assume only a positive or negative value, only part
of the signal can be coded, but this does not represent a problem as by combining
two conversion steps, one with a positive filter and one with a negative filter, both
parts can be encoded.

(a) Step 1 of encoding (b) Step 2 of encoding

(c) Spike train (d) Spike train

Figure 3.24: HSA example encoding procedure

In the fig. 3.24 two conversion steps are represented, where in the first case, in
fig. 3.24(a), part of the filter is above the signal, and this violates the first condition
defined previously, while in the second fig. 3.24(b) both the are respected and so
we have the emission of a spike fig. 3.24(d).

55

Materials and methods

Modified Hough Spiker Algorithm (MHSA)

Channels← length(Sample)
L← length(Sample[0])
LF ← length(Filter)
SpikeTrain← zeros(Channels, L)
for c = 0 : Channels do

SpikeT ime←∞
for i = 0 : L do

Error ← 0
SpikeT ime+ = 1
for f = 0 : LF do

if i + f < L and Sample[c][i + f] < Filter[f] then
Error = Error + Filter[c]− Sample[c][i + f]

end if
end for
if Error ≤ Threshold then

for f = 0 : LF do
if i + f < L then

Sample[c][i + f]← Sample[c][i + f]− Filter[f]
end if

end for
if SpikeT ime > τrefra then

SpikeT ime← 0
end if

end if
end for

end for

MHSA [48] which uses the same logic of the HSA, however to obtain the emission
of a spike, it is sufficient that the convolution-like area is greater than a threshold
value defined by the user. One of the problems related to this algorithm is the non-
emission of spikes for too small Threshold values or an emission at every instant
for too large Thresholds. An example of coding using the MHSA algorithm is in
fig. 3.25

56

3.3 – Encoding Algorithms

(a) Threshold = 0.85 (b) Spike train

Figure 3.25: MHSA encoding example

Ben’s Spiker Algorithm (BSA)

Channels← length(Sample)
L← length(Sample[0])
LF ← length(Filter)
SpikeTrain← zeros(Channels, L)
for c = 0 : Channels do

SpikeT ime←∞
for i = 0 : L− LF + 1 do

Error1← 0
Error2← 0
SpikeT ime+ = 1
for f = 0 : LF do

Error1← Error1 + abs(Sample[c][i + f]− Filter[f])
Error2← Error2 + abs(Sample[c][i + f])

end for
if Error1 ≤ Error2 ∗ Threshold then

for f = 1 : LF do
if i + f + 1 < LF then

Sample[c][i + f]− = Filters[c]
end if

end for
if SpikeT ime > τrefra then

SpikeT ime← 0
end if

end if
end for

end for

Although the considerations made in the description of the HSA algorithm,
for the definition of the filter properties are the same, contrary to the previous
algorithms, in the BSA [48] coding technique the production of the spike is linked

57

Materials and methods

to the comparison of two parameters named Error1 and Error2, through quantity
Threshold. Individually describing the role of the three parameters:

• Threshold: represents a degree of freedom that can be set by the user in
order to obtain an optimal number of spikes for encoding;

• Error1: is linked to a sort of cumulative function of the signal to be coded;

• Error2: it represents more or less the same quantity as Error1, except for
the link with the filter used for the encoding

Once these quantities have been evaluated, a spike is emitted if the following relation
is satisfied:

Error1 = Error2 · Threshold (3.13)

As in the previous cases, the THreshold parameter is defined through an opti-
mization process according to the analyzed signal. In fig. 3.26 some cases used to
identify the most suitable value have been reported. Starting from an initial value
of Threshold = 0 and this value has been progressively increased until the correct
encoding of the positive half-wave is identified (having chosen a suitable filter for
this purpose) reaching a value of Threshold = 1, further increasing the continuous
emission of spikes, indicating that this condition does not allow the transport of
information

(a) Threshold = 0 (b) Threshold = 1 (c) Threshold = 2

(d) Spike train (e) Spike train (f) Spike train

Figure 3.26: BSA encoding parameters comparisons

58

3.3 – Encoding Algorithms

Conclusion

In the case of temporal data, these types of algorithms require a more accurate
evaluation of the parameters that allow the encoding, but are still able to encode
the time-variant signal, although with a much greater number of spikes than the
algorithms of the previous class.

(a) HSA (b) MHSA

(c) BSA

Figure 3.27: Representation of the same sample with different encoding algorithms

In the case of spatial data these types of algorithms present more or less the same
problems discussed in the precedent section, however there is a better conversion for
data that have invariant sections, through a careful choice of the filter fig. 3.28(b).

59

Materials and methods

(a) MNIST Sample

(b) Image with invariant central section

Figure 3.28: The first image is an example of MNIST sample, while in the second row the same
sample is treated but in a linear array form, in the second is generated an image with invariant
central section at different length

60

3.3 – Encoding Algorithms

Global Referenced

The following coding class, appears to have a completely different logic from those
seen so far, defining the spike train as a sort of binary code; this class includes
Phase encoding (PHASE) and Time-to-first spike (TTFS) encoding.

Phase encoding (PHASE)
This coding method draws inspiration from experimental observations con-

ducted on the auditory cortex of animals subjected to natural sounds, which could
produce a state of alarm in the subjects [49] [50]. What has been observed is that
the production of the spike trains turns out to be connected to the phase of the
audio signal, generating a sort of binary code associated with each specific value of
phase.

Using this logic we can implement an algorithmic version of this process through
the following steps:

1. first of all it is necessary to carry out some pre-processing steps, allowing to
develop the following. The two main operations are the elimination of the
negative half-wave and subsequently the normalization of the signal to be
encoded;

2. then we move on to the definition of the phase of the signal, associated with
each instant through the trigonometric function:

ϕ = arcsin (f(t)) (3.14)

3. finally using a process very similar to the analog-digital conversion, we identify
the number of spikes that we want to use for the conversion, and we proceed
with the subdivision into levels as in quantization step, associating a code to
each level, in the example below the code used are 00, 01, 10, 11.

The graphical representation of the previously mentioned steps are shown in
fig. 3.29

Figure 3.29: Phase encoding step

61

Materials and methods

Unfortunately by applying this method to each point of the original signal, the
coded signal turns out to have a greater length than the original, to avoid this the
signal is divided into small segments of the length of the code, whose representative
value is obtained from the average, as in the sampling process.

Time-to-first spike (TTFS)
In TTFS [51], the information is encoded through a single spike, whose delay

of the production of spike respect to the stimulus is related to the intensity of the
signal, greater is the signal smaller is the delay, the opposite behaviour occur for
small signal. Several mapping functions can be used to carry out this encoding.
The one used in this case is defined by an exponential function:

P (t) = θ0e
−t/τth (3.15)

Analyzing the function we have that θ0 represents a normalization variable gener-
ically set to one θ0 = 1; while the τth parameter is related to the maximum spike
time for very weak signals; t identify the time of the spike. Assuming to normalize
the data and reinterpreting this value as the probability distribution P (t) whose
value is between 0 ≤ P (t) ≤ 1, by inverting eq. 3.15, we obtain that t is equal to:

t = τth · log
(︄

θ0

P (t)

)︄
(3.16)

supposing that the value to be encoded is x = 0.2 assuming that P (t) = x, we can
extract the spike time from eq. 3.16 is around t = 0.16, with τth = 0.1 and θ0 = 1.
Graphically represented we have in fig. 3.30 the spike time:

(a) This curve represents the function
that allows the intensity of the signal
to be encoded to be passed to the spike
time

(b) Spike train

Figure 3.30: TTFS encoding example

Using an approach very similar to the previous case in the case of pre-processing
step, in order to encode the data, the intensity curve of the signal/spike time is

62

3.3 – Encoding Algorithms

divided into regular intervals, allowing to define the position of the spike in the
code used for encode the information, in which the number spike that you want to
use for encoding correspond to the number of interval used for the division of the
curve, in this particular example in fig. 3.31 the spike time is divided into 5 ranges.

Figure 3.31: Encoding distribution

In this case for signals of great intensity for an interval between 0.2 and 1.0 the
corresponding spike code is 10000, for 0.1, 0.2 it is 01000 and so on up to 00000.
An important aspect of this coding method is that one spike is used at a time
to encode the information. However, this method presents the same problems as
PHASE encoding regarding the size of the converted data, for this reason if you
want to keep the same size, it is necessary to divide the signal into segments, also
in this case calculate the average value as reference to the segment and proceed
with the conversion.

Latency/ISI

This type of coding allows to encode the information through the use of two ele-
ments, the amount of spikes and the time interval between the spikes, thus defining
the BURST encoding method.

Burst encoding (BURST)
Also in the case of BURST encoding [51], the first step is to set the number

of spikes used as code, but next to this parameter it is also necessary to set the
maximum number Nmax of spikes produced, and the minimum tmin and maximum
ISI interval tmax. Also in this case the same pre-processing approach defined for
PHASE and TTFS encoding is applied. The steps for generating the coding se-
quence are described in 2 phases:

1. the number of spikes is obtained through the product of the signal inten-
sity that thank to the pre-processing step is included in 0,1 interval and the

63

Materials and methods

maximum number of spikes:

SpikeNumber = ⌈rate ·Nmax⌉ (3.17)

2. for the definition of the ISI it is necessary to divide two cases:

ISI =

⎧⎨⎩⌈tmax − rate(tmax − tmin)⌉ SpikeNumber > 1
tmax Otherwise

(3.18)

Conclusion In order to comment the encoding performances, the Global Ref-
erenced and Latency/ISI classes are considered together, due to the affinity in the
pre-processing of time-varying data, by carrying out a subdivision into bins, and
the coding that can be interpreted as a binary code.

The use of Global Referenced-Latency/ISI encoding methods in the Temporal
data, have greater disadvantages with respect to the other techniques, since in
this case as a series of pre-processing operations are required to have a consistent
encoding between the raw data and the spike code, that produce a data loss directly
proportional to the resolution desired, or if you want to avoid data loss, you will
get a encoded data whose size is much larger than the original.

(a) PHASE (b) TTFS

(c) BURST

Figure 3.32: Representation of the same sample with different encoding algorithms

64

3.3 – Encoding Algorithms

Unlike the previous types of data in the case of Spatial data, this type of en-
coding is much more suitable, as it allows to encode without loss of information
the data treated.

Figure 3.33: Encoding comparison in Spatial Data

Correlation & Synchrony

Correlation and Synchrony is a completely different logic of encoding structure
respect the types already seen. In this case the information is elaborated in a way
to have a sparse representation, allowing to reduce the amount of spike. Therefore
the technique that is part this method is Sparse Distributed Representation (SDR).

Sparse Distributed Representation (SDR)
This type of encoding, described in the work of Zihan Pan et al. [52], tries to

translate the functioning of the human ear cochlea as faithfully as possible, through
the use of two main elements the spectrogram and the masking effect. The principal
step implemented to produce this encoding are:

1. spectrogram: the spectrogram is produced using the classic procedure, di-
viding the signal to be analyzed in regular intervals, and then the filter de-
composition is applied, this allow to extrapolate the intensity of the signal at
given time. In order to use the masking effect, it’s necessary to calculate the
intensity of the input audio in dB obtained thanks to eq. 3.19:

I = 10 · log10

(︃ l∑︂
n=1

x2
i

)︃
(3.19)

in which n indicate the length for the interval;

65

Materials and methods

Figure 3.34: Spectrogram obtained from one sample of the FSD dataset

2. masking: the masking effect is the result of modeling the phenomenon of the
human ear’s inability to distinguish signals in the presence of loud noises.
The effect of the masking appears to be due to two contributions:

• Simultaneous Masking: this masking derives from studies conducted on
the acoustic spectrum which allows to define the minimum threshold in
dB perceivable by the human ear that produces a stimulus, described
from function 3.20, where define the threshold in function of frequency,
that allow the emission of spike or not:

T (f) = 3.64
(︄

f

1000

)︄−0.8

− 6.5e
−0.6

(︄
f

1000 −3.3

)︄2

+ 0.001
(︄

f

1000

)︄4

(3.20)

Figure 3.35: Threshold Profile used to generate the mask in the case of Simultaneous Masking

66

3.3 – Encoding Algorithms

From the spectrogram and the threshold equation, a Spatial masking is
generated, a matrix of the same size as the spectrogram composed of 0
and 1, defined according to the conditions 3.21:

Sth(t, f) =

⎧⎨⎩1 Spectrogram(t, f) > T (f)
0 Otherwise

(3.21)

An example of a spatial map obtained from eq. 3.21 is shown in the
fig. 3.36:

Figure 3.36: Spatial map generated by the comparisons between the spectrogram and the
threshold function

the white point correspond to the site in which the intensity is higher
than the threshold, allowing the emission of the spike, in the black point
the opposite behavior occurs.

• Temporal Masking: have more or less the same role of the refractory
period described in the section 2.1.2, although in this case the interval
in which the spike isn’t emitted is also related to the intensity of the
stimulus, defined to by eq. 3.22:

Trefra(c, t) = e−p(c)t (3.22)

the parameter Trefra(c, t) define the threshold level based two parameter:
p(c) defined by the curve in fig. 3.37 that identify the constant factor
related to the channel frequency and the time of the signals. Obviously
as it can be seen from the eq. 3.22, the value of this threshold decreases
in time, and when a stimulus with lower intensity arrived, this type of
information are suppress and no spike are emitted.

67

Materials and methods

Figure 3.37: Spatial map generated by the comparisons between the spectrogram and the
threshold function

An example of generation of the temporal map is described by the follow-
ing step: each row of the spectrogram is considered individually, starting
from time 0, the first spike is always emitted and the threshold level is
generated Trefra(c,0), if the intensity of the signals in the next time are
bigger that Trefra(c,0) a spike can be produced by setting the map value
to 1 otherwise it is fixed to 0, and so on, as described by the condition
below:

Trefra(c, f) =

⎧⎪⎪⎨⎪⎪⎩
1 t = 0
1 Spectrogram(t, f) > Trefra(c, t− 1)
0 Otherwise

(3.23)

An example of a temporal map is shown in the fig. 3.38:

Figure 3.38: Temporal map generated by the comparisons between the spectrogram and the
threshold function

68

3.3 – Encoding Algorithms

The combination of this two map allow to generate the complete map (fig. 3.39)
masking defined of the dot product between the spatial and the temporal map:

Figure 3.39: Complete map generated by the dot product between the Spatial map and the
Temporal map

Finally in order to obtain the spectrogram that is used for the encoding,
the original spectrogram is combined through the dot product between the
two.An example based on what has been said so far is reported in fig. 3.40

Figure 3.40: Complete map generated by the dot product between the Spatial map and the
Temporal map

3. encoding: the encoding step is achieved by applying an ensemble of neurons
with different threshold level. The neuron that emit the spike is the neu-
ron with the threshold level closest to the intensity of the spectrogram. An
example obtained with 30 neurons is in fig. 3.41.

69

Materials and methods

Figure 3.41: Example of SDR encoding performed with 30 neurons per channel

Conclusion
The use of this encoding technique immediately presents a great advantage re-

garding the number of spikes generated, as being very small it is possible to analyze
very complex signals with great variability, with a reduced number of spikes, against
the use of this This technique also has a disadvantage in terms of information loss
related to the generation of the spectrogram in the case of temporal data as shown
in fig. 3.41.

However, the use of this technique in the case of spatial data in the contrary
turns out to be more suitable as the spectrogram is identified by the image itself.

(a) MNIST Sample (b) SDR encoding

Figure 3.42: Example of SDR encoding with 30 neurons per channel in the case of MNIST

70

3.4 – Datasets

3.4 Datasets
The datasets selected to verify the impact of encoding techniques in time-varying
signal, was defined based on the range of frequency to be investigated. Referring to
the subdivision of the audio spectrum for the audible frequency range of the human
ear, four ranges can be identified: Very-Low frequency starting virtually from 0Hz
up to 20Hz, Low frequency from 20Hz to 500Hz, Middle frequency from 500Hz and
2000Hz and High frequency from 2kHz to 20kHz. By focusing on the Very-Low
frequency and Middle frequency ranges, the selected datasets are classified based to
the maximum frequency that can be resolved defined through the Nyquist-Shannon
sampling theorem, corresponding to half of the sampling frequency fMax = fs/2.
The two datasets that are suitable for this purpose are the Wireless Sensor Data
Mining (WISDM) dataset and the Free Spoken Digit (FSD) dataset.

3.4.1 The Free Spoken Digit Dataset (FSD)
The Free Spoken Digit Dataset (FSD) [53] represents the contribution of several
users in the collection of audio samples of the spoken digits with English pronunci-
ation, in different accent, from speakers coming around the world. The first version
was published in the 2017 by Zohar Jackson et al, the version used in this work was
released in of the dataset count a contribution of 6 speakers, each of them providing
50 audio sample per digits, obtaining 3,000 samples in all, each recorded in mono
mode with sample-rate of fs = 8kHz in wav format. During the analysis carried
out in this work, however, only the portion of the FSD dataset relating to the
audio samples produced by the Jackson speaker was selected, which count in total
500 samples, divided into training sets and test sets according to the percentages
90% and 10%. Analyzing the data contained in the dataset, it can be seen that
the duration of all samples is variable and in any case less than 1s. In order to
make sure that the structure of each sample is uniform, a standardization process
is performed inserting at the top and at the end of the audio signal intervals of
silence in order to make each sample with time duration exactly tsample = 1s. An
example of audio sample is shown in fig. 3.43.

Figure 3.43: FSD audio sample, standardization process referred to the time duration

71

Materials and methods

3.4.2 Wireless Sensor Data Mining dataset (WISDM)
The Wireless Sensor Data Mining dataset (WISDM) [6] [54] represents a dataset
obtained from the collection of 18 human activities, carried out by 51 subjects,
using devices such as smartphones and smartwatches through the accelerometer
and gyroscope for a total duration of 3 minutes. Each sample is composed of 6
signals: 3 belonging to the accelerometer, 3 to the gyroscope, collected with a
sampling frequency of fs = 20Hz. In order to observe the effects of the encoding
techniques based on the frequency of the analyzed sample, two subsets were selected,
composed of the activities shown in the table 3.1.

subset1 subset2
Walking Brushing Teeth
Jogging Eating Soup
Brushing Teeth Eating Chips
Eating Soup Eating Pasta
Dribblinlg (Basketball) Drinking from Cup
Clapping Eating Sandwich

Kicking (Soccer Ball)

Table 3.1: This table shows the classes associated with subset1 and subset2, isolated from the
WISDM dataset

Furthermore, as in the case of the FSD, also in this case a standardization step of
the samples in the dataset was performed, inserting silence intervals at the top and
at the end of the sample obtaining samples with a length of exactly tsample = 240s.
An example of sample is shown in fig. 3.44.

Figure 3.44: WISDM sample

72

3.5 – Learning process

3.5 Learning process
The learning process is a key step in the use of neural networks, thanks to which
the network is able to automatically extrapolate the most suitable model for the
description of the analyzed data. To date, unfortunately, no established learin-
ing methods such as the gradient descent for ANNs suitable for SNN have yet been
identified, therefore there are numerous methods that can be used. Comparing now
the tasks to be developed in the field of the neuromorphic state of the art, a partic-
ular method has been identified that makes the learning process very suitable for a
traditional ANN approach called Transfer Learing, consider the work developed by
Shih-Chii Liu et al. [55] [56] [44] and Juan P. Dominguez-Morales et al. [57], which
analyzes the classification of audio signals after the encoding process. In these
works, in order to apply the learning process on the SNN, the learning process is
performed by training an artificial neural network (ANN) and then employing the
resulting weights for a spiking counterpart. Specifically, in this work, this proce-
dure was adopted to pass from a traditional convolutional neural network (CNN)
to a spiking CNN. However, using this method requires an additional step to adapt
the spike-encoded data to the CNN architecture, and this is achieved through the
production of a sonogram.

3.5.1 Sonogram
The sonogram is obtained with a feature extraction carried out by separating the
encoded sample into temporal frames, thus employing the Binning process. There
are several Binning processes that can be employed, described in the work developed
by Shih-Chii Liu et al. [56]; it has been shown that the Time-Binned Spike Count
features (TBSC) allows to reach a better accuracy about 96%.

The TBSC process is carried out by first defining the number of Bins that you
want to use in order to represent the sonogram, then the data obtained through the
encoding algorithms is divided into a number of bins equal to those chosen from
the temporal point of view, and a Spike Count is performed for each channel and
bins. An example of this procedure is shown in fig. 3.45:

73

Materials and methods

Figure 3.45: Binning procedure, adapted from [55]

The subdivision into bins and the definition of the number of spikes within a
channel per bin are used to generate the sonogram. The sonogram is essentially an
image in which the number of pixels along x axis correspond to the bins, the pixels
along y axis are defined by the channels, while the intensity of the pixel is defined
by the Spike Count procedure fig. 3.46, an example related to the FSD dataset.

(a) Sample encoded with TBR algo-
rithm

(b) Sonogram generated from spike
train

Figure 3.46: Feature extraction with Binning methods

In this process, the subdivision into bins is a very important step as it is directly
linked to the classification performance in the SNN, since the sonogram will be used
in two pivotal steps:

74

3.5 – Learning process

1. during the learning process by CNN, that treats the sonogram in a classical
way as an image, such as in the case of MNIST, Fashion MNIST;

2. during the classification process since the last step consists in a re-encoding
of the sonogram by rate encoding in order to make the information suitable
for SNN.

This therefore leads to the problem of defining the number of bins, since if this
number is too large, the intensity of the pixels of the sonogram are too low, in
which from the global point of view the resulting sonogram present more or less
the same structure in all the positions, obtaining a uniform pattern, in the same
way, if the number of bins is too large, the resulting sonogram has pixels with high
intensity, also generating a uniform pattern in this case, fig. 3.47.

(a) (b)

Figure 3.47: This fig. shows an example of a number of bins that is too large (a), and too small
(b) respect to the spike per channel

Consequently, it can be said that within the sonogram the information is con-
tained in 2 main components:

• in the edge of the sonogram;

• the different intensity of the pixel in different region showing the richness of
the information enclosed.

This process seems very laborious, but this has two big advantages:

• it allows to take advantage of the Transfer Learning process for which the SNN
weights can be directly extracted from the corresponding CNN, exploiting the
state of the art in terms of accuracy, hardware and software for the training
of these networks;

75

Materials and methods

• it allows to have a single evaluation criterion of the various encoding tech-
niques by exploiting a single architecture and encoding process in input to
the SNN.

In order to have a similar treatment between the FSD and WISDM samples, in
the second case the axis signals are treated as if each signal were an independent
signal generating a sonogram per axis, and finally a complete sonogram composed
of the single sonograms is generated, fig.3.48.

(a) Sonogram for all signal (b) Single axis signal

Figure 3.48: In this image is reported the sonogram of the various axis of sample

3.6 Neural Network Architecture
As mentioned in the previous section, in order to apply the learning step in the
case of SNNs, the transfer learning technique is used which uses the weights of an
artificial neural network within an SNN architecture. The criterion by which the
architecture to be used is chosen is defined by the type of data to be analyzed,
which in this case is represented by the sonogram. Having therefore ascertained
that the information within this data is encoded in the edge and in the internal
structure of the image, a natural choice for the analysis of a dataset of this type is
given by the Convolutional Neural Network (CNN).

3.6.1 Convolutional Neural Network (CNN)
Before being able to define the architecture of the CNNs used, it necessary to
consider how this architecture will be used and which operations cannot be carried
out in the case spiking counterpart, being necessary to use different Activation
Functions and other tricks. By analyzing the various types of layers we have:

• Convolutional layer: referring to the classical structure the number of filters,
the kernel size and the strides can be defined in a classical way through the

76

3.6 – Neural Network Architecture

trial and error process, the only major differences are related to the bias
parameter of the neurons which being absent in SNNs used in this work, so
this quantity must be set equal to 0 for all neurons in the CNN. Furthermore it
is necessary to use an Activation Function that allows to model the behavior
of neurons in the CNN with a functioning analogous to those of the SNN.
This function is a variant of the ReLU called in this work with the name
of Modified ReLU (MReLU) developed in the work by Qian Liu et al. [58],
which assumes the structure shown below:

yi = max
{︄

0,
m∑︂

j=0
wijxj

}︄
Sτsyn (3.24)

yi is the output of the neuron, ∑︁m
j=0 wijxj the summation term represents the

weighted input of the neuron, finally the term S = 201 and τsyn = 1/200Hz
represents a multiplicative factor whose value is defined based on the param-
eters of the neuron model present in the SNN, that are related to the firing
rate of the input layers in the SNN in accordance with the Rate Encoding
procedure implemented in the sonogram step encoding.

• Pooling Layer: generally in the case of CNNs, a Max Pooling operation is
used within the pooling layer, unfortunately the neurons inside the SNNs are
not able to perform this kind of operation. However this does not represent
a problem as it is possible to carry out an Average Pooling operation in the
SNNs in a very simple way, by imposing the weight of the synapses equal
to 1/N where N indicates the number of input synapses, to have a correct
learning process in the CNN structure we select the Average Pooling layer;

• Fully connected Layer: in the classification layers it is necessary to use the
same criterion as regards the biases. Regarding the activation function it
is necessary to analyze two cases. If the fully connected layer is the last
layer and since the task that we want treat is a classification problem the
activation function that must be used is the Softmax function, instead if
there is a inner fully connected layer the same consideration must be involved
as in the convolutional layer using the MReLU.

By applying these small changes in the CNN, this allows to perform classical
training methods implementing the gradient descent process to extract the model
from the dataset, but also this allow to use the weights as synaptic weights in the
SNN twin.

3.6.2 Spiking Neural Network (SNN)
Once the CNN training has been carried out, we move on to the construction of
the SNN, whose connection of the synapses must respect the structure of the CNN.

77

Materials and methods

The available frameworks that can be used for the realization of this network are
different such as NEURON, NEST, and Brian, however for an easier implementation
in this work a Python API, called PyNN was employed.

In the case of SNNs the input of the network is always composed of the sono-
grams used during the training and testing of the CNN network, however in order
to obtain a dataset composed of the sonograms, a further step of rate encoding is
applied.

(a) Sonogram example (b) Rate encoding of sonogram

Figure 3.49: Rate encoding of the sonogram for SNN classification

In fig. 3.49 it is reported an example of rate encoding of the sonogram, that is
used in a SNN input layer. In order to have a robust coding, a stimulus time is
fixed ts = 1000ms, this time corresponds to the duration for which the sample is
submitted to the network and also is used as parameter in the encoding algorithms
to define the time between two spike. In this time period each pixel is encoded
separately by generating a number of spike based on pixel intensity, as reported
in Encoding Algorithms Section 3.3.1 related to the rate encoding, as can be seen
in fig. 3.49(b), from which the row with high number of spike is related to high
intensity, and in the contrary the row without spike correspond to the darker region,
so it is easy to deduce that each line y-axis of fig. 3.49(b) corresponds to a pixel of
the sonogram. The second time period fixed is the tp = 20ms, this time interval is
used to have a separation between two sample, in which no spike is emitted.

Now supposing to analyze a small portion of the training set consisting of 5
samples, and the behavior between the various layers, from fig. 3.50(a) it is possible
to identify 5 regions corresponding to the various samples of the subset encoded
with poisson rate, while in fig. 3.50(b)-(c)-(d)-(e)-(f) the behavior of neurons in
the various layers is shown, and finally in the fig. 3.50(g) the behaviour of the
classification layers for which in order to determine the predicted label of the sample
it is sufficient to identify the neuron with the highest number of spikes, in the related
time interval.

78

3.7 – Model Compression

(a) Input layer (b) First convolutional layer (c) First average pooling
layer

(d) Second convolutional
layer

(e) Second average pooling
layer

(f) First fully connected layer

(g) Classification layer

Figure 3.50: Spike Train in the various layer

3.7 Model Compression
By model compression we mean all those techniques that allow to reduce the struc-
ture of the network. In this case, this process is developed in two phases, through
synapse reduction and pruning process. The advantages in applying this method
are many such as: obtaining a much smaller network, suitable for embedded thanks
to a reduced memory footprint and a smaller computational cost, making the sim-
ulation of the network in non-neuromorphic hardware faster and in some cases a
better level of accuracy is reached thanks to the reduction of the stimulus carried
out by the synapses, that can introduce an high level of noise during the classifica-
tion process.

79

Materials and methods

3.7.1 Synapses reduction
The synapse reduction process is carried out by selectively eliminating the specific
synapses, but maintaining the same structure from the amount of the neuron and
the relation through the layer. The criterion used to select the synapses to be
eliminated is defined through weight, because this parameter defines how easily
a neuron can generate a spike or not, as mentioned in the Section 2.1.2. Using
the results from statistical analysis, the method for determining the elimination is
through the probability distribution of the weights, obtained through the Box Plot.

Figure 3.51: Box plot for the SNN c6c12f2

The box plot in fig. 3.51 is obtained considering only the modulus of the weights,
this procedure is used to define the distribution of the quantities from the point
of view of magnitude, as the greater the weight associated with a synapse, the
greater the excitability of the neuron in the event that it is stimulated, in the case
of excitatory synapses, the reverse behavior occurs in inhibitory synapses.

Starting from the portion of weights to be eliminated, by selecting for example
the first quartile, the median or the second quartile, we proceed by eliminating all
the synapses with weights below the chosen value, and then an evaluation is made on
the accuracy parameter. Clearly this procedure is implemented in a convolutional
and fully connected layer, but not in the Average Pooling layers since the weights
are defined specifically in order to have an average action.

3.7.2 Pruning
With term Pruning we mean the same procedure implemented in a synapses reduc-
tion followed by a fine tuning step, because once the Synapse reduction process has

80

3.8 – Inapplicable encoding cases

been applied a worsening of the classification performance is observed in the net-
work, when the synapses with very large weights are eliminated, such as in the case
of upper quartile. This behavior is to be attributed to the reduction in the number
of spikes in the various convolutional layers, making the classification process in
fully connected layers very difficult. So in order to restore the original or even
better accuracy, a fine tuning process is applied in the CNN version, constraining
to 0 the weights previously eliminated in the phase of synapses reduction, carrying
out a training of the weights left in the network for about 10-20 epochs, and finally
re-apply the weight transfer in the spike version.

3.8 Inapplicable encoding cases
Analyzing all the steps of the pipeline that allow to carry out a classification of the
data, I have treated, the type of data, the pre-processing techniques, the encoding
algorithms, how to perform the feature extraction, the identification of the suitable
type of network to be used were treated and the learning technique and finally
the compression models. This therefore leads to the identification of a small sub-
category of algorithms that cannot be used for performance evaluation, given their
nature and the classification method selected in this case.

The algorithms in this case are rate encoding, implemented directly on the raw
data, and SDR. The reason for this is related to the size of the sample in terms of
pixels, as having a high number of pixels 32× 8000 for rate encoding and 43× 600
in the case of SDR.

(a) Rate encoding (b) SDR encoding

Figure 3.52: The left panel shows a sonogram relating to rate encoding, made up of a number
of very large pixels, while on the left is the sonogram relating to the SDR presenting the same
problem

Given the size of the songrams, the resulting datasets are very large and this
produces networks with an enormous number of parameters, obtaining networks of
the order of GB.

81

82

Chapter 4

Results and discussion

In this section we will discuss the impact of coding techniques on the classification
of raw time-varying signals, obtained using the two datasets FSD and WISDM, and
how the different Degrees of Freedom available affect such performances.

With Degrees of Freedom we indicate the set of all the possible choices that can
be made at each step of the pipeline analyzed so far, of which they belong:

• Density of spike;

• Architecture CNN/SNN;

• Encoding;

• Feature Extraction;

• Synapse reduction;

• Pruning.

and the structure of the network influences the way in which the compression
models act on that network, or the spike density influences the maximum number
of layers of the network and so on, making these points dependent on each other.
During our analysis we will describe what the various degrees of freedom represent,
how to determine the parameters and finally how each of these points affects the
final performance.

4.1 Performance evaluation for FSD dataset

4.1.1 Density of Spike
By density of spike we mean the number of spikes produced per unit of time, this
quantity appears to be influenced by two elements:

83

Results and discussion

• encoding algorithm: as described in Section 3.3, each encoding algorithm has
a different implementation logic, treating the same information differently,
consequently this is reflected in having a different number of spikes. In the
fig. 4.1 the distributions of the number of spike per coding algorithm are
reported in relation to the different pre-processing and feature extraction
techniques, but what is always noticed is that regardless of the choices used,
there is an identical trend in the four cases, identifying the class of Temporal
contrast, Global Referenced and Latency/ISI, as the classes with the lowest
number of spikes;

Figure 4.1: In this box plot the distribution of the number of spike for different algorithms
necessary to encode the entire FSD dataset are reported, having applied different pre-processing
filter bank

• refractory period: in physiology the refractory period is the minimum amount
of time you need to wait after one spike is emitted before another spike is
emitted. This delay is due to the membrane hyperpolarization event, making
the neuron transparent to stimuli.

In the case of SNN this quantity it is an external parameter respect to the
encoding algorithm, which can be easily implemented by preventing the con-
version of information after a spike is emitted, for a period of time equal to
the refractory time. However, the presence of this parameter can significantly
affect the classification accuracy; this is due to the fact that the amount of
spikes in the presence of a refractory period is not sufficient to stimulate
the neurons between the various layers, obtaining a progressive reduction of

84

4.1 – Performance evaluation for FSD dataset

the spikes, especially in dense architectures, since each neuron absorbs more
spikes than are produced.
As shown in fig. 4.2 the first Convolutional layer receives a sufficient number of
spikes from the input layer allowing the excitation of the neurons in this layer,
whose spikes are sent in the first Pooling layer. In turn those neurons absorb
the spikes coming from the previous layer, causing an excitation that produce
further spikes, unfortunately, however, the amount of spikes produced is not
enough to produce an excitation of the second Convolutional layer, having no
more excitation of the neurons in the remaining layer.

(a) Input layer (b) First convolutional layer (c) First average pooling
layer

(d) Second convolutional
layer

(e) Second average pooling
layer

(f) First fully connected layer

(g) Classification layer

Figure 4.2: Spike Train in the various layer in the presence of refractory period in the encoding
step

In fig. 4.3 it is possible to observe the encoding performances in the SNN network

85

Results and discussion

as a function of the refractory period τrefra. On the basis of what was previously
ascertained, the worst accuracy was recorded in the case in which the refractory
period turns out to be τrefra /= 0, as the number of spikes produced in this case is
not able to excite the neurons in the different layers; on the other hand a better
classification performance is achieved in the case τrefra = 0. This leads us to
conclude that the use of the refractory period in these cases it turns out to be
disadvantageous.

Figure 4.3: Box plot evaluating the refractory period performance in the SNN c12c24f2

4.1.2 Architecture CNN/SNN

The type and structure of the network clearly represents another element that can
affect accuracy performance, since it is the networks through the learning process
that extract the model that allows to describe the data. As reported in Section 3.6
the learning process used is the transfer learning, this procedure consists in carrying
out the learning process in an ANN and using the weights obtained in the twin SNN
version. For this reasons the Neural Network Architecture represents the second
degree of freedom. Obviously the type of network must be defined on the basis of
the type of data analyzed, and given the affinity of the sonogram to the images, a
natural choice is the Convolutional Neural Network (CNN) structure.

The Convolutional Neural Network can be analyzed as two subsequent sub-
networks: the convolutional part whose purpose is to extract features from the
analyzed samples, focusing each layer in recognizing a particular pattern and im-
proving this level of abstraction by increasing the number of convolutional layers;
and the fully connected part, responsible for the classification process through the
subdivision of the space of characteristics into the various desired classes fig. 4.4.

86

4.1 – Performance evaluation for FSD dataset

Figure 4.4: Separation of feature extraction and classification layers in CNNs

The main architectures tested that reported the highest level of accuracy are
showed in fig. 4.4(a)-(b)-(c):

(a) c12c6f1

(b) c6c12f2

(c) c12c24f2

Figure 4.5: Tested Architectures

87

Results and discussion

Once the training and testing process in CNN is complete and its SNN version
is built, the classification process of the complete dataset is carried out again in the
SNN to evaluate the accuracies performances. By making a comparison between the
various structures, it was observed that the part of the network which mostly affects
the accuracy is the fully connected one, achieving better accuracy in case there are
two fully connected layers, as these layers are responsible for decision boundaries
in the feature space. The more fully connected layers you have greater is degree of
complexity you get in the decision boundary structure, however having too many
layers reduces the number of possible spikes useful for classification reducing their
performance, as mentioned in the previous chapter regarding the refractory period.
For this reason the choice of this number is very important and does not have to
be very large. The behavior described can be observed in fig. 4.6, in which a worse
accuracy is recorded in the first type of network which takes into account only one
fully connected layer, while a big improvement is obtained in the other two cases
where the classification is performed by two fully connected layers.

Figure 4.6: Comparison of accuracy performance in different SNN architectures

88

4.1 – Performance evaluation for FSD dataset

4.1.3 Encoding
Encoding is the fundamental step that allows to use the SNN, since the input must
be encoded in a series of spikes in order to be correctly elaborated in this type of
networks. Remembering briefly the two steps used during the encoding procedure
we have the:

• Filtering decomposition: this first step allows to separate the input signals
into different components using a bank of filters. This step it’s performed to
increase the amount of extractable features in the phase for the coding, thus
favouring a generation of the sonogram with a richer amount of information.
The two elements that influence this process are: the structure of the filter
bank defined on the basis of the signal we are going to analyze, and the
quantity of channels.
The type of filter bank not only influences the separation between two con-
secutive frequency bands but also the encoding performance, as in the class of
Global Referenced and Latency/ISI algorithm. The reason of this is strictly
related to the amount of overlap between different bands. In the case of the
Butterworth filter bank, the separation between the bands is clearer with
very little overlap, but in the Gammatone an overlap between the bands are
present. These two different behaviors allow to have in the Gammatone case a
redundancy of information in frequency components in a single channel; this
permits to have a greater production of spikes in the class Global Referenced
and Latency/ISI algorithm, increasing the total accuracy.
Finally to have a good extraction of information from the original sample,
the number of channels must not be too small or too large. Analyzing the
two cases separately we have that if the amount of channel is too small the
component of frequency in one channel is large, and for this reason we can’t
use the standardization of parameters using the fact that all component have
sine-like structure. On the other hand having a lot of channel reduces the
amount of variation in the signals, having too little information to encode on
each single channel.

• Algorithm encoding:

– Temporal Contrast;
– Filter & Optimizer;
– Global Reference;
– Latency/ISI.

The class that is most influenced by the type of filter used is the Global Refer-
enced, since in this case the amount of spike is directly related to the intensity of the

89

Results and discussion

signal. In the case of the Gammatone filter bank there are redundant components,
consequently the intensity of the frequency channels is greater, and this produce
more spike in this class of algorithms, allowing to transport more information,
noting an increase in accuracy as shown in fig. 4.7.

Figure 4.7: Comparison between Butterworth and Gammatone filter bank for Global Referenced
class

4.1.4 Feature Extraction

The feature extract represents the step that allows you to use the transfer learning
method, thanks to the production of the sonogram, described in detail in the Sec-
tion 3.5.1, which allows you to pass the information encoded in the spike domain
into the spatial domain data, particularly suitable for CNN analysis.

During the production of the sonogram the parameter that allows the degree of
feature extraction is the number of bins, this parameter allows to describe the num-
ber of intervals in which the spike coded signal must be divided, and as mentioned
in Section 3.5.1 this value must not being too large or too small otherwise result-
ing in a uniform pattern with very little information, as the entropic contribution
between the various positions is very small.

This behavior can be observed in fig. 4.8 for which, regardless of the number of
channels selected in the pre-processing step, overall worst performances are obtained
for a high number of bins.

90

4.1 – Performance evaluation for FSD dataset

(a) Butterworth filter bank

(b) Gammatone filter bank

Figure 4.8: Comparisons between different type of binning dimension for Butterworth and
Gammatone filter bank

4.1.5 Visual analysis through feature reduction techniques

A first investigation on the separability of the classes that can be carried out on the
datasets made up of sonograms is through a Data Visualization approach, which
consists of a visual exploration of the data.

In the field of big data, we are dealing with samples described through a very
large number of elements, generically called features in the machine learning. In
order to obtain a graphical analysis of these samples, a representation in a space
with n-dimensions would be necessary making such visualization impossible, in
order to make this analysis accessible it is necessary to reduce the number of features
to a space of 2 or 3 dimensions, through feature reduction techniques. Examples of
application of feature reduction techniques are shown below.

The most used feature reduction technique is the Principal Component Analysis
(PCA), whose result is reported in fig. 4.9.

91

Results and discussion

Figure 4.9: Results of the PCA feature reduction algorithm for the FSD dataset in which the
sample is pre-processed with Butterworth filter bank with 32 channel, with 18 bins partition for
TBSC feature extraction process

Unfortunately the application of this technique is not able to provide sufficient
separation between classes. However moving on to more advanced feature reduc-
tion techniques, T-distributed Stochastic Neighbor Embedding (TSNE) and Uni-
form Manifold Approximation and Projection for Dimension Reduction (UMAP),
a better separation can be observed in some specific types of algorithms.

92

4.1 – Performance evaluation for FSD dataset

Figure 4.10: Results of the TSNE feature reduction algorithm for the FSD dataset in which the
sample is pre-processed with Butterworth filter bank with 32 channel, with 18 bins partition for
TBSC feature extraction process

93

Results and discussion

Figure 4.11: Results of the UMAP feature reduction algorithm for the FSD dataset in which
the sample is pre-processed with Butterworth filter bank with 32 channel, with 18 bins partition
for TBSC feature extraction process

As can be seen in fig. 4.10 and fig. 4.11, all the algorithms belonging to the Tem-
poral Contrast class have the best separability, this is reasonable since algorithms
are specialized in the coding of time-varying signals, but also algorithms such as
PHASE and BURST algorithms. The worst separabilities have been recorded in-
stead in the case of the Filter & Optimizer class as the need to find suitable filters
for the analyzed signal makes the optimization of such algorithms very difficult,
and in the TTFS encoding algorithm as the number of spikes generated in this case
are very small, carrying very little information.

94

4.1 – Performance evaluation for FSD dataset

4.1.6 Comparisons between different classes of algorithms
Now carrying out an assessment on the classification capabilities of the SNN based
on the coding technique, in fig. 4.12 are reported the performances of the various
classes of algorithms in which the network c6c12f2 is chosen, for different types of
feature extraction. As we can see the Temporal Contrast class present the best
accuracy with respect to the amount of spike. As already observed in feature
reduction techniques, the behavior is justified by the fact that this particular class of
algorithms is dedicated to detecting the variation of signals, and since the processed
signal is an audio signal from FSD, this method is particularly suitable for the
purpose.

While in the case of the Filter & Optimizer, since it is necessary to define
the filter used for the encoding, and given the large frequency components of the
signal and the large differences in amplitudes of the various channel the encoding
capabilities of the filter are not the same for each components, obtaining a reduction
in the accuracy performance.

On the contrary, the Global Referenced class and the Latency/ISI one have a
reduced classification capability, since such types of coding produce a loss of infor-
mation directly proportional to the desired resolution as explained in Section 3.3.2,
only in the case of time-varying signals.

Figure 4.12: Comparisons between different classes of encoding algorithm

4.1.7 Synapse reduction
The Synapse reduction technique allows to extrapolate important information on
the ability of the network to classify the samples, after the elimination of synapses
with increasing weight. This process allows to obtain a series of advantages such
as reducing the size of the network by reducing the memory footprint making
them ideal for embedded applications, speeding up the classification process during
simulation on non-neuromorphic devices and in some cases increasing accuracy
performance.

95

Results and discussion

Since the Temporal Contrast is the best performing class, we use this set of
encoding algorithms to carry out further investigation regarding this process, by
applying this method on two networks that have the best performances so far, iden-
tified by the names c6c12f2, c12c24f2 (fig. 4.13). Applying the method described in
Section 4.1.6, as we expected as synapses with greater weights are eliminated, the
accuracy of the networks decreases, reaching values around 40% test accuracies or
even less. This behavior is justified by the fact that the amount of spikes produced
by a neuron is proportional to the weight of the synapses connected to this neuron,
by reducing the number of synapses the amount of spikes received by the neurons
is reduced, preventing the proper functioning of classification neurons in the fully
connected sub-networks.

(a) c6c12f2

(b) c12c24f2

Figure 4.13: Accuracy for Synapse reduction in the architecture c6c12f2 and c12c24f2 for Tem-
poral Contrast class

Through the reduction of the number of synapses, a decrease in the number
of spikes is expected, and this is what happens in most cases. However, in some
particular cases, such as the Moving Window algorithm, an increase was recorded.
This behavior can be justified in the following way: if in the network there is
a large number of inhibitory synapses with a low or medium weight, which are

96

4.1 – Performance evaluation for FSD dataset

eliminated through the synapse reduction process, an accentuated effect of the
excitatory synapses is obtained, this causes an overall increase in the number of
spikes.

(a) Butterworth filter bank, 32 Chan-
nels, 50 Bins

(b) Butterworth filter bank, 32 Chan-
nels, 250 Bins

(c) Butterworth filter bank, 64 Chan-
nels, 50 Bins

(d) Butterworth filter bank, 64 Chan-
nels, 125 Bins

(e) Gammatone filter bank, 32 Chan-
nels, 50 Bins

(f) Gammatone filter bank, 32 Chan-
nels, 250 Bins

(g) Gammatone filter bank, 64 Chan-
nels, 50 Bins

(h) Gammatone filter bank, 64 Chan-
nels, 125 Bins

Figure 4.14: Spike Count for Temporal Contrast algorithm after synapses reduction in c6c12f2

97

Results and discussion

4.1.8 Pruning
Finally, the Pruning process allows to "refine" the model of the new network ob-
tained after Synapse reduction, through a fine tuning process. Since our goal is to
reduce the size and computational cost of the network as much as possible, further
analyses are focused on the structurally minimal network identified by the c6c12f2,
a clear improvement in accuracy is observed, reaching a value of around 99% in the
training set and 98% (fig. 4.15).

Figure 4.15: Pruning performance in c6c12f2

Furthermore, evaluating the amount of spike recorded in the network, necessary
to classify training set and test set separately, it can be observed that in most cases
the amount of spikes is preserved even in the smallest versions which count only
25% of the original network, allowing to reach a competitive accuracy compared to
the larger one.

98

4.1 – Performance evaluation for FSD dataset

(a) Butterworth filter bank, 32 Chan-
nels, 50 Bins

(b) Butterworth filter bank, 32 Chan-
nels, 250 Bins

(c) Butterworth filter bank, 64 Chan-
nels, 50 Bins

(d) Butterworth filter bank, 64 Chan-
nels, 125 Bins

(e) Gammatone filter bank, 32 Chan-
nels, 50 Bins

(f) Gammatone filter bank, 32 Chan-
nels, 250 Bins

(g) Gammatone filter bank, 64 Chan-
nels, 50 Bins

(h) Gammatone filter bank, 64 Chan-
nels, 125 Bins

Figure 4.16: Spike Count for Temporal Contrast algorithm after pruning in c6c12f2

99

Results and discussion

4.2 Performance evaluation for WISDM dataset

Compared to the FSD, the WISDM dataset has a completely different structure
and property, as described in the Section 3.4.2, summing up we have that the num-
ber of components related to the raw data per sample are 6; the sampling rate
is much lower fs = 20Hz, that according to Nyquist-Shannon sampling theorem,
the maximum frequency that can be solved is fmax = fs/2 = 10Hz; the inten-
sity of variation of the signal is much smaller, making more difficult to define the
parameters in encoding techniques, even if the signal is amplified.

In order to verify how the presence of these differences affects all the classifica-
tion steps, two subsets have been extracted from the original dataset: the subset1
and the subset2, whose activities are shown in the tab. 4.1.

subset1 subset2
Walking Brushing Teeth
Jogging Eating Soup
Brushing Teeth Eating Chips
Eating Soup Eating Pasta
Dribbling (Basketball) Drinking from Cup
Clapping Eating Sandwich

Kicking (Soccer Ball)

Table 4.1: This table shows the classes associated with subset1 and subset2, isolated from the
WISDM dataset

4.2.1 Visual analysis through statistical methods and fea-
ture reduction techniques

In order to carry out a first analysis on the separability of the classes we use the
kernel density estimation, a statistical method that allows to give an estimate of
density in metric spaces, for the recognition of patterns and classification, a method
used in the work carried out by Fra Vittorio et al. [59], on a differently pre-processed
version of subset2.

100

4.2 – Performance evaluation for WISDM dataset

(a) subset1

(b) subset2

Figure 4.17: Kernel density estimation for the two subset

As shown in fig. 4.17, in both cases there are overlaps between the distributions,
making it very difficult to separate them through the subsequent analysis. For this
reason in order to extrapolate a better information regard to the class separation
from this type of subsets, we move on to the feature reduction techniques, after
applying the pre-processing and encoding methods.

Unfortunately, also in this case the use of Principal Component Analysis (PCA)
in both subsets respectively fig. 4.18-4.19, does not allow to have a good visualiza-
tion on the separability of the classes.

101

Results and discussion

Figure 4.18: In this fig. is reported the PCA feature reduction algorithm for the subsets1
in which the sample is pre-processed with Butterworth filter bank with 8 channel, with 18 bins
partition for TBSC feature extraction process

102

4.2 – Performance evaluation for WISDM dataset

Figure 4.19: In this fig. is reported the PCA feature reduction algorithm for the subsets2
in which the sample is pre-processed with Butterworth filter bank with 8 channel, with 18 bins
partition for TBSC feature extraction process

103

Results and discussion

Shifting our attention to more advanced methods the TSNE and UMAP, as can
be seen from both feature reduction methods in fig. 4.20, 4.21, 4.22 and 4.23, a
better separability of classes can be identified in the case of subset1, respect to the
subset2 in which no regions can be identified in which a class is prevalent.

Figure 4.20: In this fig. is reported the TSNE feature reduction algorithm for the subsets1
in which the sample is pre-processed with Butterworth filter bank with 8 channel, with 18 bins
partition for TBSC feature extraction process

104

4.2 – Performance evaluation for WISDM dataset

Figure 4.21: In this fig. is reported the TSNE feature reduction algorithm for the subsets2
in which the sample is pre-processed with Butterworth filter bank with 8 channel, with 18 bins
partition for TBSC feature extraction process

105

Results and discussion

Figure 4.22: In this fig. is reported the UMAP feature reduction algorithm for the subsets1
in which the sample is pre-processed with Butterworth filter bank with 8 channel, with 18 bins
partition for TBSC feature extraction process

106

4.2 – Performance evaluation for WISDM dataset

Figure 4.23: In this fig. is reported the UMAP feature reduction algorithm for the subsets2
in which the sample is pre-processed with Butterworth filter bank with 8 channel, with 18 bins
partition for TBSC feature extraction process

The reasons for which in the case of subset1 a better separability of classes is
obtained, after applying the pre-processing and feature extraction steps are given
below:

• having a low sampling frequency, the amount of information that can be
captured in the sampling stage turns out to be very small, obtaining very low
informative features by carrying out a direct analysis as in the case of Kernel
density estimation, and this behavior can be observed in fig. 4.17 not being
able to observe a separability;

107

Results and discussion

• once the pre-processing and feature extraction has been applied and specif-
ically having carried out a separation in frequency channels, the amount of
information that can be obtained is greater, no longer observing the signal
as the superposition of multiple components, but analyzing the individual
contributions at a different frequency.

However, the same behavior is not observed in the case of subset2, even af-
ter having performed the pre-processing, as the information content of the various
channels on the classes is too similar to be discriminated with the following tech-
niques.

108

4.2 – Performance evaluation for WISDM dataset

4.2.2 Density of Spike
Also in this case clearly the number of spikes per unit of time appears to be depen-
dent on the type of encoding used, as shown in fig. 4.24 but this is not true in the
case of the refractory period. To understand this difference in behavior, let’s start
with the definition of this quantity referred to eq. 4.1:

tr = fsτrefra

= 20 · 0.003
= 0.06s

(4.1)

The value tr indicates the amount of time due to the refractory period between
two spikes even if the stimulus is present, since this value is larger with respect to
the sampling interval time that is tr > ts giving ts = 1/fs = 0.05, this means that
once the spike is emitted, the neuron has a much faster recovery before the next
stimulus is reached.

Figure 4.24: In this box plot is reported the distribution of the number of spike for different
algorithms encoding the entire subset1 dataset, having applied different pre-processing filter bank

4.2.3 Architecture CNN/SNN
Comparing the results obtained in the case of the FSD in the Section 4.1.2, also
in this case the architectures that have the best accuracy are the configurations
c6c12f2 and c12c24f2, unfortunately, as can be seen in fig. 4.25, the accuracy in the
best case is very low. The reason for these performances is not to be attributed to

109

Results and discussion

the intrinsic structure of the network, but to the inability of the encoding algorithms
for these subsets to provide correct encoding.

Figure 4.25: Comparisons of accuracy performance in different SNN architecture

4.2.4 Encoding

Contrary to the FSD case, in this type of subset there is not a particular class
of algorithm that has better performances than the others, rather we are talking
about specific algorithms, which have better performances, which are influenced
by various parameters during the pre-processing, feature extraction, network struc-
ture, training, synapses reduction and pruning, making it impossible to identify a
pattern. In fig. 4.26 is shown the comparisons with the PFM encoding, that in this
case show the best behaviour respect to the other encoding algorithms.

Figure 4.26: Comparisons between PFM and the other of encoding algorithms

110

4.2 – Performance evaluation for WISDM dataset

4.2.5 Feature Extraction
Regarding the feature extraction process, a different behavior was observed than
that defined in the Section 4.1.4, although in the case of the FSD as the number
of bins increased, a reduction in accuracy was obtained, in this case we observe
a specular behavior based on the type of filter and the channel used in the pre-
processing step. Having that in the case of the Butterworth filter bank as the
number of channels increases, the precision performance has an increasing trend;
the opposite behavior occurs in the case of the Gammatone filter bank, the reason
for this decrease could be related to the distortion introduced in the use of this
filter (fig. 4.27).

(a) Butterworth filter bank

(b) Gammatone filter bank

Figure 4.27: Comparisons between different type of binning dimension for Butterworth and
Gammatone filter bank

4.2.6 Comparisons between different class of algorithm
As already described in Section 4.2.4, in these cases it is not possible to identify
a class of algorithms whose performance is better, since as shown in fig. 4.28 the
same trend for the accuracy in the various encoding classes can be appreciated.

111

Results and discussion

Figure 4.28: Comparisons between different class of encoding algorithm

The reason for this behavior is related to the amount of information that can
be extracted during pre-processing and encoding, which in turn is related to the
information contained in the raw signal. However, given the low level of sampling,
the original signal is not sufficiently rich in terms of frequency and amplitude com-
ponents. These characteristics are easily deducible from the sonogram of a sample
examined in fig. 4.29, for which all the signals collected by the 6 sensors have the
same structure from the global point of view. By analyzing in more detail the
partial sonogram of the single sensor, unlike the case of the FSD, the two elements
from which information can be extracted, namely: the conformation of the edge;
and the internal patter; here they are almost practically absent.

(a) Sonogram for all signal (b) Single axis signal

Figure 4.29: The sonogram of the various axis of sample

4.2.7 Synapse reduction
The applied Synapse reduction process turns out to be the same as that described in
Section 4.1.7. As can be easily guessed given the nature of the process, a progressive
deterioration in accuracy is expected, and this is confirmed by the experimental
observations, as reported in fig. 4.30. For which as the synapses with greater

112

4.2 – Performance evaluation for WISDM dataset

weight are eliminated, the ability of the network to carry out a correct classification
is reduced, as already extensively described in the section mentioned.

(a) c6c12f2

(b) c12c24f2

Figure 4.30: Accuracy for Synapse reduction in the architecture c6c12f2 and c12c24f2

4.2.8 Pruning

The application of the pruning method in this case turns out to be extremely
advantageous in a few lucky cases referred to the dataset that is well separable, as
in the case of subset1, achieving test accuracies around 95% at maximum. This
behaviour is justified, thanks to the combined effect of synapses reduction and fine
tuning, allowing to reduce the number of synapses in the network while maintaining
a model suitable for the description of the dataset; consequently there is a reduction
in the number of synapses that can introduce noise making the classification process
easier.

113

Results and discussion

Figure 4.31: Pruning performance in c12c24f2

114

4.2 – Performance evaluation for WISDM dataset

Performance evaluation for subset2
By applying the same analysis in the case of subset2, the same trends already

described in the section of subset1 were observed, with the only difference that in
this case there was a reduction in the maximum level of accuracies that can be
achieved. The reason for this, as already mentioned in Section 4.2.1, is due to the
reduced separability of the classes.

Density of Spike
With reference to the density of spike, the use of the refractory period is also

irrelevant in this case, having the same sampling frequency. Recording the same
behavior with a spike peak in the case of MHSA encoding as shown in fig. 4.32.

Figure 4.32: In this box plot is reported the distribution of the number of spike for different
algorithms necessary to encode the entire subset2 dataset, having applied different pre-processing
filter bank

115

Results and discussion

Architecture CNN/SNN
As regards the performances in relation to the type of network architecture used,

the best performances were recorded in this case also in the c6c12f2 and c12c24f2
networks, reporting very similar accuracies in relation to the subset1 in the case of
the training sets, but noting a deterioration in the case of testing as reported in
fig. 4.33.

Figure 4.33: Comparisons of accuracy performance in different SNN architecture

Encoding
Also in this case it is not possible to identify a class of algorithms that appear

to have better performance, but we always talk about specific encoding algorithms,
which are able to capture more information than others. As can be seen in fig. 4.34
the best accuracies in this case are achieved in the case of the PFM algorithm.

Figure 4.34: Comparisons between PFM and the other of encoding algorithms

116

4.2 – Performance evaluation for WISDM dataset

Feature Extraction
In relation to the feature extraction in the case of subset2, the same trend

already commented for subset1 is noted, with the difference that in this case the
accuracy in the worst case is much greater (fig. 4.36).

(a) Butterworth filter bank (b) Gammatone filter bank

Figure 4.35: Comparisons between different type of binning dimension for Butterworth and
Gammatone filter bank

Comparisons between different class of algorithm
A more detailed analysis of the performances for the various encoding classes is

shown in fig. 4.36, for which it is not possible to identify a class of algorithms more
suitable than others, but always talking about single algorithms that perform better
than others, as already mentioned in the previous section of Feature extraction.

Figure 4.36: Comparisons between different class of encoding algorithm

117

Results and discussion

Synapse reduction
In relation to the Synapse reduction we observe the same behavior already

described in Section 4.1.7 for FSD dataset, in which a progressive reduction of the
accuracy, as soon as the synapses with higher weights as indicated in fig. 4.37

(a) c6c12f2 (b) c12c24f2

Figure 4.37: Accuracy for Synapse reduction in the architecture c6c12f2 and c12c24f2

Pruning
Unfortunately, contrary to what was reported for subset1 during the pruning

process, in the case of subset2 no significant improvement in accuracy was recorded,
but only a slight improvement as reported in fig. 4.38. Reaching 87.1% in the best
case for the training set in PHASE encoding and 60.0% in the case of the test set
in the MHSA algorithm.

Figure 4.38: Pruning performance in c12c24f2

As previously described, the poor separability of the classes and the reduced
information in terms of frequency components make it difficult the learning method
used in this analysis for the classification of samples originating from subset1 and

118

4.2 – Performance evaluation for WISDM dataset

subset2. However, in a work we recently published by Fra Vittorio, Pignari Riccardo
et al.[59] it is shown that the use of a new classification method implemented
through the Legendre Memory Units (LMU), a new kind of memory cell used in
a recurrent neural networks described from A. Volker et al.[60], on subset2 by
applying a decomposition of the signal into channels through a filter bank has
allowed to achieve high accuracy comparable with the state of the art, outclassing
the non-spiking and spiking CNNs.

119

120

Chapter 5

Conclusion

From the results presented in this work, it can be concluded that neuromorphic
technologies and in particular SNNs represent a valid alternative to classical ANN
architectures, presenting accuracies comparable to the state of the art, and at the
same time they allow you to take advantage related to you bio-inspired systems,
such as reduced energy consumption and computational cost.

By analyzing the nature of the samples that can be treated, a first classification
of the raw information was outlined, identifying three categories: Temporal data,
Spatial data and Spatio-temporal data. In order to determine the most suitable
coding algorithm and to verify the impact of coding techniques on the processing
and the classification performance for the various signals, the implementation steps
of a neuromorphic machine learning pipeline were retraced.

The use of datasets composed of variable temporal signals, such as the FSD and
WISDM, made it possible to test the pre-processing operation, i.e. the subdivision
into frequency channels through a filter bank, identified in the human auditory
system implemented through the cochlea, and applying the various encoding mod-
els, identified during the experimental analyzes of nervous biological systems, also
divided into classes: Rate Coding, Temporal Contrast, Filter & Optimizers, Global
Referenced, Latency / ISI and Corralation & Syncrony.

In order to evaluate the coding of the various algorithms and their ability to pro-
cess and extract information, a classification process has been implemented through
the SNNs by testing amount of spikes, different architectures, encoding, and model
compression, in which the learning process is implemented through transfer learn-
ing a method that allows you to take advantage of consolidated training techniques
in the field of ANNs.

Through the observations made on the available datasets and by the works
developed by other authors, the classification performances were outlined that allow
to determine the choice of the most suitable coding method for the type of data,
based on the nature of the algorithm:

121

Conclusion

• Temporal Contrast class: if it is oriented to the detection of temporal varia-
tions;

• Filter & Optimizer: if the information is treated through a filtering process;

• Global Referenced, Latency / ISI: if the encoding is comparable to a binary
code.

However, a small set of algorithms such as Correlation & Synchrony appear to
be inapplicable in the cases listed, confirming the presence of algorithms capable
of being applied only for specific types of data.

Summary encoding technique Temporal data Spatial data
Very-Low frequency Middle frequency

Rate coding Poisson encoding ✗ ✗ ✓

Temporal Coding

Temporal Contrast

TBR ✓ ✓ ✗

SF ✓ ✓ ✗

MW ✓ ✓ ✗

PFM ✓ ✓ ✗

Filter & Oprimizer
HSA − − ✗

MHSA − − ✗

BSA ✓ − ✗

Global Referenced PHASE ✗ ✓ ✓

TTFS ✗ ✓ ✓

Latency/ISI BURST ✗ ✓ ✓

Table 5.1: Summary encoding technique based on the best performances in relation to the
type of data, indicating with ✓ the technique is particularly suitable for the purpose, − these
techniques can be used even if they have some disadvantages and ✗ they are not suitable for the
purpose

122

Appendix A

Accuracy tables for Free Spoken
Digits (FSD) dataset

A.1 Complete network

In this section is reported the train and test accuracies of the various network in
the case of the FSD, in which different encoding algorithms and feature extraction
is applied.

Table A.1: Network structure c12c24f1 accuracy (%)

Convolutional Neural Network

Butterworth filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

32 Channels 50 Bins 99.8 95.0 100.0 96.0 99.5 94.0 99.5 94.0 98.0 87.0 93.3 76.0 96.0 76.0 100.0 92.0 98.0 69.0 99.8 95.0
250 Bins 100.0 95.0 98.8 96.0 99.3 94.0 99.8 93.0 89.5 78.0 94.7 82.0 92.5 77.0 99.8 95.0 85.8 66.0 99.0 96.0

64 Channels 50 Bins 100.0 97.0 100.0 96.0 100.0 96.0 100.0 96.0 98.8 77.0 99.0 74.0 98.0 82.0 100.0 97.0 94.5 56.0 98.8 91.0
125 Bins 100.0 96.0 100.0 96.0 99.5 95.0 99.8 97.0 98.8 83.0 99.3 82.0 99.3 87.0 100.0 98.0 98.5 73.0 99.8 94.0

Gammatone filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

32 Channels 50 Bins 100.0 92.0 99.0 94.0 99.0 94.0 99.5 92.0 98.8 93.0 98.8 90.0 97.5 68.0 98.0 91.0 94.7 79.0 99.3 90.0
250 Bins 99.5 94.0 98.5 91.0 98.3 91.0 99.0 93.0 98.3 93.0 98.5 95.0 94.5 77.0 99.3 92.0 98.0 79.0 99.0 87.0

64 Channels 50 Bins 100.0 94.0 99.8 95.0 99.5 92.0 100.0 93.0 100.0 97.0 99.5 95.0 97.0 75.0 99.0 92.0 99.0 81.0 99.0 87.0
125 Bins 99.8 93.0 99.8 95.0 99.5 91.0 99.5 92.0 99.5 97.0 98.8 94.0 97.8 76.0 100.0 95.0 98.8 79.0 99.5 91.0

Spiking Neural Network

Butterworth filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

32 Channels 50 Bins 66.2 55.0 69.5 59.0 20.8 23.0 81.2 67.0 29.2 26.0 35.8 31.0 54.5 45.0 82.0 70.0 42.0 35.0 74.8 64.0
250 Bins 26.5 24.0 45.0 37.0 43.2 35.0 48.8 44.0 27.0 21.0 23.8 20.0 35.0 30.0 57.5 50.0 35.5 22.0 24.2 23.0

64 Channels 50 Bins 59.2 40.0 74.5 53.0 67.2 56.0 84.2 69.0 57.0 40.0 71.2 51.0 49.0 34.0 80.8 72.0 30.5 24.0 74.8 65.0
125 Bins 90.8 72.0 90.2 72.0 98.8 88.0 90.0 79.0 53.2 42.0 82.2 61.0 44.0 32.0 75.0 60.0 42.8 33.0 73.2 61.0

Gammatone filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

32 Channels 50 Bins 70.5 62.0 34.2 25.0 55.5 44.0 72.2 73.0 81.0 74.0 83.0 79.0 58.2 45.0 66.8 63.0 61.3 50.0 73.0 63.0
250 Bins 29.0 29.0 30.5 32.0 20.2 21.0 54.0 55.0 79.0 72.0 59.8 60.0 48.0 40.0 42.8 39.0 54.8 46.0 48.2 41.0

64 Channels 50 Bins 62.3 64.0 27.3 22.0 52.2 44.0 76.5 71.0 62.0 60.0 60.2 51.0 79.0 61.0 46.0 47.0 65.0 54.0 93.5 77.0
125 Bins 85.2 74.0 74.0 69.0 52.8 46.0 88.8 83.0 76.0 76.0 85.2 83.0 78.8 62.0 45.0 43.0 65.5 53.0 96.2 88.0

123

Accuracy tables for Free Spoken Digits (FSD) dataset

Table A.2: Network structure c6c12f2 accuracy (%)

Convolutional Neural Network

Butterworth filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

32 Channels 50 Bins 100.0 96.0 99.8 95.0 99.8 95.0 99.8 95.0 95.5 83.0 98.8 90.0 98.3 84.0 99.8 94.0 94.5 65.0 99.8 96.0
250 Bins 99.8 96.0 99.8 96.0 100.0 97.0 100.0 96.0 97.8 92.0 97.3 82.0 97.8 84.0 100.0 94.0 94.5 67.0 99.5 94.0

64 Channels 50 Bins 99.8 98.0 100.0 98.0 100.0 98.0 99.8 96.0 100.0 80.0 97.8 71.0 99.8 90.0 100.0 97.0 99.3 65.0 99.8 97.0
125 Bins 100.0 98.0 100.0 98.0 100.0 98.0 99.8 97.0 99.5 82.0 97.8 78.0 99.5 87.0 100.0 97.0 98.0 67.0 100.0 92.0

Gammatone filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

32 Channels 50 Bins 99.5 96.0 100.0 96.0 99.8 90.0 100.0 94.0 94.7 92.0 98.8 91.0 97.0 73.0 99.5 97.0 96.5 77.0 99.3 90.0
250 Bins 100.0 91.0 100.0 94.0 99.3 94.0 99.5 94.0 99.3 95.0 99.3 91.0 92.3 73.0 99.8 95.0 91.8 69.0 98.3 88.0

64 Channels 50 Bins 100.0 96.0 99.8 94.0 99.8 93.0 99.8 94.0 99.3 94.0 99.5 97.0 97.5 80.0 100.0 96.0 99.5 81.0 99.5 83.0
125 Bins 100.0 93.0 99.3 93.0 99.5 87.0 100.0 94.0 99.5 98.0 99.8 97.0 97.8 81.0 100.0 97.0 94.7 81.0 100.0 90.0

Spiking Neural Network

Butterworth filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

32 Channels 50 Bins 99.8 95.0 99.5 95.0 99.2 93.0 99.2 93.0 89.5 74.0 70.8 60.0 80.0 63.0 98.2 91.0 52.8 29.0 91.5 85.0
250 Bins 96.0 91.0 96.8 83.0 97.5 90.0 98.8 90.0 79.2 69.0 44.0 37.0 61.3 50.0 86.5 74.0 46.0 35.0 96.8 89.0

64 Channels 50 Bins 99.2 94.0 99.5 97.0 57.8 38.0 98.5 95.0 88.0 73.0 69.0 52.0 95.8 87.0 93.0 91.0 27.3 15.0 79.2 72.0
125 Bins 99.2 90.0 100.0 98.0 56.8 42.0 90.5 93.0 86.8 70.0 69.8 49.0 98.0 85.0 79.2 75.0 11.2 8.0 64.8 59.0

Gammatone filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

32 Channels 50 Bins 98.5 92.0 98.2 94.0 83.8 77.0 99.0 91.0 81.5 75.0 78.0 74.0 76.8 64.0 96.2 93.0 69.2 48.0 93.2 84.0
250 Bins 96.8 90.0 94.8 88.0 90.5 80.0 98.0 91.0 72.2 72.0 83.0 82.0 39.5 47.0 90.8 80.0 63.7 55.0 92.0 82.0

64 Channels 50 Bins 99.8 94.0 99.0 90.0 90.2 85.0 98.0 92.0 90.5 92.0 96.8 93.0 89.8 75.0 93.5 93.0 74.0 58.0 89.8 81.0
125 Bins 98.2 95.0 93.5 82.0 84.8 79.0 94.0 85.0 99.0 95.0 91.2 87.0 84.5 63.0 95.0 93.0 19.5 18.0 89.8 84.0

Table A.3: Network structure c12c24f2 accuracy (%)

Convolutional Neural Network

Butterworth filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

32 Channels 50 Bins 99.8 97.0 100.0 97.0 99.8 97.0 99.8 96.0 98.5 90.0 99.3 90.0 99.5 90.0 99.8 95.0 98.8 69.0 100.0 96.0
250 Bins 99.8 97.0 99.8 96.0 100.0 96.0 100.0 96.0 98.5 84.0 98.0 89.0 98.0 89.0 99.5 96.0 97.5 67.0 99.5 92.0

64 Channels 50 Bins 100.0 96.0 100.0 98.0 100.0 97.0 99.8 97.0 99.0 79.0 98.0 77.0 99.8 84.0 99.8 97.0 99.0 63.0 100.0 97.0
125 Bins 100.0 97.0 100.0 98.0 99.8 96.0 100.0 98.0 97.8 85.0 98.8 80.0 100.0 87.0 100.0 99.0 99.0 63.0 99.8 95.0

Gammatone filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

32 Channels 50 Bins 100.0 97.0 99.5 92.0 99.8 92.0 99.5 93.0 99.8 95.0 99.3 94.0 97.5 77.0 99.5 95.0 97.5 82.0 99.8 91.0
250 Bins 100.0 95.0 99.5 90.0 99.8 94.0 100.0 93.0 100.0 97.0 98.8 90.0 97.3 82.0 100.0 95.0 99.0 80.0 99.5 92.0

64 Channels 50 Bins 99.8 95.0 100.0 93.0 99.5 90.0 99.8 94.0 99.0 97.0 99.8 97.0 98.0 74.0 100.0 97.0 97.0 74.0 100.0 93.0
125 Bins 99.8 97.0 99.3 95.0 99.5 93.0 99.5 95.0 98.8 97.0 99.3 98.0 96.7 78.0 100.0 96.0 98.8 79.0 99.5 91.0

Spiking Neural Network

Butterworth filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

32 Channels 50 Bins 99.2 93.0 99.8 96.0 99.5 96.0 95.5 89.0 92.0 73.0 91.8 85.0 84.5 72.0 88.8 81.0 17.8 10.0 56.2 45.0
250 Bins 99.5 97.0 99.8 93.0 99.0 94.0 99.8 96.0 97.0 80.0 85.8 74.0 63.0 53.0 97.0 89.0 44.5 29.0 91.0 80.0

64 Channels 50 Bins 99.2 94.0 98.8 95.0 99.2 94.0 95.2 95.0 77.5 58.0 71.2 56.0 97.5 77.0 87.2 84.0 9.0 9.0 74.5 68.0
125 Bins 99.2 94.0 98.8 96.0 90.0 85.0 82.8 77.0 64.8 60.0 83.8 59.0 90.2 78.0 71.0 63.0 10.0 8.0 70.5 60.0

Gammatone filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

32 Channels 50 Bins 98.2 96.0 97.0 88.0 97.0 87.0 97.2 87.0 96.0 87.0 96.2 89.0 81.2 65.0 88.5 82.0 50.2 41.0 83.2 79.0
250 Bins 98.0 91.0 98.8 92.0 97.5 87.0 98.0 88.0 82.5 78.0 96.2 87.0 78.8 64.0 97.8 91.0 50.2 40.0 91.8 89.0

64 Channels 50 Bins 97.2 93.0 98.2 91.0 96.0 91.0 93.5 84.0 99.0 95.0 97.2 90.0 89.5 67.0 92.2 85.0 60.2 49.0 77.0 70.0
125 Bins 95.0 89.0 81.0 72.0 86.2 86.0 91.2 83.0 98.5 94.0 98.8 94.0 92.0 72.0 69.8 73.0 60.0 54.0 70.5 61.0

124

A.2 – Model compression

A.2 Model compression
This section will show the tables relating to the model compression associated to
the synapses reduction and pruning step.

A.2.1 Synapse reduction model

Table A.4: Network c6c12f2 after synapses reduction accuracy (%)
Spiking Neural Network

Butterworth filter bank

Temporal Contrast
Complete network First quartile Median Third quartile

TBR SF MW PFM TBR SF MW PFM TBR SF MW PFM TBR SF MW PFM
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

32 Channels 50 Bins 99.8 95.0 99.5 94.0 99.2 93.0 99.0 93.0 99.8 95.0 99.5 93.0 99.0 93.0 98.5 93.0 97.5 91.0 98.5 94.0 34.2 29.0 95.5 89.0 31.8 32.0 56.2 47.0 93.2 86.0 43.0 41.0
250 Bins 95.2 91.0 96.5 82.0 97.5 91.0 98.5 88.0 96.8 92.0 95.8 80.0 98.2 89.0 98.0 89.0 82.8 79.0 94.0 78.0 10.0 10.0 81.0 70.0 54.5 50.0 85.5 72.0 10.5 11.0 20.0 16.0

64 Channels 50 Bins 99.2 94.0 99.8 97.0 59.0 40.0 98.2 96.0 99.2 91.0 99.5 97.0 88.5 82.0 97.8 95.0 95.5 86.0 98.8 95.0 10.0 10.0 94.8 94.0 20.8 20.0 60.5 54.0 10.0 10.0 86.0 74.0
125 Bins 99.5 90.0 100.0 98.0 55.8 42.0 90.2 93.0 97.5 89.0 99.5 97.0 69.8 52.0 89.8 91.0 45.8 42.0 98.5 96.0 10.0 10.0 82.0 69.0 10.2 10.0 37.8 24.0 10.0 10.0 51.5 38.0

Spiking Neural Network

Gammatone filter bank

Temporal Contrast
Complete network First quartile Median Third quartile

TBR SF MW PFM TBR SF MW PFM TBR SF MW PFM TBR SF MW PFM
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

32 Channels 50 Bins 98.8 93.0 98.2 94.0 83.8 77.0 98.8 91.0 98.5 92.0 96.5 92.0 88.8 78.0 98.8 90.0 94.5 90.0 84.5 77.0 52.0 45.0 97.8 87.0 48.8 48.0 91.5 89.0 10.0 10.0 14.2 15.0
250 Bins 96.5 89.0 95.5 88.0 90.2 81.0 98.0 91.0 97.2 91.0 94.2 89.0 84.5 76.0 99.2 89.0 90.5 86.0 84.2 82.0 11.0 10.0 98.2 90.0 63.2 61.0 33.2 34.0 10.0 10.0 94.2 89.0

64 Channels 50 Bins 99.8 94.0 99.0 90.0 90.8 86.0 98.0 92.0 99.5 94.0 99.0 90.0 80.5 77.0 98.0 92.0 97.5 91.0 98.2 90.0 19.2 19.0 96.5 92.0 93.8 85.0 90.0 82.0 11.2 12.0 83.5 76.0
125 Bins 98.0 95.0 93.2 82.0 84.8 79.0 93.5 85.0 98.2 96.0 93.2 84.0 71.8 65.0 92.8 85.0 85.0 80.0 83.2 81.0 22.0 17.0 92.0 82.0 33.0 30.0 46.8 49.0 9.8 10.0 81.8 68.0

Table A.5: Network c12c24f2 after synapses reduction accuracy (%)
Spiking Neural Network

Butterworth filter bank

Temporal Contrast
Complete network First quartile Median Third quartile

TBR SF MW PFM TBR SF MW PFM TBR SF MW PFM TBR SF MW PFM
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

32 Channels 50 Bins 99.2 93.0 99.8 96.0 99.5 96.0 95.5 89.0 99.0 96.0 99.5 96.0 99.2 95.0 96.0 88.0 93.5 84.0 98.2 94.0 17.5 15.0 94.8 90.0 18.8 25.0 45.8 35.0 10.0 10.0 45.5 35.0
250 Bins 99.5 97.0 99.8 92.0 99.2 94.0 99.8 95.0 99.2 97.0 99.8 91.0 95.0 84.0 99.8 96.0 97.2 93.0 96.2 91.0 10.2 10.0 99.5 96.0 49.2 49.0 46.2 36.0 10.0 10.0 90.2 85.0

64 Channels 50 Bins 99.2 94.0 98.8 96.0 99.0 93.0 95.0 94.0 99.8 93.0 98.8 96.0 98.5 90.0 94.5 93.0 99.0 93.0 96.5 91.0 97.0 94.0 93.0 90.0 37.0 40.0 47.2 40.0 10.0 10.0 68.5 65.0
125 Bins 99.8 94.0 99.0 96.0 90.5 85.0 83.2 77.0 99.0 93.0 98.8 96.0 91.2 86.0 82.0 78.0 97.2 91.0 92.8 92.0 28.2 20.0 79.5 73.0 49.8 37.0 53.5 41.0 6.8 6.0 66.2 63.0

Spiking Neural Network

Gammatone filter bank

Temporal Contrast
Complete network First quartile Median Third quartile

TBR SF MW PFM TBR SF MW PFM TBR SF MW PFM TBR SF MW PFM
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

32 Channels 50 Bins 98.5 96.0 96.8 88.0 97.0 88.0 97.2 87.0 97.8 95.0 96.0 87.0 96.5 86.0 97.2 86.0 65.5 66.0 92.0 83.0 94.2 85.0 88.8 83.0 18.0 16.0 57.5 46.0 49.5 38.0 70.2 69.0
250 Bins 98.5 92.0 98.8 92.0 97.2 86.0 98.2 88.0 92.0 83.0 98.5 92.0 91.0 78.0 98.5 90.0 65.0 69.0 97.0 94.0 86.5 81.0 97.8 90.0 20.5 24.0 47.5 44.0 41.0 38.0 70.0 69.0

64 Channels 50 Bins 97.5 94.0 97.8 90.0 95.2 91.0 93.5 83.0 96.0 91.0 98.0 91.0 71.8 70.0 94.2 84.0 95.2 90.0 94.5 86.0 13.2 10.0 88.2 82.0 61.0 63.0 52.8 49.0 9.2 9.0 71.0 68.0
125 Bins 95.8 89.0 81.2 71.0 86.0 85.0 91.2 84.0 95.0 89.0 78.8 67.0 37.5 35.0 90.0 83.0 84.8 78.0 70.2 59.0 7.8 8.0 86.5 82.0 16.0 14.0 24.0 23.0 6.5 6.0 68.5 65.0

125

Accuracy tables for Free Spoken Digits (FSD) dataset

A.2.2 Pruned model

Table A.6: Network c6c12f2 after pruning accuracy (%)

Convolutional Neural Network

Butterworth filter bank

Temporal Contrast
Median Third quartile

TBR SF MW PFM TBR SF MW PFM
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

32 Channels 50 Bins 100.0 96.0 100.0 95.0 100.0 97.0 100.0 96.0 100.0 96.0 100.0 95.0 99.8 95.0 99.8 96.0
250 Bins 100.0 96.0 99.8 96.0 100.0 98.0 100.0 97.0 100.0 96.0 99.8 95.0 99.5 98.0 100.0 97.0

64 Channels 50 Bins 100.0 98.0 100.0 100.0 100.0 98.0 100.0 97.0 100.0 96.0 100.0 97.0 100.0 98.0 100.0 97.0
125 Bins 99.8 98.0 100.0 98.0 100.0 97.0 100.0 98.0 99.8 97.0 100.0 99.0 99.8 98.0 100.0 99.0

Gammatone filter bank

Temporal Contrast
Median Third quartile

TBR SF MW PFM TBR SF MW PFM
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

32 Channels 50 Bins 100.0 95.0 100.0 96.0 100.0 89.0 100.0 95.0 100.0 95.0 99.8 96.0 99.5 88.0 100.0 94.0
250 Bins 100.0 92.0 100.0 91.0 99.8 92.0 100.0 95.0 100.0 93.0 100.0 94.0 99.3 94.0 99.5 95.0

64 Channels 50 Bins 100.0 96.0 100.0 95.0 100.0 92.0 99.8 94.0 100.0 97.0 99.8 96.0 99.5 94.0 100.0 94.0
125 Bins 99.8 95.0 100.0 94.0 100.0 94.0 100.0 93.0 100.0 93.0 99.8 94.0 99.3 95.0 100.0 94.0

Spiking Neural Network

Butterworth filter bank

Temporal Contrast
Median Third quartile

TBR SF MW PFM TBR SF MW PFM
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

32 Channels 50 Bins 99.8 95.0 100.0 95.0 99.0 94.0 100.0 96.0 99.2 94.0 100.0 94.0 99.2 94.0 99.0 95.0
250 Bins 98.0 94.0 92.8 78.0 99.2 90.0 99.2 89.0 93.0 89.0 93.5 77.0 99.2 96.0 100.0 94.0

64 Channels 50 Bins 99.5 94.0 99.8 98.0 97.8 94.0 99.2 95.0 99.8 94.0 100.0 96.0 99.8 96.0 99.8 97.0
125 Bins 99.2 94.0 100.0 98.0 86.8 78.0 94.0 93.0 99.2 94.0 99.5 99.0 96.0 90.0 96.2 97.0

Gammatone filter bank

Temporal Contrast
Median Third quartile

TBR SF MW PFM TBR SF MW PFM
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

32 Channels 50 Bins 99.2 94.0 99.2 94.0 92.5 77.0 99.2 93.0 98.0 93.0 98.8 94.0 86.2 77.0 97.2 85.0
250 Bins 96.5 90.0 88.2 82.0 97.0 86.0 94.2 88.0 86.8 83.0 87.5 85.0 95.5 86.0 97.8 92.0

64 Channels 50 Bins 100.0 96.0 99.2 91.0 95.8 84.0 99.0 92.0 99.5 97.0 98.8 90.0 97.5 93.0 98.0 91.0
125 Bins 98.0 94.0 96.2 88.0 95.0 90.0 96.5 86.0 98.0 95.0 91.0 81.0 87.5 89.0 93.2 84.0

126

Appendix B

Accuracy tables for Wireless
Sensor Data Mining (WISDM)
dataset

B.1 Subset1

B.1.1 Complete network
In this section is reported the train and test accuracies of the various network in
the case of the WISDM in particular case for subset1, in which different encoding
algorithms and feature extraction is applied.

Table B.1: Network c6c12f2 accuracy (%)

Convolutional Neural Network

Butterworth filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

4 Channels 24 Bins 95.4 83.3 96.7 73.3 91.7 91.7 96.7 85.0 92.5 73.3 92.1 81.7 89.2 85.0 97.1 80.0 90.8 75.0 95.0 76.7
8 Channels 18 Bins 98.8 88.3 97.1 83.3 82.5 83.3 99.2 83.3 94.2 85.0 95.8 85.0 95.0 81.7 98.8 88.3 70.0 56.7 94.2 83.3
16 Channels 18 Bins 99.2 83.3 97.5 90.0 89.2 76.7 100.0 91.7 92.9 85.0 97.5 91.7 97.9 93.3 99.6 90.0 56.7 55.0 92.9 81.7

Gammatone filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

4 Channels 24 Bins 95.8 70.0 95.4 66.7 90.4 66.7 95.8 60.0 95.4 75.0 94.6 70.0 91.3 61.7 94.2 63.3 91.3 61.7 91.3 61.7
8 Channels 18 Bins 88.3 65.0 95.8 68.3 90.0 63.3 97.1 68.3 95.8 71.7 96.2 81.7 96.2 70.0 95.8 68.3 90.0 68.3 96.2 58.3
16 Channels 18 Bins 90.8 68.3 98.8 60.0 82.1 61.7 96.7 63.3 96.7 66.7 97.9 68.3 95.8 71.7 96.7 70.0 95.8 61.7 98.3 71.7

Spiking Neural Network

Butterworth filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

4 Channels 24 Bins 37.9 33.3 80.4 63.3 35.4 28.3 92.5 68.3 80.8 73.3 39.2 35.0 36.2 26.7 80.8 66.7 45.4 36.7 22.1 20.0
8 Channels 18 Bins 57.5 58.3 90.0 75.0 22.9 21.7 95.0 83.3 76.2 81.7 57.5 58.3 39.6 38.3 82.5 71.7 22.5 23.3 61.3 58.3
16 Channels 18 Bins 36.2 31.7 97.1 88.3 18.8 18.3 97.1 93.3 80.0 86.7 64.6 65.0 58.8 53.3 92.1 75.0 28.7 28.3 63.3 68.3

Gammatone filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

4 Channels 24 Bins 24.6 21.7 59.6 36.7 38.8 31.7 82.1 61.7 58.3 45.0 42.9 40.0 71.7 53.3 82.1 61.7 61.7 45.0 76.2 63.3
8 Channels 18 Bins 19.6 15.0 35.4 25.0 29.2 26.7 49.2 46.7 50.8 50.0 47.5 45.0 30.4 28.3 43.3 43.3 60.8 48.3 55.8 50.0
16 Channels 18 Bins 33.8 35.0 36.2 21.7 26.2 21.7 46.2 43.3 43.3 41.7 53.8 55.0 30.0 28.3 39.2 41.7 27.9 26.7 59.2 48.3

127

Accuracy tables for Wireless Sensor Data Mining (WISDM) dataset

Table B.2: Network c12c24f2 accuracy (%)

Convolutional Neural Network

Butterworth filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

4 Channels 24 Bins 97.1 85.0 96.7 73.3 98.8 81.7 98.3 85.0 97.1 80.0 97.9 86.7 96.7 85.0 95.8 68.3 92.9 81.7 97.5 83.3
8 Channels 18 Bins 97.1 88.3 98.8 83.3 93.3 83.3 98.3 86.7 96.2 90.0 95.8 86.7 98.3 88.3 97.9 85.0 79.2 63.3 93.8 80.0
16 Channels 18 Bins 98.8 88.3 99.2 90.0 86.3 78.3 98.3 95.0 94.2 85.0 97.5 95.0 98.3 93.3 97.9 88.3 16.7 16.7 95.0 81.7

Gammatone filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

4 Channels 24 Bins 95.4 61.7 97.1 73.3 95.0 68.3 96.7 65.0 96.7 66.7 95.8 76.7 92.9 75.0 96.2 66.7 95.8 63.3 96.2 70.0
8 Channels 18 Bins 92.1 68.3 94.6 75.0 93.3 63.3 98.8 66.7 97.5 75.0 90.8 75.0 95.0 71.7 96.7 61.7 90.8 65.0 97.5 68.3
16 Channels 18 Bins 94.2 60.0 97.5 70.0 89.6 65.0 96.2 63.3 97.1 75.0 96.2 76.7 95.0 63.3 95.8 73.3 96.2 60.0 95.8 73.3

Spiking Neural Network

Butterworth filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

4 Channels 24 Bins 80.4 68.3 87.1 66.7 57.9 48.3 92.5 80.0 75.4 63.3 56.2 53.3 70.8 76.7 82.5 60.0 44.6 40.0 18.3 16.7
8 Channels 18 Bins 60.4 60.0 84.6 71.7 19.6 16.7 96.7 86.7 90.8 85.0 69.6 68.3 91.7 80.0 92.5 78.3 25.4 28.3 60.8 58.3
16 Channels 18 Bins 83.3 71.7 95.8 86.7 19.6 16.7 97.1 90.0 94.6 85.0 71.7 71.7 57.5 60.0 96.7 86.7 16.7 16.7 87.5 88.3

Gammatone filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

4 Channels 24 Bins 45.4 41.7 67.1 53.3 50.0 45.0 87.1 61.7 72.5 53.3 54.2 48.3 37.5 31.7 86.7 61.7 75.0 55.0 74.6 66.7
8 Channels 18 Bins 40.4 38.3 53.8 36.7 28.7 20.0 62.9 56.7 48.3 40.0 52.9 48.3 30.8 28.3 70.8 56.7 62.1 48.3 67.1 51.7
16 Channels 18 Bins 47.5 43.3 55.4 46.7 35.0 21.7 64.2 50.0 31.2 26.7 65.4 58.3 31.7 31.7 50.8 46.7 46.7 40.0 68.3 50.0

B.2 Model compression
This section will show the tables relating to the model compression associated to
the synapses reduction and pruning step.

B.2.1 Synapse reduction model

Table B.3: Network c6c12f2 after synapses reduction accuracy (%)
Spiking Neural Network

Butterworth filter bank

Mixed class
Complete network First quartile Median Third quartile

SF PFM HSA PHASE SF PFM HSA PHASE SF PFM HSA PHASE SF PFM HSA PHASE
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

16 Channels 18 Bins 97.1 88.3 97.1 93.3 80 86.7 92.1 75 96.7 86.7 97.9 93.3 78.3 83.3 90.8 76.7 93.3 85 67.9 68.3 66.7 71.7 85.4 78.3 68.8 65 25.4 20 17.9 16.7 68.3 61.7

Spiking Neural Network

Gammatone filter bank

Mixed class
Complete network First quartile Median Third quartile

PFM BSA PHASE BURST PFM BSA PHASE BURST PFM BSA PHASE BURST PFM BSA PHASE BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

4 Channels 24 Bins 82.1 61.7 71.7 53.3 82.1 61.7 76.3 63.3 82.1 63.3 65.8 50 83.3 63.3 77.9 63.3 72.1 58.3 56.3 43.3 77.1 63.3 57.5 38.3 36.7 26.7 35.8 21.7 38.3 35 29.6 23.3

Table B.4: Network c12c24f2 after synapses reduction accuracy (%)
Spiking Neural Network

Butterworth filter bank

Mixed class
Complete network First quartile Median Third quartile

SF PFM PHASE BURST SF PFM PHASE BURST SF PFM PHASE BURST SF PFM PHASE BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

16 Channels 18 Bins 95.8 86.7 97.1 90 96.7 86.7 87.5 88.3 93.3 83.3 96.3 90 96.7 86.7 88.8 90 90.4 80 94.6 81.7 95.8 90 85.4 86.7 57.5 53.3 72.1 66.7 75.4 70 60 63.3

Spiking Neural Network

Gammatone filter bank

Mixed class
Complete network First quartile Median Third quartile

PFM TTFS PHASE BURST PFM TTFS PHASE BURST PFM TTFS PHASE BURST PFM TTFS PHASE BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

4 Channels 24 Bins 87.1 61.7 75 55 86.7 61.7 74.6 66.7 82.9 61.7 68.3 45 86.7 63.3 67.9 56.7 76.3 58.3 50 36.7 84.6 61.7 52.5 45 58.3 48.3 17.9 16.7 50.4 48.3 31.7 31.7

128

B.3 – Subset2

B.2.2 Pruned model

Table B.5: Network c12c24f2 after pruning accuracy (%)

Convolutional Neural Network

Butterworth filter bank

Mixed class
Median Third quartile

SF PFM PHASE BURST SF PFM PHASE BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

16 Channels 18 Bins 100.0 93.3 100.0 96.7 100.0 88.3 97.1 80.0 99.2 93.3 99.6 94.9 99.6.8 88.3 96.7 86.7

Gammatone filter bank

Mixed class
Median Third quartile

PFM TTFS PHASE BURST PFM TTFS PHASE BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

4 Channels 24 Bins 98.3 65.0 99.2 66.7 98.8 65.0 97.1 66.7 97.1 65.0 94.2 75.0 98.3 65.0 92.9 71.7

Spiking Neural Network

Butterworth filter bank

Mixed class
Median Third quartile

SF PFM PHASE BURST SF PFM PHASE BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

16 Channels 18 Bins 97.1 95.0 97.5 88.3 98.3 90.0 86.3 88.3 98.3 91.7 99.2 91.7 97.9 88.3 73.8 75.0

Gammatone filter bank

Mixed class
Median Third quartile

PFM TTFS PHASE BURST PFM TTFS PHASE BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

4 Channels 24 Bins 86.3 61.7 75.4 56.7 85.8 60.0 72.9 61.7 76.7 56.7 68.3 56.7 84.2 56.7 58.8 50.0

B.3 Subset2

In this section is reported the train and test accuracies of the various network in
the case of the WISDM in particular case for subset2, in which different encoding
algorithms and feature extraction is applied.

129

Accuracy tables for Wireless Sensor Data Mining (WISDM) dataset

Table B.6: Network c6c12f2 accuracy (%)

Convolutional Neural Network

Butterworth filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

4 Channels 24 Bins 92.5 37.1 91.8 58.6 80.4 58.6 96.8 61.4 85.7 65.7 77.5 61.4 89.6 62.9 91.8 58.6 62.9 52.9 74.3 50.0
8 Channels 18 Bins 96.4 50.0 95.4 52.9 83.2 57.1 95.7 52.9 87.9 68.6 76.4 65.7 93.2 71.4 92.1 57.1 47.9 38.6 72.5 58.6
16 Channels 18 Bins 95.7 51.4 95.0 48.6 93.9 50.0 95.4 62.9 96.4 64.3 91.1 67.1 96.4 67.1 98.2 61.4 14.6 14.3 68.6 58.6

Gammatone filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

4 Channels 24 Bins 88.9 38.6 88.9 41.4 91.4 37.1 87.9 51.4 82.9 37.1 88.9 45.7 82.5 42.9 91.8 45.7 82.5 42.9 77.5 47.1
8 Channels 18 Bins 92.9 40.0 92.5 31.4 85.0 34.3 92.1 45.7 89.6 48.6 88.2 45.7 90.7 48.6 92.1 44.3 91.1 42.9 89.6 44.3
16 Channels 18 Bins 91.8 32.9 94.3 34.3 93.6 38.6 97.1 48.6 94.6 50.0 91.8 50.0 92.9 44.3 95.4 58.6 94.6 44.3 94.3 44.3

Spiking Neural Network

Butterworth filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

4 Channels 24 Bins 33.2 15.7 72.1 50.0 27.1 25.7 81.1 57.1 42.5 27.1 45.0 42.9 46.4 32.9 59.3 48.6 23.2 21.4 28.6 24.3
8 Channels 18 Bins 50.4 30.0 72.9 48.6 41.8 32.9 73.2 50.0 34.3 25.7 46.1 42.9 69.6 54.3 76.8 51.4 14.3 14.3 41.8 44.3
16 Channels 18 Bins 70.7 37.1 76.4 40.0 46.8 28.6 71.4 52.9 50.4 34.3 64.6 55.7 42.9 32.9 84.6 55.7 14.3 14.3 43.2 42.9

Gammatone filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

4 Channels 24 Bins 42.5 24.3 54.3 31.4 36.1 17.1 67.5 45.7 66.4 28.6 43.2 38.6 32.9 22.9 56.4 42.9 52.1 28.6 63.6 38.6
8 Channels 18 Bins 25.4 21.4 54.6 20.0 30.0 18.6 51.4 38.6 32.5 25.7 23.6 20.0 14.3 14.3 51.8 42.9 22.1 10.0 45.7 35.7
16 Channels 18 Bins 30.0 12.9 53.6 24.3 25.7 11.4 43.2 27.1 33.2 22.9 25.0 21.4 19.3 14.3 42.1 31.4 30.0 15.7 47.5 34.3

Table B.7: Network c12c24f2 accuracy (%)

Convolutional Neural Network

Butterworth filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

4 Channels 24 Bins 93.6 42.9 95.0 50.0 95.7 48.6 96.1 55.7 93.9 70.0 78.2 68.6 94.6 67.1 96.8 55.7 50.4 40.0 75.4 50.0
8 Channels 18 Bins 94.3 57.1 96.1 52.9 86.4 60.0 94.6 62.9 93.2 61.4 83.2 62.9 96.4 72.9 96.8 61.4 42.1 34.3 71.1 60.0
16 Channels 18 Bins 94.6 62.9 94.6 52.9 93.9 38.6 95.0 61.4 97.1 58.6 96.4 67.1 97.9 67.1 95.7 62.9 14.3 14.3 69.3 52.9

Gammatone filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

4 Channels 24 Bins 93.9 30.0 92.9 28.6 93.9 38.6 90.4 47.1 80.4 48.6 92.9 48.6 91.4 48.6 91.4 51.4 89.3 42.9 88.6 44.3
8 Channels 18 Bins 93.9 41.4 93.6 40.0 92.1 40.0 95.4 52.9 94.6 44.3 96.1 50.0 90.7 47.1 95.7 58.6 92.9 41.4 95.0 51.4
16 Channels 18 Bins 93.9 38.6 92.9 31.4 95.4 37.1 95.4 40.0 95.4 47.1 96.4 52.9 93.2 41.4 94.6 51.4 93.2 40.0 93.6 44.3

Spiking Neural Network

Butterworth filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

4 Channels 24 Bins 60.0 22.9 61.4 34.3 71.4 41.4 64.3 51.4 46.1 31.4 50.7 47.1 35.0 31.4 69.6 52.9 18.6 20.0 22.9 17.1
8 Channels 18 Bins 66.8 42.9 78.9 48.6 57.9 38.6 70.4 52.9 59.3 52.9 58.9 51.4 65.4 52.9 78.6 62.9 21.1 18.6 44.6 47.1
16 Channels 18 Bins 76.8 47.1 86.8 54.3 58.6 30.0 81.8 64.3 76.8 47.1 77.5 65.7 70.0 52.9 85.0 57.1 14.3 14.3 43.6 42.9

Gammatone filter bank
Temporal Contrast Filter & Oprimizer Global Referenced Latency/ISI

TBR SF MW PFM HSA MHSA BSA PHASE TTFS BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

4 Channels 24 Bins 64.6 30.0 43.6 27.1 51.4 27.1 81.8 48.6 67.5 48.6 64.3 44.3 27.5 17.1 72.5 45.7 52.1 40.0 66.4 44.3
8 Channels 18 Bins 43.9 25.7 56.1 32.9 42.5 22.9 61.1 37.1 40.4 28.6 33.2 24.3 44.6 30.0 64.6 44.3 60.7 40.0 51.8 38.6
16 Channels 18 Bins 57.1 18.6 65.4 27.1 50.4 15.7 70.4 35.7 47.1 27.1 48.6 28.6 24.3 20.0 61.4 40.0 17.5 14.3 47.1 31.4

B.4 Model compression
This section will show the tables relating to the model compression associated to
the synapses reduction and pruning step.

130

B.4 – Model compression

B.4.1 Synapse reduction model

Table B.8: Network c6c12f2 after synapses reduction accuracy (%)
Spiking Neural Network

Butterworth filter bank

Mixed class
Complete network First quartile Median Third quartile

PFM MHSA PHASE BURST PFM MHSA PHASE BURST PFM MHSA PHASE BURST PFM MHSA PHASE BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

16 Channels 18 Bins 71.4 52.9 64.6 55.7 84.6 55.7 43.2 42.9 65.7 48.6 62.9 52.9 80.7 50 39.6 41.4 54.6 30 58.6 52.9 70 40 35.7 37.1 49.3 27.1 45 42.9 54.6 37 27.9 24.3

Spiking Neural Network

Gammatone filter bank

Mixed class
Complete network First quartile Median Third quartile

PFM MHSA PHASE BURST PFM MHSA PHASE BURST PFM MHSA PHASE BURST PFM MHSA PHASE BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

4 Channels 24 Bins 67.5 45.7 43.2 38.6 56.4 42.9 63.6 38.6 66.1 47.1 62.5 40 58.2 44.3 57.9 34.3 53.6 42.9 44.3 38.6 58.2 48.6 39.6 30 26.8 22.9 32.9 30 42.5 30 26.1 18.6

Table B.9: Network c12c24f2 after synapses reduction accuracy (%)
Spiking Neural Network

Butterworth filter bank

Mixed class
Complete network First quartile Median Third quartile

SF PFM MHSA PHASE SF PFM MHSA PHASE SF PFM MHSA PHASE SF PFM MHSA PHASE
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

16 Channels 18 Bins 86.8 54.3 81.8 64.3 77.5 65.7 85 57 86.1 52.9 81.9 62.9 74.6 65.7 85.7 60 85 51.4 76.4 62.9 67.9 64.3 85.7 58.6 52.5 35.7 35 22.9 61.4 57.1 63.2 50

Spiking Neural Network

Gammatone filter bank

Mixed class
Complete network First quartile Median Third quartile

PFM HSA PHASE BURST PFM HSA PHASE BURST PFM HSA PHASE BURST PFM HSA PHASE BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

4 Channels 24 Bins 81.8 48.6 67.5 48.6 72.5 45.7 66.4 44.3 80.7 45.7 63.9 47.1 72.9 47.1 64.3 44.3 75.7 41.4 45.7 37.1 69.3 41.4 66.1 41.4 43.6 24.3 15 20 39.6 30 45 27.1

B.4.2 Pruned model

Table B.10: Network c12c24f2 after pruning accuracy (%)

Convolutional Neural Network

Butterworth filter bank

Mixed class
Median Third quartile

SF PFM MHSA PHASE SF PFM MHSA PHASE
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

16 Channels 18 Bins 99.3 57.1 98.9 57.1 97.9 71.4 97.5 62.9 95.4 55.7 97.1 60.0 95.7 68.6 96.8 61.4

Gammatone filter bank

Mixed class
Median Third quartile

PFM TTFS PHASE BURST PFM TTFS PHASE BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

4 Channels 24 Bins 93.9 52.9 92.1 41.4 96.1 51.4 95.0 41.4 90.4 50.0 87.1 42.8 92.1 57.1 88.6 42.9

Spiking Neural Network

Butterworth filter bank

Mixed class
Median Third quartile

SF PFM MHSA PHASE SF PFM MHSA PHASE
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

16 Channels 18 Bins 86.3 50.0 82.1 53.3 77.1 60.0 87.1 58.3 75.0 43.3 66.7 48.3 70.8 60.0 72.1 53.3

Gammatone filter bank

Mixed class
Median Third quartile

PFM TTFS PHASE BURST PFM TTFS PHASE BURST
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

4 Channels 24 Bins 82.9 43.3 57.1 30.0 76.7 46.7 63.3 43.3 63.3 36.7 50.0 38.3 70.4 53.3 57.1 41.7

131

132

Acknowledgements

First of all I would like to thank my mother, who with great sacrifices has allowed
the completion of this long journey, giving me the privilege of following my pas-
sions, something for which I am immensely grateful, supporting me morally and
economically, encouraging me to do better and supporting myself in the most dif-
ficult moments, always believing in me. I would also like to thank my brother and
my sister who encouraged me with great sarcasm, and my uncles and in particular
my grandfather who are always available to listen and provide precious advice.

A special thanks goes to my friends met during this journey, without whom it
would not have been the same, Andrea Ser., Andrea Ste., Cecilia, Ettore, Francesca,
Francesco, Georgi, Nicola, Raffaele, who each of them has contributed in a signif-
icant way during my personal growth, transforming very difficult moments into
moments of great joy.

Last but certainly not least, I would like to thank my supervisor Gianvito Urgese
for giving me the opportunity to develop a thesis on a topic that fascinates me
a lot, allowing me to better understand my passions, and together with my co-
advisors Evelina Forno and Vittorio Fra, who with great patience and dedication
have constantly supported and encouraged me throughout my path, always fueling
my enthusiasm.

133

134

Ringraziamenti

Per prima cosa vorrei ringraziare mia madre, che con grandi sacrifici ha perme-
sso il compimento di questo lungo viaggio, dandomi il privilegio di seguire le mie
passioni, cosa di cui ne sono immensamente grato, supportandomi moralmente ed
economicamente, spronandomi a fare sempre meglio e sorreggendomi nei momenti
più difficili, credendo sempre in me. Vorrei inoltre ringraziare mio fratello e mia
sorella che con grande sarcasmo mi hanno incoraggiato, e hai miei zii e in particolare
a mio nonno sempre disponibili ad ascoltare e fornire preziosi consigli.

Un ringraziamento speciale va poi ai miei amici incontrati durante questo vi-
aggio, senza i quali non sarebbe stato lo stesso, Andrea Ser., Andrea Ste., Cecilia,
Ettore, Francesca, Francesco, Georgi, Nicola, Raffaele, i quali ognuno di loro ha con-
tribuito in un modo significativo durante la mia crescita personale, trasformando
momenti molto difficili, in momenti di grande gioia.

Per ultimi ma di certo non per importanza, vorrei ringraziare il mio relatore
Gianvito Urgese per avermi dato l’opportunità di svolgere una tesi in un argomento
che mi affascina molto, permettendomi di comprendere meglio le mie passioni, e
assieme ai miei co-advisor Evelina Forno e Vittorio Fra, che con grande pazienza e
dedizione mi hanno costantemente supportato e incoraggiato durante tutto il mio
percorso, alimentando sempre il mio entusiasmo.

135

136

Bibliography

[1] Dan Claudiu Ciresan et al. «Convolutional Neural Network Committees for
Handwritten Character Classification». In: 2011 International Conference
on Document Analysis and Recognition. IEEE, Sept. 2011, pp. 1135–1139.
isbn: 978-1-4577-1350-7. doi: 10.1109/ICDAR.2011.229. url: http://
ieeexplore.ieee.org/document/6065487/.

[2] Iuri Frosio, Karen Egiazarian, and Kari Pulli. «Machine learning for adaptive
bilateral filtering». In: ed. by Karen O. Egiazarian, Sos S. Agaian, and Atanas
P. Gotchev. Mar. 2015, p. 939908. doi: 10.1117/12.2077733. url: http:
//proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.
1117/12.2077733.

[3] Theodoros Theodorou, Iosif Mporas, and Nikos Fakotakis. «An Overview of
Automatic Audio Segmentation». In: International Journal of Information
Technology and Computer Science 6.11 (Oct. 2014), pp. 1–9. issn: 20749007.
doi: 10.5815/ijitcs.2014.11.01. url: http://www.mecs-press.org/
ijitcs/ijitcs-v6-n11/v6n11-1.html.

[4] Stuart Jonathan Russell and Peter Norvig. Artificial Intelligence. Feb. 2022.
isbn: 9780137903955.

[5] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. «CIFAR-100 (Canadian
Institute for Advanced Research)». In: (). url: http://www.cs.toronto.
edu/~kriz/cifar.html.

[6] Gary M. Weiss. «WISDM Smartphone and Smartwatch Activity and Bio-
metrics Dataset». In: UCI Machine Learning Repository: WISDM Smart-
phone and Smartwatch Activity and Biometrics Dataset Data Set 7 (2019),
pp. 133190–133202.

[7] J.C. Bezdek et al. «Will the real iris data please stand up?» In: IEEE Trans-
actions on Fuzzy Systems 7.3 (June 1999), pp. 368–369. issn: 10636706. doi:
10.1109/91.771092. url: http://ieeexplore.ieee.org/document/
771092/.

[8] David Silver et al. «Mastering Chess and Shogi by Self-Play with a General
Reinforcement Learning Algorithm». In: (Dec. 2017). arXiv: 1712.01815.
url: http://arxiv.org/abs/1712.01815.

137

https://doi.org/10.1109/ICDAR.2011.229
http://ieeexplore.ieee.org/document/6065487/
http://ieeexplore.ieee.org/document/6065487/
https://doi.org/10.1117/12.2077733
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2077733
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2077733
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2077733
https://doi.org/10.5815/ijitcs.2014.11.01
http://www.mecs-press.org/ijitcs/ijitcs-v6-n11/v6n11-1.html
http://www.mecs-press.org/ijitcs/ijitcs-v6-n11/v6n11-1.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.1109/91.771092
http://ieeexplore.ieee.org/document/771092/
http://ieeexplore.ieee.org/document/771092/
https://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815

BIBLIOGRAPHY

[9] David Silver et al. «Mastering the game of Go without human knowledge».
In: Nature 550.7676 (Oct. 2017), pp. 354–359. issn: 0028-0836. doi: 10.1038/
nature24270. url: http://www.nature.com/articles/nature24270.

[10] Volodymyr Mnih et al. «Playing Atari with Deep Reinforcement Learning».
In: (Dec. 2013). doi: 1312.5602. arXiv: 1312.5602. url: http://arxiv.
org/abs/1312.5602.

[11] D F Karya, P Katias, and T Herlambang. «Stock price estimation using
ensemble Kalman Filter square root method». In: Journal of Physics: Con-
ference Series 1008 (Apr. 2018), p. 012017. issn: 1742-6588. doi: 10.1088/
1742-6596/1008/1/012017. url: https://iopscience.iop.org/article/
10.1088/1742-6596/1008/1/012017.

[12] Stanley Baek et al. «Accurate vehicle position estimation using a Kalman
filter and neural network-based approach». In: 2017 IEEE Symposium Series
on Computational Intelligence (SSCI). IEEE, Nov. 2017, pp. 1–8. isbn: 978-1-
5386-2726-6. doi: 10.1109/SSCI.2017.8285360. url: http://ieeexplore.
ieee.org/document/8285360/.

[13] Hardie Cate, Fahim Dalvi, and Zeshan Hussain. «DeepFace: Face Generation
using Deep Learning». In: (Jan. 2017). arXiv: 1701.01876. url: http://
arxiv.org/abs/1701.01876.

[14] Carver Mead - Caltech. http://www.carvermead.caltech.edu/index.
html.

[15] Shih Chii Liu et al. «Asynchronous binaural spatial audition sensor with
2×64×4 Channel output». In: IEEE Transactions on Biomedical Circuits
and Systems 8.4 (2014), pp. 453–464. issn: 19324545. doi: 10.1109/TBCAS.
2013.2281834.

[16] Misha A. Mahowald and Carver Mead. «The silicon retina.» In: Scientific
American 264 5 (1991), pp. 76–82.

[17] «Loihi: A Neuromorphic Manycore Processor with On-Chip Learning». In:
IEEE Micro 38.1 (Jan. 2018), pp. 82–99. issn: 0272-1732. doi: 10.1109/
MM . 2018 . 112130359. url: http : / / ieeexplore . ieee . org / document /
8259423/.

[18] Wolfgang Maass. «Networks of spiking neurons: The third generation of neu-
ral network models». In: Neural Networks 10.9 (1997), pp. 1659–1671. issn:
08936080. doi: 10.1016/S0893-6080(97)00011-7.

[19] «Medical gallery of Blausen Medical 2014». In: WikiJournal of Medicine 1.2
(2014). issn: 20024436. doi: 10.15347/wjm/2014.010. url: https://en.
wikiversity.org/wiki/WikiJournal_of_Medicine/Medical_gallery_
of_Blausen_Medical_2014.

138

https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
http://www.nature.com/articles/nature24270
https://doi.org/1312.5602
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://doi.org/10.1088/1742-6596/1008/1/012017
https://doi.org/10.1088/1742-6596/1008/1/012017
https://iopscience.iop.org/article/10.1088/1742-6596/1008/1/012017
https://iopscience.iop.org/article/10.1088/1742-6596/1008/1/012017
https://doi.org/10.1109/SSCI.2017.8285360
http://ieeexplore.ieee.org/document/8285360/
http://ieeexplore.ieee.org/document/8285360/
https://arxiv.org/abs/1701.01876
http://arxiv.org/abs/1701.01876
http://arxiv.org/abs/1701.01876
http://www.carvermead.caltech.edu/index.html
http://www.carvermead.caltech.edu/index.html
https://doi.org/10.1109/TBCAS.2013.2281834
https://doi.org/10.1109/TBCAS.2013.2281834
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/MM.2018.112130359
http://ieeexplore.ieee.org/document/8259423/
http://ieeexplore.ieee.org/document/8259423/
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.15347/wjm/2014.010
https://en.wikiversity.org/wiki/WikiJournal_of_Medicine/Medical_gallery_of_Blausen_Medical_2014
https://en.wikiversity.org/wiki/WikiJournal_of_Medicine/Medical_gallery_of_Blausen_Medical_2014
https://en.wikiversity.org/wiki/WikiJournal_of_Medicine/Medical_gallery_of_Blausen_Medical_2014

BIBLIOGRAPHY

[20] A. L. Hodgkin and A. F. Huxley. «A quantitative description of membrane
current and its application to conduction and excitation in nerve». In: The
Journal of Physiology 117.4 (Aug. 1952), pp. 500–544. issn: 0022-3751. doi:
10.1113/jphysiol.1952.sp004764. url: https://onlinelibrary.wiley.
com/doi/10.1113/jphysiol.1952.sp004764.

[21] Nernst equation - Wikipedia, the free encyclopedia. https://en.wikipedia.
org/wiki/Nernst_equation.

[22] L.F Abbott. «Lapicque’s introduction of the integrate-and-fire model neu-
ron (1907)». In: Brain Research Bulletin 50.5-6 (Nov. 1999), pp. 303–304.
issn: 03619230. doi: 10 . 1016 / S0361 - 9230(99) 00161 - 6. url: https :
//linkinghub.elsevier.com/retrieve/pii/S0361923099001616.

[23] Roger M. Enoka and Jacques Duchateau. «Rate Coding and the Control of
Muscle Force». In: Cold Spring Harbor Perspectives in Medicine 7.10 (Oct.
2017), a029702. issn: 2157-1422. doi: 10.1101/cshperspect.a029702. url:
http://perspectivesinmedicine.cshlp.org/lookup/doi/10.1101/
cshperspect.a029702.

[24] Wulfram Gerstner et al. Neuronal dynamics: From single neurons to networks
and models of cognition. 2014, pp. 1–577. isbn: 9781107447615. doi: 10.1017/
CBO9781107447615.

[25] «A Survey of Encoding Techniques for Signal Processing in Spiking Neural
Networks». In: Neural Processing Letters 53.6 (Dec. 2021), pp. 4693–4710.
issn: 1370-4621. doi: 10.1007/s11063-021-10562-2. url: https://link.
springer.com/10.1007/s11063-021-10562-2.

[26] Dzung L. Pham, Chenyang Xu, and Jerry L. Prince. «Current Methods in
Medical Image Segmentation». In: Annual Review of Biomedical Engineering
2.1 (Aug. 2000), pp. 315–337. issn: 1523-9829. doi: 10 . 1146 / annurev .
bioeng.2.1.315. url: https://www.annualreviews.org/doi/10.1146/
annurev.bioeng.2.1.315.

[27] Medel - Blog. https://blog.medel.com/how-the-cochlear-understands-
so-many-different-sounds/.

[28] Daniel L Schacter, Daniel T Gilbert, and Daniel M Wegner. Psychology.
2nd ed. New York, NY: Worth, May 2011.

[29] Alice F Healy. Handbook of psychology: Experimental psychology v. 4. en. Ed.
by Alice F Healy and Robert W Proctor. Handbook of Psychology. 12 Volume
Set. Nashville, TN: John Wiley & Sons, Jan. 2003.

[30] By James T George and Elizabeth Elias. «A 16-Band Reconfigurable Hearing
Aid using Variable Bandwidth Filters». In: Global Journal of Researches in
Engineering: f Electrical and Electronics Engineering 14.1 (2014).

139

https://doi.org/10.1113/jphysiol.1952.sp004764
https://onlinelibrary.wiley.com/doi/10.1113/jphysiol.1952.sp004764
https://onlinelibrary.wiley.com/doi/10.1113/jphysiol.1952.sp004764
https://en.wikipedia.org/wiki/Nernst_equation
https://en.wikipedia.org/wiki/Nernst_equation
https://doi.org/10.1016/S0361-9230(99)00161-6
https://linkinghub.elsevier.com/retrieve/pii/S0361923099001616
https://linkinghub.elsevier.com/retrieve/pii/S0361923099001616
https://doi.org/10.1101/cshperspect.a029702
http://perspectivesinmedicine.cshlp.org/lookup/doi/10.1101/cshperspect.a029702
http://perspectivesinmedicine.cshlp.org/lookup/doi/10.1101/cshperspect.a029702
https://doi.org/10.1017/CBO9781107447615
https://doi.org/10.1017/CBO9781107447615
https://doi.org/10.1007/s11063-021-10562-2
https://link.springer.com/10.1007/s11063-021-10562-2
https://link.springer.com/10.1007/s11063-021-10562-2
https://doi.org/10.1146/annurev.bioeng.2.1.315
https://doi.org/10.1146/annurev.bioeng.2.1.315
https://www.annualreviews.org/doi/10.1146/annurev.bioeng.2.1.315
https://www.annualreviews.org/doi/10.1146/annurev.bioeng.2.1.315
https://blog.medel.com/how-the-cochlear-understands-so-many-different-sounds/
https://blog.medel.com/how-the-cochlear-understands-so-many-different-sounds/

BIBLIOGRAPHY

[31] E. Ambikairajah, J. Epps, and L. Lin. «Wideband speech and audio coding
using gammatone filter banks». In: ICASSP, IEEE International Conference
on Acoustics, Speech and Signal Processing - Proceedings 2.February (2001),
pp. 773–776. issn: 15206149. doi: 10.1109/icassp.2001.941029.

[32] A. G. Katsiamis, E. M. Drakakis, and R. F. Lyon. «Practical gammatone-
like filters for auditory processing». In: Eurasip Journal on Audio, Speech, and
Music Processing 2007 (2007). issn: 16874714. doi: 10.1155/2007/63685.

[33] E. D. Adrian and Yngve Zotterman. «The impulses produced by sensory
nerve endings». In: The Journal of Physiology 61.4 (Aug. 1926), pp. 465–
483. issn: 00223751. doi: 10.1113/jphysiol.1926.sp002308. url: https:
//onlinelibrary.wiley.com/doi/10.1113/jphysiol.1926.sp002308.

[34] T. J. Gawne, T. W. Kjaer, and B. J. Richmond. «Latency: another potential
code for feature binding in striate cortex». In: Journal of Neurophysiology
76.2 (Aug. 1996), pp. 1356–1360. issn: 0022-3077. doi: 10.1152/jn.1996.
76.2.1356. url: https://www.physiology.org/doi/10.1152/jn.1996.
76.2.1356.

[35] Troy W. Margrie and Andreas T. Schaefer. «Theta oscillation coupled spike
latencies yield computational vigour in a mammalian sensory system». In:
The Journal of Physiology 546.2 (Jan. 2003), pp. 363–374. issn: 0022-3751.
doi: 10.1113/jphysiol.2002.031245. url: https://onlinelibrary.
wiley.com/doi/10.1113/jphysiol.2002.031245.

[36] Roland S Johansson and Ingvars Birznieks. «First spikes in ensembles of
human tactile afferents code complex spatial fingertip events». In: Nature
Neuroscience 7.2 (Feb. 2004), pp. 170–177. issn: 1097-6256. doi: 10.1038/
nn1177. url: http://www.nature.com/articles/nn1177.

[37] Robert Galambos and Hallowell Davis. «THE RESPONSE OF SINGLE AUDITORY-
NERVE FIBERS TO ACOUSTIC STIMULATION». In: Journal of Neuro-
physiology 6.1 (Jan. 1943), pp. 39–57. issn: 0022-3077. doi: 10.1152/jn.
1943.6.1.39. url: https://www.physiology.org/doi/10.1152/jn.1943.
6.1.39.

[38] Simon Thorpe, Denis Fize, and Catherine Marlot. «Speed of processing in
the human visual system». In: Nature 381.6582 (June 1996), pp. 520–522.
issn: 0028-0836. doi: 10.1038/381520a0. url: http://www.nature.com/
articles/381520a0.

[39] Peter Dayan and Laurence F. Abbott. Theoretical Neuroscience. Aug. 2005.
isbn: 9780262541855.

[40] David Heeger. «Poisson Model of Spike Generation». In: Handout (2000),
pp. 1–13. url: http://www.cns.nyu.edu/$%5Csim$david/handouts/
poisson.pdf.

140

https://doi.org/10.1109/icassp.2001.941029
https://doi.org/10.1155/2007/63685
https://doi.org/10.1113/jphysiol.1926.sp002308
https://onlinelibrary.wiley.com/doi/10.1113/jphysiol.1926.sp002308
https://onlinelibrary.wiley.com/doi/10.1113/jphysiol.1926.sp002308
https://doi.org/10.1152/jn.1996.76.2.1356
https://doi.org/10.1152/jn.1996.76.2.1356
https://www.physiology.org/doi/10.1152/jn.1996.76.2.1356
https://www.physiology.org/doi/10.1152/jn.1996.76.2.1356
https://doi.org/10.1113/jphysiol.2002.031245
https://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2002.031245
https://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2002.031245
https://doi.org/10.1038/nn1177
https://doi.org/10.1038/nn1177
http://www.nature.com/articles/nn1177
https://doi.org/10.1152/jn.1943.6.1.39
https://doi.org/10.1152/jn.1943.6.1.39
https://www.physiology.org/doi/10.1152/jn.1943.6.1.39
https://www.physiology.org/doi/10.1152/jn.1943.6.1.39
https://doi.org/10.1038/381520a0
http://www.nature.com/articles/381520a0
http://www.nature.com/articles/381520a0
http://www.cns.nyu.edu/$%5Csim$david/handouts/poisson.pdf
http://www.cns.nyu.edu/$%5Csim$david/handouts/poisson.pdf

BIBLIOGRAPHY

[41] Elisa Donati et al. «Discrimination of EMG Signals Using a Neuromorphic
Implementation of a Spiking Neural Network». In: IEEE Transactions on
Biomedical Circuits and Systems 13.5 (2019), pp. 793–801. issn: 19409990.
doi: 10.1109/TBCAS.2019.2925454.

[42] Chang Gao et al. «Real-time speech recognition for iot purpose using a
delta recurrent neural network accelerator». In: Proceedings - IEEE Inter-
national Symposium on Circuits and Systems 2019-May (2019), pp. 6–10.
issn: 02714310. doi: 10.1109/ISCAS.2019.8702290.

[43] Nik Dennler et al. «Online Detection of Vibration Anomalies Using Balanced
Spiking Neural Networks». In: 2021 IEEE 3rd International Conference on
Artificial Intelligence Circuits and Systems, AICAS 2021 1 (2021), pp. 1–4.
doi: 10.1109/AICAS51828.2021.9458403. arXiv: 2106.00687.

[44] Enea Ceolini et al. «Event-driven Pipeline for Low-latency Low-compute Key-
word Spotting and Speaker Verification System». In: ICASSP, IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing - Proceedings
2019-May (2019), pp. 7953–7957. issn: 15206149. doi: 10.1109/ICASSP.
2019.8683669.

[45] Federico Corradi and Giacomo Indiveri. «A Neuromorphic Event-Based Neu-
ral Recording System for Smart Brain-Machine-Interfaces». In: IEEE Trans-
actions on Biomedical Circuits and Systems 9.5 (2015), pp. 699–709. issn:
19324545. doi: 10.1109/TBCAS.2015.2479256.

[46] Minhao Yang et al. «A 0.5 V 55 µW 64 × 2 Channel Binaural Silicon Cochlea
for Event-Driven Stereo-Audio Sensing». In: IEEE Journal of Solid-State Cir-
cuits 51.11 (2016), pp. 2554–2569. issn: 00189200. doi: 10.1109/JSSC.2016.
2604285.

[47] «SPIKER : Analog Waveform to Digital Spiketrain Conversion in ATR ’ s Arti
cial Brain (CAM-Brain) Project Abstract 1 Introduction 3 Hough Spiker
Algorithm (HSA) 2 Spike Interval Information Coding (SIIC)». In: 1 (),
pp. 3–6.

[48] Julien Dupeyroux. «A toolbox for neuromorphic sensing in robotics». In:
(Mar. 2021).

[49] Christoph Kayser et al. «Spike-Phase Coding Boosts and Stabilizes Infor-
mation Carried by Spatial and Temporal Spike Patterns». In: Neuron 61.4
(2009), pp. 597–608. issn: 08966273. doi: 10.1016/j.neuron.2009.01.008.
url: http://dx.doi.org/10.1016/j.neuron.2009.01.008.

[50] Jaehyun Kim et al. «Deep neural networks with weighted spikes». In: Neuro-
computing 311 (2018), pp. 373–386. issn: 18728286. doi: 10.1016/j.neucom.
2018.05.087.

141

https://doi.org/10.1109/TBCAS.2019.2925454
https://doi.org/10.1109/ISCAS.2019.8702290
https://doi.org/10.1109/AICAS51828.2021.9458403
https://arxiv.org/abs/2106.00687
https://doi.org/10.1109/ICASSP.2019.8683669
https://doi.org/10.1109/ICASSP.2019.8683669
https://doi.org/10.1109/TBCAS.2015.2479256
https://doi.org/10.1109/JSSC.2016.2604285
https://doi.org/10.1109/JSSC.2016.2604285
https://doi.org/10.1016/j.neuron.2009.01.008
http://dx.doi.org/10.1016/j.neuron.2009.01.008
https://doi.org/10.1016/j.neucom.2018.05.087
https://doi.org/10.1016/j.neucom.2018.05.087

BIBLIOGRAPHY

[51] Wenzhe Guo et al. «Neural Coding in Spiking Neural Networks: A Compara-
tive Study for Robust Neuromorphic Systems». In: Frontiers in Neuroscience
15.March (2021), pp. 1–21. issn: 1662453X. doi: 10.3389/fnins.2021.
638474.

[52] Zihan Pan et al. «An Efficient and Perceptually Motivated Auditory Neural
Encoding and Decoding Algorithm for Spiking Neural Networks». In: Fron-
tiers in Neuroscience 13.01 (2020), pp. 1–17. issn: 1662453X. doi: 10.3389/
fnins.2019.01420. arXiv: 1909.01302.

[53] Jackson Zohar. «Free Spoken Digit Dataset». 2020. doi: 10.5281/zenodo.
1342401. url: https://github.com/Jakobovski/free-spoken-digit-
dataset.

[54] Gary M. Weiss, Kenichi Yoneda, and Thaier Hayajneh. «Smartphone and
Smartwatch-Based Biometrics Using Activities of Daily Living». In: IEEE
Access 7 (2019), pp. 133190–133202. issn: 2169-3536. doi: 10.1109/ACCESS.
2019.2940729. url: https://ieeexplore.ieee.org/document/8835065/.

[55] Jyotibdha Acharya et al. «A comparison of low-complexity real-time fea-
ture extraction for neuromorphic speech recognition». In: Frontiers in Neu-
roscience 12.MAR (2018), pp. 1–15. issn: 1662453X. doi: 10.3389/fnins.
2018.00160.

[56] Jithendar Anumula et al. «Feature representations for neuromorphic audio
spike streams». In: Frontiers in Neuroscience 12.FEB (2018), pp. 1–12. issn:
1662453X. doi: 10.3389/fnins.2018.00023.

[57] Juan P. Dominguez-Morales et al. «Deep Spiking Neural Network model for
time-variant signals classification: A real-time speech recognition approach».
In: Proceedings of the International Joint Conference on Neural Networks
2018-July (2018). doi: 10.1109/IJCNN.2018.8489381.

[58] Qian Liu, Yunhua Chen, and Steve Furber. «Noisy Softplus: an activation
function that enables SNNs to be trained as ANNs». In: (2017). issn: 2331-
8422. arXiv: 1706.03609. url: http://arxiv.org/abs/1706.03609.

[59] Vittorio Fra et al. «Human activity recognition: suitability of a neuromorphic
approach for on-edge AIoT applications». In: Neuromorphic Computing and
Engineering 2.1 (Mar. 2022), p. 014006. issn: 2634-4386. doi: 10.1088/2634-
4386/ac4c38. url: https://iopscience.iop.org/article/10.1088/
2634-4386/ac4c38.

[60] Aaron R. Voelker, Ivana Kajic, and Chris Eliasmith. «Legendre memory
units: Continuous-time representation in recurrent neural networks». In: Ad-
vances in Neural Information Processing Systems 32.NeurIPS (2019). issn:
10495258.

142

https://doi.org/10.3389/fnins.2021.638474
https://doi.org/10.3389/fnins.2021.638474
https://doi.org/10.3389/fnins.2019.01420
https://doi.org/10.3389/fnins.2019.01420
https://arxiv.org/abs/1909.01302
https://doi.org/10.5281/zenodo.1342401
https://doi.org/10.5281/zenodo.1342401
https://github.com/Jakobovski/free-spoken-digit-dataset
https://github.com/Jakobovski/free-spoken-digit-dataset
https://doi.org/10.1109/ACCESS.2019.2940729
https://doi.org/10.1109/ACCESS.2019.2940729
https://ieeexplore.ieee.org/document/8835065/
https://doi.org/10.3389/fnins.2018.00160
https://doi.org/10.3389/fnins.2018.00160
https://doi.org/10.3389/fnins.2018.00023
https://doi.org/10.1109/IJCNN.2018.8489381
https://arxiv.org/abs/1706.03609
http://arxiv.org/abs/1706.03609
https://doi.org/10.1088/2634-4386/ac4c38
https://doi.org/10.1088/2634-4386/ac4c38
https://iopscience.iop.org/article/10.1088/2634-4386/ac4c38
https://iopscience.iop.org/article/10.1088/2634-4386/ac4c38

	List of Figures
	List of Tables
	Introduction
	Machine Learning
	Neuromorphic Engineering
	Spiking Neural Network (SNN)

	Background
	Nervous System
	Neuron
	Synapse

	Neuron model
	Hodgkin-Huxley model
	Leaky integrate-and-fire model

	Neural code

	Materials and methods
	Temporal data and Spatial data
	Temporal data
	Spatial data

	Preprocessing
	Filter bank

	Encoding Algorithms
	Rate Coding
	Temporal Coding

	Datasets
	The Free Spoken Digit Dataset (FSD)
	Wireless Sensor Data Mining dataset (WISDM)

	Learning process
	Sonogram

	Neural Network Architecture
	Convolutional Neural Network (CNN)
	Spiking Neural Network (SNN)

	Model Compression
	Synapses reduction
	Pruning

	Inapplicable encoding cases

	Results and discussion
	Performance evaluation for FSD dataset
	Density of Spike
	Architecture CNN/SNN
	Encoding
	Feature Extraction
	Visual analysis through feature reduction techniques
	Comparisons between different classes of algorithms
	Synapse reduction
	Pruning

	Performance evaluation for WISDM dataset
	Visual analysis through statistical methods and feature reduction techniques
	Density of Spike
	Architecture CNN/SNN
	Encoding
	Feature Extraction
	Comparisons between different class of algorithm
	Synapse reduction
	Pruning

	Conclusion
	Accuracy tables for Free Spoken Digits (FSD) dataset
	Complete network
	Model compression
	Synapse reduction model
	Pruned model

	Accuracy tables for Wireless Sensor Data Mining (WISDM) dataset
	Subset1
	Complete network

	Model compression
	Synapse reduction model
	Pruned model

	Subset2
	Model compression (1)
	Synapse reduction model
	Pruned model

	Bibliography

