
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Identification and Clustering of
Anomalies in Online Social Networks

Supervisor

Prof. Martino TREVISAN

Co-Supervisor

Prof. Luca VASSIO

Candidate

Paola CASO

April 2022

Abstract

Online Social Networks (OSNs) have become an integral part of modern-day life.
People use Social Media platforms to share their thoughts, stories, and news, and
major events and occurrences throughout the world can be discovered, frequently
before they are reported by journals or other forms of classical media outlets.
This work aims at identifying real-world events that have affected the post-stream
of OSNs. The proposed novel approach involves detecting anomalous posts, i.e.
those that have received more reactions than expected, and then clustering them
for each week, on the basis of textual-content similarity, to identify the weekly
offline trending or peculiar events that probably induced such atypical engagement,
such as the participation of an influencer to a TV show or a contest. The choice
for this research fell on the social image sharing platform Instagram, one of the
most famous and used OSNs in the world, to exploit multimodal media contents.
The dataset was gathered between 2015 and 2021, including about 1611 Instagram
Italian influencer accounts and 2 036 966 posts, from CrowdTangle, a public insights
tool owned and operated by Meta ©.
The dataset was pre-processed, in order to extract the main features, remove useless
attributes or erroneous data, compute a performance score (in terms of reactions
received with respect to expected reactions) for each post (the main feature for the
Anomaly Detection phase), and to perform Natural Language Processing (NLP)
analyses on the text, contained in the post-caption or within the post-media, to
check the textual similarity (the main feature for the Clustering phase) between
the posts.
To perform Anomaly Detection on the posts, four classic state-of-the-art methods
have been implemented: an ARIMA Model, the Boxplot Rule method, the Isolation
Forest and the Z-Score technique, all applied on the time series of the performance
scores assigned to the posts of each influencer.
To the anomalies found by the various methods, further textual characteristics
machine-intelligible were added, such as the TF-IDF and the Sublinear TF-IDF,
calculated for each week of the dataset.
The final phase involves clustering weekly anomalies by textual similarity. Four
algorithms have been implemented: the DBSCAN, applied on a pre-computed
pairwise distance-matrix involving the captions of anomalous posts, the K-Means,
applied on a weighted hashed vector of the caption words, an LDA model, and
Community Detection algorithms, applied on a graph of anomalous posts.
The proposed system works well, as it was actually possible to find clusters that

make sense as belonging to the same theme, and they manage well to group posts
related to particular events (important football matches, music festivals, TV shows,
famous weddings, Oscar awards, etc.). The results obtained suggest that some
posts actually received more/less reactions than expected as their content was
related to external events in the real world, while others, classified as “noise” are not
related to such occurrences, so probably they obtained an anomalous engagement
for causes endogenous to the OSN.
Based exclusively on numerical data, taking into consideration the Silhouette Score
(and modularity in the case of graphs), the best results would seem to derive from
the pair ARIMA model - DBSCAN on hashtags, while the other two pairs are
equivalent, with the exception that the graph method is the only one that gives
acceptable results when considering all types of words (hashtags, simple words and
words within the image) rather than just hashtags. According to these statistics,
it would appear that the graph method is the worst of those mentioned, but, in
reality, by manual inspection it is the one that gives the best results.

ii

Table of Contents

List of Tables vi

List of Figures viii

Acronyms xiii

1 Introduction 1
1.1 Motivation and Objectives . 1
1.2 Online Social Networks . 2

1.2.1 Difference between Online Social Network and Online Social
Media . 2

1.2.2 Historic Background of Online Social Networks 3
1.2.3 Functionality Framework of Online Social Networks 6
1.2.4 Our research choice: Instagram Social Network 7
1.2.5 Instagram influencers . 9

2 Related Literature 11
2.1 Online Social Networks General analyses 11
2.2 Anomaly Detection in Online Social Networks 16
2.3 Clustering in Online Social Networks 18

2.3.1 Clustering of people . 18
2.3.2 Clustering of posts . 20
2.3.3 Topic Extraction and Event Detection 20

2.4 Previous publications by our research group 23
2.5 Contribution of This Work . 29

3 The Instagram Post Dataset 31
3.1 Selection of the Social Media Platform 32
3.2 Characterization of the Dataset . 32
3.3 Statistical Analysis and Data Cleaning 33

3.3.1 Followers Characterization 34

ii

3.3.2 Reactions Characterization 36
3.3.3 Textual Characterization . 39
3.3.4 Time Features Characterization 42

Posting Frequency . 42
Posting Trends . 43

3.3.5 Other Features . 43

4 Relevant Theory 45
4.1 The Anomaly Detection Problem 46

4.1.1 Definitions . 46
4.1.2 Characterization of the Problem 47
4.1.3 Anomalies in Online Social Networks 49
4.1.4 Classical Approaches . 51

Supervised Methods . 51
Semi-supervised Methods . 51
Unsupervised Methods . 53

4.2 Anomaly Detection Methods . 54
4.2.1 Auto Regressive Integrated Moving Average (ARIMA) for

Anomaly Detection . 54
Stationarity and Differencing 55
The Akaike Information Criterion (AIC) 57

4.2.2 Boxplot Rule . 57
4.2.3 Isolation Forest . 59
4.2.4 Z-Score for Anomaly Detection 62

4.3 The Clustering Problem . 63
4.3.1 Definitions . 63
4.3.2 Characterization of Cluster Analysis 64
4.3.3 Classification of Classical Methods and Models 64

4.4 Clustering Methods . 66
4.4.1 Graphs and Community Detection Algorithms 67

Modularity . 67
Louvain Algorithm . 69
Label Propagation Algorithm 70
Girvan-Newman Algorithm 71

4.4.2 DBSCAN Algorithm . 72
Jaccard Index . 74

4.4.3 K-Means Algorithm . 74
Cosine Similarity . 75

4.5 Textual Analysis Methods: Natural Language Processing (NLP) . . 76
4.5.1 Term Frequency — Inverse Document Frequency (TF-IDF) . 76

Sublinear TF-IDF . 77

iii

Hashing TF-IDF . 77
4.5.2 Latent Dirichlet Allocation (LDA) 77

5 Data Mining and Pre-Processing 79
5.1 Data Sources . 79
5.2 Instruments . 80

5.2.1 Apache Spark . 80
5.2.2 The Cluster and The Hadoop Distributed File System (HDFS) 83
5.2.3 Tools and Libraries . 84

5.3 The Original Data . 86
5.4 Initial Data Transformation . 87

5.4.1 Data Fields Filtering . 87
5.4.2 Identification Features . 88

Post Identification . 88
Account Identification . 89

5.4.3 Temporal Features . 89
5.4.4 Popularity Features . 90

CrowdTangle Performance-Score 91
New Performance-Score Computation and (Post) Filtering . 92
Characterization of the Types of Score 92

5.5 Textual Features Pre-Processing . 94
5.5.1 Textual Information Extraction 95
5.5.2 Special Characters Cleaning 95

Lower Case . 95
Punctuation and Empty Strings Removal 96
Unicode Words . 96
Emojis Removal . 96

5.5.3 Part-of-Speech (PoS) Tagging Analysis 97
Language Detection . 98
PoS-Tagging (Words) Filtering 100

5.5.4 Stop-Words Removal . 100

6 Methodologies and Results 102
6.1 Workflow . 102
6.2 Anomaly Detection . 103

6.2.1 ARIMA Model . 104
Results . 106

6.2.2 Boxplot Rule Method . 107
Results . 108

6.2.3 Isolation Forest . 109
Results . 110

iv

6.2.4 Z-Score Method . 111
Results . 112

6.2.5 Comparison of Anomaly Detection Methods and Results . . 113
6.3 Textual Analysis . 115

6.3.1 TF-IDF and Sublinear TF-IDF 115
6.3.2 Final Data Transformation 116

6.4 Clustering . 118
6.4.1 DBSCAN Algorithm . 118

Distance Matrix . 120
Results . 122
Example . 126

6.4.2 K-Means Algorithm . 129
Hashing TF-IDF . 130
Cosine Similarity . 131
Results . 132
Example . 134

6.4.3 LDA Algorithm . 137
Lemmatization . 138
Coherence Model . 138
Results . 139
Example . 141

6.4.4 Graphs and Community Detection 143
Results . 143
Example . 147

6.4.5 Comparison of Clustering Methods and Results 150
Comparison Example . 151

7 Conclusions 155
7.1 Future Work . 156

Bibliography 158

v

List of Tables

2.1 Datasets from (McMinn, Moshfeghi, and Jose 2013), which proposed
a Twitter data corpus, and Wikipedia Current Events Portal to
generate a set of Twitter events; statistics taken from [22] 22

2.2 ARIMA and Supervised algorithms scores, taken from [27] 26
2.3 Unsupervised algorithms scores, taken from [27] 26

3.1 Statistical description of the followers distribution 34
3.2 Statistical description of the followers distribution for each class of

influencers . 35
3.3 Statistical description of the reactions distribution 36
3.4 Statistical description of the reactions distribution for each class of

influencers . 37
3.5 Statistical description of the normalized number of reactions distri-

bution for each class of influencers 38
3.6 Statistical description of the words distribution, divided by category,

for each post . 39
3.7 Statistical description of the words distribution for each class of

influencers . 40
3.8 Statistical description of the hashtags and mentions distributions

for each class of influencers . 40
3.9 Statistical description of the post image-words distribution for each

class of influencers . 40

5.1 Attributes of the data objects (Rows) contained in the raw dataset,
and description of their characteristics 86

5.2 Statistical description of the post scores, for each type 93
5.3 Statistical description of the (new) post score distribution for each

class of influencers . 93
5.4 SpaCy Part-of-Speech Tags List . 98
5.5 Dictionary of manually added stop-words, in alphabetical order . . 101

vi

6.1 Statistics of anomalies found by the ARIMA Model in the post-score
history of each influencer, subdivided per class 106

6.2 Statistics of anomalies found through the Boxplot Rule method in
the post-score history of each influencer, subdivided per class 108

6.3 Statistics of anomalies found by the Isolation Forest algorithm in
the post-score history of each influencer, subdivided per class 111

6.4 Statistics of anomalies found through the Z-Score method in the
post-score history of each influencer, subdivided per class 112

6.5 Statistical description of weekly anomalies for each method 114
6.6 Example of a post entry after Anomaly Detection and Textual Analysis117
6.7 Statistical description of weekly DBSCAN clustering on anomalous

posts with an overperforming score 122
6.8 Statistical description of weekly DBSCAN clustering on anomalous

posts with an underperforming score 123
6.9 Example of entries after DBSCAN applied on hashtags for week 21

of year 2016 (anomalous posts with an overperforming score detected
by the ARIMA Model). “cluster: −1” indicates a noise point, here
not represented for the sake of brevity 127

6.10 Statistical description of weekly K-Means clustering on anomalous
posts with an overperforming score 132

6.11 Statistical description of weekly K-Means clustering on anomalous
posts with an underperforming score 134

6.12 Statistical description of LDA algorithm applied on weekly anoma-
lous posts with an overperforming score 139

6.13 Statistical description of LDA algorithm applied on weekly anoma-
lous posts with an underperforming score 140

6.14 Statistical description of Louvain algorithm applied on weekly graphs
of anomalous posts with an overperforming score 144

6.15 Statistical description of Louvain algorithm applied on weekly graphs
of anomalous posts with an underperforming score 145

6.16 Outputs for the DBSCAN applied on hashtags, for week 9 of year
2019 (anomalous posts with an overperforming score detected by
the ARIMA Model) . 153

6.17 Outputs for the K-Means applied on hashtags, for week 9 of year
2019 (anomalous posts with an overperforming score detected by
the ARIMA Model) . 154

vii

List of Figures

1.1 Leading Online Social Networks logos 2
1.2 Monthly Active Users by Social Platform from 2004 to 2019 4
1.3 Number of users of leading social networks in Italy (March 2021) . . 5
1.4 Online Social Networks Functionality (Honeycomb Model) 6
1.5 Instagram Stories template . 8
1.6 Instagram profile of a famous Italian Mega influencer: Chiara Ferragni 9
1.7 Tiers of influencers, graphical representation 10

2.1 (a) CDF of number of promoted products. (b) Number of products
promoted in stories, taken from [12] 12

2.2 CDFs of Text of COVID-19 categories, taken from [13] 13
2.3 Conceptual LCN/HCC pipeline (circles are accounts), taken from [14] 14
2.4 Agreement of the tested models on M5S supporters, taken from [16] 15
2.5 Proposed framework for anomaly detection, taken from [17] 17
2.6 Metrics across all time-slots, taken from [21] 21
2.7 U-T-C network, taken from [22] . 22
2.8 Temporal evolution in Italy of commenters in communities. Blue:

top 1%, Orange: top 5%, Green: all commenters, taken from [26] . . 25
2.9 Data collection and analysis methods, taken from [28] 27

3.1 ECDF of influencers’ followers . 34
3.2 ECDF of influencers’ followers for each class of influencers 35
3.3 ECDFs of reactions to posts . 36
3.4 ECDFs of reactions to posts for each class of influencers 37
3.5 ECDFs of normalized number of reactions to posts for each class of

influencers . 38
3.6 ECDF of the post description metrics (caption-words, hashtags,

image-text and mentions) . 39
3.7 ECDFs of the post description metrics for each class of influencers . 41
3.8 Histograms of the posting frequencies for each class of influencers . 42
3.9 Posting trend over years for each class of influencers (time series) . 43

viii

3.10 Histogram of the post types for each class of influencers 44
3.11 Histogram of the relative percentage of sponsored posts for each

class of influencers . 44

4.1 Different meanings of outliers in data 46
4.2 Characteristics and properties of Anomaly Detection 47
4.3 Examples of anomaly macro-categories, considering the time series

of a numeric attribute . 48
4.4 In-disguise and white crow anomalies 49
4.5 Example of clusters and some noise data 52
4.6 Example of Anomaly Detection using Time Series Forecasting, for

the sequence of a generic metric . 55
4.7 Examples for stationary and non-stationary time series 56
4.8 Different parts of a boxplot . 58
4.9 Possible different symmetries in the data, represented by the boxplots 59
4.10 Different skews with corresponding distribution plots and boxplots . 59
4.11 Overview of the Isolation Forest algorithm 60
4.12 Example of usage of the Isolation Forest algorithm for Anomaly

Detection . 61
4.13 Outlier Detection with Z-Scores on a Normal Distribution 62
4.14 Basic example of clustering . 63
4.15 Example of hierarchical clustering: a dendrogram (right) representing

nested clusters (left) . 65
4.16 Example of graph-based clustering 66
4.17 Example of community detection in a graph 67
4.18 Example of different modularities 68
4.19 Schematic of Louvain Algorithm . 69
4.20 Schematic of Label Propagation Algorithm 70
4.21 Betweenness centrality example . 71
4.22 Simple example of the process followed by the Girvan-Newman

algorithm . 72
4.23 DBSCAN algorithm example . 73
4.24 Example of usage of the K-Means algorithm 74
4.25 Schematic of LDA algorithm . 78

5.1 Data Sources . 79
5.2 Organization of a Spark Cluster, taken from [55] 80
5.3 Spark ecosystem and its components 81
5.4 Spark data structures . 82
5.5 Jupyter and PySpark logos © . 83
5.6 Hadoop main components, taken from [56] 83

ix

5.7 Logos of the libraries used . 84
5.8 Post unique identifier example . 88
5.9 Post entries example . 88
5.10 Example of account entries . 89
5.11 Example of date transformation . 90
5.12 ECDFs of the post scores . 93
5.13 ECDF of the (new) post score for each class of influencers 94
5.14 Regular Expressions used to extract respectively hashtags and mentions 95
5.15 Regular Expression to find Emoji characters 97
5.16 Example of PoS Tagging performed by the SpaCy library 97
5.17 Language Detection performed by the SpaCy library on the Insta-

gram Post Dataset . 99
5.18 Percentage of people in Italy who speak the illustrated languages as

a mother tongue or foreign language 99

6.1 Project workflow . 102
6.2 Example of anomalies found by the ARIMA Model in the post-score

history of the Italian Mega influencer Elisabetta Franchi 107
6.3 Example of anomalies found through the Boxplot Rule method in

the post-score history of the Italian Mega influencer Elisabetta Franchi109
6.4 Example of anomalies found by the Isolation Forest algorithm in the

post-score history of the Italian Mega influencer Elisabetta Franchi 111
6.5 Example of anomalies found through the Z-Score method in the

post-score history of the Italian Mega influencer Elisabetta Franchi 112
6.6 Comparison of results from different Anomaly Detection Methods . 113
6.7 ECDFs of the distribution of the weekly number of anomalies for

each Anomaly Detection method 115
6.8 ECDFs of the weekly number of clusters and of the Silhouette Score

for the DBSCAN applied on hashtags (overperforming score) 124
6.9 ECDFs of the weekly number of clusters and of the Silhouette Score

for the DBSCAN applied on hashtags (underperforming score) . . . 124
6.10 Example of a distance matrix for hashtags used for the DBSCAN

for a week . 126
6.11 Example of determination the best value of ϵ used for the DBSCAN

applied on hashtags for a week . 127
6.12 Example of outputs for the DBSCAN applied on hashtags for a week128
6.13 Example of determination of the parameter k for the K-Means

algorithm . 131
6.14 ECDFs of the weekly number of clusters and of the Silhouette Score

for the K-Means applied on hashtags (overperforming score) 133

x

6.15 ECDFs of the weekly number of clusters and of the Silhouette Score
for the K-Means applied on hashtags (underperforming score) . . . 133

6.16 Example of a similarity matrix for hashtags used for the K-Means
for a week . 135

6.17 Example of Silhouette Score plot for the K-Means applied on hashtags
for a week . 136

6.18 Example of wordcloud built using hashtags for a week 136
6.19 Example of wordclouds for each cluster built using hashtags for a week137
6.20 ECDFs of the weekly number of topics (clusters) and the Coherence

Score for the LDA algorithm applied on hashtags (overperforming
score) . 140

6.21 ECDFs of the weekly number of topics (clusters) and the Coherence
Score for the LDA algorithm applied on hashtags (underperforming
score) . 141

6.22 Example of output of topics for the LDA algorithm applied on
hashtags (overperforming score) for a week 142

6.23 ECDFs of the weekly number of communities (clusters), the modu-
larity and the Silhouette Score for the Louvain algorithm applied on
graphs of hashtags (overperforming score) 144

6.24 ECDFs of the weekly number of communities (clusters), the modu-
larity and the Silhouette Score for the Louvain algorithm applied on
graphs of all types of words (overperforming score) 145

6.25 ECDFs of the weekly number of communities (clusters), the modu-
larity and the Silhouette Score for the Louvain algorithm applied on
graphs of hashtags (underperforming score) 146

6.26 ECDFs of the weekly number of communities (clusters), the modu-
larity and the Silhouette Score for the Louvain algorithm applied on
graphs of all types of words (underperforming score) 146

6.27 Example of wordcloud built using all types of words for a week . . . 147
6.28 Example of the Louvain algorithm applied on a graph of all types of

words for a week . 148
6.29 Example of bubble chart built using all types of words for a week . 149
6.30 Wordclouds for each cluster (detected by the graphs method) built

using all types of words, for week 9 of year 2019 (anomalous posts
with an overperforming score detected through the Boxplot Rule
method) . 152

xi

Acronyms

ACF
Auto-Correlation Function

ADF
Augmented Dickey-Fuller

AIC
Akaike Information Criterion

API
Application Programming Interface

ARIMA
Auto Regressive Integrated Moving Average

ASA
Advertising Standards Authority

BoW
Bag of Words

BST
Binary Search Tree(s)

COVID
COrona Virus Disease

DBSCAN
Density-Based Spatial Clustering of Applications with Noise

xiii

ECDF
Empirical Cumulative Distribution Function

FSA
Fire Spread community detection Algorithm

GA
Genetic Algorithm

HCCs
Highly Coordinating Communities

HDFS
Hadoop Distributed File System

HEE
Hot Event Evolution

IG
Instagram

IQR
Interquartile Range

IRA
Internet Research Agency

LCN
Latent Connection Network

LDA
Latent Dirichlet Allocation

LIWC
Linguistic Inquiry and Word Count

LPA
Label Propagation Algorithm

xiv

LSTM
Long Short-Term Memory

ML
Machine Learning

NBC
Naïve Bayesian Classifier

NLP
Natural Language Processing

NER
Named Entity Recognition

NN
Neural Network

NoA
Node of Attraction

OSNs
Online Social Networks

PoS
Part-Of-Speech

RDD
Resilient Distributed Dataset

SGD
Stochastic Gradient Descent

SNA
Social Network Analysis

SQL
Structured Query Language

xv

SVI
Search Volume Index

SVM
Support Vector Machine

TF-IDF
Term Frequency — Inverse Document Frequency

XGB
Extreme Gradient Boosting

xvi

Chapter 1

Introduction

1.1 Motivation and Objectives
OSNs (Online Social Networks) have become an essential aspect of everyday life.
People utilize social media platforms to share their ideas, experiences, and news,
and big events and happenings throughout the world can be discovered, often
before they are published in journals or other traditional media venues. The goal
of this research is to discover real-world events that have had an impact on OSNs’
post-stream. The proposed novel approach entails identifying anomalous posts,
i.e. those that have gotten more reactions than expected, by exploiting classical
Anomaly Detection techniques, and then clustering them for each week based on
textual-content similarity in order to identify the weekly offline trending or peculiar
events that most likely induced such atypical engagement. In particular, we wish to
aggregate the anomalous posts (after recognizing them) using clustering algorithms,
and distinguish those that have got a number of anomalous replies owing to external
events that occurred in the offline world and are thus exogenous to the OSNs, such
as the participation to a TV show or a contest. Because this is an unsupervised
task (the themes to which the posts “belong” cannot be determined a priori), a
manual review of the results is required to validate the content. The social picture
sharing platform Instagram, one of the most well-known and widely used OSNs in
the world, was chosen for this study to leverage multimodal media contents.

1

Introduction

1.2 Online Social Networks
According to the definition of Encyclopedia Britannica, an online social network,
in computers, is:

[. . .] an online community of individuals who exchange messages, share
information, and, in some cases, cooperate on joint activities. [1]

Figure 1.1: Leading Online Social Networks logos [2][3][4]

In other words, the term Social Network identifies an online computer service1 that
enables the creation of virtual social networks. More in detail, after registration by
creating a password-protected personal profile (generally provided by the service),
users can interact with each other and share textual content, images, video and
audio (including personal data, religious sensitivities, political opinions, sexual
relations, etc.): users are not only content consumers, but also content creators.

1.2.1 Difference between Online Social Network and Online
Social Media

While the terms social media and social network seem to be similar and inter-
changeable, they have distinct differences.
According to the definition of Encyclopedia Britannica again, the term social media
refers to:

[. . .] technologies, platforms, and services that enable individuals to engage
in communication from one-to-one, one-to-many, and many-to-many. [5]

In other words, it is an online communication service, a platform for information
broadcasting. More specifically, social media platforms are web-based applications,
which allow the creation and sharing of content also by the users themselves, make

1websites or technologies

2

Introduction

interaction with a wide audience possible. This instrument is bidirectional, since it
adds the social component to the transmission of information: radio or television,
for example, are unidirectional tools, since they transmit information without any
interaction with the viewer.
A social network, on the other hand, is a more theoretical concept, used to describe
relationships between individuals, groups and organizations: it is a real social
structure. Online Social Networks (OSNs) can be considered as a subset of social
media, being a smaller group that shares the same interests or causes.
To be clear, social media is the tool, while the social network is the people who use
social media to create their own online community network.

1.2.2 Historic Background of Online Social Networks
The origin of today’s internet and most of contemporary social media networks
dates back to the emergence in the late ’60s of the Advanced Research Projects
Agency Network — the ARPANET: a military internal communication system.
It was created by the U.S. Department of Defense, to allow four interconnected
universities to share software, hardware, and other data, guaranteeing continuity of
communication between different locations in case of a nuclear bombing (USSR).
In the following decades, the debut of E-mails and chat programs led to the creation
of USENET, a messaging system between two American universities, that enabled
users to post and receive messages within thematic areas called newsgroups.
Moreover, the advent of the World Wide Web, developed by the CERN researcher
Sir Tim Berners-Lee, allowed anyone with a mobile connection and a web browser
to easily navigate from one site to another (the resources) through hyperlinks, and
faster connections made it possible to share more multimedia content.

In 1994 Yahoo! GeoCities was born, a web hosting service that allowed users
to create and publish websites for free and to browse them by their theme or
interest. The cities, containing a list of hyperlinks to web pages, were named as
real cities or regions according to their content.
In 1997, the first recognizable social media site, SixDegrees1, launched, which
enabled users to upload profile pictures, make friends with each other, send messages
and publish bulletin board items to others in first, second, and third-degree
connections. It was based on the Theory of the Six Degrees of Separation - hence
the name - according to which all people are connected to each other through a
chain of at most five intermediaries. This service was followed in 2002 by the Asian
Friendster, a rudimentary platform with email paid registration and basic online
networking features, which was the precursor of modern Online Social Networks

1www.sixdegrees.com

3

www.sixdegrees.com

Introduction

Figure 1.2: Monthly Active Users by Social Platform from 2004 to 2019, taken
from [6]

(OSNs). Friendster attracted millions of users, but it soon decayed. One reason
was the popularity index, which depended on the number of friends that each user
had in his friend network (the more friends the higher the popularity) and which
led to the creation of Fakesters, fake accounts to widen the circle of friends and
increase the index.

After the appearance of the first blog sites and the birth of Wikipedia1, LinkedIn2,
one of the most popular social media sites for business in the world still today, was
founded in 2003 as a networking site for career-minded professionals. The same
year also witnessed the launch of MySpace3, which allowed users to completely
customize their profile, but also to could embed and share music and videos. To
date, MySpace is still present on the web, but the number of users has dropped
significantly. YouTube4 first appeared in 2005 and launched an entirely new
method of communication with its ability to create and share media (in particular
online videos) over very long distances. Time has led YouTube to be the second

1www.wikipedia.com 2www.linkedin.com 3www.myspace.com
4www.youtube.com

4

www.wikipedia.com
www.linkedin.com
www.myspace.com
www.youtube.com

Introduction

most visited website in the world after Google.

Figure 1.3: Number of users of leading social networks in Italy (March 2021) [7]

2006 saw the advent of Facebook5, which remains one of the most popular
social media platforms in the world: it is one of the most visited sites on the web.
Twitter6 also, launched in 2006, with the intention of allowing users to share
messages in only 140 characters (today 280), the same as SMS text messages, and
its ability to enable users to interact directly with celebrities.
Tumblr7 arrived in 2007, with its micro-blogging and social networking features.
Yet another important step in the history of the evolution of social media platforms,
was the launch of Instagram8 in 2010. A US-based photo and video sharing
platform, Instagram is today one of the biggest social media sites in the world.
In 2016, the now incredibly popular social media platform, the Chinese TikTok9

was born. It is a smartphone app designed to create short video clips lasting up to
60 seconds, with the ability to edit them, use special effects, add parts of songs to
create ballets.

5www.facebook.com 6www.twitter.com 7www.tumblr.com
8www.instagram.com 9www.tiktok.com

5

www.facebook.com
www.twitter.com
www.tumblr.com
www.instagram.com
www.tiktok.com

Introduction

1.2.3 Functionality Framework of Online Social Networks
Today’s Online Social Networks (OSNs) offer different functionalities, depending
on the chosen platform. While they all have distinctive features, there are almost
always certain commonalities between them. The seven key essential functional
blocks [8] are the following:

Figure 1.4: Online Social Networks Functionality (Honeycomb Model)

• Identity: users can customize their own profile and publicly (or partially)
share their information (name, surname, gender, age, profession, profile-photo,
etc.) and created contents, according to their own privacy settings;

• Conversations: users can start conversations among individuals and groups
in chat systems;

• Sharing: users can exchange, distribute, and receive content, which can be
textual, media, or both, in the form of a post. A post is a sort of container
of information that can be also re-shared, liked and/or commented by other
users;

• Presence: users can know if other users are available through status lines like
“available/online” or “hidden/offline”, and they can choose in their settings
selective presences: one can be visible to some people while staying hidden to
others, or everyone. Some platforms can give information also about where
the user is in the real world;

6

Introduction

• Relationships: users can be related to other users through some form of
association that leads them to converse, share objects, meet up, build real
relationships, or simply just list each other as a friend or fan. In particular,
each user can have a contact-list containing other users and the corresponding
relations, which can be uni-directional or bi-directional (followers, followee)
or also necessarily mutual (friends), depending on the platform;

• Reputation: users can identify the standing of others, including themselves,
in a social network environment. In most cases, reputation is an indication to
determine trustworthiness. In other cases, reputation refers not only to users
but also their content, which is often evaluated using content voting systems:
likes, comments, ratings, view counts, etc. The number of followers is also a
metric for reputation but with a limitation: it only indicates the popularity of
a person, not how many people actually read the posts;

• Groups: users can form communities and sub-communities, which can be
open to anyone, closed (approval required), or secret (by invitation only). In
the last two cases, generally, some administrators manage the group, approve
new members, and invite others to join;

1.2.4 Our research choice: Instagram Social Network
The Online Social Network chosen for our research is Instagram (often colloquially
abbreviated as IG), a photo and video sharing social networking service founded
in 2010 in California. The application allows users to upload media (images and
videos) in the form of so-called posts that can be edited with photographic filters,
organized by hashtags and geographical location tagging (geotags) and shared
publicly or with previous approval of followers1 (private profile), according to
their customized privacy settings. Users can browse other users’ content by tags
and locations, visiting their profiles or swiping through their personal feed. The
Instagram Feed is a constantly updating dashboard displaying a list of photos and
videos from advertisers and/or accounts that people follow, that appears when
opening the Instagram application. The posts can represent a photo, a up to 60
seconds video, an album of up to 10 photos/videos, an Instagram Reel (a up to
15 seconds editable multi-clip video with audio, effects, and other tools-additions)
or an Instagram TV (IGTV, a up to one hour video). In particular, “IGTV” is a
stand alone application, where each user page is named “channel”.

Users can “like”, “comment”, “save” into a private area of the application, send

1Users who subscribe to other users’ accounts to “follow” their updates.

7

Introduction

in Direct1 and re-share in the Instagram Stories (Fig.1.5), the posts. Instagram

(a) Instagram Stories bar:
user view example [9]

(b) Instagram Stories slideshow:
actual content displayed exam-
ple [10][11]

Figure 1.5: Instagram Stories template

Stories are vertical photos or (up to 15 seconds videos), that expire after 24 hours
from posting, but they can also be collected and displayed (until removed) on the
owner profile in the so-called Instagram Stories Highlights (Fig.1.6b). They are
displayed as coloured circle (Fig.1.5a) around the profile pictures of the owners, at
the top of a user’s application view, and they need to be clicked through to present
the actual content in a slideshow format (Fig.1.5b).

Unfortunately, even if very commonly used by several ordinary users and influ-
encers (1.2.5), it was not possible to study Instagram Stories in this research due
to the unavailability of data.

1Instagram chat system to send messages including text, posts, Instagram Stories, (eventually
disappearing) photos or videos taken or uploaded from the photo library, to one or more people.

8

Introduction

1.2.5 Instagram influencers
In the context of communication and marketing strategies, not only in the Online
Social Networks (OSNs) environment, the term influencer indicates a popular
individual on the Internet, who has the ability to influence the behaviors, opinions
and choices of a certain group of users (in particular, potential consumers). In

Figure 1.6: Instagram profile of a famous Italian Mega influencer: Chiara Ferragni1

other words, influencers are people able to create trends on the Internet and to
affect the purchasing decisions of others because of their authority, knowledge
and expertise on a specific topic, position, or relationship with their followers. So
brands can collaborate with them to achieve their marketing objectives, preferring
to advertise through influencers’ endorsement rather than through advertising
officers. Companies can pay influencers to encourage and persuade their followers
to buy products they promote, and, to this extent, some laws have been introduced

1www.instagram.com/chiaraferragni

9

www.instagram.com/chiaraferragni

Introduction

that require the usage of some specific hashtags such as #ad or #adv [12].
Instagram influencers in general publish posts regularly about their preferred topic
(a particular area, e.g. fashion, food, travel or technology) and generate large
followings of engaged people who are interested in their updates.

There are multiple ways to classify influencers: by followers number, by types
of content (e.g. bloggers, YouTubers, podcasters, etc.), by the level of influence
or by the niche in which they operate. Generally the first method is the most
common one [12] because of its simplicity of application, and it defines four tiers of
influencers (Fig. 1.7):

Figure 1.7: Tiers of influencers, graphical representation

• Mega influencers: over 1 000 000 followers (Fig.1.6).

• Macro influencers: between 100 000 and 1 000 000 followers.

• Micro influencers: between 10 000 and 100 000 followers.

• Nano influencers: less than 10 000 followers.

According to the paper by Zarei et al. [12], most influencers publish unsponsored
posts, otherwise they tend to advertise products belonging to their area of expertise.
In general, influencers in the mega, macro and micro categories prefer the usage
of Instagram Stories to promote sponsored content rather than the posts, and,
in particular, mega influencers are the dominant: they prefer to post “advertise-
stories” more regularly than other categories of influencers. Anyway, according to
this study, even if mega influencers obtain the greatest attention, measuring likes
and comments, small nano influencers sustain attention more effectively, in their
niche (Fig.2.1).

10

Chapter 2

Related Literature

2.1 Online Social Networks General analyses
Online Social Networks (OSNs) have been extensively studied during these years.
The work by Zarei et al. [12] focused its analysis on the types of products being
promoted by Instagram influencers, their potential reach, and the engagement
received from their subscribers (followers). The researchers collected both Instagram
posts and stories from users who attached advert-related hashtags to their contents,
using the official Instagram APIs to crawl them, between Sep 2018 and April
2019. Once extracted the accounts identified during this phase, all the posts,
stories and reactions generated by them were monitored from July 2019 to August
2019. Then the data were categorized in sponsored/non-sponsored (simply checking
if sponsored metadata, i.e. hashtags, were included), validated (filtering any
incorrectly identified influencer) and sampled (using a Random Under-Sampling
to reduce the size of the non-sponsored class and to obtain an equal number of
sponsored and non sponsored labeled posts). About the types of products being
advertised by influencers, they observed that 50% Mega, 58% Macro and 70%
Micro influencers promote just a single product, or focus on a particular product
type, possibly in their own specialist area (Fig.2.1). To better classify the data,
in the paper it is explained that the contents were subdivided into sponsored,
non-sponsored and hidden sponsored1 with the aid of a Random Forest Classifier,
compared to the results of a Contextual LSTM Neural Network architecture. For
the prediction (manually validated), the most important features were the post
captions, the profile biographies (Fig.1.6a) and the post hashtags2.
The results showed a noticeable set of hidden sponsored posts, particularly for Micro

1Advertise-related hashtags are removed, so the posts are not officially declared as sponsored.
2Generally the name of the product or producer (or both) is listed as a hashtag.

11

Related Literature

Figure 2.1: (a) CDF of number of promoted products. (b) Number of products
promoted in stories, taken from [12]

and Nano influencer, despite of the fact that the Advertising Standards Authority
(ASA) advises the usage of commercial hashtags, also because influencers’ income
is taxable. Further results were already discussed in the last part of section 1.2.5.

Another work, by Javed et al. [13], focused its analysis on WhatsApp1 messages
and posts on Twitter (e.g. tweets) in Pakistan. This study was aimed at inspecting
what kind of messages about the COVID-19 pandemic were being exchanged, what
was the general behavior of users, if there was misinformation about COVID-19
and possibly a relationship with that on Twitter. 227 public WhatsApp groups
(reachable by anyone via a URL) including text, images and videos, containing some
keywords such as “Corona” or “2019-cov”, were analyzed (everything previously
anonymized), and, in the end, 14% of pandemic information resulted to be erroneous.
Images were more complex to categorize automatically, so a manual tagging was
made by two commentators, selecting those containing text related to COVID-19,
to restrictions, to precautionary measures and social distancing, and grouping
them by similarity (via Hamming distance) with an image hashing tool. Messages
were then characterized and divided into 5 categories: information, disinformation
(everything that could not be verified or that was certainly false), joke/satire,
religious, ambiguous (containing not sufficient data to be assigned to one of the

1Instant messaging platform, which allows users to send each other text and voice messages,
make voice and video calls (VoIP), share images, videos, documents, locations, and other contents.

12

Related Literature

previous categories), considering that a single message could belong to multiple
categories at the same time (Fig.2.2). Most of the messages resulted to be classified
as information, followed by religion. Analyzing the “life” of messages, to evaluate

Figure 2.2: CDFs of Text of COVID-19 categories, taken from [13]

the impact of the various types of information, the results showed that the messages
that lasted the least were those of satire, while disinformation had a quite high
duration and circulated for longer periods than valid information. Misinformation
were further categorized, according to their contents: fake news, which included
some conspiracy theories or false information about COVID-19; origins, concerning
a false origin of the virus, such as having been created in the laboratory; remedies,
concerning bogus treatment methods; vaccine: about theories according to which
the vaccine had already been developed and used for economic reasons; weather,
concerning the fact that the vaccine would disappear with seasonal climate changes;
comparison with seasonal flu, information that lowered the severity of COVID-19
symptoms by comparing them to those of the flu. Among these, the category with
a shorter duration was the one of fake news, while the most lasting was the one
concerning the false remedies. On Twitter, information resulted to have a longer
“die-time” than incorrect information (3 times more), also because more people
could comment and deny the truthfulness of a post.

The study by Weber et al. [14] observed coordination strategies such as boost-
ing, bullying, pollution, and metadata shuffling attempting to reveal networks of
cooperating accounts and groups whose behavior was anomalous in degree. The
researchers proceeded with an approach based on temporal windows of varying
size, user interactions and metadata to to detect accounts engaging in potentially
coordinated goal-based strategies. The analysis was performed comparing a ran-
domised dataset (to provide validation) with two relevant datasets, crawled from
Twitter: one provided by the IRA and based on October 2018 general activities,
while the other containing tweets published during the 2018 Regional Australian
Elections. The workflow pipeline (Fig.2.3), from extracting relevant information

13

Related Literature

from the raw data to the results, consisted of five steps: convert social media posts
to common interactions, filter these interactions selecting the ones which were
relevant to the research criteria, infer (typed by criterion) links between accounts
creating a collection of inferred pairings, construct an LCN from the obtained
pairings, where the vertices were the accounts connected by weighted edges of
inferred links, identify the highest coordinating communities using a community
detection algorithm (FSA_V, a variation of the FSA algorithm).
On one hand, the paper confirmed the usage of the mentioned strategies in orga-
nized operations and opened space to explore real-time applications to recognize,
and eventually intervene, those schemes. On the other hand, the assumption
that political accounts would retweet and mention themselves frequently was not
demonstrated by the outcomes.

Figure 2.3: Conceptual LCN/HCC pipeline (circles are accounts), taken from [14]

The usage of Online Social Networks has effects on real-world offline phenomena,
and this raises the problem of the reliability of data collection for OSNs analyses:
the data must be correct, but also complete enough to construct meaningful
networks and produce a good mapping between online and offline events. In this
direction goes the work from Weber et al. [15], which tries to apply a systematic
comparison technique: the researchers collected simultaneously two parallel datasets
from Twitter, using different methods and tools, to understand how variations
in data acquisition influence the results of social network analyses. To generate
the two datasets, the analysts used respectively Twarc1, as baseline, and RAPID2.
Afterwards, they built three weighted directed social networks, using the accounts
as nodes and starting from direct interactions categories: “mention networks”,
“reply networks”, and “retweet networks”. The analyses performed on the datasets
were some absolute statistics, such as the count of tweets and hashtags, network
statistics like Louvain cluster count or transitivity, centrality values and cluster
comparison. According to the results, most prevalent content values remained
similar, but some differences were witnessed: different numbers of captured accounts

1https://github.com/DocNow/twarc
An open source library which wraps Twitter’s API.

2A social media collection and data analysis platform for Twitter and Reddit.

14

https://github.com/DocNow/twarc

Related Literature

created a different number of nodes, extra tweets caused extra edges and, more in
general, network architecture was different.

In the recent years, the possibility to exploit the potential of new Machine
Learning techniques and OSNs data to perform predictions about users’ political
orientation received great attention and interest from scholars. The work from
Cardaioli et al. [16] is related to this possibility: using Twitter APIs, a dataset of
more than 6000 users and almost 10 million tweets were downloaded, validated (to
detect legitimate accounts and to eliminate Twitter bot accounts) and pre-processed
(removing URLs, punctuation, etc.). Further, the accounts were manually labeled
(by a pool of four to five independent human judges), using two different labeling
techniques, as supporters of six distinct categories of Italian political parties,
ranging from extreme right to extreme left. After that, the profiles identified as
supporters of ideologically well-defined parties were used to train five different
classification algorithms (SVM, Linear Regression, SGD, Random Forest, XGB), to
assess the political tendency of people labeled as “Movimento 5 Stelle”1 electorate.
In order to use these Machine Learning methodologies, the authors used the TF-
IDF (chap.4.5.1) to represent tweets numerically, analyzing characteristics and
relations between the words. When predicting left-right association, the researchers
were able to reach an accuracy of up 93%. The outcome of the “Movimento 5
Stelle” voters labeling showed a subdivision in political inclination as in Figure 2.4.
This analysis showed that the most frequent words used by the left-wing supporters

Figure 2.4: Agreement of the tested models on M5S supporters, taken from [16]

in their Tweets are referred to the opposite parties and vice versa. This result

1An Italian political party whose inclination towards the left-right line is ambiguous.

15

Related Literature

reflect the idea that people generally tend to blame the ideas of the out-parties
rather than discuss the ideas on the big political topics of the party they support.

2.2 Anomaly Detection in Online Social Net-
works

In the last years, many researchers have exploited anomaly detection techniques in
several research areas, especially for data mining, including Online Social Networks
(OSNs). The scholars have adopted different methodologies of classical literature
to catch anomalies in a wide range of applications, generally to protect users’
security and privacy. Moreover, OSNs make easy the spread of irregular activities,
dissemination of fake news, disinformation (sec. 2.1 [13]), rumours, spam, and
malicious links (phishing). Therefore, detection of anomalies is an important data
analysis field.

The authors of the work by Rahman et al. [17], developed a hybrid anomaly
detection system (DT-SVMNB), to classify Facebook legitimate and anomalous
users, that combined three Machine Learning algorithms in cascade: a Decision
Tree, a Support Vector Machine (SVM) and a Naïve Bayesian Classifier (NBC).
Abnormal messages have negative effects on the society, such as cyberbullying, and,
therefore, the final aim of the researchers was to detect abnormal users identifying
the potential suicidal ones. To train the proposed model, the researchers extracted
some unique features from two types of dataset, synthetic and real: users’ profile-
based features, including the behavioral changes and the basic information of a user,
like the total number of friends and the number of followers, and content-based
features, concerning unexpected parts of the comments, status and posts, like the
number of negative emoticon symbols per day, the frequency of money words (often
anomalous users aim at commercial intent), the hashtags, the number of likes, the
number of URLs (to detect advertise contents), the number of sharings (to identify
spammers), and others. The proposed anomaly detection framework (Fig. 2.5)
consisted of three steps, corresponding to the chosen three Machine Learning
algorithms: the first phase consisted in data pre-processing and sampling behaviors,
to train the C5.0, and afterwards, using the algorithm to classify the users into
“normal” and “abnormal”: the algorithm made a decision based on the feature
value at each level of the constructed tree; in the second phase, the anomalous
users previously extracted, are further classified by SVM into “disappointed” and
“happy” users; in the third and final phase, the users labeled as “disappointed” are
used to train the NBC, to find out the vulnerable ones, in particular classifying
them into suicidal and not suicidal (based on a dictionary feature). A performance
analysis on the results, based on a calculation of the false positive and true positive
rates used to compute accuracy, precision and recall, showed that the authors were

16

Related Literature

able to reach an accuracy of 98%, proving the effectiveness of the system.

Figure 2.5: Proposed framework for anomaly detection, taken from [17]

The work by Miz et al. [18], instead, is not really focused on OSNs specifically,
but it is more related to the web in general. In any case, the results can be applied
also to the OSNs’ environment, and they are interesting to present. In this research,
a scalable unsupervised algorithm, with a distributed implementation, is proposed
to detect outliers in dynamic graphs, defining an anomaly as a localized abnormal
collective behavior of users in a group (cluster) of nodes, during a certain period
of time. In other words, an anomaly was an anomalous spike/pattern in the time
evolution of the networks, which, as the paper shows, was generally triggered by
real-world events. The authors used the Hopfield network model of artificial memory,
with the Hebbian learning rule, to combine the network and time information, and
they applied this approach to two spatio-temporal dataset: Enron Email dataset
January 1999 to July 2002, and Wikipedia page views from September 2014 to
April 2015. Through the experiments, the researchers transformed the datasets: for
each event or anomaly detected, the proposed model provided a rich and complete
spatio-temporal description, which was a group of interconnected nodes (spatial
information), where each node had a time series signal (indicating the time when
the anomaly occurred) as attribute (temporal information). Therefore, the Enron
Email dataset became a temporal network where nodes corresponded to email
addresses of employees and they were connected by an edge if employees exchanged
an email, and the number of emails sent per day by each employee as the temporal
attribute of the nodes. Wikipedia English articles also underwent a transformation,

17

Related Literature

based on the static Wikipedia hyperlinks network1 and user visit counts per page
per hour, as a node temporal attribute. While highlighting anomalies and extracting
the features from the datasets, nodes with similar behavior had a major connection
weight, while, to reduce the amount of data, disconnected nodes and nodes with no
potential anomaly were pruned in advance. To validate the results, the researchers
verified the accuracy of the found anomalous events for the Wikipedia dataset
comparing them with the trending topics extracted from Google Trends2, while
the Enron email dataset contained already ground truth and did not need further
verifications. The outcomes showed that this approach was effectively able to
analyze the sources which caused the spotted anomalies.

2.3 Clustering in Online Social Networks
An Online Social Network (OSN) community can be defined as a set of users (nodes)
who interact with each other and participate in some discussions.
The study of the dynamic interactions among these nodes, the period and the way
in which such interactions increased or decreased, can provide relevant knowledge
about the current events, human behavior and topics of discussion. In the Online
Social Network Analysis (SNA), detecting groups of strongly connected nodes
and their relations clustering them into communities, may also help to detect, for
instance, insider threats, spreading news or rumor in the society, employee attitude,
to design target marketing schemes, to identify terrorist cells, or to recognize rivalry
interests in social activities. For all these reasons, the problem of clustering of
OSNs data has gained a great interest in research, especially in the recent years.
The following subsections and arguments are all related with each other, so the
separation of the works is not clear-cut.

2.3.1 Clustering of people
A more generic work is the one by Hajeer et al. [19], where a Genetic Algorithm
(GA) is used for Online Social Network Analysis (SNA). Such algorithm exploits
biological process as a model, and it was used by the authors in OSNs data to find
dense clusters having multi-valued edges, indicating a single user (node) engaged
in more than one discussion, and using an edge discharge method based on the
context of discussions. They also presented the definition of “Node of Attraction”
(NoA), representing the most active node in a network community, and identified as
the source of a post/communication which engages other users (nodes) to create a

1Each article possibly contains a reference to other articles in the form of hyperlinks.
2https://trends.google.com/trends

18

https://trends.google.com/trends

Related Literature

cluster. GA was performed on two distinct dataset, a synthetic one and a real-world
one (Gnutella Peer to Peer Network, downloaded from the Stanford Large Network
Dataset Collection, containing almost 21 thousand edges with a random value
associated with each edge), also changing some attribute values during the run, and
each obtained “chromosome” represented groups or clusters. From the results, it
was observed that the GA was effectively able to form clusters corresponding to each
discussion groups, and that some nodes, defined as “linkage nodes”, connected two
or more independent clusters. These nodes were useful in analyzing the relations
between different discussion groups or topics.

Another work related to the clustering of users in OSNs, is the paper by Singh
et al. [20], which has some analogies with this thesis project. The final aim of
the authors was clustering Twitter users exploiting textual similarity among their
tweets. This kind of analysis gives information about the words that are frequently
used in a group of people. For the extraction of the data, Tweepy package of
Twitter API was used, and afterwards the obtained data were pre-processed: words
which contained unnecessary information (stop-words) were removed using Lucene1,
then the text was stemmed2 to reduce inflected (or derived) words, using the same
library as the previous step, then lexical analysis was done using the WordNet3

lexical database of English to group nouns, verbs, adjectives and adverbs into
sets of cognitive synonyms (synsets). At this point, the researchers calculated the
strength of each couple of users (the result was a symmetric matrix), according to
the following rules: strength between two users must be directly proportional to the
number of common words between them, inversely proportional to the total number
of words used by both the users, and inversely proportional to the difference of
the total number of words used by them. Explaining better the last rule, strength
should decrease as more frequently the user post a tweet, because the chances
of there being textual similarities between the two persons increased, and also
with the difference between the occurrences of a word. This approach was applied
to two datasets:a “dummy” dataset consisting of 40 nodes and two clusters, and
the “real” dataset with 77 nodes. Spectral Clustering, based on the unnormalized
graph Laplacian matrix4, was used to transform the source data into a vector space,
and then apply the K-Means algorithm in the same area. From the results it was
observed that both simple K-Means and Spectral Clustering algorithm gave almost
equal outputs, coherent with the expected outcomes, but the computation cost of

1https://lucene.apache.org/core
2Stemming: the process of reducing words to their root form.
3https://wordnet.princeton.edu
4It is a matrix representation of a graph which can be used to find several useful properties

of the graph, as the number of its spanning trees.

19

https://lucene.apache.org/core
https://wordnet.princeton.edu

Related Literature

Spectral Clustering for large datasets is very high.

2.3.2 Clustering of posts
The work by Williams et al. [21] focused the attention on topical clustering of
Twitter posts, because many people rely on micro-blogging platforms such as
Twitter for knowledge of major events. In this article, two approaches for the
topical clustering are compared and applied to two different datasets, to discover
the subjects of the users’ discussions analyzing the content of tweets. The two
analyzed datasets were human-labeled in the contained topics, and they were
the following: the Elections dataset, consisting of almost 525 thousand tweets
taken from the November 2012, U.S. presidential election, and the Rumors and
Truths dataset, consisting of almost 42 thousand tweets concerning various topics.
The first approach was GeoContext, a tool to compute the similarity between
posts based on semantic text analysis, in contrast with Latent Dirichlet Allocation
(LDA), a commonly used topic modeling algorithm that determines topics based
on words that appear together frequently. The limitation of the existing methods
of topics discovery is the fact they mainly treat all words in the text as having
the same value, while GeoContext extracts only terms that are relevant, creating
topics ranking words on the basis of the relevance to the search criteria and to the
tweet. Moreover, GeoContext works dynamically, does not remove stop-words and
does not need training or a prior indication on a fixed number of topics, unlike
LDA. To extract significant words from a tweet, GeoContext utilizes two kinds
of APIs: AlchemyAPI’s Concept Tagging, which abstracts the input text into
higher-level concepts, and Keyword Extraction API, which extracts relevant and
meaningful words. Afterwords, the algorithm associates each obtained term with a
relevance score and each couple of tweets with a similarity score, clustering together
the tweets with a high value of such score (essentially indicating the semantic
correlation between tweets). The latter score is calculated first by checking whether
the tweets have any hashtags in common and, if not, performing the same test
on the extracted concepts and keywords. To evaluate the resulting discovered
topics, the authors used three metrics: topic recall, term precision, and term recall
(Fig. 2.6). It was finally determined that GeoContext had higher term precision
and topic recall metrics, it was able to identify more ground truth topics, to create
more topics that had more related terms and that contain the terms from the
ground truth topics, than LDA.

2.3.3 Topic Extraction and Event Detection
Newer research took aim at applying topic models to posts streams from social
media platforms, because discovering topics within Online Social Networks (OSNs)

20

Related Literature

Figure 2.6: Metrics across all time-slots, taken from [21]

can help, for instance, in advising content to users based on their interests or
in finding major events and occurrences around the world, often before they are
reported by journals or other forms of classical media outlets.

The work by Prangnawarat et al. [22] proposes to exploit heterogeneous data
concerning the relations among users, posts, and concepts extracted from the post
contents, to represent the OSN with some graph based models, with the final aim
of clustering the posts by different topics and events. The introduced approach
modelled the Twitter network in two different types of networks: the User-Tweet
(U-T) Model, a bilateral directed weighted graph between users and tweets, and the
User-Tweet-Concept (U-T-C) Model, which extends the former type of network by
adding concepts (hashtags, or named entities from Tweet texts, or both) from the
tweets’ content. Given the graph, after filtering out its small connected components,
and the number of clusters as input, the authors used the RankClus algorithm,
which provided both clustering and ranking of the tweets (Hyperlink-Induced Topic
Search algorithm was used as the ranking function). The model was applied to two
different datasets, respectively containing the data descripted in Table 2.1. From
the results, in both datsets the same trend were observable, showing that there
were still various small connected components that did not interact with the others
in the networks, but also discussions among many users. It was also found that
taking only top ranked tweets in each clusters, improved the outcomes since much

21

Related Literature

Total Users Total Tweets Background Tweets
Dataset1 19,127 15,461 9,640
Dataset2 108,770 98,065 92,244

Table 2.1: Datasets from (McMinn, Moshfeghi, and Jose 2013), which proposed
a Twitter data corpus, and Wikipedia Current Events Portal to generate a set of
Twitter events; statistics taken from [22]

of the noise was removed. The events could be classified into two categories: Local
Events, occurred in local areas or in specific user communities, and Global Events,
discussed by different communities, even those which did not interact with each
other. RankClus algorithm could not capture global events where users were not
related, resulting in tweets from the same event assigned to different separated
clusters, but in any case using U-T-C models could connect data together more
than using just the U-T models (Fig. 2.7).

Figure 2.7: U-T-C network: tweets are coloured according to the events in the
dataset, users are coloured in white and concepts are coloured in black, taken
from [22]

Following this trend, in the same area the work by Shi et al. [23] locates itself,
which proposes a user-interest event-evolution model, named the HEE (Hot Event
Evolution) model, using the data collected from Twitter through its APIs (almost
127 thousand posts) during eight days period among December 2015 and January
2016, to study the changes in the users’ interests during the evolution of salient
events. More specifically, the authors used a series of algorithms in cascade: a hot
event automatic filtering algorithm to remove the influence of general events, an

22

Related Literature

automatic topic clustering algorithm to group all short texts with similar topics
into clusters, a user-interest model, to combine all the texts in each cluster to
create a long unique document, solving the problem of sparse data and improving
the determination of the global topic, and, finally, a detection method, based on
the cosine similarity measure, to study relatedness between events, detecting the
development of such events. The results of the experiments confirmed the efficiency
and accuracy of the proposed model for both event detection, providing richer
information for the community structure of the detected events, and user interest
discovery, during the evolution of significant occurrences. The outcomes were
validated and evaluated by comparing them against traditional latent semantic
analysis algorithms (as LDA).

Another work, that goes in the direction of Topic Modelling Analysis and needs
to be mentioned, is the one by Liu and Jansson [24], which explores an Instagram
dataset, by the Digital Georgraphy Lab at University of Helsinki, containing posts
and comments of the Helsinki region during three months (June-August 2016),
to capture overall English topics and their popularity on the OSN. The data was
prior cleaned and pre-processed by tokenization and stop-words, special symbols
and less than three characters words removal. Afterwords, the researchers applied
LDA modelling methods to the English corpus, comparing the analyses with both
posts and comments included, against posts data only, and also understanding the
effects of hashtags by including/excluding them. The results showed that it would
be safer to include comments for analysis and that eliminating the hash sign (#)
from hashtags not only makes the outcome content more coherent but also less
redundant in topic terms. It seemed, in fact, that the hashtag sign had the only
effect of splitting the words extracted from the analysis into: one topic containing
only words, one topic contains only hashtags, and the third topic a mixture of the
previous ones. Moreover, setting a large number of topics in the input parameters
of LDA, generated many overlapping topics.

2.4 Previous publications by our research group
The study for this thesis project derives from the wider work on Online Social
Networks (OSNs) carried out by the research group SmartData@Polito1; this center
focuses on Big Data technologies, Data Science (from data management, to data
modeling, analytics, and engineering), and Machine Learning methodologies applied
to several domains of knowledge, finding solutions for both theoretical problems
and helping companies toward applications.

An initial work of Data Analytics applied to OSNs is the study by Trevisan

1https://smartdata.polito.it

23

https://smartdata.polito.it

Related Literature

et al. [25]: a first research regarding how people behaved and interacted with
politicians and personalities on Instagram before the European Elections of May
2019. A custom crawler was used to collect the data used for the analyses: it
downloaded and stored data and meta-data about the profiles of top public Italian
figures (i.e. influencers), the related activities (i.e. their posts) and the interactions
(i.e. users’ likes and comments in the first 24 hours after posting time), at the
turn of two months. The study focuses on checking if interactions across political
figures follow general patterns, and if there are any differences with those ones
across profiles of different categories of influencers, such as music, sport and show
entertainment. The paper provides also a characterisation of the so-called mentions1,
analyzed to quantify interactions among commenters, and the related reactions,
subdividing them into four categories: answered/unanswered first mention and
solicited/unsolicited reply2. The results suggested that comments to politicians’
posts come from a small group of users that actively participate in discussions.
These comments take place for longer time periods, and they are more numerous
and lengthier. Moreover, users rarely mention other people when commenting
politicians’ posts, compared to the posts of other categories of influencers, but
these comments attract a large number of replies, most of which not explicitly
solicited. This means that users are not dragged into the discussion, but they
reply autonomously after reading the previous interactions, possibly with the aim
of influencing the online political debate. Differences among profiles of different
parties were also witnessed. It is then clear that interactions with political and
other categories posts were markedly different at both quantitative and qualitative
levels.

Another paper related to politics and OSNs is the one provided by Ferreira et
al. [26], in which the researchers’ goal was to study communities of co-commenters3

to reveal characteristics and dynamics of interactions on the Instagram environment,
to highlight common trends as well as particularities, the level of engagement and
coordination. To this extent, a null model was designed to extract the backbones of
the interaction networks, to obtain salient interactions between commenters while
removing random occasional interactions, and, using that, identify communities
through the Louvain algorithm. The analysis was performed on a dataset crawled
from Instagram, containing the activity of several public political (politicians and
political parties) and general influencers’ profiles (the latter used as a control
group), during the electoral periods of Italy and Brazil, subdivided into week
intervals (ten weeks in total). Considering all the posts from homogeneous groups

1Comments containing explicit references to other users.
2A comment to previous comments.
3Commenters that comment on the same post.

24

Related Literature

of influencers that have been posted in the same week, each network was composed
in the following way: the nodes represented commenters, the edges represented
comments between any two commenters if both had commented on the same post
(co-commenters), weighted as the number of posts in which they both commented.
Then the researcher tried to study the similarity of profiles, clustering politicians on
the basis of their community structure, and the evolution over time of the backbone
of the graphs. Such methodology uncovered some interesting observations:
the backbones of commenter networks were split into fewer and better defined
communities, but these communities were weaker in politics than in general topics,
even if their participants were more numerous and more active; as expected,
political communities had a peak in in the online debate during the elections, while
in general topics they were persistent and consistent over time (Fig. 2.8); most
commenters with the highest activity levels remained coherently active over time
even if communities changed.

Figure 2.8: Temporal evolution in Italy of commenters in communities. Blue:
top 1%, Orange: top 5%, Green: all commenters, taken from [26]

A work more related to our contribution but not to OSNs, is the one by Soro
et al. [27], focused on comparing existing well-known algorithms and Machine
Learning (ML) techniques of anomaly detection, applied to banking transactions
data, in particular to time series of the transaction history of customers. The

25

Related Literature

analyzed events, over a period of two years, were: cyclic events, e.g. repeated peaks,
single isolated anomalies and salient changes in increasing or decreasing trends,
e.g. periodical spikes whose height does not show particular changes over time.
The dataset included 50 million transactions and about 500 thousand customers,
all from the customers’ point of view, and it was filtered by setting a monthly
threshold of minimum payments. Then the researchers set different time granularity
and studied the periodic phenomena, distinguishing the payments of salaries to
employees from those addressed to suppliers, by means of an internally developed
algorithm which labeled the transaction using the Random Forest algorithm and
a set of input features. After revealing periodicity, trends and cyclic behaviors
in per-customer time series with some threshold-based methods, in order to spot
isolated anomalous points, the researchers used various techniques. One of them
was the Auto Regressive Integrated Moving Average (ARIMA) model (sec. 4.2.1),
a technique to forecast time series. This approach provides a prediction of the
future values of a time series on the basis of its past values, so, after defining
an acceptable confidence interval for the predicted values, the points that fell
outside such confidence interval boundaries could be labeled as outliers. Among
the supervised techniques, other procedures were some driven heuristics driven by
the domain knowledge, such as the definition of threshold-based control criteria,
the Support Vector Regressor (with three different kernel functions), the Stochastic
Gradient Descent Regressor, the AdaBoost Regressor and the Random Forest
Regressor. Among the unsupervised techniques, instead, the researcher considered
four clustering algorithms (after evaluating some cluster quality measures to find
the best configuration parameters): K-Means (sec. 4.4.3), DBSCAN (sec. 4.4.2),
Hierarchical clustering and Isolation Forest (sec. 4.2.3). After that, they detected
the anomalies by choosing the points belonging to clusters containing less than
a threshold-number of minimum elements, or those recognized as noise points.
According to the performance metrics for the algorithms (Tables 2.2 and 2.3), the

ARIMA ADA DT RF SGDR Lin Poly RBF
Accuracy 0.75 0.88 0.89 0.73 0.51 0.61 0.28 0.54
Precision 0.06 0.19 0.18 0.14 0.08 0.11 0.01 0.03
Recall 1 0.89 0.89 0.89 0.4 0.58 0.79 0.88

Table 2.2: ARIMA and Supervised algorithms scores, taken from [27]

DBScan Agglomerative Isolation K-Means
Accuracy 0.99 0.98 0.97 0.99
Precision 0.52 0.51 0.19 0.77
Recall 0.63 0.62 0.48 0.8

Table 2.3: Unsupervised algorithms scores, taken from [27]

26

Related Literature

found results showed that the Support Vector-based algorithms and the Stochastic
Gradient Descent Regressor were unreliable, as they had a small recall (they were
not good at detecting true anomalies) and presented a very low precision with a
large number of false positives. The unsupervised models showed instead a better
average behavior, as a consequence of the fact that generally they flag anomalies
only if their classification is very sure, leading them to give a better precision.

The COVID-19 pandemic profoundly changed economy, culture, politics, but,
above all, the society and, as a consequence, it was important and interesting
to study its impact on OSNs. The study by Trevisan et al. [28] was focused on
understanding the effects on social life of the total lockdown imposed during the
first six months of the year 2020, offline but also online, because OSNs represented
an alternative solution to physical meetings. In particular, the work analyzes
the changes in Italian influencers’ trends of activity patterns, interactions, and
engagement in discussions about specific topics on Instagram and Facebook during
this historical event. The dataset was built through custom web crawlers and
consisted of Instagram and Facebook posts of 639 popular influencers, previously
irreversibly anonymized. Then there was a step of data augmentation deriving
from each comment its psycho linguistic properties (LIWC) and extracting its
topic (Fig.2.9). Some interesting variations between the periods before, during

Figure 2.9: Data collection and analysis methods, taken from [28]

and after the lockdown and distinguishing the two social networks were observed:
Facebook showed an increment in the number of posts, comments and likes during
the lockdown while, on the other hand, Instagram was characterized by a flat trend
in terms of posts and comments, while the number of likes decreased significantly.
Moreover, the prohibition on social activities during first weeks of lockdown had
effects on the hourly patterns: in both social applications an increase in the morning
and in the weekend activities and a decrease in the early afternoon and in the
evening were witnessed. In the same period, as expected, the researchers observed
also an increase in popularity of comments about negative sensations such as
anxiety and inhibition, people began to discuss about the health emergency and

27

Related Literature

personal life, such as unemployment. Analysing the online debate, it was observed
that people were engaged less in discussion, especially for politicians, even if they
had obtained a great number of new subscribers during those weeks.

Vassio et al. [29] conducted research on how influencer postings attract inter-
actions (number of likes or reactions) and how content popularity increases over
time, as well as defining the behavior of influencers and followers over time and
the progression of interactions across time, from their peak to the conclusion of a
post-life. The researchers looked into the activities of Italian influencers and their
followers on Facebook and Instagram for more than five years (from 2016 to 2021).
The following are some of the key findings: both influencer and user activity follow
a consistent daily pattern, although with a different form; the posts’ inter-arrival
time has a long-tailed distribution that is reasonably adapted by a log-normal
distribution; on average, 50% of user interactions occur within the first 4 hours
after content creation on Facebook and after 2 hours on Instagram, and the number
of user interactions grows faster on Instagram than on Facebook (however after
about 30 hours, the two curves converge); influencers’ posts have a short life-span,
with exponential temporal decay of the arrival-rate of interactions, lasting between
20 and 50 hours (after which they stop attracting interactions), however the decay
rate varies greatly from post to post and depending on the OSN in question; the
number of interactions obtained during the first hour or even 15 minutes might
give a good indication of the content’s popularity (the freshness of the post has
a great impact on its attractiveness); because the generation of new posts by the
same influencer gradually fades the attractiveness of the original post, it seems
that followers tend to focus their attention at the top of the timeline, and therefore
the fraction of total interactions obtained in a given time interval is related to the
number of posts just published in the same interval. Furthermore, the findings
revealed that, independent of the online platform, follower and influencer actions
follow similar patterns throughout the two OSNs studied: the activities of followers
and influencers diminish overnight, with two peaks during the day, while followers
are more engaged in the late evening than influencers. Moreover, Facebook posts
have a longer engagement time than Instagram posts: the predicted interaction
time for Facebook is 15 hours against 11 hours for Instagram.

One more work to be cited is the one by Bertone et al. [30], demonstrating
that the OSNs ecosystem, in which prominent influencers struggle to recruit new
followers in order to grow their visibility (value), has parallels to the stock exchange
market, where investors choose to purchase a stock, and companies with a large
number of investors rise in value. Influencers may be viewed in this light as stocks
having a market value that can be grown, as measured by the number of followers.
Regular users operate as private investors, following (buying) influencers depending
on their personal tastes and data gathered from other sources. This study will
use statistical methods from the financial industry to examine the dynamics of

28

Related Literature

influencers on OSNs, assisting in the development of decision support systems to
assist influencers and advertisers in accurately estimating short-term trends.
The data was downloaded using the CrowdTangle tool (chap. 3) and covered a period
of more than three years, from November 2017 to March 2021, and included 60
Italian public figures who were active on Instagram (obtained through the analytics
platform www.hypeauditor.com) and fit into three categories: singers/musicians,
athletes, and VIPs. The Google Trends API was used to download historical trends
for the set of influencers and collect the Google Trends Search Volume Index (SVI),
a monthly granularity time series representing search queries (the name/stage of
each influencer was used as a search keyword) normalized over the highest value
observed in the considered period. Bollinger bands, which are normally employed
in decision support system applications to provide traders suggestions about stock
transactions, might assist influencers, advertisers, and social platforms in the
OSNs area shape their tactics and compare entirely distinct time measurements
dynamically. This approach demonstrated how the short-term trends derived by
Bollinger bands for Instagram influencers’ followers were similar to those found in
external sources, such as Google Trends, similar to what academics have discovered
for the stock market. The researchers also discovered that influencers with less
followers have the most well-coordinated short-term trends, since they are more
likely to get new followers than those with a large following.

2.5 Contribution of This Work

This work differs from those proposed in this chapter (Related Literature) as it
combines Anomaly Detection with Clustering of posts (not influencers). The
application of Anomaly Detection algorithms is aimed at identifying anomalous
posts, i.e. posts that differ greatly in the number of likes/comments received
compared to the expected engagement, while clustering is not properly aimed at
identification of topics within the OSN, but rather to group the posts concerning
the same topic, then manually identifying and separating the groups of posts
that have received a number of anomalous reactions to causes of external events,
exogenous to the OSN. For this purpose, 4 classic Anomaly Detection methods and
4 state-of-the-art algorithms for clustering are proposed, identifying the best pair
of methods through cohesion and coherence measures.
To this end, in chapter 3 a description of the raw dataset and its characteristics
provides an overview of the data used to perform the analyses. In chapter 4 we
define the Anomaly Detection and Clustering problems, providing an overview
of their main characteristics. Furthermore, we illustrate both the transformation
pipeline to modify the data according to our needs, and the theory of all the
techniques used to produce, from the raw datapoints, the solution to our problem.

29

www.hypeauditor.com

Related Literature

In chapter 5, on the other hand, the data are transformed and pre-processed
further, in order to extract the necessary features for the analyzes and remove all
the noise possible. Finally, the performances of the various methods are presented
and compared in chapter 6. Being an unsupervised problem (it is not possible to
identify a priori the topics to which the posts “belong”), a manual inspection of
the results is necessary to verify the content.

30

Chapter 3

The Instagram Post Dataset

In order to soddisfy the purposes of this research, a big archive of social media
data was needed. While Twitter’s public data is accessible through its APIs, it
can be much more difficult to access platforms such as Facebook and Instagram
for scholars. For this reason, our choice fell on the most easily attainable platform
for managing three of the most important social networks - Facebook, Instagram
and Reddit - and has free access for journalists, academics and researchers. More
specifically, the data was downloaded from CrowdTangle1, a Meta-owned tool
that tracks interactions on public content from Facebook pages and groups, verified
profiles, Instagram accounts, and subreddits. It does not include paid ads unless
those ads began as organic, non-paid posts that were subsequently “boosted” using
Facebook’s advertising tools. It also does not include activity on private accounts,
or posts made visible only to specific groups of followers.
In particular, CrowdTangle tracks influential public accounts and groups across
Facebook, Instagram, and Reddit, including accounts like politicians, celebrities,
sports teams, journalists, media and publishers, public figures, and others. The
purpose of the platform is giving greater accuracy and transparency into what’s
happening on Online Social Networks (OSNs) to help researchers in their activities,
such as monitoring a given topic looking for combinations of words and phrases
to discover trends and patterns, tracking the activity of public accounts and
communities, studying which accounts post the most and who gets the most
interactions, i.e. reactions, comments and shares, on specific issues, monitoring
performance and identify emerging stories.

1www.crowdtangle.com

31

www.crowdtangle.com

The Instagram Post Dataset

3.1 Selection of the Social Media Platform
Online Social Networks’ (OSNs) data, collected by platforms such as Twitter, has
enabled a new field of “social sensing”, where participatory user-generated content
has been harnessed to identify trending events occurring in the real offline world.
In contrast to mainly textual channels, the choice for this research fell on the social
image sharing platform Instagram (Introduction, sec. 1.2.4), to study how this
social sensing can exploit multimodal multimedia contents.
The choice to carry out our research on Instagram was made precisely for the
characteristics of the aforementioned OSN: it is, in fact, a social network strongly
aimed at creating public content accessible to anyone, and consequently easily
accessible by real common people, and the features to “measure” the popularity of
the posts, and thus detect the anomalous ones, are few and easily identifiable, such
as the number of reactions (i.e. likes and comments).
Facebook, for example, provides on the contrary different types of reactions with
different corresponding meanings, like the “love” or “sad” or “angry” reactions,
which could make the analysis more difficult.

3.2 Characterization of the Dataset
The dataset was retrieved employing the CrowdTangle public APIs and reporting
the activities of the top ranked 1611 Italian influencers, over the course of
six years, from 1 January 2015 to 31 December 2020 (313 weeks): the
result of this collection was generating a dataset of 2 036 966 posts in total.
The influencers were selected through the portal “www.influenceritalia.it”, a
network platform which aims at simplifying the choice of the right influencer, for
all brands and communication agencies that want to invest in digital campaigns
and integrated communication activities, or at helping influencers who want to
increase their popularity and visibility. The platform contains politicians, VIPs,
institutions and football teams.
The dataset is composed of data objects that represent the posts of the influencers,
published in the period mentioned above, and are characterized by numerous and
various attributes contained in each record (for every post), that can be subdivided
into the following categories:

• Account attributes: the information describing the influencer account that
published the post, at the time of the sampling by CrowdTangle. They include
the account handle, the name, the IDs used by the platform, the subscribers
count, the URL of the profile, an information about the verification of the
account and some other metrics;

32

www.influenceritalia.it

The Instagram Post Dataset

• Sponsor attributes: if the post contains some branded content, these
characteristics report the descriptive aspects (similar to the previous ones) of
the sponsor account;

• User-regulated post attributes: they include features depending on the
user’s intention at the creation time of the post, such as the media type (photo,
album, video, IGTV), the publication date, the text in the description.

• Platform-regulated post attributes: these features are generated auto-
matically by the platform when creating the post, such as the history of the
features of the previous posts published by the influencer, the URL to reach
the post, and the expected amount of reactions (likes and comments) that the
post will obtain;

• Popularity attributes: the statistics defining the post’s success in the sense
of popularity (reactions actually obtained), which are not under the control of
the user, including also a score, computed by CrowdTangle by means of some
post’s analytics, to measure the effectiveness of the post’s outcome in terms
of interactions received.

3.3 Statistical Analysis and Data Cleaning

The dataset, subdivided as explained in sec. 3.2, can be therefore characterized
from different points of view, by analyzing the statistics of the various features
present in each record (post).
Before proceeding with the analyses, it is important to specify some preliminary
considerations.
After a first check on the correctness of the data, it turned out that a noticeable
part of the dataset was composed of posts created by influencers whose followers
count was equal to zero. Sampling and verifying their actual number of followers
led to the deduction that this event was due to an error, probably caused by
the fact that these users started being tracked after the “corrupt” activity and,
consequently, some data was not registered correctly. Due to the size of the dataset
and difficulties in restoring the correct metrics, the decision was made to remove
all those posts whose follower count was zero.
The purged dataset, containing 1 396 influencers and 1 400 697 posts in total
(215 influencers and 636 269 posts deleted from the original data), was used for all
the analyses presented and illustrated in the following paragraphs.

33

The Instagram Post Dataset

3.3.1 Followers Characterization
One of the first analyses was to verify the distribution of influencers’ followers
at the time of CrowdTangle’s sampling. In the following table (Table 3.1), the
metrics “Posts Count” and “Influencers Count” are added to the general statistics
for completeness.

Complete dataset Purged dataset
Posts Count 2 036 966 1 400 697
Influencers Count 1 611 1 396
Mean 682 862 993 053.2
Standard Deviation 1 917 473.7 2 244 731.5
Minimum 0 143
Maximum 45 926 689 45 926 689

Table 3.1: Statistical description of the followers distribution

Figure 3.1: ECDF of influencers’ followers

Plotting the Empirical Cumulative Distribution Function (ECDF) of followers,
which appears Gaussian for the logarithmic scale of the abscissa, as shown in
Figure 3.1, it is noticeable that it can be approximated to a log-normal distribution
with a peak of half a million and the vast majority less than a million: a predictable
event since it’s easy to imagine that only a handful of influencer followers can reach
a large audience. Looking at the curve regarding the complete dataset, consistent

34

The Instagram Post Dataset

with the numerical results, it can be seen that about 30 percent of the posts were
published by influencers who at that time appeared to have 0 followers.
The figure below (Fig. 3.2) shows instead the ECDF distribution of the number of
followers for each class of influencers (for the purged dataset), which have been
subdivided by following the schema illustrated in paragraph 1.2.5. In particular,

Mega inf. Macro inf. Micro inf. Nano inf.
Posts Count 404 284 974 004 22 358 51
Influencers Count 174 1 160 61 1
Mean 2 343 187.7 453 720.2 77 282 5 219.3
Standard Deviation 3 826 194.4 320 629.4 44 058.4 2 679.6
Minimum 44 651 143 2 596 1 110
Maximum 45 926 689 2 238 894 320 012 11 265

Table 3.2: Statistical description of the followers distribution for each class of
influencers

Figure 3.2: ECDF of influencers’ followers for each class of influencers

initially we calculated the average of the number of followers for each influencer
and then, on the basis of this average, we carried out the division into classes,
otherwise some influencers could have been part of several classes at the same
time if, during the 6 years analyzed, they had passed from one class to another for
having their number of followers increased / decreased.
From the plot it is possible to identify that all the curves are approximate, also

35

The Instagram Post Dataset

in this case, to a log-normal distribution, respectively, with a peak of 1 million
followers and the majority less than 5 million for mega influencers, a peak of 500
thousand followers and a majority of less than one million for macro influencers, a
peak of 60 thousand followers and a majority of less than 100 thousand for micro
influencers, and a peak of 5 thousand followers and a majority of less than 10
thousand for nano influencers. Naturally, the distributions reflect the split with
nano influencers having the fewest number of followers, as was foreseeable by the
way the division into classes was performed.

3.3.2 Reactions Characterization
The following essential parameters to analyze were the distribution of the number
of reactions, i.e. likes (passive attention) and comments (active attention), to the
published posts, to measure “influence” by inspecting engagement levels on a users’
posts [12].

Likes Comments
Mean 32 568.1 362.1
Median 13 650 110
Standard Deviation 63 900.7 12 894.7
Minimum 0 0
Maximum 4 083 006 15 169 309

Table 3.3: Statistical description of the reactions (likes and comments) distribution

(a) ECDF of likes (b) ECDF of comments

Figure 3.3: ECDFs of reactions to posts

36

The Instagram Post Dataset

By looking the Table 3.3, it is noticeable that also in the case of reactions, some
posts seem to have 0 likes and comments, but they have not been removed from
the dataset. Fig. 3.3, presents the ECDFs of reactions to influencers’ posts: almost
all posts have a smaller amount of comments (the majority is in the range between
50 and 1 000 comments) compared to the number of likes (the majority is in the
range between 5 000 and 100 000 likes).

By performing again the subdivision of influencers in classes, the results in
Table 3.4 and in the ECDFs plots in Fig. 3.4, seem to show that the various
categories exhibit broadly similar patterns, with mega influencers gaining the most
and nano influencers gaining the fewest engagement in absolute terms. Also the
same trend seen in the general ECDF of reactions (Fig. 3.3), for the difference
between the number of likes and the amount of comments, is reflected in this plot.

Likes - Comments
Mega inf. Macro inf. Micro inf. Nano inf.

Mean 72 500.5 - 707.1 16 680.5 - 225.9 2 700.3 - 58.1 837.8 - 15.8
Std. Dev. 103 028.7 - 2 057.2 23 040 - 15 404.2 4 543.1 - 145.8 1 089.7 - 13.4
Min 0 - 0 0 - 0 0 - 0 156 - 0
Max 4 083 006 - 437 145 859 414 - 15 169 309 99 548 - 8 897 6 980 - 59

Table 3.4: Statistical description of the reactions (likes - comments) distribution
for each class of influencers

(a) ECDF of likes per class of influencers (b) ECDF of comments per class of influencers

Figure 3.4: ECDFs of reactions to posts for each class of influencers

37

The Instagram Post Dataset

The above analysis of absolute counts can provide a misleading perspective
as influencers with a large number of followers will obviously get higher reaction
counts. So, we performed a normalization of the comments count as a fraction of
the followers count, and plotted the results in Fig. 3.5.
In the statistical description in Table 3.5, some of the metrics for comments are
expressed in scientific notation for the sake of brevity and space, because the
numbers are very small due to the normalization.

Normalized Likes - Normalized Comments
Mega inf. Macro inf. Micro inf. Nano inf.

Mean 0.04 - 4.3e − 4 0.04 - 5.7e − 4 0.03 - 7.8e − 4 0.17 - 0.004
Std. Dev. 0.05 - 0.001 0.05 - 0.01 0.05 - 0.006 0.18 - 0.003
Minimum 0 - 0 0 - 0 0 - 0 0.02 - 0
Maximum 6.4 - 0.2 14.2 - 11 1.7 - 0.9 0.96 - 0.02

Table 3.5: Statistical description of the normalized number of reactions (likes -
comments) distribution for each class of influencers

In the ECDF plot, quite different trends are noticeable, with the nano influencers
getting the most engagement, but there are no further significant divergences
between the classes.

(a) ECDF of normalized number of likes per
class of influencers

(b) ECDF of normalized number of comments
per class of influencers

Figure 3.5: ECDFs of normalized number of reactions to posts for each class of
influencers

38

The Instagram Post Dataset

3.3.3 Textual Characterization
As previously specified, each data point has features that are measurable and
regulated directly by the influencer creating the post. Instagram users can fill the
post description, a short text of 2 200 characters, to depict and characterize the
content of the post, mention another user or a page, or attach some hashtags.
It is important to notice that, in the below representations, the Total Words field
includes also hashtags and mentions, but not the text contained in the posts’ media
(the image) because it is not properly part of the description. The Simple Words,
instead, exclude both hashtags and mentions, to obtain a more precise analysis.

Tot. Words Simple Words Hashtags Image Words Mentions
Mean 26.5 22.7 3.2 1.9 0.7
Std. Dev. 44.2 43.3 5.2 7.6 1.5
Minimum 0 0 0 0 0
Maximum 638 638 60 100 117

Table 3.6: Statistical description of the words distribution, divided by category,
for each post

Figure 3.6: ECDF of the post description metrics (caption-words, hashtags,
image-text and mentions)

After a quantitative analysis on the posts description, shown in Table 3.6 and in
the ECDF plotted in Figure 3.6, it is clear that the vast majority of posts contain
very few mentions, hashtags (which lately have been limited by Instagram to a

39

The Instagram Post Dataset

maximum of 30) and words in the image (90% of the posts contains media without
integrated text). This is a foreseeable result because of the nature of this type of
words, while the text length (number of Total Words), in general, shows a more
logarithmic trend.

Operating the usual division of influencers into classes, the results in Ta-
bles 3.7, 3.8 and 3.9, and in the ECDFs in Figure 3.7, show that there are minor
behavioral differences between the categories of influencers.

Tot. Words - Simple Words
Mega inf. Macro inf. Micro inf. Nano inf.

Mean 18.9 - 15.9 29.6 - 25.5 27.2 - 21.9 76.6 - 52.6
Std. Dev. 33.7 - 32.5 47.7 - 46.8 39.3 - 37.3 34 - 31
Minimum 0 - 0 0 - 0 0 - 0 6 - 3
Maximum 453 - 453 638 - 638 401 - 398 149 - 133

Table 3.7: Statistical description of the words distribution for each class of
influencers

Hashtags - Mentions
Mega inf. Macro inf. Micro inf. Nano inf.

Mean 2.5 - 0.5 3.4 - 0.7 4.4 - 0.9 23.7 - 0.3
Std. Dev. 3.5 - 0.1 5.7 - 1.6 6.2 - 1.9 9.1 - 0.6
Minimum 0 - 0 0 - 0 0 - 0 3 - 0
Maximum 50 - 115 60 - 117 33 - 64 30 - 2

Table 3.8: Statistical description of the hashtags and mentions distributions for
each class of influencers

Image Words
Mega inf. Macro inf. Micro inf. Nano inf.

Mean 2.2 1.8 0.7 0.7
Std. Dev. 7.7 7.6 4.2 3.7
Minimum 0 0 0 0
Maximum 100 100 97 26

Table 3.9: Statistical description of the post image-words distribution for each
class of influencers

In particular, the most important difference regards the nano influencers, which
stand out from the others for the number of simple words and, above all, hashtags.
Second, after them, are the micro influencers, who also seem to be the ones using
the most mentions. These results suggest that “smaller” influencers tend to write

40

The Instagram Post Dataset

more words than larger ones, possibly to create network effects with other similar
influencers (mentions) or to be more easily reachable by new followers (hashtags)
than already famous people, while there is no reason to publish media containing
more words.

(a) ECDF of number of simple words per class
of influencers

(b) ECDF of number of hashtags per class of
influencers

(c) ECDF of number of words in the post image
per class of influencers

(d) ECDF of number of mentions per class of
influencers

Figure 3.7: ECDFs of the post description metrics (caption-words, hashtags,
image-text and mentions) for each class of influencers

41

The Instagram Post Dataset

3.3.4 Time Features Characterization

Posting Frequency

Finally, we performed an analysis about the distribution of the number of posts
published over time (posting frequency), which provided some interesting insights.
From the histograms of frequencies illustrated in Figure 3.8, for the weekly and
monthly intervals, it is noticeable that the vast majority of influencers produce a
lower amount of posts, in particular much less than one per day.

(a) Weekly Posts

(b) Monthly Posts

Figure 3.8: Histograms of the posting frequencies for each class of influencers

42

The Instagram Post Dataset

Posting Trends

From the time series plotted in Figure 3.9, it is noticeable that the number of
published posts per week increases and decreases over years, with some very low
peaks in the last week of year 2016 and year 2020. Macro influencers are the most
numerous, so it is natural that they are also those with the highest number of posts
published per week. Another relevant detail concerns the nano influencers, which
apparently “appeared” (started to be tracked) only around the twentieth week of
the year 2020.

Figure 3.9: Posting trend over years for each class of influencers (time series)

3.3.5 Other Features
As already explained in sec. 1.2.4, when publishing a post, an influencer can decide
what kind of post to create, choosing from four possible types: photos, videos,
albums or IGTV.
Not surprisingly, as shown in Figure 3.10, the most published posts are those
containing a single photo, followed by videos, albums and finally IGTV. There are
no particular differences between the various classes of influencers, with the sole
exception of the nano influencers who have published more than 50% of the posts
in the form of videos, followed by albums, photos and then IGTV. In any case, it
should be remembered that their posts are just 51, so the numbers involved are
still very small.
For what concerns the media information, since there was no interest in extracting
the qualitative content of the images or their meaning, the extracted data was not
particularly complex or diverse. Beyond the type of the post, CrowdTangle saves

43

The Instagram Post Dataset

Figure 3.10: Histogram of the post types for each class of influencers: the heights
of the bars represent the percentage of posts, relative to the total number of posts
for each category of influencers, of the selected type

the text contained in the image, as previously said, the represented images/videos
and their dimensions (height and width).

As for sponsorship, it turned out that only 0.66% of posts (in total) are sponsored,
but more than 40.97% of influencer accounts have published at least one sponsored
post. The class of influencers with the highest (relative) percentage of sponsored
posts is the nano one, followed by the macro, mega and then the micro (Fig. 3.11).

Figure 3.11: Histogram of the relative percentage of sponsored posts for each
class of influencers

44

Chapter 4

Relevant Theory

In the following chapter, the theory relevant to this thesis project will be presented.
First, the Anomaly Detection problem will be presented in general terms, as a
methodology background. Afterwards, the various Anomaly Detection Methods
will be explored: an overview of the most commonly used techniques is provided,
describing all their characteristics. Subsequently, after a general presentation of the
clustering problem, the algorithms used (and compared) for grouping the obtained
results (the found anomalies) in clusters, will be defined. Finally, the approaches
used to pre-process data or to extract text-features from the data objects, useful
for the clustering methods, will be explained.

45

Relevant Theory

4.1 The Anomaly Detection Problem

4.1.1 Definitions
Anomalies are commonly defined as a significant divergence from some expected
(normal) behaviour. Some scholars defined anomalies, in computer science (data
mining), as “patterns in data that do not conform to a well defined notion of
normal behaviour” (Chandola et al. [31], 2009), or as “an observation (or subset
of observations) which appears to be inconsistent with the remainder of that set
of data” (Barnett and Lewis [32], 1984). From these definitions, it is then clear
that the determination of a “normal” pattern is a key aspect in order to find any
abnormal or unexpected behavior in a data instance, and, typically, it depends on
the specific problem, the target application domain and the analysis requirements.
Therefore, Anomaly Detection is the research field which aims at finding unex-
pected patterns in data [33], i.e. uncommon data points, events, and/or observations
which do not fit into any established model and differ significantly from the ma-
jority of the data. Machine Learning techniques are widely being used to exploit
and automate anomaly detection in various application domains to solve classical
problems in computer networks, e.g. detection of port scans and DDoS attacks
(Intrusion Detection), time series monitoring, fraud detection, fault detection,
image processing, event detection in sensor networks, system health monitoring,
or pre-processing to remove abnormal data (noise) from a dataset improving the
accuracy of the analyses results.

Figure 4.1: Different meanings of outliers in data

More specifically, in the literature, Novelty Detection, Outlier Detection and Rare
Event Detection are some of the related research fields that are commonly unified
together as Anomaly Detection. They all have similar definitions with some differ-
ences.
Outliers are values excluded from the residual samples, e.g. they are out of the
tolerable variable interval, or far from the norm (expected values). Rare Events
are commonly defined in the same way as outliers, with the only difference that
they embody events that usually occur rarely. Finally, Novelties represent a
(perpetual) behavioural variation of a data instance. Novelty Detection’s aim is
catching if a new sample can be defined as anomalous or not, comparing it to the
past history: the previously unobserved novel behavior-pattern could become the

46

Relevant Theory

new “normal” after the abnormal alteration stabilizes, and could be integrated into
the model of regular behavior.

4.1.2 Characterization of the Problem
Each anomaly detection problem can be characterized on the basis of various
aspects, on which the applicability of an algorithm depends: the kind of the input
data, the type of anomaly, the accessible labels for the learning stage and the
output format (Fig.4.2).

As explained above, the key challenge of Anomaly Detection is defining an

Figure 4.2: Characteristics and properties of Anomaly Detection

appropriate set of features, to be observed in order to differentiate regular and
anomalous behavior, but, to understand whether an algorithm is applicable, also the
nature of the input data, the relationship among instances and their attributes must
be taken into consideration. Point data refers to instances with no relationship, time
series are instances recorded over time and possibly linearly ordered as sequential
data, graph-based data refers to instances correlated by any other generic relatedness
criteria.
The anomalies themselves can be classified into three macro-categories (Fig.4.3),
independently on the type of data:

• Pointwise anomalies: isolated data objects (i.e. data points), also referred
to as global anomalies, that deviate from the norm in a dataset (Fig.4.3a).
Similarly are defined also local anomalies, which are not considered with
respect to the entire set of data, but only to their local close neighbors (e.g.

47

Relevant Theory

in a graph). In time series analysis pointwise outliers can be uni-variate or
multi-variate, depending on whether they affect one or more time-dependent
variables, respectively;

• Contextual anomalies: data instances that are considered anomalous in a
certain specific context but, possibly, would be labeled as normal if taken in
isolation (Fig.4.3b). An example may be temperature, which is considered as
abnormal or not depending on the time and location (contextual attributes,
that define the context of a data object) and on its characteristics, such as
temperature measure, humidity, etc. (behaviour attributes of a data instance);

• Collective anomalies: anomalies whose joint behavior is unusual, formed
by the collection of various data instances as a whole, which depict a different
pattern with respect to the entire dataset, while the individual data points
may not be anomalous (Fig.4.3c).

(a) Pointwise anomaly (b) Contextual anomaly (c) Collective anomaly

Figure 4.3: Examples of anomaly macro-categories, considering the time series of
a numeric attribute, taken from [33]

It is noticeable that point anomalies can occur in any type of dataset, collective
anomalies can occur only if data instances are related with each other with some
criteria, contextual anomalies can be detected if context information are available
in the data.
Another method of classification distincts anomalies into static, occurring with
respect to the rest of data ignoring the time factor, and dynamic, which arise
compared to the past behaviour. Anomalies can be further classified into: white
crow anomalies, which occur when a data point differs very significantly from other
observations, and in-disguise anomalies, considered as a hidden small deviation
from the normal measures [34] (Fig.4.4).

In addition, another important aspect to consider is related to the presence of
labels, which indicate the availability or not of some ground truth for recognizing

48

Relevant Theory

Figure 4.4: In-disguise and white crow anomalies

the data behavior, for allowing the usage of (supervised) algorithms that learn
anomalous templates from labeled datasets, and for validating the results. Therefore,
depending on the presence of this ground truth, there are three deriving manners
of defining an Anomaly Detection problem:

• Supervised: both normal and anomalous classes of data instances are known;

• Semi-supervised: only the regular behavior is known;

• Unsupervised: neither normal nor abnormal classes of instances are known.

After the application of the appropriate Anomaly Detection algorithm, the
forecasting results (output) could be reported in two different formats: a discrete
label indicating whether the test data instance is normal or anomalous, or an
anomaly score, defined on the basis of the nature of the problem (e.g. an arbitrary
measure of distance from the expected value for ordinary instances) and depending
on the magnitude to which that instance is considered an anomaly.

4.1.3 Anomalies in Online Social Networks
In Online Social Networks (OSNs) research, the study is centered on the interactions
between pairs of individuals, on the relationship between these interactions and the
attributes of the involved users, and on the effects of such interactions in the system.
Therefore, it is natural that OSNs can be viewed as a graphical structure with
vertices (nodes) and edges (links) representing the people and their interactions
respectively. This characteristic separates Anomaly Detection in OSNs from classic,
non-network based analyses.
In this context, other types of anomalies can be identified. One of these is named
horizontal anomaly, and it is based on the different data sources available: for
example, a same user may be present in different communities and may have similar
friends on different OSNs, but totally distinct kinds of friends for another social
network [34]. In addition, putting together the previous anomalies characterizations
(sec. 4.1.2) in such network environment, it is possible to distinguish the following

49

Relevant Theory

types of anomalies in OSNs, based on static/dynamic nature of network structure
and on information available in such structure [34][35]:

• Static unlabeled anomalies: the behavior of an individual or group of
people remains static, leading to anomalous network structures, and the
labels on vertices and edges (attributes) are ignored. Only the occurring of
an interaction is relevant, and, to this extent, it could be useful to make
hypothesis about the likelihood of interaction between pairs of users;

• Static labeled anomalies: the changes in the network structure together
with the labels, in combination, are taken into consideration for the definition
of an anomalous pattern. They are often used for spam detection;

• Dynamic unlabeled anomalies: interaction patterns that evolve over time,
so that the (dynamic) network structure at a certain time differs considerably
from that in previous time intervals. Anomaly Detection approaches for
general time series can be used in this case;

• Dynamic labeled anomalies: observed by considering labels of the vertices
and edges, the graph structure at fixed time passages and treating each of
them as for a static network;

It is noticeable that all OSNs are dynamic, but, in any case, usually they are
analyzed if they were static.
When it comes to OSNs, anomalies can also be classified based on [34]:

• Graphical properties and structural operations:

– Insertion: the presence of unexpected nodes or edges in the graph;

– Modification: the existence of unforeseen labels on nodes or edges;

– Deletion: the absence of expected nodes or edges;

• Interaction patterns in the structure:

– Near Stars/Cliques: the presence of totally disconnected (stars) or all
linked (cliques) peers;

– Heavy locality: an heavy weight around a particular zone or a community;

– Particular dominant edges: unusual heavy load at a certain node or edge,
with respect to the rest of the network;

50

Relevant Theory

4.1.4 Classical Approaches
A dataset/network can contain more than one type of anomaly. The above classifi-
cations are important because the most significant methods of Anomaly Detection,
applied in Data Mining and Social Network Analysis (SNA), are based on the kind
of anomaly to be detected. The most prominent method of subdivision of the main
approaches for Anomaly Detection discussed in the literature [34][33][31] is the
following.

Supervised Methods

Supervised methods model both normal and abnormal patterns. It involves Anomaly
Detection as a classification problem with data that has been pre-tagged, perhaps
manually by some experts, as normal, so that the remaining data is considered
abnormal, or, conversely, pre-labeled as anomalous, in such a way that the remaining
data is considered to be regular. These methods are based on the assumption that
anomalies are usually very less with respect to the number of normal data instances
(this assumption is common to many methodologies), and on considering more
important to detect precisely as many anomalies as possible than avoiding false
positives. The major problems are due to unbalanced class distributions, because
the training data contain far fewer anomalous items, compared to the number of
instances belonging to the normal class, and, in addition, obtaining detailed and
descriptive labels, especially for the anomaly class, is usually difficult.

Semi-supervised Methods

Semi-supervised methods are used when there are labels on the normal / abnormal
behavior of only a few data items, rather than for the whole dataset. More
specifically, generally they assume that the training data has labeled instances only
for the normal class and, not requiring labels for the anomaly class, they result
to be more widely applicable than supervised techniques. From the small amount
of labeled data, a classifier can be built, that constructs a model for normal data
instances and then attempts to label the unlabeled data, identifying as anomalies
the objects that do not fit the model. This approach is called self-training, but
there is another one that can be employed, called co-training, in which two or
more classifiers train each other. The problem with semi-supervised techniques is
associated to lack of labels for anomalous data, from which derives the difficulty of
building a model in charge of predicting every kind of possible anomaly.
The most important approaches for this category are summarized as follows [34]:

• Proximity-based: each data instance is analyzed relative to its neighborhood,
assuming that normal data objects follow a similarity pattern, while anomalous
objects are far away from their closest neighbors. Various measures can be used

51

Relevant Theory

to calculate closeness between vertices, which lead to the further classification
of proximity-based methods into two categories:

– Distance-based: the anomaly score is computed using the distance of a
data point from its k neighbors;

– Density-based: the anomaly score using the relative density of each data
point.

These methods are simple and can be applied to a large number of domains,
the only key-challenge is the choice of an appropriate distance/density measure,
but when it comes to datasets characterized by areas with markedly differing
densities, or by group of anomalies close to each other, Anomaly Detection
becomes challenging. An example is the DBSCAN algorithm with its numerous
variants;

• Clustering-based: anomalies are assumed to belong to small sparse clusters,
or to be far away from their closest cluster, or to be not included in any
cluster at all, while normal instances are assumed to be part of large and
dense clusters.
The major merits of these techniques concern the fact that they do not require
a set of pre-labeled data to be applied, and, once the clusters are built, it
is easy and fast to compare them. The issues, instead, are related to the
computational complexity associated to the construction of clusters for large
datasets, when they are built before the detection of anomalies, and to the
possible false alarms (data instances not belonging to any cluster could be just
noise rather than anomalies) or missed anomalies (anomalous objects having
a similar behavior could form big clusters and hence be considered as regular
data). An example is the K-Means algorithm, used for Anomaly Detection;

Figure 4.5: Example of clusters and some noise data, taken from [36]

52

Relevant Theory

• Classification-based: similarly to supervised methods, they include a
learning phase (training), in which labeled data instances are used to build a
model, and a classification phase (test) in which that model is used to predict
the data class-labels (normal/abnormal). Classification-based techniques can
use either a one-class model, where the classifier is built to define just the
normal class (all those data objects that belong to that class are defined as
regular, while those that do not fall into that class are identified as anomalies)
or a multi-class model (the available data instances belong to several classes
rather than to a single one).
On one hand, these approaches usually embody a fast process, and they
result to be efficient especially when integrating various classifiers. On the
other hand, the disadvantages of these methods relate to the dependence and
reliability of the training data, which, if not adequately available, can lead to
loss of performance, and with the possibility that only a few items may belong
to the principal class. Some examples are the Bayesian classifier (NBC), SVM
and neural-network-based classification methods.

Unsupervised Methods

Unsupervised methods are generally exploited when no predefined labels are avail-
able in the data, and, not requiring any training data, they are the most widely
applicable. They are often studied as a clustering problem, assuming that normal
instances can be clustered into distinct groups having some similarity patterns.
The problem is that this hypothesis is not always true, since sometimes it is the
exact opposite, i.e. anomalies are those that can be grouped according to similar
patterns, or maybe they can be noise rather than anomalies. Another assumption
can be made in this case, stating that normal instances are far more frequent than
anomalies in the test dataset, but if this is not true, the techniques will product
false alarms. For these reasons, these methods are not very efficient, and they tend
to generate a large number of false positives. Basically, the clustering-methodology
usually consists in finding clusters based on a similarity between objects, and
elements not belonging to any cluster are classified as anomalous (similarly to semi-
supervised clustering-based techniques). Since the number of anomalies present
in a dataset is rather less than with normal data objects, this usually results in a
high computational cost.
Many semi-supervised methods can be adapted to work in an unsupervised mode
by employing a sample of the unlabeled dataset for the training stage, assuming
that the test data contain very few anomalies and relying on the robustness to
these few anomalies of the learnt model. In any case, techniques in semi-supervised
mode perform better than those in unsupervised mode in terms of false negatives
(anomalies considered as normal instances), since the probability of an anomaly

53

Relevant Theory

forming a close neighborhood in the training dataset is very low.

4.2 Anomaly Detection Methods
In this section, the Anomaly Detection methods used in this thesis project, which
are those most frequently described in the classical literature for this field of study,
are proposed and explained in general terms. The choice of the algorithms fell on
both supervised and unsupervised learning methods. In the next chapters (chap.6)
more details will be provided on how they have been adapted to the dataset (chap.3)
and the research requirements.

4.2.1 Auto Regressive Integrated Moving Average
(ARIMA) for Anomaly Detection
In time series analysis, an Auto Regressive Integrated Moving Average (ARIMA)
model is one of the simplest and effective supervised Machine Learning algorithm
for time series forecasting, and it is an abstraction of an Auto Regressive Moving
Average (ARMA) model. Both of these models are fitted to time series data to
predict future points in the series (forecasting) or to better analyze the data. The
main assumption is that the information in the past values of the time series can
alone be used to predict the future values.
On one hand, if enough input is available, ARIMA models could suggest hidden
patterns, therefore outliers can be targeted. On the other hand, with limited data,
the quality of prediction would be lower, and so would the accuracy of Anomaly
Detection. More specifically, the time series models use the data in the training
step, finding the general behaviour and capturing different standard temporal
structures of the data, and then attempt to provide a forecasting. If an observation
is normal, the prediction would be as close as possible to the actual value, otherwise
the forecast of an anomaly would be as far as possible to the true value (Fig.4.6).
Therefore, for Anomaly Detection purposes, an examination of the prediction errors
is necessary.

ARIMA models need stationary time series as input. According to the Wold’s
Decomposition Theorem, they are theoretically satisfactory to describe steady
broad-sense stationary time series and profile the data, but the applicability only
to stationary time series is one of the most serious drawbacks of the algorithm. In
some cases, ARIMA models can be applied even when the data is non-stationary
in the mean function (but not in variance/autocovariance), by applying an initial
differencing phase one or more times, before fitting the ARMA model to the data,
to eliminate the non-stationarity. The AR part of ARIMA describes the analytical
part of of the signal, denoting that the developing variable of interest is regressed on
its own (autoregression) past values (lag). The MA part describes the noise content

54

Relevant Theory

Figure 4.6: An example of Anomaly Detection using Time Series Forecasting, for
the sequence of a generic metric, taken from [37]

of the signal, specifying that the regression error is actually a linear combination of
the past forecast error values that took place simultaneously and at various times.
The I (for “integrated”) indicates that the data values have been replaced by a
differencing process, with the difference between their values and the past values
(possibly more than once).
Non-seasonal ARIMA models are generally connoted as ARIMA(p, d, q), where the
terms p, d, and q are non-negative integer parameters: p is the order (number of
time lags) included in the autoregressive model, d is the degree of differencing (the
number of times that the raw observations are differenced), and q is the order of
the moving-average model (the size of the moving-average window).

Stationarity and Differencing

A time series, which is a sequence where a metric is recorded over regular time
intervals (depending on the frequency, monthly-wise, weekly-wise, hourly-wise,
etc.) and associated to a timestamp, is defined “stationary” when its properties
do not depend on the time at which the series is observed: the mean and the
variance/autocovariance remain constant over time. In general, a stationary time
series will have no predictable long-term patterns: time series with trends, or
with seasonality, are not stationary because these properties alter the value of the
series at different times (negatively affecting a regression model). Time graphs will
show the series to be approximately horizontal (although some cyclic behaviour is

55

Relevant Theory

possible), with constant variance (Fig.4.7).

Figure 4.7: Examples for stationary and non-stationary time series, taken from [38]

The observations in a time series data are auto-correlated: observations are highly
related to their previous observations. For this reason, as well as looking at the
time plot of the data, the Auto-Correlation Function (ACF) graph is also useful to
recognize non-stationary time series. For a stationary time series, the ACF will
drop to zero relatively quickly, while, for non-stationary data, it slowly decreases.
To difference the data and make a time series stationary, the subtraction between
consecutive observations is computed. Mathematically, this is formally denoted as:

y′
t = yt − yt−1.

Differencing removes the variations in the level of a time series, removing (or
reducing) trend and seasonality and consequently stabilizing the mean of the time
series. Occasionally the differenced data will not appear to be stationary and it
may be necessary to difference the data more than once to obtain a stationary
series:

y′′
t = y′

t − y′
t−1

= (yt − yt−1) − (yt−1 − yt−2)
= yt − 2yt−1 + yt−2

56

Relevant Theory

It is almost never necessary to go beyond second-order differences and apply the
differencing process more than a second time. The right order of differencing is
the minimum difference required to obtain a nearly stationary series that hovers
around a definite mean and the ACF graph reaches zero fairly quickly. Likewise, the
seasonal differencing, i.e. the difference between a measurement and the previous
observation from the same season, is applied to a seasonal time series to remove
the seasonal component.

The Akaike Information Criterion (AIC)

To determine the order of a non-seasonal ARIMA model, a useful method is the
Akaike Information Criterion (AIC), which is an estimator of prediction error and
thereby relative quality of statistical models for a given dataset. When showing
the process that generated the data, the representation with a statistical model
will almost never be exact, because some information will be lost. AIC estimates
the relative amount of loss of information due to the use of a given model: the
less information a model loses, the higher the quality of that model. AIC provides
a trade-off between the quality and rightness of fit of the model and its simplicity,
dealing with both the risk of overfitting and the risk of underfitting. In a collection
of models for the data, AIC estimates the goodness of each model, relative to each
of the other models. Therefore, AIC offers a means for model selection: the aim
is to minimize the AIC value in order to choose the model that minimizes the
information loss. It is computed as:

AIC = −2
log(L) + 2(p + q + k),

where L is the likelihood of the data, p is the order of the auto-regressive part,
q represents the order of the moving average part, and k is the intercept of the
ARIMA model. For AIC, if k = 1, then there is an intercept in the ARIMA model
(c /= 0) and if k = 0, then there is no intercept (c = 0).

4.2.2 Boxplot Rule
In descriptive statistics, a boxplot is a standardized way to visualize the distribution
of data based on the five-number summary: the minimum, the maximum, the
sample median, and the first and third percentiles (quartiles). Boxplots are a type
of chart often used in informative data analysis.
The body of the boxplot consists of a “box” - hence, the name - which goes from
the first quartile (Q1) to the third quartile (Q3), and a vertical line is drawn at the
median of the dataset (Q2) within such box. The longer the box the more dispersed
the data, the shorter the less dispersed the data. Two horizontal lines, named

57

Relevant Theory

whiskers, extend from the front and back of the box: the front one goes from Q1 to
the smallest non-outlier point in the dataset, and the back one goes from Q3 to
the largest non-outlier point. If the dataset contains one or more anomalies, they
are plotted separately as points on the chart (Fig.4.8).

Figure 4.8: Different parts of a boxplot

• Minimum (Q0 or 0th percentile): the lowest data point in the dataset
excluding any outliers, Q0 = Q1 − 1.5 ∗ IQR;

• Maximum (Q4 or 100th percentile): the highest data point in the dataset
excluding any outliers, Q4 = Q3 + 1.5 ∗ IQR;

• Median (Q2 or 50th percentile): The average value in the dataset

• First quartile (Q1 or 25th percentile): the median of the lower half of the
dataset;

• Third quartile (Q3 or 75th percentile): the median of the upper half of the
dataset;

• Interquartile Range (IQR = Q3 − Q1): the distance between the upper
and lower quartiles;

• Outliers: the numerical data that are less than Q1 − 1.5 ∗ IQR or greater
than Q3 + 1.5 ∗ IQR.

The spacing in each subsection of the boxplot graphically indicate the degree of
dispersion (spread) and asymmetry groups of numerical data, i.e. showing whether

58

Relevant Theory

the data are symmetrical and how tightly the data are grouped, and allow to
visually measure various L-estimators, in particular the interquartile range, the
mid-hinge, the range, the mid-range and the trimean. If the data is normally
distributed, the various parts of the boxplot will be equidistant.
When the median is in the center of the box and the whiskers are roughly long the
same on both sides of the box, then the distribution is symmetrical.
When the median is closer to the bottom of the box, and if the back whisker is
shorter, then the distribution is positively skewed.
When the median is closer to the top of the box and if the front whisker is shorter,
the distribution is negatively skewed (Fig.4.9 and 4.10).

Figure 4.9: Possible different symmetries in the data, represented by the boxplots

Figure 4.10: Different skews with corresponding distribution plots and boxplots

4.2.3 Isolation Forest
The Isolation Forest is an unsupervised (since there are no pre-defined labels)
Anomaly Detection algorithm, which directly targets anomalies explicitly isolating
them, without the need of previously profiling all the normal instances. Similarly
to the Random Forest algorithm, it is based on decision trees.

59

Relevant Theory

To isolate a data point, the algorithm performs partitions on the sample by selecting
a random feature (from the set of all N features) and then generating a random
value divided by such attribute (a threshold), in the interval between the minimum
and maximum values allowed for the selected feature. If the value of a data point
is less than the selected threshold, it goes to the left branch, else to the right. This
random branching is generated recursively, until each data point is completely
isolated or until the maximum depth (if defined) is reached. In mathematical
formalism, recursive partitioning can be represented by a tree structure - the
Isolation Tree (iTree) - and the number of divisions needed to isolate an observation
can be viewed as the length of the path, within the tree, starting from the root node
until reaching the terminal node. After an ensemble of iTrees (Isolation Forest) is
built, the training of the model is complete.
Given an anomalous point, random partitioning produces significantly shorter
branches, as it was easier for the tree to separate it from other observations.
Therefore, when a forest of random trees collectively produces shorter paths for
particular samples, it is very likely that they are anomalies, while, similarly, the
samples that travel deeper into the tree are less likely to be outliers as they
required more cuts to isolate them. It is observable that the architecture of iTree
is comparable to the structure of Binary Search Trees (BST): a termination to an
outer iTree node is the same as a failed search in the BST (Fig.4.11).

Figure 4.11: Overview of the Isolation Forest algorithm. Light blue circles
represent common normal samples, dark blue circles indicate uncommon normal
samples (potential anomalies), and red circles stand for outliers. Taken from [39]

More specifically, given a sample, the algorithm calculates an anomaly score
for each data point, which is traversed through all the trees that were trained
previously, based on the provided contamination parameter (percentage of outliers
existent in the dataset). This score is an aggregation of the depth, required to

60

Relevant Theory

arrive at that point, obtained from each of the iTrees: if the calculated score is close
to 1, the point is most likely an anomaly, if it is less than 0.5, the sample is likely
is a regular value. If all instances in a dataset are assigned an anomaly score of ap-
proximately 0.5, it is safe to assume that the dataset does not contain any anomalies.

The algorithm has the following properties:

• It has a low linear time complexity, so it is computationally efficient, and
requires small memory;

• It is able to process high-dimensional data with irrelevant features;

• It can be learned with or without anomalies in the training set;

• It can provide detection results with varying degrees of granularity without
re-training.

Figure 4.12: An example of usage of the Isolation Forest algorithm by SciKit
Learn for Anomaly Detection. Taken from [40]

In addition to the advantageous properties described above, there are also a few
limitations of the algorithm to be mentioned. Since the final anomaly score depends
on the contamination parameter, provided while training the model, it is clear that
a knowing about the percentage of anomalous data is required to obtain a better
prediction. Moreover, the model suffers from a bias due to the manner in which
the partitioning takes place. In any case, despite these restrictions, Isolation Forest

61

Relevant Theory

has been proven to be very effective in various fields for Anomaly Detection, so it
is widely exploited for this kind of research.

4.2.4 Z-Score for Anomaly Detection
Z-Score, also called standard-score, is a statistical measure used to determine the
distance of a data value with respect to the mean, showing and how far away it is
from the rest of the dataset. In a more technical term, Z-score, which can fall in
the interval [0, +∞), tells how many standard deviations away a given observation
is distant from the mean of the distribution. To compute such score, the method
involves subtracting the mean from the value of the data point, and then divide by
the standard deviation:

Z = x − µ

σ
,

where µ represents the mean and σ is the standard deviation.
In a normal distribution (Fig.4.13), it is estimated that:

• 68% of the data points lie between ±1 standard deviation;

• 95% of the data points lie between ±2 standard deviation;

• 99.7% of the data points lie between ±3 standard deviation.

Figure 4.13: Outlier Detection with Z-Scores on a Normal Distribution, taken
from [41]

For this reason, the first three integer values of the Z-score, 1, 2 and 3, are commonly
used.
In other words, Z-scores can quantify the anomaly magnitude of an observation
when the data follow the normal distribution: each data point has its own Z-score,

62

Relevant Theory

indicating the number of standard deviations above and below the mean where
its value falls, and the further away an observation’s Z-score is from zero, the
more unusual it is. For example, a Z-score of 2 denotes that an observation is
two standard deviations above the mean, while a Z-score of −2 indicates it is two
standard deviations below the mean. A Z-score equal to zero represents a value
corresponding to the average.
A standard cut-off value to look for outliers is Z-scores of ±3 or further from zero,
so outliers are detected by setting a threshold on the score, using three standard
deviations: every data object that lies beyond the upper limit (3 ∗ σ) and lower
limit (−3 ∗ σ) is identified as an outlier.

4.3 The Clustering Problem

4.3.1 Definitions
Clustering is the unsupervised, semi-supervised, and supervised undirected1

data mining technique which provides a classification of patterns of similar kinds
into respective categories (groups/clusters), without prior knowledge of the group
definitions. More specifically, it is the task of grouping a set of items (e.g. data
elements) in such a way that elements in the same group or class (a cluster) are
more “similar” (this concept depends on the specific problem) to each other than
to those in other groups or classes (Fig.4.14).

Figure 4.14: Basic example of clustering

1The goal of non-direct data mining is to discover the structure of the data as a whole.

63

Relevant Theory

A mapping is provided between the set of input vectors to a fixed set of discrete
labels indicating the total number of class types. This task has been addressed
in many contexts and research-fields, including pattern recognition, information
retrieval, image analysis, Machine Learning and more others. The phases of a typical
cluster analysis process include sequentially pattern representation, the selection
of an appropriate similarity/dissimilarity (generalized as proximity) measure, the
choice of the most conform clustering algorithm, the evaluation of the output, and
the illustration of the final clusters [42].

4.3.2 Characterization of Cluster Analysis
Cluster analyses can be approximately categorized as:

• Hard clustering: each data observation belongs to a cluster or not;

• Soft (or fuzzy) clustering: each data item belongs to each cluster to a certain
magnitude, for example according to a probability measure;

There are also finer classifications possible, such as, for example:

• Strict partitioning clustering: each data object belongs to exactly one
cluster, the ones that do not fall into any cluster are considered outliers;

• Overlapping (alternative or multi-view) clustering: data objects may be
members of more than one cluster at the same time;

• Subspace clustering: on the contrary, clusters are not expected to be
overlapped in any case;

• Hierarchical clustering: data items belonging to a child cluster are also
contained in the parent cluster (Fig.4.15);

4.3.3 Classification of Classical Methods and Models
Cluster analysis encompasses different methods, models and algorithms, the most
typical of which include:

• Connectivity models: models based on distance connectivity, e.g. hierar-
chical clustering. They are based on the key assumption of data items being
more similar or connected to nearby objects than to the ones farther away,
thus they link instances to form clusters based on their distance. According
to this hypothesis, clusters can be described completely by the maximum
distance needed to connect elements inside of them. Different distances lead

64

Relevant Theory

to the creation of different clusters, which can be represented using a dendro-
gram, which shows the merges or partitions made in each subsequent stage
of the analysis: the y-axis indicates the distance at which the clusters merge,
while the data instances are placed along the x-axis thus the clusters do not
mix (Fig.4.15).

Figure 4.15: Example of hierarchical clustering: a dendrogram (right) representing
nested clusters (left), taken from [43]

These algorithms, rather than a single partitioning of the dataset, seek at
building and providing an extensive hierarchy of clusters that join with each
other at specific distances. Data is not partitioned into a particular cluster in
a single step, but a series of partitions takes place. They are not very safe and
effective towards outliers, which will either be grouped in additional clusters
or even lead other clusters to combine. Finally, Hierarchical Clustering can be
subdivided into agglomerative methods, which proceed by series of mergers
of the observations into groups, and divisive methods, which subsequently
separate the items into finer groupings [44];

• Centroid models: each cluster is showed as a central vector, which is not
necessarily an instance belonging to the dataset, such that an observation
in a cluster is closer (more similar) to the “center” of a cluster, than to the
center of any other cluster (e.g. the K-Means algorithm, sec. 4.4.3). Most
algorithms, associated with this category, require a fixed number of clusters –
k – to be determined beforehand, which is considered to be one of the biggest
inconveniences of these algorithms. The center of each cluster is usually
a centroid, a weighted average of all the data points in the cluster, or a
medoid, the most “representative” data point of a cluster. Moreover, they
prefer clusters of roughly similar size, as they will always attach an instance
to the nearest centroid, often causing erroneous cut borders of clusters;

65

Relevant Theory

• Distribution models: clusters are profiled as instances belonging most
likely to the same statistical distribution, such as multivariate normal distri-
butions for the expectation-maximization algorithm. They usually suffer from
the problem of overfitting, unless the model complexity is bound, but, if a
mathematical model can be defined, they are able to capture correlation and
dependence between attributes;

• Density models: clusters are defined as connected regions of higher density
than the rest of the dataset, while instances in sparse areas are usually
considered as noise and border objects. Some examples are the algorithms of
DBSCAN (sec. 4.4.2), which is the most popular one, and OPTICS;

• Graph-based models (sec. 4.4.1): the clusters are identified by the so-called
cliques, subsets of nodes in a graph, such that each set of nodes is densely
connected internally and can be grouped separately from the others (Fig.4.16).

Figure 4.16: Example of graph-based clustering, taken from [45]

4.4 Clustering Methods
As discussed in sec. 4.3.3, clustering algorithms can be classified based on their
cluster model. The following section provides an overview of the clustering algo-
rithms used for this thesis, which are the most important and well-known ones.
There is no objectively “correct” clustering algorithm, but as noted, “clustering
is in the eye of the beholder” [46]: the most appropriate clustering algorithm for
a particular problem often has to be determined experimentally, unless there is a
mathematical proof to prefer the choice of one cluster model to another.

66

Relevant Theory

4.4.1 Graphs and Community Detection Algorithms
A graph is a set of elements named nodes (or vertices) that can be connected
together by lines named edges (or arcs or links). More formally, a graph is an
ordered pair G = (V, E) of sets, with V set of nodes and E set of edges, such that
the components of E are pairs of elements in V . If E is a symmetric relation, then
the graph is said to be undirected (or indirect), otherwise it is said to be directed
(or oriented). Community Detection, also known as graph clustering/partition,
is a common problem in graph data analytics and an important task in many
scientific domains, such as sociology, biology and computer science (disciplines
where systems are often represented as graphs), that has been extensively studied
in the literature. It is also a growing branch of interest in the area of Online
Social Networks (OSNs), that can be naturally viewed as a graphical structure
representing the users and their interactions, helping to reveal the hidden relations
among the nodes (users or posts) in the network. According to M. Girvan and M. E.
J. Newman, two popular researchers in the domain of community detection, the aim
of such discipline is to partition vertices in a complex graph into densely-connected
nodes, the so-called communities (organization of vertices in clusters), with few
edges connecting components outside of the group (joining vertices of different
clusters), as shown in Figure 4.17.

Figure 4.17: Example of community detection in a graph, taken from [47]

Such clusters can be considered as quite independent subsections of a graph, which
play a similar role. Overlapping communities, where vertices are in more than one
cluster, are also allowed.

Modularity

The modularity is a benefit function that quantifies the quality of division
of a network into modules (the communities), by evaluating the density of the
connections between nodes within a community, compared against the connections

67

Relevant Theory

that would be if edges were distributed randomly in the network. Therefore, graphs
with high modularity have thick links between the nodes inside communities, but
sparse connections between nodes in different communities.
However, it has been shown that modularity suffers a resolution limit and, therefore,
it is unable to detect small modules. Despite of its known drawbacks, one of the
most widely used methods for optimizing community detection is modularity
maximization.

Modularity is mathematically defined as the difference between the fraction of
the edges that fall within the given communities and the expected fraction if edges
were in a random network, and its value lies in the range [−0.5,1]. Some examples
are provided in Figure 4.18.

Figure 4.18: Example of different modularities, taken from [48]

For a weighted graph, the formula to compute modularity is:

Q = 1
2m

Ø
ij

A
Aij − γ

kikj

2m

B
δ(ci, cj),

where m is the number of edges, A is the adjacency matrix of the graph, ki/j is the
degree of the node i or j respectively, γ is the resolution parameter, and δ(ci, cj) is
1 if i and j are in the same community, else 0 [49].
With some algebra, this can be reduced to:

Q = 1
2m

nØ
c=1

Lc

m
− γ

A
kc

2m

B2
 ,

where the sum iterates over all communities c, m is the number of edges, Lc is the
number of intra-community edges for community c, kc is the sum of degrees of the
nodes in community c, and γ is the resolution parameter, which sets an arbitrary
trade-off between intra-group edges and inter-group edges [49].

68

Relevant Theory

Many algorithms have been developed for detecting overlapping and/or disjoint
communities, some of which are listed below.

Louvain Algorithm

The Louvain algorithm is a simple and fast method to detect communities in large
networks. This method has two elementary phases that are repeated iteratively, as
shown in Figure 4.19: initially individual starting nodes are moved locally to the
neighbour’s community that yields the largest increase of modularity, then, based
on the partition obtained from the previous phase, each community is incorporated
into one node, creating a new coarse-grained aggregate network. The two phases
are repeated iteratively until the algorithm, given perturbations to the current
community state, is unable to increase further the chosen quality function (the
modularity). At this point, it is guaranteed that each individual node is optimally
assigned and that communities are well separated (the modularity is maximized).

Figure 4.19: Schema of the process followed by the Louvain algorithm: (a) it
starts from a singleton partition in which each node is in its own community;
(b) the algorithm moves single nodes from one community to another to find a
partition; (c) on the basis of this partition, it creates an aggregate network; (d)
individual nodes are moved in the aggregate network. These steps are iterated
until the quality cannot be improved further. Taken from [50]

Usually, the Louvain algorithm starts from a singleton partition, in which each
node belongs to its own community, but is also possible to start the algorithm

69

Relevant Theory

from a different partition. Multiple successive iterations of the algorithm can be
performed, using the partition identified in one iteration as input for the next
iteration.

Louvain’s algorithm can find arbitrarily badly connected communities, which
are internally disconnected: a node can be moved to a different community while it
may have acted as a bridge between the different components of its old community
and, by removing it, the old community becomes disconnected. However, the other
nodes may still be sufficiently strongly connected to their community, despite the
fact that the community has been disconnected.

Label Propagation Algorithm

Label Propagation (LPA) is a semi-supervised Machine Learning algorithm that
identifies both disjoint and overlapping communities in a network, by assigning
labels, representing community membership between nodes, to previously unlabeled
data points.
At the start of the algorithm, the memory of each vertex is initialized with a unique
label, indicating the independent community each vertex belongs to. Afterwards, a
node is selected as a listener, whose label is propagated to each of its neighbors
(speakers), as shown in Figure 4.20.

Figure 4.20: Schema of the process followed by the Label Propagation algorithm:
some nodes have labels (Initial State), more labels are added (Step 1). This
iteration is repeated until there is convergence on a solution, a set solution range,
or a set number of iterations (Final State)

Each diffused label is randomly selected with a probability proportional to its
frequency in the memory of the speaker that sends it. The listener then integrates
the most common of the labels received into its memory. This process is repeated
for a maximum number of iterations defined by the user. Finally, a probability
distribution of labels is built for each vertex: if the probability for a particular label

70

Relevant Theory

of a node is below a given threshold, then the label is removed. Nodes with common
labels are then grouped into a community, and it is natural to argue that densely
connected groups reach a common label quickly. If a node has multiple labels it
will be part of multiple overlapping communities, identified by the algorithm: the
smaller the value of the threshold, the greater the number of communities that
overlap.
Compared to other algorithms, LPA has convenience in its running time and quan-
tity of information needed beforehand about the network structure (no parameters
needed). The disadvantage concerns that it produces no unique solution, but an
aggregate of many solutions (possible communities structures) starting from the
same initial condition.

Girvan-Newman Algorithm

Another commonly used algorithm for detecting communities in complex systems
(with a network structure) is the Girvan–Newman algorithm. This hierarchical
algorithm identifies edges in a network that lie between communities by employing
the graph-theoretic measure betweenness centrality (Fig.4.21), which assigns a
number to each edge which is large if the edge lies “between” many pairs of nodes
and, therefore, that are most likely “between” communities. Afterwards, these
edges are progressively removed from the original network, such that the connected
components of the remaining graph are the communities, revealing the underlying
internal structure of the network.
More specifically, betweenness centrality indicates highly central nodes in networks,
and, extending this definition to the arcs, the “edge betweenness” of an edge is
defined by the number of shortest paths between pairs of nodes that cross it, divided
by the total number of shortest paths.

Figure 4.21: An undirected graph colored according to the betweenness centrality
of each node from the minimum (red) to the maximum (blue), taken from [51]

71

Relevant Theory

The algorithm’s steps can be summarized in the following way (Fig.4.22):

1. The betweenness centrality of all the edges present in the graph is computed;

2. The edge(s) with the highest betweenness is (are) eliminated;

3. The betweenness of all remaining edges (affected by the deletion) is recom-
puted;

4. Steps 2 and 3 are iterated until there are no more edges left.

(a) Initial state: weights are assigned to
edges on the basis of the number of shorter
paths that pass through them

(b) The edge between vertices C and D is re-
moved, because it is the one with the highest
weight (it is located between communities). The
betweenness centrality has to be recomputed for
every remaining edge until every edge has the
same betweenness centrality

Figure 4.22: Simple example of the process followed by the Girvan-Newman
algorithm, taken from [51]

The end result of the Girvan–Newman algorithm is a dendrogram, whose leaves
are individual nodes: the network is divided into different communities with the
consecutive removal of edges.

4.4.2 DBSCAN Algorithm
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is one
of the most common clustering non-parametric algorithms and also most cited in
scientific literature. The algorithm requires two input parameters: the radius of
a cluster (ϵ, epsilon), which is, in other words, the maximum distance between
two points for one to be considered as in the neighborhood of the other but not a
maximum bound on the distances of elements within a cluster, and minimum points
required to form a dense cluster. Given a set of points in a certain space, it clusters
together points that are tightly packed together (these points’ ϵ-neighborhood
contain sufficiently many points such that they can be considered as core points),

72

Relevant Theory

marking as outliers (or noise) points that lie alone in low-density regions (whose
nearest neighbors are too far away).

Figure 4.23: Original data on the left and clusters identified by the DBSCAN
algorithm on the right: large colored circles represent core cluster members, small
colored circles indicate cluster edge members, and small black points represent
noise/outliers, taken from [52]

The DBSCAN algorithm can be abstracted into the following five steps:

1. Select an arbitrary point p;

2. Retrieve all points density-reachable from p, i.e. in the ϵ neighborhood of p;

3. If p is a core point (with more than minimum points neighbors), a cluster is
created;

4. If p is a border point, it is assigned to a nearby (ϵ) cluster, otherwise it is
assigned to noise;

5. The process is repeated until all the points have been processed.

DBSCAN can be also used with any distance function as well as similarity functions,
the most common of which is Euclidean distance. In our case, for this thesis project,
the Jaccard Index has been used to compute the distance matrix given to the
DBSCAN algorithm as input.

73

Relevant Theory

Jaccard Index

The Jaccard Index, or Jaccard similarity coefficient, is a statistic used to measure
the similarity/dissimilarity of finite sample sets, and is defined in the range [0,1],
as the fraction between the size of the intersection and the size of the union of the
sample sets (A and B):

J(A, B) = |A ∩ B|
|A ∪ B|

= |A ∩ B|
|A| + |B| − |A ∩ B|

4.4.3 K-Means Algorithm
K-Means clustering is a vector quantization technique, which aims to partition
observations in a dataset into k clusters (this parameter must be predefined in
advance), where each observation belongs to the cluster with the closest mean
(centroid or cluster center), acting as a prototype of the cluster.
Given an initial set of k “means” as input, the naive algorithm (there are some
existing variants) proceeds alternating the following two phases:

• Assignment step: each data observation is assigned to the cluster with the
closest mean (centroid), i.e. the Euclidean distance squared;

• Update step: the means (centroids) are recomputed for the data points
assigned to each cluster.

The algorithm achieves convergence when there are no further changes in the
assignments, and there is no guarantee that it will find the optimum. Using a
distance function other than Euclidean (squared) distance can prevent the algorithm
from converging.

Figure 4.24: An example of usage of the K-Means algorithm by SciKit Learn
for clustering on a handwritten digits data (PCA-reduced). Centroids are marked
with white cross, taken from [53]

74

Relevant Theory

The algorithm has some limitations, for example it cannot be used with arbitrary
distance functions or on non-numerical data, and the parameter k is known to be
hard to choose when there are no external constraints.
To resolve the latter problem, there are some cluster quality measure that can be
used as an interpretation and validation of consistency inside clusters, in order to
identify the best k-parameter for clustering a given set of samples and evaluate the
goodness of the resulting split. Some examples are:

• the Silhouette Score: a measure of cohesion, how similar an object is to its
own cluster, and separation, a similarity comparison to other different clusters.
The higher it is, the more appropriate is the clustering configuration;

• the Davies-Bouldin Index: the average similarity of each cluster with the
most similar one, measured by comparing the distance between clusters with
the size of the clusters themselves. The lower it is, the better is the result of
the clustering performed;

• the Calinski-Harabasz Index: it is defined as the fraction between the
sum of intra-cluster and of inter-cluster dispersions, computed for all clusters.
The higher the score, the better the performances.

Cosine Similarity

In data analysis, Cosine Similarity is a measure of how similar two sequences of
numbers are. To define it, sequences are represented as vectors in an inner product
space, and the cosine of the angle between them is defined as the scalar product of
the vectors divided by the product of their lengths. The Cosine Similarity is always
in the interval [−1,1]: two proportional vectors have a similarity of 1, the similarity
of two orthogonal vectors is 0, and the similarity of two opposing vectors is -1.
In information retrieval and text extraction, each word is assigned a separate
coordinate and a document is represented by the vector of the number of occurrences
of each word in the document. Cosine similarity is a helpful metric for determining
how similar two documents are in terms of topic content, independent of their
length. In the realm of data mining, the approach is also used to quantify cluster
cohesiveness.
Given two vectors of attributes, A and B, the Cosine Similarity is defined as:

SC(A, B) = A · B

∥A∥∥B∥
=

nq
i=1

AiBió
nq

i=1
A2

i

ó
nq

i=1
B2

i

The Term Frequency Vectors (sec. 4.5.1) of the documents are commonly used as
attribute vectors A and B for text matching.

75

Relevant Theory

4.5 Textual Analysis Methods: Natural Language
Processing (NLP)

Natural Language Processing (NLP) refers to the branch of computer science
(Artificial Intelligence) concerned with the ability of software to process human
language words, understanding their full meaning as human beings do, by combining
computational linguistics with statistical, Machine Learning, and Deep Learning
models. For this thesis project, the ML part, such as Part of Speech Tagging (or
grammatical tagging), has been processed through some libraries (Data Mining and
Pre-Processing, sec. 5.2.3), but there are also some classic methods that have been
implemented to filter the data or extract text features (or topics), that need to be
mentioned and explained.

4.5.1 Term Frequency — Inverse Document Frequency (TF-
IDF)

In information retrieval (and other research fields such as text mining and user
modeling), TF-IDF, acronym for Term Frequency–Inverse Document Frequency,
one of the most popular term-weighting schemes. It is a numerical statistic that
aims at reflecting the importance of a word within a document in a collection or
corpus. Its value increases proportionally to the frequency of a word appearing in a
document, but inversely to the number of documents in the collection containing
that word. The underlying idea behind this behavior is to give more relevance to
the terms that appear in the document, but which in general are infrequent.
The TF-IDF is calculated as the product of two statistics, the term-frequency and
the inverse-document-frequency, hence the name:

TFIDF (t, d, D) = TF (t, d) · IDF (t, D),

where t is a term, d is the document in which t appears, and D is the set of
documents.
Term-frequency: it is the frequency (generally the raw count) of term t, i.e. the
number of times that term t occurs in document d.
Inverse-document-frequency:

IDF (t, D) = log |D|
1 + |d ∈ D : t ∈ d|

,

where |D| is the total number of documents in the corpus and the denominator
indicates the number of documents where the term t appears, adjusted (it is
increased by one) to avoid division by zero if t is in none of the documents. Since
logarithm is used, if a term appears in all documents, its IDF value becomes 0.

76

Relevant Theory

Sublinear TF-IDF

Sublinear TF-IDF is a variant which modifies the term-frequency component, giving
prevalence to TF over IDF, by replacing TF with 1 + log(TF).

Hashing TF-IDF

In this variant, each raw feature is mapped into an index (term) by applying a hash
function and then calculating term frequencies based on the mapped indices. With
this approach, computing a global term-to-index map, which can be expensive for a
large corpus, can be avoided, but there is a limitation: potential hash collisions can
occur, where different raw features may become the same term after the application
of the hash function. To escape this problem and reduce the chance of collision,
the target feature dimension (the number of buckets of the hash table) can be
increased.

4.5.2 Latent Dirichlet Allocation (LDA)
In Natural Language Processing (NLP), the latent Dirichlet allocation (LDA) is
a generative probabilistic topic modeling algorithm which takes as input a
corpus (a collection of documents containing a set of terms, i.e. single words or
phrases, assumed to be not ordered) to discover the contained hidden topics (shared
themes).The underlying idea is that the semantic content of each document is
viewed as a combination of a small number of various latent topics, where each
topic is characterized by a Dirichlet prior distribution over words. Some terms’
meaning is uncertain, since such terms belong to more than one topic, with different
probability. However, in a document, the joint presence of specific neighboring
terms (belonging to only one topic) will disambiguate their usage.
All terms are initially treated uniformly, there is no indication of prevalence of some
words over others, and then LDA automatically classify any individual document
of he corpus in terms of how “relevant” it is to each of the found topics. If the
document collection is large enough, LDA will reveal topics based upon the mutual
occurrence of individual terms, though the task of assigning a meaningful label to
an individual topic has to be done manually by a user.
LDA uses a sampling method to produce two types of output:

1. Topic distribution over documents: the mixture of topics within each
document, and the percentage of each topic contained in the document. This
output derives from the LDA assumption that, in the corpus, individual topics
will occur with differing frequencies: they have a probability distribution, so
that a given document is more likely to contain some topics than others.

77

Relevant Theory

2. Topic distribution over words: the mixture of words found in each topic,
and the percentage each word contributes semantically to each topic. This
output derives from the LDA assumption that, within a topic, certain terms
appear much more frequently than others, such that they have a probability
distribution.

Figure 4.25: Schematic of LDA algorithm, taken from [54]

78

Chapter 5

Data Mining and
Pre-Processing

5.1 Data Sources
As already explained in chap. 3, we mined two data sources to generate the
Instagram Post Dataset, used in this research: CrowdTangle Data and a list of
influencers taken from “www.influenceritalia.it”.

Figure 5.1: Data Sources

Downloading the data took four days of a script’s runtime, while maintaining a
cautionary query limit of one every ten seconds to stay below the suggested limits
and avoid overloading both the CrowdTangle servers and our hardware.

79

www.influenceritalia.it

Data Mining and Pre-Processing

5.2 Instruments

5.2.1 Apache Spark
Apache Spark, developed in 2009 at Berkeley, is an open-source unified analysis
engine written in the Scala programming language and based on an advanced
large-scale distributed data SQL engine, used for Big Data and Machine Learning
processing. It provides high-level APIs in Java, Scala, Python, and R, and supports
general execution graphs thanks to an optimized engine.
Spark essentially provides an interface for cluster programming, with implicit
data parallelism and fault tolerance integrated in its architectural foundation,
which derives from the concept of Resilient Distributed Dataset (RDD, a read-only
multi-set of data items distributed on a cluster of machines).
In fact, Spark has the ability to perform processing tasks on huge datasets by dis-
tributing them among multiple worker nodes (processes that perform computations
and store data for the application), and, for this reason, it has become a solution
widely exploited by companies and research institutes. In other words, in the most
common usage, Spark applications consist of independent sets of processes on a
cluster (coordinated by the Driver program thanks to the Spark Context object).
In this case, Apache Spark is said to be deployed in “Cluster Mode”, i.e. across
multiple computers or servers.
Its architecture, on a conceptual level, consists of three components:

Figure 5.2: Organization of a Spark Cluster, taken from [55]

• The Driver: the process running the main function of the application and
creating the Spark Context, which organizes the user code into multiple that
are then distributed across workers, and executes various parallel operations
on the cluster;

80

Data Mining and Pre-Processing

• The Cluster Manager: an external service for acquiring resources on the
cluster, distributing the tasks, managing the workers and performing control
routines;

• The Executor: a process running the assigned tasks on a worker node, also
keeping data in memory or disk storage.

More specifically, for cluster management, Spark supports connections to several
different types of cluster managers, which allocate resources between applications:
standalone (native Spark cluster), Hadoop YARN, Apache Mesos (deprecated)
or Kubernetes. Once connected, it captures the executors on the cluster nodes
(workers) and sends them the application code (defined by the Python files passed
to the Spark Context). Finally, Spark Context sends the tasks to the executor
processes for computation.
It is important to mention that each application has its own executors for the whole
running time, which run tasks in multiple threads. For this reason, distinct Spark
applications are separated from each other, from both scheduling and executor
points of view: each driver schedules its own tasks and each task from a different
application runs in a different Java Virtual Machine. On the other hand, the
resulting disadvantage is that data cannot be shared across distinct applications,
unless it is written to an external storage system.

Apache Spark also supports many higher-level tools, including Spark SQL, MLlib
for Machine Learning, GraphX for graphs creation, and Streaming for incremental
computation and flow processing.

Figure 5.3: Spark ecosystem and its components

• Spark Core: the underlying kernel of the Apache Spark framework on which
all other functionality is based, providing the overall execution engine to the
platform, defining and managing the native data structure (RDD), and offering
in-memory computations;

• Spark SQL: a component for structured data processing, acting as a dis-
tributed SQL query engine. It offers the so-called DataFrame, one of the most
relevant programming abstractions used in Spark;

81

Data Mining and Pre-Processing

• Spark Streaming: library used to perform analytics on streaming and
historical data, which actually works by dividing the data stream into blocks
to be processed;

• MLlib: a low-level Machine Learning library that supports some popular
statistical, analytical, and machine learning methods, providing a set of high-
level APIs to build and optimize large-scale ML pipeline practices;

• GraphX: a framework used to process graph data in a distributed way, based
on RDDs. It should be remembered that RDDs are immutable and, for this
reason, graphs are also immutable and, therefore, GraphX is not suitable for
graphs that need to be updated;

• Spark R: package of Apache Spark able to process large datasets with R,
supporting operations like selection, filtering, aggregation etc.

Finally, Apache Spark basically provides three types of data structures:

Figure 5.4: Spark data structures

• RDD: Resilient Distributed Dataset, Spark’s fundamental data structure
that implements an immutable collection of data objects, partitioned between
cluster nodes, on which it is possible to operate in parallel. They are fast and
fault tolerant, but cannot be used together with Spark SQL;

• DataFrame: a distributed collection of data organized into optimized struc-
tures with named columns (collections of Rows), similar to tables in a relational
database, defined by Spark SQL;

• Dataset: a strongly typed collection of data elements, which offers the
advantages of both RDDs and the SQL optimized execution engine, allowing
parallel transformations (those that produce new datasets) or actions (those

82

Data Mining and Pre-Processing

that trigger the calculation1 and return results) on data, by using functional
or relational operations. DataFrames are Datasets of Rows.

5.2.2 The Cluster and The Hadoop Distributed File System
(HDFS)

Figure 5.5: Jupyter and PySpark logos ©

The data, processed with PySpark, was saved on the computing cluster using the
Hadoop Distributed File System (HDFS), which is the main data storage used by
Hadoop (and, consequently, PySpark) applications. Essentially, HDFS is a scalable
fault-tolerant distributed system for Big Data, in which the archived files are split
into chunks, as shown in Figure 5.6, each of which containing a part of the content
of one single file, saved on Data Nodes, and spread across the servers. Such nodes
have their mapping managed by one (or more) Master Nodes which also perform
file system operations.

Figure 5.6: Hadoop main components, taken from [56]

1Lazy evaluation: in Apache Spark data is not loaded until it is necessary, i.e. an action is
triggered, so transformations are not executed immediately.

83

Data Mining and Pre-Processing

Our research group, SmartData@PoliTO, to satisfy the center’s research aims,
operates on Politecnico’s BigData@Polito Cluster, which is built on the above
described complex software infrastructure. The cluster, after 2020, has reached the
capabilities of:

• 33 storage workers equipped with:

– 216 TB of disk storage space;
– 384 GB of RAM;
– Two CPUs with 18 cores/36 threads each.

• Two nodes equipped with 4 GPUs for experimentation;

• 50 GB/s of data reading and processing speed.

In particular, for the present thesis project, we exploited a server with 8 reserved
CPU Threads/40 GB of memory, maximum 48 CPU Threads/120 GB of memory.
Jupyter Lab (Fig. 5.5), which is a web-based interactive development environment
for Jupyter Notebooks, interactive computational environments with a modular
design accessible from a web browser, provided us access to the cluster and its
software by means of the spawn of a virtual server with the described features.

5.2.3 Tools and Libraries
The data was elaborated with the help of some tools and libraries: Pandas, NumPy,
SciKit-Learn, SciPy, NetworkX, SpaCy, Gensim, and, for the visualization of the
results Matplotlib and Seaborn.

Figure 5.7: Logos of the libraries used ©

• Pandas: it is a fast and flexible open source data analysis and manipulation
tool based on the Python programming language, offering data structures with

84

Data Mining and Pre-Processing

integrated indexing and operations for manipulating numerical tables and
time series. It has been extensively employed for data science and machine
learning tasks;

• Numpy: it is an open source package for scientific computing with Python,
offering vectorization, indexing and broadcasting for array computing, com-
prehensive mathematical functions, random number generators, linear algebra
routines, Fourier transforms, and more;

• SciKit-Learn: it is an open source software Machine Learning library for
Python, which features various classification, regression and clustering algo-
rithms, dimensionality reduction, model selection and pre-processing, offering
efficient tools for predictive data analysis;

• SciPy: it is an open source Python library used for scientific computing
and technical computing, providing algorithms for optimization, integration,
interpolation, special functions, statistics and many other classes of problems,
and extending NumPy offering additional tools for array computing and
specialized data structures, such as sparse matrices and k-dimensional trees;

• NetworkX: it is a Python package for the creation, manipulation, and study
of the topology, dynamics, and functions of complex networks, providing data
structures to represent graphs, digraphs, multigraphs, random graphs, and
synthetic networks, many standard algorithms to manipulate graphs, network
structure and analysis measures;

• SpaCy: it is a Python open source library for advanced Natural Language
Processing (NLP), which helps to process large amounts of text, build infor-
mation extraction or NLP systems, and pre-process text for deep learning or
other kinds of analysis. It features convolutional neural network models for
Part-Of-Speech (POS) Tagging, dependency parsing, text categorization and
Named Entity Recognition (NER);

• Gensim: it is an open source library for unsupervised topic modeling and NLP,
using modern statistical machine learning, and handling large text collections
for semantic analysis by means of data streaming and incremental online
algorithms;

• Matplotlib: it is a comprehensive library for creating static, animated, and
interactive visualizations in Python, i.e. quality plots and interactive figures
that can be customized with different styles and layouts and exported to many
file formats;

85

Data Mining and Pre-Processing

• Seaborn: it is a Python data visualization library based on Matplotlib, pro-
viding a high-level interface for drawing attractive and informative statistical
graphics.

5.3 The Original Data
The data was first downloaded locally, and afterwards it was stored in the HDFS of
the cluster in order to be processed by the Spark instruments presented in sec. 5.2.
Each row-entry of the original dataset, scanned by the CrowdTangle APIs, was
characterized by various attributes, described in the following Table 5.1:

Property Type Description

account struct

Information about the user who created the post:
• unique identifier of the user (long)
• handle and name of the user (strings)
• platform where the user published the post (string)
• Instagram user unique identifier (string)
• profile image (string)
• current number of user’s followers (long)
• account URL (string)
• information about the account verification (boolean)

brandedContentSponsor struct Information about the sponsoring page who promoted
the post, if available (same structure of account)

date string Posting date
description string Text description (caption) of the post
expandedLinks array Links contained in the post

history array

List of elements, consisting of:
• actual number of received likes and comments (long)
• date (string)
• expected number of reactions to receive (long)

id string CrowdTangle content unique identifier
imageText string Text, if existing, within the post media (image).
legacyId long Unique ID of the post, now deprecated by the system
media array Array of media for the post (URLs and dimensions)
platform string Platform where the post was published (here Instagram)
platformId string Instagram content unique identifier
postUrl string URL to access the post on its platform
score double Performance-score given to the post by CrowdTangle
statistics struct Performance metrics associated with the post, as history
subscriberCount long Number of influencer’s followers at the posting time
type string Media type
updated string Last updating time of the post by CrowdTangle

Table 5.1: Attributes of the data objects (Rows) contained in the raw dataset,
and description of their characteristics

86

Data Mining and Pre-Processing

From this raw form, the dataset can be organized neatly by distributing the
attributes of the posts into the following categories:

• Identification features: the various unique identifiers and URLs to identify
properly the creator’s account and the post (sec. 5.4.2);

• Temporal features: the posting and the updating dates (sec. 5.4.3);

• Popularity features: the post’s received reactions (actual and expected), the
subscribers count at the posting time and the performance-score given to the
post by CrowdTangle (sec. 5.4.4);

• Media and Textual features: the post’s media, its type and its textual content,
and the caption of the post (sec. 5.5).

These categories have been identified empirically, based on the changes needed for
the data, and, for this reason, they are fully described in the following sections,
while presenting the transformations performed on the dataset.

5.4 Initial Data Transformation

5.4.1 Data Fields Filtering
As seen in Table 5.1, each row of the dataset contains numerous fields, most of
which are useless for our purposes. For this reason we have decided to filter these
fields by removing them and keeping only the following scheme to manipulate and
on which to perform the various analyses:

root
| − −account

Identification features | | − −id as AccountID
| | − −name as name
| − −id as postID

Time feature { | − −dateI
| − −description

Textual features | − −imageText

| − −score
| − −statistics
| | − −actual :
| | | − −commentCount

Popularity features | | | − −favoriteCount
| | − −expected :
| | | − −commentCount
| | | − −favoriteCount
| − −subscriberCount

87

Data Mining and Pre-Processing

Such decision was taken in order to reduce the total amount of data and also to
avoid some relative redundancy of the post characteristics.

5.4.2 Identification Features
Each data object needed to be identified, and uniquely distinguished from the
others, during the execution of the various analyses, and, to do this, we employed
the attributes already provided for each post.

Post Identification

Instagram attributes three unique identifiers to each content: an alphanumeric
string, called “id”, used as the unique identifier of the post in the CrowdTangle
system, which is composed of the numeric unique identifier of the account that
published the post, pre-poned in charge of a long integer (LongInt), as shown in
Figure 5.8; the legacyId, which is the legacy version of the unique identifier of
the post (on CrowdTangle), and is owned by just under half of the posts (probably
it has been deprecated by the system); an external URL that the post links to,
pointing to the web page containing the post itself.

Post Identifierú ýü û
8280535ü ûú ý

Account Identifier

| 2450530523024221990ü ûú ý
LongInt

Figure 5.8: Post unique identifier example

Figure 5.9: Post entries example

88

Data Mining and Pre-Processing

Account Identification

The characterization of the users’ accounts is slightly richer (Fig. 5.10): in addition
to the id and the URL also provided for the posts, the user profiles are also
designated through an attribute called name that can be chosen and widely modified
by the user (it can in fact contain a variety of characters) and a handle (commonly
known as a “username”) that can only contain Latin letters, numbers, underscores,
and dots. The name does not have to be exclusive on the platform (Instagram),
while the username must necessarily be unique for each user.

Figure 5.10: Example of account entries (URLs truncated for pagination con-
straints)

5.4.3 Temporal Features
As stated earlier in chap. 3, the dataset was extracted over a six-year time frame.
CrowdTangle essentially provided three types of temporal data, as represented in
Table 5.1:

• date: the date, represented as a string, of the post’s publication time;

• date: the date, saved in the same format, of the last update of the post by
CrowdTangle;

• date saved in history: the data of each sampling, saved within an array in
parallel with the reference metrics (actual number of likes and comments
obtained from the post and expected number of likes and comments to be
received by the post).

This information needed some transformations to be used more easily and to locate
posts in certain periods of time.
Due to the fact that a timestamp would have been too accurate and would have
identified the data objects too accurately, and because there was no interest in
having precision information on the actual days of each week (from Monday to
Sunday) and each month (for example from January 1st as of January 31), the weeks
and months have been uniquely identified in conjunction with the information

89

Data Mining and Pre-Processing

regarding the corresponding year.
In particular, the information on the date has not been removed for completeness,
but transformed into the DateType in the format “yyyy-MM-dd” (removing the
part concerning the time, hours, minutes and seconds in the format “HH: mm:
ss”), and then we added the fields week, month, and year, calculated using
the pyspark.sql.functions library methods, respectively weekofyear, which
extracts the week number (from 1 to 52) of a given date as integer, month, and
year, which extract respectively the month and the year of a given date as integer,
applied on the new transformed Column date of the PySpark DataFrame.

2020-11-25ü ûú ý
Date

23:58:10ü ûú ý
Timeü ûú ý

Original date format
2020-11-25 11

2020

48

DateType()

year()

month()

weekofyear()

Figure 5.11: Example of date transformation

5.4.4 Popularity Features
As mentioned above in chap. 3, CrowdTangle tracks interactions, also known as
engagement, which is defined as the number of reactions (likes and comments) and,
for Facebook, also of shares, during a given set period of a time frame, over 10
minute intervals. As for comments, CrowdTangle does not provide the comment
text, only the total number of comments, and does not differentiate between
whether the comment was in response to the post or in reply to a mention or
another comment to the post.
Consequently, from each post some information on popularity was extracted, in
particular four types of metrics, already provided by the platform (CrowdTangle):

• Number of likes of the post at a specific time;

• Number of comments to the post after a certain time;

• Number of followers of the influencer (the creator of the content) at the
posting time;

90

Data Mining and Pre-Processing

• The performance-score of the post calculated by CrowdTangle.
This choice was made because these metrics are present for all influencers, easily
accessible and commonly considered the most concrete effect of reputation and
popularity.

CrowdTangle Performance-Score

CrowdTangle defines Overperforming or Underperforming scores for each
post, based on some analysis of the post interactions.
To calculate these scores, they first generate benchmarks to identify the number
of likes and comments the post is expected to receive, by taking the last 100 posts
from a given account/page and from a given type of posts (link-post, image-post,
etc.) for reference, dropping the top and bottom 25% of those 100 posts, and
computing the average number of interactions to the middle 50% of the posts at
each age (15 minutes, 60 minutes old, 5 hours, etc.).
Afterwards, when a new post is published from that account, it is compared to
that average, and the difference is multiplied by the corresponding weights in each
dashboard1. A score greater than 1 indicates that the post is performing better
than usual for a post of that sort, from that account/page, and at that time (10
minutes after posting, 1 hour after posting, etc.). A negative score means it is
faring worse than the mean.

The equation performed to compare the post to the benchmark is:

score = actual

expected
(5.1)

In other words, if a post has 100 interactions and its benchmark was 50, the score
is 100/50 = 2.0x.

According to this equation, any under-performance should be between 0 and
1, but it is rendered negative. If a post is expected to have 200 interactions and
get 100 effective, it is 50% of its expected value, which can be viewed as −2 times
underperforming.
Then the equation is reversed and its sign is changed to negative:

score = −1 ∗ expected

actual
(5.2)

In the event that a post does not receive any interaction, it would be impossible to
divide by 0, so in this case CrowdTangle simply does the following calculation:

score = −2 ∗ expected

1Actual and expected values have some multipliers (weights): a like, for example, is worth
three times the value of a video view.

91

Data Mining and Pre-Processing

If a post is overperforming but is below a minimum threshold (variable depending
on the platform), its score is entered in the range between 0x and 1x.

score = actual

minimum

This means that a post in this case presents itself as overperforming, but is simply
ranked below all other overperforming posts that have more interactions than the
minimum.

In the event that a post is underperforming in the range between 0x and 1x,
the corollary of the over-performance in this range is applied:

score = −1 ∗ expected − actual

expected

The end result is that it is correctly noted as underperforming, but does not jump
to the very bottom of the list.

New Performance-Score Computation and (Post) Filtering

To avoid all the complications of CrowdTangle’s calculations, we have recalculated
the performance score for each post.
The formulas for calculating the overperforming and underperforming scores are
the same as those used by the platform (5.1 and 5.2), while the special cases have
been simplified and incorporated into the first two. In particular, the posts that
had a number of expected reactions equal to 0 were in total 4 in the dataset and
therefore were simply removed, while to avoid the division by 0 in the formula to
calculate the underperforming score, the posts with an actual number equal to 0
reactions (which were 561 in total) were simply given a score of 0.
In addition, with the same formulas, two other scores have been calculated for
completeness, one for the likes and the other for the comments, but considering
individually the actual and expected numbers of likes and comments instead of
adding them together, as for the general equations.

Characterization of the Types of Score

As shown by the values in Table 5.2 and by the ECDFs in Figure 5.12, which
represent the distribution of posts for each type of score, the score calculated by
CrowdTangle and ours have the same distribution. As for the score calculated
individually for the number of likes and comments, it turns out that the score of
the likes tends to be slightly higher than the other for underperforming scores and
exactly the opposite for the overperforming one.

92

Data Mining and Pre-Processing

From the ECDFs it can also be seen that most of the posts (in particular 60%)
were underperforming and obtained a negative score.

Score
CrowdTangle Reactions (new) Likes Comments

Mean -37.1 -2.7 -2.6 -2.3
Std. Dev. 2 717.8 244.1 241.3 26.4
Minimum -1 489 218 -129 665 -129 344 -1 519.5
Maximum 872.9 872.9 1 278.3 25 974.8

Table 5.2: Statistical description of the post scores, for each type

Figure 5.12: ECDFs of the post scores

Since no particularly significant differences were found between the score calculated
by CrowdTangle and the new one, only the latter will be taken into consideration
for subsequent analyses, concerning the usual subdivision of influencers (and their
posts) into classes, already performed for the characterization of the dataset de-
scribed in chap. 3.

Mega inf. Macro inf. Micro inf. Nano inf.
Mean -3.8 -2.2 -1.7 3.9
Standard Deviation 403.5 134.5 12.9 5.5
Minimum -129 665 -70 351 -1 095 -1.7
Maximum 700 872.9 123.3 33.5

Table 5.3: Statistical description of the (new) post score distribution for each
class of influencers

From the Table 5.3 and the ECDF in Figure 5.13, which represent the same previous
data but reflecting the division into classes, it can be seen that the posts of mega,

93

Data Mining and Pre-Processing

Figure 5.13: ECDF of the (new) post score for each class of influencers

macro and micro influencers do not present substantial differences, while the nano
influencers’ ones would seem to have received the highest performance scores. But
it should be remembered that there are only 51 posts in this category, so the stats
can never be as accurate as those for the other three classes.

5.5 Textual Features Pre-Processing

Text pre-processing is the process of cleaning up text data before using it for
analysis or prediction by feeding the data into a Machine Learning model. When it
comes to dealing with Human Language, text data is one of the most unstructured
types of accessible data, which could include some noise in the form of emoticons,
punctuation and text in several cases.
Natural Language Processing (NLP)-based challenges are addressed using a variety
of libraries and techniques, which mainly use regular expressions to reorder the
text. The NLTK and SpaCy next-level libraries (sec. 5.2.3) are used to perform
natural language tasks, including stopword removal, named entity recognition, Part
of Speech (PoS) Tagging, sentence matching, and so on. NLTK is an outdated
library that novices can use to learn NLP methods, while SpaCy is the newest
library to be released, which features the latest methods, and is widely used in the
production environment.

94

Data Mining and Pre-Processing

5.5.1 Textual Information Extraction
Although it is not the main focus of the Social Network, it is common for Insta-
gram posts to include a text description (a caption): this text can contain up to
2200 characters of any type and frequently includes emojis, hashtags, and tags.
In addition to a message to describe the context of the media, add important
information, or converse with followers, on Instagram it is common to add some
hashtags or mentions in this text space (immediately below the average of the post,
or possibly in the first comment, but such occurrence was not traceable due to
lack of information in the dataset). Although it used to be greater, the maximum
number of mentions is now set at 20, at 30 for hashtags.
The features of the text extracted for each post, if available, were the following:

• the list of the total words used;

• the list of hashtags;

• the list of mentions;

• the list of simple words, hashtags excluded;

• the list of words contained in the image.

These lists of words were generated by splitting the string of the description
field, using the the space (“ ”) and the new line (“\n”) characters as separators,
and by means of the regular expressions:

#(\w+) \B@\w+
Figure 5.14: Regular Expressions used to extract respectively hashtags and
mentions

5.5.2 Special Characters Cleaning
Lower Case

Since lowercase and uppercase letters are processed differently by a computer
(words like “ball” and “Ball”, for example, are handled differently), it is simple for
a machine to read the words if the text is in the same case.
As a result, we transformed each word in the content in the same case, to prevent
such issues. To do this, we exploited the Python’s String library, which provides
the lower() method, converting all uppercase characters in a string into lowercase
characters.

95

Data Mining and Pre-Processing

Punctuation and Empty Strings Removal

Many times the text data contains extra spaces or while performing the pre-
processing techniques listed in this section, more than one space is left between the
text, so it is necessary to check and fix such problem: blank strings or additional
space characters have been deleted from the various word lists.
The removal of punctuation is another text pre-processing classic approach, and
there are a total of 32 major punctuation marks that must be considered. We used
again the String module to replace any punctuation in the text with an empty
string. Python’s String library has a pre-defined set of punctuation, such as:

!"#\$\% \&'()*,-./:;?\@[]'|+

Therefore, we exploited the following line of code to remove them:

1 text.translate (str.maketrans("", "", string.punctuation))

Unicode Words

A post caption might also contain human-readable Unicode strings that should
still be somehow machine-intelligible. For this reason, we used the Unidecode1

library to decode the text in case special characters were present. In particular, the
unidecode() function takes the Unicode data and tries to represent it in ASCII
characters (i.e. the universally visible characters between “0x00” and “0x7F”),
where the compromises made when mapping between two character sets are chosen
for be close to what a human with an American keyboard would choose.

Emojis Removal

It is common in the caption of Instagram posts to find some special characters
aimed at enriching the content, called “Emojis”, which are pictograms, logograms,
ideograms or emoticons, of various kinds, including facial expressions, common
objects, places and types of time and animals. The main function of emojis is
to fill in the otherwise missing emotional cues in the typed conversation. They
are very similar to emoticons, a facial expression representations created with
simple punctuation marks, but emojis are more like real small images rather than
typographical approximations, and each of them is associated with a Unicode code.
Many of them are meaningless and for this it is necessary to remove them from the

1www.pypi.org/project/Unidecode

96

www.pypi.org/project/Unidecode

Data Mining and Pre-Processing

text as they do not provide useful information. To do this, after uni-decoding the
text, we exploited again a regular expression to find and eliminate Emojis:

[\u263a-\U0001f645]
Figure 5.15: Regular Expression to find Emoji characters

5.5.3 Part-of-Speech (PoS) Tagging Analysis
Part-of-Speech Tagging, also known as grammatical tagging in corpus linguistics,
is the technique of identifying a word in a text (corpus) as belonging to a certain
part of speech based on its meaning and context. Simply put, PoS Tagging is the
process of classifying words as nouns, pronouns, verbs, adjectives, and so on, and
it is important in sentence analysis, information retrieval, sentiment analysis, and
other applications.
PoS Tagging, which was once done manually, is now done in the framework of
computer linguistics, with algorithms that link discrete terms, as well as concealed
parts of speech, with a set of descriptive tags.For example, in English, a word that
comes after “the” is almost always a noun. Because some words can represent more
than one part of speech at different times, i.e. they can work in multiple ways when
used in different circumstances, and because some parts of speech are complex or
unspoken, this task is more difficult than simply having a list of words and their
parts of speech.

To categorize which tag or label a token belongs to, the SpaCy library uses a
trained pipeline and statistical models, used to provide a series of annotations for
each term, given a certain text. In particular, each token (word) is given a PoS
Tag from the list in Table 5.4.

Figure 5.16: Example of PoS Tagging performed by the SpaCy library

97

Data Mining and Pre-Processing

PoS Tag Description
ADJ Adjective
ADP Adposition
ADV Adverb
AUX Auxiliary
CONJ Conjunction
CCONJ Coordinating Conjunction
DET Determiner
INTJ Interjection
NOUN Noun
NUM Numeral
PART Particle
PRON Pronoun
PROPN Proper Noun
PUNCT Punctuation
SCONJ Subordinating Conjunction
SYM Symbol
VERB Verb
X Other
SPACE Space

Table 5.4: SpaCy Part-of-Speech Tags List

For our purposes, the PoS Tagging analysis was performed for all the extracted
word lists presented in sec. 5.5.1, but excluding that of hashtags, due to the
nature of this kind of words, which are inserted in the posts as a sort of list,
potentially of unrelated words, without creating sentences with full meaning.

Language Detection

Each language is unique, full of exceptions and special circumstances, even among
the most popular terms. Some of these exceptions are shared between languages,
while others are completely specific, often necessitating hard-coding to handle. All
language-specific data is structured in Python files under SpaCy’s lang module.
In order to execute a good PoS Tagging analysis, it is necessary to first determine
the language of each post caption, and use the corresponding SpaCy package. The
library supports 63 languages in total, but is constantly developing for additional
functionality.

By running the SpaCy Language Detection algorithm on each post of our dataset,
a total of 32 different languages were detected, in which Italian would seem

98

Data Mining and Pre-Processing

to prevail, followed by English, as shown in Figure 5.17. The “Unknown” column
refers to posts that did not have a caption or that was completely filtered out by
the analyses above, and it includes 151 960 posts in total.

Figure 5.17: Language Detection performed by the SpaCy library on the Instagram
Post Dataset

By manually testing the content of the captions of posts identified as belonging
to uncommon languages, such as Tagalog, it turned out that this detection is
probably due to an error, on the part of the user who created the post or the
library, as they were consisting of lists containing only one or two words, or just
mentions, acronyms, misspelled words, abbreviations, words not divided by spaces,
contractions, colloquial and dialectal expressions.

Figure 5.18: Percentage of people in Italy who speak the illustrated languages as
a mother tongue or foreign language

99

Data Mining and Pre-Processing

By taking the data from the statistics reported on LanguageKnowledge1 website
and in Figure 5.18, the most used languages in Italy are, in order: Italian, English,
French and Spanish. For this reason, only these four languages were used to perform
PoS Tagging on posts.

PoS-Tagging (Words) Filtering

This SpaCy PoS Tagging Analysis was performed on all the posts of the dataset to
keep for each list of words (remember, hashtags excluded) only nouns (NOUN tags)
and proper nouns (PROPN tags), which are the terms that most contribute to
the identification of the general topic of each post, in accordance with our purposes,
pruning useless ones instead.

5.5.4 Stop-Words Removal
Stop words are the most used words in any human language (such as articles,
prepositions, pronouns, conjunctions, etc.), which do not provide useful information
for textual analysis. “They”, “there”, “this”, “where” and others are examples of
stop-words. Stop words are available in abundance and therefore, by removing
those words, we reduce the dataset size and remove low-level information from
texts, to focus more on the important information.
The NLTK library is a widely used stop-words removal library that provides
approximately 180 stop-words for the English language, 280 for Italian, 160 for
French and 310 for Spanish. SpaCy, on the other hand, provides 326 stop-words
only for the English language, 607 for Italian, 507 for French and 551 for Spanish.

In order to get the best possible results, we combined both stop-words collections
into a single set of terms (removing duplicates). Following that, we utilized the set
to filter these terms out of the list of words collected from each post (in this case
hashtags included).
Furthermore, in order to properly filter the hashtags, we manually included the
non-significant hashtags most commonly used by Instagram influencers, as well
as other terms (manually checked) that were not appropriately excluded by the
aforementioned libraries. These additional words are listed in Table 5.5, including
266 hashtags and terms.
We finally obtained a set of 2 390 stop-words in total.

Other terms that were removed were those containing less than 4 characters
or just numbers.

1www.languageknowledge.eu/countries/italy

100

www.languageknowledge.eu/countries/italy

Data Mining and Pre-Processing

Dictionary of additional stop-words

abbi, abbia, advertising, agli, alcune, alcuni, alla, alle, allo, alwaysfollowback, amazing,
amore, anche, anzi, beautiful, beautifulday, beauty, best, bestoftheday, boysofinstagram,
ciao, come, cool, cosa, cose, cute, daily, dargli, darglielo, darle, darmela, darmelo, darmi,
darvela, darvelo, darvi, davvero, degli, dimmi, diretta, dirgli, dirglielo, dirvelo, dirvi,
diventare, domani, dormo, dovete, durano, entrambe, entrambi, facebook, faresti, fatto, fol-
low, follow4follow, follow4followback, followall, followalways, followback, followbackalways,
followbackteam, follower, followerforfollower, followerforfollowers, followers, followersfor-
follower, followersforfollowers, followforfollow, followforfollowback, followher, followme,
followtrick, followxfollow, forever, fosse, foto, giele, goodlookingguys, goodmorning, grazie,
happiness, happy, happyness, hello, ieri, ierisera, ifollow, igers, ilove, incontrarti, insta,
instabeauty, instablog, instaboy, instacolor, instacolors, instacool, instadaily, instadailypic,
instafamous, instafashion, instagirl, instaglam, instago, instagood, instagram, instagramer,
instagramers, instagrammer, instagrammers, instahome, instalife, instalike, instalive,
instalove, instaminchia, instamoment, instamood, instangram, instanlike, instaphoto,
instaphotography, instaphotos, instapic, instapics, instasaturday, instastories, instatag,
instavideo, instavideos, ioete, iphoneonly, lets, life, lifestyle, like, like4like, like4likeback,
like4likes, likeback, likeforfollow, likeforfollower, likeforfollowers, likeforfollows, likeforlike,
likeforlikealways, likeforlikeback, likeforlikes, likeforliketeam, likes, likes4like, likes4likes,
likesforfollow, likesforfollower, likesforfollowers, likesforlikes, link, linkinbio, love, lovelife,
loveu, loveyou, meandyou, meme, memeita, memes, meno, messo, mood, moodoftheday,
mylove, oggi, online, onthisday, ootd, parole, perche, percio, photo, photodaily, photogra-
phy, photooftheday, picby, picoftheday, pics, pleasefollow, pleasefollowme, pochino, porti,
posso, post, puoi, pure, quando, quant, quanta, quante, quanti, quanto, questo, repost,
rispondi, saresti, scrivera, seguitemi, sempre, senza, shop, shot, shots, shout, shoutout,
shoutout4shoutout, shoutout4shoutouts, shoutouter, shoutouters, shoutoutforshoutout,
shoutoutforshoutouts, shoutouts, shoutouts4shoutout, shoutouts4shoutouts, shoutoutsfor-
shoutout, shoutoutsforshoutouts, siate, simply, smile, sono, stasera, storia, storie, story,
tagforlike, tagga, taggaituoiamici, tagsforlike, tagsforlikes, tagsta, tagstagramers, tanta,
tante, tanti, tanto, teamfollowback, thanks, thankyou, tipo, today, tomorrow, toptag,
toptags, torno, trovate, tumblr, unforgettableinstagrammer, unlimlikes, vabbe, vabbè,
vederti, video, voglio, vogliono, vuoi, webstagram, youandme, youtube, youtuber.

Table 5.5: Dictionary of manually added stop-words, in alphabetical order

101

Chapter 6

Methodologies and Results

In this chapter the software architecture implemented in order to achieve our
objectives will be defined, the parameters of the various methods and the results
achieved will be presented and the latter will also be suitably compared to try to
determine which methodology offers the best outcomes.

6.1 Workflow
The workflow of this project can be divided into 4 phases, each of which is further
composed of sub-phases, as shown in Figure 6.1:

Figure 6.1: Project workflow

102

Methodologies and Results

1. Data Pre-Processing: already fully described in chap. 5, consisting of
data cleaning, data fields transformation and textual features extraction and
pre-processing (cleaning and filtering);

2. Anomaly Detection: the time series, during the 6 years of our dataset,
of the posts published by the individual influencers are analyzed in order
to find anomalous posts (with respect to the number of reactions received,
more details in sec. 6.2). Four classical techniques/algorithms, described
theoretically in chap. 4, have been implemented: an ARIMA Model that
forecasts the time series pattern and finds the posts that deviate too much
from this prediction, the Boxplot Rule method, the Isolation Forest and
the Z-Score method;

3. Textual Analysis: once the anomalies have been detected using the various
approaches mentioned above, a more in-depth textual analysis is performed
on the resulting anomalous posts for each week of the dataset. This analysis
includes three components: the computation of the Term Frequency - Inverse
Document Frequency (TF-IDF) and the Sublinear TF-IDF for each word
contained in the captions of anomalous posts published during a certain week,
and, subsequently, a new and final transformation of the dataset scheme into
a more complex one that includes these last analyses (more details in sec. 6.3);

4. Clustering: the final phase involves the grouping of the anomalous posts
obtained in phase 2, using the textual features obtained during phase 1 and
3, also in this case for each week of the dataset, trying to identify the posts
that have received an anomalous number of reactions due to external events
to the social network, that is, dealing with topics deriving from external
factors. Four textual-clustering techniques have been implemented: the
DBSCAN (applied on a pre-computed pairwise textual distance-matrix
involving the weekly captions of anomalous posts) and K-Means (applied on
a weighted hashed vector of the caption words) algorithms, an LDA model,
and Community Detection algorithms applied on a graph of anomalous
posts built for each week, more details are illustrated in sec. 6.4).

6.2 Anomaly Detection
After the pre-processing of the dataset, it was possible to proceed with the detection
of anomalies. To do this, as mentioned above, four state-of-the-art classical methods
have been implemented: an ARIMA model, the Boxplot Rule method, the Isolation
Forest and the Z-Score method.
The first definition to be given was the meaning of “anomalies” in our research,
and we concluded that a post is identified as an outlier if it is assigned a score

103

Methodologies and Results

(calculated as described in the sec. 5.4.4) that is too overperforming or, conversely,
too much underperforming, i.e. a score which deviates significantly from the scores
usually received by the influencer who created the post.
In detail, to detect such anomalies, we individually analyzed the various influencers
of the dataset and the time series of the score assigned to the posts they published
during the six years mentioned above. The outliers were then identified for each
individual time series, therefore with respect to the context of the post-score
history of each influencer.
In total, with the various techniques proposed, 106 866 anomalous posts were
extracted (removing duplicates, i.e. posts in common found by multiple methods),
corresponding to approximately 7.6% of the purged dataset, that contained
1 400 697 posts. Among these anomalous posts, 43 674 received an overperforming
score and 63 192 an underperforming one.
It is specified that the following methods and algorithms presented do not necessarily
have to be performed in sequence, but separately from each other, with the aim of
choosing the best (s). Furthermore, the subsequent operations (Textual Analysis
and Clustering) are performed individually for each group of outliers detected
by each method, so that, in the end, it is possible to identify the sequence of
methodologies which, as a whole, provides the best possible results.

6.2.1 ARIMA Model
Time series data, as stated earlier (sec. 4.2.1), is strictly sequential and very
susceptible to auto-correlation. Time series Machine Learning models, whichever
model is chosen, would use the data to train and find the general behavior of the
data in order to try to predict the data: if an observation is normal, the forecast
would be as close to the actual value as possible; otherwise, if an observation is
an outlier, the forecast would be as far away from the real value as possible. As a
result, outliers in the data can be discovered by examining the prediction errors, in
particular by performing the following steps:

1. Determine whether the data are stationary and, if not, transform them to
stationary (with an ARIMA model, such conversion can be performed by using
differencing);

2. Fit the pre-processed data to a time series model (find the best order for the
ARIMA model);

3. Calculate the squared error for each data observation;

4. Establish a data error threshold;

5. If an observation’s errors exceed such threshold, we can classify such observa-
tion as an anomaly.

104

Methodologies and Results

In order to use ARIMA time series forecasting, the first step was to check whether
the time series of the score assigned to the posts of each influencer was stationary
or not, and this could be tested through the Augmented Dickey-Fuller (ADF)
test. This test returns the statistics, which contain a p-value, used to determine
whether the data is stationary or not: if this value is less than 0.05 (called the
“significance level”, which corresponds to 95%), the data is stationary, otherwise, if
the p-value is greater, the data are not stationary, i.e. they have no constant mean,
variance and auto-correlation.
The Python statsmodel package provides a reliable implementation of the ADF
test via the adfuller() function (from statsmodels.tsa.stattools), and also
of the ARIMA model (from statsmodels.tsa.arima.model), which are the ones
we exploited for this research.
The second step was to determine the number of differencing (up to a maximum
of second order differencing, it makes no sense to differentiate further) required
to convert the time series data of each influencer into stationary, if they were not
already, and, after that, we could use the resulting data to train the ARIMA model.

It is remembered that the ARIMA model has three parameters namely p, q
and d: p stands for AR (Auto Regression), which uses the previous lags to model
the data, and q for MA (Moving Average), which uses the previous forecast errors
for modelling the data, and d, which is the order of differencing. In particular,
Automatic Regression utilizes the data lags as characteristics and the given data
as a target to model and predict the relationship between the data, using the
Least-Squares (or Linear Regression) approach.
In order to find the best order (p, q, d) for the model, we selected the com-
bination of values (the order) that reduced the Akaike Information Crite-
rion (AIC), keeping in mind, as a general best practice, that the values of
p, q and d are generally kept below 3 [27]. The Python code we implemented,
fitted the model for different p, q and d values (each of which in the range [0,2]),
recording the AIC for each combination (multi-threading was used to execute the
code faster), obtained through the aic attribute (of each fitted model). After
completing, we found the best order by using the minimum AIC value for the
model.

The following step was to find the Squared Error for each and every post-score
in the data: the resid attribute of the fitted results had the residuals of each
observation and forecast.

Afterwards, we found the threshold for the squared errors above which the data
was considered to be anomalous, by using the following formula:

threshold = µ(squared_errors) + (z ∗ σ(squared_errors)),

where µ is the mean function, σ is the standard deviation function and z, in our
case, is an integer equal to 1.

105

Methodologies and Results

The predictions contained the integers 0 and 1, indicating normal and anomalous
observations respectively.

Results

With the proposed method, namely the ARIMA model, we extracted from the
dataset 48 656 anomalous posts in total, of which 19 728 with an overperforming
score and 28 928 with an underperforming score. The total statistics, concerning
also the usual subdivision of influencers in classes (chap. 3), are illustrated in
Table 6.1. The column “Influencers” refers to the number of influencers, for the
corresponding category, who published at least an anomalous post.

Influencers Tot. Anom. Overperf. Underperf.
All influencers 1 373 48 656 19 728 28 928
Mega infl. 173 9 515 4 227 5 288
Macro infl. 1 147 38 538 15 232 23 306
Micro infl. 52 600 266 334
Nano infl. 1 3 3 0

Table 6.1: Statistics of anomalies found by the ARIMA Model in the post-score
history of each influencer, subdivided per class

An example of output of the results is shown in Figure 6.2:

Elisabetta Franchi1

Fitting ARIMA with order p, d, q = (0, 0, 0) ...
Fitting ARIMA with order p, d, q = (0, 0, 1) ...
Fitting ARIMA with order p, d, q = (0, 0, 2) ...
Fitting ARIMA with order p, d, q = (1, 0, 0) ...
Fitting ARIMA with order p, d, q = (1, 0, 1) ...
Fitting ARIMA with order p, d, q = (1, 0, 2) ...
Fitting ARIMA with order p, d, q = (2, 0, 0) ...
Fitting ARIMA with order p, d, q = (2, 0, 1) ...
Fitting ARIMA with order p, d, q = (2, 0, 2) ...

Minimum AIC : 88033.05
Minimum order : (0, 0, 1)
Threshold : 34256.82

1www.instagram.com/elisabettafranchi

106

www.instagram.com/elisabettafranchi

Methodologies and Results

Figure 6.2: Example of anomalies (9 in total) found by the ARIMA Model in the
post-score history of the Italian Mega influencer Elisabetta Franchi

During the tuning of the parameters, shown immediately above the Figure 6.2, it
can be seen that the value for parameter d was set directly to 0 and did not vary
as p and q: this means that the ADF test had given a “stationary” result for the
time series of the post-scores of this influencer, so that it was not necessary to
differentiate the data.
The influencer Elisabetta Franchi was chosen and reported as an example as it
turned out to have the greatest disparity in the number of anomalies detected by
the various methods proposed.

6.2.2 Boxplot Rule Method
The Boxplot Rule method applied to the Anomaly Detection field is based on
verifying that the tested values have exceeded a certain threshold.
As explained in the chapter on Relevant Theory (sec. 4.2.2), we computed two
thresholds, a lower limit and an upper limit, using the formulas already described:

IQR = Q3 − Q1

lower_limit = Q1 − 1.5 ∗ IQR
upper_limit = Q3 + 1.5 ∗ IQR,

where Q1 and Q3 are, respectively, the first and third quartile and IQR is the
Interquartile Range.
It should be remembered that the zero quartile (Q0), the first (Q1), the second
(Q2, the median), the third (Q3) and the fourth quartile (Q4) correspond with

107

Methodologies and Results

the first modes whose cumulative percentage frequency is at least 0, 25, 50, 75
and 100 respectively. Therefore, Q1 corresponds to the ith mode if the cumulative
percentage frequency Pi−1 < 25 and Pi ≥ 25, while Q3 corresponds to the ith mode
if the cumulative percentage frequency Pi−1 < 75 and Pi ≥ 75.
To calculate the quantiles Q1 and Q3, respectively, we applied the quantile function
of the Pandas Python library to the series of the scores assigned to the posts of
each influencer. In particular:

1 Q1 = series.quantile (0.25)
2 Q3 = series.quantile (0.75)

We then used the two thresholds to define as anomalies all the posts that had been
assigned a score lower than lower_limit or greater than or equal to upper_limit.

Results

With the proposed method, namely the Boxplot Rule method, we extracted from the
dataset 77 812 anomalous posts in total, of which 30 049 with an overperforming
score and 47 763 with an underperforming score. The total statistics, concerning
also the usual subdivision of influencers in classes, are illustrated in Table 6.2.

Influencers Tot. Anom. Overperf. Underperf.
All influencers 1 070 77 812 30 049 47 763
Mega infl. 159 25 572 9 896 15 676
Macro infl. 877 51 300 19 830 31 470
Micro infl. 33 933 317 616
Nano infl. 1 7 6 1

Table 6.2: Statistics of anomalies found through the Boxplot Rule method in the
post-score history of each influencer, subdivided per class

An example of output of the results is shown in Figure 6.3:
Considering the high number of anomalies found for the influencer Elisabetta
Franchi through this method, the Figure 6.3b clearly shows the range of values (in
blue, separated by the red markers) within which the scores assigned to the posts
are considered “normal”.

108

Methodologies and Results

(a) Boxplot

(b) Time series with anomalies

Figure 6.3: Example of anomalies (3 193 in total) found through the Boxplot Rule
method in the post-score history of the Italian Mega influencer Elisabetta Franchi

6.2.3 Isolation Forest
To implement the Isolation Forest algorithm we used the model already present in
the Python scikit-learn library, which returns the anomaly score of each sample
to be tested. The parameters of sklearn.ensemble.IsolationForest are the
following [57]:

• n_estimators: int, default = 100
The number of base estimators in the ensemble;

• max_samples: “auto”, int or float, default = ”auto”
To train each base estimator, the number of samples to take from the input
data. If the number of samples supplied is insufficient, all samples will be
utilized for all trees (no sampling);

• contamination: ”auto” or float (in the range (0, 0.5]), default = ”auto”
The quantity of contamination in the dataset, i.e. the percentage of outliers

109

Methodologies and Results

in the dataset. When fitting the samples, this function is used to define the
threshold;

• max_features: int or float, default = 1.0
The number of features to use to train each base estimator from the input
samples;

• bootstrap: bool, default = False
Individual trees are fitted to random subsets of the training data selected with
replacement if True; otherwise, sampling without replacement is executed;

• n_jobs: int, default = None
The number of tasks to run in parallel for both fit and predict, −1 means
using all processors;

• random_state: int, RandomState or None, default = None
Manages the pseudo-randomness of feature and split values selection for each
branching step and each forest tree. It is utilized to get consistent and
reproducible outcomes over a number of different function calls;

• verbose: int, default = 0
Manages the tree-building process’s verbosity;

• warm_start: bool, default = False
When True, repeat the previous call to fit-solution and add extra estimators
to the ensemble; otherwise, fit a completely new forest.

All parameters have been left at the default value, except for contamination set
to 0.01, assuming that the percentage of outlier points in the score-data of each
influencer is 1% (no tuning performed), n_jobs set to 10 to not overload the server,
random_state set to 42.
The estimator has been fitted to the score assigned to each influencer’s posts and,
for each sample, the predict method returns an integer as a label, −1 if the sample
is an outlier, 1 if not.

Results

With the proposed method, namely the Isolation Forest algorithm, we extracted
from the dataset 14 596 anomalous posts in total, of which 4 271 with an
overperforming score and 10 325 with an underperforming score. The total statistics,
concerning also the usual subdivision of influencers in classes, are illustrated in
Table 6.3.

An example of output of the results is shown in Figure 6.4:

110

Methodologies and Results

Influencers Tot. Anom. Overperf. Underperf.
All influencers 1 377 14 596 4 271 10 325
Mega infl. 173 4 091 1 020 3 071
Macro infl. 1 152 10 250 3 152 7 098
Micro infl. 51 254 98 156
Nano infl. 1 1 1 0

Table 6.3: Statistics of anomalies found by the Isolation Forest algorithm in the
post-score history of each influencer, subdivided per class

Figure 6.4: Example of anomalies (91 in total) found by the Isolation Forest
algorithm in the post-score history of the Italian Mega influencer Elisabetta Franchi

6.2.4 Z-Score Method
Similarly to the Boxplot Rule method, also for the Z-Score method it is necessary
to define two thresholds, one lower and one upper, beyond which the data objects
are defined as outliers
Also in this case, the formulas used are the same as defined in the chapter of
the Relevant Theory (sec. 4.2.4), where, in particular, the mean and the standard
deviation have been calculated on the historical series of the scores assigned to the
posts of each individual influencer:

lower_limit = µ − 3 ∗ σ

upper_limit = µ + 3 ∗ σ,

where µ is the mean and σ is the standard deviation, computed through the
pyspark.sql.functions library methods, respectively mean and stddev, applied
on the PySpark Column of the post-score for each influencer.

111

Methodologies and Results

Results

With the proposed method, namely the Z-Score method, we extracted from the
dataset 9 969 anomalous posts in total, of which 1 649 with an overperforming
score and 8 320 with an underperforming score. The total statistics, concerning
also the usual subdivision of influencers in classes, are illustrated in Table 6.4.

Influencers Tot. Anom. Overperf. Underperf.
All influencers 1 023 9 969 1 649 8 320
Mega infl. 162 2 495 373 2 122
Macro infl. 827 7 325 1 233 6 092
Micro infl. 33 148 42 106
Nano infl. 1 1 1 0

Table 6.4: Statistics of anomalies found through the Z-Score method in the
post-score history of each influencer, subdivided per class

An example of output of the results is shown in Figure 6.5:

Figure 6.5: Example of anomalies (15 in total) found through the Z-Score method
in the post-score history of the Italian Mega influencer Elisabetta Franchi

As also noted in the example reported for the ARIMA model, also with this method
only anomalies relating to posts to which an underperforming score has been
assigned (for Elisabetta Franchi) were detected. With the Boxplot Rule method
and the Isolation Forest algorithm, on the other hand, anomalous posts that had
received a score overperforming were also discovered.

112

Methodologies and Results

6.2.5 Comparison of Anomaly Detection Methods and Re-
sults

The graph in Figure 6.6 shows the main characteristics (and their counts) of the
various Anomaly Detection methodologies proposed, highlighting the differences
from method to method.

Figure 6.6: Comparison of results from different Anomaly Detection Methods

As for the number of influencers for which at least one anomalous post was
detected, the counts are very similar to each other, with a difference of about 300
influencers between the results found by the ARIMA and Isolation Forest methods
(1 373 and 1 377 influencers respectively) and those found by the methods of the
Boxplot Rule and Z-Score (1 070 and 1 023 influencers, respectively).
It should be remembered that the total number of influencers in the filtered dataset
(chap. 3) was 1 396, which means that:

• ARIMA Model: about 98.4% of influencers published at least one post identi-
fied as anomalous;

• Boxplot Rule method: about 76.7% of influencers published at least one post
detected as an outlier;

• Isolation Forest algorithm: about 98.6% of influencers published at least one
post identified as anomalous;

• Z-Score method: around 73.3% of influencers published at least one post
detected as an outlier.

113

Methodologies and Results

As regards the number of total anomalies detected, the Boxplot Rule method
is the one to have found the largest number, followed by the ARIMA Model, the
Isolation Forest and finally the Z-Score method, which is, instead, the one to have
found the least number of anomalous posts.
Between the ARIMA model and the Boxplot Rule method there is a difference
of about 29 thousand outliers, but the order of magnitude of the count is still
sufficient to carry out the clustering phase (sec. 6.4). The Isolation Forest and the
Z-Score method, on the other hand, found too few anomalies on the 6 years of the
dataset (more than 36 thousand posts on average less than the ARIMA Model and
even more than 65 thousand posts on average less compared to the Boxplot Rule
method), so the results of future clustering step cannot be satisfactory.

Another interesting information attainable from the graph concerns the difference
between the number of anomalous posts that have been assigned an overperform-
ing score and those that have received an underperforming score. In fact, it
can be noted that the former are less numerous than the latter, regardless of the
Anomaly Detection method used. This could mean that the statistics assigned to
the posts by CrowdTangle, on the number of reactions expected to get, in some cases
are too optimistic, or endogenous/exogenous causes to the Social Network meant
that these posts received a lower number of likes and comments than CrowdTangle
expected.

The last interesting analysis concerns the comparison of the number of anoma-
lies detected per week by each method, as it is the data that we need most for the
clustering phase. A statistical description is in Table 6.5, while Figure 6.7 shows
the ECDF of the distribution of the number of weekly anomalies by each method.

Overperforming - Underperforming
ARIMA M. Boxplot R. Isol. For. Z-Score

Weeks with
anomalies 283 - 315 275 - 304 247 - 308 218 - 300

Anomalies
per week

Mean 69.7 - 91.8 109.3 - 142.6 17.3 - 33.5 7.6 - 27.7
Median 77 - 94 113 - 146 17 - 30 6 - 25.5
Std. Dev. 51.7 - 52.5 88.4 - 86.8 13.7 - 22.8 6.8 - 20.4
Minimum 1 - 2 1 - 1 1 - 1 1 - 1
Maximum 205 - 294 346 - 416 79 - 149 41 - 130

Table 6.5: Statistical description of weekly anomalies for each Anomaly Detection
method

The results obtained are consistent with the total number of anomalies detected by
each method, and therefore reflect the same numerical differences.

114

Methodologies and Results

Figure 6.7: ECDFs of the distribution of the weekly number of anomalies for
each Anomaly Detection method

6.3 Textual Analysis
In addition to the pre-processing of the data (chap. 5), before moving on to the
next step, that of clustering, it is necessary to carry out other analyses on the
textual attributes (the hashtags, the content of the caption and the text within the
image) of the remaining posts, i.e. anomalous posts found in the previous phase.
These analyses add further machine-intelligible features, which can be useful
for clustering methods. Therefore, it can be said that this step is actually a sort of
preparatory bridge, a transition between the previous phase and the next.

6.3.1 TF-IDF and Sublinear TF-IDF
As explained above (sec. 4.5.1), The term Frequency - Inverse Document Frequency
(TF-IDF) is a numerical statistic that indicates the importance of a certain word
to a document in a collection or corpus. The TF-IDF value is directly proportional
to the number of times a word appears in the document and inversely proportional
to the number of documents in the corpus that contain the term (to soften the
weight of some words that appear more frequently in general).

In our case, the “documents” are the influencers’ accounts: each user is
represented by a vector. The words used by each influencer are grouped into a
“sentence”, a string of words separated by spaces, which is treated like a document.
So, in other words, the weight of the aforementioned vector is calculated by a
TF-IDF scheme where TF is the frequency of the keywords used by the influencer
and IDF is the number of influencers who have used the keywords: the more an

115

Methodologies and Results

influencer uses a certain word, the higher the TF-IDF of that word, but the more
influencers will use that word, the lower the TF-IDF value. We used the same
approach for the calculation of the Sublinear TF-IDF, which gives priority to TF
over IDF.
To implement these vectors, we again used the Python scikit-learn library,
in particular the sklearn.feature_extraction.text.TfidfVectorizer, which
converts a collection of raw documents to a matrix of TF-IDF features, setting the
sublinear parameter to True in case of the Sublinear TF-IDF.
The TF-IDF/Sublinear TF-IDF value was then calculated for each word used in
each week and saved as a value in a key-value map stored for each anomalous post,
where the key is the word (more details in sec. 6.3.2).

6.3.2 Final Data Transformation
In order to represent and describe both the textual properties, obtained by analyz-
ing the anomalous posts found with each Anomaly Detection algorithm/method,
and general weekly information about the Anomaly Detection performed, we
implemented the following PySpark DataFrame schema:

• year (int): year of publication of the post;

• week (int): week of publication of of the post;

• n_anomalies (int): total number of anomalous posts of the week;

• n_anomalies_accounts (int): total number of accounts that published
anomalous posts in the week;

• AccountID (long): unique identifier of the influencer account that published
the post;

• name (string): name of the influencer account that published the post;

• postID (string): unique identifier of the post;

• date (date): exact publication date of the post;

• score (double): score of the post;

• hashtags_properties: array of maps: key = an hashtag, value = struct,
(structure) with values calculated considering the week (there is a map for
each word of the post, so they are grouped in an array). The sub-fields of
such structure are the following:

– posts_count (long): number of posts of the week that used this hashtag;

116

Methodologies and Results

– posts_ids (array of strings): list of unique identifiers of the posts of
the week that used this hashtag;

– posts_prevalence (double): ratio between the number of posts that
used this hashtag and the total number of (anomalous) posts of the week;

– names_count (long): number of influencer accounts of the week that
used this hashtag;

– account_names (array of strings): list of names of the influencer ac-
counts of the week that used this hashtag;

– account_ids (array of longs): list of unique identifiers of the influencer
accounts of the week that used this hashtag;

– names_prevalence (double): ratio between the number of accounts that
used this hashtag and the total number of influencer accounts of the week;

– TF_IDF (double): TF-IDF of the hashtag calculated in the week context
(each document is an influencer account);

– Sublinear_TF_IDF (double): Sublinear TF-IDF of the hashtag calcu-
lated in the week context (each document is an influencer account);

• words_properties: array of maps: key = a word, value = struct,
with values calculated considering the week (there is a map for each word
of the post, so they are in an array). The sub-fields of the structure are the
same as hashtags_properties but obviously refer to the simple words of the
caption, hashtags excluded;

• image_words_properties: array of maps: key = a word of the image,
value = struct,
with values calculated considering the week (there is a map for each word
of the post, so they are in an array). The sub-fields of the structure are the
same as hashtags_properties but obviously refer to the words within the
post-image;

year week n_anomalies n_anomalies_accounts AccountID name postID date

2020 19 114 78 81777 Chiara Ferragni 81777|2305399858668119570 2020-05-08
neg_my_score hashtags_properties words_properties image_words_properties

1.256494 [{’theferragnez’: (2, [’81777|2303900680049784691’,
’81777|2305399858668119570’],

0.017543859649122806, 1, [’Chiara Ferragni’],
[81777], 0.01282051282051282, 0.0, 0.0)}]

[{’ferragnez’: (1, [’81777|2305399858668119570’],
0.008771929824561403, 1, [’Chiara Ferragni’],

[81777], 0.01282051282051282, 0.0, 0.0)}]

[{’tiktok’: (1, [’81777|2305399858668119570’],
0.008771929824561403, 1, [’Chiara Ferragni’],

[81777], 0.01282051282051282, 0.0, 0.0)}]

Table 6.6: Example of an entry after Anomaly Detection (performed by the
ARIMA Model for week 19 of year 2020) and Textual Analysis. The anomalous
post, with an overperforming score, is by the Italian Mega influencer Chiara Ferragni

117

Methodologies and Results

This schema represents and describes the individual rows of the DataFrame, each
of which containing an anomalous post found in the previous phase of the workflow.
It is natural that in the rows representing the posts published in the same week,
the fields year, week, n_anomalies and n_anomalies_accounts, are the same for
each post (row) of that week, and are therefore repeated.

6.4 Clustering
As stated earlier, the final phase involves clustering weekly anomalies by textual
similarity. Four algorithms have been implemented: the DBSCAN, applied on a
pre-computed pairwise distance-matrix involving the captions of anomalous posts,
the K-Means, applied on a weighted (by TF-IDF values) hashed vector of the words
contained in the caption of the posts, an LDA model, and Community Detection
algorithms, applied on the graph of anomalous posts, built for each week.
We have chosen a weekly time granularity because it is the most reasonable
time interval in order not to have anomalous posts attributable to too many events
external events, in the case of a longer time interval, or too few or none, in the
occurence that the chosen time granularity was minor.
Since our goal is to find the best pair of Anomaly Detection method - Clustering
method, all results are analyzed and compared also for each Anomaly Detection
technique. Furthermore, the distinction between anomalous posts to which an
overperforming score has been assigned and those with an underperforming
score is maintained.
The analyses are carried out both on hashtags only and on all types of words
extracted from the caption and from the image, to understand which of the two is
more precise, as analyzing only the hashtags could be too simplistic, but grouping
the posts that use all words could lead to overlapping groupings, and therefore to
put posts in the same cluster that should actually be separated (because they do
not concern the same topic).
When referring to all words, further clarification is required. To reduce the number
of terms and try to improve the results, we filtered the words contained in the
caption (hashtags and words within the image excluded), taking into consideration
only those that had been assigned, from the previous textual analysis, a strictly
positive value (greater than 0) of the TF-IDF or, otherwise, a strictly positive value
(greater than 0) of the Sublinear TF-IDF.

6.4.1 DBSCAN Algorithm
To implement the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm (sec. 4.4.2), we used the model already present in the Python
scikit-learn library, which performs DBSCAN clustering from vector array or

118

Methodologies and Results

distance matrix and returns a label assigned to each sample tested. Essentially, it
finds core samples of high density and expands clusters from them.
The parameters of sklearn.cluster.DBSCAN are the following [58]:

• eps: float, default = 0.5
The largest distance between two samples at which one can be called a neighbor
of the other. This isn’t a maximum distance between points inside a cluster;

• min_samples: int, default = 5
The number of samples required for a point to be deemed a core point in a
surrounding community. This includes the actual point;

• metric: str or callable, default = ”euclidean”
The measure to calculate the distance between instances in a feature matrix.
The input sample is supposed to be a distance matrix and must be square if
the metric is “precomputed”;

• metric_params: dict, default = None
Additional metric function keyword arguments, if necessary;

• algorithm: {“auto”, “ball_tree”, “kd_tree”, “brute”}, default = “auto”
The NearestNeighbors module’s algorithm for calculating punctual distances
and locating the nearest neighbors;

• leaf_size: int, default = 30
Leaf size passed to BallTree or cKDTree (two of the algorithms of the previous
parameter). This can have an impact on the speed with which the tree is built
and queried, as well as the amount of memory required to hold the tree;

• p: float, default = None
Minkowski metric’s power to determine distance between points. If None, then
p = 2 (equal to the Euclidean distance);

• n_jobs: int, default = None
The number of tasks to run in parallel for both fit and predict, −1 means
using all processors;

All parameters have been left at the default value, except for metric set to
“precomputed”, as the input is a weekly pre-calculated square distance matrix,
n_jobs set to 10 to not overload the server, min_samples set to 2, i.e. a core point
should have at least two samples (the point itself included, so there should be at
least one sample (post)) in its neighborhood (with a caption similar to its), and
the value of eps depending on the particular week.
According to Rahmah et al. [59], one technique for automatically determining the

119

Methodologies and Results

optimal ϵ value involves calculating the average distance between each point and
its nearest k neighbors, where k = the selected value min_samples. The average
k-distances are then plotted in ascending order on a k-distance graph and the
optimal value for ϵ corresponds to the point of maximum curvature (i.e. where
the graph has the greatest slope).
In our case, the distances have already been calculated, so we can simply plot
the distribution, the ECDF diagram, of these distances. Empirically, it can
be noted that for each week the curves all rise in proximity to the distance value
1, so that, by interpolating, the ordinate value corresponding to 0.995 on the
abscissa axis is automatically chosen as the optimal epsilon value.

Distance Matrix

The distance matrix is pre-calculated to be used as a direct input to the DBSCAN
algorithm. It is a symmetrical square matrix of dimensions n × n, where n is
the number of anomalous posts of the week (n varies according to the week and the
Anomaly Detection method used). The anomalous posts are placed symmetrically
along the first row and the first column of the matrix, in such a way as to calculate
the “textual distance” between the captions of all the possible pairs of such posts.
Then, taking the posts two by two, the distance between their captions is a number
in the range [0,1] and is calculated as follows:

1. The two lists of hashtags/words are converted to sets, s1 and s2, so as to
remove duplicate words and not offset the count;

2. If the obtained sets are identical, the distance is minimum, i.e. 0;

3. The partial intersection of each pair of words not already contained in the
intersection of the two sets is calculated, using the get_matching_blocks
function of the SequenceMatcher class belonging to the Python difflib
library: it returns lists of triples describing matching sequences. Each triple
is of the form (i, j, n), and means that s1[i : i + n] is equal to s2[j : j + n].
Adjacent triples always describe non-adjacent equal blocks;

4. For each pair of words not already contained in the intersection of the two
sets, if there is at least one sub-sequence of at least 3 characters in common
between the two words, the length of the matching block (or the sum of the
lengths of the matching blocks) is divided by the total length of the two words,
in order to have a measure of how similar the two words actually are. This
value is added to the current value of partial intersection;

5. Once all these pairs of words have been compared, the final value of the partial
intersection is divided by the number of comparisons made (recorded and
increased by 1 for each combination of pairs of terms);

120

Methodologies and Results

6. Finally, the Jaccard Index definition (sec. 4.4.2) is used, but adding the partial
intersection value to the intersection size. The Jaccard distance is the
complementary, and so it is obtained by subtracting the Jaccard Index from 1.
The final formula is:

1 − |s1 ∩ s2| + partial_intersection

|s1 ∪ s2|
.

Intersection and union are are calculated by means of the homonymous pre-
existing functions for Python sets.

For the sake of clarity and completeness, the code for the distance function is the
following:

1 def distance (lst1, lst2):
2

3 s1 = set (lst1)
4 s2 = set (lst2)
5

6 if(s1 == s2):
7 return 0
8

9 partial_inters = 0
10

11 for word1 in s1 - s1.intersection(s2):
12 combinations = 0
13

14 for word2 in s2 - s1.intersection(s2):
15 match = SequenceMatcher(None, word1, word2).get_matching_blocks()
16 match_sizes_sum = sum ([m.size for m in match if m.size > 2])
17

18 if(match_sizes_sum > 0):
19 partial_inters = partial_inters + float(
20 match_sizes_sum / (len(word1) + len(word2)))
21 combinations = combinations + 1
22

23 if(combinations > 0):
24 partial_inters = float(partial_inters / combinations)
25

26 return 1 - float((
27 len(s1.intersection(s2)) + partial_inters) / len(s1.union(s2)))

121

Methodologies and Results

This function is passed as the metric parameter to the pdist function of the
Python library SciPy (scipy.spatial.distance.pdist), which computes pairwise
distances between observations in n-dimensional space, using the distance metric.
From the same package, the function squareform converts the resulting vector-form
distance array to a square-form distance matrix.

Results

In the Tables below, 6.7 and 6.8, the “Percentage of noise” indicates the percentage
of posts classified as noise with respect to the number of anomalies of the week,

Anomalous posts with an OVERPERFORMING score

Hashtags - All words
ARIMA M. Boxplot R. Isol. For. Z-Score

Epsilon (ϵ)

Mean 0.33 - 0.3 0.35 - 0.31 0.41 - 0.37 0.48 - 0.44
Median 0.31 - 0.28 0.33 - 0.29 0.34 - 0.3 0.37 - 0.33
Std. Dev. 0.11 - 0.11 0.11 - 0.12 0.23 - 0.23 0.27 - 0.28
Minimum 0.13 - 0.07 0.1 - 0.12 0.08 - 0.08 0.13 - 0.08
Maximum 1 - 1 1 - 1 1 - 1 1 - 1

Noise posts

Mean 32.1 - 0.5 43.6 - 0.1 8.9 - 0.2 3.9 - 0.19
Median 38 - 0 50.5 - 0 9 - 0 3 - 0
Std. Dev. 20.9 - 0.8 26.7 - 0.3 5.9 - 0.5 3.1 - 0.6
Minimum 0 - 0 0 - 0 0 - 0 0 - 0
Maximum 86 - 4 119 - 1 34 - 2 19 - 4

Percentage
of noise

Mean 46.8% - 0.7% 46.1% - 0.1% 46% - 1.3% 43.8% - 2.7%
Median 47% - 0% 44.4% - 0% 46.7% - 0% 50% - 0%
Std. Dev. 14.2% - 1.3% 17.3% - 0.2% 22.8% - 3.8% 27.8% - 10.8%
Minimum 0% - 0% 0% - 0% 0% - 0% 0% - 0%
Maximum 100% - 8.3% 100% - 2.3% 100% - 33.3% 100% - 100%

Number of
clusters

Mean 2.6 - 1.1 5.4 - 1 1.2 - 1 1 - 1
Median 2 - 1 5 - 1 1 - 1 1 - 1
Std. Dev. 1.6 - 0.3 4.1 - 0.1 0.7 - 0.2 0.5 - 0.13
Minimum 0 - 1 0 - 1 0 - 1 0 - 0
Maximum 8 - 3 17 - 2 4 - 3 3 - 2

Silhouette
Score

Mean 0.63 - −0.51 0.57 - −0.87 0.46 - −0.78 0.29 - −0.84
Median 0.65 - −1 0.63 - −1 0.7 - −1 0.62 - −1
Std. Dev. 0.25 - 0.63 0.32 - 0.4 0.62 - 0.48 0.7 - 0.44
Minimum −1 - −1 −1 - −1 −1 - −1 −1 - −1
Maximum 1 - 0.43 0.89 - 0.4 0.95 - 0.4 1 - 0.79

Table 6.7: Statistical description of weekly DBSCAN clustering on anomalous
posts with an overperforming score, analyzing only hashtags and all types of word
(hashtags, simple words in the caption and terms within the image)

122

Methodologies and Results

while the Silhouette Score (sec. 4.4.3), which compares how similar an object is
to its own cluster (cohesion) to other clusters (separation), in some cases is −1:
because all the posts of the week have been classified as noise and therefore no
cluster has been found, or a single cluster has been identified.
Given the results, in particular the Silhouette Score, it is superfluous to represent
the ECDFs of the distribution of the weekly number of clusters and the Silhouette
Score for clustering based on all types of words, and therefore the two distributions
are reported only for the hashtags of the anomalous posts with an overperforming
(Fig. 6.8) and underperforming score (Fig. 6.9).

Anomalous posts with an UNDERPERFORMING score

Hashtags - All words
ARIMA M. Boxplot R. Isol. For. Z-Score

Epsilon (ϵ)

Mean 0.35 - 0.33 0.36 - 0.36 0.4 - 0.36 0.44 - 0.39
Median 0.32 - 0.29 0.31 - 0.3 0.34 - 0.3 0.37 - 0.32
Std. Dev. 0.14 - 0.15 0.16 - 0.18 0.2 - 0.2 0.22 - 0.21
Minimum 0.1 - 0.1 0.13 - 0.13 0.16 - 0.12 0.14 - 0.1
Maximum 1 - 1 1 - 1 1 - 1 1 - 1

Noise posts

Mean 40.3 - 0.65 64.8 - 0.17 14.3 - 0.2 11.3 - 0.2
Median 38 - 0 57 - 0 12 - 0 9 - 0
Std. Dev. 24.9 - 0.5 42.9 - 0.5 10.1 - 0.6 9.1 - 0.6
Minimum 0 - 0 0 - 0 0 - 0 0 - 0
Maximum 146 - 4 225 - 4 63 - 4 59 - 4

Percentage
of noise

Mean 45.2% - 0.61% 44.7% - 0.5% 44.4% - 0.8% 39.6% - 1.2%
Median 43.5% - 0% 45.9% - 0% 44.4% - 0% 40.6% - 0%
Std. Dev. 15.1% - 5.8% 15.6% - 5.8% 22% - 2.4% 21.3% - 6.4%
Minimum 0% - 0% 0% - 0% 0% - 0% 0% - 0%
Maximum 100% - 100% 100% - 100% 100% - 25% 100% - 100%

Number of
clusters

Mean 3.9 - 1.2 7.3 - 1.1 2.1 - 1.1 1.9 - 1
Median 3 - 1 6 - 1 2 - 1 2 - 1
Std. Dev. 2.5 - 0.5 5.1 - 0.4 1.5 - 0.3 1.2 - 0.3
Minimum 0 - 1 0 - 0 0 - 1 0 - 0
Maximum 15 - 4 23 - 4 7 - 3 7 - 3

Silhouette
Score

Mean 0.58 - −0.45 0.5 - −0.8 0.54 - −0.78 0.57 - −0.8
Median 0.63 - −1 0.57 - −1 0.68 - −1 0.73 - −1
Std. Dev. 0.29 - 0.65 0.33 - 0.49 0.52 - −0.49 0.52 - 0.46
Minimum −1 - −1 −1 - −1 −1 - −1 −1 - −1
Maximum 0.91 - 0.46 0.91 - 0.67 0.99 - 0.56 0.98 - 0.67

Table 6.8: Statistical description of weekly DBSCAN clustering on anomalous
posts with an underperforming score, analyzing only hashtags and all types of word
(hashtags, simple words in the caption and terms within the image)

123

Methodologies and Results

Figure 6.8: ECDFs of the weekly number of clusters (left) and of the Silhouette
Score (right) for the DBSCAN applied on hashtags in the captions of anomalous
posts with an overperforming score (for each Anomaly Detection method)

Figure 6.9: ECDFs of the weekly number of clusters (left) and of the Silhouette
Score (right) for the DBSCAN applied on hashtags in the captions of anomalous
posts with an underperforming score (for each Anomaly Detection method)

By looking at the results, it can be seen that the number of clusters found on
average per week increases as the number of weekly anomalies detected increases,
and therefore also depends on the Anomaly Detection method chosen. In this regard,
it is also noted that the number of clusters found for posts with an underperforming
score is greater than for those with an overperforming one, for the same reasons.
Then by looking at the statistics regarding the Silhouette Score, it turns out that

124

Methodologies and Results

the best results come from the pair ARIMA Model - DBSCAN on hashtags
for the posts with an overperforming score and the pair Z-Score - DBSCAN on
hashtags for the posts with an underperforming score. However, the number of
anomalous posts detected with the Z-Score method is much less, so the best choice
falls on the same couple anyway (ARIMA Model - DBSCAN on hashtags). It is
interesting, to see that the performances drop to peak if all the words are used
instead of just the hashtags: as expected, in fact, we are faced with a few clusters,
larger, and therefore containing posts that are actually unrelated , i.e. not linked
to the same topic/event, whether internal or external to the OSN.
On the other hand, however, by using all types of words, the number of posts
classified as noise decreases significantly, precisely because posts that should not
actually be taken into consideration are instead placed in clusters.
There are no particular comments to make or particularly significant differences
on the value of ϵ, except that the highest values are recorded for the anomalies
detected with the Z-Score method.

125

Methodologies and Results

Example

An example of output of the results is shown in the Figures below. The Figure 6.10

Figure 6.10: Example of distance matrix for hashtags used for the DBSCAN, for
week 21 of year 2016 (anomalous posts with an overperforming score detected by
the ARIMA Model)

represents the distance matrix computed for hashtags of the captions of anomalous
posts (with an overperforming score, detected by the ARIMA Model) for week
21 of year 2016. The choice of the week and the Anomaly Detection method was
dictated only by the small number of anomalous posts detected, to facilitate the
visualization of the results.
The following step is to determine the best value for ϵ for the same posts, the
ECDF is illustrated in Figure 6.11. The ordinate value, corresponding to 0.995 on

126

Methodologies and Results

the abscissa axis, as well as the best value for ϵ, is 0.63 for the chosen week.

Figure 6.11: Example of determination the best value of ϵ used for the DBSCAN
applied on hashtags: ECDF of pairwise textual distances for week 21 of year 2016
(anomalous posts with an overperforming score detected by the ARIMA Model)

The final result, with the label of the clusters on the right of each post, is in
Table 6.9, which shows the entries of the final DataFrame.

Year Week PostID Name List Hashtags Cluster

2016 21 516609|1257474787888338296 Lodovica Comello [aliceattraversolospecchio, tess] -1
2016 21 529399|1260266609468072994 Karina Cascella [senonvoleteuncanenonprendetelopernulla,

ecomediceginni]
-1

2016 21 1072754|1260378362758263039 Tommaso Scala [tourist, traveling, instapassport, vacation,
trip, mytravelgram, holiday, travelgram,

instatraveling, tourism, travel, travelblog,
igtravel, travelling, visiting, traveler,

instatravel, travelingram]

-1

2016 21 649846|1260756274555251413 Sergio SylVestre [instore, bigboy, mondadori, napoli,
stefanodemartino, sergiosylvestre,

vulcanobuono]

-1

2016 21 1072754|1259345680695783543 Tommaso Scala [mornings, ocean, naturelovers, seascape,
beach, blue, nature, wave, lake, sand,

wave, water, morning, waves]

-1

2016 21 649846|1258603226802285498 Sergio SylVestre [amici15, sergiosylvestre, bigboy] 0
2016 21 649846|1258289767648717116 Sergio SylVestre [amici15, ilvincitore, sergiosylvestre] 0
2016 21 649846|1259435035156933450 Sergio SylVestre [amici15, bigboy, instore, tati,

sergiosylvestre, ilvincitore]
0

Table 6.9: Example of entries after DBSCAN applied on hashtags for week 21 of
year 2016 (anomalous posts with an overperforming score detected by the ARIMA
Model). “cluster: −1” indicates a noise point, here not represented for the sake of
brevity

The first 4 posts, which are assigned the cluster “−1”, are classified as “noise”, since

127

Methodologies and Results

they have no hashtags in common with all the other posts of that week. Instead,
it can be noted that the other posts, to which cluster number “0” is assigned,
are attributable to the 2015/2016 edition of “Amici”, a famous Italian television
program, and therefore to an event external to the OSN.

(a) Wordcloud for the output clusters (light-
blue represents the noise, red represents the
only cluster)

(b) Silhouette Score plot

Figure 6.12: Example of outputs for the DBSCAN applied on hashtags, for week
21 of year 2016 (anomalous posts with an overperforming score detected by the
ARIMA Model)

128

Methodologies and Results

6.4.2 K-Means Algorithm
To implement the K-Means algorithm (sec. 4.4.3), we used the model already
present in the Python scikit-learn library, which performs K-Means clustering
from an array or sparse matrix. It computes cluster centers and predict cluster
index for each input sample. In particular, K-Means employs vector quantization
techniques to split the data space into Voronoi cells, which are then returned as
clusters. The technique typically starts with a set of random locations called “seeds”
and then alternates between two phases to pick fresh cluster centroids.
The parameters of sklearn.cluster.KMeans are the following [60]:

• n_clusters: int, default = 8
The number of clusters that will created (and the number of centroids that
will be produced);

• init: {“k-means++”, “random”}, callable or array-like of shape (n_clusters,
n_features), default = “k-means++”
This is the initialization method:

– “k-means++”: intelligently picks initial cluster centers for K-Means
clustering to accelerate convergence;

– “random”: choose n clusters observations (rows) at random from the data
for the first centroids;

• n_init: int, default = 10
The K-Means algorithm will be performed a number of times n_init, with
various centroid seeds. The best output of successive runs in terms of inertia
will be the final result;

• max_iter: int, default = 300
For a single run, the maximum number of iterations of the K-Means;

• tol: float, default = To proclaim convergence, the difference in the cluster
centers of two successive iterations must be within a certain range of tolerance
in terms of the Frobenius norm;

• verbose: int, default = 0
Manages the process’s verbosity;

• random_state: int, RandomState or None, default = None
For centroid initialization, this function generates random numbers to make
the randomness deterministic. It’s used to produce consistent and repeatable
results across a variety of function calls;

129

Methodologies and Results

• copy_x: bool, default = True
If copy_x is set to True (the default), the original data is not altered, otherwise
the original data is updated and then returned before the function returns;
nonetheless, slight numerical discrepancies can be generated by removing and
then adding the data mean;

• algorithm: {“auto”, “full”, “elkan”}, default = “auto”
This is the K-means algorithm to use. By employing the triangle inequality,
the “elkan” variation is more efficient than “full” on data with well-defined
clusters, while being more memory heavy;

All parameters have been left at the default value, except for max_iter set to 100,
random_state set to 42, and the value of n_clusters, or k, which historically is
the most difficult parameter to determine for this algorithm, depending on the
particular week.
To determine the best k-value for each week, we calculated three clustering
quality measure coefficients: the Silhouette Score, and the Davies-Bouldin and
Calinski-Harabasz indices (sec. 4.4.3), each of which for each k value in the range
[2,10], the most reasonable interval if we think about the number of events that
can be discussed during the same week. Thereafter, the k-value corresponding to
the maximum Silhouette Score and Calinski-Harabasz Index and the minimum
Davies-Bouldin Index is automatically chosen. If this is not found, because different
values of k correspond to the best coefficients, the one that maximizes the Silhouette
Score is chosen. An example is shown in Figure 6.13.

Hashing TF-IDF

The K-Means algorithm needs numeric features as input, so it is not possible to use
word-lists extracted from each post or a distance matrix as we did previously for
DBSCAN. For this reason, we decided to use as input the TF-IDF calculated for
each word within the group of anomalous posts of each week (each post is considered
a document), using a HashingVectorizer, which applies a hashing function to
the frequency of terms counts in every document (i.e. converts a collection of text
documents to a sparse matrix of token occurrences), to reduce the number
of features, followed by the already mentioned TfidfTransformer. To implement
them, we used the modules in the Python scikit-learn library, in particular in
the sklearn.feature_extraction.text package. The hash function employed is
the default one, i.e. the signed 32-bit version of Murmurhash3.
This strategy has several advantages, for example it requires very little memory and
is scalable to large datasets because no vocabulary dictionary is stored in memory,
but there are also some drawbacks (as compared to using a CountVectorizer), for
example there is no method to perform the inverse transform (from feature indices

130

Methodologies and Results

(a) Example of k found for year 2020 and week
4, k = 5 chosen

(b) Example of k not found for year 2019
and week 44, k = 10 chosen, corresponding
to maximum Silhouette Score

Figure 6.13: Example of determination of the parameter k for the K-Means
algorithm performed on hashtags of anomalous posts with an overperforming score
detected by ARIMA Model

to string feature names), and collisions can occur (distinct tokens can be mapped
to the same feature index). However this is rarely an issue, since the default number
of features in the output matrices for HashingVectorizer is 220.

Cosine Similarity

The output of the HashingVectorizer-TfidfTransformer pipeline, a weighted
term vector for each anomalous post of the week, is then used to construct
the similarity matrix, a square symmetric matrix, using the Cosine Similar-
ity method. The method is implemented using the linear_kernel function of
the sklearn.metrics.pairwise module. Each value of the matrix is in the range
[0,1], which increases the more similar the posts are, so a value of 0 indicates a pair
of posts with nothing in common, and a value of 1 indicates two posts that contain
exactly the same words. The resulting matrix is then finally used as K-Means input
feature.

131

Methodologies and Results

Results

In the Tables below, 6.10 and 6.11, the Silhouette Score in some cases is −1:
because just one post is anomalous during that particular week and therefore no
cluster has been found, or a single cluster has been identified.

Anomalous posts with an OVERPERFORMING score

Hashtags - All words
ARIMA M. Boxplot R. Isol. For. Z-Score

Number of
clusters

Mean 7.2 - 7.4 7.1 - 7.2 6.3 - 6.5 3.6 - 4.2
Median 10 - 10 10 - 10 9 - 10 3 - 4
Std. Dev. 3.6 - 3.6 3.9 - 3.9 4.4 - 4.5 3.5 - 3.9
Minimum 0 - 0 0 - 0 0 - 0 0 - 0
Maximum 10 - 10 10 - 10 10 - 10 10 - 10

Silhouette
Score

Mean 0.35 - 0.26 0.3 - 0.22 0.17 - 0.05 0.09 - −0.04
Median 0.39 - 0.31 0.38 - 0.29 0.41 - 0.24 0.4 - 0.098
Std. Dev. 0.32 - 0.3 0.36 - 0.34 0.6 - 0.53 0.68 - 0.59
Minimum −1 - −1 −1 - −1 −1 - −1 −1 - −1
Maximum 1 - 0.78 0.8 - 0.8 0.86 - 0.75 1 - 0.93

Table 6.10: Statistical description of weekly K-Means clustering on anomalous
posts with an overperforming score, analyzing only hashtags and all types of word
(hashtags, simple words in the caption and terms within the image)

Given the results, in particular the Silhouette Score, as for the DBSCAN algorithm,
it is superfluous to represent the ECDFs of the distribution of the weekly number
of clusters and the Silhouette Score for clustering based on all types of words, and
therefore the two distributions are reported only for the hashtags of the anomalous
posts with an overperforming (Fig. 6.14) and underperforming (Fig. 6.15) score.

132

Methodologies and Results

Figure 6.14: ECDFs of the weekly number of clusters (left) and of the Silhouette
Score (right) for the K-Means applied on hashtags in the captions of anomalous
posts with an overperforming score (for each Anomaly Detection method)

Figure 6.15: ECDFs of the weekly number of clusters (left) and of the Silhouette
Score (right) for the K-Means applied on hashtags in the captions of anomalous
posts with an underperforming score (for each Anomaly Detection method)

By looking at the results, it can be seen that the number of clusters found on
average per week increases as the number of weekly anomalies detected increases,
and therefore also depends on the Anomaly Detection method chosen. In this
regard, it should also be noted that the number of clusters found for places with
an underperforming score is higher than for those with an overperforming score,
for the same reasons. In the latter case, however, the number of clusters found

133

Methodologies and Results

Anomalous posts with an UNDERPERFORMING score

Hashtags - All words
ARIMA M. Boxplot R. Isol. For. Z-Score

Number of
clusters

Mean 7.4 - 7.3 7.1 - 7.1 7.6 - 8 7.2 - 7.7
Median 10 - 10 10 - 10 10 - 10 9 - 10
Std. Dev. 3.6 - 3.6 3.7 - 3.6 3.5 - 3.4 3.5 - 3.5
Minimum 0 - 0 0 - 0 0 - 0 0 - 0
Maximum 10 - 10 10 - 10 10 - 10 10 - 10

Silhouette
Score

Mean 0.39 - 0.32 0.32 - 0.26 0.4 - 0.29 0.4 - 0.31
Median 0.39 - 0.33 0.33 - 0.28 0.43 - 0.31 0.49 - 0.37
Std. Dev. 0.16 - 0.14 0.21 - 0.19 0.36 - 0.33 0.44 - 0.39
Minimum −1 - −1 −1 - −1 −1 - −1 −1 - −1
Maximum 0.85 - 0.65 0.8 - 0.77 0.96 - 0.92 0.98 - 0.93

Table 6.11: Statistical description of weekly K-Means clustering on anomalous
posts with an underperforming score, analyzing only hashtags and all types of word
(hashtags, simple words in the caption and terms within the image)

by K-Means is similar across all Anomaly Detection methods, regardless of the
approach chosen.
Then by looking at the statistics regarding the Silhouette Score, it turns out that
the best results come from the pair ARIMA Model - K-Means on hashtags
for the posts with an overperforming score and the pair Z-Score - K-Means on
hashtags for the posts with an underperforming score, which are the same results
as for the DBSCAN algorithm. However, the number of anomalous posts detected
with the Z-Score method is much less, so the best choice falls on the same couple
anyway (ARIMA Model - K-Means on hashtags). It is interesting to see that,
unlike DBSCAN, the performances do not drop to peak if all the words are used
instead of just the hashtags: in this case, in fact, the performances are lower in the
first case, but not too different.

Example

An example of output of the results is shown in the Figures below.
The first step is the transformation of the lists of hashtags of the captions of the 27
anomalous posts (with an overperforming score, detected by the Isolation Forest
algorithm) for week 6 of year 2019, into a weighted (by the TF-IDF values of
terms) hashed vector. Afterwards, the Cosine Similarity method is applied, and
the Figure 6.16 represents the similarity matrix obtained.
The next step is to determine the best value for k (i.e. the number of clusters),
which, as shown in Figure 6.17, has been automatically assigned to 9.

134

Methodologies and Results

Figure 6.16: Example of similarity matrix for hashtags used for the K-Means, for
week 6 of year 2019 (anomalous posts with an overperforming score detected by
the Isolation Forest algorithm)

The final result with the entries of the DataFrame is not represented for reasons
of brevity and visualization, but includes 9 clusters: the first containing 4 totally
unrelated posts, the second containing 5 posts concerning the edition of the 2019
of the Sanremo Festival (of the Italian Song), the third and the eighth containing
2 posts related to the same event as above, and finally 5 clusters of 1 post each,
some of which are related, others with nothing in common. A visual representation
of the results is in Figures 6.18 and 6.19 , which shows the passage from the initial
word bag (the wordcloud) and the subsequent subdivision into clusters carried out
by the K-Means algorithm.
This example suggests that K-Means does not actually provide promising results,
except in some cases, as often too many clusters are created, splitting content that
actually needed to be grouped.

135

Methodologies and Results

Figure 6.17: Example of Silhouette Score plot (with Silhouette Visualizer) for
the K-Means applied on hashtags, for week 6 of year 2019 (anomalous posts with
an overperforming score detected by the Isolation Forest algorithm)

Figure 6.18: Example of wordcloud built using hashtags, for week 6 of year 2019
(anomalous posts with an overperforming score detected by the Isolation Forest
algorithm)

136

Methodologies and Results

Figure 6.19: Example of wordclouds for each cluster built using hashtags, for
week 6 of year 2019 (anomalous posts with an overperforming score detected by
the Isolation Forest algorithm)

6.4.3 LDA Algorithm
Latent Dirichlet Allocation (LDA) (sec. 4.5.2) is not a clustering technique in
the strictest sense of the word. This is due to the fact that clustering algorithms
create a single grouping per clustered item, whereas LDA produces a distribution
of groupings over the clustered items. When we apply LDA to a set of documents,
the result is a probability distribution of groupings (or topics) for each document
(rather than a single cluster). In other words, each document will be allocated
to a topic distribution, with each topic having its own probability. LDA is not
regarded a true (or hard) clustering method because it yields more than one topic
per document, although it does yield topic groupings, so it is also referred to as a
soft clustering method.
For this reason, it is presented here as an example, but not compared to the other
methods. Another reason is that this algorithm is mostly used, precisely, on real
text documents, while the words contained in the captions of posts on Online Social
Networks are usually few.
To implement the Latent Dirichlet Allocation (LDA) algorithm, we used the
model already present in the Python gensim library, which performs LDA taking a
stream of document vectors or sparse matrix of shape (num_documents, num_terms)
as input. In particular, we used gensim.models.LdaMulticore implementation,
employing all CPU cores to parallelize and speed up model training by means of
multiprocessing, that is equivalent to the gensim.models.LdaModel class, which
is instead a more straightforward and single-core implementation.

137

Methodologies and Results

It is not necessary to explain in detail all the parameters as they are very numerous,
also because they have all been left at the default value. The only important
parameters are the input (the corpus) and the number of requested latent topics
to be extracted from the training corpus, which will be discussed below.

Lemmatization

Generally before using an LDA algorithm it is necessary to do Natural Language
pre-processing, but in this case it is not necessary because we have already done
so during the first phase of data elaboration. The only neglected NLP phase was
lemmatization, to avoid changing the content of the captions too much. Lemmati-
zation is the process of reducing an inflected form of a word to its canonical form,
called lemma. In NLP, lemmatization is the algorithmic process that automatically
determines the lemma of a given word.
Proceeding in order, each post was treated as a document, and the various word lists
were transformed into strings separated by spaces, and analyzed separately. Each
of these strings, each corresponding to a post caption, was further pre-processed
and transformed into tokens using the gensim.utils.simple_preprocess func-
tion. Each token was finally lemmatized using the lemmatize function of the
WordNetLemmatizer module of the Python ntlk library. We also tried to use
the lemmatizer of the SpaCy library, and the relative language detection we have
already talked about in the previous chapter (sec. 5.5.3), but the results remained
almost the same.
Later, using the gensim.corpora.Dictionary function we created a dictionary
that encapsulates the mapping between normalized words and their integer iden-
tifiers for each document in the list used as input. We then applied the doc2bow
function to each document which converts each document into the bag-of-words
format, i.e. a list of (token_id, token_count) tuples. We used the resulting BoW
corpus (for each week) as input for the LDA model.

Coherence Model

To optimize the num_topics parameter and determine the best value of the num-
ber of topics for each week, we iterated several times the creation of an LDA
model over the range [2,50] in steps of 2, for the number of topics parameter. For
each model we calculated the coherence of the discovered topics, using the
gensim.models.CoherenceModel function, and then we chose the value that max-
imized the coherence measure c_v for each week’s LDA model. The c_v measure
(reported in the Tables 6.12 and 6.13 of the statistic description of the results as
“Coherence Score”) is based on a sliding window, a segmentation into a set of the
main words, and an indirect confirmatory measure, using the normalized point-like
reciprocal information and Cosine Similarity.

138

Methodologies and Results

Results

In the following Tables, 6.12 and 6.13, “Number of topics” can be compared to the
usual “Number of clusters”, while the “Coherence Score” can be compared to the
usual “Silhouette Score”, as an index of the goodness of the method. Since we have
not particularly focused on this algorithm, for simplicity the ECDFs (Fig. 6.20
and Fig. 6.21) of the distributions of the number of topics and the coherence
score of the algorithm applied only on the hashtags in the captions of anomalous
posts are reported (the ECDFs with the statistics about the use of all types of
words are missing), for each Anomaly Detection method used, as usual. Also the
distinction between posts with an overperforming score and an underperforming
score is maintained.

Anomalous posts with an OVERPERFORMING score

Hashtags - All words
ARIMA M. Boxplot R. Isol. For. Z-Score

Number of
topics

Mean 14.3 - 14.3 16.5 - 14.7 10.7 - 11.3 13.6 - 12.9
Median 12 - 12 12 - 10 10 - 10 7 - 10
Std. Dev. 12.9 - 14.1 15.9 - 15.3 11 - 10.4 14.6 - 13.3
Minimum 0 - 0 0 - 0 0 - 0 0 - 0
Maximum 48 - 48 48 - 48 48 - 48 48 - 48

Coherence
Score

Mean 0.63 - 0.64 0.63 - 0.64 0.61 - 0.66 0.53 - 0.61
Median 0.63 - 0.63 0.63 - 0.63 0.67 - 0.7 0.5 - 0.6
Std. Dev. 0.16 - 0.12 0.14 - 0.12 0.27 - 0.22 0.32 - 0.25
Minimum 0 - 0 0 - 0 0 - 0 0 - 0
Maximum 1 - 1 1 - 1 1 - 1 1 - 1

Table 6.12: Statistical description of LDA algorithm applied on weekly anomalous
posts with an overperforming score, analyzing only hashtags and all types of word
(hashtags, simple words in the caption and terms within the image)

Looking at the results, it can be seen that the number of topics discovered is,
unlike the other clustering methods, higher on average for anomalous posts with a
score overperforming, with the exception of the anomalies detected by the Isolation
Forest algorithm for which the ’exact opposite. This indicates that the number
of weekly anomalies does not affect the number of topics detected, also because,
to confirm this, there are no notable differences between the various Anomaly
Detection methods used (the topics are slightly more numerous for the anomalous
posts detected by the ARIMA model and the Boxplot Rule method). Furthermore,
there are no particular differences taking into consideration only hashtags or all
types of words (hashtags, simple words in the caption and words within the image):
in general, strangely enough, the number of topics is on average greater or almost

139

Methodologies and Results

Figure 6.20: ECDFs of the weekly number of topics/clusters (left), and the
Coherence Score (right) for the LDA algorithm applied on hashtags in the captions
of anomalous posts with an overperforming score (for each Anomaly Detection
method)

Anomalous posts with an UNDERPERFORMING score

Hashtags - All words
ARIMA M. Boxplot R. Isol. For. Z-Score

Number of
topics

Mean 13 - 13.5 13.1 - 11.5 12.9 - 11.8 12.1 - 12.4
Median 12 - 12 10 - 6 10 - 12 10 - 10
Std. Dev. 11.1 - 11.9 14.4 - 13.5 11.3 - 9 11.3 - 10.8
Minimum 0 - 2 2 - 2 0 - 2 0 - 0
Maximum 48 - 48 48 - 48 48 - 48 48 - 48

Coherence
Score

Mean 0.65 - 0.65 0.64 - 0.62 0.66 - 0.66 0.63 - 0.66
Median 0.66 - 0.65 0.64 - 0.61 0.69 - 0.68 0.68 - 0.69
Std. Dev. 0.11 - 0.08 0.1 - 0.09 0.16 - 0.14 0.18 - 0.15
Minimum 0 - 0.17 0.05 - 0.2 0 - 0.03 0 - 0
Maximum 1 - 1 1 - 1 1 - 1 1 - 1

Table 6.13: Statistical description of LDA algorithm applied on weekly anomalous
posts with an underperforming score, analyzing only hashtags and all types of word
(hashtags, simple words in the caption and terms within the image)

equal using only the hashtags, compared to all the words of the posts.
Considering the coherence score, also in this case the values are very similar to
each other, regardless of the type of performance score of the posts, the type of
words used for the analysis and the Anomaly Detection method used. The only

140

Methodologies and Results

Figure 6.21: ECDFs of the weekly number of topics/clusters (left), and the
Coherence Score (right) for the LDA algorithm applied on hashtags in the captions
of anomalous posts with an underperforming score (for each Anomaly Detection
method)

difference that could be mentioned concerns the anomalies detected by the Isolation
Forest algorithm and the Z-Score method which have a higher Standard Deviation
of the coherence score. Although there are slight differences, according to this
score, LDA seems to work better on anomalous posts detected by the Isolation
Forest algorithm.

Example

An example of output of the results is shown in Figure 6.22, below.
The picture was created using pyLDAvis, a Python library for interactive topic
model visualization that was created to assist users in understanding the themes in
a topic model that has been fitted to a corpus of text data. The software uses data
from a fitted LDA topic model to create a web-based interactive representation.
The sample corpus is derived from anomalous posts with an overperforming score
found using the Z-Score algorithm for week 35 of the year 2018.
One of the major themes is represented by the hashtag “theferragnez”, which
indicates the marriage of the aforementioned influencer Chiara Ferragni, which
in September 2018 was followed on the OSNs by more than 20 million followers.
Unfortunately, looking at the other terms inserted in this topic by the algorithm,
they do not seem to be very related to the event of this wedding or to the theme of
the wedding in general.The other big topic of the week instead revealed style and
fashion in general, and therefore does not seem linked to an external event that

141

Methodologies and Results

happened in the real world.

Figure 6.22: Example of output of topics for the LDA algorithm applied on
hashtags, for week 35 of year 2018 (anomalous posts with an overperforming score
detected through the Z-Score method)

142

Methodologies and Results

6.4.4 Graphs and Community Detection
To implement this approach, we built 4 different graphs for each week, using
the NetworkX Python library: one for hashtags and one for all types of words,
respectively for weekly anomalous posts with a score overperforming and a score
underperforming. Obviously these 4 graphs have been constructed for each Anomaly
Detection method used, as usual.
In particular, each node represents a post, connected to other posts by a weighted
edge if it had at least one hashtag/word in common with those posts. For the
computation of the weight of the arcs, it was decided to use the same distance
function already used for the DBSCAN algorithm for each pair of nodes (posts)
connected by an edge.

Subsequently, for each graph thus constructed, we applied the Louvain Com-
munity Detection algorithm to identify the communities, and therefore the
post clusters. Initially, we tried to use 3 Community Detection algorithms, Louvain,
Label Propagation and Girvan Newman, then automatically choosing the method
that maximized modularity for each week. Empirically we noticed that in 90% of
cases the designated algorithm was Louvain’s, for this reason, for simplicity, we
decided to use only this algorithm.

Results

In the following Tables, 6.14 and 6.15, “Number of communities” can be compared to
the usual “Number of clusters”, while the “Modularity” is an index of the goodness
of the method. It is important to specify that the “Number of communities” refers
to the communities, found in each weekly graph, containing at least 2 posts. The
communities containing a single post, i.e. without edges connecting it to other
posts, are therefore not considered in the counts.
Looking at the results, it can be seen that the number of communities increases as
the number of weekly anomalies increases, and therefore depends on the Anomaly
Detection method used. The number of communities found for the anomalies
detected with the Boxplot Rule method is in fact the highest, followed by that
for the anomalies detected by the ARIMA model. A separate case, on the other
hand, is represented by the anomalies found with the Isolation Forest algorithm
and the Z-Score method, for which the number of weekly communities detected by
the Louvain algorithm is between 0 and 1 on average.

143

Methodologies and Results

Anomalous posts with an OVERPERFORMING score

Hashtags - All words
ARIMA M. Boxplot R. Isol. For. Z-Score

Number of
communities

Mean 4 - 4.7 6.6 - 7.8 0.61 - 0.98 0.29 - 0.43
Median 4 - 5 7 - 7 0 - 1 0 - 0
Std. Dev. 3.2 - 3.8 4.7 - 6 0.92 - 1.24 0.59 - 0.75
Minimum 0 - 0 0 - 0 0 - 0 0 - 0
Maximum 12 - 17 19 - 24 5 - 7 3 - 4

Modularity

Mean 0.18 - 0.27 0.34 - 0.38 −0.56 - −0.37 −0.76 - −0.65
Median 0.48 - 0.52 0.57 - 0.62 −1 - 0 −1 - −1
Std. Dev. 0.66 - 0.61 0.57 - 0.56 0.58 - 0.63 0.46 - 0.52
Minimum −1 - −1 −1 - −1 −1 - −1 −1 - −1
Maximum 0.87 - 0.88 0.9 - 0.9 0.66 - 0.73 0.5 - 0.65

Silhouette
Score

Mean −0.12 - −0.11 0.02 - −0.03 −0.56 - −0.47 −0.75 - −0.67
Median 0.07 - 0.04 0.13 - 0.07 −1 - −1 −1 - −1
Std. Dev. 0.48 - 0.4 0.41 - 0.37 0.57 - 0.54 0.51 - 0.53
Minimum −1 - −1 −1 - −1 −1 - −1 −1 - −1
Maximum 0.63 - 0.5 0.62 - 0.5 0.56 - 0.55 0.8 - 0.8

Table 6.14: Statistical description of Louvain algorithm applied on weekly graphs
of anomalous posts with an overperforming score, analyzing only hashtags and all
types of word (hashtags, simple words in the caption and terms within the image)

Figure 6.23: ECDFs of the weekly number of communities/clusters (left), the
modularity (center) and of the Silhouette Score (right) for the Louvain algorithm
applied on graphs of hashtags in the captions of anomalous posts with an over-
performing score (for each Anomaly Detection method)

As far as modularity is concerned, remember that its value can move in the
interval [−0.5, 1]: it is positive if the number of edges present is greater than the
number expected and negative otherwise. It can be seen, both from the Tables and
from the ECDFs in the Figures, that the modularity increases as the number of
communities increases and, for this reason, the execution of Community Detection

144

Methodologies and Results

Figure 6.24: ECDFs of the weekly number of communities/clusters (left), the
modularity (center) and of the Silhouette Score (right) for the Louvain algorithm
applied on graphs of all types of words (hashtags, simple words and words within
the image) in the captions of anomalous posts with an overperforming score (for
each Anomaly Detection method)

Anomalous posts with an UNDERPERFORMING score

Hashtags - All words
ARIMA M. Boxplot R. Isol. For. Z-Score

Number of
communities

Mean 5.3 - 6 8.7 - 9.7 1.5 - 2 1.2 - 1.5
Median 5 - 5 8 - 9 1 - 2 1 - 1
Std. Dev. 3.8 - 3.9 5.8 - 5.9 1.7 - 1.9 1.4 - 1.6
Minimum 0 - 0 0 - 0 0 - 0 0 - 0
Maximum 25 - 25 27 - 29 9 - 9 8 - 9

Modularity

Mean 0.52 - 0.57 0.47 - 0.5 −0.18 - −0.02 −0.29 - −0.13
Median 0.62 - 0.65 0.58 - 0.61 0 - 0.03 0 - 0
Std. Dev. 0.35 - 0.32 0.4 - 0.38 0.66 - 0.63 0.64 - 0.63
Minimum −1 - −1 −1 - −1 −1 - −1 −1 - −1
Maximum 0.89 - 0.9 0.89 - 0.88 0.86 - 0.85 0.82 - 0.82

Silhouette
Score

Mean 0.06 - 0.02 0.05 - 0.02 −0.29 - −0.22 −0.33 - −0.25
Median 0.08 - 0.03 0.07 - 0.03 −0.01 - 0 −0.04 - 0.01
Std. Dev. 0.23 - 0.19 0.28 - 0.25 0.56 - 0.5 0.59 - 0.53
Minimum −1 - −1 −1 - −1 −1 - −1 −1 - −1
Maximum 0.47 - 0.41 0.69 - 0.69 0.7 - 0.58 0.96 - 0.64

Table 6.15: Statistical description of Louvain algorithm applied on weekly graphs
of anomalous posts with an underperforming score, analyzing only hashtags and all
types of word (hashtags, simple words in the caption and terms within the image)

applied to the graphs constructed with the anomalies detected with the Boxplot
Rule method it is the best from this point of view. An exception are the anomal
posts with an underperforming score, since even in this case the maximum average
number of communities was detected for anomalies found with the Boxplot Rule

145

Methodologies and Results

Figure 6.25: ECDFs of the weekly number of communities/clusters (left), the
modularity (center) and of the Silhouette Score (right) for the Louvain algorithm
applied on graphs of hashtags in the captions of anomalous posts with an under-
performing score (for each Anomaly Detection method)

Figure 6.26: ECDFs of the weekly number of communities/clusters (left), the
modularity (center) and of the Silhouette Score (right) for the Louvain algorithm
applied on graphs of all types of words (hashtags, simple words and words within
the image) in the captions of anomalous posts with an underperforming score
(for each Anomaly Detection method)

method, the modularity is greater for the posts detected with the ARIMA model.
Furthermore, if we use all types of words (hashtags, simple words in the caption
and words within the image), the number of communities detected is on average
greater than the use of hashtags alone, and consequently, also the modularity is
greater. The graph method therefore seems to be the only one to provide better
results when all types of words are considered instead of just hashtags.
Since this method is not a classic clustering algorithm, a compromise had to be
found to calculate the Silhouette Score. In particular, given that the weight of
the arcs of the graphs is calculated using the same distance function already used to
create the weekly distance matrix for the DBSCAN algorithm, also in this case we
have calculated this matrix, but using the numbered communities detected by the

146

Methodologies and Results

Louvain algorithm, for the scikit-learn function which calculates the Silhouette
Score automatically (which accepts as input the sample and the labels found by the
chosen clustering algorithm). As you can see, on average the Silhouette Score thus
obtained is on average always negative, with the only exception for the anomalous
posts with a score overperforming detected by the Boxplot Rule method, and those
with an underperforming score detected by the Boxplot Rule itself and from the
ARIMA model. However, these are very low values, close to 0. According to these
statistics, it would seem that the graph method is the worst of those mentioned,
but, in reality, by manual inspection it is the one that gives the best results. Note
that the results described above are valid both for posts that have been assigned
an overperforming score and for those with an underperforming score, except
for the special cases mentioned.

Example

An example of output of the results is shown in the Figures below.

Figure 6.27: Example of wordcloud built using all types of words (hashtags,
simple words and words within the image), for week 46 of year 2018 (anomalous
posts with an overperforming score detected through the Boxplot Rule method)

The Figure 6.27 represents the wordcloud constructed using all types of words
(hashtag, simple words and words within the image), for week 46 of the year 2018

147

Methodologies and Results

(anomalous posts with an overperforming score detected through the Boxplot Rule
method), as an indication of the initial bag of words contained in all the chosen
anomalous posts of the week. Since the graph method is the only one that gives
more promising results when all words are used instead of just hashtags, we have
decided to represent this example.
Starting from the anomalous posts, the graph in Figure 6.28 is built, on which
the Louvain Community Detection algorithm has already been applied. Different
colors represent different communities, while white markers indicate isolated posts,
which had no words in common with the other anomalous posts of the week. It
can be seen that, in this case, the communities are well defined and separate.

Figure 6.28: Example of the Louvain algorithm applied on a graph of all types
of words (hashtags, simple words and words within the image), for week 46 of
year 2018 (nodes represent anomalous posts with an overperforming score detected
through the Boxplot Rule method, edges represent at least a word in common
between connected posts)

Subsequently, the Figure 6.29 shows a Bubble Chart, represented with the same
colors as the previous communities, containing, for each community, the words
that led to the creation of the edges of the graph. A total of 10 communities are
detected, some smaller, which, as can be seen from the Bubble Chart, deal with
minor topics. The two largest ones instead (in orange and blue) deal, respectively,

148

Methodologies and Results

with the theme of fashion for the influencer Elisabetta Franchi (who is a stylist,
so it is not excluded that she had launched a new collection of her line at that
time) and , perhaps more important, the football theme, present in the anomalous
posts of almost every week. In this case, in particular, the most frequent words
refer to the Nations League match of Italy-Portugal, played on November 17, 2018,
actually an event outside the OSN and which took place in the real world.

Figure 6.29: Example of bubble chart built using all types of words (hashtags,
simple words and words within the image), for week 46 of year 2018 (anomalous
posts with an overperforming score detected through the Boxplot Rule method).
Different colors correspond to different communities detected by the Louvain
algorithm

149

Methodologies and Results

6.4.5 Comparison of Clustering Methods and Results
Summarizing all the results obtained and presented in this chapter so far, we have
found that the best pairs of Anomaly Detection method - Clustering algorithm are
respectively:

• ARIMA model - DBSCAN on hashtags,

• ARIMA model - K-Means on hashtags,

• Isolation Forest - LDA on hashtags/all types of words (not covered
further),

• Boxplot Rule method - Graph method and Louvain Community Detec-
tion algorithm on hashtags/all types of words (to evaluate the goodness
of this method it makes more sense to look at the modularity compared to
the Silhouette Score),

regardless of the type of performance score of the anomalous posts analyzed.
In any case, for our purposes, we have focused more on posts that have been
scored overperforming for manual inspection of results, as it seems more sensible
to focus more on anomalous posts that have been scored overperforming, as an
external event is more likely to “positively” affect the popularity of an influencer
or a certain post.
By excluding the LDA algorithm from comparisons, and taking into account only
the three remaining method pairs, some comparisons can be made. Already from
this first analysis it emerges that, among the Anomaly Detection methods, the
ARIMA model and the Boxplot Rule method provide better results for our research,
and therefore the Isolation Forest algorithm and the Z-Score method must be
excluded.
Based exclusively on numerical data, taking into consideration the Silhouette
Score (and modularity in the case of graphs), the best results would seem to derive
from the ARIMA model - DBSCAN on hashtags pair, while the other two
pairs are equivalent, with the exception that the graph method is the only one
to provide acceptable results when considering all types of words instead of just
hashtags. To make further changes, a more thorough manual inspection of the
contents of the resulting clusters is required, avoiding giving too much importance
to particular cases.

Comparing the DBSCAN and K-Means algorithms, from a first observation it
can be seen that DBSCAN tends to put in the same cluster (typically the number
0 or 1) the posts that do not contain hashtags, and in a separate cluster (numbered
with −1) those classified as “noise”, that is, they do not have hashtags in common
with each other. K-Means, on the other hand, tends to put in the same cluster

150

Methodologies and Results

(typically the number 0 or 1) both posts that do not contain hashtags and those
that are not related (in some cases even if they are semantically related but do
not contain common words), making it more difficult noise distinction at a glance.
With the graph method, however, posts that do not contain hashtags / words are
automatically ignored and not included in the graph, while those considered as
“noise” are visually distinguishable as they are isolated from the others and not
connected to any other node (post) with an edge.
Another feature of K-Means is that it tends, unlike the other two clustering methods
presented, to form clusters even from a single element (post), which doesn’t make
much sense for the purposes of our work. Excluding these useless posts, the results
are very similar. The K-Means algorithm sometimes manages to insert one or two
more posts in the clusters (in an appropriate way) than the DBSCAN, and, at
times, even finds small more clusters (not more than one in general), but the whose
content actually in some cases had to be inserted in one of the already existing
and found clusters.
Generally both DBSCAN and K-Means are able to group posts that contain the
same hashtags or with one or two words of difference. With the graph method, on
the other hand, it is possible to group posts that are apparently unrelated but which
actually have something in common with a post that bridges and connects them:
this can be positive in some cases, because the posts that are judged “uncorrelated”
by the other two algorithms but which instead share the same semantic meaning,
they are grouped in the same cluster with this method, and negative in other cases,
when the clusters are actually too large and confused and some posts bridge some
which actually dealt with different topics.
For all these reasons, according to our manual inspection of the results, the best
method is actually that of graphs, built only on hashtags (and using the
anomalous posts detected with the Boxplot Rule method) to avoid as much as
possible the last error of we discussed. Using all types of words, the risk is to lose
some edge between posts that would have been appropriate, but the loss of data is
less frequent and, above all, less relevant than the loss of correctness and validity
of the clusters.

Comparison Example

To clarify the considerations made so far, a comparative example is proposed below,
showing the differences in the clusters found by method and method, considering
the same week. For simplicity, the wordclouds corresponding to the clusters found
with the graph method (the graph was built using all types of words), in the
ninth week of 2019, are represented in Figure 6.30, as it is the method which has
found more clusters and also includes those found with the other algorithms.

151

Methodologies and Results

Figure 6.30: Wordclouds for each cluster (detected by the graphs method)
built using all types of words (hashtags, simple words and words within the
image), for week 9 of year 2019 (anomalous posts with an overperforming score
detected through the Boxplot Rule method). Different colors correspond to different
communities detected by the Louvain algorithm

The DBSCAN (Table 6.16) and K-Means (Table 6.17) algorithms are able to
find, for this week, the same two clusters: one containing 5 posts with the single
word “bikini” in common, and the other containing 6 posts concerning an Italian
television program broadcast in that period, called “Uomini E Donne - La Scelta”.
It is notable that these two clusters, of which only the second is relevant for our
research, are not found with the graph method, whose clusters are shown in the
image, but the reason is that the posts that form those clusters they have not been
classified as anomalous by the Boxplot Rule method. K-Means also manages, unlike
DBSCAN, to find the most important cluster of all, that is the one concerning
the 2019 Oscars awarding event, also present in the clusters found with the graph
method. K-Means, however, also inserts 6 clusters each containing only one post,

152

Methodologies and Results

useless for our purposes.

DBSCAN outputs
Year Week PostID Name List_hashtags Cluster

2019 9 2085523|1988013328401628018 Margherita Molinari [bikini] 0
2019 9 2085523|1987166392199065983 Margherita Molinari [bikini] 0
2019 9 2085523|1991650968350994141 Margherita Molinari [bikini] 0
2019 9 2085523|1989455893831348594 Margherita Molinari [bikini] 0
2019 9 2085523|1987483138420264211 Margherita Molinari [bikini] 0
2019 9 536943|1989935092214618264 Uomini e Donne [lascelta, uominiedonne] 2
2019 9 536943|1989427514078583503 Uomini e Donne [lascelta, uominiedonne] 2
2019 9 536943|1990691285631256653 Uomini e Donne [uominiedonne, lascelta] 2
2019 9 536943|1990315192256775523 Uomini e Donne [uominiedonne, lascelta] 2
2019 9 536943|1990654586956223469 Uomini e Donne [uominiedonne, lascelta] 2
2019 9 536943|1990273768018566388 Uomini e Donne [uominiedonne, lascelta] 2

Table 6.16: Outputs for the DBSCAN applied on hashtags, for week 9 of
year 2019 (anomalous posts with an overperforming score detected by the ARIMA
Model). For reasons of brevity and visualization, only the actual clusters are
represented, and not the 47 posts classified as noise (cluster: −1) or belonging to
cluster 1, containing 62 posts without hashtags in their caption

Focusing instead only on the graph method, it can be observed that clusters 0
and 7 in the figure concern, once again, the stylist Elisabetta Franchi, and should,
in truth, be gathered in a single cluster. The graph method, applied on this same
week but only on hashtags instead of all types of words, does not make this mistake
and actually creates a single cluster with the sum of these posts.
Both by analyzing all types of words and only hashtags, an error is detected in
cluster 2: due to the word “Rome” which acts as a bridge between the posts in
the graph, two actually unrelated themes are brought together in the same cluster:
football (as you can see from the word “derby”) and motherhood. In any case,
using only hashtags, the loss of data is minimal: only 2 fewer clusters are found
(one of which is incorporated into another, as mentioned before, and the other is
cluster 6, useless for our work). Both in this case, but also more generally, it is
noted that the best result provided is actually the one obtained with the graph
method applied only to hashtags, since the K-Means and DBSCAN algorithms are
too dispersive, in the first case, or too much reductive, both in the first and in the
second case.

153

Methodologies and Results

K-MEANS outputs
Year Week PostID Name List_hashtags Cluster

2019 9 536943|1989935092214618264 Uomini e Donne [lascelta, uominiedonne] 1
2019 9 536943|1989427514078583503 Uomini e Donne [lascelta, uominiedonne] 1
2019 9 536943|1990273768018566388 Uomini e Donne [uominiedonne, lascelta] 1
2019 9 536943|1990315192256775523 Uomini e Donne [uominiedonne, lascelta] 1
2019 9 536943|1990654586956223469 Uomini e Donne [uominiedonne, lascelta] 1
2019 9 536943|1990691285631256653 Uomini e Donne [uominiedonne, lascelta] 1
2019 9 2085523|1991650968350994141 Margherita Molinari [bikini] 2
2019 9 2085523|1989455893831348594 Margherita Molinari [bikini] 2
2019 9 2085523|1987166392199065983 Margherita Molinari [bikini] 2
2019 9 2085523|1987483138420264211 Margherita Molinari [bikini] 2
2019 9 2085523|1988013328401628018 Margherita Molinari [bikini] 2
2019 9 2064999|1987201291826516016 Gli Autogol [gliautogol, abisso, inter, rigore, polemiche,

scoop, fiorentina, seriea]
3

2019 9 2541047|1990578788300496209 stefania saettone [view, madonnadicampiglio, suite, luxury,
sensualshot, blonde, natural, mountain, italy,

nopost, body]

4

2019 9 2064999|1990905750301766394 Gli Autogol [terzo, championsleague, gliautogol, seriea,
tifosi, gerryscotti, milan, zona]

5

2019 9 3046091|1991362230046091271 Laura freddi Official [mamma, occhi, roma, sguardi, crescere, figlia,
figlia, bimba, compleanno, 14mesi]

6

2019 9 51941|1991714564871133435 Mario Balotelli [allezlom, thefirstinstagramhistoryafteragol,
bravolesgars,

supporterambiancemagnifiquemerci]

7

2019 9 531133|1987181715384162706 Verissimo [ladygaga, oscars, bradleycooper, verissimo] 8
2019 9 1585817|1987062136647492054 Syria [ladygaga, oscars2019] 8
2019 9 2064999|1991698934862872329 Gli Autogol [juventus, napoli, gliautogol, finito, allegri,

seriea, campionato]
9

Table 6.17: Outputs for the K-Means applied on hashtags, for week 9 of year
2019 (anomalous posts with an overperforming score detected by the ARIMA
Model). For reasons of brevity and visualization, only the actual clusters are
represented, and not the 101 posts classified as noise (cluster: 0, including also
posts without hashtags in their caption without distinction)

154

Chapter 7

Conclusions

In this thesis work, we presented the problems of Anomaly Detection and Cluster-
ing on Online Social Networks (OSN). The new approach proposed involves the
identification of anomalous posts, i.e. those that have received more reactions than
expected, and the weekly grouping of the same, on the basis of textual-content
similarity, to identify weekly offline trends or peculiar events that probably led to
such atypical engagement, such as the participation of an influencer in a TV show
or contest.

First we defined the practices and characteristics of the online presence, of the
OSNs (in particular Instagram) and, more generally, of online life with a brief
historical description of the past and present market players.

Next, we divided the existing literature (on such problems) into categories and
identified the shortcomings and values of other proposed solutions, highlighting
the differences with the proposed work. We also presented the relevant theory
necessary to carry out our work.

To perform this search, Instagram CrowdTangle Database was used to produce
a dataset of all posts between 2015 and 2021, including approximately 1 611 Italian
Instagram influencer accounts and 2 036 966 posts, with the most descriptive
attributes that could be extracted.

The dataset has been pre-processed, in order to extract the main characteristics,
remove unnecessary attributes or erroneous data, calculate a performance score
(in terms of reactions received versus expected reactions) for each post (the main
feature of the survey Anomaly phase) and perform Natural Language Processing
(NLP) analyzes on the text, contained in the post-caption or within the post-media,
to verify the textual similarity (main feature for the Clustering phase) between the
posts. The anomalies found by the various methods were joined by further machine
intelligible textual characteristics, such as the TF-IDF and Sublinear TF-IDF,
calculated for each week of the dataset.

The final phase involves grouping the weekly anomalies by textual similarity.

155

Conclusions

Four algorithms have been implemented: the DBSCAN, applied on a pre-calculated
paired distance matrix involving the captions of the anomalous posts, the K-Means,
applied on a weighted hash vector of the caption words, an LDA model (shown only
as an example and not in-depth) and Community Detection algorithms, applied on
a graph of anomalous posts.

The proposed system works well, as it was actually possible to find clusters
that make sense as belonging to the same theme, and they manage well to group
posts related to particular events (important football matches, music festivals, TV
shows, famous weddings, Oscar awards, etc.). The results obtained suggest that
some posts actually received more/less reactions than expected as their content was
related to events outside the real world, while others, classified as “noise” are not
related to those events, so they probably have obtained an anomalous involvement
due to causes endogenous to the OSN.

Based exclusively on numerical data, taking into consideration the Silhouette
Score (and modularity in the case of graphs), the best results would seem to derive
from the pair ARIMA model - DBSCAN on hashtags, while the other two pairs are
equivalent, with the exception that the graph method is the only one that gives
acceptable results when considering all types of words (hashtags, simple words and
words within the image) rather than just hashtags. According to these statistics,
it would appear that the graph method is the worst of those mentioned, but, in
reality, by manual inspection it is the one that gives the best results.

7.1 Future Work
Although done with the utmost effort, this thesis work could be extended and
improved in several directions.

• Additional clustering features - A study on the development of additional
metrics could improve the proposed work, allowing clustering algorithms
to perform a more robust subdivision of anomalous posts into groups. For
example, one could better analyze the content of posts, not limiting oneself
exclusively to textual characteristics, but applying a Convolutional Neural
Network on images and videos as a comparison/similarity metric.

• Manually adding labels - To better identify whether the posts that are
detected anomalous have actually received more/less reactions than expected
due to external events in the real world, you could manually add a label to
each post, indicating the type of event or whether it does not depend on any
“offline” events. To do this, you could also compare the results obtained by
extracting the trending topics corresponding to the publication period of each
post from Google Trend. The problem would thus go from unsupervised to
supervised.

156

Conclusions

• Different evaluation metrics - For this work, only the Silhouette Score
and a manual inspection of the data are used as evaluation metrics for the
goodness of the clusters (by sample, considering the huge amount of data to be
checked, or even total in some cases). Different metrics could more specifically
assess the performance of the algorithms.

• In-depth analysis of the LDA algorithm - In our work, the LDA model
is cited only as an example, without carrying out a more in-depth analysis
of the results, also because it is difficult to compare with other clustering
methods due to the nature of the algorithm and its output. Since the first
results seem promising, further checks could be made and investigated if the
results obtained are better than the other proposed techniques.

• Deepening on underperforming posts - Given the nature of our research,
it seems more sensible to focus more on anomalous posts that have been
scored overperforming, as an external event is more likely to “positively” affect
the popularity of an influencer or a certain post. Intuitively, it is probable
instead that, again with reference to events exogenous to the OSN, a fake news
negatively affects a post, or that the causes for which a post receives fewer
reactions than expected are rather endogenous to the OSN. Another possible
reason could be a too optimistic evaluation by CrowdTangle’s predictive
algorithm for the expected reactions of a post. For this reason, the manual
inspection and also the examples shown were not thorough for posts with an
underperforming score, but this could be done in the future.

• Applying the best methods to Facebook - The best Anomaly Detection -
Clustering method pair could also be applied to the Facebook dataset (similarly
downloaded via CrowdTangle) to compare the results from the Instagram
dataset. it is necessary, however, to change the name of some parameters (it
depends on the dataset) and decide whether to deepen the variety of reactions
existing on Facebook, unlike Instagram in which reactions are limited to a
simple like or comment.

157

Bibliography

[1] Michael Ray. Social Network. In: Encyclopaedia Britannica. 2021. url: https:
//www.britannica.com/technology/social-network (cit. on p. 2).

[2] Leading Online Social Networks logos. url: https://www.robertabruzzone.
com/intervista- a- roberta- bruzzone- ragazzi- attenti- perche- i-
social-non-perdonano (cit. on p. 2).

[3] Instagram round logo. url: https://pngset.com/transparent-png#gyltb
(cit. on p. 2).

[4] Whatsapp logo. url: https://it.wikipedia.org/wiki/File:Whatsapp_
logo_svg.png (cit. on p. 2).

[5] Terry Flew. Media Convergence - Social Media. In: Encyclopaedia Britannica.
2021. url: https://www.britannica.com/topic/media- convergence
(cit. on p. 2).

[6] Number of people using social media platforms, 2004 to 2019. url: https:
//ourworldindata.org/grapher/users-by-social-media-platform?
time=2004..latest&country=Facebook~Instagram~MySpace~Snapchat~T
ikTok~Twitter~Whatsapp~YouTube (cit. on p. 4).

[7] Number of users of leading social networks in Italy in March 2021(in millions).
url: https://www.statista.com/statistics/787390/main- social-
networks-users-italy (cit. on p. 5).

[8] Jan Kietzmann, Kristopher Hermkens, Ian McCarthy, and Bruno Silvestre.
«Social Media? Get Serious! Understanding the Functional Building Blocks
of Social Media». In: Business Horizons 54 (May 2011), pp. 241–251. doi:
10.1016/j.bushor.2011.01.005 (cit. on p. 6).

[9] Vitaly Gorbachev. Avatar icons. url: https://www.flaticon.com/author
s/vitaly-gorbachev (cit. on p. 8).

[10] Kyrylo Petrenko. Instagram Stories mockup. url: https://www.dreamstime.
com (cit. on p. 8).

[11] Photocamera flat icon. url: https://icon-library.com/icon/camera-
flat-icon-2.html (cit. on p. 8).

158

https://www.britannica.com/technology/social-network
https://www.britannica.com/technology/social-network
https://www.robertabruzzone.com/intervista-a-roberta-bruzzone-ragazzi-attenti-perche-i-social-non-perdonano
https://www.robertabruzzone.com/intervista-a-roberta-bruzzone-ragazzi-attenti-perche-i-social-non-perdonano
https://www.robertabruzzone.com/intervista-a-roberta-bruzzone-ragazzi-attenti-perche-i-social-non-perdonano
https://pngset.com/transparent-png#gyltb
https://it.wikipedia.org/wiki/File:Whatsapp_logo_svg.png
https://it.wikipedia.org/wiki/File:Whatsapp_logo_svg.png
https://www.britannica.com/topic/media-convergence
https://ourworldindata.org/grapher/users-by-social-media-platform?time=2004..latest&country=Facebook~Instagram~MySpace~Snapchat~TikTok~Twitter~Whatsapp~YouTube
https://ourworldindata.org/grapher/users-by-social-media-platform?time=2004..latest&country=Facebook~Instagram~MySpace~Snapchat~TikTok~Twitter~Whatsapp~YouTube
https://ourworldindata.org/grapher/users-by-social-media-platform?time=2004..latest&country=Facebook~Instagram~MySpace~Snapchat~TikTok~Twitter~Whatsapp~YouTube
https://ourworldindata.org/grapher/users-by-social-media-platform?time=2004..latest&country=Facebook~Instagram~MySpace~Snapchat~TikTok~Twitter~Whatsapp~YouTube
https://www.statista.com/statistics/787390/main-social-networks-users-italy
https://www.statista.com/statistics/787390/main-social-networks-users-italy
https://doi.org/10.1016/j.bushor.2011.01.005
https://www.flaticon.com/authors/vitaly-gorbachev
https://www.flaticon.com/authors/vitaly-gorbachev
https://www.dreamstime.com
https://www.dreamstime.com
https://icon-library.com/icon/camera-flat-icon-2.html
https://icon-library.com/icon/camera-flat-icon-2.html

BIBLIOGRAPHY

[12] Koosha Zarei, Damilola Ibosiola, Reza Farahbakhsh, Zafar Gilani, Kiran
Garimella, Noël Crespi, and Gareth Tyson. «Characterising and detecting
sponsored influencer posts on Instagram». In: Dec. 2020, pp. 327–331. doi:
10 . 1109 / ASONAM49781 . 2020 . 9381309. url: https : / / hal . archives -
ouvertes.fr/hal-03044105/document (cit. on pp. 10–12, 36).

[13] Rana Tallal Javed, Mirza Elaaf Shuja, Muhammad Usama, Junaid Qadir,
Waleed Iqbal, Gareth Tyson, Ignacio Castro, and Kiran Garimella. «A
First Look at COVID-19 Messages on WhatsApp in Pakistan». In: CoRR
abs/2011.09145 (2020). arXiv: 2011.09145. url: https://arxiv.org/abs/
2011.09145 (cit. on pp. 12, 13, 16).

[14] Derek Weber and Frank Neumann. «Who’s in the Gang? Revealing Coor-
dinating Communities in Social Media». In: CoRR abs/2010.08180 (2020).
arXiv: 2010.08180. url: https://arxiv.org/abs/2010.08180 (cit. on
pp. 13, 14).

[15] Derek Weber, Mehwish Nasim, Lewis Mitchell, and Lucia Falzon. «A method
to evaluate the reliability of social media data for social network analysis».
In: CoRR abs/2010.08717 (2020). arXiv: 2010.08717. url: https://arxiv.
org/abs/2010.08717 (cit. on p. 14).

[16] Matteo Cardaioli, Pallavi Kaliyar, Pasquale Capuozzo, Mauro Conti, Giuseppe
Sartori, and Merylin Monaro. «Predicting Twitter Users’ Political Orientation:
An Application to the Italian Political Scenario». In: 2020 IEEE/ACM In-
ternational Conference on Advances in Social Networks Analysis and Mining
(ASONAM). 2020, pp. 159–165. doi: 10.1109/ASONAM49781.2020.9381470
(cit. on p. 15).

[17] Md. Shafiur Rahman, Md. Ashraf Uddin, Sajal Halder, and Uzzal Acharjee.
«An efficient hybrid system for anomaly detection in social networks». In:
Cybersecurity 4 (Mar. 2021). doi: 10.1186/s42400-021- 00074-w. url:
https://doi.org/10.1186/s42400-021-00074-w (cit. on pp. 16, 17).

[18] Volodymyr Miz, Benjamin Ricaud, Kirell Benzi, and Pierre Vandergheynst.
«Anomaly Detection in the Dynamics of Web and Social Networks Using
Associative Memory». In: The World Wide Web Conference. WWW ’19. San
Francisco, CA, USA: Association for Computing Machinery, 2019, pp. 1290–
1299. isbn: 9781450366748. doi: 10.1145/3308558.3313541. url: https:
//doi.org/10.1145/3308558.3313541 (cit. on p. 17).

[19] Mustafa H. Hajeer, Alka Singh, Dipankar Dasgupta, and Sugata Sanyal.
«Clustering online social network communities using genetic algorithms». In:
CoRR abs/1312.2237 (2013). arXiv: 1312.2237. url: http://arxiv.org/
abs/1312.2237 (cit. on p. 18).

159

https://doi.org/10.1109/ASONAM49781.2020.9381309
https://hal.archives-ouvertes.fr/hal-03044105/document
https://hal.archives-ouvertes.fr/hal-03044105/document
https://arxiv.org/abs/2011.09145
https://arxiv.org/abs/2011.09145
https://arxiv.org/abs/2011.09145
https://arxiv.org/abs/2010.08180
https://arxiv.org/abs/2010.08180
https://arxiv.org/abs/2010.08717
https://arxiv.org/abs/2010.08717
https://arxiv.org/abs/2010.08717
https://doi.org/10.1109/ASONAM49781.2020.9381470
https://doi.org/10.1186/s42400-021-00074-w
https://doi.org/10.1186/s42400-021-00074-w
https://doi.org/10.1145/3308558.3313541
https://doi.org/10.1145/3308558.3313541
https://doi.org/10.1145/3308558.3313541
https://arxiv.org/abs/1312.2237
http://arxiv.org/abs/1312.2237
http://arxiv.org/abs/1312.2237

BIBLIOGRAPHY

[20] Bhaskar Biswas Kuldeep Singh Harish Kumar Shakya. «Clustering of people
in social network based on textual similarity». In: Elsevier GmbH 8 (Sept.
2016), pp. 570–573. doi: https://doi.org/10.1016/j.pisc.2016.06.023
(cit. on p. 19).

[21] Elizabeth Williams, Jeff Gray, Edwin Morris, Ben Bradshaw, Keegan Williams,
and Brandon Dixon. «A comparison of two methods for the topical clustering
of social media posts». In: 2016 IEEE 7th Annual Ubiquitous Computing,
Electronics and Mobile Communication Conference (UEMCON). Oct. 2016,
pp. 1–7. doi: 10.1109/UEMCON.2016.7777863 (cit. on pp. 20, 21).

[22] Narumol Prangnawarat, Ioana Hulpus, and Conor Hayes. «Event Analysis in
Social Media Using Clustering of Heterogeneous Information Networks». In:
FLAIRS Conference. 2015 (cit. on pp. 21, 22).

[23] Lei-Lei Shi, Lu Liu, Yan Wu, Liang Jiang, and James Hardy. «Event Detection
and User Interest Discovering in Social Media Data Streams». In: IEEE Access
5 (2017), pp. 20953–20964. doi: 10.1109/ACCESS.2017.2675839 (cit. on
p. 22).

[24] Patrick Liu Shuhua and Jansson. «Topic Modelling Analysis of Instagram
Data for the Greater Helsinki Region». In: Arcada Working Papers (2017).
url: http://www.theseus.fi/handle/10024/140608 (cit. on p. 23).

[25] Martino Trevisan, Luca Vassio, Idilio Drago, Marco Mellia, Fabricio Murai,
Flavio Figueiredo, Ana Paula Couto da Silva, and Jussara M Almeida. «To-
wards Understanding Political Interactions on Instagram». In: Proceedings
of the 30th ACM Conference on Hypertext and Social Media. 2019. url:
http://hdl.handle.net/11583/2752645 (cit. on p. 24).

[26] Carlos Henrique Gomes Ferreira, Fabricio Murai, Ana Paula Couto da Silva,
Jussara Marques de Almeida, Martino Trevisan, Luca Vassio, Idilio Drago,
and Marco Mellia. «Unveiling Community Dynamics on Instagram Political
Network». In: ACM Conference on Web Science. 2020 (cit. on pp. 24, 25).

[27] Nicolo Russo Francesca Soro Marco Mellia. «Regular Pattern and Anomaly De-
tection on Corporate Transaction Time Series». In: EDBT/ICDT Workshops.
2020 (cit. on pp. 25, 26, 105).

[28] Martino Trevisan, Luca Vassio, and Danilo Giordano. «Debate on online
social networks at the time of COVID-19: An Italian case study». In: Online
Social Networks and Media 23 (2021), p. 100136. issn: 2468-6964. doi: https:
//doi.org/10.1016/j.osnem.2021.100136 (cit. on p. 27).

160

https://doi.org/https://doi.org/10.1016/j.pisc.2016.06.023
https://doi.org/10.1109/UEMCON.2016.7777863
https://doi.org/10.1109/ACCESS.2017.2675839
http://www.theseus.fi/handle/10024/140608
http://hdl.handle.net/11583/2752645
https://doi.org/https://doi.org/10.1016/j.osnem.2021.100136
https://doi.org/https://doi.org/10.1016/j.osnem.2021.100136

BIBLIOGRAPHY

[29] Luca Vassio, Michele Garetto, Carla Chiasserini, and Emilio Leonardi. «Tem-
poral Dynamics of Posts and User Engagement of Influencers on Facebook
and Instagram». In: Proceedings of the 2021 IEEE/ACM International Con-
ference on Advances in Social Networks Analysis and Mining. ASONAM
’21. Virtual Event, Netherlands: Association for Computing Machinery, 2021,
pp. 129–133. isbn: 9781450391283. doi: 10.1145/3487351.3488340. url:
https://doi.org/10.1145/3487351.3488340 (cit. on p. 28).

[30] Fabio Bertone, Luca Vassio, and Martino Trevisan. «The Stock Exchange of
Influencers: A Financial Approach for Studying Fanbase Variation Trends».
In: Proceedings of the 2021 IEEE/ACM International Conference on Ad-
vances in Social Networks Analysis and Mining. ASONAM ’21. Virtual Event,
Netherlands: Association for Computing Machinery, 2021, pp. 431–435. isbn:
9781450391283. doi: 10.1145/3487351.3488413. url: https://doi.org/
10.1145/3487351.3488413 (cit. on p. 28).

[31] Varun Chandola, Arindam Banerjee, and Vipin Kumar. «Anomaly Detection:
A Survey». In: ACM Comput. Surv. 41 (July 2009). doi: 10.1145/1541880.
1541882 (cit. on pp. 46, 51).

[32] Vic Barnett and Toby Lewis. Outliers in statistical data. 1984 (cit. on p. 46).
[33] Francesca Soro, Thomas Favale, Danilo Giordano, Luca Vassio, Zied Ben

Houidi, and Idilio Drago. «The New Abnormal: Network Anomalies in the AI
Era». In: Communication Networks and Service Management in the Era of
Artificial Intelligence and Machine Learning. Wiley, John and Sons, Ltd, 2021.
Chap. 11, pp. 261–288. isbn: 9781119675525. doi: https://doi.org/10.
1002/9781119675525.ch11. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1002/9781119675525.ch11. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/9781119675525.ch11 (cit. on pp. 46, 48, 51).

[34] Ravneet Kaur and Sarbjeet Singh. «A survey of data mining and social
network analysis based anomaly detection techniques». English. In: Egyptian
Informatics Journal 17.2 (2016), pp. 199–216. doi: 10.1016/j.eij.2015.
11.004 (cit. on pp. 48–51).

[35] David Savage, Xiuzhen Zhang, Xinghuo Yu, Pauline Lienhua Chou, and
Qingmai Wang. «Anomaly detection in online social networks». In: CoRR
abs/1608.00301 (2016). arXiv: 1608.00301. url: http://arxiv.org/abs/
1608.00301 (cit. on p. 50).

[36] Anomaly Detection Service. url: https://developer.mindsphere.io/
apis/analytics-anomalydetection/api-anomalydetection-overview.
html (cit. on p. 52).

161

https://doi.org/10.1145/3487351.3488340
https://doi.org/10.1145/3487351.3488340
https://doi.org/10.1145/3487351.3488413
https://doi.org/10.1145/3487351.3488413
https://doi.org/10.1145/3487351.3488413
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/https://doi.org/10.1002/9781119675525.ch11
https://doi.org/https://doi.org/10.1002/9781119675525.ch11
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119675525.ch11
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119675525.ch11
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119675525.ch11
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119675525.ch11
https://doi.org/10.1016/j.eij.2015.11.004
https://doi.org/10.1016/j.eij.2015.11.004
https://arxiv.org/abs/1608.00301
http://arxiv.org/abs/1608.00301
http://arxiv.org/abs/1608.00301
https://developer.mindsphere.io/apis/analytics-anomalydetection/api-anomalydetection-overview.html
https://developer.mindsphere.io/apis/analytics-anomalydetection/api-anomalydetection-overview.html
https://developer.mindsphere.io/apis/analytics-anomalydetection/api-anomalydetection-overview.html

BIBLIOGRAPHY

[37] Adithya Krishnan. Anomaly Detection with Time Series Forecasting. url:
https://www.kaggle.com/adithya44/anomaly-detection-with-time-
series-forecasting (cit. on p. 55).

[38] André Bauer. «Automated Hybrid Time Series Forecasting: Design, Bench-
marking, and Use Cases». PhD thesis. Jan. 2021. doi: 10.25972/OPUS-22025
(cit. on p. 56).

[39] Yousra Regaya, Fodil Fadli, and Abbes Amira. «Point-Denoise: Unsupervised
outlier detection for 3D point clouds enhancement». In: Multimedia Tools and
Applications 80 (July 2021), pp. 1–17. doi: 10.1007/s11042-021-10924-x
(cit. on p. 60).

[40] IsolationForest example. url: https://scikit-learn.org/stable/auto_
examples/ensemble/plot_isolation_forest.html#sphx- glr- auto-
examples-ensemble-plot-isolation-forest-py (cit. on p. 61).

[41] Detecting and Treating Outliers | Treating the odd one out! May 2021. url:
https://www.analyticsvidhya.com/blog/2021/05/detecting- and-
treating-outliers-treating-the-odd-one-out/ (cit. on p. 62).

[42] Itziar Frades and Rune Matthiesen. «Overview on Techniques in Cluster
Analysis». In: Methods in molecular biology (Clifton, N.J.) 593 (Jan. 2010),
pp. 81–107. doi: 10.1007/978-1-60327-194-3_5 (cit. on p. 64).

[43] Hierarchical Clustering / Dendrogram: Simple Definition, Examples. Nov. 2021.
url: https://www.statisticshowto.com/hierarchical-clustering (cit.
on p. 65).

[44] Pradeep Rai and Singh Shubha. «A Survey of Clustering Techniques». In:
International Journal of Computer Applications 7 (Oct. 2010). doi: 10.5120/
1326-1808 (cit. on p. 65).

[45] Benedek Rozemberczki. Awesome Community Detection Research Papers.
url: https://github.com/benedekrozemberczki/awesome-community-
detection (cit. on p. 66).

[46] Vladimir Estivill-Castro. «Why so Many Clustering Algorithms: A Position
Paper». In: SIGKDD Explor. Newsl. 4.1 (June 2002), pp. 65–75. issn: 1931-
0145. doi: 10.1145/568574.568575 (cit. on p. 66).

[47] Luca Becchetti, Emilio Cruciani, Francesco Pasquale, and Sara Rizzo. «Step-
by-Step Community Detection for Volume-Regular Graphs». In: CoRR (2019).
arXiv: 1907.07149. url: https://www.uniroma3.it/articoli/step-by-
step-community-detection-in-volume-regular-graphs-160045 (cit. on
p. 67).

162

https://www.kaggle.com/adithya44/anomaly-detection-with-time-series-forecasting
https://www.kaggle.com/adithya44/anomaly-detection-with-time-series-forecasting
https://doi.org/10.25972/OPUS-22025
https://doi.org/10.1007/s11042-021-10924-x
https://scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html#sphx-glr-auto-examples-ensemble-plot-isolation-forest-py
https://scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html#sphx-glr-auto-examples-ensemble-plot-isolation-forest-py
https://scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html#sphx-glr-auto-examples-ensemble-plot-isolation-forest-py
https://www.analyticsvidhya.com/blog/2021/05/detecting-and-treating-outliers-treating-the-odd-one-out/
https://www.analyticsvidhya.com/blog/2021/05/detecting-and-treating-outliers-treating-the-odd-one-out/
https://doi.org/10.1007/978-1-60327-194-3_5
https://www.statisticshowto.com/hierarchical-clustering
https://doi.org/10.5120/1326-1808
https://doi.org/10.5120/1326-1808
https://github.com/benedekrozemberczki/awesome-community-detection
https://github.com/benedekrozemberczki/awesome-community-detection
https://doi.org/10.1145/568574.568575
https://arxiv.org/abs/1907.07149
https://www.uniroma3.it/articoli/step-by-step-community-detection-in-volume-regular-graphs-160045
https://www.uniroma3.it/articoli/step-by-step-community-detection-in-volume-regular-graphs-160045

BIBLIOGRAPHY

[48] Mark Needham and Amy E. Hodler. Graph Algorithms in Neo4j: Louvain
Modularity. 2019. url: https://neo4j.com/blog/graph- algorithms-
neo4j-louvain-modularity (cit. on p. 68).

[49] Aaron Clauset, M. E. J. Newman, and Cristopher Moore. «Finding community
structure in very large networks». In: Physical Review E 70.6 (Dec. 2004).
issn: 1550-2376. doi: 10.1103/physreve.70.066111. url: http://dx.doi.
org/10.1103/PhysRevE.70.066111 (cit. on p. 68).

[50] V. A. Traag, L. Waltman, and N. J. van Eck. «From Louvain to Leiden:
guaranteeing well-connected communities». In: Scientific Reports 9 (Mar.
2019). doi: 10.1038/s41598-019-41695-z (cit. on p. 69).

[51] Girvan-Newman algorithm. url: https://networkx.guide/algorithms/
community-detection/girvan-newman (cit. on pp. 71, 72).

[52] Chris Ernst. DBSCAN in Python. url: https://github.com/chriswernst/
dbscan-python (cit. on p. 73).

[53] A demo of K-Means clustering on the handwritten digits data. url: https:
//scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_
digits.html#sphx-glr-auto-examples-cluster-plot-kmeans-digits-
py (cit. on p. 74).

[54] Diego Buenaño-Fernández, Mario Gonzalez, David Gil, and Sergio Luján-
Mora. «Text Mining of Open-Ended Questions in Self-Assessment of University
Teachers: An LDA Topic Modeling Approach». In: IEEE Access PP (Feb.
2020), pp. 1–1. doi: 10.1109/ACCESS.2020.2974983 (cit. on p. 78).

[55] Cluster Mode Overview. url: https://spark.apache.org/docs/latest/
cluster-overview.html (cit. on p. 80).

[56] Introduction to Hadoop and MapReduce. url: https://dbdmg.polito.it/
wordpress/wp-content/uploads/2020/10/03_Intro_HadoopAndMapReduc
e_BigData_NewStyle.pdf (cit. on p. 83).

[57] sklearn.ensemble.IsolationForest. url: https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.IsolationForest.html (cit. on
p. 109).

[58] sklearn.cluster.DBSCAN. url: https://scikit-learn.org/stable/modul
es/generated/sklearn.cluster.DBSCAN.html (cit. on p. 119).

[59] Nadia Rahmah and Imas Sukaesih Sitanggang. «Determination of Optimal
Epsilon (Eps) Value on DBSCAN Algorithm to Clustering Data on Peatland
Hotspots in Sumatra». In: IOP Conference Series: Earth and Environmental
Science 31 (Jan. 2016), p. 012012. doi: 10.1088/1755-1315/31/1/012012.
url: https://doi.org/10.1088/1755-1315/31/1/012012 (cit. on p. 119).

163

https://neo4j.com/blog/graph-algorithms-neo4j-louvain-modularity
https://neo4j.com/blog/graph-algorithms-neo4j-louvain-modularity
https://doi.org/10.1103/physreve.70.066111
http://dx.doi.org/10.1103/PhysRevE.70.066111
http://dx.doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1038/s41598-019-41695-z
https://networkx.guide/algorithms/community-detection/girvan-newman
https://networkx.guide/algorithms/community-detection/girvan-newman
https://github.com/chriswernst/dbscan-python
https://github.com/chriswernst/dbscan-python
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_digits.html#sphx-glr-auto-examples-cluster-plot-kmeans-digits-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_digits.html#sphx-glr-auto-examples-cluster-plot-kmeans-digits-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_digits.html#sphx-glr-auto-examples-cluster-plot-kmeans-digits-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_digits.html#sphx-glr-auto-examples-cluster-plot-kmeans-digits-py
https://doi.org/10.1109/ACCESS.2020.2974983
https://spark.apache.org/docs/latest/cluster-overview.html
https://spark.apache.org/docs/latest/cluster-overview.html
https://dbdmg.polito.it/wordpress/wp-content/uploads/2020/10/03_Intro_HadoopAndMapReduce_BigData_NewStyle.pdf
https://dbdmg.polito.it/wordpress/wp-content/uploads/2020/10/03_Intro_HadoopAndMapReduce_BigData_NewStyle.pdf
https://dbdmg.polito.it/wordpress/wp-content/uploads/2020/10/03_Intro_HadoopAndMapReduce_BigData_NewStyle.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://doi.org/10.1088/1755-1315/31/1/012012
https://doi.org/10.1088/1755-1315/31/1/012012

BIBLIOGRAPHY

[60] sklearn.cluster.KMeans. url: https://scikit-learn.org/stable/module
s/generated/sklearn.cluster.KMeans.html (cit. on p. 129).

164

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

Ringraziamenti

Vorrei spendere qualche riga di ringraziamento nei confronti di tutti coloro che mi
hanno sostenuto e aiutato durante i miei anni di studio e di crescita, personale e
professionale, al Politecnico.

In primis, un grazie speciale va ai miei relatori, i Prof. Trevisan M. e Vassio L.,
per avermi guidata e supportata, giorno dopo giorno, nella fase più importante
del mio percorso accademico. Grazie per per gli indispensabili consigli, l’infinita
disponibilità, precisione e gentilezza, è stato un onore e un piacere per me poter
scrivere il mio progetto di tesi con voi.

Grazie ai miei genitori, per non avermi mai fatto mancare il vostro dolce e instan-
cabile sostegno, economico e morale, durante questi anni e per tutta la vita. Grazie
per avermi sempre incoraggiata, anche a distanza, a raggiungere questo obiettivo,
a sfruttare al massimo le mie capacità, a non perdermi mai d’animo in qualunque
situazione. Grazie per tutti i consigli, per esservi sempre preoccupati per me, per
aver sempre soddisfatto qualunque mia necessità, per aver vissuto con me ogni
momento di gioia e ogni difficoltà, grazie per esserci sempre stati. Senza di voi
tutto questo non sarebbe stato possibile, e senza i vostri insegnamenti oggi non
sarei ciò che sono. Grazie, vi voglio bene.

Grazie a mio fratello Giovanni, per essersi sempre interessato al mio percorso
universitario, per avermi sempre incoraggiata e sostenuta, anche nei momenti più
duri, per avermi sempre difesa da qualsiasi svalutazione, anche quando io stessa
non ho creduto in me. Grazie per avermi trattata da adulta quando gli altri mi
consideravano ancora un’adolescente, grazie per esserti sempre preoccupato per me,
per avermi capita quando mi sono sentita sola. Grazie per essere stato mio fratello,
quando mi sentivo una figlia unica.

Grazie a zia Mina, per essere stata sempre la prima a telefonare ogni volta che
dovevo affrontare un esame, per ogni tipo di bontà che hai sempre fatto trovare ad
ogni mio ritorno a Taranto, per tutte le vecchie storie che mi hai raccontato sulla

166

Ringraziamenti

mia famiglia, per avermi sempre sostenuta economicamente nonostante le ristrette
possibilità, grazie per esserti sempre interessata ad ogni piccolo aspetto della mia
vita. Avrei tanto voluto darti la gioia di poter assistere a questo mio traguardo,
spero tanto che da lassù sarai fiera di me.

Grazie a Monica, per essere sempre stata al mio fianco durante gli ultimi 11 anni,
per avermi dato la forza di affrontare i momenti più bui, per aver colmato i miei
vuoti quando il mondo intorno a me crollava a pezzi, per avermi ascoltata senza
mai giudicare, per avermi sempre spinta ad affrontare le mie paure e raggiungere
i miei obiettivi. Grazie per tutte le risate insieme, per la tua onestà e lealtà, per
aver sempre condiviso tutto con me, anche a distanza, ogni gioia, ogni dolore, ogni
ansia, ogni rabbia, ogni piccola emozione. Grazie per essere cresciuta con me. Sono
la persona più fortunata del mondo ad averti accanto, sei e sarai sempre la mia
migliore amica, la mia “partner in crime”, la sorella che non ho mai avuto, la mia
eterna complice.

Grazie a Michele, per ogni nottata sui nostri magici fogli di studio, per tutte le
ore passate a chiacchierare tra una sigaretta e l’altra, per le serate karaoke, per il
Martini rosato a qualsiasi ora, per essere stato il mio compagno di studi e di svago
durante la quarantena, per essermi stato accanto ad ogni singola lacrima versata,
per tutte le piccole sorprese che hai sempre organizzato per me. Grazie per le sere
alle nostre altalene, con una cuffia nell’orecchio, a ridere e cantare, a parlare di
tutto e di niente, a guardare la luna riflessa su Palazzo Lancia. Grazie per le fughe
di soppiatto dalle lezioni, per le veglie a guardare serie TV, per la gita a Moncalieri,
per la notte a suonare Wonderwall alla chitarra, grazie per il nostro “silent-party”,
che non dimenticherò mai: “io e te, contro tutto e tutti come sempre, a ballare in
silenzio, nel buio, nel mondo”. Sei una delle persone più importanti della mia vita,
ora e per sempre, senza di te tutto questo non sarebbe stato possibile.

Grazie ad Albo, il mio compagno di banco, di giochi e di vita, per ogni singola ora
di lezione noiosa insieme, per i pomeriggi di studio, per ogni camminata verso il
patibolo dell’esame, per le videochiamate a qualsiasi ora per KlapKlap, per ogni
ansia universitaria (e non) affrontata insieme durante gli ultimi 5 anni. Grazie per
le Dragoon al pub, per le chiacchierate infinite, le risate, gli abbracci, per la nostra
complicità, per i sogni condivisi, per ogni nostra piccola avventura insieme. Grazie
per essermi stato accanto e avermi sempre regalato un sorriso anche nei momenti di
tristezza, per avermi sempre incoraggiata e capita, per essere stato la mia boccata
d’aria fresca, il mio arcobaleno nei giorni più grigi. Diventare tua amica è stata la
cosa più semplice e naturale che mi sia mai capitata, come un riflesso involontario,
non l’ho controllato, non l’ho premeditato. Sarai sempre il mio primo pensiero
quando ripenserò a questi anni universitari, i miei ricordi più belli sono tutti con
te. Sei e sarai sempre parte di me, e questo niente potrà mai cambiarlo.

167

Ringraziamenti

Grazie a tutti i miei parenti, i miei amici di Taranto e di Torino, i miei compagni di
università e a tutti coloro che in questi anni hanno incrociato la mia vita lasciandomi
qualcosa di buono. Grazie per aver fatto parte, ognuno a suo modo, di questo
percorso intenso ed entusiasmante, nel bene e nel male.

Sono così tanti i ricordi che mi tornano in mente che è impossibile trovare le parole
giuste o sufficienti per onorarli, tutte le pagine di questa tesi non basterebbero.

Grazie di cuore a tutti voi.

Infine, dedico questa tesi a me stessa, ai miei sacrifici, al mio impegno e alla mia
tenacia che mi hanno permesso di arrivare fin qui.

“We were together. I forget the rest.”
Walt Whitman

168

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Motivation and Objectives
	Online Social Networks
	Difference between Online Social Network and Online Social Media
	Historic Background of Online Social Networks
	Functionality Framework of Online Social Networks
	Our research choice: Instagram Social Network
	Instagram influencers

	Related Literature
	Online Social Networks General analyses
	Anomaly Detection in Online Social Networks
	Clustering in Online Social Networks
	Clustering of people
	Clustering of posts
	Topic Extraction and Event Detection

	Previous publications by our research group
	Contribution of This Work

	The Instagram Post Dataset
	Selection of the Social Media Platform
	Characterization of the Dataset
	Statistical Analysis and Data Cleaning
	Followers Characterization
	Reactions Characterization
	Textual Characterization
	Time Features Characterization
	Posting Frequency
	Posting Trends

	Other Features

	Relevant Theory
	The Anomaly Detection Problem
	Definitions
	Characterization of the Problem
	Anomalies in Online Social Networks
	Classical Approaches
	Supervised Methods
	Semi-supervised Methods
	Unsupervised Methods

	Anomaly Detection Methods
	Auto Regressive Integrated Moving Average (ARIMA) for Anomaly Detection
	Stationarity and Differencing
	The Akaike Information Criterion (AIC)

	Boxplot Rule
	Isolation Forest
	Z-Score for Anomaly Detection

	The Clustering Problem
	Definitions
	Characterization of Cluster Analysis
	Classification of Classical Methods and Models

	Clustering Methods
	Graphs and Community Detection Algorithms
	Modularity
	Louvain Algorithm
	Label Propagation Algorithm
	Girvan-Newman Algorithm

	DBSCAN Algorithm
	Jaccard Index

	K-Means Algorithm
	Cosine Similarity

	Textual Analysis Methods: Natural Language Processing (NLP)
	Term Frequency — Inverse Document Frequency (TF-IDF)
	Sublinear TF-IDF
	Hashing TF-IDF

	Latent Dirichlet Allocation (LDA)

	Data Mining and Pre-Processing
	Data Sources
	Instruments
	Apache Spark
	The Cluster and The Hadoop Distributed File System (HDFS)
	Tools and Libraries

	The Original Data
	Initial Data Transformation
	Data Fields Filtering
	Identification Features
	Post Identification
	Account Identification

	Temporal Features
	Popularity Features
	CrowdTangle Performance-Score
	New Performance-Score Computation and (Post) Filtering
	Characterization of the Types of Score

	Textual Features Pre-Processing
	Textual Information Extraction
	Special Characters Cleaning
	Lower Case
	Punctuation and Empty Strings Removal
	Unicode Words
	Emojis Removal

	Part-of-Speech (PoS) Tagging Analysis
	Language Detection
	PoS-Tagging (Words) Filtering

	Stop-Words Removal

	Methodologies and Results
	Workflow
	Anomaly Detection
	ARIMA Model
	Results

	Boxplot Rule Method
	Results

	Isolation Forest
	Results

	Z-Score Method
	Results

	Comparison of Anomaly Detection Methods and Results

	Textual Analysis
	TF-IDF and Sublinear TF-IDF
	Final Data Transformation

	Clustering
	DBSCAN Algorithm
	Distance Matrix
	Results
	Example

	K-Means Algorithm
	Hashing TF-IDF
	Cosine Similarity
	Results
	Example

	LDA Algorithm
	Lemmatization
	Coherence Model
	Results
	Example

	Graphs and Community Detection
	Results
	Example

	Comparison of Clustering Methods and Results
	Comparison Example

	Conclusions
	Future Work

	Bibliography

