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Abstract

This thesis project aims to extend the functionalities of OpenRAM, an open

source memory compiler based on Python programming language, capable of

generating Static Random Access Memory (SRAM) arrays with adjustable

sizes and number of ports by using several technologies, and to characterize

the array in terms of power, performance and area about the produced array.

The thesis goal consists in enabling OpenRAM to generate and characterize

a Register File with 2 read ports and 1 write port by employing a fully

open-source design flow and by using SkyWater130 Process Design Kit. The

modules needed to build the Register File have been developed in the form of

circuit-level and graphic-level descriptions. Then, the source code has been

adapted to integrate the new modules and to perform instantiation, placing

and routing of them, and to allow the tool to characterize the Register File.
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Chapter 1

Introduction

1.1 Open-source design flow

Static Random Access Memories (SRAMs) have become a very important

part in many electronic systems, from microprocessors to Systems-on-Chip

(SoC) and Application Specific Integrated Circuits (ASICs). The variability

of applications leads to the need of multiple SRAM configurations with dif-

ferent number of words, bits per word, columns multiplexing, etc. Of course,

this is a problem if all the configurations have to be manually created and

for this reason commercial SRAMs are created using SRAM generators.

In many cases, academic IC’s design methodologies are limited by the avail-

ability of memories because the Process Design Kits (PDKs) are often pro-

vided by foundries and vendors, but they do not include any standard cell

useful to create memory arrays [1].

Moreover, in some cases researchers cannot use commercial memory genera-

tors in their design flow because of academic funding restrictions. Along with

this complication, these commercial solutions are limited in customization of

the memory sizes and specific components of the memory.

Another issue concerns the possibility to get a view of the back-end features

of the contemporary memory compilers. Several companies and foundries

have released to their customers some versions of memory compilers that

shows the front-end results like timing and power estimations and pins loca-

tion, but back-end aspects are normally hidden.
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This perspective shows the academic environment difficulty about the opti-

mization of memory design and the verification of circuits and methodolo-

gies, provoked by the lack of a free automatic tool able to create customizable

memory arrays.

This work aims to use an open-source design flow to open the possibility to

generate Register Files in SKY 130nm process node [6].

Building an ASIC requires three different elements, as shown in Figure 1.1:

• RTL Design

• EDA tools

• PDK data

As reported in [7], both RTL Design and EDA tools have a quite long history

of being open-source. It is possible to mention RISC-V open ISA project for

the former and the tools available thanks to the project Open Circuit Design

for the latter. By having these two parts, RTL Design can be compiled but

it is not enough because the PDK is very important to generate the ASIC.

It would be not possible to release the GDS (Graphic Design System) of the

circuit without it.

SKY 130nm PDK has been used in this work. It is a collaboration between

SkyWater Technology and Google with the aim to provide a complete set

of libraries freely. Indeed, SKY 130nm PDK is open-source, thus it can be

downloaded from GitHub at the link:

https://github.com/google/skywater-pdk

There exist other open-source PDKs such as MOSIS 0.5um, MOSIS 0.35um

and NCSU FreePDK, but in the first two cases the node is too wide, while in

the last case the PDK is not manufacturable. SKY 130nm PDK overcomes

these limits since it is a manufacturable technology and, even though the

process node is not so recent, it offers good features from performance, power

and area point of views yet.
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Figure 1.1: ASIC’s creation design flow
[7]

1.2 OpenRAM: an open-source memory com-

piler

The OpenRAM project provides a framework that can generate reference

circuit and physical implementation of a SRAMs characterized by any con-

figuration decided by the user concerning size features such as number of

words and bits per word, number of ports, number of banks (at most 2) and

technology. Technology portability among the ones supported by the tool is

a key point. In addition to circuit and layout issues, OpenRAM includes a

characterization methodology that supplies timing and power evaluation, so

it provides both front-end and back-end results.

The development framework is open-source, therefore it can be freely mod-

ified by the user. In this way, anyone can take part to the evolution of this

powerful tool by adding new memory configurations or by including the pos-

sibility to use a new technology.

OpenRAM is a memory compiler based on object-oriented approach in Python

programming language. Source code is available at the link:

https://openram.soe.ucsc.edu/

It works with the aid of other tools to implement design rule check (DRC),

layout versus schematic (LVS) and simulation of the memory array just cre-
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ated. Thus, there are some dependencies that should be satisfied to ensure

a proper working flow. They are listed in the following with the names of

some tools mentioned in OpenRAM’s official site.

• Python 3.5+ with the package Numpy

• A SPICE simulator

– Ngspice 26

– HSpice I − 2013.12− 1

– CustomSim 2017

– Xyce 7.2

• A tool able to implement DRC

– Magic 8.3

– Calibre

• A tool able to implement LVS

– Netgen 1.5

– Calibre

If any tool for a specific purpose is not installed, then that specific function

is disabled with a warning.

By using Ngspice for simulation, Magic for DRC and Netgen for LVS, it is

possible to create a completely open-source license-free design flow, as it has

been done in this work.

For what concern technology portability, at this moment there are three

technology libraries available:

• NCSU FreePDK 45nm

• MOSIS 0.35um (SCN4M SUBM)

• SKY 130nm PDK

11



1.2.1 Working methodologies

The tool is composed by two different parts, the compiler and the character-

izer. They work in combination to provide front-end and back-end results by

using the proper methodology. This structure is summarized by the scheme

shown in Figure 1.2.

Front-end methodology involves the compiler, which requires a manually

written input file that configures word size, number of words, number and

type of port, number of banks, supply voltage and environmental aspects

such as temperature and process corners to be used in the simulation phase

to evaluate timing and power results. A library containing all the files re-

garding technology is also needed to generate the memory array and the

information about it can be inserted inside the configuration file by speci-

fying the name of the desired technology among the available ones. Having

said that, it is possible to highlight how simple is using OpenRAM to gener-

ate SRAM arrays with tunable dimensions and with the desired technology.

Configuration file could be useful also to define some options of the tool that

will be analyzed later. The compiler provides descriptions of the memory

array both at physical and logical level. In particular, the physical front-end

results consist of a GDS file and a LEF (Library Exchange Format) file,

which include all the informations about the layout of the memory array.

For what concern the logical results, the compiler is able to produce a Ver-

ilog description of the memory array and a Spice netlist that incorporates

a circuit-level report about the array itself, including all the sub-modules.

Front-end methodology involves also the memory characterizer. It calls a

simulator to produce a Liberty file about the estimation of timing and power

results based on an analytical model. As reported in the presentation pa-

per of OpenRAM, [1], the characterizer has four main stages: generating

the SPICE stimulus, running the circuit simulation, parsing the simulator’s

output, and producing the characteristics in a Liberty file.

Back-end or characterization methodology requires only the usage of the

characterizer that employs a netlist extracted from the GDSII layout used

to create annotated timing and power results in a Liberty file.

The last procedure provides more accurate outcomes about performance and

12



Figure 1.2: Working methodologies of OpenRAM [1].

power with respect to the one involved in front-end methodology. Indeed,

the front-end gives only an estimation based on the analytical model, so

there are some approximation on the evaluation of the maximum operating

frequency and the power dissipated per each cycle. The back-end provides

better results through the characterization of the memory just generated,

but it could require a long time to be executed, especially if the array has a

wide dimension.

One of the options of the tool consists in switching on/off the back-end

methodology. It is enough to change the value of the Boolean variable

”analytical delay”. If it is set to ”False”, the tool manages to implement

the complete characterization of the memory. On the contrary, if it is set

to ”True”, then the tool uses the analytical model to estimate timing and

power results. Another option allows to choose that model between Elmore

model and linear regression through a Boolean variable as just explained.

It is possible to set the options in the specific script ”options.py” or simply by

adding the correspondent variable with the desired value in the configuration

file.
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1.2.2 Implementation of the tool

The source code is implemented in a hierarchical way, so in the following it

will be analyzed with a top-down approach.

The structure is divided into two main directories: compiler and technology.

The former contains all the Python scripts to implement the compilation and

the characterizaton of the memory array, the latter includes all the technology

files and the Python scripts useful to integrate them in OpenRAM.

More in details, technology directory contains a set of sub-directories,

one for each PDK available in OpenRAM. Each of them is composed by the

models of the hand-made custom cells useful to create the memory array, a

library containing SPICE models of the devices of that specific technology

and a set of files reporting the features of the particular technology.

OpenRAM requires layout (GDS ) and circuit (SPICE ) level descriptions of

each custom cell employed inside the memory array:

• Bitcell

• Replica bitcell

• Dummy bitcell

• Sense amplifier

• Write driver

• D - Flip Flop

• Tri - gate

Custom cells are created by using a definite technology, thus each technology

sub-directory contains different descriptions of the cells.

For what concern devices’ SPICE models, they are directly transferred from

the original PDK without any changing. Models directory accounts for pro-

cess corners, so it make possible to obtain timing and power results of the

memory for each of them by using OpenRAM.

Every technology sub-directory contains a Python file named ”tech.py”, which

consists of a declaration of the process layers, the definition of design rules
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and the values of the parameters useful to implement the analytical model

such as the sizes of the transistors of the custom cells, the resistance per

square and the capacitance per square of the metal.

Introducing a new technology involves the creation of a further sub-directory

containing all the informations that have been illustrated.

Compiler directory includes all the necessary to create and characterize

the memory array. The way the tool is organized consists of a series of classes

that provide the basis to instantiate, place and route the modules that have

been created through other specific classes. Compiler directory contains also

some files such as globals.py and options.py, that are not involved directly

on the creation of the array, but they set the conditions in order to make

compilation possible.

As reported in [1], the file hierarchy spice.py contains the spice class which

has a data structure to maintain the circuit hierarchy. In particular, it sus-

tains the design instances, their pins and their connections. Another impor-

tant file is hierarchy layout.py containing layout class which includes objects

and instances for a module. These two classes provide the base to define the

design class that, in turn, is the one from which the modules are derived.

Two of the basis classes that worth to mention are cell class (custom cell pro-

perties.py) and layer class (custom layer properties.py). The former defines

all the cells that are used to build the memory array and their pins with the

correspondent type, while the latter fixes the layer that are used to create

each module.

OpenRAM includes also an integrated custom GDSII library to read, write

and modify GDSII files called GdsMill. The geometry wrapper class is im-

plemented. It abstracts the GdsMill library and make interfacing easier and

porting to other physical layout databeses possible.

The base includes also some other classes that have been created for placing

and routing.

About the modules, it is possible to classify them in a hierarchical scheme

composed by 3 levels to make explanation clear. By starting from top-level,

openram.py script initializes OpenRAM, instantiates a memory design that

satisfies all user specifications, performs extraction and characterization and

saves all the output files. The class sram contains an SRAM design instance,
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while the class sram base instantiates the modules that are present inside

the memory: control logic, bank and row and column address flip-flops. The

bank class is responsible for the creation of the single memory bank which

consists of 1, 2 or 4 bitcell arrays properly connected with row and column

circuitry such as decoders, sense amplifiers, write drivers, column muxes and

input/output data flops.

The medium level comprises the classes containing the creation of all the

base cells and of all the modules that are made of that cells. For instance,

write driver class creates the single write driver and write driver array class

is responsible for tiling the write driver to create the module that will be

connected to the bitcell array. Each class places and connects its own sub-

circuits while passing its dimensions and port locations up to higher-level

modules. At this level it is possible to highligth that not all base cells are

custom ones, but some of them are dynamically created by using the lowest

level classes to generate modules like decoder and control logic.

OpenRAM provide parametrized transistors and logic gate classes. The

classes ptx, pinv, nand2 and so on, generate technology-specific layouts so

that some modules don’t rely on library cells.

1.2.3 Basic usage

Before starting to use OpenRAM it is necessary to define at least three

environment variables:

• OPENRAM HOME = ”/$HOME/openram/compiler” pointing to

compiler directory

• OPENRAM TECH = ”/$HOME/openram/technology” whose value

is the path that brings to technology directory

• PY THONPATH = ”$PY THONPATH : $OPENRAM HOME”

Without setting these environment variables the tool gives an error. There

are some other environment variables that should be created such as the ones

that point to the spice models directory and to the directory that contains the

Magic configuration file (if it is used for DRC), but they don’t compromise

the success of compilation.
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Once having fixed environmental variables and completed the configura-

tion file (named ”myconfig.py” for instance), it is possible to run OpenRAM

in order to generate the memory array. This purpose is reached by executing

the following line on terminal:

python3 openram.py myconfig.py

This command must be launched from the compiler directory.

After the time needed for compilation and possibly for characterization,

OpenRAM gives a series of files of the kind ”outputname.x” where x is

one of the following extension:

• .gds containing the graphical description

• .lef including the abstract view of the cells

• .sp containing the circuit level description before LVS

• .html, a datasheet of the memory about the overall feature such as

ports, dimensions, operating conditions and timing and power results

obtained through analytical model or characterization

• .v with the Verilog description

• .lvs.sp containing the circuit level description after LVS

• .log, a report of the compilation

• .lib, one file for each process corner, containing timing and power results

• .py configuration file

OpenRAM gives also three shell scripts, run drc.sh, run lvs.sh, run ext.sh,

able to execute rispectively the DRC, the LVS and the parameters extrac-

tion of the memory array. They have to be launched by the user after the

compilation. Moreover, the tool provides a file named functional stim.sp, so

a spice netlist containing what is needed for a functional test once the period

is fixed.
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1.3 Work organization

After this introductive part about the open-source design and a brief overview

about the way OpenRAM is implemented, in the following parts of the work

it will be possible to get into the heart of the Register File project.

The second chapter is dedicated to the analysis of the State of Art about

SRAMs and Register Files, with an initial explanation of the basic structure

of an SRAM and of the possible solutions commonly used to implement the

needed blocks. Then, there will be an overview about the literature’s solu-

tions focused on improving one or more features of a Register File.

Afterward, what has been done to allow OpenRAM to generate a multiported

SRAM is explained. The work involves both a part related to the hardware

design and a part related to the modification of the source code. The third

chapter focuses on the design of the blocks needed to build a Register File

with 2 read ports and 1 write port from schematic and layout points of view

since, as previously said, integrating a module in OpenRAM means providing

the tool with a SPICE netlist and a GDS file of the module itself.

The fourth chapter concerns all the needed modifications to OpenRAM’s

Python framework to give the possibility to instantiate, place and route cor-

rectly all the blocks present in the Register File by avoiding design rules viola-

tions. Moreover, two of the internal modules of the memory have been created

thanks to OpenRAM’s framework, so the explanation about the adaptation

of the code describing those elements is present in this chapter too.

The fifth chapter contains the results given by the functional simulation of

the 2R/1W Register File.

Finally, sixth chapter includes conclusion and future developing.

18



Chapter 2

Register File State of Art

Multiported Register Files (RFs) are critical components in general-purpose

microprocessors from performance, area and power points of view. They are

used inside superscalar architectures to provide each execution unit with data

that are required to be ready as soon as possible in order to stand up to the

speed of the processing units themselves. As explained in [4], RFs are re-

quired to allow single clock cycle read/write latency to support back-to-back

read, read-after-write operations and multiple read/write ports to enable the

simultaneous access of several execution units. Moreover, they should be able

to store a quantity of data as large as possible to supply the need of execution

units, thus avoiding the waste of clock cycles waiting for a data stored in the

upper levels of the memory hierarchy. This leads to a wider dimension of the

RF and, as a consequence, to a worsening of the performance of the memory

due to the larger area. It would be surely possible to satisfy the requirements

about area and performance by adopting a particular internal configuration

of the RF, but it doesn’t come for free. Hence, the consequence of such a

changing would be a deterioration of other features, for instance power and

cell stability.

It is an example about the way all the parameters which can be used to

characterize a memory are associated to each other. It is a continuous trade-

off, so the RF should be designed to meet the constraints of the particular

application in which it is involved.

In the following, after an introduction about the basic memory configurations
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used for single port and multiported SRAMs, there will be an analysis con-

cerning a series of RFs architectures aiming to improve a particular feature.

2.1 Basic structure

SRAMs are volatile memories that lose the information after shutting down

the power supply. The basic architecture is shown in Figure 2.1. It consists of

the array of cells organized according to 2D or 3D architecture, the row and

column decoders, the column circuitry and the bitline conditioning devices.

The cells arranged in the same row share the wordline, while the ones located

in the same column share the bitlines. The wordlines are driven by the row

decoder and they could be organized in a hierarchical structure with the aim

to reduce power consumption and to improve the speed of the memory, as it

will be explained in the following. The activation of the desired row allows to

perform read and write operations, where the rest of the circuitry comes into

play. Hence, before a read operation the bitlines are precharged thanks to the

presence of the bitline conditioning circuit. Then, after a row is selected and

its cells have sufficiently discharged the bitlines, the bitline sensing circuits

placed inside the column circuitry manage to make available the data stored

inside the cells of each column located in the activated row to the external.

The desired data are driven out of the memory thanks to a series of column

muxes that, in turn, are activated by the column decoder. For what concern

write operation, after the activation of the desired wordline, the bitlines are

driven by the write driver, a component of the column circuitry. Also in

this case, the column is selected by means of column decoder. The address

received by row and column decoders is provided by the user.

All the modules of the memory, except for the cells, could be enabled by a

dedicated signal coming from control logic, a fundamental block that is not

present in Figure 2.1. This block handles the internal timing of the memory

in order to ensure that all the operations are performed in a proper way.
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Figure 2.1: Basic standard architecture of a SRAM [2]
.

2.1.1 Basic cells

Cell architectures used in SRAMs can be classified into two groups: single

port cells and multiported cells. The former group comprises all the cells that

use the same port for both read and write operations and therefore only one

at a time of these operations is possible. Instead, the multiported cells allow

to perform more than one operation simultaneously thanks to the presence

of different read and write ports. Moreover, it is possible to design the cell

in order to obtain separate ports for reading and writing.

Multiported cells are used in RFs since they allow parallel accesses from

several units in the same cycle, so they guarantee a better performance with

respect to the single port cells. Nevertheless, it is necessary to consider that

they are more area and power consuming than a single port cell realized with

the same technology.

In the following, the basic single port and multi port cells will be analyzed.

The part concerning the single port cell contains also some insights about
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the cell transistors’ sizing and the behaviour of the cell during read and write

operations. These aspects are valid also for multi port cells.

6T cell

The 6T cell is the most common one used in SRAMs. It is so called because

it contains 6 transistors, 4 employed in the data storing latch and 2 that

make access possible. The scheme shown in Figure 2.2 highlights the use of

a couple of inverters in back-to-back configuration storing the data Q and

Q b, accessible through the pass transistors, one per each side.

The access is possible when the wordline is raised, so when A1 and A2 behave

as short circuits ideally. At that point it is possible to perform read or write

operation by conditioning bitlines properly. Before a reading, it is necessary

to precharge both bitlines in order to bring them to a voltage value ideally

equal to power supply. Then a row is selected and after a certain amount

of time, dependent on the current of the pass transistor and on the bitline

capacitance, one of the bitlines is discharged, according to the value of Q.

The lines are then connected to the bitline sensing circuitry, so it is possible

to read the data stored in the cell. Instead, a data write procedure provides

for the precharge of only one bitline, according to the input value that has to

be written. If the input is 1, then the line bit is brought to the high voltage

level, while the complementary bitline bit b must have a low voltage level.

When the input data is 0, the bitlines are conditioned in the opposite way.

This configuration establishes differential readings and writings, very relevant

characteristic that improves the performance of the entire SRAMs.

The rules for the sizing of the cell’s transistors can be deduced by analysing

what happens during read and write processes.

Figure 2.3 contains the qualitative waveforms of the signals involved in a read

operation of a 0 stored in a 6T cell. When wordline is at the high level both

D1 and A1 can conduct charges, so the bitline bit is discharged through the

series of these two transistors that behave like resistances. This phenomenon

creates a voltage divider between D1 and A1, so the voltage at the node

Q rises. If it reaches an high enough value, D2 could switch on with the

subsequent discharging of the complementary bitline bit b and of the node
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Figure 2.2: 6T cell’s schematic. [2]

Q b. This means altering the cell content with the result to make it not valid

anymore. The problem can be avoided by sizing D1 and D2 to make sure

that Q doesn’t reach a too great voltage. In particular, D1 must be wider

than A1 in order to show a lower resistance, so most of the voltage drops on

A1. For the same reason D2 must be wider than A2. In this way, reading

operations are non destructive.

Figure 2.3: Read operation in a 6T cell. The labels refer to Figure 2.2. [2]

Figure 2.4 shows the qualitative waveforms implicated in a write operation

of a 1, so bitline bit has to be charged, while complementary bitline has to

be discharged. When row decoder drives the wordline stimulus, the voltage

at the node Q increases slowly in the initial part, then there is a variation of

slope which causes the speed up of the rise. Slope increasing is due to the
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rising of Q itself since it is the input of the inverter composed by D2 and P2.

D2 switches on, so the node Q b is discharged and Q is forced to 1 beacuse

of the turning on of P1. This mechanism occurs only if the access transistor

is wider than the pull up transistor of the related inverter, so in this example

A1 and A2 must be respectively larger than P1 and P2.

In summary, the nMOS pull down transistor of the cross-coupled inverters

must be strong, the access transistors must be of intermediate strength and

the pMOS pull up transistor must be weak [2].

Figure 2.4: Write operation in a 6T cell. The labels refer to Figure 2.2. [2]

Sizing has a fundamental effect on cell stability, very important aspect

that must be considered during the design. Stability is evaluated through a

parameter called Static Noise Margin (SNM), that takes a different definition

according to the situation in which the cell is tested. In general, SNM is the

maximum noise level that can be applied to the cell to keep the data intact.

If noise level is higher than SNM, data will be lost.

SNM can assume three interpretations:

• Hold margin. The stored data could be lost even without any read/write

operation. Hold margin is estimated thanks to a simulation based on

the circuit in Figure 2.5, where Vn is a voltage source that assumes

the role of noise generator. When it is off, the cross-coupled invert-

ers are characterized by the so called butterfly diagram in Figure 2.6

which is not perfectly symmetrical because of the LO skewed inverters.
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When noise sources switch on and Vn has a positive value, curve I is

moved to the left, while curve II is shifted up [2]. At a certain point

noise reaches an enough high level, so it eliminates the stable states

represented by the two points with coordinates V1 = VDD, V2 = 0 and

V1 = 0, V2 = VDD. This would mean the loss of the stored data.

SNM is determined by the length of the sides of the maximum area

squares that can be inscribed inside the two curves. If the two squares

are not identical, the SNM is the lesser of the two sides.

SNM increases with power supply and transistors’ threshold voltage.

Figure 2.5: Circuit used for the evaluation of hold margin [2].

Figure 2.6: Characteristic of the circuit in Figure 2.5 [2].

• Read margin. Read operation can be distructive if the cell’s transistors

are not sized properly. This situation can be tested by using the circuit

in Figure 2.7 with the access transistors diode connected in order to

simulate the two precharged bitlines. From Figure 2.8 can be seen
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that V2 is not able to reach 0V because a conflict occurs between the

upper inverter and the right access transistor when V2 has to assume

a low level voltage. Moreover, it is possible to notice that the zone of

inscription of the square is smaller than the one in Figure 2.6, so read

margin is lower than hold margin. When noise increases, the curves

move away from each other until there is no stable state and the data

is destroyed.

Read margin can be increased in two ways. The first one is focused on

sizing of the transistors of the cell, the second one provides for using

a lower voltage to drive the wordline with respect to VDD in order to

decrease the strenght of the pass transistors. The last solution is rarely

used because having the same voltage level for bitlines and wordlines

is more convenient.

The application of the first method allows to find a design equation. By

considering a situation in which Q = 0, the higher is the voltage level

reached by Q during a read operation, the higher is the probability

to corrupt the data. In that case pull up pMOS P1 is switched off,

so A1 and D1 are passed through by the same current. IA1 and ID1

can be set equal by noticing that D1 is in triode region, while A1

works in saturation condition. By marking as r the ratio between the

width of the pull down nMOS and the width of the correspondent

access transistor, as VDSATn the value of the voltage between drain and

source of a nMOS that makes the transistor enters saturation region

and as Vtn the threshold voltage of a nMOS (considered constant), by

supposing the long channel model as valid, it is possible to write:

βD1((VDD − Vtn)VQ −
V 2
Q

2
) = βA1((VDD − VQ − Vtn)VDSATn −

V 2
DSATn

2
)

where β is equal to:

β =
µnCox

2

W

L

By setting r = βD1

βA1
, so proportional to the ratio of the widths:

VQ =
1

r
(VDSATn + r(VDD − Vtn)−

q
V 2
DSATn(1 + r) + r2(VDD − Vtn)2)

26



VQ does not rise over a certain level that is usually fixed to Vtn in order

to avoid the switching on of D2 (or D1, it depends on the side in which

the 0 is stored). In this way it is possible to find the minimum r for

which a read operation is non destructive.

Figure 2.7: Circuit used for the evaluation of read margin [2].

Figure 2.8: Characteristic of the circuit in Figure 2.7 [2].

• Write margin. A writing operation could fail because of, as it is said

previously, a not correct sizing of access transistor and pull up pMOS.

The circuit used to estimate write margin, or writability of the cell, is

shown in Figure 2.9, where one access transistor is diode connected,

while the other one has a grounded terminale to simulate the high and

low voltage level bitline respectively. The resulting graph, valid in static

conditions, so when Vn = 0, is displayed in Figure 2.10, which appears

distorted with respect to the butterfly diagram in Figure 2.6 because

of the conflict on node V1 between the access transistor that forces a 0

and the pull up of the lower inverter that forces a 1. Moreover, there is
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only one stable state that occurs for V1 = 0 and V2 = VDD because in

the scheme V1 is connected to the grounded pass transistor, while V2

to the diode connected transistor. When Vn increases, the curves move

until there exists another stable state that prevents the writing.

Also the write margin can be enlarged in two ways: operating on the

sizing and increasing wordline high voltage level. Notice that read

margin is inversely proportional to the voltage level of the wordline

when it is on, so it is possible to state that read margin and write

margin are in contrast.

For what concern sizing, write margin depends on p, defined as the ratio

between the width of the pull up pMOS and the width of the access

transistor. Write margin improves if p decreases, so when the width of

the access transistor increases. This is another point to highlight the

contrast between read and write margin. By considering a situation

in which a 0 has to be written, during the operation P1 and A1 are

on, while D1 is off, so they are passed through by the same current.

By setting equal IA1 and IP1 it is possible to obtain another design

equation:

VQ = (VDD−Vtn)−

vuut(VDD − Vtn)2 − 2
µp

µn

p((VDD − |Vtp|)VDSATp −
V 2
DSATp

2
)

p can be expressed as:

p =
βP1

βA1

=
µpWP1LA1

µnWA1LP1

Its value can be tuned by playing on the channel length of the pMOS,

that in SRAM is sometimes fixed to 3λ with all the related reliability

issues compensated by redundancy.

p is evaluated by fixing a value of VQ that depends on the input data.

If it is 0, as in the just analysed case, VQ should not rise over a cer-

tain value, usually the threshold voltage of D2, in order to avoid the

discharging of the node Q b.
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Figure 2.9: Circuit used for the evaluation of write margin.

Figure 2.10: Characteristic of the circuit in Figure 2.9 [2].

8T cell

The 8T cell is composed by 8 transistors arranged according to the scheme

of Figure 2.11. It follows the topology of 6T cell but it provides for separated

bitlines and wordlines for read and write procedures. Writing a data requires

the activation of write wordline and of one of the write bitlines according

to the input data, so it is the same of 6T cell. What changes is reading.

Hence, read operation is no more differential, the output data depends on the

activation of a nMOS driven by the stored data. Read wordline is activated

and if Q = 1, then read bitline can be discharged through the path offered

by the two transistors on the right. When Q = 0 read bitline keeps an high

voltage value. Notice that at the end of reading cycle, read bitline shows the

opposite value with respect to stored data, so it should be processed in the

proper way.

During reading, node Q voltage has not been altered in any way, so it is
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Figure 2.11: Schematic of 8T cell [2].

possible to conclude that 8T cell guarantees an optimal read stability. In

other words read margin is equal to hold margin.

Moreover, this cell can be seen as a first example of multi ported architecture

because it has different lines for read and write operations.

12T cell

The 12T cell can be used in order to further improve memory cell’s robust-

ness. As it is possible to see from Figure 2.12, this cell includes a latch and

a tristate port used during reading. Write ad read wordlines are separated

but bitline is common.

Bitline doesn’t need to be precharged before reading because tristate port is

able to drive it in any case. This feature is very relevant, leakage power and

noise are reduced since there are no precharged floating nodes. Of course,

the cost for these is the larger area of the cell, which results in a low density

of the SRAM array.

6T multi ported cell

This cell is the same of the 6T previously analysed except for the presence of

two wordlines, one per each access transistor. If control manages to provide

signals by following a particular timing, this cell allows the user to perform

two reads and one write in the same cycle, as commonly required for a Reg-

ister File in a single-issue RISC processor [2]. In that case, read operation

would become single ended, while write procedure would remain differential.
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Figure 2.12: Schematic of 12T cell [2].

The technique that should be used is called time multiplexing or double pump-

ing. It consists in reading in the first half of the cycle and writing in the other

half.

There will be some examples about the use of this kind of method in the

following section.

Dual ported SRAM cell

As shown in Figure 2.13b, this cell is formed by a latch and 4 access tran-

sistors that guarantee the possibility to get two read/write ports. It works

exactly as the 6T cell but read and write stabilities are critical. Read oper-

ation disturb is described in [8], it arises when two bitcells in the same row

are accessed. Both wordlines are activated and by focusing on a bitcell that

performs a read operation on one port, the other port operates a dummy

reading. If a 0 is stored on that bitcell, the bitline should be discharged, but

it is hampered by the other bitline which is precharged to 1.

Concerning write stability, as explained in [9], when both ports are set up in

order to perform a read/write operation in the same row the write-disturb

issue arises. By considering a bitcell in which the input value has to be

written, both wordlines are activated but one couple of bitlines is set for a

dummy reading, the other couple for writing. The discharge of the storage

node would be difficult because of the precharged bitline set for reading and

connected to storage node itself that hampers the data flip. In the case of

different rows access the write disturbance is not a problem.

This kind of cell could be useful in the implementation of FIFO queues which
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allow to read and write data with a different rate. Dual port cells can be used

in that case since there is the need to read and write data simultaneously

and by operating in the same cell if the queue is empty.

(a) Schematic of 6T multi ported
cell [2].

(b) Schematic of dual ported
SRAM cell.

Figure 2.13: Schematics of 6T multi ported cell and dual ported SRAM cell.

Register File classical cell

RFs require cells able to provide the possibility of doing more than one

operation in the same cycle through multiple ports, as it has been said at the

beginning of this chapter. The architecture of such a cell has to be slightly

different with respect to the one of a single port cell because of some aspects

linked to stability and area.

Reading should be a single ended procedure in order to save area, but at

the same time each read port should be isolated by the stored data to get a

reasonable read margin. A single ended read port is obtained at the cost of

two series transistors, one bitline and one wordline. A differential read port

would double the cost.

For what concerns writing, it should be kept a differential operation in order

to avoid a too low writability, so each write port would cost two bitlines, a

wordline and two access transistors. Actually, it is better to prevent the use

of extra lines since in cells with many ports, the area of the wires dominates

the area of the transistors [2].

This line of reasoning brings to adopt a cell architecture like the one in Figure

2.14. Read port works as explained in 2.1.1 since it has the same structure.

There is a single write bitline that is inverted to ensure differential writings.
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Figure 2.14: Schematic of classical Register File cell [2].

2.1.2 Row circuitry

Row circuitry is a module that provides wordline signals connected directly

to access transistors of the cells. It consists of a decoder whose output are

connected to drivers, one per each wordline.

Figure 2.15a shows a possible implementation of a 4 : 16 decoder based on

a pair of 2-inputs NAND gates followed by a 2-input NOR gate.

Figure 2.15b contains the circuit-level representation of a wordline driver

with 16 words. Each word coming from row decoder must be synchronized

with clock signal to obtain a proper bitline timing. In wordline driver, all

the words are collected and put in logic AND with a signal coordinated with

clock and provided by control logic. This implementation involves also a

sleep signal connected to the gate of a pMOS in order to implement power

gating technique, which consists in forcing sleep to 1 when wordline driver

doesn’t need to work with the aim to save leakage power since power supply

is ideally disconnected.

A key point to highlight consists in matching the pitch of the row decoder

and of the wordline driver with the pitch of the cell. It could be very tricky

when a small cell is used in the array.

Predecoding

In Figure 2.15a implementation there is a wastefullness of connections be-

cause many NAND gates share the same inputs. The problem can be solved
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(a) 4:16 row decoder [2]. (b) 16-words wordline driver [2].

Figure 2.15: Schematics of 4:16 row decoder and 16-words wordline driver.

by applying predecoding technique, which consists in factoring NANDs’ out-

puts [2]. An example of a 4 : 16 decoder realized by using predecoding is

shown in Figure 2.16, where the number of ports is higher, so electrical ef-

fort is greater, but overall path effort is the same because branching effort is

reduced.

Hierarchical wordlines

The wordline is highly loaded since it enables read or write or both operations

for each cell in an array row. If the array is large, delay can be very high due

to RC effects by taking into account also the fact that lower levels of metal

are used to build wordlines. [2]

One possible solution consists in dividing the single wordline in order to

arrange it in a hierarchical way, with global and local wordlines. The example

is displayed in Figure 2.17.

A local wordline is relatively short and it drives a small group of cells, while

global wordline is still long but it is made with upper-level of metals and it

is less loaded.

This technique also ensures a lower power consumption because only bitlines
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Figure 2.16: 4:16 row decoder with predecoding technique [2].

activated by the local wordline will switch.

2.1.3 Column circuitry

Column circuitry consists of the modules needed to manage bitlines during

read and write procedures. Bitline conditioning circuit, bitline sensing cir-

cuit, write driver and column multiplexer are inserted in the memory in a

proper way with the aim to allow the interaction between the external and

the storing data cells.

Bitline sensing

A proper sensing of bitline value after a read operation is fundamental to

ensure good performance during reading and a very low error probability.

According to the circuit used to perform sensing, it can be divided in two

categories: large-signal and small-signal sensing.

The former is called also single-ended sensing and it provides for a bitline
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Figure 2.17: Hierarchical wordlines [2].

swing from VDD to 0. The bitline drives a circuit that could be, for instance,

an high-skewed inverter properly sized in order to accelerate the procedure.

The delay is proportional to the number of words attached to the bitline,

so if the array is large, then a single inverter could be not enough to ensure

an appropriate reading speed. A method to solve that problem consists in

adopting a hierarchical scheme for bitlines, with global and local lines as

shown in Figure 2.18. Each local bitline is connected to a small group of

cells and, in combination with another local bitline, can pull down the global

bitline, which drives an high-skewed inverter. Local bitline can be seen as

an unfooted domino multiplexer, while global bitline is an unfooted domino

OR gate.

The constraints about the using of hierarchical bitline scheme are linked to

leakage power and delay. A dynamic multiplexer has a constant logical ef-

fort, but delay is proportional to the number of inputs, so, in order to keep

acceptable performance, a single local bitline cannot be attached to more

than 32 words [2]. Moreover, the number of transistors connected to a local

bitline is limited by the fact that it could be discharged because of leakage.

The worst case is the one in which the cell being read contains a 0 and all the

others a 1. Local bitline should keep the 1 value, but subthreshold current

tends to pull it down [2].

Small-signal sensing is also called differential sensing, it uses a sense amplifier

to read the data contained in one cell. Each sense amplifier is driven by a bit-

line and its complementary. In this case, the bitlines swing by a small amount
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Figure 2.18: Hierarchical bitline with large signal sensing [2].

(about 100−300mV ), then, when sensing is completed, wordline must be de-

activated in order to prevent a useless extra bitlines voltage variation to save

power consumption. Differential sensing is faster than single-ended sensing

but it is more area consuming.

Figure 2.19 shows a first example of sense amplifier. It contains a differential

pair and a current mirror to balance current in the two branches. Current is

provided by M5, activated by a signal coming from control logic. The output

of differential amplifier is then inverted because it is an inverting stage.

Another implementation can be viewed in Figure 2.20a, the scheme consists

of a latch that implements a rigenerative feedback, two pMOS labeled as iso-

lation transistors and a nMOS that provide current to the latch and that

is driven by a clocked signal. When the clocked signal turns on the bottom

nMOS, sense amplifier starts working and one of the output signals is pulled

down, while the other one is pulled up through the feedback. The isolations

transistors are useful to speed up the response and to save power by dis-

connecting the outputs from the capacitive load of the entire bitline during
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Figure 2.19: Differential amplifier used to sense bitlines.

sensing.

The last implementation of sense amplifier is present in Figure 2.20b and it is

composed by a differential pair, a current mirror and a nMOS that works as a

current sink. The difference with respect to the one in Figure 2.19 is the lack

of any clocked signal to enable sensing. The current sink is gate-connected

directly to power supply, so this kind of circuit is always on and it implies a

significant power consumption.

(a) Sense amplifier with regener-
ative feedback [2].

(b) Sense amplifier without en-
able signal [2].

Figure 2.20: Possible implementations of a sense amplifier.
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Bitline conditioning

Before reading and writing, bitlines must be precharged as explained previ-

ously by a dedicated circuit that constitutes the bitline conditioning module.

The first example is shown in Figure 2.21a, it is simply composed by two

pMOS driven by a clocked signal provided by control logic.

Another implementation in Figure 2.21b doesn’t require any enable signal

but it is done in pseudo-nMOS logic. In this case the pMOS must be weak

to reduce the consequences of the contention between pull up and pull down

represented by the transistors of the cell that offer a path to discharge the

bitline. This solution slows the read operation and it cannot be used in low-

voltage SRAMs [2].

Last example is shown in Figure 2.21c. It contains three pMOS with the

same enable signal. The additive transistor is used to obtain well balanced

charge in the two bitlines, so to avoid that the two lines have a different

voltage after precharge due to a different residual charge as a result of the

previous reading.

(a) (b) (c)

Figure 2.21: Bitline conditioning circuits [2].

Enable sensing signal providing

Some bitline sensing circuits require a signal to be enabled. That signal

is provided by control logic, but it is very important to supply it with the

right timing to match the delay of row decoder, wordline and bitline. The

most straightforward solution uses an inverter chain that introduces a fixed

amount of delay. It is not the best possible solution because it doesn’t track

the delay across environmental and process variations since the feature of the

transistors can be different from one point to another of the SRAM.

A worthy solution is based on replica bitline technique [10]. It requires the
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Figure 2.22: Replica bitline implementation [2].

presence of an additive column containing a bitline and replica cells, that

are identical to the ones used inside the array to store data, but they have

Q forced to 0 because replica bitline must be discharged. This technique is

implemented in the scheme present in Figure 2.22, where the decoder gives

a signal, bs, which selects a memory block, so the proper local wordline is

activated and the cell’s data is read. At the same time, the signal given

by block decoder activates one cell of the replica column which incorporates

a number of cells r times lower than an array column, so replica bitline

discharges about r times faster than a normal column. When rbl is brought

to a low voltage level, reset is generated and it causes the deactivation of the

wordline by blocking the discharging one of the bitlines to VDD

r
, so r can be

tuned to match the desired bitline swing. Replica path involves most of the

elements of a real path, so in this way the delay tracks very well the process

and e environmental variations. Delay can be tuned if variation is greater

than expected or if the circuits does not work properly through a stage that

includes some fuses.
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Figure 2.23: Column multiplexing [2].

Column multiplexing

Column multiplexing is a technique used in SRAMs to allow a read or write

operation of a particular word inside a row. If a row contains m words of

k bits, a 2k : 1 column multiplexer is required to operate only on a single

word. It is useful to reduce the number of signal sensing circuits and write

drivers required inside the SRAMs since column pitch is quite narrow, so it

could be challenging to insert one of them per each column from layout and

area point of view. The reduction of the number of column circuits leads

also to a decreasing of power dissipation. For what concern the influence on

performance, column decoding is done in parallel to row decoding, so it does

not impact on critical path [2].

Figure 2.23 shows a two-way column multiplexer based on nMOS pass tran-

sistors. Large signal sensing circuits and write drivers are both connected to

the output of the multiplexer, that is precharged high through a pMOS.

41



2.2 Analysis of Register File State of Art

There exist four different main parameters that can be considered to quantify

the effectiveness of a Register File:

• Performance in terms of maximum operating frequency and memory

bandwidth.

• Power, both static and dynamic contributions.

• Area, very important feature since the cost of the integrated circuits

grows as the fourth power of area [11].

• Stability in terms of Static Noise Margin.

As previously told, there is a trade off between those features, so the en-

hancement of one of them provokes the worsening of the others. In the

following, some architectures used inside RFs will be described by dividing

them according to the particular feature improved in the design.

2.2.1 Performance

Time multiplexing or double pumping is one of the techniques useful to im-

prove the performance of a memory. It requires a very accurate timing of the

control signals to perform reading in the first half of the cycle and writing in

the other half.

An application of this method is explained in [3], where the design of a RF

with 6 read ports and 6 write ports is described. Bitcell’s schematic is shown

in Figure 2.24 and it is possible to notice that it contains only 3 ports for

reading and 3 ports for writing. Double pumping read and write operations

allows to obtain 6 reads and 6 writes by avoiding the increasing in area,

power and latency due to the replication of the bitcell or to the addition of

further ports [3].

Another important aspect to report is the using of hierarchical bitline tech-

inque described in Section 2.1.3.

The RF is organized in four banks of 32 words with 32 bits per wordline

(WL) and 16 bits per local read bitline (LRBL). The four banks share the
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global read bitline (GRBL). RF read circuit consists of decode logic, LRBL

precharge and evaluation and GRBL. The key point that makes possible the

implementation of time multiplexing is duplicating decode logic and GRBL.

In this way, it is possible to perform two decode and GRBL operations per

cycle while only sharing LRBL, so the sequential operations during a clock

cycle are only two LRBL precharges and evaluations, one for each reading

(r0 and r1). RF write circuit has the same structure of the RF read circuit,

but only decoding circuitry is duplicated. Moreover, LWBL is shared by all

the 32 cells in a row.

Figure 2.24: 3R3W bitcell schematic [3].

Figure 2.25 shows the scheme used to generate clock signals for two parallel

operations clk0 and clk1, the two addresses and the two bank clocks. clk0

and clk1 are generated thanks to the clock pulse generator (CPG) circuit

driven by global clock clkg. The value of the output of CPG is controlled by

the rst clk signal in double pumping mode, otherwise it follows clkg.

A key point to achieve double pumping is the presence of read/write replica

circuits (RRC/WRC), which use the replica bitline technique explained in

Section 2.1.3 to provide a proper clock-pulse width in order to allow the per-

forming of two read/write operations per cycle. Hence, when the signal done

is asserted and time multiplexing is enabled, then clk0 and clk1 pulse widths

are shaped. These two signal are also the inputs of two different clock gating

cells (CGC) that generate the bank clocks.
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Figure 2.25: Decoding circuit for double pumped read and write [3].

Figure 2.26 offers a view of the hierarchical bitline arrangement for read op-

eration. There are two LRBLs per each row since each of them is connected

to 16 cells and there are 32 cells per row. LRBLs are put in logic NAND to

provide the input of the GRBLs, that are shared by the four banks.

Figure 2.26: Circuit used for double pumped read [3].

Write circuit is shown in Figure 2.27. As previously said, only decoding

circuitry is duplicated, while GWBL and LWBL are shared. It is possible

because write operation is less timing critical than read operation. Write
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decode is nearly identical to read decode except for the replica circuit used

to sharp clk0 and clk1. Input data are collected by a write data flip flop that

provides the GWBL signal, transferred on LWBL thanks to a local write

bitline driver.

Figure 2.27: Circuit used for double pumped write [3].

Implementing double-pumping technique by using this strategy leads to a

19% reduction of maximum operating frequency with respect to a single ac-

cess 3R3W memory. Nevertheless, as a consequence of the doubled read and

write operations per cycle, it is possible to achieve an improving of 62% for

memory bandwidth at 0.9V as supply voltage.

Figure 2.28 shows maximum clock frequency vs total number of RF ports.

It is possible to notice that starting from 6 ports, there is a gain in fmax by

using time multiplexing. This phenomenon can be explained by considering

that the effect of the number of ports increasing is destructive on the overall

access delay.

Double pumping is very useful to achieve better performance in terms of

bandwidth of the memory, but it requires the addition of some modules to

properly handle the growth of timing complexity. This means an higher area

occupied by the RF on the chip and an higher power consumption, although

it is more convenient to implement double pumping rather than doubling

bitcell’s ports.
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Figure 2.28: Maximum frequency difference between double pumped and
single access RFs with different number of ports [3].

2.2.2 Power

Power consumption is a very critical aspect of RFs and in general of ICs

design. In a microprocessor, an higher need of data means an higher power

dissipation. This could bring to an overheating, so a system reliability drop

that must be supplied with some cooling strategies and devices that can neg-

atively affect the cost and the other main features of the system.

Design should be calibrated in order to satisfy some power constraints, both

dynamic and static. Dynamic power dissipation can be expressed in a straight-

forward formulation:

Pdyn = α ∗ CL ∗ V 2
DD

Where α is the switching activity, CL the load capacitance and VDD the

power supply.

For what concerns leakage power, it can be expressed as:

Pleakage = VDD ∗ Ileakage

Leakage current depends exponentially on threshold voltage, so a decreasing

of threshold provokes a sharp increasing of Ileakage. With CMOS process

node scaling, VDD has been scaled in order to keep power consumption under

control, especially dynamic contribution since it depends quadratically on

power supply. Simultaneously, it arose the need to scale also Vt in order to
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maintain the ratio VDD

Vt
as constant as possible to avoid the degradation of

performance, but Vt scaling means an increasing of leakage power. In the case

of memories, leakage involves bitlines since it reduces their noise immunity

[4].

The work reported in [4] proposes a method to reduce bitlines leakage in a

4R4W RF by using a 130nm dual-Vt bulk-CMOS technology. The particular

technique is called pseudostatic local bitline, implemented to prevent an ex-

cessive drop of the local bitline voltage during evaluation phase. The scheme

reported in Figure 2.29 shows how this method has been implemented. It

requires the using of 5 additive transistors per read port with respect to a

classical scheme in which Px and NOR gate are not present. When the read

select signal RS is not active the presence of the static-precharge transistor

Px fixes the bitline stack node Vs to VDD, so in that case the output of the

NOR gate is always 0. Gate-source voltage of M1 is equal to −VDD, it means

a powerful underdrive of each n-channel transistor drain-connected to local

bitline during precharge, so subthreshold current is effectively cut off. In ad-

dition, the body effect on M1 is maximized due to the fact that source-body

voltage is equal to power supply, so threshold voltage increases.

Figure 2.29: Implementation scheme of pseudostatic bitline technique [4].
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The application of this technique results in a total active leakage reduction

of 703x, even with using low threshold transistors [4]. Figure 2.30 depicts

the behaviour of local bitline during evaluation at 1.2V . The robustness is

improved thanks to pseudostatic bitline with respect to a normal architec-

ture without NOR gate and Px transistor that uses low threshold voltage

transistors or two series devices with different thresholds.

Figure 2.30: Local bitline drop comparison [4].

The reduction of leakage power does not come for free. A 10% area overhead

is necessary to integrate static precharge and NOR gate. Moreover, the com-

plete read path operates with a minimum period 4% higher with respect to an

optimal-speed solution with low threshold voltage transistors. Finally, the

energy/transition, strictly related to dynamic power consumption, includ-

ing also active leakage, is 7% higher than the optimal-power solution with

high threshold voltage transistors due to the increased switched capacitance

introduced by additional transistors and their associated active leakage.
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2.2.3 Area

Area is a fundamental feature for all ICs since it strongly affects the cost

according to the following relation [11]:

cost ∼ A4

The work proposed in [5] proposes a low leakage bitcell with 4 read ports

and 2 write ports that reduces the occupied area. The schematic is shown in

Figure 2.31, where only n-channel MOS are used for each read port. This is

the reason why the bitcell is marked as full−N , used to achieve a lower area

on chip than a 1P − 3N cell. Figure 2.32 shows two examples of 1P − 3N

read port.

Figure 2.31: Full-N 4R/2W bitcell [5].

The leakage of the bitcells connected to a read bitline can destroy its voltage

value due to the slow operations in Ultra Low Voltage mode since this RF

is designed to be used in a microprocessor that implements the Ultra Dy-
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namic Voltage Scaling technique. The proposed solution solves the problem

related to leakage by introducing the complementary lines of read wordlines,

so RWL n. While not accessed, leakage is reduced with the enhancement

of stacking effect between M9 and M10 (for first read port) thanks to M12

activated by RWL0 n.

Figure 2.32: 1P − 3N read ports [5].

The layout of the two types of cell have been realized by using TSMC 65nm

CMOS process. The sizes are 2.91 x 2.7µm2 and 2.88 x 2.23µm2 for the

full-N. Thus, using full-N bitcell gives an advantage from area point of view.

Moreover, this kind of cell provides for a 17% area overhead with respect

to the classical RF cell with 2 nMOS per each read port. Consequently, it

is possible to say that a bitcell design focused on the reduction of leakage

brings to an increasing of area.

2.2.4 Stability

As explained in Section 2.1.1, the classical configuration of a RF cell is char-

acterized by the fact that hold margin and read margin are equal, with write

margin that is the most critical parameter about stability.

A possible solution that improves writability is described in [5], where the

Reconfigurable Write Scheme is implemented. The principle scheme is de-

picted in Figure 2.33, which highlights the presence of 2 write ports. When

the second port is unused, it is employed to perform the same operation of

the first port by writing the same data to the same address.

Simulation has shown a 18% improvement of write margin thanks to the

application of this technique. The extra cost concerns dynamic power and
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area. Hence, it implies a ∼ 1.16% area overhead and an increasing of ∼ 24%

of energy/write.

Figure 2.33: Reconfigurable write scheme [5].
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Chapter 3

Modules design

The Register File that OpenRAM is able to create after this thesis work

follows the basic SRAM structure described in Section 2.1. It consists of

the control logic, the bank, the array of D flip flops that receive the address

and the array of D flip flops that sample the input data which have to be

written inside the bitcells. Control logic contains all is needed to produce the

control signals for the rest of the memory, including clock, with the correct

timing. Bank incorporates bitcell array, row circuitry and column circuitry.

The entire structure is supplied with a voltage equal to 1.8V .

There are two possibilities to create the modules that make up all these parts

of the entire memory. Some modules, indicated as custom modules or hand-

made modules, have been created through an open-source design flow and

then integrated in OpenRAM in order to instantiate, place and route them in

the correct way. It is necessary to make available the circuit level description

(SPICE file) and the graphical level description (GDS file) of the cell that one

wants to add inside the produced memory. The second possibility consists

in producing a module thanks to OpenRAM framework, which provides the

opportunity to create a parametric transistor. In this way, any cell can be

made with proper instantiation, placing and connection of the transistors.

In this work, the hand-made modules are:

• Bitcell 2R/1W

• Bitline sensing circuit
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• Write driver

• Row decoder’s cell

• Wordline driver’s cell

• D - flip flop

All the others have been produced by following the second approach. Actu-

ally, OpenRAM had preexisting scripts to create straightforward cells such as

inverter, NAND2, NAND3, AND2, AND3, and more complex modules like

precharge cell, column multiplexer and control logic. These three last blocks

have been modified to be properly interfaced with a multiported bitcell.

The design of custom modules is developed by adopting a top-down approach.

It consists of a precise sequence of stages:

1. Definition of input data and output specifications.

2. Paper & pencil calculation.

3. Generation of the schematic of the cell.

4. Evaluation of capacitive load useful for simulation.

5. Simulation of the schematic netlist. If the design meets the output

specifications, then it is possible to proceed, otherwise it is necessary

to return to step 2.

6. Realization of the layout by using SkyWater130 PDK’s design rules.

7. Performing of Layout Versus Schematic.

8. Parasitics extraction.

9. Simulation of the extracted netlist. If the design meets the output

specifications, then it is possible to integrate the module to OpenRAM,

otherwise it is necessary to return to step 6.
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Input data are the features of the transistors provided by Skywater130 PDK

and the capacitive load that each module has to drive during a transition.

The transistors have been characterized through some simulations reported

in Section 3.1, while capacitive loads have been estimated by considering

the case of a 32 x 32 Register File realized in Sky130 technology with the

configuration planned in this work. The data about transistors’ drain and

gate capacitances are provided by the last official release of OpenRAM [12].

In particular, the file tech.py of Sky130 technology contains the values of

minimum gate capacitance and minimum drain capacitance:

Cgatemin
= 0.2 fF

Cdrainmin
= 0.7 fF

Gate capacitance is related to the operating mode of the MOSFET and it

is dependent on the physical dimensions of the device. Moreover, its value

varies according to the working region. Drain (or diffusion) capacitance is

due to the presence of a junction between the diffusion and the substrate.

Its calculation involves both an area and a perimeter contributions with a

different weight. Diffusion capacitance can be reduced by means of a careful

layout. If two transistors of the same type are in series, sharing the diffusion

permits to obtain only one capacitive contribution. Moreover, eliminating

the contact if it is unnecessary, brings to halve the diffusion capacitance.

For the evaluation of capacitive load, a very approximate model is adopted.

It provides for a proportional relation between capacitance and transistor’s

width. The values reported above refer to a transistor with the minimum

width allowed by SkyWater130 PDK design rules, that is 0.42µm.

The employed design flow is completely open-source, it involves the following

tools:

• Xschem to build the schematics.

• Ngspice to simulate a SPICE netlist.

• Magic to realize the layout.

• Netgen to perform LVS.
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Each tool can be freely downloaded from its own Github repository.

3.1 Transistors’ characterization

The first step of the design consists in understanding the features of the

transistors nMOS and pMOS provided by SkyWater130 PDK. It is a very

important stage because it allows to define the input data on which the entire

modules design is based, such as the ratio between µn and µp, electrons and

holes mobility respectively, βn, βp (after fixing channel width and length) and

the threshold voltages. In order to characterize the device, some simulations

are performed by setting up a proper measurement scheme shown in Figure

3.1. A DC sweep simulation brings to find the devices’ transcharacteristic

curves, shown in 3.2 for nMOS and in 3.3 for pMOS. In this case, both devices

have a channel width of 1µm and a channel length of 150nm, that is the

minimum possible for Sky130 technology. Threshold voltages are found by

arbitrarily fixing threshold drain current to 5µA. The values are:

Vtn = 0.7V

Vtp = 0.68V

Concerning βn and βp, they are calculated by considering a set of points in the

two curves. Obviously, it is necessary to pay attention to the working region

of the transistor. βn is evaluated in triode and in saturation respectively with

the following results:

βn1 = 1
mA

V 2

βn2 = 695
µA

V 2

The same procedure is repeated for βp:

βp1 = 332
µA

V 2

βp2 = 252
µA

V 2
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It is possible to notice that β shows a wide variability range according to

the working point of the device. This suggests that the simple analytical

commonly used models of the MOSFET are not accurate for these transistors,

so it would be better to not rely on those estimations of β.

Figure 3.1: Measurement scheme to characterize Skywater130 PDK’s nMOS
and pMOS.

Figure 3.2: Trancharacteristic of a SkyWater130 PDK’s nMOS with a channel
width of 1µm and a channel length of 150nm.

What is important is the ratio between µn and µp, useful to size properly

the transistors inside the cells. The best way to find this parameter consists
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Figure 3.3: Trancharacteristic of a SkyWater130 PDK’s pMOS with a channel
width of 1µm and a channel length of 150nm.

in testing an inverter by fixing the width of the nMOS to 0.42µm and by

changing the width of the pMOS until the input-output curve of the inverter

is perfectly symmetrical. This condition is reached for a width of the pMOS

equal to 1.35µm. Consequently, mobility ratio is equal to:

µn

µp

=
Wp

Wn

= 3.2

3.2 2R/1W bitcell

The realization of a 2R/1W Register File requires the presence of a bitcell

with 2 read ports and 1 write port. Its design should be conducted by start-

ing from the input data, that are the known features of the Sky130 PDK’s

transistors and the output capacitive load to be used in simulation, and the

design’s aims, represented by enough stability during holding, reading and

writing and by the number of ports. Moreover, the layout should ensure an

area usage as low as possible.

The requirement about the number of ports can be satisfied by chosen the

classical RF cell shown in 2.14, which provides for a single ended reading and

a differential writing. As explained in Section 2.1.1, this cell ensures a read
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Figure 3.4: Simulation scheme to evaluate hold margin.

margin equal to hold margin, while write margin is the most critical aspect

about stability.

First of all, it is neccesary to focus on the design of the bitcell. The first step

provides for a correct sizing of the transistors of the cell by performing some

tests concerning stability evaluation. The first simulation aims to evaluate

hold margin and it is executed by using the scheme depicted in Figure 3.4,

which shows three different possibilities to size the transistors of the coupled

inverters. By DC sweeping V 1 from 0V to 1.8V , it is possible to find the

results in Figure 3.5. The best condition is the one for which:

Wp = 0.84µm

Wn = 0.42µm

Regarding write stability, the scheme involved in the test is the one in Figure
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Figure 3.5: Results of the simulation to evaluate hold margin.

3.6. The best condition is realized when:

Wp = 0.84µm

Wn = 0.42µm

Wwriteaccess = 0.42µm

The inverter used produce the complementary of write bitline is sized in such

a way the width of the pMOS is equal to 0.84µm and the width of the nMOS

is equal to 0.42µm. It is a good compromise between area and balance of the

inverter itself.

Finally, the read access transistors are sized. Since read margin is not a

problem in this kind of bitcell, sizing is related only to the time needed to

discharge the read bitline, so it is a matter of performance. This is the reason

why the transistors in each read port have a width doubled with respect to

the minimum one. In this way, the time needed to read a bit is reduced by

55% with the same bitline capacitance.

The schematic of the entire bitcell can be found in Figure 3.8.

The output capacitance estimation is based on the case of a 32 x 32 RF,

59



Figure 3.6: Simulation scheme to evaluate write margin.

Figure 3.7: Results of the simulation to evaluate write margin.
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whose bitcell array is organized in 32 rows of 32 bits. It means that it is

enough to evaluate the load of a single read/write port and then multiplying

it by 32 to obtain the total load on the bitline. With regard to read bitline,

a read port is composed by two series transistors with a width doubled with

respect to the minimum one. Therefore, diffusion capacitance of each read

port’s transistor is equal to:

Cd =
0.84µm

0.42µm
0.7 fF = 1.4 fF

At this point, it is necessary to consider the contributions of the other bitcells

on the same column that share the same read bitline. The capacitive load

is the one of the drain of the transistor connected to read bitline. Another

contribution to be considered is provided by the module driven by read bit-

line. In a 32 x 32 RF there is only 1 word per row, so column multiplexing

is not necessary. It means that read bitline is connected to the input of a

sense amplifier, that, as explained in Section 3.3.1, is an HI skewed inverter.

Therefore, the total capacitive load on a read bitline evaluated for a 32 x 32

RF is equal to:

Ctotal read bitline = 2Cd +
2.7µm

0.42µm
Cgatemin

+ Cgatemin
= 46.3 fF

Write bitline capacitive load can be estimated in the same way of read bitline.

For a single activated write bitline, it is necessary to consider the contribu-

tions of the inverter that makes writing differential, the pass transistor and

the write driver. The write driver, as explained in Section 3.3.2, has a bal-

anced tristate inverter with double strength as output stage. So, capacitive

load of a write bitline can be evaluated as:

Csingle write bitline = 3Cgatemin
+ Cdrainmin

+8.4Cdrainmin
= 4.7 fF

In order to evaluate the total load of the write bitline, the contribution of the

bitcell that are not activated is needed. They provide the input capacitance
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of the inverter and the diffusion capacitance of a pass transistor.

Ctotal write bitline = Csingle write bitline + 31 (3Cgatemin

+Cdrainmin
) = 45 fF

The loads used for the bitcell simulation don’t involve the contributions of

the bitcell itself, but they have to contain only the external capacitive con-

tributions. It means that the used values are:

Crbl sim = Ctotal read bitline − Cd = 44.9 fF

Cwbl sim = Ctotal write bitline − (3Cgatemin
+ Cdrainmin

) = 43.7 fF

At this point, the bitcell is tested through a transient analysis by performing a

writing of a 0, then a writing of a 1 and a subsequent reading. The waveforms

are depicted in Figure 3.9. All the input signals are not ideal, they have both

rise and fall time equal to 50 ps. While reading a 1, read bitline is discharged

with a speed that depends strongly on bitline capacitance. It means that the

parasitic capacitance on the read bitline deeply affects the performance of

the entire memory. The measured delays are the read bitline’s fall time from

90% to 10% and the delay between the write bitline signal’s and the stored

data’s transitions at 50%. They are respectively equal to:

tfall rbl = 337 ps

twbl to Q = 70 ps

After testing the bitcell and verifying that it fits all the specifications, it is

possible to realize the layout by using Magic. This powerful tool is very con-

venient because it performs a real time Design Rule Check (DRC).

There are few constraints about the realization of the layout. The minimiza-

tion of the area is one of them, the other requirements originate by consid-

ering the connections between the bitcells inside the array and between the

array and row and column circuitry.

First of all, the layers for bitlines and wordlines must be chosen once for all
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Figure 3.8: Schematic of the bitcell used in the design of the 2R/1W Register
File.

since they are connected to other modules and there must be layers com-

patibility. In this case, bitlines are realized in metal 2, while wordlines in

metal 1. It means that row circuitry has metal 1 outputs, while all the blocks

that compose column circuitry have inputs and/or outputs in metal 2. In the

bitcell layout it is necessary to pay attention to the fact that no metal 1 must

be present to the right and to the left of a wordline contact along all the

width of the bitcell, otherwise the connection between the wordline contacts

of the bitcells inside a row and the corresponding outputs of the row circuitry

would cause either some short circuits that destroy all the design or some

design rules violations due to not enough spacing between two metal1 lines.

The resulting area is 8.29µm x 3.89µm = 32.25µm2. Then, Magic terminal

console is used to get the extracted netlist, which is compared with the netlist

obtained from the schematic to perform LVS through Netgen. Since the two

netlists match uniquely, then extracted netlist is obtained again by setting

the Magic console’s ext2spice command’s options cthresh and rthresh equal

to 0. In this way, all the parasitic capacitances and resistances are annotated

on extracted netlist in order to perform simulation. The measured delays
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Figure 3.9: Waveforms representing write and read operations of the 2R/1W
bitcell.

Figure 3.10: Layout of the 2R/1W bitcell.
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are:

tfall rbl = 408 ps

twbl to Q = 139 ps

The extracted netlist is also used to evaluate the features of the cell from

power point of view. Medium power dissipation is estimated thanks to a

SPICE simulation during reading from one port and writing of a 0 and of a

1. Moreover leakage power is reported as well. The obtained results are:

Pread 0 = 0.18µW

Pwrite 0 = 13.8µW

Pread 1 = 2.95µW

Pwrite 1 = 23.9µW

Pleakage = 0.32µW

Reading a 1 is much more power consuming because the read bitline is dis-

charged through the path offered by the transistor gate connected to the

stored data.

3.3 Column circuitry

3.3.1 Bitline sensing circuit

The chosen bitcell provides for a single ended read procedure, so, in order to

not complicate the design and to save area, the adopted sensing strategy is

single ended. In particular, the circuit is composed by a simple HI skewed

inverter which receives the read bitline and produces the output data. Ob-

viously, the bitline value is inverted but it is coherent with the used bitcell

since the value that it is possible to find on the read bitline is inverted with

respect to the one stored by the bitcell itself.

Next step consists in focusing on the sizing of the inverter by considering

the ratio between electrons and holes mobility roughly equal to 3.2 and the

fact that the inverter has to be realized in order to speed up a low to high
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transition by keeping an eye on area.

The proposed scheme is the one in Figure 3.11a characterized by a pull down

transistor having the minimum width and a pull up transistor with a width

of 2.7µm.

Then, the input capacitive load useful for simulation is evaluated. The input

data of the bitline sensing circuit could come from the column mux or the

bitcell, but in a 32 x 32 RF, column multiplexing is not present, so only

the second possibility will be considered. In order to evaluate input load,

it is necessary to take into account the total capacitance on a read bitline

reported in Section 3.2 and then subtracting the input capacitance of the

bitline sensing circuit. In this way, the input load used in the simulation is:

Cin bit sense = Ctotal read bitline − (
2.7µm

0.42µm
Cgatemin

+ Cgatemin
) = 44.8 fF

Concerning output capacitance, the output node of the bitline sensing circuit

is one of the output pins of the memory. It means that the output capacitance

depends on what block receives the output data. For the simulation, a load

value is chosen by considering 10 times the minimum gate capacitance of

Sky130 transistor. Two kinds of simulation are performed to ensure that the

(a) Schematic of the bitline sens-
ing circuit.

(b) Layout of bitline sensing cir-
cuit.

Figure 3.11: Schematic and layout of bitline sensing circuit.
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circuit meets the specifications. The first one is a DC analysis, whose result

is shown in Figure 3.12, that highlights the inverter’s trend to favour a low to

high transition. The second simulation, Figure 3.13 is based on a transient

analysis that allows to measure four delay times:

tLH50 = 36 ps

tHL50 = 78 ps

trise10−90 = 54 ps

tfall10−90 = 117 ps

These values are dependent on the rise and fall times of the input signal.

In this case, the input signal is not ideal, it has rise and fall times equal to

50 ps.

Figure 3.12: Results of the DC simulation of the bitline sensing circuit.

Since the presented schematic satisfies the output specifications, then it is

possible to produce the layout. There are only two constraints about the lay-

out of the bitline sensing circuit: input and output lines must be realized in

metal 2 and the width of the cell must be lower than an half of the bitcell’s
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Figure 3.13: Results of the transient simulation of the bitline sensing circuit.

width plus an half of the minimum spacing between two nwells (equal to

1.27µm). The former is due to the fact that bitline sensing circuit’s receives

either the read bitline, metal 2 line, or the output of the column multiplexer,

realized in metal 2 as well. The latter is related to the fact that each bitcell

has two read bitlines, so it is necessary to place two bitline sensing circuits

per bitcell (or per each bit per word in case of column multiplexing). In order

to avoid that the array containing the bitline sensing circuits placed horizon-

tally is larger than the bitcell array, it is necessary that the sum between

the total width of two side to side bitline sensing circuits and the minimum

spacing between two nwells dictated by design rules is lower than the bitcell’s

width.

The realized layout is shown in Figure 3.11b. It has an area of 5.25µm x

1.05µm = 5.51µm2. After a successful LVS, the extracted netlist is simu-

lated in the same condition of the previous simulation. The resulting four

delays are:

tLH50 = 38 ps

tHL50 = 81 ps
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trise10−90 = 56 ps

tfall10−90 = 118 ps

Once again, extracted netlist is used to obtain results about power. The

aim consists in evaluating the power associated to an output high to low

transition followed by a low to high transition since it is the working method

of the bitline sensing circuit when reading a 1. When the input data is a 0,

sensing circuit doesn’t commute because the bitline is already precharged.

The results are:

Ptran = 69.35µW

Pleakage = 60 pW

3.3.2 Write driver

Write driver is a module needed to perform a correct writing of a bitcell. It

receives a signal coming from control logic that enables the write operation,

and a signal coming from the data D flip flop that identifies the input data.

This function can be implemented by a tristate inverting buffer, but there are

two problems to face. The first one regards the need to create the comple-

mentary of the enable signal since control logic gives only the enable signal

itself, the second one concerns the fact that it would be an inverting stage,

so the voltage level on the write bitline would be the opposite with respect

to the one of the signal provided by the external. Those issues can be easily

solved through the insertion of two inverters, one to invert the enable signal

and the other one to prevent a wrong voltage value on write bitline.

The schematic is shown in Figure 3.15, where the transistors are sized in or-

der to obtain a balanced response of the entire cell, so both transitions should

have the same speed. The key point is the non minimum dimension of the

final stage’s transistors. The write driver is implemented with a strength four

times higher with respect to the minimum one in order to solve the conflict

arising during writing in all the process corners.

Regarding load evaluation, input load on data pin is estimated by considering

the D flip flop structure described in Section 3.5, while output load is the one

of a write bitline reported in Section 3.2 minus the write driver contribution.
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Figure 3.14: Transistors of the output stage of the control logic’s block that
provides enable to write drivers.

Figure 3.15: Schematic of the write driver.

Enable pin is provided by control logic and in particular by an AND gate

whose nMOS width is 17µm, while pMOS width is 50.32µm. The devices

are shown in Figure 3.14

Cdin write driver = 4.2Cdrainmin
= 2.94 fF

Cen write driver = 80Cdrainmin
= 56 fF

Cout write driver = 32(3Cgatemin
+ Cdrainmin

) = 41.6 fF

The write driver is tested in such a way write bitline firstly takes an high
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Figure 3.16: Simulation of the write driver.

voltage level followed by an high to low transistion. The results of that

simulation are reported in Figure 3.16 and it allows to measure trise10−90 and

tHH50 . Then, another simulation is performed to measure also the other two

delays. All the tests are done by considering non ideal input signals with rise

and fall times of 50 ps. The measured delays are:

tHH50 = 177 ps

tLL50 = 163 ps

trise10−90 = 188 ps

tfall10−90 = 157 ps

The layout is realized by considering the following constraints: the sum be-

tween the width of the cell and the minimum spacing between nwells must

be smaller than the width of the cell for the same reason explained in Sec-

tion 3.3.1; the output of the write driver must be realized in metal 2 since

both column multiplexer inputs and write bitline are metal 2 lines; the en-
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able signal of the write driver must have a metal 1 interfacing since metal 1 is

used to drive that signal from control logic; input data must have a metal 2

interfacing, the same layer of the output line of the data D flip flop.

Unfortunately, it was not possible to satisfy the requirement about the max-

imum width. Then, in order to avoid the violation of the minimum distance

between nwells in the array containing write driver, the cell is designed with

a width equal to the one of the bitcell. In this way, write driver array and

bitcell array have the same width and all the write drivers share the nweel.

The layout is depicted in Figure 3.17, it satisfies all the constraints. The

area is equal to 10.07µm x 3.89µm = 32.17µm2. Once obtained a successful

Figure 3.17: Layout of the write driver.

LVS, the extracted netlist is tested in the same way as the the schematic

netlist and delays are measured:

tHH50 = 192 ps

tLL50 = 174 ps

trise10−90 = 210 ps

tfall10−90 = 204 ps
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The output of the write driver can assume either low or high voltage value, so

power dissipation during the transition is evaluated in both cases. Moreover,

leakage power is estimated.

Pwbl=0 = 79µW

Pwbl=1 = 79µW

Pleakage = 26nW

3.4 Row circuitry

In the native version of OpenRAM, row circuitry is composed by a row de-

coder and wordline drivers. Row decoder is realized through predecoding

technique, with predecoders’ outputs connected to AND gates with 2 or 3

inputs. All the cells in row circuitry are generated by OpenRAM’s frame-

work and then a certain number of them is instantiated. AND gates have

the same height of the preexisting single port cell. If this strategy is kept for

the realization of the 2R/1W Register File, the row decoder will have a total

height much higher than the one of the bitcell array because each bitcell has

3 wordline’s inputs, so in the row decoder there would be a number of AND

gates (one above the other) 3 times higher than the number of the bitcells

in a column. Same thing concerning wordline driver array. This condition

would be not compatible with the rule for which row decoder and bitcell

array have to be pitch matched.

In order to satisfy that constraint, a different strategy is adopted. The pre-

decoders are kept as in the native version of the memory compiler, while row

decoder’s AND gates and wordline driver are hand-made. Predecoders follow

the same topology shown in Figure 2.16.

3.4.1 Row decoder cells

3 inputs AND gates

AND gate with three inputs is realized by adopting static CMOS logic. It

consists of a three inputs NAND gate whose output is connected to the
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input of an inverter. The schematic is depicted in Figure 3.18. The de-

sign of transistors’ size is based on the idea to obtain a balanced gate, so

theoretically nMOS width should be 0.42µm while pMOS width should be
1
3
µ̇n

µp
0̇.42µm = 0.45µm. Actually, simulation gives results not coherent with

paper & pencil calculations since it shows the behaviour of a HI skewed gate.

A proper sizing is the one shown in the schematic, with Wn = 1µm and

Wp = 0.42µm.

The discrepancy between paper & pencil design and simulation results high-

lights the inaccuracy of the inversely proportional relation between MOS-

FET’s channel resistance and channel width. Moreover, series MOSFETs

cannot be considered as series resistances.

Once again, input and output load evaluation is performed by considering

the blocks connected to this gate. The 3 inputs of the AND gate are the

outputs of the predecoder, whose output stage is a balanced inverter. Re-

garding output load, the output signal enters as an input on wordline driver,

that, as described in 3.4.2, is a 2 inputs AND gate. It means that the output

capacitance is the input load of a AND2 with a pull-down size of 0.55µm

and a pull-up size of 0.42µm.

Cin AND3 = 4.2Cdrainmin
= 2.94 fF

Cout AND3 = 2.3Cgatemin
= 0.46fF

By considering three non ideal input signal with rise and fall times equal to

50 ps and that commute at the same time, the characterizing delays of the

AND3 are:

tHH50 = 59 ps

tLL50 = 59 ps

trise10−90 = 30 ps

tfall10−90 = 28 ps

Since the output of the AND gate is a wordline (by neglecting the presence

of the wordline drivers for the moment), row decoder should have three AND
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Figure 3.18: Schematic of the 3 inputs AND gate.

Figure 3.19: Simulation of the 3 inputs AND gate.
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Figure 3.20: Layout of the cell used in row decoder with three AND3 gates.

gates per each bitcell one above the other. It means that, in order to have

a pitch matched row decoder, the height of the AND gate must be the one

of the bitcell divided by 3. It would be not possible to obtain such a result.

The adopted solution consists in merging three AND3 gates in only one row

decoder cell. All the cell’s transistors are placed in the horizontal direction, so

maximum height constraint is not a problem anymore. Each cell has 9 inputs

and 3 outputs, one per each bitcell’s wordline. Another layout requirement

is related to the layer used for input and output pins. Input pins must be

realized in metal 1 since the outputs of the predecoders are metal 1 lines.

Output pins’ layer can be freely chosen since they have to be connected as

inputs of wordline drivers, that are custom modules. The adopted layer is

metal 1.

The layout is shown in Figure 3.20. Area is equal to 8.29µm x 7.47µm =

62µm2. Once again, after LVS the extracted netlist is and it gives coherent

results with respect to the previous simulation. The measured delays are:

tHH50 = 88 ps

tLL50 = 90 ps
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trise10−90 = 40 ps

tfall10−90 = 37 ps

Power dissipation across the transitions depicted in Figure 3.19 and leakage

power are measured.

Ptran = 448µW

Pleakage = 0.58µW

2 inputs AND gates

The design of the AND gate with 2 inputs is conducted in the same way

as the one of the AND3 gate. It is composed by a 2 inputs NAND gate

followed by an inverter. Theoretical sizing brings to design a nMOS channel

width of 0.42µm and a pMOS channel width of 3.2 · 0.42/2µm = 0.672µm.

Once again, simulation reported some results that differ with respect to the

expected ones. Hence, the resulting gate behaves like a HI skewed AND gate,

that is not coherent with the target. By changing transistors’ size, things get

better. In particular, pMOS channel width is fixed to 0.42µm, while nMOS

width is set to 0.55µm.

Input and output loads are the same of AND3 gate since the inputs are

provided by predecoder and the output is an input signal of wordline driver.

Cin AND2 = 4.2Cdrainmin
= 2.94 fF

Cout AND2 = 2.3Cgatemin
= 0.46fF

Simulation results are shown in Figure 3.22. By considering two non ideal

input signals with rise and fall times equal to 50 ps that commute at the

same time, the measured delays of the AND2 are:

tHH50 = 58 ps

tLL50 = 60 ps

trise10−90 = 36 ps
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tfall10−90 = 32 ps

Figure 3.21: Schematic of the 2 inputs AND gate.

Figure 3.22: Simulation of the 2 inputs AND gate.

The layout of row decoder’s cell containing AND2 gates is realized in the

same way with respect to the one of the previous cell. It is shown in Figure

3.23. Area is equal to 8.29µm x 6.02µm = 49.9µm2. After a successful LVS,
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Figure 3.23: Layout of the cell used in row decoder with three AND2 gates.

the cell is tested again and the resulting delays for AND2 gate are:

tHH50 = 95 ps

tLL50 = 98 ps

trise10−90 = 47 ps

tfall10−90 = 47 ps

Once again, power dissipation across the transitions depicted in Figure 3.22

and leakage power are measured.

Ptran = 65µW

Pleakage = 0.45µW

3.4.2 Wordline driver

Wordline driver is the second module of the row circuitry. It receives the

output of the row decoder and, if enabled, provides the wordline to bitcell

array. The chosen topology to satisfy these specifications consists of a bal-

anced 2 inputs AND gate like the one designed for row decoder in Section
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Figure 3.24: Transistors of the output stage of the control logic’s block that
provides enable to wordline drivers.

3.4.1.

Input and output load is the only difference between the row decoder’s AND2

gate and the wordline driver. Wordline driver has two different inputs, the

signal coming from row decoder and the enable provided by control logic.

With regars to the first one, input load is the output capacitance of the

row decoder cell, whose output stage is a balanced inverter. Enable sig-

nal is supplied by an inverter chain placed into control logic with an output

stage, whose transistors are shown in Figure 3.24, characterized by an overall

pMOS width of 13.8µm and an overall nMOS width of 4.6µm. Output node

capacitance is due to bitcell’s access transistors. Actually, it is necessary to

distinguish read wordline from write wordline since they have a different load.

Each read wordline is connected to the gate of a transistor with a channel

width of 0.84µm, while a write wordline drives two pass transistors with a

size of 0.42µm.

Cin wordline driver = 4.2Cdrainmin
= 2.94 fF

Cen wordline driver = 5 (
1.38µm

0.42µm
+

0.46µm

0.42µm
)Cdrainmin

= 15.3 fF

Cout wwl = 32 (Cgatemin
+ Cgatemin

) = 12.8 fF

Cout rwl = 32Cgatemin = 12.8 fF

The two possible output capacitances are numerically the same, so it is

possible to perform only one simulation in order to characterize the delays
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Figure 3.25: Wordline driver simulation.

of the wordline driver.

tHH50 = 45 ps

tLL50 = 47 ps

trise10−90 = 19 ps

tfall10−90 = 20 ps

Each wordline driver cell contains three AND2 gates and input and output

pins are all realized by using metal 1 to be correctly interfaced with row

decoder outputs and bitcell array’s wordlines respectively. Area is equal to

8.29µm x 6.02µm = 49.9µm2.

After LVS and extraction, the new netlist is simulated. The obtained results

are the following ones:

tHH50 = 93 ps

tLL50 = 97 ps

trise10−90 = 41 ps

tfall10−90 = 40 ps
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During the simulation of the extracted netlist, whose waveforms are a copy

Figure 3.26: Layout of wordline driver cell.

of the ones reported in Figure 3.25, power consumption due to the transitions

is measured. Then, leakage power is evaluated as well.

Ptran = 75µW

Pleakage = 0.45µW

3.5 D Flip Flop

D flip flop is present inside the Register File to sample the input address,

the input data that has to be written inside a specific bitcell and the signals

received by control logic. The chosen schematic is depicted in Figure 3.27.

It is a Positive Edge Triggered (PET) static D flip flop in which input and

output inverters are useful to reduce noise sensibility even though they in-

troduce a delay. Transistors’ sizing is aimed to get a balanced flip flop, so all

the nMOS have a channel width of 0.42µm, while the channel width of all

the pMOS is 1.35µm.

The chosen topology has two inputs, that are clock signal and a signal pro-

vided by the external. Inside control logic, clock signal passes through an

inverter chain whose output stage is characterized by a pMOS with 57 fingers
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of 1.38µm and nMOS with 57 fingers of 0.5µm. The other input load cannot

be estimated by considering the other stages, but it is necessary to make an

assumption. For instance, it is possible to consider 20 times the minimum

drain capacitance. Output load is evaluated by considering that D flip flop

is connected either to predecoder (input stage is a balanced inverter) or to

write driver.

Cclk dff = 28 (
1.38µm

0.42µm
+

0.5µm

0.42µm
)Cdrainmin

= 87.7 fF

Cdin dff = 20Cdrainmin
= 14 fF

Cout row addr dff = 4.2Cgatemin
= 0.84 fF

Cout data dff = 4.2Cgatemin
= 0.84 fF

Simulation shows the expected behaviour and it makes possible to measure

the delay introduced by this module, setup time and hold time with the

following results:

tCLK−>Q = 135 ps

tsetup = 102.5 ps

thold = −56 ps

Setup and hold times are measured by following a procedure based on mon-

itoring the value of tCLK−>Q.

Concerning setup time, the first step consists in measuring tCLK−>Q when the

input signal precedes the active edge of clock signal by enough time. Then,

their time distance has to be reduced until clock to output delay becomes

5% higher than the first measured value. At that point, the time between

the input signal and the active edge of clock is setup time.

Hold time measure follows the same strategy. The value of tCLK−>Q is mea-

sured when a transition of the input signal is delayed by an enough wide time

interval with respect to the active edge of clock. Once again, time distance

is reduced until tCLK−>Q becomes 5% higher than the first measured value.

In this case, the time between the two signals is hold time.

The fact that measured hold time is negative means that metastability caused
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by a too fast path could never happen.

Figure 3.27: Schematic of D flip flop.

Figure 3.28: Simulation of D flip flop.

The layout is done by considering the constraint about input and output

pin’s layer, that must be metal 2 in order to get an interface compatible with

control logic which provides clock signal, write driver which receives the data

sampled from the external and predecoders that receive the sampled input

address. Moreover, in the design of this module a special attention is given

to area since it has many transistors. If layout is not realized in a proper
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way, there is the risk to obtain a module with a very wide area. The area

of this D flip flop is equal to 4.79µm x 7.47µm = 35.78µm2, 40% smaller

than the one present in the preexisting Sky130 D flip flop present in previous

version of OpenRAM.

Once obtained the extracted netlist, it is simulated. The measured timing

parameters are:

tCLK−>Q = 205 ps

tsetup = 120 ps

thold = −53 ps

Finally, power estimation is performed during extracted netlist simulation.

Figure 3.29: Layout of D flip flop.

Both the samplings of a 0 and a 1 are considered. Clock period is fixed to

4ns.

Psample 0 = 16.4µW

Psample 1 = 20.2µW

Pleakage = 1.6µW
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Chapter 4

Framework extensions

The generation of the 2R/1W Register File requires the integration of some

Python code to the preexisting one. OpenRAM doesn’t natively support

the creation of a memory based on the bitcell shown in Section 3.2, charac-

terized by separated read and write ports that are implemented through a

simple bitline without the complementary one. OpenRAM’s framework can

generate memories with multiple ports, but it supports only bitcells with

complementary bitlines.

Given the tool’s organization description presented in Section 1.2.2, a more

detailed overview about the way the tool is built is provided. When Open-

RAM is downloaded from Github repository [12], the folder contains two

main subfolders that are compiler and technology. Compiler folder includes

all is needed to create and characterize the array apart PDK, which is con-

tained inside technology folder. Each PDK folder includes the files needed

to use a custom module in OpenRAM, so SPICE and GDS files, the SPICE

models of the PDK’s devices and a subfolder called tech. The last content is

very important because here is located the file tech.py which incorporates all

the design rules, the indications about the sizes of the custom modules’ tran-

sistors, the features of the transistors such as gate and diffusion capacitances,

all the analytical delay and power parameters useful during characterization

and logical effort parameters of hand-made cells. Compiler contains many

subfolders, so in the following the most important ones will be mentioned.

Base is a folder including all the files that constitute the basis of the tool
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since they perform the creation of the memory layout, the creation of the

circuit level description and the definition of the cells and the layers that

are used inside the memory. Bitcells folder includes the definition of all

the possible bitcells that can be used in the array. In each file a class is

created and each class calls another class defined in the file bitcell base.py.

It contains some functions that declare the pin names of the bitcells and

other that are useful during simulation and parasitic extraction. Custom

subfolders comprises one file per each custom module providing the creation

of the respective class. Moreover, each file contains few routines used during

characterization. Pgates subfolder includes the description of the gates and

modules that are created through OpenRAM’s framework by starting from

the basic transistors’ models. Each file contains not only what is needed for

characterization, but also the function in which the transistors are instanti-

ated, placed and routed in the proper way. Those functions take advantadge

of other functions defined in the tool’s basis scripts. Modules folder is fun-

damental since it comprises the code to create all the modules that compose

the memory. Every file defines a class, in which there are some functions

with a specific aim such as defining the pins of the module, instantiating the

internal blocks (custom and/or pgates), placing and routing them to create

the target module, creating the layout pins in a certain position by using a

specific layer. Sram folder contains the classes that are called by top level

script to create the memory array. Those classes are able to create the entire

memory by calling the lower level classes which in turn call the lower level

class and so on. The memory is built by following a top-down methodology.

Every module is created thanks to a class called sram factory. Top level

script, which can be found in compiler folder, is openram.py. It gives start

to the generation of the memory and it calls the file globals.py, which parses

all the arguments and performs the global OpenRAM setup as well. Finally,

a very important class to mention is defined in options.py. It holds all of

the OpenRAM options. All of those options can be overridden in a configu-

ration file that is the single required command-line positional argument for

openram.py, as discussed in Section 1.2.3.

In this work, the preexisting framework is not modified, so it is possible

to exploit all the functionalities of OpenRAM for the creation of a single
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port memory. This project aims to integrate a functionality consisting in

creating a multiported memory. In order to do so, new code is created

along the same lines as the preexisting one. It is necessary to organize a

strategy to differentiate the creation of a RF and the creation of a single

port memory, and this task is performed by introducing a boolean variable

called RF mode, set in configuration file. If RF mode has value False, then

the native OpenRAM’s code is run, while if it has value True, the code

integrated in the setting of this project is executed. Obviously, when the

number of read ports and write ports are respectively set to 2 and 1, RF mode

must be True.

In the following, the additions brought to the compiler will be explained in

details. Besides the operations on the compiler, also the characterizer has

been faced. Some parts of the entire code has been adapted to support the

characterization of such a memory without any significant addition. The

difference between the preexisting code and the new one regard only the

label of the pins.

4.1 Custom module integration

The integration of an hand-made module requires a series of steps.

1. Design of the module.

2. Obtaining circuit level (SPICE file) and graphical level (GDS file) de-

scriptions of the module. The former is acquired from the schematic,

the latter by executing the command gds write on Magic console once

the layout is completed. Before creating GDS file it is very important

to introduce a property with the name FIXED BBOX {} to identify

the boundary box of the module, otherwise OpenRAM will not be able

to place it. Between the curly brackets of that property it is neces-

sary to specify the four coordinates to recognize the box’s sides. They

can be obtained by typing the command view bbox on Magic Console.

It must be considered that OpenRAM will identify the third and the

fourth coordinates as the width and the height of the cell.
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3. Copy of the files in the right subfolder of technology folder.

4. Creation of a new Python script that defines a new class with the name

of the module. It has to contain the informations about the module

useful during characterization. Moreover, the pins must be defined with

the correct names and order. It can be realized along the same lines as

a preexisting script describing a custom modules.

5. Addition of the new file either to custom subfolder or bitcells subfolder

inside compiler folder.

6. Modification of custom cell properties.py file that can be found in base

subfolder. It is necessary to add an attribute to the class cell properties

with the name of the module and its pins by specifying the pin type. It

is very important that the name and the order of the pins is the same

of the SPICE file.

7. Definition, instantiation, placing and routing of the custom cell at the

level of the script describing the module in which the cell itself is used.

It is possible to mention what are the procedures to perform the last step:

• Definition. A sub-module used inside an higher hierarchy level mod-

ule is defined in the function add modules. The particular routine,

self.factory.create(module type = ”module name”), calls the sram

factory class.

• Instantiation. Once the sub-module is created, it has to be instantiated

through the function self.create ”module name” in which the instance

is added thanks to the call of the routine add inst(name, module name).

Then, a list containing the names of the sub-module’s pins is built and

finally the routine self.connect inst(list of pins) is called.

• Placing. The function used to place a sub-module is self.”module

instance”.place(offset) where offset is the relative position of the sub-

module inside the higher level block. The routine place is defined in

hierarchy layout class. An important aspect in placing the modules

is the possibility to share power supply and ground rails, as shown in
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Figure 4.1. This is possible by setting the boundary coordinates in such

a way an half of the two rails is excluded from the box. Moreover, in

order to achieve that result, the cells need to be mirrored with respect

to X axis. It is possibile thanks to an input variable of the function

place.

• Routing. It is an operation that OpenRAM performs by means of a

function named route ”module name”. They call add path(”metal layer”,

[points’ coordinates]) and add via stack center(from layer=, to layer=,

offset=). The first one is a routine that creates a metal line between

two points. Its shape depends on the number of points given in input

to the routine. With two points the line is straight, with three there

will be a connection between the first point and the second point, and

then a connection between second and third point, and so on. The

second routine creates a via from a metal layer to another one by using

the proper layer stack among the ones defined in the file tech.py.

4.2 Parametric modules creation

The procedure to realize a parametric module is the same with respect to

the one just described for custom module with the difference that no SPICE

or GDS files have to be created and the cells that are instantiated are pMOS

and/or nMOS. There are three modules of the 2R/1W Register File that

have been realized by following this approach. They are column multiplexer,

precharge circuit and control logic, produced by starting from the preex-

isting scripts describing those components used in the single port memory

implementation.

4.2.1 Column multiplexer

OpenRAM implementation designed in this work introduces column multi-

plexing when an array’s row contains more than one word. Column multi-

plexer cell is composed by three pass transistors, one per each port, that are

connected to the cell’s bitlines from a side and to the bitline sensing circuits’
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Figure 4.1: Shared power and ground rails between bitcells in a 32 x 32
2R/1W Register File.

inputs or write driver’s output from the other side. They are driven by the

column decoder, whose constituting module depends on the number of bits

needed to decode the column. In other words, in order to activate the col-

umn mux’s transistors in the correct way, the used module depends on the

number of words per row. If column address length is 1, then the decoder is

simply an inverter, otherwise it is a predecoder with an appropriate number

of inputs.

From layout point of view, column multiplexer cell is depicted in Figure 4.2a,

it consists of three n-channel MOSFETs placed one above the other. There

is a ground contact placed to bias the substrate in the correct way. The total

width of the cell is equal to the bitcell’s width, so the column multiplexer

and the bitcell array have the same total width.
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4.2.2 Read bitlines precharge circuit

The bitline conditioning circuit used in this project has a topology that

follows the one shown in Figure 2.21c with 3 pMOS driven by a clocked

signal. In this case, the signal is provided by control logic and its activation

causes the precharge of both read bitlines. The layout of the single cell is

shown in Figure 4.2b. Two devices share the diffusion connected to power

supply, while the other two diffusions are connected to read bitlines. Then,

the other pMOS is driven by the control signal and has source and drain

connected to bitlines. All the transistors have a width that is the minimum

one times the ratio between electrons and holes mobility.

The metal 2 have that pattern in order to get a straight connection to the

bitcell’s bitlines. In other words, the distance between bitlines and between

the bitlines and the borders at the top and at the bottom of the precharge

cell are equal to the bitcell’s ones. Once again, the width of the cell is equal

to the bitcell’s width.

4.2.3 Control logic

Control logic is a fundamental module that guarantees the correct operation

of the entire memory by giving the control signals in the right moment. In

order to do so, it receives some external signals that pass through sequential

and combinational stages to produce control signals.

In this project, control logic receives write enable and chip select, that are

both active low, from the external. Each of them is the input of a buffered

D flip flop, so a D flip flop followed by a chain of two inverters. Thus, that

block is able to produce both the input signal and its complementary. As

it is possible to see from Figure 4.3, control logic contains 6 combinational

blocks placed one above the other. Moreover, there are 6 metal 2 vertical

rails that carry some signals with a particular meaning. 4 of them are the

outputs of the two buffered D flip flops. The other two lines are related

to clock. The clock signal provided by the external is transferred to one of

those rails and finally there is a signal derived from clock produced by a

combinational gate that receives also the chip select provided by a buffered

DFF. This block is an inverter followed by a 2-inputs AND gate, and the
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(a) Layout of column multi-
plexer cell.

(b) Layout of read bitlines precharge
circuit.

Figure 4.2: Column multiplexer and precharge circuit.

first stage provokes the inversion of the external clock. It means that at the

output it is possible to find the complementary of the delayed external clock

when chip select is active. The output is then transferred to a vertical metal 2

rail to be distributed to the other combinational gates of the control logic.

Control logic has 4 output signals: wordline enable, precharge enable, write

enable and buffered clock ordered from the top to the bottom of Figure 4.3.

Wordline enable is produced by a pdriver, a module that is composed by

a certain number of inverters sized to drive a load. In this case, pdriver

receives the complementary buffered clock that passes through a chain of

four inverters. Precharge enable is produced thanks to a pdriver containing

two inverters. A 2 inputs AND gate receiving the complementary buffered

clock and one of the outputs of a buffered D flip flop produces write enable.

Finally, buffered clock that is sent to the rest of the memory is provided by

means of a pdriver that includes a chain of four inverters and that receives
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Figure 4.3: Block diagram of control logic.

the external clock.

All the blocks of control logic were part of the framework before the starting

point of this project, so all the issues about gate sizing and speed haven’t

been faced in this work.
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Chapter 5

Register File implementation

Once the compilation is launched, OpenRAM manages to create the entire

memory by using all the modules that have been analyzed until now. A

complete view of the 2R/1W Register File is provided in Figure 5.1. It is

possible to notice the highest level modules that compose the entire memory,

so bank, control logic, row address D flip flop array and data D flip flop array.

Bank is in turn constitute by port data, containing all the column circuitry,

port address, including all the row circuitry and bitcell array.

A very important aspect to analyze regards the adopted method to allow

simultaneous operations on the memory bitcells, a fundamental feature of

a Register File used in processors. The memory is designed in such a way

that there are three separated row addresses, one per each port, that are

sampled by three different arrays of D flip flops. Then, the sampled bits

are the inputs of the predecoders, whose number is three times the number

of predecoders used in a single port memory implementation. The outputs

of the three predecoding blocks become the input of the row decoder cell

with 2 or 3 inputs, depending on address bits, designed in Section 3.4. It

is necessary to be very careful in connecting the predecoders outputs to row

decoder’s AND gates inputs because the three address are independent and

they haven’t to be mixed as inputs of the same AND gate.

Obviously, there is an area penalty due to the introduction of two D flip

flop arrays and of two predecoding modules, but it is only the consequence

of improving the performance of the memory. Hence, as said in Chapter
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2, the most important features of a memory are strictly related, if one of

them is enhanced, then another one is worsened. In this case, area penalty

depends on the number of bits used for address. For instance, by considering

a 32 x 32 Register File, OpenRAM provides the information about area after

compilation, that is roughly equal to 108000µm2. As reported in Section

3.5, the produced D flip flop has an area of 35.78µm2, so in a 32x 32 RF,

where row address is codified in 5 bits, there is an overhead of 10 D flip

flops. Moreover, it is necessary to consider also the introduction of two 2 : 4

and two 3 : 8 predecoders, which respectively have an area of 162µm2 and

387µm2. Area overhead is evaluated as:

Aoverhead = 10 · 35.78µm2 + 2 (162 + 387)µm2 = 1455.8µm2

Aoverhead % =
1455.8

108000− 1455.8
· 100 = 1.366%

It is possible to state that a great advantage in performance is achieved at

the cost of only 1.366% area overhead.

Finally, another important point to highlight is the memory timing derived

from the internal control logic connections discussed in Section 4.2.3. The

precharge enable and the wordline enable are generated by a delayed inverted

replica of clock signal. It means that wordlines are active when clock has a

low voltage value, so read and write operations can be performed in the

second part of the cycle, while read bitlines are precharged in the first part

of the cycle, so when precharge enable is low. This strategy leads to avoid any

kind of conflict on read bitline between the cell’s transistors that offer a path

to discharge the bitline and the pMOS of precharge circuit. Write enable is

originated from inverted clock as well, so the input data is transferred on

write bitline in the second part of the clock period. The first part of the

cycle is also used to generate the row and column addresses. Under these

conditions, the reading operation provides for a situation in which the data

stored in a bitcell is valid at the output of the memory in the second half of

the clock period in which the read address is sampled.
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Figure 5.1: Highest level view of the Register File.
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Chapter 6

Simulation and results

This chapter contains the results of the simulations performed in order to

ensure that what has been designed works properly. For this purpose, two

simulations are executed. The first one is focused on checking if the expected

functionalities are achieved by testing only one bitcell. Then, a 32 x 32 Regis-

ter File is tested in order to evaluate its features from performance and power

point of view in different process corners and with different environmental

conditions.

6.1 Simulation of one bitcell

The simulation is conducted by setting up a schematic, shown Figure 6.1,

containing the modules used inside the 2R/1W Register File, including the

non custom cells as well. Only a bitcell is present inside the scheme, so there

are three possible wordlines that can be activated. It means that 3 bits are

needed for the row address to allow simultaneous operations on the bitcell.

The predecoders provided by OpenRAM framework and the row decoder

cells designed in Section 3.4 are not needed in this case, so row address flops’

outputs are the inputs of the wordline driver. This last module receives also

the enable provided by control logic. Each control logic’s block is present

inside the schematic with the topology and the transistors’ sizing established

by OpenRAM compilation.

The input and output signals in the simulation scheme are the address bits,
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Figure 6.1: Schematic used for the simulation of the memory with one bitcell.

the input data, the clock signal, write enable, chip select and output data.

In order to achieve the simulation aim, the first step consists in setting clock

period to 4ns. Then, a writing of a 1 is performed, followed by a simultaneous

reading from both read ports. Thereafter, a 0 is written in the bitcell and then

read from both ports. This sequence of operations is obtained by providing

the control signals in the proper way. For any operation, chip select must

be active, otherwise wordline cannot be activated since wordline enable is

a buffered version of the AND between inverted chip select and inverted

clock. For the write operation, it is necessary to give in input the activated

write enable, the correct address and the input data. When those signals are

sampled, in the second half of that clock cycle, write wordline is activated

and the signal on write bitline can be written in the bitcell. For reading, it is

enough to provide only the address and waiting for the output data according

to the explanation presented in Chapter 5. The results of the simulation are

shown in Figure 6.2. The signals are ordered in the following way from top to

bottom: clock, address0 (referring to first read port), address1 (referring to

second read port), address2 (referring to write port), chip select, write enable,

input data, write bitline, wordline enable, stored data, write wordline, read

wordline of first port, read wordline of second port, output data of first port,

output data of second port.

Next step provides for the measure of the delays between wordline activation

and output data rising in case of reading and variation of stored data in case

of writing. In this case, the SPICE netlist used for simulation doesn’t include
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Figure 6.2: Waveforms of one bitcell scheme’s simulation.
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parasitics. The obtained values, considered at 50% of the maximum level,

are:

trwl2dout = 50 ps

twwl2Q rise = 384 ps

twwl2Q fall = 287 ps

Moreover, another measure involves the minimum clock period sustained by

this scheme. The found value is about 1ns. It means that the maximum

operating frequency for this configuration is more or less 1GHz, so 2GHz

as bandwidth in reading.

6.2 32 x 32 Register File simulation

The second simulation regards an entire 2R/1W Register File with 32 words

of 32 bits. In this case, all the modules are present in the simulation

schematic, including predecoders and row decoder cells. The schematic,

shown in Figure 6.3, follows the block diagram depicted in Figure 5.1. By

considering Figure 6.3, on the top left it is possible to find the three arrays,

one per each port, of D flip flop that sample the input addresses. By moving

towards the right, the row decoder receives the outputs of row address DFF

and produces the inputs of wordline driver array, that in turn provides the

wordlines to bitcell array. Bitcell array receives also the write bitlines, sup-

plied by write driver array that can be found on the bottom of the picture.

Write drivers’ input data are provided by data D flip flop array, placed on the

left of write driver array. The outputs of bitcell array are the read bitlines,

that are connected to precharge array and to the inputs of bitline sensing

circuit array, which produces output data. On the bottom left it is possible

to find the control logic.

The parasitic bitline and wordline capacitances due to the non ideality of the

metal wires are also considered for the evaluation of the RF performance.

In order to estimate their value, some considerations about the bitcell ar-

ray dimensions and the technological parameters of Sky130 PDK are re-

quired. Bitcell array’s width is equal to 124.5µm, while the height is equal
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to 246.5µm. The capacitance per area unit of metal 1, used for wordlines,

and metal 2, used for bitlines, is 0.134 fF
µm2 in both cases. Inside each Register

File implemented in OpenRAM by using Skywater130 technology the width

of each wire is the minimum possible one, so 0.14µm. Wordlines and bitlines

capacitance are:

Cwordline = 0.134
fF

µm2
· 0.14µm · 124.5µm = 2.34 fF

Cbitline = 0.134
fF

µm2
· 0.14µm · 246.5µm = 4.63 fF

The simulation provides for a writing of a 32 bits data on the top row and

then a simultaneous reading from both read ports. The waveforms, obtained

by setting clock period to 4ns, are shown in Figure 6.4 and are ordered in

the following way from top to bottom: clock, chip select, write enable, write

address (five bits), least significant input bit, most significant input bit, ad-

dress of first read port (the one of second port is identical), least significant

output bit on first read port, most significant output bit on first read port,

least significant output bit on second read port, most significant output bit

on second read port.

The key point of this test concerns the evaluation of memory performance

and power dissipation by considering parasitic parameters. Several tests have

been executed in order to characterize the memory in the 5 different process

corners whose models are provided by SkyWater130 PDK, and in different

environmental conditions by changing temperature and power supply value.

Clock period is fixed to 8ns.

The measured delays concerns the time between the activation of a read

wordline and the rising of the output data and the times between the ac-

tivation of the write wordline and the rising and falling of the stored data.

Once again, the delays refer to 50% of the final value of each signal after the

transition.

Those delays are taken into account since they are the most critical ones in

terms of memory performance. As explained in Chapter 5, read and write

procedures occur in the second part of the cycle, while in the first part the

input signals are sampled and then they pass through the row decoding mod-
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Figure 6.3: Schematic of the 32 x 32 RF simulation.
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Figure 6.4: Simulation waveforms of the 32 x 32 Register File.
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ules path or the modules useful for writing path. Simulations showed that

the second part of the cycle is the most critical one regarding timing require-

ments, so the measured delays can be seen as an indication of the maximum

operating frequency of the memory.

Table 6.1 shows the timing features of the memory in the 5 process cor-

ners provided by SkyWater130 PDK. The simulations are performed with a

temperature of 27 ◦C and a power supply voltage of 1.8V , so in a standard

condition.

Corner trwl2dout twwl2Q rise twwl2Q fall fmax

TT 530 ps 466 ps 453 ps 820MHz
FF 396 ps 341 ps 364 ps 910MHz
SS 778 ps 1.08ns 610 ps 400MHz
FS 566 ps 902 ps 670 ps 500MHz
SF 545 p 588ns 462 ps 770MHz

Table 6.1: Measured delays and maximum operating frequency of the 32 x
32 Register File in 5 different process corners.

Concerning power, there are 5 different measurements that account for read-

ing and writing of a 0 or a 1 and leakage power. The evaluations are intended

as medium power over a certain interval of time. Table 6.2 shows the power

features of the memory in the 5 process corners provided by SkyWater130

PDK. Once again the simulations are performed with a temperature of 27 ◦C

and a power supply voltage of 1.8V . The results about power consumption

during reading refer to only one port.

Corner Pread 0 Pwrite 0 Pread 1 Pwrite 1 Pleakage

TT 0.99mW 2.36mW 1.14mW 5.70mW 1.41mW
FF 1.5mW 3.40mW 1.68mW 9.10mW 108.23mW
SS 0.98mW 2.16mW 1.00mW 3.58mW 0.68µW
FS 1.00mW 2.48mW 1.76mW 4.97mW 0.13mW
SF 1.00mW 2.38mW 1.95mW 9.91mW 2.9mW

Table 6.2: Measured leakage and medium power during reading and writing
of the 32 x 32 Register File in 5 different process corners.

Given these two tables, it is possible to consider the strict relation between
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Temperature trwl2dout twwl2Q rise twwl2Q fall fmax

0 ◦C 559 ps 504 ps 413 ps 770MHz
27 ◦C 530 ps 466 ps 453 ps 820MHz
50 ◦C 527 ps 477 ps 473 ps 820MHz
70 ◦C 557 ps 565 ps 515 ps 760MHz

Table 6.3: Measured delays and maximum operating frequency of the 32 x
32 Register File working with 4 different temperature values.

performance and power. In correspondence of the FF corner, the Register

File is able to work with an higher frequency than the normal one evaluated

in TT corner, while it is slower in SS corner. This is something expected

since FF corner is characterized by a lower threshold voltage and an higher

value of β than TT corner, while SS accounts for the opposite conditions.

The variation in speed is reflected in power features. The higher is the speed,

the higher is the power consumption.

This concept is valid for FS and SF corners as well. SF corner is faster

than FS one, therefore power dissipation is higher. The last result leads

to declare that p-channel MOSFETs have an higher relevance on improving

performance and increasing power dissipation of the entire Register File.

A very important point to highlight is the value of leakage power. In FF cor-

ner it is almost 100 times higher than in TT corner, while in SS it is 3 orders

of magnitude lower. This wide variation can be justified by considering the

exponential relation between threshold voltage and subthreshold current.

The same parameters have been evaluated by keeping the focus on the en-

vironmental condition. The Register File is simulated in with different op-

erating temperature and power supply voltage. Concerning temperature, 4

different points in the range 0 − 70 ◦C are considered, while power supply is

set in such a way there is a ±10% of displacement with respect to its nominal

value. All the results are shown in the following tables. The chosen process

corner in these cases is TT.

As a consequence of temperature variation, the Register File shows slight

changes in timing parameters and power parameters with respect to nominal

temperature of 27 ◦C. As the temperature increases from the nominal value,

the leakage power increases as well because threshold voltage drop. Another
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Temperature Pread 0 Pwrite 0 Pread 1 Pwrite 1 Pleakage

0 ◦C 0.97mW 2.33mW 1.12mW 4.75mW 0.32mW
27 ◦C 0.99mW 2.36mW 1.14mW 5.70mW 1.41mW
50 ◦C 1.15mW 2.34mW 1.14mW 5.20mW 2.38mW
70 ◦C 0.96mW 2.40mW 1.27mW 8.03mW 4.11mW

Table 6.4: Measured leakage and medium power during reading and writing
of the 32 x 32 Register File working with 4 different temperature values.

VDD trwl2dout twwl2Q rise twwl2Q fall fmax

1.62V 694 ps 651 ps 638 ps 625MHz
1.8V 530 ps 588 ps 453 ps 820MHz
1.98V 467 ps 436 ps 393 ps 910MHz

Table 6.5: Measured delays and maximum operating frequency of the 32 x
32 Register File working with 3 power supply voltage values.

effect that must be consider is the drop of the carriers mobility with the

increasing temperature. It is the reason why the performance of the memory

doesn’t improve at high temperature.

Power supply variation brings to expected results. As the supply voltage in-

creases, delays are reduced and power dissipation increases. With a voltage

of 1.98V it is possible to reach the same operating frequency measured for

FF corner in Table 6.1, but at the same time leakage is 30 times lower since

threshold voltage is not modified.

VDD Pread 0 Pwrite 0 Pread 1 Pwrite 1 Pleakage

1.62V 0.87mW 1.87mW 0.90mW 5.14mW 0.75mW
1.8V 0.99mW 2.36mW 1.06mW 5.70mW 1.41mW
1.98V 1.22mW 2.86mW 1.38mW 10.12mW 3.56mW

Table 6.6: Measured leakage and medium power during reading and writing
of the 32 x 32 Register File working with 4 different temperature values.

107



Chapter 7

Conclusions

This work establishes a starting point to introduce the possibility of gener-

ating a Register File through an open-source software. The most important

feature of a Register File, so the possibility to perform more than one access

in the same cycle, leads to enlarge the memory bandwidth and enables the

use of those components inside high speed processors at a cost of a reasonable

area overhead.

This project provides an updated version of OpenRAM framework that en-

sures the creation of a multiported memory based on the hardware structure

of a Register File with 2 read ports and 1 write port, composed by all the

modules whose design is exposed in the previous chapters.

The design is based on a completely open-source flow. The technology used

is Sky130, whose PDK is open-source as well, that was already integrated in

OpenRAM before the starting point of this work.

A very common configuration of a Register File, 32 x 32, is considered to eval-

uate performance, area and power features of the designed hardware structure

by considering the process corners provided by the SkyWater130 PDK and

with different values of temperature and supply voltage. Maximum operat-

ing frequency and power results are evaluated thanks to a SPICE simulation,

while area information is provided by the memory datasheet provided by

OpenRAM after compilation. Timing and power results given by OpenRAM

are very approximated since they are derived by using an approximated an-

alytical model. It would be possible to obtain more precise results through
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a complete simulation, but it is very burdensome from computational point

of view.

This work could inspire further projects about the improving of the designed

configuration to obtain better results and the creation of a Register File with

this configuration and an higher number of ports by taking advantage of the

framework that needs few adjustments to be ready to perform such a task.
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