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Abstract

A Networked Music Performance (NMP) is a real-time Internet application, in
which different performers or musicians hold the music show remotely and interact
with each other going through communication networks. For enabling musicians to
play simultaneously from distance, a low latency transmission is strictly required.
Therefore, to minimize the end-to-end delay, uncompressed, bidirectional audio
streams are used in some typical implementations of NMP applications, along with
User Datagram Protocol (UDP) running at transport layer. However, due to the
best effort mechanism of the Internet, it is hard to avoid the network jitter and
data loss. And UDP does not support acknowledgement and re-transmission
mechannism to recover the lost or excessively delayed data. Thus, exploring packet
loss concealment (PLC) approaches in NMP applications to solve this problem, in
order to make NMP realistic with a high quality for musicians and audience, is
becoming a challenging topic in the last decades for musicians and engineers.

A feasible way to implement PLC is to synthesize the lost music data, in real time,
that’s used to inserted back into the audio streams to be played out. The
algorithms for prediction of future music data, that could be possibly lost, based
on the historic data are worth to be investigated, because the correctness of the
music synthesis is of pivotal importance.

In this thesis, we propose a PLC method relying on the state-of-the-art
Autoregressive (AR) Models, which were developed by statisticians firstly to do
time series forecasting. We use this technique to predict the future music data
that could be lost and analyse its performance by adjusting the related parameters
for different genres of music.
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Chapter 1

Introduction

Networked Music Performance (NMP) is an interactive application with a
tremendous potential impact on professional and amateur musicians, as it enables
real-time interactions from remote locations. At the time of this writing, the
Covid-19 pandemic is widely spreading all around the world and social distancing
is required, as well as mobility restrictions between cities or countries are carried
out. Thus, the implementations of NMP have been gathering increasing attention.
The goal of developing NMP applications is to revolutionize the traditional
concept of live musical performance. To ensure a good quality of experience in an
implementation of NMP for both musicians and audience, very strict requirements
must be satisfied to keep one-way end-to-end transmission latency below a few
tens of milliseconds [1]. Using uncompressed audio streams and sending UDP
(User Datagram Protocol) audio packets directly between different cites is a
common solution to reduce time overhead in a real time application. Thus, the
processing time of compression codec and the delays introduced by the
re-transmission mechanism implemented by TCP (Transmission Control Protocol)
can be avoided by sacrificing data transfer reliability.

However, the most critical limiting factor of distributed networked performances is
the impact of the data loss and delay jitter introduced by IP networks, which is
unavoidable. A lost packet causes a gap in the play-out audio and an excessively
delayed packet is treated as a lost packet. Therefore, alternative recovery
mechanisms must be devised to deal with packet losses in order to make the audio
glitches not perceptible. Packet loss concealment approaches mainly aim at finding
a way to fill the gaps introduced by losses in the play-out audio to ensure the
quality of experience in the distributed music performance.
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Introduction

In this thesis, we propose a Packet Loss Concealment (PLC) method which is
implemented by using Autoregressive (AR) Models. Our goal is to explore the AR
models to do music forecasting, for different genres of music, as well as identify a
trade-off with time consumption, to find appropriate combinations of the
parameters to get a good quality of performance.

AR model is a special case of multi-linear regressive model, in which the forecast
variable can be obtained by using a linear combination of its past values, i.e. an
AR model predicts a variable of interest against the lagged values of itself. Our
idea is to predict and synthesize the lost data sections in the audio streams against
their historic data by leveraging AR models, and then to insert them back to fill
the gaps in music play-out, to increase the quality of the experience in NMP.

AR models can only be applied to stationary time series, thus we use tools relying
on the Augmented Dickey-Fuller (ADF) test as our stationarity proof for music
samples before doing the experiments. Our data set is a collection of 28 music files,
consisting of 22 music files of five genres and six mixture music songs, on which we
will do the iterations for experiments. All of the audio files are sampled at the
same rate, the number of samples of each file is at least 50000 and can reach
5000000.

In our project, our experiments are mainly focused on exploring and evaluating
the performance of music data forecasting instead of building a regular VOIP
communications system, i.e. training the model to do music forecasting and
collecting quantitative measurements of the prediction performances. Thus, for
each audio file, we randomly pick hundreds of positions to mock the data losses
that would occur in a real scenario. AR models are trained and then used for
prediction by adjusting various parameters. In this project, the training size and
lag number are the two most relevant parameters. The training size defines how
much historic data of the music series we use, and the lag number indicates how
many lagged values of the data itself are taken into account to train the model. By
changing these sizes and combining them in different ways for different kinds of
music prediction, we may have different levels of quality of performance of our
models. The larger the values are, the more time consumption for the whole
training and predicting procedure is required. The test size, another interesting
parameter, is actually the size of the "packet" we use to transmit, thus the size of
data losses, in the real-time NMP application. It may depend on many
complicated factors such as hardware resources, network condition, etc, but here in
this project we are only interested in the effects of changing this size on our AR
models.

At last we analyse the performance in a quantitative way by adopting two reliable
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Introduction

error metrics, the Mean Absolute Error (MAE) and the Root Mean Squared Error
(RMSE). These two metrics are widely adopted for analysing the accuracy of linear
regression models for time series.

The main observation in this thesis is that AR models are able to closely predict
the future audio samples when the waveform of the audio data is showing
relatively regular patterns regardless of instruments, melodies, or vocals.

The remainder of this thesis is organized as follows: after briefly reviewing the
related literature and studies in Chapter 2, some background notions on AR
models are provided in Chapter 3 and then the proposed prediction framework is
described in Chapter 4. A performance assessment is provided in Chapter 5.
Conclusions are provided in the final Chapter, the Chapter 6.
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Chapter 2

Related Work

This chapter briefly describes the history and related studies of networked music
performance as well as one of its key steps, i.e. packet loss concealment, which is
aimed at making the performance better without perceptible sound deterioration.

2.1 History of Networked Music Performance

Over the last two decades, the continuously improving performance of broadband
internet services has been bringing out the widespread diffusion of internet
applications. NMP, as an internet application, is envisioned as a potential
revolution of a traditional concert by enabling musicians perform together from
distance.

One of the first NMP experiments was performed by John Cage in 1951 by using
inter-connected radio transistors as musical instruments with the piece "Imaginary
Landscape No.4 for Twelve Radios". It was an innovative experiment but it was
heavily constrained by the limited technologies of that time [2].

The rise of computers was making a big progress in the media communication.
Therefore, in the late 1970s, one of the earliest NMP experiments with computers
was performed by a band named "The League of Automatic Music Composor",
widely regarded as the first musicians to do live musical performance by creating
networks of interacting computers and other electronic circuits. They approached
the computer network as one large, interactive musical instrument which is made
up of independently programmed music machines.

4
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Another more sophisticated experiment was held between the mid-1970s and late
1990s by Chris Brown and John Bischoff [3]. Composers experimenting with
microcomputers as musical instrument automata, in San Francisco Bay Area,
sending MIDI data between musicians instead of audio signals over Ethernet due
to the limited bandwidth at that time.

After 1990s, the arrival of the new generation of internet makes real-time audio
applications running over the internet possible. Stanford University’s CCRMA
gives a simplified approach to high quality music and sound over IP network. It
suggests data compression to be eliminated to reduce delay and enhance
signal-quality. TCP/IP (Internet Protocol) is used in unidirectional flows for its
delivery guarantees. By exploring the use of audio as a network measurement tool,
SoundWIRE (sound waves over the internet from real-time echoes) created a
sonar-like ping signal to display to the ear qualities of bidirectional connections [4].

In 1990s, an experimental applications called Distributed Immersive Performance
(DIP) is carried out. DIP aims to develop the technology for live and interactive
musical performances in NMP by interconnecting different physical locations with
very high fidelity multi-channel audio and video links. The system is capable to
run over local area networks and internet under the utilization of novel protocols
which are for the low latency and synchronized real-time delivery of media data [5].

Furthermore, there are still other groups and projects deadling with the research
on NMP. The project jacktrip [6] is used for concerts and online jamming. And it
includes SoundJack, an uncompressed audio streaming application, which allows
low latency multimedia communications on standard computer systems instead of
dedicated hardware [7]. DIAMOUSES is a research and development project
whose goal is to enable many different application scenarios for NMP including
master teaching, show rehearsing, jamming sessions and collaborations [8].

Moreover, in the recent years, different network architectures, such as
client-server [9] [10], master-slave [11] and decentralized peer-to-peer
infrastructures [12] [13], have been investigated as enabling design paradigms for
NMP systems.

5
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2.2 Analysis on Cognition and Perception of
NMP

According to the article [14], the estimated delay threshold was 25ms
corresponding to a maximum separation of 8.5 meters to ensure the maintenance
of a common tempo without a conductor.

An extensive evaluation experiment was carried out by [15]. Based on the musical
features of various music instruments and music genres, this paper investigates the
tolerance of remotely interacting musicians towards adverse network conditions.
The article mentioned the sound qualities of the instruments have a significant
effect on the perceptual quality of the performance. In addition, the delay
tolerance threshold is not only depends on the total network delay, but also on the
role and the timbral characteristics of the musical instruments that are involved,
as well as the rhythmic complexity of the piece being played.

In article [16], the authors provide the experimental results convincing the readers
that a latency of 20-30ms is acceptable for most multimedia applications. However,
in article [17], the perception of asynchrony in musical performs under different
situations is studied, and in a normal musical performance, asynchronies up to
50ms in supposedly simultaneous notes are common. The latency tolerance in
music performmances also strongly depend on the piece of music and
instruments [5]. And due to the delay between the action of pressing the key and
the onset of the note is about 100ms for quiet notes and 30ms for forte notes [18],
the tolerance for piano music performances can reach more significant values.

2.3 Packet Loss Concealment Algorithms in
NMP

Making use of low-latency uncompressed audio streaming technologies makes
networked music performances across the Internet a practical application.
However, due to the best-effort paradigm of Internet, we can’t avoid to have
packet losses and delay jitters which may insert glitches into the music play-out.
So the adoption of PLC techniques in NMP is very much necessary.

The majority of the studies on PLC in NMP applications focus on recovery
methods for the transmission of MIDI signals instead of audio data. The authors
of [19] proposed a PLC method by leveraging a recovery journal section within the
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RTP packet which holds the latest music status information so that a receiver can
recover from a wrong status due to previous lost packets. Still for NMP performed
with MIDI signals, other recovery approaches rely on auxiliary reliably-connected
channels to transmit critical MIDI events [20] or support the acknowledgment
mechanisms to allow for re-transmission of lost music data [21].

Alternatively, the prediction of the waveform of lost music audio data can be an
effective PLC approach. In article [22], a state-of-the-art AutoRegressive (AR)
model is used for PLC in speech. The idea of predicting audio data by means of
an AR model for speech can be applied in NMP too. In a jacktrip connection
mentioned above [23], its built-in PLC algorithm simply repeats the last good
packet that was received. An alternative choice of its PLC mode is to mute the
audio until the next good packet is able to be played out. In most cases, these
methods can introduce significant discrepancies and likely the distortion is audible.
These two primitive methods are referred as silence substitution and pattern
replication in the previous literature [24]. As in prior work [24], these two PLC
methods will be used as the benchmark comparisons of our experimental results.

Further more, the era of artificial intelligence has come so modelling the music
data for future prediction in NMP applications by machine learning can be a very
interesting research. The authors of article [1] proposed a deep learning approach
for Low-Latency PLC of audio signals in NMP. Results in this article show that,
for some cases, the ML algorithm outperforms the AR approach in repairing audio
signal gaps. Because the current AR models for PLC in NMP has not been widely
studied and explored, we choose AR model as our implementation in this thesis.

7



Chapter 3

Background

This chapter provides a background on time series forecasting using AR models,
which will be exploited in this thesis to predict the lost packets in NMP. In
addition, the music data used in this thesis are presented in a mathematical way
and the feasibility of using AR models for predicting music data is explained.

3.1 Time Series Forecasting with Autoregressive
Model

3.1.1 Linear Regression Model

The basic concept of time series regression models is that the models forecast the
time series of an interest variable yt assuming that it has a linear relationship with
other time series xt. The yt variable is usually called a forecast variable,
regressand, dependent, or explained variable. The xt variable is usually called a
predictor variable, regressor, independent, or explanatory variable. Simple linear
regression is the common forecasting model in the simplest cases. It estimates a
linear relationship between the regressand yt and the regressor xt:

yt = β0 + β1xt + εt. (3.1)

The coefficients β0 and β1 denote the intercept and the slope of the line
respectively. As shown with an example in (3.1), a positive slope β1 indicates that
the correlation between predicted yt and xt is positive, and vice versa.

8
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Figure 3.1: An example of data from a simple linear regression model [25].

3.1.2 Multiple Linear Regression Model

A multiple linear regression model is a linear regression model when it has two or
more predictor variables. The general form of a multiple regression model with k
predictor variables is expressed as:

yt = β0 + β1x1,t + β2x2,t + · · · + βkxk,t + εt. (3.2)

The coefficients β0,..., βk show, in a quantitative way, the effect of each predictor
xk,t on the forecast variable yt after taking into account the effects of all the others.
In the linear regression model, we assume each predictor x is not a random
variable, which means we could control the values. And the respective coefficients
can be estimated when the model is trained along with an estimated minimum
error.

3.1.3 Autoregressive Model

AR model is a special case of multiple regression model. In an AR model, a
forecast variable yt can be got by using a linear combination of its past values. In
other words, AR models predict a variable of interest against the lagged values of

9
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Figure 3.2: Example: Time plot of actual US consumption expenditure and
predicted US consumption expenditure. [26].

itself. An autoregressive model of order ρ is denoted as AR(ρ) and can be written
as:

yt = c + ϕ1yt−1 + ϕ2yt−2 + · · · + ϕρxt−ρ + εt. (3.3)

where ε is white noise and c is a constant. The order ρ of an AR model should be
chosen by analysing the PACF of the data before building and training the model.

Stationarity and Differencing

AR model can only be applied to stationary time series forecasting. So stationarity
should be examined before building a forecasting model for a time series. A time
series whose statistical properties do not depend on the time is considered as
stationary.

The following properties should be found throughout the entire series:

• Flat looking without trend

• No seasonality

10
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• Constant mean over time

• Constant variance over time

• Constant correlation structure over time

If a time series is non-stationary, differencing can be used to eliminate or reduce
trend and seasonality. Computing the differences between consecutive observations
is known as differencing.

ACF and PACF

Exploring ACFs and PACFs can help researchers understand the temporal
dynamics of a time series. An ACF measures the average correlation between data
points in a time series and previous values of the series measured for different lag
lengths. However, PACFs, Partial ACF, does a the similar work as ACF with each
correlation under controlling for any correlation between observations of a shorter
lag length.

As mentioned before, two key factors about the temporal dynamics should be
examined before building and training the equation of an AR model:

• Stationarity of the data

• The order of AR model

Exploring and plotting the ACF of a time series is also an useful approach for
analysing its stationarity. The ACF of a stationary time series decays towards zero
relatively quickly, while the one of non-stationary time series does so very slowly.
As shown with an example in Figure 3.3.

For a stationary time series that can be fitted by an AR model, the PACF plots
will show some spikes at the lag lengths at which the data points correlate high.
As a consequence, exploring PACF is a possible way to define the order of the AR
model to be trained, as shown with an example in Figure 3.4.
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Figure 3.3: Illustrative example of an ACF with a correlation between observations
at a single lag equal to 0.8. [27].

Figure 3.4: Illustrative example of a PACF with a correlation between observations
at a single lag equal to 0.8. [27].
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3.2 Music Data Representation

The music data set, on which the AR model will be applied to do the forecasting
in this project, is all audio including digital files and real time play back. Music
data, as a time series, can be represented and explained in a mathematical way, i.e.
its waveform plot, to show some properties/stationarity that are under the
condition of performing an AR model forecasting. An example of the waveform
plot of a guitar-only music file is shown in Figure 3.5.

Figure 3.5: An example of waveform of a guitar-only music file.
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Chapter 4

Framework

This chapter describes the framework used for processing musical data along with
the implementation of auto-regressive models as our packet loss concealment
algorithm in NMP.

The key concept that’s worth to be recalled is that NMP is running over a
computer network as a real time application, which requires strictly low latency
music data streaming. As a consequence, the application should be running with
UDP at transport layer other than TCP due to the fact that TCP introduces some
delay to perform flow control, error control and packet re-transmission mechanism
to ensure the integrity of the receiving data, while UDP without error correction
mechanism is bringing a lower degree of accuracy but higher efficiency in
transmission.

Therefore, to ensure a good quality of NMP in real time, error correction or PLC
approaches are fairly important to be implemented in the application layer. PLC
Algorithms should be smart and quickly find a way to re-create the lost data and
insert back synthetic data sections into the gaps, caused by data loss or excessive
delay in a best-effort communication network, in the music data streaming.

Figure 4.1 briefly depicts the overview of the system we implement. Each step will
be introduced in the following sections and the most critical sub-process, our
proposed solution for PLC, is AR model training and prediction for all test
positions.

In our proposed framework, we train an AR model to predict the lost data to
achieve what we just mentioned. There is no denying we need a trade-off between
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Figure 4.1: Overview of Framework

computational complexity (which means consuming more time and introducing
higher latency) and prediction accuracy. So, we mainly analyse the effects on and
results of our system along with AR models by adjusting different parameters.
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4.1 Data Set

The data set used in this project consists of audio files in digital format .mp3 or
.wav, searched and collected from [28]. We separated them into five genres and a
mixture: Drum, Guitar, Piano, Violin, Generic and Song. The first four kinds of
music files are melodies only played by single musical instrument and the files
included in Generic and Song are mainly containing vocals and a mixture of all
above respectively.

4.1.1 Stationarity Proof

As we said in Chapter 3, AR models can only be applied to forecast the stationary
time series. For cleaning and collecting the appropriate data set for the
experiments, we need a good proof of stationarity for all music data. Here the
tools we use are against Augmented Dickey-Fuller (ADF) test.

What is ADF test?

ADF test is fundamentally a statistical significance test which means there is a
hypothesis testing involved with a null and alternate hypothesis. It computes and
reports a test statistic and p-values, from which you can make an inference as to
whether a given series is stationary or not [29].

How does ADF test work?

The ADF test is one of a category of tests called ‘Unit Root Test’, which is the
proper method for testing whether the time series is stationary. Unit root is a
characteristic of a time series that makes it non-stationary.

Dickey-Fuller test is a unit root test that tests the null hypothesis (α=1) in the
following model equation where α is the coefficient of the first lag on Y.

Yt = c + βt + αyt−1 + ϕ∆Yt−1 + et. (4.1)

where, yt is the value of the time series at time ’t’ and Yt−1 is the value at lag 1
and Xe, δYt−1 is the first difference of the series at time ’t-1’. The coefficient α
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with value 1 is implying the presence of a unit root. If it is not rejected, the series
is considered to be non-stationary.

The ADF test evolved based on what we talked about just above and acts as an
augmented version of the Dickey Fuller test because the equation expands into
high order regressive process in the model.

Yt = c + βt + αYt−1 + ϕ1∆Yt−1 + ϕ2∆Yt−2 + · · · + ϕp∆Yt−p + et. (4.2)
The p-value obtained by ADF test on the music samples should be less than the
significance level (usually 0.05 is taken) in order to reject the null hypothesis,
which means, to prove the time series is stationary.

4.1.2 Genres and properties of Data

Drum

An example of waveform of drum music file is shown in Figure 4.2. We can see
some properties of stationary here such as constant mean and variance, but the
rhythm is quick which makes the prediction more difficult.

Figure 4.2: An example of waveform of the drum music

Piano

As shown in Figure 4.3, the piano music pattern looks slower and more gentle, and
it is stationary. Therefore, it is likely that our AR model may predict well on
piano samples.
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Figure 4.3: An example of waveform of the piano music

Violin

As what we see in Figure 4.3, the waveform of violin is showing a pattern which is
relatively stationary.

Figure 4.4: An example of waveform of the violin music

Guitar

The variance of guitar music is not a constant value, which is indicating it is not a
stationary time series so our AR model would not perform very well without
differencing.
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Figure 4.5: An example of waveform of the guitar music

Generic

It is not hard to find that the variance is slightly changing along time and its
dispersion may infer that the AR model would have a poor performance on the
generic music.

Figure 4.6: An example of waveform of the generic music

Song

We will use our best AR model, with best parameters after analysing, to train and
predict a generic song which consists of various kinds of sounds played by different
instruments as well as human vocals.
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Figure 4.7: An example of waveform of a generic song

4.2 Training and Testing of AR Models for PLC

Figure 4.8 shows the framework of training and prediction of our AR model and
the related interesting parameters that we need to analyse and then adjust for the
best performance results.

Our experiments are mainly focused on exploring and evaluating the performance
of a packet loss concealment method based on AR models, i.e. training the model
and collecting quantitative measurement of the testing results, instead of building
a regular VOIP communications system. So we artificially inserted gaps i.e. loss in
random positions in the music time series by using some pseudo-random tools of
python. Those random positions are the time indices of the end of music samples
as training set and the beginning of testing samples.

The experimentation should consider different scenarios. The order of the AR
model i.e. the number of lag values, is an interesting parameter that we should
study, as shown in the equation 3.2, to train the model to actually get the best
coefficients of each lagged value w.r.t the currently being predicted values. The
higher the order of an AR model is, the more coefficients are needed to be
calculated with minimum errors when training the model, which means the bigger
the lag value is, the more time overhead the training procedure introduces. So
obviously, the number of lag values is quite worth analysing.

Besides, the size of the training set is another critical parameter. What we want to
figure out is, for every kind of musical performance, which size is the best to be
use, i.e. which is the number of samples that is used to train the AR model in
order to get the best performance results. An Auto-Regressive model is actually
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Figure 4.8: Procedure of Parameter Analysis for AR Models in PLC

using the historical data to do the forecasting for future data. But a pretty good
question is: how long should we go back in time? How many historical data are
actually meaningful for the data being predicted at the current test position?

By adjusting the size of the training set and the value of lag in different iterations,
for each music file, we calculate the mean absolute error (MAE) and root mean
squared error (RMSE) of the predicted music samples with respect to the original
ones.

Furthermore, we use the latest historical samples w.r.t the test positions as the
training set to train the model, and then to predict the lost audio samples.

The parameters of AR models within each iteration are fixed, i.e. for each audio
file, the size of training set, the order of the model (lag values) and the length of
the gap (test section) to be predicted are all unchanged for every random testing
position.
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Once we get a random position for testing PLC, we predict the whole patch to fill
the gap. As Figure 4.9 shows, we have a stream of audio samples and randomly
picked positions. In real time applications, the transmitter(receiver) is
sending(receiving) media streams section by section and the section size depends
on the specific application and buffer size or many other factors. Therefore, the
pink section is where we do the patch prediction and performance evaluation. The
training set is accumulated by the received sections in history earlier w.r.t. the
test position.

Figure 4.9: Process of Predicting Music Data by Training AR Models

4.3 Results Evaluation

4.3.1 Benchmark Methods

As we mentioned in Chapter 2, we take two approaches, silence substitution and
pattern replication, as our result testing benchmarks.

Benchmark - Silence Substitution

This approach is just inserting a silent section into the gap to make a packet loss
concealment.
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Figure 4.10: Silence Substitution For PLC

Benchmark - Pattern Replication

This approach is just repeating the last properly received data section in the lost
section as its PLC mechanism.

Figure 4.11: Pattern Replication For PLC

4.3.2 Performance Metrics

As we said, the experiments of this project mainly focus on analysing the
performance of music data prediction by building and training an AR model as
our PLC approach. So the performance metrics are playing a quite important role
in the whole procedure. How good is the prediction matching up against actual
values and how can we evaluate the quality of our AR model in a quantitative
way? We call the difference between the actual value and the predicted one
residual. For every sample, we calculated the residual and each of them will be of
use in assessment. These residuals will play a significant role in judging the
usefulness of a model. If the collected residuals are small, it implies the AR model
does a good job at predicting that music samples, otherwise relatively poor. For
statistics purposes, it is better to condense them into a single value that represents
the predictive ability of our model. There are many of these summary statistics,
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each with its own advantages and pitfalls. In this project we decided to use MAE
and RMSE as our error metrics and we’ll discuss what each statistic represents.

MAE - Mean Absolute Error

The mean absolute error (MAE) is the simplest error metric for regression
performance. We calculate the residual for every data point and take only the
absolute value of each and then take the average of all these residuals. Effectively,
MAE describes the typical magnitude of the residuals.

Figure 4.12: The formal equation of MAE [30]

Figure 4.13 is the graphical description of the MAE. The red lines are indicating
the magnitude of the residuals. MAE is the most intuitive metric since we are just
looking at the absolute difference between the actual data and predicted data.
Therefore, the larger errors do not make more penalty on the result because each
residual contributes proportionally to the total amount of error, which means
MAE does not indicate under-fitting or over-fitting model’s performance.

Figure 4.13: An example of comparison of predicted music data against the
actual ones
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RMSE - Root Mean Squared Error

As we mentioned, absolute error has its disadvantage, so squaring the residuals is
more desirable when we want the outliers, or extreme values, make more penalty
to the overall error. Therefore, Mean Squared Error (MSE) is squaring the
difference before summing them up to get the mean value.

RMSE =
öõõô 1

n

nØ
i=1

(ŷi − yi)2 (4.3)

The big prediction errors may create glitches in the predicted music samples so we
seriously want to take the outliers more into account. While each residual in MAE
contributes proportionally to the total error, the error grows quadratically in MSE.
This ultimately means that outliers, the predicted values greatly differing from the
corresponding actual values, will contribute to much higher total error as well as
penalize more our model in the MSE than they would the MAE.

Because MSE’s unit does not match that of the original data. We use RMSE to
convert the error metric back into similar units, making interpretation easier.

4.3.3 Time Consumption

Time consumption is another important factor that we need to take into account.
We calculate the time consumption of training and prediction separately of our AR
models, as Figure 4.14 shows below.

Figure 4.14: Time Consumption Calculation for Training and Prediction
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Chapter 5

Experimental Results

This chapter will describe in details how the experiments are set up, as well as the
results of training and predicting. Besides, some discussion will be made at last.

5.1 Experimental Setup

As explained in Chapter 4, we analyse various parameters and different modes of
our AR model in training and predicting. First of all, for picking up randomly the
PLC test positions, we set the python.numpy pseudo-random seed as 1 before all
iterations start in order to make sure every time we run them we will get the same
sequence of random integers. Then we have totally 28 music files, consisting of 22
music files of five genres and six mixture music songs, on which we will do the
iterations for experiments. All of the files are sampled at the rate 22050 Hz, and
the total numbers of samples of each of them are in the range from 57200 to
5159700, shown in the column named "Length" in Table 5.1.

In Table 5.1, the music ID is the identity number of the specific file in our
experiment and it has a Freesound ID if it’s downloaded from [28]. Length
indicates the total number of samples that audio file has and Format shows the
digital formats in which the music samples are saved. The songs with music ID
from 0 to 5 do not have Freesound ID because they are downloaded from the
Internet instead of Freesound. Their names are shown in Table 5.2. Each song is a
mixture played by various kinds of instruments, so we are able to use them to
evaluate the AR model performance on complex music.
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Music ID Genre Freesound ID Length Format
0 Songs - 5139072 mp3
1 Songs - 1878912 mp3
2 Songs - 2011968 mp3
3 Songs - 3485376 mp3
4 Songs - 1801152 mp3
5 Songs - 3227791 mp3
6 Piano 171326 1698862 wav
7 Piano 570347 1058400 wav
8 Piano 164718 954703 wav
9 Piano 394027 1089375 wav
10 Piano 570169 1014300 wav
11 Violin 276887 2953216 wav
12 Violin 377258 810338 wav
13 Violin 351269 1676856 wav
14 Violin 395892 4483853 wav
15 Drum 341980 243487 wav
16 Drum 353081 5159700 mp3
17 Drum 385676 235353 wav
18 Drum 149952 403201 wav
19 Guitar 389401 278045 wav
20 Guitar 37200 1775025 mp3
21 Guitar 591737 211680 wav
22 Guitar 148695 2456186 wav
23 Guitar 614341 248063 wav
24 Generic 361685 343171 wav
25 Generic 262274 2268476 wav
26 Generic 136777 57200 wav
27 Generic 529844 128759 wav

Table 5.1: Music Data Set

For the size of training, we set it to 512, 1024, 2048, 4096 and 8192 samples each
time. And for the order of the AR model, the number of lagged values that may
correlate high with the value being predicted, is exponentially increasing from 1 to
128 with the power to two. What’s more, the number of samples that AR models
predicts, i.e. the AR model performance test size, is 64 or 128, which means we
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Music ID Song Name Source
0 morning-garden-acoustic-chill-15013.mp3 [31]
1 jazzy-abstract-beat-11254.mp3 [32]
2 sexy-fashion-beats-11176.mp3 [33]
3 madirfan-unreleased-demo-15-01-2022-14254.mp3 [34]
4 commercial-rock-beats-11249.mp3 [35]
5 bensound-ukulele.mp3 [36]

Table 5.2: Mixture Songs

mock losing a patch of samples of length 64 or 128 each time when we are at the
random PLC test position. So our goal is to explore the best combination of these
parameters with specific values that we can use to train the AR models as good as
possible to do music forecasting with a high quality of performance.

5.2 Results and Error Evaluation

As shown in Figure 5.1 and Figure 5.4, when the lag values increase, erratically
high MAE and RMSE can appear sometimes. For example, with 128 lags and a
512 training size, the MAE and RMSE can go up to around 6.5 and 15 respectively.
In such cases, a weird observation is that the endpoints of the confidence intervals
can be negative. The reason for this is that the confidence intervals of the mean
are calculated with an assumption of Student’s T Distribution, which could
produce negative endpoints with large data variance. The huge ranges of
confidence intervals may imply that our AR models could have uncertain
performance on musics that have volatile waveform patterns, e.g. Drums.

For the music files Drum 15 and Drum 17, unexpectedly we have worse
performance when the lag value increases and the train size decreases. The partial
zoomed-in plots of Figure 5.1 and Figure 5.4 are shown in Figure 5.2 and
Figure 5.5 respectively. The errors with the small lag numbers are located around
the ones of the benchmark 0, which indicates our AR models are not implementing
any effective predictions.

Compared to them, the results of Drum 16 shown in Figure 5.3 are slightly better
than other music files, but still, they are not so optimistic.

Similarly for Drum 18 in Figure 5.6, even though the performances seem better
when lag numbers increase, but in the partial zoomed-in plot Figure 5.7 we can see
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Figure 5.1: Drum - ID:15 MAE and RMSE
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Figure 5.2: Zoomed-In Plot of Drum - ID:15 MAE and RMSE

for most of the cases, the RMSE patterns are extremely irregular and even worse
than two benchmarks.

Examples of comparison are shown in Figure 5.8 and Figure 5.9, the predicted
values of the music files are not close to the actual values. Our AR models have
poor performances on all the drum music files.

For guitar music files from 19 to 22 shown in Figure 5.11,Figure 5.12,Figure 5.13
and Figure 5.14, the RMSE are going down from around 0.2, 0.12, 0.14 and 0.1 to
around 0.06 respectively when the lag numbers increase. After lag number 32, the
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Figure 5.3: Drum - ID:16 MAE and RMSE
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Figure 5.4: Drum - ID:17 Error versus Time Overheads

model with any training size can outperform the benchmark approaches. This is a
sign that our AR models are likely able to have a good prediction performance on
this kind of guitar music.

But we find some weird irregular behaviours of MAE and RMSE in Figure 5.15.
After lag 8, volatile patterns are shown in both MAE and RMSE. Refer to
zoomed-in plot in Figure 5.16 for more details and we can see before lag 8, the
errors are all located around the ones of benchmark 0.

One example to show the reason why we get these is in Figure 5.17 comparing the
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Figure 5.5: Zoomed-In Plot of Drum - ID:17 MAE and RMSE
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Figure 5.6: Drum - ID:18 MAE and RMSE

actual values and predicted values of Guitar 23. We may say that for the music
file Guitar 23, our AR models are likely not doing any effective predictions.

Based on the results shown in Figure 5.19, Figure 5.20, Figure 5.21, Figure 5.22
and Figure 5.23, we can find that for piano music with any training size, the
RMSE of our AR models can go from around 0.12 to 0.04, or from around 0.06 to
0.02, when the lag numbers increase from 1 to 128. No erratic error patterns are
found in these music files because the errors are always decreasing when the
models are trained at a higher order. And in many cases, we just need the lag
number to reach 8 and we can have a better performance against the benchmarks.
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Figure 5.7: Zoomed-In Plot of Drum - ID:18 MAE and RMSE
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Figure 5.8: A waveform Comparison for Drum ID:15 at the No.70 lost section

The models for violin music files have similar behaviours as the ones for piano
music. In many cases, the errors are going down when the lag numbers increase.
Except violin 14 in Figure 5.27, the RMSE of violin 11, violin 12 and violin 13 can
go from around 0.04 to around 0.01, from around 0.08 to around 0.01 and from
around 0.03 to 0.15 respectively. Violin 11 and 12 outperform benchmarks more
than the ones of violin 13 and 14. In Figure 5.27, except the models with training
size of 512 and 1024 have irregular trends after lag 32, other cases still have the
slightly better performance against benchmarks when lag numbers increase.

We have seen the results for music files in genre of drum, guitar, piano and violin
and all of them are single-instrument melodies or sounds. In the following we are
going to check the results for generic music files, mainly containing vocals, and the
generic songs, mainly containing a complex mixture of instrument sounds and
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Figure 5.9: A waveform Comparison for Drum ID:18 at the No.30 lost section
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Figure 5.10: A waveform Comparison for Drum ID:18 at the No.10 lost section

vocals.

From generic 24 to 27, most of the cases have lower error when lag numbers
increase, which is the phenomenon we expected.

For songs from 0 to 5, in most of the cases, the errors of our AR models are
located nearby the ones of benchmark 0, which indicates the performances are not
so outstanding than benchmarks.

For song 0 in Figure 5.32, the RMSE is going down from around 0.13 to around
0.07 when lag increase from 1 to 128. The confidence intervals have average length
around 0.02 which is actually relatively large. After lag 64, the performances are
slightly better than benchmark 0.

For song1 in Figure 5.33, song3 inFigure 5.35, song 4 in Figure 5.36 and the song 5
in Figure 5.37, the RMSE are just around the confidence interval of the RMSE of

33



Experimental Results

20 21 22 23 24 25 26 27

Lags

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22
M

AE
Music 19 (Guitar) - Mean Absolute Error

b0_mae=0.127
b1_mae=0.195
train_size=512
train_size=1024
train_size=2048
train_size=4096
train_size=8192

20 21 22 23 24 25 26 27

Lags

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

RM
SE

Music 19 (Guitar) - Root Mean Squared Error
b0_rmse=0.157
b1_rmse=0.24
train_size=512
train_size=1024
train_size=2048
train_size=4096
train_size=8192

Figure 5.11: Guitar - ID:19 MAE and RMSE
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Figure 5.12: Guitar - ID:20 MAE and RMSE

benchmark 0 which means the AR models are not so outstanding. And their
minimum RMSE are relatively high with the values around 0.18 and 0.08. Not
only they have large confidence interval, but also their trends are irregular.

For song 2 in Figure 5.34, except the models with training size 512 performed
worse after lag 32, the trend of RMSE of other models are acceptable and slightly
better than benchmarks.

Best pairings of training size and lag number for every music files are shown in
Table 5.3. We mainly focus on analysing the effects of changing parameters on the
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Figure 5.13: Guitar - ID:21 MAE and RMSE
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Figure 5.14: Guitar - ID:22 MAE and RMSE

prediction results. For most of the cases, lag 128 is a best choice, and a relatively
small training size is enough, e.g. 1024 or 2048. The same results of pairing are
found regardless of performance metrics. In all the cases, AR models are showing
a better performance than that of two benchmarks, by checking the third, seventh
and eighth column for MAE, and the fifth, ninth and tenth column for RMSE at
any row in Table 5.3.

What’s more, we need to point out that the results of the case with testing size 64
are almost the same with that of the case with testing size 128.
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Figure 5.15: Guitar - ID:23 MAE and RMSE
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Figure 5.16: Zoomed-In Plot of Guitar - ID:23 MAE and RMSE

5.3 Discussion

The waveform plots of four drum music files are in Figure 5.38 for Drum 15, in
Figure 5.39 for Drum 16, in Figure 5.40 for Drum 17 and in Figure 5.41 for Drum
18. From the patterns of those waveform we can see that, in the drum music files,
the variances of the normalized amplitudes of the music samples are relatively
large e.g. from 0 to 1. The dynamics of Drum 15, 17 and 18 are volatile and the
patterns look irregular while Drum 16, which has a slightly better performance,
has relatively stable waveform pattern. It explains why our AR models have poor
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Figure 5.17: A waveform Comparison for Guitar ID:23 at the No.80 lost section
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Figure 5.18: A waveform Comparison for Guitar ID:23 at the No.10 lost section

performance on predicting the music data with volatile rhythm. When the data
waveform is inconsistent, the far history data may relate low with the value that is
being predicted. As a consequence, our AR model may perform worse or
uncertainly when we increase the lag numbers.

From the results we got, we may say that our AR models are outperforming
benchmarks on forecasting for music sometimes, especially for piano and violin
music files. Examples of comparison between the predicted values and the actual
values for both are shown in Figure 5.42 and Figure 5.43. When the waveform
patterns look more calm and stable, we may have a better performance of AR
models.

In Figure 5.44 and Figure 5.45 we can see the performance is just acceptable but
worse than the ones we got in the cases for piano music.

The waveform comparisons in Figure 5.8 and Figure 5.48 are implying our AR
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Figure 5.19: Piano - ID:6 MAE and RMSE
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Figure 5.20: Piano - ID:7 MAE and RMSE

models have poor performance on predicting the music data with volatile rhythm,
e.g. drums and general mixture songs.

From all the MAE and RMSE plots shown above and in Table 5.3, We may say
AR models can reduce the errors in the music data. For w.r.t the benchmarks
relatively calm and gentle music files, e.g. piano 9, shown in Figure 5.50 the
training size 512 or 1024 and lag 128 would be enough to train the models, and it
will bring a large time overhead, e.g. 40-50 ms, when the training size goes beyond
4096. In terms of time consumption, the training time is proportional to the
training size and lag number, but when a lag number is fixed, the training size
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Figure 5.21: Piano - ID:8 MAE and RMSE
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Figure 5.22: Piano - ID:9 MAE and RMSE

does not affect much the prediction time consumption, also shown in Figure 5.50.

However, for the music data with fast rhythm like drums or general songs, lag 128
seems not enough. For these 28 music files, our AR models for predicting piano
music have better performances than benchmarks and the other models for other
genres. The reason why we get better performance in piano cases may be that the
waveform patterns are more regular in piano music, as shown in Figure 5.42.

And we figure out that no matter what kinds of instrument is playing in the music
data, or it is only melodies or vocals, as long as we find the regular patterns in its
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Figure 5.23: Piano - ID:10 MAE and RMSE
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Figure 5.24: Violin - ID:11 MAE and RMSE

waveform, the predicted values are quite close to the actual ones, as observed in
Figure 5.42 for piano music, Figure 5.44 for guitar music and Figure 5.45,
Figure 5.46, Figure 5.47 for generic audio music and Figure 5.49 for generic
mixture songs. Therefore, we may say the instruments do not strongly affect the
performance of AR models, but the other parameters do, e.g. the training size and
lag values, etc.

For most of the cases here, especially for music data with regular waveform
patterns, increasing the lag number, i.e. the order of the model to be trained,
generally leads to a better performance, However, increasing the training size of
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Figure 5.25: Violin - ID:12 MAE and RMSE
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Figure 5.26: Violin - ID:13 MAE and RMSE

the models does not always bring a better performance, and we may introduce
much more time overhead for training and predicting. Therefore, we need to pick
an appropriate training size along with a trade-off with time consumption and pick
a relatively large lag number to have a better solution. Once the training size of
the model is defined, a limit is set for the lag number. Thus, if the training size is
too small, the lag number may be not enough to train an effective AR model for
the complex music data, e.g. drum or general song.

The results so far we got are showing that there are limitations on predicting
irregular or volatile music data by AR models. The specific values of the
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Figure 5.27: Violin - ID:14 MAE and RMSE
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Figure 5.28: Generic - ID:24 MAE and RMSE

parameters we discuss in this thesis are not enough for the complex music data
with irregular waveform patterns, e.g. drum or general song.

Despite that our AR models have their limitations, for most of the cases, our AR
models outperform two benchmarks (pattern replication and silence substitution),
and even in the worst cases we still have slightly better performances than the
average performances of the benchmarks when lag is large.
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Figure 5.29: Generic - ID:25 MAE and RMSE
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Figure 5.30: Generic - ID:26 MAE and RMSE
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Figure 5.31: Generic - ID:27 MAE and RMSE
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Figure 5.32: Song - ID:0 MAE and RMSE
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Figure 5.33: Song - ID:1 MAE and RMSE
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Figure 5.34: Song - ID:2 MAE and RMSE
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Figure 5.35: Song - ID:3 MAE and RMSE
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Figure 5.36: Song - ID:4 MAE and RMSE
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Figure 5.37: Song - ID:5 MAE and RMSE
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Figure 5.38: The Waveform Overview of Drum ID:15

0 50 100 150 200
Time [s]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d 
Am

pl
itu

de

Drums 16 Waveform

Figure 5.39: The Waveform Overview of Drum ID:16
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ID Genre Min. MAE Best Pair (MAE) Min. RMSE Best Pair (RMSE) MAE b0 MAE b1 RMSE b0 RMSE b1

0 Songs 0.054063092 (2048, 128) 0.066480128 (2048, 128) 0.088307095 0.129207581 0.105412471 0.155363621

1 Songs 0.155377889 (1024, 128) 0.186866493 (1024, 128) 0.20230087 0.300391644 0.234138918 0.349200055

2 Songs 0.122838938 (1024, 128) 0.150092782 (1024, 128) 0.217449329 0.29930824 0.250639268 0.345605977

3 Songs 0.077014765 (1024, 128) 0.092904563 (1024, 128) 0.118014493 0.191628501 0.138539572 0.22006845

4 Songs 0.15985491 (1024, 128) 0.191276187 (1024, 128) 0.196762248 0.28980276 0.228871849 0.338766415

5 Songs 0.072768847 (4096, 128) 0.090480626 (4096, 128) 0.094286821 0.14849788 0.114359289 0.175434957

6 Piano 0.018386684 (2048, 128) 0.022893123 (2048, 128) 0.038639758 0.059032973 0.045958797 0.069353472

7 Piano 0.032327406 (2048, 128) 0.039916775 (2048, 128) 0.07457563 0.106905296 0.087820554 0.12503792

8 Piano 0.019612668 (2048, 128) 0.025160385 (2048, 128) 0.043886162 0.057154965 0.053508434 0.068435796

9 Piano 0.015654876 (1024, 128) 0.019744592 (1024, 128) 0.036648681 0.053266931 0.043378582 0.062712597

10 Piano 0.035456018 (2048, 128) 0.044604875 (2048, 128) 0.068013227 0.102080435 0.080134511 0.117695241

11 Violin 0.007041852 (1024, 128) 0.008728786 (1024, 128) 0.034083957 0.04778377 0.040610696 0.057106733

12 Violin 0.005419659 (512, 128) 0.007129611 (512, 128) 0.064314812 0.085283794 0.075995887 0.101062008

13 Violin 0.012994652 (1024, 128) 0.015994493 (1024, 128) 0.022053342 0.031347625 0.026735182 0.037838193

14 Violin 0.049859898 (4096, 128) 0.061090462 (4096, 128) 0.093901605 0.13462241 0.111845822 0.160292337

15 Drums 0.127029089 (512, 16) 0.149644293 (512, 16) 0.151289153 0.225107327 0.174442217 0.261742385

16 Drums 0.032364702 (1024, 128) 0.039759027 (1024, 128) 0.043324412 0.065600753 0.051297342 0.076463376

17 Drums 0.043838238 (512, 32) 0.053742877 (512, 32) 0.051839846 0.077702135 0.061115888 0.09196372

18 Drums 0.035659226 (8192, 16) 0.043050527 (8192, 16) 0.038194218 0.067543194 0.044791903 0.078561812

19 Guitar 0.07049856 (2048, 128) 0.087978379 (2048, 128) 0.126686371 0.194564044 0.157105943 0.239644775

20 Guitar 0.044331195 (1024, 128) 0.056250198 (1024, 128) 0.095933175 0.135936216 0.117198536 0.165092221

21 Guitar 0.050281248 (1024, 128) 0.062416139 (1024, 128) 0.094494491 0.112966053 0.112776553 0.130340226

22 Guitar 0.041152169 (2048, 128) 0.050214748 (2048, 128) 0.071953553 0.084403187 0.084515124 0.101613175

23 Guitar 0.04689295 (512, 8) 0.057802794 (512, 8) 0.050428672 0.068006933 0.061332003 0.081775637

24 Generic 0.005719299 (1024, 128) 0.007622674 (1023, 128) 0.055881729 0.087760337 0.068057666 0.106649136

25 Generic 0.022099709 (512, 128) 0.029668134 (512, 128) 0.114142504 0.14791733 0.134228588 0.173068264

26 Generic 0.050190422 (512, 128) 0.063575763 (512, 128) 0.074367549 0.094800837 0.091485649 0.115910354

27 Generic 0.026468523 (1024, 128) 0.033995412 (1024, 128) 0.213359488 0.367188334 0.244228743 0.417773621

Table 5.3: Best Pairings of training size and lag for each music file
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Figure 5.40: The Waveform Overview of Drum ID:17
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Figure 5.41: The Waveform Overview of Drum ID:18
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Figure 5.42: A waveform Comparison for Piano ID:9 at the No.60 lost section
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Figure 5.43: A waveform Comparison for Violin ID:13 at the No.60 lost section
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Figure 5.44: A waveform Comparison for Guitar ID:21 at the No.30 lost section
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Figure 5.45: A waveform Comparison for Generic ID:25 at the No.20 lost section
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Figure 5.46: A waveform Comparison for Generic ID:25 at the No.40 lost section
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Figure 5.47: A waveform Comparison for Generic ID:25 at the No.80 lost section
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Figure 5.48: A waveform Comparison for Song ID:5 at the No.28 lost section
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Figure 5.49: A waveform Comparison for Song ID:5 at the No.23 lost section
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Figure 5.50: Error vs Time Overhead for Piano ID:9
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Chapter 6

Conclusion

This thesis describes an Auto-Regressive Model technique for packet loss
concealment that is designed to be implemented in real-time networked music
performance applications. The experiments are mainly focused on exploring and
evaluating the performance of AR models for music data forecasting, by inserting
gaps in random positions to mock data losses and then training the models to
predict the lost data section. And we may say, under some specific conditions, AR
models can reduce the glitches and artifacts due to excessive data delays or data
losses in audio streams.

For relatively calm and gentle music files or the music samples with regular
patterns, the training size 512 or 1024 and lag 128 would be enough to train the
models, and it will bring a large time overhead when the training size goes beyond
4096. However, for music data with relatively fast rhythm like drums or general
songs, lag 128 seems not enough.

In our data set of 28 music files, our AR models for predicting piano music
outperform the benchmarks as well as the AR models for other music files. The
reason why we get better performance in piano cases is that we found more regular
waveform patterns in piano music samples. And we figure out that no matter what
kinds of instrument is producing the music data, and no matter it is only melodies
or vocals, as long as we find the regular patterns in its waveform, the predicted
values are quite close to the actual ones. Therefore, we may say the instruments
do not significantly affect the performance of PLC based on AR models, but the
other parameters do, e.g. training size and lag values, etc.

For most of the cases here, especially for the music data with regular waveform
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patterns, increasing the lag number, i.e. the order of the model to be trained,
generally leads to a better performance, However, increasing the training size does
not gain much in terms of prediction performance, by which we may introduce
much more time overhead for training and predicting. And by defining the
training size, we also set a limit for the lag number, so if the training size is too
small, the lag number may be not enough to train an effective AR model for
complex music data. Thus, we need to pick an appropriate training size along with
a trade-off with time consumption and pick a lag number as large as possible to
have a better solution. In terms of time consumption, the training time is
proportional to the training size and lag number, but when a lag number is fixed,
the training size does not affect much on the prediction time consumption.

The results so far we got are showing that AR models have limitations on
predicting irregular or volatile music data. The specific values of the parameters
we discuss in this thesis are not enough for the complex music data with irregular
waveform patterns. And we may find discontinuities at the edges which connect
the predicted waveform and the actual one after we synthesize the samples and
insert them back into the audio streams. And finding specific techniques to solve
this problem could be an interesting future work.

Despite that our AR models have their limitations, for most of the cases, our AR
models outperform two benchmarks (pattern replication and silence substitution),
and even in the worst cases we still have slightly better performances than the
average performances of the benchmarks when lag is large.

Exploring packet loss concealment approaches (PLC) of NMP is becoming a more
and more interesting topic thanks to the rapid growth of the Internet and
increasing international or inter-regional communications. Nowadays, artificial
intelligence technologies are rapidly developing, such as machine learning and deep
learning, so predicting the lost music data in real-time audio streams by using AI
models are likely possible. For future work, the results of AR model prediction on
lost music data in this thesis would be useful as a comparison for future PLC
techniques.
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