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Summary

In recent years, there has been an increase in the use of robots in everyday human
activities, both domestic and professional, which go beyond the industrial sector.
The IFR (International Federation of Robotics) defines service robotics as "a robot
that operates autonomously or semi-autonomously to perform services useful for
the well-being of human beings, excluding the manufacturing sector". The main
applications in the home are the cleaning of domestic environments, care of the
elderly, and entertainment of children. In the professional field, on the other hand,
the applications are innumerable both in natural environments (land, sea, and
space) and in artificial environments (offices, hospitals, and urban infrastructures).
Examples of these applications are rescuing in hostile areas, monitoring and data
collection actions, inspection, and maintenance, in the logistics field for storage and
movement of material, and the medical one for surgery and rehabilitation. The use
of robots in these areas intensified in 2020 during the COVID-19 pandemic and
is expected to further increase in the coming years as evidenced by the 2020 IFR
report [1]. This thesis aims to develop both a software and hardware architecture
that can be used in most of the aforementioned cases. Therefore, the common
needs of these robots will be analyzed first and then they will be implemented in
the final design. The final architecture resulting from this analysis will have to
respond to a very important requirement such as the versatility that will be the
cornerstone of the project.
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Chapter 1

Introduction

1.1 Hardware requirements
Before defining what the requirements in the software part may be, it is necessary
to talk about the hardware requirements and in particular the main components
to be installed to obtain an architecture that can be used as a starting point, ready
to use, for the main applications of service robotics. First of all, it is necessary to
think about the power supply. The technical characteristics of the battery must be
analyzed based on factors such as component consumption and desired autonomy.
Another fundamental thing is the electric motors that will have the task of making
the robot move. To understand what are the essential characteristics that a robot
must have, first of all, we need to analyze the environment in which it will operate.
For example in an indoor environment, this information can be translated into a
speed limit to avoid creating damages to people or objects with which the robot
may collide. To limit the speed it is necessary to know it and for this it may be
useful to install encoders on the robot wheels. As regards collisions, it is necessary
to avoid them, and for this reason, it is necessary a sensor that can sense the
presence of an obstacle. Given the simplicity of implementation and the low cost,
sonar is commonly used. The last component that completes the list of things a
robot needs to move autonomously is the microcontroller that will have the task
of processing sensors data and piloting DC motors. In the following sections, more
details about these components will be given.

1.2 Software requirements
To understand what are the requirements in terms of software design it is necessary
to understand what robots have to do and who the final user is. The tasks that
the robot must accomplish can be summarized in moving around the environment,
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Introduction

acquiring data from the sensors, and communicating with other devices using serial
protocols.

From this list, we define the user requirements which describe what the user
expects to receive and represent a high-level view of the software. These require-
ments can be split more thoroughly describing the functional requirements that
specify how the software works by defining the interaction with the user or the
other devices. In our case we can summarize this requirement as follow:

• Receive vector data from a PC through a USB port.This vector con-
tains the linear velocities of the robot along the main axis X and Y and the
angular speed around the Z-axis. Moreover, it should be able to turn on/off
a pair of led lights and follow a predefined path when receiving instructions.

• Send vector data containing the sensor measurements.The microcon-
troller is responsible to acquire the data provided by the sensors mounted on
the robot, elaborate, and compact them to send to the PC.

• Control the DC motors. The microcontroller must use the input provided
by the PC and the sensors’ data to control the DC motors.

As regards the low-level requirements is requested to develop a C++ library,
that can be deployed on a microcontroller like Arduino, able to perform the above
tasks. In figure 1.1, a sketch of the software architecture is shown.

Figure 1.1. Software Architecture
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1.3 – Robot architecture

1.3 Robot architecture
Among the commercial products, it was necessary to choose one that meets the
required characteristics. The choice has fallen into a kit that contains most of
the components seen in the previous section (Figure 1.2). The architecture taken
as a reference consists of 4 DC motors each having an encoder for measuring the
position, and therefore the speed of the motors, and an embedded gearbox that
increases the torque transmitted to the wheels. The motors drive four mecanum
Omni-directional wheels [3] that allow the robot to move in any direction (Figure
1.3) by applying different speeds at each motor. Moreover, it is equipped with four
ultrasonic sensors (front, rear, left, and right) and an Arduino Duemilanove that
can be programmed using the Arduino IDE.

Figure 1.2. Nexus4WD robot

1.4 Robot kinematic
To be able to develop the software part responsible for the robot movements, it
is necessary to describe the kinematic model of the robot. In the last section,
the Mecanum Omni-wheels have been included in the list of components. They
are special wheels designed for differential robots and allow them to move in any
direction.
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Figure 1.3. Robot motion according to wheels’ speeds

According to [5] and taking into account the reference frames of the robot
(Figure 1.4) and of the wheel (Figure 1.5), the equation that links the wheel’s
angular speed and the robot velocities is given by:

ω = Tv (1.1)
where T is called transformation matrix and is given by:

T = 1
r

⎡⎢⎢⎢⎢⎣
1 −1 −(lx + ly)
1 1 (lx + ly)
1 1 −(lx + ly)
1 −1 (lx + ly)

⎤⎥⎥⎥⎥⎦ (1.2)

where r is radius if the wheel and lx and ly are half of the distance between
front wheels and half of the distance between the front wheel and the rear wheels
respectively. The inverse relation between the angular speed of the wheels and the
robot’s velocity can be computed with the equation 1.3 where T ′ is the inverse
matrix of T .

v = T ′ω (1.3)
with

T ′ = r

4

⎡⎢⎢⎣
1 1 1 1

−1 1 1 −1
− 1

lx+ly
1

lx+ly
− 1

lx+ly
1

lx+ly

⎤⎥⎥⎦ (1.4)

Expanding 1.1, the following relation is obtained:⎡⎢⎢⎢⎢⎣
ω1
ω2
ω3
ω4

⎤⎥⎥⎥⎥⎦ = 1
r

⎡⎢⎢⎢⎢⎣
1 −1 −(lx + ly)
1 1 (lx + ly)
1 1 −(lx + ly)
1 −1 (lx + ly)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣Vx

Vy

ωz

⎤⎥⎥⎦ (1.5)
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1.4 – Robot kinematic

From which four equations can be derived:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ω1 = 1
r
(vx − vy − (lx + ly)ωz

ω2 = 1
r
(vx + vy + (lx + ly)ωz

ω3 = 1
r
(vx + vy − (lx + ly)ωz

ω4 = 1
r
(vx − vy + (lx + ly)ωz

(1.6)

These equations will be used to transform the velocities of the robot into motor
speeds.

Figure 1.4. Robot coordinate systems

Figure 1.5. Wheels coordinate systems

9



10



Chapter 2

Hardware Architecture

2.1 Battery

To power supply the components it is necessary to install a battery. The nominal
voltage is chosen considering the power supply voltage of the DC motors that
in this case is 12 V (Fig 2.1). The other important parameters of a battery are
the capacity and the maximum current that can be supplied. The capacity is
responsible for the battery life and consequently of the robot’s autonomy. The
maximum deliverable current must be higher than the one requested by the motors.
The last two characteristics are the size and the weight that must be minimized to
increase the performance of the robot. To satisfy all these requirements, a Lithium
Polymer battery has been chosen. This technology has a high density of charge
which means a high capacity in small size and low weight. Since not only the 12 V
power supply is necessary but also the 5 V to power up the electronic components,
the use of a DC/DC converter must be considered to convert the 12 V provided
by the battery to a power supply that can be handled by all the devices.

2.2 Motors driver

The electric DC motors are driven by a strategy called PWM (Pulse Width Mod-
ulation) in which the motors are powered with DC voltage that follows a square
wave signal where the maximum value is the nominal value while the lower value
is the ground. If the frequency Ft of the square wave is high enough, the power
supply that the motor receives can be approximated to the product of the duty
cycle d.c. and the nominal value VN whereby duty cycle is the ratio between the
wave’s ON time and the period of the wave itself.
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Figure 2.1. Fahaulaber 2342 12CR Datasheet

d.c. = TON

T
(2.1)

VM = d.c. · VN (2.2)

To obtain a variable voltage proportional to the duty cycle of a square wave a
particular electronic circuit called H-bridge is used (Figure 2.3). Thanks to this
circuit it is possible to drive the electric motor in both directions, forward and
backward (Figure 2.4). This circuit consists of 4 MOSFETs that are piloted in
pairs.
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2.3 – Microcontroller

Figure 2.2. PWM signal

Figure 2.3. L298 H-bridge

2.3 Microcontroller
One of the most important components in a robot is the microcontroller. After
some research, Teensy 4.1 (Figure 2.5) has been chosen since it offers better per-
formance concerning the most common Arduino despite their price is comparable.
This board has the advantage of being able to be programmed through the Ar-
duino IDE and many of Arduino’s libraries are compatible with the adopted board.
Arduino Duemilanove (or UNO that uses the same processor), despite his good

13



Hardware Architecture

Figure 2.4. Forward and backward signal

performances in terms of computational power, clock frequency, and memory size
can not be comparable with the Teensy 4.1 board. Teensy 4.1 has 55 I/O pins
and all of them have interrupts capability and 18 pins can be used as analog input
since are connected to ADCs. In Table 2.3 are resumed the main characteristics
of the Arduino UNO and Teensy 4.1.

Figure 2.5. Teensy 4.1 board

2.4 Ultrasonic Sensors
To avoid frontal collision an ultrasonic sensor has been used. It has been mounted
on chassis throughout a 3D printed support. The model used for our scope is the
HC-SR04, a common sensor used in Arduino home-made projects. This sensor has
been chosen since its implementation it is quite simple. The working principle of
this sensor is quite simple. A pulse ultrasonic signal is sent from a transmitter and
the microcontroller measures the time the wave spends to return to the receiver
placed next to the transmitter. By knowing the speeds of sound throughout air
the distance from obstacles can be measured.
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2.4 – Ultrasonic Sensors

Arduino UNO Teensy 4.1

General Dimensions [mm] 68.58 x 53.34 60.96 x 17.78
Pricing [e] 20-23 25-28

Connectivity
I/O Pins 14 55
PWM Pins 6 35
Analog Pins 6 18

Computing

Processor ATMega328P ARM CortexM7
Flash Memory 32 kB 8 MB
SRAM 2 kB 1 MB
EEPROM 1 kB 4 kB
Clock speed 16 MHz 600 MHz
Voltage Level 5V 3.3V
USB Connectivity A/B USB Micro-USB

Communication

Serial Ports 1 8
SPI Support Yes (1x) Yes (3x)
CAN Support No 3 (1x CAN FD)
I2C Support Yes (1x) Yes (3x)

Table 2.1. Comparison between Arduino UNO and Teensy 4.1

d = ss · ∆T (2.3)

where d is the distance from obstacles, ss is the speed of sound and ∆T is the
time the wave spends to go and return. The speed of sound is not a constant
since it depends on the medium and its local properties that continuously change;
however, considering the conditions in which the robot will operate, the value of
the sound speed of the air does not vary much in normal operating condition and
therefore can be considered constant and equal to 343 m/s.

Figure 2.6. HC-SR04 ultrasonic sensor

15



Hardware Architecture

Figure 2.7. Ultrasonic sensor working principle

2.5 Encoders

The working principle of the encoders is quite simple. The encoders can sense the
motor direction in both senses by detecting holes or marks using 2 digital pins
placed next to each other. By considering the Figure 2.8, if the mark is sensed
by Pin1 first and by Pin2 after then this means that the encoder, and therefore
the encoder to which is connected, rotate clockwise. Contrary if the mark is
sensed by the Pin2 and then by Pin1 the encoder is rotating counter-clockwise. To
estimate angular displacement as well as the angular speed, each time a marker
is sensed first by the Pin1, a counter is incremented in the other case the counter
is decremented. By multiplying the counter value with the encoder resolution the
displacement can be computed while computing the time between 2 markers the
angular speed can obtained. Knowing the angular speed of the wheels is necessary
to implement feedback control loop strategy.

Figure 2.8. Encoders working principle

16



2.6 – Current Sensors

2.6 Current Sensors
An important sensor to add to the system is the current sensor that can be used
to realize a closed control loop strategy to pilot the DC motors. The sensor model
used in this case is the INA286, a current sensor that exploits the shunt method to
measure the current flowing, in both directions, throughout a custom load resistor
(the shunt). This sensor returns an analog output that is converted by the Teensy
4.1 embedded ADC. To avoid aliasing a low pass active filter stage (Figure 2.10)has
been inserted downstream of the sensor. Aliasing occurs when a system acquires
data at an insufficient sampling rate. If a signal contains frequencies higher than
Nyquist’s, they are mixed with the sampling frequency in the converter’s sampler
and mapped to frequencies lower than Nyquist’s. During sampling, different signals
are mixed, which are indistinguishable from each other. Nyquist frequency is the
minimum frequency at which an analog signal must be sampled without losing
information.

Figure 2.9. INA286 schematic circuit

2.7 Voltage Sensor
Another useful sensor to add to a robot’s sensor suite is a voltage sensor. It is a
necessary component that allows measuring the battery voltage. This information
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Figure 2.10. Low pass active filter with unitary gain

can be used to evaluate the state of charge of the battery and implement different
control strategies based on this data As previously done for the current sensor,
here too a low-pass filter has been inserted downstream of the sensor to avoid
aliasing phenomena. To realize the voltage sensor a subtractor amplifier stage
(Figure 2.11) was used whose transfer function is expressed in the equation 2.4.

Vout = V1 ·
(︄

R3

R2 + R3

)︄
·
(︄

R1 + Rf

R1

)︄
− V2 ·

(︄
Rf

R1

)︄
(2.4)

Figure 2.11. Subtractor amplifier stage
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Chapter 3

Software Architecture

3.1 Intoduction
This chapter will discuss the software part of the hardware architecture described
so far. All the code has been designed to be as versatile and adaptable as possible
to the different functions that the robot has to perform. In particular, this system
was conceived as part of a more complex architecture in which the microcontroller
represents the interface between the high-level layer represented by a PC that
sends commands and a low-level one composed of the microcontroller, the sensor,
and all the other auxiliary components. All the software part is structured in such
a way that the firmware that will be loaded on the microcontroller is as easy to
read as possible and simple to modify and customize. For this reason, most of the
code has been implemented in small functions within the robot class (Figure 3.1).

3.2 Robot class
This section is the core of the software part of the thesis. All the functions that
are called in the main firmware (Section 3.4) reside in this class. In attachment
A.1 you can find the source code of the class. The main functions are the ones
aimed to accomplish the tasks discussed in 1.2 and are called read(),write() and
cmd_vel(). During the development, many other functions have been imple-
mented to simplify the readability of the code

3.2.1 read() function
This function is responsible to read the serial port to acquire the data provided
by the PC connected to the microcontroller using the USB port. These data are
stored in private variables of the class and used for internal processing. The data
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Software Architecture

Figure 3.1. Code structure

to be read are the linear speed along X and Y axis and the angular speed around
the Z axis, the trigger to turn on a pair of led lights mounted to illuminate the
environment, and the trigger a particular action that the robot has to perform.

From a kinematic analysis, by knowing the maximum speed of the electric
motors, the maximum linear and angular speeds can be calculated as follow:⃓⃓⃓

Vx,max

⃓⃓⃓
= |nmax · r| = 0.65⃓⃓⃓

Vy,max

⃓⃓⃓
= |nmax · r| = 0.65⃓⃓⃓

ωz,max

⃓⃓⃓
=
⃓⃓⃓⃓
⃓nmax · r

l + w

⃓⃓⃓⃓
⃓ = 2.16

(3.1)

Where nmax is the electric motor’s maximum speed, r is the radius of the wheels,
while l and w are the wheel-base along the X and Y axis. The obtained numbers
should be sent using floats as a data type that are composed of 4 bytes each. To
speed up the data transmission a simple operation can be done before sending the
data since a resolution of 2 floating points in linear and angular speeds is enough for
this scope. You can notice in 3.2 that multiplying by 100 the velocities’ maximum
value, the obtained results don’t exceed the number 255 which is the maximum
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3.2 – Robot class

integer that can be sent using a single byte. In this way, the three velocities can
be sent using only 3 bytes but the information about the sign is lost. To overcome
this drawback, an extra byte is used to store all the other information such as the
velocities’ sign and 2 triggers 1 for the lights and the other one for a special path
execution. All of these data are Boolean information that can be stored in a single
bit. This simple coding operation reduces the buffer size from 14 bytes to only 4.

V
′

x,max = round(100 · Vx,max) = 65
V

′

y,max = round(100 · Vy,max) = 65
ω

′

z,max = round(100 · ωz,max) = 216
(3.2)

The PC sends the information stored in a buffer of 4 Bytes composed as shown
in table 3.1, where the last byte I contains the sign information of the speeds and
the trigger of the light and of the particular path generation (tab. 3.2). The first
and the second bytes contain an integer value between 0 and 65 while the third
one is between 0 and 216.

1 2 3 4
V

′
x V

′
y ω

′
z I

0 ÷ 65 0 ÷ 65 0 ÷ 216

Table 3.1. Buffer structure of read function.

MSB LSB
0 0 0 Show Lights ωz sign Vy sign Vx sign

Table 3.2. Coding of extra byte.

3.2.2 write() function
The idea behind this function is simple. Since sensors’ data are collected and
stored in variables to be processed by the microcontroller, they can be sent to
the PC to be used in a high-level control. The effort requested for this function
is relatively low while many are the benefits. The data sent to the PC are the
wheels’ speed, Current sensors’ data, Voltage sensor’ data and Ultrasonic sensor’
data.

As already done in the read function, also, in this case, a coding and decoding
process can be used to transfer the message between the PC and the microcon-
troller to reduce the amount of data to be sent. To find out the range of value
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the wheels’ speed can take, we have to analyze the datasheet of the electric mo-
tors. The no-load speed of the electric motors is 8100 rpm. This is the maximum
speed the motor can have when it is powered by the nominal Voltage in a no-load
condition. For this reason, we can assume that the motor’s speed will be lower
or equal to this value. The wheel is connected to the motor through a gearbox
with a transformation ratio of 1/64 that reduces the maximum wheels’ speed to
127 rpm. By considering that the motor can rotate forward and backward we can
assume that the wheel speed is between -127 and 127. Since with a single byte, an
integer from 0 to 255 can be sent, a coding procedure can be done to reduce the
wheel speed data to a single byte. Since the resolution of the units is enough for
this scope, by adding 128 to the speed value we can send it through a single byte.
When it will be read from the PC a decoding process is necessary.

As regards the current sensors, estimating the maximum value is not so easy.
The current flowing in the electric motor is strictly related to the load applied to
the motor itself. From the datasheet, the rated power for a continuous operation is
1.5 A, so we can assume that 2.5 A of the maximum value in continuous operation
is enough. In this maximum are not considered the current peaks that can be
generated in transient conditions since the time they spend at values bigger than
2.5 A is negligible. The current can flow through the motor in both directions so
it can take a value between -2.5 A and 2.5 A and the current sensor transform it
into a value between 0 and 3.3 V that is read by the ADC of the microcontroller
by following the transfer function.

V = 3.3
5 i = 0.66i (3.3)

For the scope of this work, two digits floating value of the current is acceptable.
To send this data we send a byte for the value e a bit of an extra byte for the sign.

In the following tables are resumed the information about the buffer structure
of the write function (Table 3.4) and the coding of the byte for the current’s sign
(Table reftab:currentsigns).

MSB LSB
0 0 0 0 i4 sign i3 sign i2 sign i1 sign

Table 3.3. Coding of currents’ sign byte.

As regards the voltage sensor used to check the battery level some consideration
must be done. First of all, we have to define the maximum and the minimum
voltage level. In our case, we used a LiPo battery pack with 3 cells in series. The
maximum voltage that each cell can reach without risk of explosion is 4.2 V while
the lower voltage without risk of damage to the battery is 3.2. So, we can calculate
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3.2 – Robot class

the range of a 3S LiPo battery that is 9.6÷12.6 V resulting in a range of 3 V. To be
sure to sense the correct voltage value we can consider admit voltage between 10
and 14 V. in this way we consider completely discharging a battery at 10 V and we
can measure battery voltage up to 14 V. By using the subtractor stage explained
in Section 2.7, a transfer function is created to transform a voltage between 10
and 14 V to a voltage between 0 and 3.3 V that is the maximum input voltage
of Teensy’s ADCs. The ADC of the Teensy is configured as a 10-bit resolution
ADC sampling the input voltage from 0 to 3.3 V into a digital value from 0 to
1023. Then the obtained value is converted into an integer between 0 and 255 to
be sent using a single byte. Through this simple operation, a resolution of 0.0157
is sufficient for the scope of this work.

The last sensor data to send from the microcontroller to the PC through the
serial port is the one carried out by the ultrasonic sensor. The maximum and
minimum values of the ultrasonic sensor from the datasheet are 400 and 2 cm.
For the scope of this work, it is sufficient to measure up to 255 cm and send the
result in only one byte as an integer. In this case, the operation to send the data
is a saturation operation that is set to 255 all the values ≥ 255. Since to compute
the distance between the obstacle with the ultrasonic sensor it is necessary to
wait for the wave that goes to the obstacle and return often a different strategy is
adopted. When the distance grows up also the time spent by the wave grows up.
For example, if the obstacle is at 50 cm from the robot the time to the wave to go
and return is about 3 ms. To reduce the time in which the microcontroller waits
for the wave a timeout is added. This timeout is responsible to stop the function
and return that the obstacle is out of range. In this case, a timeout of 1.75 ms is
set that allow measuring distance up to 30 cm.

1 · · · 4 5 · · · 8 9 10 11
n1 · · · n4 i1 · · · i4 Signs Vsense d

0 ÷ 255 .. 0 ÷ 255 0 ÷ 250 · · · 0 ÷ 250 S 0 ÷ 255 0 ÷ 30

Table 3.4. Buffer structure of write function.

3.2.3 cmd_vel() function
This section will describe the main function of the robot class, the cmd_vel func-
tion. It is the core of the project since it makes the robot able to move. To per-
form this task many steps are necessary and for this reason, this function has been
divided into 5 simpler functions called speedSaturator, rateLimiter, eStop,
transformationMatrix and writeSpeeds

The first function is used to compute the maximum angular speed ωz and linear
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velocities Vx and Vy. The microcontroller should always check the reference input
for 2 main reasons: avoid mechanical failures and evaluate the feasibility of the
reference.

The firsts shall be produced by high motor speed caused by overvoltage. The
maximum rpm that the motor can handle is 11.000 but in normal use, it should
work at the nominal one that is, as said before, 9100. The other check that the
microcontroller has to do regards the feasibility of the given inputs. The robot has
physical constraints that must be satisfied. In fact, due to the limit on the motor
speeds, if the robot turns around its center, it can’t go forward. This means that
if incoherent inputs are sent by the PC, the microcontroller has to manage them.
This function performs this task by saturating the speed that exceeds its maximum
feasible value. To compute the maximum feasible value, we have to assign priority
to the 3 velocity speeds since are dependent on each other. The feasible values
are all the ones contained inside the octahedron (Fig. 3.2) where the height is
the maximum angular velocity while the sides are equal to the double of Vx and
Vy. The one that has the major priority is the angular speed ωz and its maximum
feasible value coincides with the maximum value that is equal to 4π rad/s. So,
when an input angular speed is provided microcontroller checks if is lower than
the maximum value if yes the input is accepted otherwise it is saturated. Then
the maximum value of the Vy is computed based on the actual value of ωz by the
following equation:

Vy,max = r ∗ nmax − (l + w) · ωz (3.4)

Then the value of Vy is computed by saturating the input to the found value.
The same logic is used for the Vx value by computing the Vx,max value with 3.5.

Vx,max = Vy,max −
⃓⃓⃓
Vy

⃓⃓⃓
(3.5)

The flowchart of this function is shown in figure 3.3.
The second function is used to smooth the velocity profile and avoid abrupt

accelerations that could cause a high value of current flowing into the electric
motors. To obtain this result a simple algorithm has been developed. The idea
is that each iteration the reference value enters the function as input. Then, the
smoothed speed is computed by adding to the previous value of the velocity, a term
composed by the difference between the reference value and the previous one. The
figure 3.4 shows the flowchart of the function.

Another simple but important function is the eStop one. It is responsible to
set only the velocity along the X axis to 0 if an obstacle is present in front of
the robot and the speed is positive. This function has been implemented to avoid
frontal collisions.
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Figure 3.2. Speed limit graph

The fourth function uses the kinematic equations 1.6 to transform the input
received from the PC and processed by the previous functions to compute the
angular speed of the wheels and store them in a vector. Since the kinematic of
the robot is taken into account only in this function, changing the robot will be
sufficient to update the kinematic relations in this function to adapt the entire
code to the new robot.

The output vector data of the previous function is the input of the last function
that uses this data to compute the PWM signal to send to the motors’ drivers.

3.3 myEncoder class
This class has been used to acquire encoder data, in particular, to compute the
angular speed from the encoders. Since the encoder is widely used an open-source
library was available. This library was developed by Paul Stoffregen a software
developer of PJRC, the company that designed Teensy boards. Through this
class, you can assign a value to the counter and read the value of the counter.
This class uses the interrupt strategy to count the encoder tick. An interrupt is
an request of interrupt the normal execution process of the microcontroller. if
the request is accepted, the microcontroller stops the execution, saves its state,
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Figure 3.3. Speed saturation algorithm flowchart

and calls a function called interrupt handler that contains the interrupt routine
instructions. When the interrupt routine has finished, the normal routine process
is restarted from the interrupt point. I improved this class by adding a method
(myEncoder::speed()) to compute the encoder speed.

3.4 The firmware
Analyzed the single pieces that make up the project, it’s time to glue them together
in the firmware that will be loaded and then executed on the microcontroller. The
firmware, how is shown in section A.3, is composed of a few lines of code since the
entire complexity of the algorithms resides inside the robot class. In lines 1-2 the
Arduino library and the Robot class are included. At lines 4-5 an instance of the
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Figure 3.4. Rate limiter algorithm flowchart

class is created and a pointer to a float vector of 3 components is initialized. Then
the loop routine starts. First of all, the read() function is called and the velocities
are stored in the pointer. Then the data from the sensor data are acquired using the
four functions. At the acquisition phase follow the cmd_vel() function explained
in Section 3.2.3. This implementation is only an example used for testing all the
functionalities of the robot. It can be adapted by the user based on the use case.
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Chapter 4

Marvin Project

4.1 Overview
In the previous sections, a general architecture describing the common hardware
that can be found on mobile robots employed in service robotics has been discussed.
Moreover, a complete design of a motion architecture was presented from the
power train design to the sensor choice. Then, the software part was developed
to control the robot and make it move by acquiring the sensor data and piloting
the DC motors. In the following sections, we will discuss a particular application
of this work: the Marvin Project. In figure 4.1 is shown the low-level hardware
architecture employed. It contains all the hardware already with the addition of
some modules that in the has been added to future implementation of the robot.

4.2 Marvin Hardware Architecture
The Marvin project was born to create a mobile robot to be used in a domestic envi-
ronment to help and assist elderly people. The robot has to navigate autonomously
in a partially unknown environment and perform some tasks like leading the as-
sisted person from one room to another one or calling an emergency number when
the function is triggered by the assisted person with a vocal command. By start-
ing from the already discussed architecture, in this project, some components have
been added to accomplish some predefined tasks depending on the use case. An
embedded computer was added to run the high-level algorithm for navigation pur-
poses. To perform this task the ROS2 framework has been used. ROS2 is the
second version of ROS (Robotic Operating System) which is an open-source set
of software libraries and tools that helps the development of robot applications.
One of the projects that have been used in the Marvin project is NAV2 which is a
navigation tool intended to find a safe path from point A to point B. It can also
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Figure 4.1. Marvin’s hardware architecture

be applied in other applications that involve robot navigation since it contains a
dynamic path planning algorithm to avoid obstacles. To navigate NAV2 needs a
map that can be built using a depth camera or a LiDAR. A stereo camera is com-
posed of 2 sensors placed next to each other at a fixed distance like human eyes
giving accurate real-time depth perception. It can achieve this by using the two
sensors to triangulate similar pixels from both 2D planes. The LiDAR is a sensor
composed of light emitters and receivers that compute the time that the impulse
of light generated by the emitter spend to go and return to the receiver can com-
pute the distance from an obstacle. A tracking camera with an embedded IMU
has been used to obtain odometry data using an algorithm of visual odometry[2]
(VO). This algorithm can determine the position and the orientation of a robot
by analyzing 2 consecutive frames and calculating the displacement of 2 points (or
pixels) of interest and the time it takes to make that movement. In this case, the
camera used for the VO is a stereo camera but exist algorithms exploiting mono
cameras. By combining the depth and the tracking stereo cameras it is possible to
use NAV2 within a SLAM (Simultaneous Localization and Mapping) algorithm.
SLAM[4] is a chicken-and-egg problem that is very common in autonomous vehi-
cles, mobile robot, and drones, in which the robot build and update a map of an
unknown environment while trying to localize itself in it. In recent years many
SLAM algorithms that fuse different kinds of sensors were born. In particular,
this project has been used a SLAM algorithm that uses a 3D LIDAR to obtain
a point cloud used to generate the map while as regards the localization part
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the job was entrusted to a stereo camera with 2 fish-eye lenses and an integrated
IMU obtaining a Visual Inertial Odometry (VIO). The Depth stereo camera has
been mounted on vertical support whose orientation can be changed using a servo
mechanism controlled by the embedded computer. Other components added to
the robot are 2 led lights, in the front and rear of the vehicle. These lights are
intended to illuminate the environment to help cameras see in dark conditions.
Cameras are used to get odometry information and to create point clouds to avoid
obstacles. The last component is a USB speaker with an embedded microphone.
It has been mounted on the robot to allow communication between the robot and
the assisted person. The embedded computer has a vocal assistant that allows the
robot to receive commands by using the voice.

4.3 Board Prototype
The high number of components needed for the project made necessary the design
of a PCB through which it was possible to connect all the devices more efficiently.
In fact, in the first development part, the test of the components was made by
using a breadboard and some wire for the connection. Gradually the complexity
of the projected increase and the project was migrated on matrix board to build
the prototype of the board. When the prototype was tested and everything worked
properly, a PCB was designed.

To design the PCB has been used the software KiCad, an open-source software
suite for Electronic Design Automation (EDA). The programs handle Schematic
Capture, and PCB Layout with Gerber output. Using this software has been
created the schematic (Annex B). To power supply the components, R-78B5.0-2.0
DC/DC converter has been added that takes the battery voltage of the battery
and carries out a 5 V constant voltage. To decouple the 2 different power supplies
4 capacitors have been added.

To measure the voltage and the current provided by the battery, 2 sensors
have been implemented. To design the voltage sensor has been used a subtractor
stage as explained in section 2.7 and an active low pass filter to avoid aliasing
phenomena. The OPA2134 operational amplifier has been used to implement the
2 stages.

The current monitor has been implemented using the INA286 SoC, a current
shunt current sensor that returns an analog value proportional to the current
flowing into the shunt resistor. This analog input is filtered using, also in this
case, a low pass active filter.

As regards the current sensors related to the DC motors, the current monitor
embedded on the motor drivers has been used. It provides an analog input pro-
portional to the current flowing into the driver. Since the current may be positive
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or negative, it was implemented in a particular configuration that uses half of the
scale of the sensor for the positive value and half of the scale for the negative ones.
Also in this case, a filter in between the sensor output and the ADC input of the
microcontroller.

The schematic was designed not only considering the necessary components to
this project but also keeping in mind the future expansion and upgrade of the
platform. Some extra components have been added like a CAN bus connector and
its interface module that might be used to have a more robust serial communication
between the microcontroller and the other devices. Moreover, it has been added a
radio module to connect a radio control that in some cases may be useful. Since
the Teensy 4.1 can not provide a 3.3V voltage signal a level shifter was added to
be able in future upgrade to use also components that require a 5 V input signal
since Teensy 4.1 provides only a 3.3 V output signal.
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Chapter 5

Conclusions

During the last decade, there has been a notable increase in interest in mobile
robots for service applications. This phenomenon has led to the production by
many companies of multiple models of mobile robots. In the first part of the
thesis, both hardware and software of many robots available in the market have
been analyzed and the common modules have been extrapolated to be used as
guidelines in this project. After this preliminary analysis, in which the common
needs of the mobile robots have been defined, we moved on to the design and
development of the software and hardware part.

This work aimed to create a framework that could be used as a basis for the
development of mobile robots in the main fields of application of service robotics.
This was achieved by successfully developing a working prototype for home care
applications for the elderly in the project called Marvin described above in which
both the hardware and the software parts have been integrated.
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Appendix A

Source code

A.1 Robot Class

A.1.1 Robot.cpp

#include "Robot . h "
#include <s t r i n g . h>
#include <myEncoder . h>

#include <s td i o . h>
// FRONT LEFT, FRONT REAR, REAR LEFT, REAR RIGHT

int encoderPhaseA [ 4 ] = {encoder_FL_A , encoder_FR_A , encoder_RL_A , encoder_RR_A} ;
// FRONT LEFT, FRONT REAR, REAR LEFT, REAR RIGHT

int encoderPhaseB [ 4 ] = {encoder_FL_B , encoder_FR_B , encoder_RL_B , encoder_RR_B} ;

myEncoder ∗ encoder [ 4 ] ; // Create a p o i n t e r s v e c t o r o f 4 Encoder o b j e c t s

Robot : : Robot ( )
{

/∗ This i s the c l a s s c o ns t r u c t o r .
In t h i s func t i on are i n i t i a l i z e d a l l the v a r i a b l e s and pins
needed f o r the c l a s s .

∗/
for ( int i =0; i <4; i++)
{

// Set PWM pins frequency to 20kHz
analogWriteFrequency (pwmMotor [ i ] , 2 0 0 0 0 ) ;
// s e t d i r e c t i o n pins mode to OUTPUT
pinMode ( dirMotor [ i ] , OUTPUT) ;
// s e t PWM command pins mode to OUTPUT
pinMode (pwmMotor [ i ] , OUTPUT) ;
pinMode ( currentPin [ i ] , INPUT) ;
analogWrite (pwmMotor [ i ] , 0 ) ; // s e t motors speed to 0
d i g i t a lWr i t e ( dirMotor [ i ] , HIGH) ;

}
// s e t u l t r a s o n i c sensors t r i g p ins mode to OUTPUT
pinMode ( t r igP in , OUTPUT) ;
// s e t u l t r a s o n i c sensors echo pins mode to INPUT
pinMode ( echoPin , INPUT) ;
pinMode ( l i ghtP in , OUTPUT) ;
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d i g i t a lWr i t e ( l i ghtP in ,LOW) ;
// When HIGH i n v e r t e r s are ON, o therwi se are OFF
d i g i t a lWr i t e ( not_stby ,HIGH) ;

t_old = micros ( ) ;
// i n i t i a l i z e S e r i a l communication with 115200 BOUDRATE
S e r i a l . begin (115200 ) ;
// wait u n t i l S e r i a l por t i s opened
while ( ! S e r i a l ){}
// p r i n t a message when s e r i a l por t i s ready
S e r i a l . wr i t e ( " S e r i a l ␣ port ␣ i s ␣ ready ! \ n" ) ;
for ( int i = 0 ; i < 4 ; i++){
encoder [ i ] = new myEncoder ( encoderPhaseA [ i ] , encoderPhaseB [ i ] ) ;
}

}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
Robot : : ~ Robot ( ){}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
void Robot : : wr i t e ( )
{

/∗ This func t ion i s used to w r i t e to the s e r i a l por t ∗/
// c r e a t e b u f f e r b i g g e r enough to conta ins a l l data
unsigned char write_buf [ 1 0 0 ] ;
for ( int i = 0 ; i < 4 ; i ++){

write_buf [ i ] = (unsigned char ) th i s−>getRPM( i ) ;
i f ( write_buf [ i ] >= 0){

write_buf [ 4 ] |= s i gn [ i ] ;
}

}

S e r i a l . wr i t e ( write_buf , s izeof ( write_buf ) ) ; // w r i t e data to the s e r i a l por t
}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
void Robot : : read ( f loat ∗ v e l o c i t i e s P t r )
{

/∗ This func t ion i s used to read data from s e r i a l por t .
In p a r t i c u l a r , the data i n t e r e s t e d in are the 3 v e l o c i t i e s :

− Along X a x i s and ex t ra by te to understand i f p o s i t i v e or n e g a t i v e
− Along Y a x i s and ex t ra by te to understand i f p o s i t i v e or n e g a t i v e
− Around Z a x i s and ex t ra by te to understand i f p o s i t i v e or n e g a t i v e
− and ex t ra by te to understand i f p o s i t i v e or n e g a t i v e

∗/

byte bu f f e r [ b u f f e r S i z e ] ;
i f ( S e r i a l . a v a i l a b l e ( ) > 0){

S e r i a l . r eadBytesUnt i l ( terminator , bu f f e r , 1 0 0 ) ;
// S e r i a l . p r i n t l n (" I l messaggio i n i z i a qu i : " ) ;
for ( int i = 0 ; i < 3 ; i++){

v e l o c i t i e s P t r [ i ] = ( f loat ) bu f f e r [ 2∗ i ] / 1 0 0 ;
i f ( bu f f e r [ 2∗ i +1] == 1){

v e l o c i t i e s P t r [ i ] = −v e l o c i t i e s P t r [ i ] ;
}

}
i f ( ( bu f f e r [ 6 ] & 0x01 ) != 0){

lightON ( ) ;
}
else i f ( ( bu f f e r [ 6 ] & 0x01 ) != 0){

unsigned long t0 = micros ( ) ;
showMe( t0 ) ;

}
else
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lightOFF ( ) ;
}
// S e r i a l . p r i n t l n ( b u f f e r [ 3 ] ) ;

}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
f loat Robot : : getRPM( int encoderNumber )
{

/∗ This func t i on uses Encoder o b j e c t s array
to g e t whee ls speed in a more compact way

∗/
f loat speed ;
i f ( encoderNumber < 0 | | encoderNumber > 3){

S e r i a l . p r i n t ( " I n s e r t ␣a␣ c o r r e c t ␣ encoder ␣number " ) ;
}
speed = encoder [ encoderNumber]−>speed ( ) ;
i f ( d i g i t a lRead ( dirMotor [ encoderNumber ] ) == LOW){

speed = −speed ;
}
// S e r i a l . p r i n t l n ( speed [ encoderNumber ] ) ;
return speed ;

}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
void Robot : : getRPM( f loat ∗wheelSpeed )
{

for ( int i = 0 ; i < 4 ; i++){
wheelSpeed [ i ] = getRPM( i ) ;

}
}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
f loat Robot : : getCurrent ( int cur rentSensor )
{

f loat cur rent ;
int analogVal = analogRead ( currentPin [ cur rentSensor ])+ ana logOf f s e t ;
i f ( analogVal >= ( ( r e s o l u t i o n+1)/2−analogTH ) &&

analogVal <= ( ( r e s o l u t i o n+1)/2+analogTH )){
cur rent = 0 . 0 ;

}
else {

cur rent = ( f loat ) ( analogVal ∗Voltage_max/ r e s o l u t i on −Vof f s e t )/ ( sensorGain ∗windings ) ;
}
return cur rent ;

}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
f loat Robot : : ge tDi s tance ( ){

d i g i t a lWr i t e ( t r igP in , LOW) ;
de layMicroseconds ( 2 ) ;
d i g i t a lWr i t e ( t r igP in , HIGH) ;
de layMicroseconds ( 1 0 ) ;
d i g i t a lWr i t e ( t r igP in , LOW) ;
unsigned long durat ion = pu l s e In ( echoPin , HIGH, timeout ) ;
i f ( durat ion == 0){

return 0 ;
}
else {

return durat ion ∗ 0 .034 / 2 ;
}

}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
bool Robot : : eStop ( ){

/∗ This func t ion i s r e s p o n s i b l e to s top
the robot when sonar sense an o b s t a c l e
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i n s i d e the s e t range .
∗/
bool l a s t_s t a t e = 0 ;
f loat d i s t ance = getDis tance ( ) ;
bool f i l t e rOu tpu t = s ona rF i l t e r ( d i s t anc e ) ;
i f ( d i s t ance == 0 && f i l t e rOu tpu t == 1){

l a s t_s t a t e = 0 ;
}
else i f ( d i s t ance != 0 && f i l t e rOu tpu t == 1) {

l a s t_s t a t e = 1 ;
}
return l a s t_s t a t e ;

}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
void Robot : : forward ( int pwmVal)
{

/∗ This func t i on i s used to move the robot forward
by imposing a PWM s i g n a l to the i n v e r t e r .
The PWM value i s the argument o f the func t i on .

∗/
for ( int i =0; i <4; i++)
{

d i g i t a lWr i t e ( dirMotor [ i ] , HIGH) ;
analogWrite (pwmMotor [ i ] , pwmVal ) ;

}
}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
void Robot : : backward ( int pwmVal)
{

/∗ This func t ion i s used to move the robot backward
by imposing a PWM s i g n a l to the i n v e r t e r .
The PWM value i s the argument o f the func t i on .

∗/
for ( int i =0; i <4; i++)
{

d i g i t a lWr i t e ( dirMotor [ i ] , LOW) ;
analogWrite (pwmMotor [ i ] , pwmVal ) ;

}
}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
void Robot : : l e f t ( int pwmVal)
{

/∗ This func t ion i s used to move the robot l e f t
by imposing a PWM s i g n a l to the i n v e r t e r .
The PWM value i s the argument o f the func t i on .

∗/
d i g i t a lWr i t e ( dirMotor [ 0 ] , LOW) ;
d i g i t a lWr i t e ( dirMotor [ 1 ] , HIGH) ;
d i g i t a lWr i t e ( dirMotor [ 2 ] , LOW) ;
d i g i t a lWr i t e ( dirMotor [ 3 ] , HIGH) ;
for ( int i =0; i <4; i++)
{

analogWrite (pwmMotor [ i ] , pwmVal ) ;
}

}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
void Robot : : r i g h t ( int pwmVal)
{

/∗ This func t ion i s used to move the robot r i g h t
by imposing a PWM s i g n a l to the i n v e r t e r .
The PWM value i s the argument o f the func t i on .

38



A.1 – Robot Class

∗/
d i g i t a lWr i t e ( dirMotor [ 0 ] , HIGH) ;
d i g i t a lWr i t e ( dirMotor [ 1 ] , LOW) ;
d i g i t a lWr i t e ( dirMotor [ 2 ] , HIGH) ;
d i g i t a lWr i t e ( dirMotor [ 3 ] , LOW) ;
for ( int i =0; i <4; i++)
{

analogWrite (pwmMotor [ i ] , pwmVal ) ;
}

}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
void Robot : : turn (char∗ cw_or_ccw , int pwmVal)
{

/∗ This func t i on i s used to turn the robot c l o c k w i s e
or counter−c l o c k w i s e by imposing a PWM s i g n a l to
the i n v e r t e r and a s t r i n g to s e l e c t the d i r e c t i o n .
The s t r i n g and the PWM value are the arguments o f the func t ion .

∗/
i f ( strcmp (cw_or_ccw , "cw" ) == 0)
{

d i g i t a lWr i t e ( dirMotor [ 0 ] , HIGH) ;
d i g i t a lWr i t e ( dirMotor [ 1 ] , LOW) ;
d i g i t a lWr i t e ( dirMotor [ 2 ] , LOW) ;
d i g i t a lWr i t e ( dirMotor [ 3 ] , HIGH) ;

}
else
{

d i g i t a lWr i t e ( dirMotor [ 0 ] , LOW) ;
d i g i t a lWr i t e ( dirMotor [ 1 ] , HIGH) ;
d i g i t a lWr i t e ( dirMotor [ 2 ] , HIGH) ;
d i g i t a lWr i t e ( dirMotor [ 3 ] , LOW) ;

}
for ( int i =0; i <4; i++)
{

analogWrite (pwmMotor [ i ] , pwmVal ) ;
}

}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
void Robot : : cmd_vel ( f loat Vx, f loat Vy, f loat Vz)
{

/∗ This func t ion i s used to move the robot
by imposing 3 v e l o c i t i e s : Vx , Vy and Vz .
The PWM value i s the argument o f the func t i on .

∗/
f loat v e l o c i t i e s [ 3 ] ;
v e l o c i t i e s [ 0 ] = Vx ;
v e l o c i t i e s [ 1 ] = Vy ;
v e l o c i t i e s [ 2 ] = Vz ;
f loat ∗ v e l o c i t i e s P t r = v e l o c i t i e s ;

speedSaturator ( v e l o c i t i e s P t r ) ; // s a t u r a t e speeds with an Octahedron shape
r a t eL im i t e r ( v e l o c i t i e s P t r ) ; // l i m i t speed ra te
i f ( eStop ( ) && v e l o c i t i e s P t r [ 0 ] > 0){

v e l o c i t i e s P t r [ 0 ] = 0 . 0 ;
}
f loat ∗rpm = new f loat [ 4 ] ;
t rans format ionMatr ix ( v e l o c i t i e sP t r , rpm ) ;
wr i teSpeeds (rpm ) ;

}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
void Robot : : s top ( )
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{
/∗ This func t i on i s used to s top the robot

by imposing a PWM s i g n a l equa l to 0 .
∗/
for ( int i = 0 ; i <4; i++){

analogWrite (pwmMotor [ i ] , 0 ) ;
}

}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
f loat Robot : : s a tu r a t i on ( f loat x , f loat x_max)
{
// Contro l l o se a l l ’ in terno d e l range , a l t r i m e n t i sa turo

i f ( x >= x_max){
x = x_max ;

}
else i f ( x <= −x_max){

x = −x_max ;
}
return x ;

}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
void Robot : : speedSaturator ( f loat ∗ v e l o c i t i e s P t r )
{

f loat Vx = v e l o c i t i e s P t r [ 0 ] ;
f loat Vy = v e l o c i t i e s P t r [ 1 ] ;
f loat Vz = v e l o c i t i e s P t r [ 2 ] ;

f loat Vz_max = n_max∗ r /( l+w) ; // Calco lo Vz massima
Vz = sa tu ra t i on (Vz , Vz_max ) ;
f loat Vy_max = r ∗n_max−( l+w)∗Vz ; // Calco lo Vy massima
Vy = sa tu ra t i on (Vy, Vy_max) ;
f loat Vx_max = Vy_max − abs (Vy ) ;
Vx = sa tu ra t i on (Vx, Vx_max) ;

v e l o c i t i e s P t r [ 0 ] = Vx ;
v e l o c i t i e s P t r [ 1 ] = Vy ;
v e l o c i t i e s P t r [ 2 ] = Vz ;

}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
void Robot : : r a t eL im i t e r ( f loat ∗ v e l o c i t i e s P t r ){

f loat K = 0 . 5 ;
unsigned long dt = micros ()− t_old ;
for ( int i = 0 ; i < 3 ; i++){

v e l o c i t i e s P t r [ i ] = V_old [ i ]+ K∗dt ∗1e−6;
V_old [ i ] = v e l o c i t i e s P t r [ i ] ;

}
}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
void Robot : : lightON (){

d i g i t a lWr i t e ( l i ghtP in , HIGH) ;
}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
void Robot : : lightOFF (){

d i g i t a lWr i t e ( l i ghtP in , LOW) ;
}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
void Robot : : showMe(unsigned long t0 ){

f loat Vx0 , Vy0 , Th, Vz , k , kd ;
f loat R = 1 . 0 ;
bool endShow = true ;
while ( ! endShow){
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f loat t = ( micros ( ) − t0 ) ∗ 1e−6;
i f ( t >= 0 and t < 15){

k = M_PI ∗ ( t /30 − 1/(2∗M_PI) ∗ s i n (2∗M_PI ∗ t / 3 0 ) ) ;
kd = M_PI/30 ∗ (1− cos (2∗M_PI ∗ t / 3 0 ) ) ;
Vx0 = −R ∗ s i n ( k ) ∗ kd ;
Vy0 = R ∗ cos (2∗k ) ∗ kd ;
Vz = 0 ;
Th = M_PI;

}
i f ( t >= 15 and t < 37 .5 ){

kd = M_PI/15 ;
k = kd∗ t − M_PI/2 ;
Vx0 = −R ∗ s i n ( k ) ∗ kd ;
Vy0 = R ∗ cos (2∗k ) ∗ kd ;
Vz = 0 ;
Th = M_PI;

}
i f ( t >= 37 .5 and t < 60){

kd = M_PI/15 ;
k = kd∗ t − M_PI/2 ;
Vx0 = −R ∗ s i n ( k ) ∗ kd ;
Vy0 = R ∗ cos (2∗k ) ∗ kd ;
Vz = kd ;
Th = k − M_PI;

}
i f ( t >= 60 and t < 75){

k = M_PI ∗ ( ( t −15)/30 − 1/(2∗M_PI) ∗ s i n (2∗M_PI∗( t −15)/30)) + 2∗M_PI ;
kd = M_PI/30 ∗ (1− cos (M_PI ∗ ( t −15)/15)) ;
Vx0 = −R ∗ s i n ( k ) ∗ kd ;
Vy0 = R ∗ cos (2∗k ) ∗ kd ;
Vz = kd ;
Th = k − M_PI;

}
i f ( t >= 75 and t < 105){

k = 2∗M_PI ∗ ( ( t −75)/30 − 1/(2∗M_PI) ∗ s i n (2∗M_PI∗( t −75)/30)) + 6∗M_PI ;
kd = 2∗M_PI/30 ∗ (1− cos (2∗M_PI ∗ ( t −75)/30)) ;
Vx0 = 0 ;
Vy0 = −2∗R ∗ cos ( k ) ∗ kd ;
Vz = ((2∗R ∗ cos ( k ) )/ (4∗R∗R ∗ s i n ( k )∗ s i n ( k ) +1)) ∗ kd ;
Th = M_PI + atan2(−2 ∗ R ∗ s i n ( k ) , R) ;

}
i f ( t > 105) {

endShow = f a l s e ;
Vx0 = 0 ;
Vy0 = 0 ;
Vz = 0 ;

}
f loat Vel1 = Vx0 ∗ cos (Th) + Vy0 ∗ s i n (Th ) ;
f loat Vel2 = Vy0 ∗ cos (Th) − Vx0 ∗ s i n (Th ) ;
f loat Vel3 = Vz ;
cmd_vel ( Vel1 , Vel2 , Vel3 ) ;

}
}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
bool Robot : : s o n a rF i l t e r ( f loat sonarDistance ){

/∗ This func t ion i s r e s p o n s i b l e to " f i l t e r "
sonar output . An output ( i n s i d e or o u t s i d e )
i s cons idered v a l i d i f repeated f o r n times .
The maximum va lue f o r n i s 8 .

∗/
f i l t e r = f i l t e r << 1 ;
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int n = 3 ;
for ( int i = 0 ; i < n ; i++){

f i l t e r &= ~(1UL << (7− i ) ) ;
}
i f ( sonarDistance != 0){

f i l t e r |= 1UL << 0 ;
}
i f ( f i l t e r == 7 | | f i l t e r == 0){

return 1 ;
}
else

return 0 ;
}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
void Robot : : t rans format ionMatr ix ( f loat ∗ v e l o c i t i e s , f loat ∗ speedsPtr ){

f loat Vx = v e l o c i t i e s [ 0 ] ;
f loat Vy = v e l o c i t i e s [ 1 ] ;
f loat Vz = v e l o c i t i e s [ 2 ] ;
speedsPtr [ 0 ] = (Vx + Vy + ( l+w)∗Vz)∗30/M_PI/ r ;
speedsPtr [ 1 ] = (Vx − Vy − ( l+w)∗Vz)∗30/M_PI/ r ;
speedsPtr [ 2 ] = (Vx − Vy + ( l+w)∗Vz)∗30/M_PI/ r ;
speedsPtr [ 3 ] = (Vx + Vy − ( l+w)∗Vz)∗30/M_PI/ r ;

}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
void Robot : : wr i teSpeeds ( f loat ∗ speedsPtr ){

f loat speeds [ 4 ] ;
for ( int i = 0 ; i < 4 ; i++){

speeds [ i ] = speedsPtr [ i ] ;
}
for ( int i =0; i <4; i++)
{

i f ( speeds [ i ] < 0)
{

d i g i t a lWr i t e ( dirMotor [ i ] ,LOW) ;
speeds [ i ] = −speeds [ i ] ;

}
else
{

d i g i t a lWr i t e ( dirMotor [ i ] ,HIGH) ;
}
analogWrite (pwmMotor [ i ] ,map( speeds [ i ] , 0 ,n_max∗30/M_PI, 0 , 2 5 5 ) ) ;

}
}

A.1.2 Robot.h
#i f n d e f Robot_hpp
#de f i n e Robot_hpp

#inc lude " Arduino . h "
#inc lude " de f i n eP in s . h "
#inc lude " robotParameters . h "

c l a s s Robot
{

p r i va t e :
/∗ Pins d e f i n i t i o n ∗/
const i n t dirMotor [ 4 ] = {motorDirFR , motorDirFL , motorDirRR , motorDirRL } ;
const i n t pwmMotor [ 4 ] = {motorPwmFR, motorPwmFL, motorPwmRR, motorPwmRL} ;
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const i n t not_stby = notStby ;
const i n t currentPin [ 4 ] = {current_1 , current_2 , current_3 , current_4 } ;
const i n t echoPin = echo ;
const i n t t r i gP in = t r i g ;
// S e r i a l
const char terminator = ’\ x02 ’ ; // terminator byte f o r S e r i a l Communication
// Sonar
// Minimum d i s t ance in cm from obs t a c l e then c a l l stop ( ) func t i on
const i n t distanceMin = 15 ;
const i n t timeout = ( long )2∗ distanceMin /0 . 0 34 ; //us
unsigned char f i l t e r ;
// move robot
f l o a t V_old [ 3 ] ;
unsigned long t_old = 0 ;
void wr i teSpeeds ( f l o a t ∗ speedsPtr ) ;
bool s o n a rF i l t e r ( f l o a t sonarDistance ) ;
f l o a t s a tu ra t i on ( f l o a t x , f l o a t x_max ) ;
void trans format ionMatr ix ( f l o a t ∗ v e l o c i t i e s , f l o a t ∗ speedsPtr ) ;
void speedSaturator ( f l o a t ∗ v e l o c i t i e s P t r ) ;
void ra t eL im i t e r ( f l o a t ∗ v e l o c i t i e s P t r ) ;
// Current s enso r
unsigned const char Nbit = 10 ;
const i n t r e s o l u t i o n = pow(2 , Nbit )−1;
const f l o a t Voltage_max = 5 . 0 ;
const i n t analogTH = 2 ;
const i n t analog0 = 471 ;
const i n t ana l ogOf f s e t = r e s o l u t i o n /2−analog0 ;
const f l o a t Vo f f s e t = Voltage_max /2 ;
const f l o a t sensorGain = 0 .034429 ; // 0 .037 be f o r e c a l i b r a t i o n
const unsigned char windings = 10 ;

const i n t s i gn [ 4 ] = {0x01 , 0x02 , 0x04 , 0x08 } ;

pub l i c :
Robot ( ) ; // Library Constructor
~Robot ( ) ; // Library Deconstructor
// S e r i a l wr i t e and read
void read ( f l o a t ∗ v e l o c i t i e s P t r ) ; // Read from s e r i a l port
void wr i t e ( ) ; // Write on s e r i a l port
// Move Robot
void stop ( ) ; // Stop Robot
bool eStop ( ) ;
void forward ( i n t pwmVal ) ; // Move the robot forward
void backward ( i n t pwmVal ) ; // Move the robot backward
void l e f t ( i n t pwmVal ) ; // Move the robot l e f t
void r i g h t ( i n t pwmVal ) ; // Move the robot r i g h t
void turn ( char ∗ cw_or_ccw , i n t pwmVal ) ; // Turn the robot
void cmd_vel ( f l o a t Vx, f l o a t Vy, f l o a t Vz ) ; // Move the robot any d i r e c t i o n
//Encoders
void getRPM( f l o a t ∗wheelSpeed ) ; // Get 4 wheels speeds
f l o a t getRPM( in t encoderNumber ) ; // Get 1 wheel speeds
// U l t r a son i c s en so r s
f l o a t getDis tance ( ) ; // Get sonar d i s t anc e
// cur rent s enso r
f l o a t getCurrent ( i n t motorNumber ) ; // Get 1 motor cur rent
// Lights
void lightON ( ) ; // turn on l i g h t s
void lightOFF ( ) ; // turn o f f l i g h t s
// show time
void showMe( unsigned long t0 ) ; // Show
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} ;
#end i f

definePins.h

const i n t motorDirRR = 22 ;
const i n t motorDirRL = 20 ;
const i n t motorDirFL = 17 ;
const i n t motorDirFR = 15 ;

const i n t motorPwmRR = 23 ;
const i n t motorPwmRL = 219 ;
const i n t motorPwmFL = 18 ;
const i n t motorPwmFR = 14 ;

const i n t notStby = 21 ;

const i n t encoder_RR_A = 0 ;
const i n t encoder_RL_A = 3 ;
const i n t encoder_FL_A = 5 ;
const i n t encoder_FR_A = 6 ;

const i n t encoder_RR_B = 1 ;
const i n t encoder_RL_B = 2 ;
const i n t encoder_FL_B = 4 ;
const i n t encoder_FR_B = 7 ;

const i n t echo = 9 ;
const i n t t r i g = 10 ;

const i n t current_1 = 25 ;
const i n t current_2 = 24 ;
const i n t current_3 = 26 ;
const i n t current_4 = 27 ;

const i n t l i gh tP in = 28 ;

const i n t bu f f e r S i z e = 100 ;

robotParameters.h

#inc lude <math . h>
const f l o a t r = 0 . 0515 ; // wheel rad iu s [m]
const f l o a t l = 0 . 15162 ; // wheelbase [m]
const f l o a t w = 0 .14933 ; // wheelbase [m]
const f l o a t n_max = 4∗M_PI; // omaga max [ rad/ s ]
const f l o a t V_max = r ∗n_max ;

A.2 myEncoder Class

A.2.1 myEncoder.h
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#i f n d e f myEncoder_h
#de f i n e myEncoder_h

#inc lude " Arduino . h "

c l a s s myEncoder
{
pub l i c :

myEncoder ( uint8_t PinA , uint8_t PinB ) ;
void updateEncoder ( ) ;
unsigned long read ( ) ;
unsigned long readAndReset ( ) ;
void wr i t e ( unsigned long value ) ;
f l o a t speed ( ) ;

p r i va t e :
s t a t i c myEncoder∗ sEncoder ;
s t a t i c void updateEncoderISR ( ) ;
v o l a t i l e unsigned long pu l s e s = 0 ;
unsigned long time0 ;

} ;

myEncoder∗ myEncoder : : sEncoder = 0 ;

myEncoder : : myEncoder ( uint8_t PinA , uint8_t PinB)
{

pinMode (PinA , INPUT) ;
pinMode (PinB , INPUT) ;
time0 = micros ( ) ;
sEncoder = th i s ;
a t t a ch In t e r rup t (PinA , myEncoder : : updateEncoderISR , RISING ) ;

}

void myEncoder : : updateEncoderISR ( )
{

sEncoder−>updateEncoder ( ) ;
}

void myEncoder : : updateEncoder ( )
{

no In te r rupt s ( ) ;
pu l s e s++;
i n t e r r up t s ( ) ;

}

unsigned long myEncoder : : read ( )
{

no In te r rupt s ( ) ;
unsigned long pulses_copy = pu l s e s ;
i n t e r r up t s ( ) ;
r e turn pulses_copy ;

}

unsigned long myEncoder : : readAndReset ( )
{

no In te r rupt s ( ) ;
unsigned long pulses_copy = pu l s e s ;
pu l s e s = 0 ;
i n t e r r up t s ( ) ;
r e turn pulses_copy ;

}
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void myEncoder : : wr i t e ( unsigned long value )
{

no In te r rupt s ( ) ;
pu l s e s = value ;
i n t e r r up t s ( ) ;

}

f l o a t myEncoder : : speed ( )
{

unsigned long dt = micros ()− time0 ;
// S e r i a l . p r i n t ( dt ) ;
// S e r i a l . p r i n t ( "\ t " ) ;
unsigned long pu l s e s = sEncoder−>readAndReset ( ) ;
// S e r i a l . p r i n t ( pu l s e s ) ;
// S e r i a l . p r i n t ( "\ t " ) ;
f l o a t speed = pu l s e s ∗60000000 .0/(4∗768 .0∗ dt ) ;
time0 = micros ( ) ;
r e turn speed ;

}
#end i f

A.3 Firmware
#include <Arduino . h>
#include "Robot . h "

Robot rc ;
f loat ∗ v e l o c i t i e s = new f loat [ 3 ] ;

void setup ( ) {}

void loop ( ) {
rc . read ( v e l o c i t i e s ) ;
r c . wr i t e ( ) ;
r c . cmd_vel ( v e l o c i t i e s [ 0 ] , v e l o c i t i e s [ 1 ] , v e l o c i t i e s [ 2 ] ) ;

}
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PCB schematic
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